Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include <trace/events/f2fs.h>
24
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
27static struct kmem_cache *discard_entry_slab;
28static struct kmem_cache *discard_cmd_slab;
29static struct kmem_cache *sit_entry_set_slab;
30static struct kmem_cache *inmem_entry_slab;
31
32static unsigned long __reverse_ulong(unsigned char *str)
33{
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37#if BITS_PER_LONG == 64
38 shift = 56;
39#endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45}
46
47/*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51static inline unsigned long __reverse_ffs(unsigned long word)
52{
53 int num = 0;
54
55#if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60#endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84}
85
86/*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97{
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127found:
128 return result - size + __reverse_ffs(tmp);
129}
130
131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133{
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164found:
165 return result - size + __reverse_ffz(tmp);
166}
167
168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169{
170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173
174 if (f2fs_lfs_mode(sbi))
175 return false;
176 if (sbi->gc_mode == GC_URGENT_HIGH)
177 return true;
178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 return true;
180
181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183}
184
185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186{
187 struct inmem_pages *new;
188
189 set_page_private_atomic(page);
190
191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192
193 /* add atomic page indices to the list */
194 new->page = page;
195 INIT_LIST_HEAD(&new->list);
196
197 /* increase reference count with clean state */
198 get_page(page);
199 mutex_lock(&F2FS_I(inode)->inmem_lock);
200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 mutex_unlock(&F2FS_I(inode)->inmem_lock);
203
204 trace_f2fs_register_inmem_page(page, INMEM);
205}
206
207static int __revoke_inmem_pages(struct inode *inode,
208 struct list_head *head, bool drop, bool recover,
209 bool trylock)
210{
211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 struct inmem_pages *cur, *tmp;
213 int err = 0;
214
215 list_for_each_entry_safe(cur, tmp, head, list) {
216 struct page *page = cur->page;
217
218 if (drop)
219 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220
221 if (trylock) {
222 /*
223 * to avoid deadlock in between page lock and
224 * inmem_lock.
225 */
226 if (!trylock_page(page))
227 continue;
228 } else {
229 lock_page(page);
230 }
231
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234 if (recover) {
235 struct dnode_of_data dn;
236 struct node_info ni;
237
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239retry:
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
242 LOOKUP_NODE);
243 if (err) {
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC,
246 DEFAULT_IO_TIMEOUT);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253
254 err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 if (err) {
256 f2fs_put_dnode(&dn);
257 return err;
258 }
259
260 if (cur->old_addr == NEW_ADDR) {
261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 } else
264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 cur->old_addr, ni.version, true, true);
266 f2fs_put_dnode(&dn);
267 }
268next:
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop || recover) {
271 ClearPageUptodate(page);
272 clear_page_private_gcing(page);
273 }
274 detach_page_private(page);
275 set_page_private(page, 0);
276 f2fs_put_page(page, 1);
277
278 list_del(&cur->list);
279 kmem_cache_free(inmem_entry_slab, cur);
280 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 }
282 return err;
283}
284
285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286{
287 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 struct inode *inode;
289 struct f2fs_inode_info *fi;
290 unsigned int count = sbi->atomic_files;
291 unsigned int looped = 0;
292next:
293 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 if (list_empty(head)) {
295 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 return;
297 }
298 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 inode = igrab(&fi->vfs_inode);
300 if (inode)
301 list_move_tail(&fi->inmem_ilist, head);
302 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303
304 if (inode) {
305 if (gc_failure) {
306 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 goto skip;
308 }
309 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 f2fs_drop_inmem_pages(inode);
311skip:
312 iput(inode);
313 }
314 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 cond_resched();
316 if (gc_failure) {
317 if (++looped >= count)
318 return;
319 }
320 goto next;
321}
322
323void f2fs_drop_inmem_pages(struct inode *inode)
324{
325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 struct f2fs_inode_info *fi = F2FS_I(inode);
327
328 do {
329 mutex_lock(&fi->inmem_lock);
330 if (list_empty(&fi->inmem_pages)) {
331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332
333 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 if (!list_empty(&fi->inmem_ilist))
335 list_del_init(&fi->inmem_ilist);
336 if (f2fs_is_atomic_file(inode)) {
337 clear_inode_flag(inode, FI_ATOMIC_FILE);
338 sbi->atomic_files--;
339 }
340 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341
342 mutex_unlock(&fi->inmem_lock);
343 break;
344 }
345 __revoke_inmem_pages(inode, &fi->inmem_pages,
346 true, false, true);
347 mutex_unlock(&fi->inmem_lock);
348 } while (1);
349}
350
351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352{
353 struct f2fs_inode_info *fi = F2FS_I(inode);
354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 struct list_head *head = &fi->inmem_pages;
356 struct inmem_pages *cur = NULL;
357
358 f2fs_bug_on(sbi, !page_private_atomic(page));
359
360 mutex_lock(&fi->inmem_lock);
361 list_for_each_entry(cur, head, list) {
362 if (cur->page == page)
363 break;
364 }
365
366 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 list_del(&cur->list);
368 mutex_unlock(&fi->inmem_lock);
369
370 dec_page_count(sbi, F2FS_INMEM_PAGES);
371 kmem_cache_free(inmem_entry_slab, cur);
372
373 ClearPageUptodate(page);
374 clear_page_private_atomic(page);
375 f2fs_put_page(page, 0);
376
377 detach_page_private(page);
378 set_page_private(page, 0);
379
380 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381}
382
383static int __f2fs_commit_inmem_pages(struct inode *inode)
384{
385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 struct f2fs_inode_info *fi = F2FS_I(inode);
387 struct inmem_pages *cur, *tmp;
388 struct f2fs_io_info fio = {
389 .sbi = sbi,
390 .ino = inode->i_ino,
391 .type = DATA,
392 .op = REQ_OP_WRITE,
393 .op_flags = REQ_SYNC | REQ_PRIO,
394 .io_type = FS_DATA_IO,
395 };
396 struct list_head revoke_list;
397 bool submit_bio = false;
398 int err = 0;
399
400 INIT_LIST_HEAD(&revoke_list);
401
402 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 struct page *page = cur->page;
404
405 lock_page(page);
406 if (page->mapping == inode->i_mapping) {
407 trace_f2fs_commit_inmem_page(page, INMEM);
408
409 f2fs_wait_on_page_writeback(page, DATA, true, true);
410
411 set_page_dirty(page);
412 if (clear_page_dirty_for_io(page)) {
413 inode_dec_dirty_pages(inode);
414 f2fs_remove_dirty_inode(inode);
415 }
416retry:
417 fio.page = page;
418 fio.old_blkaddr = NULL_ADDR;
419 fio.encrypted_page = NULL;
420 fio.need_lock = LOCK_DONE;
421 err = f2fs_do_write_data_page(&fio);
422 if (err) {
423 if (err == -ENOMEM) {
424 congestion_wait(BLK_RW_ASYNC,
425 DEFAULT_IO_TIMEOUT);
426 cond_resched();
427 goto retry;
428 }
429 unlock_page(page);
430 break;
431 }
432 /* record old blkaddr for revoking */
433 cur->old_addr = fio.old_blkaddr;
434 submit_bio = true;
435 }
436 unlock_page(page);
437 list_move_tail(&cur->list, &revoke_list);
438 }
439
440 if (submit_bio)
441 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442
443 if (err) {
444 /*
445 * try to revoke all committed pages, but still we could fail
446 * due to no memory or other reason, if that happened, EAGAIN
447 * will be returned, which means in such case, transaction is
448 * already not integrity, caller should use journal to do the
449 * recovery or rewrite & commit last transaction. For other
450 * error number, revoking was done by filesystem itself.
451 */
452 err = __revoke_inmem_pages(inode, &revoke_list,
453 false, true, false);
454
455 /* drop all uncommitted pages */
456 __revoke_inmem_pages(inode, &fi->inmem_pages,
457 true, false, false);
458 } else {
459 __revoke_inmem_pages(inode, &revoke_list,
460 false, false, false);
461 }
462
463 return err;
464}
465
466int f2fs_commit_inmem_pages(struct inode *inode)
467{
468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 struct f2fs_inode_info *fi = F2FS_I(inode);
470 int err;
471
472 f2fs_balance_fs(sbi, true);
473
474 down_write(&fi->i_gc_rwsem[WRITE]);
475
476 f2fs_lock_op(sbi);
477 set_inode_flag(inode, FI_ATOMIC_COMMIT);
478
479 mutex_lock(&fi->inmem_lock);
480 err = __f2fs_commit_inmem_pages(inode);
481 mutex_unlock(&fi->inmem_lock);
482
483 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484
485 f2fs_unlock_op(sbi);
486 up_write(&fi->i_gc_rwsem[WRITE]);
487
488 return err;
489}
490
491/*
492 * This function balances dirty node and dentry pages.
493 * In addition, it controls garbage collection.
494 */
495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496{
497 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 f2fs_stop_checkpoint(sbi, false);
500 }
501
502 /* balance_fs_bg is able to be pending */
503 if (need && excess_cached_nats(sbi))
504 f2fs_balance_fs_bg(sbi, false);
505
506 if (!f2fs_is_checkpoint_ready(sbi))
507 return;
508
509 /*
510 * We should do GC or end up with checkpoint, if there are so many dirty
511 * dir/node pages without enough free segments.
512 */
513 if (has_not_enough_free_secs(sbi, 0, 0)) {
514 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 sbi->gc_thread->f2fs_gc_task) {
516 DEFINE_WAIT(wait);
517
518 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 TASK_UNINTERRUPTIBLE);
520 wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 io_schedule();
522 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 } else {
524 down_write(&sbi->gc_lock);
525 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 }
527 }
528}
529
530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531{
532 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 return;
534
535 /* try to shrink extent cache when there is no enough memory */
536 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538
539 /* check the # of cached NAT entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542
543 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 else
546 f2fs_build_free_nids(sbi, false, false);
547
548 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 excess_prefree_segs(sbi))
550 goto do_sync;
551
552 /* there is background inflight IO or foreground operation recently */
553 if (is_inflight_io(sbi, REQ_TIME) ||
554 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 return;
556
557 /* exceed periodical checkpoint timeout threshold */
558 if (f2fs_time_over(sbi, CP_TIME))
559 goto do_sync;
560
561 /* checkpoint is the only way to shrink partial cached entries */
562 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 f2fs_available_free_memory(sbi, INO_ENTRIES))
564 return;
565
566do_sync:
567 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 struct blk_plug plug;
569
570 mutex_lock(&sbi->flush_lock);
571
572 blk_start_plug(&plug);
573 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 blk_finish_plug(&plug);
575
576 mutex_unlock(&sbi->flush_lock);
577 }
578 f2fs_sync_fs(sbi->sb, true);
579 stat_inc_bg_cp_count(sbi->stat_info);
580}
581
582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 struct block_device *bdev)
584{
585 int ret = blkdev_issue_flush(bdev);
586
587 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 test_opt(sbi, FLUSH_MERGE), ret);
589 return ret;
590}
591
592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593{
594 int ret = 0;
595 int i;
596
597 if (!f2fs_is_multi_device(sbi))
598 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599
600 for (i = 0; i < sbi->s_ndevs; i++) {
601 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 continue;
603 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 if (ret)
605 break;
606 }
607 return ret;
608}
609
610static int issue_flush_thread(void *data)
611{
612 struct f2fs_sb_info *sbi = data;
613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 wait_queue_head_t *q = &fcc->flush_wait_queue;
615repeat:
616 if (kthread_should_stop())
617 return 0;
618
619 if (!llist_empty(&fcc->issue_list)) {
620 struct flush_cmd *cmd, *next;
621 int ret;
622
623 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625
626 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627
628 ret = submit_flush_wait(sbi, cmd->ino);
629 atomic_inc(&fcc->issued_flush);
630
631 llist_for_each_entry_safe(cmd, next,
632 fcc->dispatch_list, llnode) {
633 cmd->ret = ret;
634 complete(&cmd->wait);
635 }
636 fcc->dispatch_list = NULL;
637 }
638
639 wait_event_interruptible(*q,
640 kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 goto repeat;
642}
643
644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645{
646 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 struct flush_cmd cmd;
648 int ret;
649
650 if (test_opt(sbi, NOBARRIER))
651 return 0;
652
653 if (!test_opt(sbi, FLUSH_MERGE)) {
654 atomic_inc(&fcc->queued_flush);
655 ret = submit_flush_wait(sbi, ino);
656 atomic_dec(&fcc->queued_flush);
657 atomic_inc(&fcc->issued_flush);
658 return ret;
659 }
660
661 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 f2fs_is_multi_device(sbi)) {
663 ret = submit_flush_wait(sbi, ino);
664 atomic_dec(&fcc->queued_flush);
665
666 atomic_inc(&fcc->issued_flush);
667 return ret;
668 }
669
670 cmd.ino = ino;
671 init_completion(&cmd.wait);
672
673 llist_add(&cmd.llnode, &fcc->issue_list);
674
675 /*
676 * update issue_list before we wake up issue_flush thread, this
677 * smp_mb() pairs with another barrier in ___wait_event(), see
678 * more details in comments of waitqueue_active().
679 */
680 smp_mb();
681
682 if (waitqueue_active(&fcc->flush_wait_queue))
683 wake_up(&fcc->flush_wait_queue);
684
685 if (fcc->f2fs_issue_flush) {
686 wait_for_completion(&cmd.wait);
687 atomic_dec(&fcc->queued_flush);
688 } else {
689 struct llist_node *list;
690
691 list = llist_del_all(&fcc->issue_list);
692 if (!list) {
693 wait_for_completion(&cmd.wait);
694 atomic_dec(&fcc->queued_flush);
695 } else {
696 struct flush_cmd *tmp, *next;
697
698 ret = submit_flush_wait(sbi, ino);
699
700 llist_for_each_entry_safe(tmp, next, list, llnode) {
701 if (tmp == &cmd) {
702 cmd.ret = ret;
703 atomic_dec(&fcc->queued_flush);
704 continue;
705 }
706 tmp->ret = ret;
707 complete(&tmp->wait);
708 }
709 }
710 }
711
712 return cmd.ret;
713}
714
715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716{
717 dev_t dev = sbi->sb->s_bdev->bd_dev;
718 struct flush_cmd_control *fcc;
719 int err = 0;
720
721 if (SM_I(sbi)->fcc_info) {
722 fcc = SM_I(sbi)->fcc_info;
723 if (fcc->f2fs_issue_flush)
724 return err;
725 goto init_thread;
726 }
727
728 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 if (!fcc)
730 return -ENOMEM;
731 atomic_set(&fcc->issued_flush, 0);
732 atomic_set(&fcc->queued_flush, 0);
733 init_waitqueue_head(&fcc->flush_wait_queue);
734 init_llist_head(&fcc->issue_list);
735 SM_I(sbi)->fcc_info = fcc;
736 if (!test_opt(sbi, FLUSH_MERGE))
737 return err;
738
739init_thread:
740 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 if (IS_ERR(fcc->f2fs_issue_flush)) {
743 err = PTR_ERR(fcc->f2fs_issue_flush);
744 kfree(fcc);
745 SM_I(sbi)->fcc_info = NULL;
746 return err;
747 }
748
749 return err;
750}
751
752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753{
754 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755
756 if (fcc && fcc->f2fs_issue_flush) {
757 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758
759 fcc->f2fs_issue_flush = NULL;
760 kthread_stop(flush_thread);
761 }
762 if (free) {
763 kfree(fcc);
764 SM_I(sbi)->fcc_info = NULL;
765 }
766}
767
768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769{
770 int ret = 0, i;
771
772 if (!f2fs_is_multi_device(sbi))
773 return 0;
774
775 if (test_opt(sbi, NOBARRIER))
776 return 0;
777
778 for (i = 1; i < sbi->s_ndevs; i++) {
779 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 continue;
781 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 if (ret)
783 break;
784
785 spin_lock(&sbi->dev_lock);
786 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 spin_unlock(&sbi->dev_lock);
788 }
789
790 return ret;
791}
792
793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 enum dirty_type dirty_type)
795{
796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797
798 /* need not be added */
799 if (IS_CURSEG(sbi, segno))
800 return;
801
802 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 dirty_i->nr_dirty[dirty_type]++;
804
805 if (dirty_type == DIRTY) {
806 struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 enum dirty_type t = sentry->type;
808
809 if (unlikely(t >= DIRTY)) {
810 f2fs_bug_on(sbi, 1);
811 return;
812 }
813 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]++;
815
816 if (__is_large_section(sbi)) {
817 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 block_t valid_blocks =
819 get_valid_blocks(sbi, segno, true);
820
821 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 valid_blocks == BLKS_PER_SEC(sbi)));
823
824 if (!IS_CURSEC(sbi, secno))
825 set_bit(secno, dirty_i->dirty_secmap);
826 }
827 }
828}
829
830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 enum dirty_type dirty_type)
832{
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 block_t valid_blocks;
835
836 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 dirty_i->nr_dirty[dirty_type]--;
838
839 if (dirty_type == DIRTY) {
840 struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 enum dirty_type t = sentry->type;
842
843 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 dirty_i->nr_dirty[t]--;
845
846 valid_blocks = get_valid_blocks(sbi, segno, true);
847 if (valid_blocks == 0) {
848 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 dirty_i->victim_secmap);
850#ifdef CONFIG_F2FS_CHECK_FS
851 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852#endif
853 }
854 if (__is_large_section(sbi)) {
855 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856
857 if (!valid_blocks ||
858 valid_blocks == BLKS_PER_SEC(sbi)) {
859 clear_bit(secno, dirty_i->dirty_secmap);
860 return;
861 }
862
863 if (!IS_CURSEC(sbi, secno))
864 set_bit(secno, dirty_i->dirty_secmap);
865 }
866 }
867}
868
869/*
870 * Should not occur error such as -ENOMEM.
871 * Adding dirty entry into seglist is not critical operation.
872 * If a given segment is one of current working segments, it won't be added.
873 */
874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875{
876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 unsigned short valid_blocks, ckpt_valid_blocks;
878 unsigned int usable_blocks;
879
880 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 return;
882
883 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 mutex_lock(&dirty_i->seglist_lock);
885
886 valid_blocks = get_valid_blocks(sbi, segno, false);
887 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888
889 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 ckpt_valid_blocks == usable_blocks)) {
891 __locate_dirty_segment(sbi, segno, PRE);
892 __remove_dirty_segment(sbi, segno, DIRTY);
893 } else if (valid_blocks < usable_blocks) {
894 __locate_dirty_segment(sbi, segno, DIRTY);
895 } else {
896 /* Recovery routine with SSR needs this */
897 __remove_dirty_segment(sbi, segno, DIRTY);
898 }
899
900 mutex_unlock(&dirty_i->seglist_lock);
901}
902
903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905{
906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 unsigned int segno;
908
909 mutex_lock(&dirty_i->seglist_lock);
910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 if (get_valid_blocks(sbi, segno, false))
912 continue;
913 if (IS_CURSEG(sbi, segno))
914 continue;
915 __locate_dirty_segment(sbi, segno, PRE);
916 __remove_dirty_segment(sbi, segno, DIRTY);
917 }
918 mutex_unlock(&dirty_i->seglist_lock);
919}
920
921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922{
923 int ovp_hole_segs =
924 (overprovision_segments(sbi) - reserved_segments(sbi));
925 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 block_t holes[2] = {0, 0}; /* DATA and NODE */
928 block_t unusable;
929 struct seg_entry *se;
930 unsigned int segno;
931
932 mutex_lock(&dirty_i->seglist_lock);
933 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 se = get_seg_entry(sbi, segno);
935 if (IS_NODESEG(se->type))
936 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 se->valid_blocks;
938 else
939 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 se->valid_blocks;
941 }
942 mutex_unlock(&dirty_i->seglist_lock);
943
944 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 if (unusable > ovp_holes)
946 return unusable - ovp_holes;
947 return 0;
948}
949
950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951{
952 int ovp_hole_segs =
953 (overprovision_segments(sbi) - reserved_segments(sbi));
954 if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 return -EAGAIN;
956 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 dirty_segments(sbi) > ovp_hole_segs)
958 return -EAGAIN;
959 return 0;
960}
961
962/* This is only used by SBI_CP_DISABLED */
963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964{
965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 unsigned int segno = 0;
967
968 mutex_lock(&dirty_i->seglist_lock);
969 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 if (get_valid_blocks(sbi, segno, false))
971 continue;
972 if (get_ckpt_valid_blocks(sbi, segno, false))
973 continue;
974 mutex_unlock(&dirty_i->seglist_lock);
975 return segno;
976 }
977 mutex_unlock(&dirty_i->seglist_lock);
978 return NULL_SEGNO;
979}
980
981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 struct block_device *bdev, block_t lstart,
983 block_t start, block_t len)
984{
985 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 struct list_head *pend_list;
987 struct discard_cmd *dc;
988
989 f2fs_bug_on(sbi, !len);
990
991 pend_list = &dcc->pend_list[plist_idx(len)];
992
993 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 INIT_LIST_HEAD(&dc->list);
995 dc->bdev = bdev;
996 dc->lstart = lstart;
997 dc->start = start;
998 dc->len = len;
999 dc->ref = 0;
1000 dc->state = D_PREP;
1001 dc->queued = 0;
1002 dc->error = 0;
1003 init_completion(&dc->wait);
1004 list_add_tail(&dc->list, pend_list);
1005 spin_lock_init(&dc->lock);
1006 dc->bio_ref = 0;
1007 atomic_inc(&dcc->discard_cmd_cnt);
1008 dcc->undiscard_blks += len;
1009
1010 return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 struct block_device *bdev, block_t lstart,
1015 block_t start, block_t len,
1016 struct rb_node *parent, struct rb_node **p,
1017 bool leftmost)
1018{
1019 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 struct discard_cmd *dc;
1021
1022 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023
1024 rb_link_node(&dc->rb_node, parent, p);
1025 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026
1027 return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 struct discard_cmd *dc)
1032{
1033 if (dc->state == D_DONE)
1034 atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036 list_del(&dc->list);
1037 rb_erase_cached(&dc->rb_node, &dcc->root);
1038 dcc->undiscard_blks -= dc->len;
1039
1040 kmem_cache_free(discard_cmd_slab, dc);
1041
1042 atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 struct discard_cmd *dc)
1047{
1048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 unsigned long flags;
1050
1051 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053 spin_lock_irqsave(&dc->lock, flags);
1054 if (dc->bio_ref) {
1055 spin_unlock_irqrestore(&dc->lock, flags);
1056 return;
1057 }
1058 spin_unlock_irqrestore(&dc->lock, flags);
1059
1060 f2fs_bug_on(sbi, dc->ref);
1061
1062 if (dc->error == -EOPNOTSUPP)
1063 dc->error = 0;
1064
1065 if (dc->error)
1066 printk_ratelimited(
1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 KERN_INFO, sbi->sb->s_id,
1069 dc->lstart, dc->start, dc->len, dc->error);
1070 __detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&dc->lock, flags);
1079 if (!dc->error)
1080 dc->error = blk_status_to_errno(bio->bi_status);
1081 dc->bio_ref--;
1082 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 dc->state = D_DONE;
1084 complete_all(&dc->wait);
1085 }
1086 spin_unlock_irqrestore(&dc->lock, flags);
1087 bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094 struct seg_entry *sentry;
1095 unsigned int segno;
1096 block_t blk = start;
1097 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 unsigned long *map;
1099
1100 while (blk < end) {
1101 segno = GET_SEGNO(sbi, blk);
1102 sentry = get_seg_entry(sbi, segno);
1103 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105 if (end < START_BLOCK(sbi, segno + 1))
1106 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 else
1108 size = max_blocks;
1109 map = (unsigned long *)(sentry->cur_valid_map);
1110 offset = __find_rev_next_bit(map, size, offset);
1111 f2fs_bug_on(sbi, offset != size);
1112 blk = START_BLOCK(sbi, segno + 1);
1113 }
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 struct discard_policy *dpolicy,
1119 int discard_type, unsigned int granularity)
1120{
1121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123 /* common policy */
1124 dpolicy->type = discard_type;
1125 dpolicy->sync = true;
1126 dpolicy->ordered = false;
1127 dpolicy->granularity = granularity;
1128
1129 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 dpolicy->timeout = false;
1132
1133 if (discard_type == DPOLICY_BG) {
1134 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 dpolicy->io_aware = true;
1138 dpolicy->sync = false;
1139 dpolicy->ordered = true;
1140 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 dpolicy->granularity = 1;
1142 if (atomic_read(&dcc->discard_cmd_cnt))
1143 dpolicy->max_interval =
1144 DEF_MIN_DISCARD_ISSUE_TIME;
1145 }
1146 } else if (discard_type == DPOLICY_FORCE) {
1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 dpolicy->io_aware = false;
1151 } else if (discard_type == DPOLICY_FSTRIM) {
1152 dpolicy->io_aware = false;
1153 } else if (discard_type == DPOLICY_UMOUNT) {
1154 dpolicy->io_aware = false;
1155 /* we need to issue all to keep CP_TRIMMED_FLAG */
1156 dpolicy->granularity = 1;
1157 dpolicy->timeout = true;
1158 }
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 struct block_device *bdev, block_t lstart,
1163 block_t start, block_t len);
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 struct discard_policy *dpolicy,
1167 struct discard_cmd *dc,
1168 unsigned int *issued)
1169{
1170 struct block_device *bdev = dc->bdev;
1171 struct request_queue *q = bdev_get_queue(bdev);
1172 unsigned int max_discard_blocks =
1173 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 &(dcc->fstrim_list) : &(dcc->wait_list);
1177 int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 block_t lstart, start, len, total_len;
1179 int err = 0;
1180
1181 if (dc->state != D_PREP)
1182 return 0;
1183
1184 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 return 0;
1186
1187 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188
1189 lstart = dc->lstart;
1190 start = dc->start;
1191 len = dc->len;
1192 total_len = len;
1193
1194 dc->len = 0;
1195
1196 while (total_len && *issued < dpolicy->max_requests && !err) {
1197 struct bio *bio = NULL;
1198 unsigned long flags;
1199 bool last = true;
1200
1201 if (len > max_discard_blocks) {
1202 len = max_discard_blocks;
1203 last = false;
1204 }
1205
1206 (*issued)++;
1207 if (*issued == dpolicy->max_requests)
1208 last = true;
1209
1210 dc->len += len;
1211
1212 if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 err = -EIO;
1215 goto submit;
1216 }
1217 err = __blkdev_issue_discard(bdev,
1218 SECTOR_FROM_BLOCK(start),
1219 SECTOR_FROM_BLOCK(len),
1220 GFP_NOFS, 0, &bio);
1221submit:
1222 if (err) {
1223 spin_lock_irqsave(&dc->lock, flags);
1224 if (dc->state == D_PARTIAL)
1225 dc->state = D_SUBMIT;
1226 spin_unlock_irqrestore(&dc->lock, flags);
1227
1228 break;
1229 }
1230
1231 f2fs_bug_on(sbi, !bio);
1232
1233 /*
1234 * should keep before submission to avoid D_DONE
1235 * right away
1236 */
1237 spin_lock_irqsave(&dc->lock, flags);
1238 if (last)
1239 dc->state = D_SUBMIT;
1240 else
1241 dc->state = D_PARTIAL;
1242 dc->bio_ref++;
1243 spin_unlock_irqrestore(&dc->lock, flags);
1244
1245 atomic_inc(&dcc->queued_discard);
1246 dc->queued++;
1247 list_move_tail(&dc->list, wait_list);
1248
1249 /* sanity check on discard range */
1250 __check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252 bio->bi_private = dc;
1253 bio->bi_end_io = f2fs_submit_discard_endio;
1254 bio->bi_opf |= flag;
1255 submit_bio(bio);
1256
1257 atomic_inc(&dcc->issued_discard);
1258
1259 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261 lstart += len;
1262 start += len;
1263 total_len -= len;
1264 len = total_len;
1265 }
1266
1267 if (!err && len) {
1268 dcc->undiscard_blks -= len;
1269 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 }
1271 return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 struct block_device *bdev, block_t lstart,
1276 block_t start, block_t len,
1277 struct rb_node **insert_p,
1278 struct rb_node *insert_parent)
1279{
1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 struct rb_node **p;
1282 struct rb_node *parent = NULL;
1283 bool leftmost = true;
1284
1285 if (insert_p && insert_parent) {
1286 parent = insert_parent;
1287 p = insert_p;
1288 goto do_insert;
1289 }
1290
1291 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 lstart, &leftmost);
1293do_insert:
1294 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 struct discard_cmd *dc)
1300{
1301 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 struct discard_cmd *dc, block_t blkaddr)
1306{
1307 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 struct discard_info di = dc->di;
1309 bool modified = false;
1310
1311 if (dc->state == D_DONE || dc->len == 1) {
1312 __remove_discard_cmd(sbi, dc);
1313 return;
1314 }
1315
1316 dcc->undiscard_blks -= di.len;
1317
1318 if (blkaddr > di.lstart) {
1319 dc->len = blkaddr - dc->lstart;
1320 dcc->undiscard_blks += dc->len;
1321 __relocate_discard_cmd(dcc, dc);
1322 modified = true;
1323 }
1324
1325 if (blkaddr < di.lstart + di.len - 1) {
1326 if (modified) {
1327 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 di.start + blkaddr + 1 - di.lstart,
1329 di.lstart + di.len - 1 - blkaddr,
1330 NULL, NULL);
1331 } else {
1332 dc->lstart++;
1333 dc->len--;
1334 dc->start++;
1335 dcc->undiscard_blks += dc->len;
1336 __relocate_discard_cmd(dcc, dc);
1337 }
1338 }
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 struct block_device *bdev, block_t lstart,
1343 block_t start, block_t len)
1344{
1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 struct discard_cmd *dc;
1348 struct discard_info di = {0};
1349 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 struct request_queue *q = bdev_get_queue(bdev);
1351 unsigned int max_discard_blocks =
1352 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 block_t end = lstart + len;
1354
1355 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 NULL, lstart,
1357 (struct rb_entry **)&prev_dc,
1358 (struct rb_entry **)&next_dc,
1359 &insert_p, &insert_parent, true, NULL);
1360 if (dc)
1361 prev_dc = dc;
1362
1363 if (!prev_dc) {
1364 di.lstart = lstart;
1365 di.len = next_dc ? next_dc->lstart - lstart : len;
1366 di.len = min(di.len, len);
1367 di.start = start;
1368 }
1369
1370 while (1) {
1371 struct rb_node *node;
1372 bool merged = false;
1373 struct discard_cmd *tdc = NULL;
1374
1375 if (prev_dc) {
1376 di.lstart = prev_dc->lstart + prev_dc->len;
1377 if (di.lstart < lstart)
1378 di.lstart = lstart;
1379 if (di.lstart >= end)
1380 break;
1381
1382 if (!next_dc || next_dc->lstart > end)
1383 di.len = end - di.lstart;
1384 else
1385 di.len = next_dc->lstart - di.lstart;
1386 di.start = start + di.lstart - lstart;
1387 }
1388
1389 if (!di.len)
1390 goto next;
1391
1392 if (prev_dc && prev_dc->state == D_PREP &&
1393 prev_dc->bdev == bdev &&
1394 __is_discard_back_mergeable(&di, &prev_dc->di,
1395 max_discard_blocks)) {
1396 prev_dc->di.len += di.len;
1397 dcc->undiscard_blks += di.len;
1398 __relocate_discard_cmd(dcc, prev_dc);
1399 di = prev_dc->di;
1400 tdc = prev_dc;
1401 merged = true;
1402 }
1403
1404 if (next_dc && next_dc->state == D_PREP &&
1405 next_dc->bdev == bdev &&
1406 __is_discard_front_mergeable(&di, &next_dc->di,
1407 max_discard_blocks)) {
1408 next_dc->di.lstart = di.lstart;
1409 next_dc->di.len += di.len;
1410 next_dc->di.start = di.start;
1411 dcc->undiscard_blks += di.len;
1412 __relocate_discard_cmd(dcc, next_dc);
1413 if (tdc)
1414 __remove_discard_cmd(sbi, tdc);
1415 merged = true;
1416 }
1417
1418 if (!merged) {
1419 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 di.len, NULL, NULL);
1421 }
1422 next:
1423 prev_dc = next_dc;
1424 if (!prev_dc)
1425 break;
1426
1427 node = rb_next(&prev_dc->rb_node);
1428 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 }
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435 block_t lblkstart = blkstart;
1436
1437 if (!f2fs_bdev_support_discard(bdev))
1438 return 0;
1439
1440 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442 if (f2fs_is_multi_device(sbi)) {
1443 int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445 blkstart -= FDEV(devi).start_blk;
1446 }
1447 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 struct discard_policy *dpolicy)
1455{
1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 struct discard_cmd *dc;
1460 struct blk_plug plug;
1461 unsigned int pos = dcc->next_pos;
1462 unsigned int issued = 0;
1463 bool io_interrupted = false;
1464
1465 mutex_lock(&dcc->cmd_lock);
1466 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 NULL, pos,
1468 (struct rb_entry **)&prev_dc,
1469 (struct rb_entry **)&next_dc,
1470 &insert_p, &insert_parent, true, NULL);
1471 if (!dc)
1472 dc = next_dc;
1473
1474 blk_start_plug(&plug);
1475
1476 while (dc) {
1477 struct rb_node *node;
1478 int err = 0;
1479
1480 if (dc->state != D_PREP)
1481 goto next;
1482
1483 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 io_interrupted = true;
1485 break;
1486 }
1487
1488 dcc->next_pos = dc->lstart + dc->len;
1489 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491 if (issued >= dpolicy->max_requests)
1492 break;
1493next:
1494 node = rb_next(&dc->rb_node);
1495 if (err)
1496 __remove_discard_cmd(sbi, dc);
1497 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 }
1499
1500 blk_finish_plug(&plug);
1501
1502 if (!dc)
1503 dcc->next_pos = 0;
1504
1505 mutex_unlock(&dcc->cmd_lock);
1506
1507 if (!issued && io_interrupted)
1508 issued = -1;
1509
1510 return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 struct discard_policy *dpolicy)
1517{
1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 struct list_head *pend_list;
1520 struct discard_cmd *dc, *tmp;
1521 struct blk_plug plug;
1522 int i, issued;
1523 bool io_interrupted = false;
1524
1525 if (dpolicy->timeout)
1526 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529 issued = 0;
1530 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 if (dpolicy->timeout &&
1532 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 break;
1534
1535 if (i + 1 < dpolicy->granularity)
1536 break;
1537
1538 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 return __issue_discard_cmd_orderly(sbi, dpolicy);
1540
1541 pend_list = &dcc->pend_list[i];
1542
1543 mutex_lock(&dcc->cmd_lock);
1544 if (list_empty(pend_list))
1545 goto next;
1546 if (unlikely(dcc->rbtree_check))
1547 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 &dcc->root, false));
1549 blk_start_plug(&plug);
1550 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553 if (dpolicy->timeout &&
1554 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 break;
1556
1557 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 !is_idle(sbi, DISCARD_TIME)) {
1559 io_interrupted = true;
1560 break;
1561 }
1562
1563 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565 if (issued >= dpolicy->max_requests)
1566 break;
1567 }
1568 blk_finish_plug(&plug);
1569next:
1570 mutex_unlock(&dcc->cmd_lock);
1571
1572 if (issued >= dpolicy->max_requests || io_interrupted)
1573 break;
1574 }
1575
1576 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 __wait_all_discard_cmd(sbi, dpolicy);
1578 goto retry;
1579 }
1580
1581 if (!issued && io_interrupted)
1582 issued = -1;
1583
1584 return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 struct list_head *pend_list;
1591 struct discard_cmd *dc, *tmp;
1592 int i;
1593 bool dropped = false;
1594
1595 mutex_lock(&dcc->cmd_lock);
1596 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 pend_list = &dcc->pend_list[i];
1598 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 f2fs_bug_on(sbi, dc->state != D_PREP);
1600 __remove_discard_cmd(sbi, dc);
1601 dropped = true;
1602 }
1603 }
1604 mutex_unlock(&dcc->cmd_lock);
1605
1606 return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611 __drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 struct discard_cmd *dc)
1616{
1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 unsigned int len = 0;
1619
1620 wait_for_completion_io(&dc->wait);
1621 mutex_lock(&dcc->cmd_lock);
1622 f2fs_bug_on(sbi, dc->state != D_DONE);
1623 dc->ref--;
1624 if (!dc->ref) {
1625 if (!dc->error)
1626 len = dc->len;
1627 __remove_discard_cmd(sbi, dc);
1628 }
1629 mutex_unlock(&dcc->cmd_lock);
1630
1631 return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 struct discard_policy *dpolicy,
1636 block_t start, block_t end)
1637{
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 &(dcc->fstrim_list) : &(dcc->wait_list);
1641 struct discard_cmd *dc, *tmp;
1642 bool need_wait;
1643 unsigned int trimmed = 0;
1644
1645next:
1646 need_wait = false;
1647
1648 mutex_lock(&dcc->cmd_lock);
1649 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 continue;
1652 if (dc->len < dpolicy->granularity)
1653 continue;
1654 if (dc->state == D_DONE && !dc->ref) {
1655 wait_for_completion_io(&dc->wait);
1656 if (!dc->error)
1657 trimmed += dc->len;
1658 __remove_discard_cmd(sbi, dc);
1659 } else {
1660 dc->ref++;
1661 need_wait = true;
1662 break;
1663 }
1664 }
1665 mutex_unlock(&dcc->cmd_lock);
1666
1667 if (need_wait) {
1668 trimmed += __wait_one_discard_bio(sbi, dc);
1669 goto next;
1670 }
1671
1672 return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 struct discard_policy *dpolicy)
1677{
1678 struct discard_policy dp;
1679 unsigned int discard_blks;
1680
1681 if (dpolicy)
1682 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684 /* wait all */
1685 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690 return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 struct discard_cmd *dc;
1698 bool need_wait = false;
1699
1700 mutex_lock(&dcc->cmd_lock);
1701 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 NULL, blkaddr);
1703 if (dc) {
1704 if (dc->state == D_PREP) {
1705 __punch_discard_cmd(sbi, dc, blkaddr);
1706 } else {
1707 dc->ref++;
1708 need_wait = true;
1709 }
1710 }
1711 mutex_unlock(&dcc->cmd_lock);
1712
1713 if (need_wait)
1714 __wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721 if (dcc && dcc->f2fs_issue_discard) {
1722 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724 dcc->f2fs_issue_discard = NULL;
1725 kthread_stop(discard_thread);
1726 }
1727}
1728
1729/* This comes from f2fs_put_super */
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 struct discard_policy dpolicy;
1734 bool dropped;
1735
1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 dcc->discard_granularity);
1738 __issue_discard_cmd(sbi, &dpolicy);
1739 dropped = __drop_discard_cmd(sbi);
1740
1741 /* just to make sure there is no pending discard commands */
1742 __wait_all_discard_cmd(sbi, NULL);
1743
1744 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750 struct f2fs_sb_info *sbi = data;
1751 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 struct discard_policy dpolicy;
1754 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 int issued;
1756
1757 set_freezable();
1758
1759 do {
1760 if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 else
1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 dcc->discard_granularity);
1766
1767 if (!atomic_read(&dcc->discard_cmd_cnt))
1768 wait_ms = dpolicy.max_interval;
1769
1770 wait_event_interruptible_timeout(*q,
1771 kthread_should_stop() || freezing(current) ||
1772 dcc->discard_wake,
1773 msecs_to_jiffies(wait_ms));
1774
1775 if (dcc->discard_wake)
1776 dcc->discard_wake = 0;
1777
1778 /* clean up pending candidates before going to sleep */
1779 if (atomic_read(&dcc->queued_discard))
1780 __wait_all_discard_cmd(sbi, NULL);
1781
1782 if (try_to_freeze())
1783 continue;
1784 if (f2fs_readonly(sbi->sb))
1785 continue;
1786 if (kthread_should_stop())
1787 return 0;
1788 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 wait_ms = dpolicy.max_interval;
1790 continue;
1791 }
1792 if (!atomic_read(&dcc->discard_cmd_cnt))
1793 continue;
1794
1795 sb_start_intwrite(sbi->sb);
1796
1797 issued = __issue_discard_cmd(sbi, &dpolicy);
1798 if (issued > 0) {
1799 __wait_all_discard_cmd(sbi, &dpolicy);
1800 wait_ms = dpolicy.min_interval;
1801 } else if (issued == -1) {
1802 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 if (!wait_ms)
1804 wait_ms = dpolicy.mid_interval;
1805 } else {
1806 wait_ms = dpolicy.max_interval;
1807 }
1808
1809 sb_end_intwrite(sbi->sb);
1810
1811 } while (!kthread_should_stop());
1812 return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819 sector_t sector, nr_sects;
1820 block_t lblkstart = blkstart;
1821 int devi = 0;
1822
1823 if (f2fs_is_multi_device(sbi)) {
1824 devi = f2fs_target_device_index(sbi, blkstart);
1825 if (blkstart < FDEV(devi).start_blk ||
1826 blkstart > FDEV(devi).end_blk) {
1827 f2fs_err(sbi, "Invalid block %x", blkstart);
1828 return -EIO;
1829 }
1830 blkstart -= FDEV(devi).start_blk;
1831 }
1832
1833 /* For sequential zones, reset the zone write pointer */
1834 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 sector = SECTOR_FROM_BLOCK(blkstart);
1836 nr_sects = SECTOR_FROM_BLOCK(blklen);
1837
1838 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 nr_sects != bdev_zone_sectors(bdev)) {
1840 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 blkstart, blklen);
1843 return -EIO;
1844 }
1845 trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 sector, nr_sects, GFP_NOFS);
1848 }
1849
1850 /* For conventional zones, use regular discard if supported */
1851 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 block_t blkstart, block_t blklen)
1867{
1868 sector_t start = blkstart, len = 0;
1869 struct block_device *bdev;
1870 struct seg_entry *se;
1871 unsigned int offset;
1872 block_t i;
1873 int err = 0;
1874
1875 bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 if (i != start) {
1879 struct block_device *bdev2 =
1880 f2fs_target_device(sbi, i, NULL);
1881
1882 if (bdev2 != bdev) {
1883 err = __issue_discard_async(sbi, bdev,
1884 start, len);
1885 if (err)
1886 return err;
1887 bdev = bdev2;
1888 start = i;
1889 len = 0;
1890 }
1891 }
1892
1893 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 sbi->discard_blks--;
1898 }
1899
1900 if (len)
1901 err = __issue_discard_async(sbi, bdev, start, len);
1902 return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 bool check_only)
1907{
1908 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 int max_blocks = sbi->blocks_per_seg;
1910 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 unsigned int start = 0, end = -1;
1916 bool force = (cpc->reason & CP_DISCARD);
1917 struct discard_entry *de = NULL;
1918 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 int i;
1920
1921 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 return false;
1923
1924 if (!force) {
1925 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 SM_I(sbi)->dcc_info->nr_discards >=
1927 SM_I(sbi)->dcc_info->max_discards)
1928 return false;
1929 }
1930
1931 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 for (i = 0; i < entries; i++)
1933 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 SM_I(sbi)->dcc_info->max_discards) {
1938 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 if (start >= max_blocks)
1940 break;
1941
1942 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 if (force && start && end != max_blocks
1944 && (end - start) < cpc->trim_minlen)
1945 continue;
1946
1947 if (check_only)
1948 return true;
1949
1950 if (!de) {
1951 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 GFP_F2FS_ZERO);
1953 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 list_add_tail(&de->list, head);
1955 }
1956
1957 for (i = start; i < end; i++)
1958 __set_bit_le(i, (void *)de->discard_map);
1959
1960 SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 }
1962 return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967 list_del(&entry->list);
1968 kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 struct discard_entry *entry, *this;
1975
1976 /* drop caches */
1977 list_for_each_entry_safe(entry, this, head, list)
1978 release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 unsigned int segno;
1988
1989 mutex_lock(&dirty_i->seglist_lock);
1990 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 __set_test_and_free(sbi, segno, false);
1992 mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 struct cp_control *cpc)
1997{
1998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 struct list_head *head = &dcc->entry_list;
2000 struct discard_entry *entry, *this;
2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 unsigned int start = 0, end = -1;
2004 unsigned int secno, start_segno;
2005 bool force = (cpc->reason & CP_DISCARD);
2006 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007
2008 mutex_lock(&dirty_i->seglist_lock);
2009
2010 while (1) {
2011 int i;
2012
2013 if (need_align && end != -1)
2014 end--;
2015 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 if (start >= MAIN_SEGS(sbi))
2017 break;
2018 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 start + 1);
2020
2021 if (need_align) {
2022 start = rounddown(start, sbi->segs_per_sec);
2023 end = roundup(end, sbi->segs_per_sec);
2024 }
2025
2026 for (i = start; i < end; i++) {
2027 if (test_and_clear_bit(i, prefree_map))
2028 dirty_i->nr_dirty[PRE]--;
2029 }
2030
2031 if (!f2fs_realtime_discard_enable(sbi))
2032 continue;
2033
2034 if (force && start >= cpc->trim_start &&
2035 (end - 1) <= cpc->trim_end)
2036 continue;
2037
2038 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 (end - start) << sbi->log_blocks_per_seg);
2041 continue;
2042 }
2043next:
2044 secno = GET_SEC_FROM_SEG(sbi, start);
2045 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 if (!IS_CURSEC(sbi, secno) &&
2047 !get_valid_blocks(sbi, start, true))
2048 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051 start = start_segno + sbi->segs_per_sec;
2052 if (start < end)
2053 goto next;
2054 else
2055 end = start - 1;
2056 }
2057 mutex_unlock(&dirty_i->seglist_lock);
2058
2059 /* send small discards */
2060 list_for_each_entry_safe(entry, this, head, list) {
2061 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065 if (is_valid) {
2066 next_pos = find_next_zero_bit_le(entry->discard_map,
2067 sbi->blocks_per_seg, cur_pos);
2068 len = next_pos - cur_pos;
2069
2070 if (f2fs_sb_has_blkzoned(sbi) ||
2071 (force && len < cpc->trim_minlen))
2072 goto skip;
2073
2074 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 len);
2076 total_len += len;
2077 } else {
2078 next_pos = find_next_bit_le(entry->discard_map,
2079 sbi->blocks_per_seg, cur_pos);
2080 }
2081skip:
2082 cur_pos = next_pos;
2083 is_valid = !is_valid;
2084
2085 if (cur_pos < sbi->blocks_per_seg)
2086 goto find_next;
2087
2088 release_discard_addr(entry);
2089 dcc->nr_discards -= total_len;
2090 }
2091
2092 wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097 dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 struct discard_cmd_control *dcc;
2099 int err = 0, i;
2100
2101 if (SM_I(sbi)->dcc_info) {
2102 dcc = SM_I(sbi)->dcc_info;
2103 goto init_thread;
2104 }
2105
2106 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 if (!dcc)
2108 return -ENOMEM;
2109
2110 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 INIT_LIST_HEAD(&dcc->entry_list);
2112 for (i = 0; i < MAX_PLIST_NUM; i++)
2113 INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 INIT_LIST_HEAD(&dcc->wait_list);
2115 INIT_LIST_HEAD(&dcc->fstrim_list);
2116 mutex_init(&dcc->cmd_lock);
2117 atomic_set(&dcc->issued_discard, 0);
2118 atomic_set(&dcc->queued_discard, 0);
2119 atomic_set(&dcc->discard_cmd_cnt, 0);
2120 dcc->nr_discards = 0;
2121 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 dcc->undiscard_blks = 0;
2123 dcc->next_pos = 0;
2124 dcc->root = RB_ROOT_CACHED;
2125 dcc->rbtree_check = false;
2126
2127 init_waitqueue_head(&dcc->discard_wait_queue);
2128 SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 err = PTR_ERR(dcc->f2fs_issue_discard);
2134 kfree(dcc);
2135 SM_I(sbi)->dcc_info = NULL;
2136 return err;
2137 }
2138
2139 return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146 if (!dcc)
2147 return;
2148
2149 f2fs_stop_discard_thread(sbi);
2150
2151 /*
2152 * Recovery can cache discard commands, so in error path of
2153 * fill_super(), it needs to give a chance to handle them.
2154 */
2155 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 f2fs_issue_discard_timeout(sbi);
2157
2158 kfree(dcc);
2159 SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164 struct sit_info *sit_i = SIT_I(sbi);
2165
2166 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 sit_i->dirty_sentries++;
2168 return false;
2169 }
2170
2171 return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 unsigned int segno, int modified)
2176{
2177 struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179 se->type = type;
2180 if (modified)
2181 __mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 block_t blkaddr)
2186{
2187 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189 if (segno == NULL_SEGNO)
2190 return 0;
2191 return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 unsigned long long old_mtime)
2196{
2197 struct seg_entry *se;
2198 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 unsigned long long ctime = get_mtime(sbi, false);
2200 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202 if (segno == NULL_SEGNO)
2203 return;
2204
2205 se = get_seg_entry(sbi, segno);
2206
2207 if (!se->mtime)
2208 se->mtime = mtime;
2209 else
2210 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 se->valid_blocks + 1);
2212
2213 if (ctime > SIT_I(sbi)->max_mtime)
2214 SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219 struct seg_entry *se;
2220 unsigned int segno, offset;
2221 long int new_vblocks;
2222 bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224 bool mir_exist;
2225#endif
2226
2227 segno = GET_SEGNO(sbi, blkaddr);
2228
2229 se = get_seg_entry(sbi, segno);
2230 new_vblocks = se->valid_blocks + del;
2231 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236 se->valid_blocks = new_vblocks;
2237
2238 /* Update valid block bitmap */
2239 if (del > 0) {
2240 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242 mir_exist = f2fs_test_and_set_bit(offset,
2243 se->cur_valid_map_mir);
2244 if (unlikely(exist != mir_exist)) {
2245 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 blkaddr, exist);
2247 f2fs_bug_on(sbi, 1);
2248 }
2249#endif
2250 if (unlikely(exist)) {
2251 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 blkaddr);
2253 f2fs_bug_on(sbi, 1);
2254 se->valid_blocks--;
2255 del = 0;
2256 }
2257
2258 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 sbi->discard_blks--;
2260
2261 /*
2262 * SSR should never reuse block which is checkpointed
2263 * or newly invalidated.
2264 */
2265 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 se->ckpt_valid_blocks++;
2268 }
2269 } else {
2270 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272 mir_exist = f2fs_test_and_clear_bit(offset,
2273 se->cur_valid_map_mir);
2274 if (unlikely(exist != mir_exist)) {
2275 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 blkaddr, exist);
2277 f2fs_bug_on(sbi, 1);
2278 }
2279#endif
2280 if (unlikely(!exist)) {
2281 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 blkaddr);
2283 f2fs_bug_on(sbi, 1);
2284 se->valid_blocks++;
2285 del = 0;
2286 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 /*
2288 * If checkpoints are off, we must not reuse data that
2289 * was used in the previous checkpoint. If it was used
2290 * before, we must track that to know how much space we
2291 * really have.
2292 */
2293 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 spin_lock(&sbi->stat_lock);
2295 sbi->unusable_block_count++;
2296 spin_unlock(&sbi->stat_lock);
2297 }
2298 }
2299
2300 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 sbi->discard_blks++;
2302 }
2303 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 se->ckpt_valid_blocks += del;
2305
2306 __mark_sit_entry_dirty(sbi, segno);
2307
2308 /* update total number of valid blocks to be written in ckpt area */
2309 SIT_I(sbi)->written_valid_blocks += del;
2310
2311 if (__is_large_section(sbi))
2312 get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317 unsigned int segno = GET_SEGNO(sbi, addr);
2318 struct sit_info *sit_i = SIT_I(sbi);
2319
2320 f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 return;
2323
2324 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 f2fs_invalidate_compress_page(sbi, addr);
2326
2327 /* add it into sit main buffer */
2328 down_write(&sit_i->sentry_lock);
2329
2330 update_segment_mtime(sbi, addr, 0);
2331 update_sit_entry(sbi, addr, -1);
2332
2333 /* add it into dirty seglist */
2334 locate_dirty_segment(sbi, segno);
2335
2336 up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341 struct sit_info *sit_i = SIT_I(sbi);
2342 unsigned int segno, offset;
2343 struct seg_entry *se;
2344 bool is_cp = false;
2345
2346 if (!__is_valid_data_blkaddr(blkaddr))
2347 return true;
2348
2349 down_read(&sit_i->sentry_lock);
2350
2351 segno = GET_SEGNO(sbi, blkaddr);
2352 se = get_seg_entry(sbi, segno);
2353 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356 is_cp = true;
2357
2358 up_read(&sit_i->sentry_lock);
2359
2360 return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367 struct f2fs_summary *sum)
2368{
2369 struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 void *addr = curseg->sum_blk;
2371
2372 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373 memcpy(addr, sum, sizeof(struct f2fs_summary));
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381 int valid_sum_count = 0;
2382 int i, sum_in_page;
2383
2384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385 if (sbi->ckpt->alloc_type[i] == SSR)
2386 valid_sum_count += sbi->blocks_per_seg;
2387 else {
2388 if (for_ra)
2389 valid_sum_count += le16_to_cpu(
2390 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391 else
2392 valid_sum_count += curseg_blkoff(sbi, i);
2393 }
2394 }
2395
2396 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398 if (valid_sum_count <= sum_in_page)
2399 return 1;
2400 else if ((valid_sum_count - sum_in_page) <=
2401 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402 return 2;
2403 return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411 if (unlikely(f2fs_cp_error(sbi)))
2412 return ERR_PTR(-EIO);
2413 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417 void *src, block_t blk_addr)
2418{
2419 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421 memcpy(page_address(page), src, PAGE_SIZE);
2422 set_page_dirty(page);
2423 f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433 int type, block_t blk_addr)
2434{
2435 struct curseg_info *curseg = CURSEG_I(sbi, type);
2436 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437 struct f2fs_summary_block *src = curseg->sum_blk;
2438 struct f2fs_summary_block *dst;
2439
2440 dst = (struct f2fs_summary_block *)page_address(page);
2441 memset(dst, 0, PAGE_SIZE);
2442
2443 mutex_lock(&curseg->curseg_mutex);
2444
2445 down_read(&curseg->journal_rwsem);
2446 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447 up_read(&curseg->journal_rwsem);
2448
2449 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452 mutex_unlock(&curseg->curseg_mutex);
2453
2454 set_page_dirty(page);
2455 f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459 struct curseg_info *curseg, int type)
2460{
2461 unsigned int segno = curseg->segno + 1;
2462 struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465 return !test_bit(segno, free_i->free_segmap);
2466 return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474 unsigned int *newseg, bool new_sec, int dir)
2475{
2476 struct free_segmap_info *free_i = FREE_I(sbi);
2477 unsigned int segno, secno, zoneno;
2478 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481 unsigned int left_start = hint;
2482 bool init = true;
2483 int go_left = 0;
2484 int i;
2485
2486 spin_lock(&free_i->segmap_lock);
2487
2488 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489 segno = find_next_zero_bit(free_i->free_segmap,
2490 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492 goto got_it;
2493 }
2494find_other_zone:
2495 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496 if (secno >= MAIN_SECS(sbi)) {
2497 if (dir == ALLOC_RIGHT) {
2498 secno = find_next_zero_bit(free_i->free_secmap,
2499 MAIN_SECS(sbi), 0);
2500 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501 } else {
2502 go_left = 1;
2503 left_start = hint - 1;
2504 }
2505 }
2506 if (go_left == 0)
2507 goto skip_left;
2508
2509 while (test_bit(left_start, free_i->free_secmap)) {
2510 if (left_start > 0) {
2511 left_start--;
2512 continue;
2513 }
2514 left_start = find_next_zero_bit(free_i->free_secmap,
2515 MAIN_SECS(sbi), 0);
2516 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517 break;
2518 }
2519 secno = left_start;
2520skip_left:
2521 segno = GET_SEG_FROM_SEC(sbi, secno);
2522 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524 /* give up on finding another zone */
2525 if (!init)
2526 goto got_it;
2527 if (sbi->secs_per_zone == 1)
2528 goto got_it;
2529 if (zoneno == old_zoneno)
2530 goto got_it;
2531 if (dir == ALLOC_LEFT) {
2532 if (!go_left && zoneno + 1 >= total_zones)
2533 goto got_it;
2534 if (go_left && zoneno == 0)
2535 goto got_it;
2536 }
2537 for (i = 0; i < NR_CURSEG_TYPE; i++)
2538 if (CURSEG_I(sbi, i)->zone == zoneno)
2539 break;
2540
2541 if (i < NR_CURSEG_TYPE) {
2542 /* zone is in user, try another */
2543 if (go_left)
2544 hint = zoneno * sbi->secs_per_zone - 1;
2545 else if (zoneno + 1 >= total_zones)
2546 hint = 0;
2547 else
2548 hint = (zoneno + 1) * sbi->secs_per_zone;
2549 init = false;
2550 goto find_other_zone;
2551 }
2552got_it:
2553 /* set it as dirty segment in free segmap */
2554 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555 __set_inuse(sbi, segno);
2556 *newseg = segno;
2557 spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562 struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 struct summary_footer *sum_footer;
2564 unsigned short seg_type = curseg->seg_type;
2565
2566 curseg->inited = true;
2567 curseg->segno = curseg->next_segno;
2568 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569 curseg->next_blkoff = 0;
2570 curseg->next_segno = NULL_SEGNO;
2571
2572 sum_footer = &(curseg->sum_blk->footer);
2573 memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575 sanity_check_seg_type(sbi, seg_type);
2576
2577 if (IS_DATASEG(seg_type))
2578 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579 if (IS_NODESEG(seg_type))
2580 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586 struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 unsigned short seg_type = curseg->seg_type;
2588
2589 sanity_check_seg_type(sbi, seg_type);
2590
2591 /* if segs_per_sec is large than 1, we need to keep original policy. */
2592 if (__is_large_section(sbi))
2593 return curseg->segno;
2594
2595 /* inmem log may not locate on any segment after mount */
2596 if (!curseg->inited)
2597 return 0;
2598
2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 return 0;
2601
2602 if (test_opt(sbi, NOHEAP) &&
2603 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604 return 0;
2605
2606 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609 /* find segments from 0 to reuse freed segments */
2610 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611 return 0;
2612
2613 return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622 struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 unsigned short seg_type = curseg->seg_type;
2624 unsigned int segno = curseg->segno;
2625 int dir = ALLOC_LEFT;
2626
2627 if (curseg->inited)
2628 write_sum_page(sbi, curseg->sum_blk,
2629 GET_SUM_BLOCK(sbi, segno));
2630 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631 dir = ALLOC_RIGHT;
2632
2633 if (test_opt(sbi, NOHEAP))
2634 dir = ALLOC_RIGHT;
2635
2636 segno = __get_next_segno(sbi, type);
2637 get_new_segment(sbi, &segno, new_sec, dir);
2638 curseg->next_segno = segno;
2639 reset_curseg(sbi, type, 1);
2640 curseg->alloc_type = LFS;
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644 int segno, block_t start)
2645{
2646 struct seg_entry *se = get_seg_entry(sbi, segno);
2647 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651 int i;
2652
2653 for (i = 0; i < entries; i++)
2654 target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665 struct curseg_info *seg)
2666{
2667 if (seg->alloc_type == SSR)
2668 seg->next_blkoff =
2669 __next_free_blkoff(sbi, seg->segno,
2670 seg->next_blkoff + 1);
2671 else
2672 seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 unsigned int new_segno = curseg->next_segno;
2689 struct f2fs_summary_block *sum_node;
2690 struct page *sum_page;
2691
2692 if (flush)
2693 write_sum_page(sbi, curseg->sum_blk,
2694 GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696 __set_test_and_inuse(sbi, new_segno);
2697
2698 mutex_lock(&dirty_i->seglist_lock);
2699 __remove_dirty_segment(sbi, new_segno, PRE);
2700 __remove_dirty_segment(sbi, new_segno, DIRTY);
2701 mutex_unlock(&dirty_i->seglist_lock);
2702
2703 reset_curseg(sbi, type, 1);
2704 curseg->alloc_type = SSR;
2705 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707 sum_page = f2fs_get_sum_page(sbi, new_segno);
2708 if (IS_ERR(sum_page)) {
2709 /* GC won't be able to use stale summary pages by cp_error */
2710 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711 return;
2712 }
2713 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715 f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719 int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722 int target_type, int alloc_mode,
2723 unsigned long long age)
2724{
2725 struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727 curseg->seg_type = target_type;
2728
2729 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732 curseg->seg_type = se->type;
2733 change_curseg(sbi, type, true);
2734 } else {
2735 /* allocate cold segment by default */
2736 curseg->seg_type = CURSEG_COLD_DATA;
2737 new_curseg(sbi, type, true);
2738 }
2739 stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746 if (!sbi->am.atgc_enabled)
2747 return;
2748
2749 down_read(&SM_I(sbi)->curseg_lock);
2750
2751 mutex_lock(&curseg->curseg_mutex);
2752 down_write(&SIT_I(sbi)->sentry_lock);
2753
2754 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756 up_write(&SIT_I(sbi)->sentry_lock);
2757 mutex_unlock(&curseg->curseg_mutex);
2758
2759 up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764 __f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769 struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771 mutex_lock(&curseg->curseg_mutex);
2772 if (!curseg->inited)
2773 goto out;
2774
2775 if (get_valid_blocks(sbi, curseg->segno, false)) {
2776 write_sum_page(sbi, curseg->sum_blk,
2777 GET_SUM_BLOCK(sbi, curseg->segno));
2778 } else {
2779 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 __set_test_and_free(sbi, curseg->segno, true);
2781 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 }
2783out:
2784 mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791 if (sbi->am.atgc_enabled)
2792 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797 struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799 mutex_lock(&curseg->curseg_mutex);
2800 if (!curseg->inited)
2801 goto out;
2802 if (get_valid_blocks(sbi, curseg->segno, false))
2803 goto out;
2804
2805 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806 __set_test_and_inuse(sbi, curseg->segno);
2807 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809 mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816 if (sbi->am.atgc_enabled)
2817 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821 int alloc_mode, unsigned long long age)
2822{
2823 struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825 unsigned segno = NULL_SEGNO;
2826 unsigned short seg_type = curseg->seg_type;
2827 int i, cnt;
2828 bool reversed = false;
2829
2830 sanity_check_seg_type(sbi, seg_type);
2831
2832 /* f2fs_need_SSR() already forces to do this */
2833 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834 curseg->next_segno = segno;
2835 return 1;
2836 }
2837
2838 /* For node segments, let's do SSR more intensively */
2839 if (IS_NODESEG(seg_type)) {
2840 if (seg_type >= CURSEG_WARM_NODE) {
2841 reversed = true;
2842 i = CURSEG_COLD_NODE;
2843 } else {
2844 i = CURSEG_HOT_NODE;
2845 }
2846 cnt = NR_CURSEG_NODE_TYPE;
2847 } else {
2848 if (seg_type >= CURSEG_WARM_DATA) {
2849 reversed = true;
2850 i = CURSEG_COLD_DATA;
2851 } else {
2852 i = CURSEG_HOT_DATA;
2853 }
2854 cnt = NR_CURSEG_DATA_TYPE;
2855 }
2856
2857 for (; cnt-- > 0; reversed ? i-- : i++) {
2858 if (i == seg_type)
2859 continue;
2860 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861 curseg->next_segno = segno;
2862 return 1;
2863 }
2864 }
2865
2866 /* find valid_blocks=0 in dirty list */
2867 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868 segno = get_free_segment(sbi);
2869 if (segno != NULL_SEGNO) {
2870 curseg->next_segno = segno;
2871 return 1;
2872 }
2873 }
2874 return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882 int type, bool force)
2883{
2884 struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886 if (force)
2887 new_curseg(sbi, type, true);
2888 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889 curseg->seg_type == CURSEG_WARM_NODE)
2890 new_curseg(sbi, type, false);
2891 else if (curseg->alloc_type == LFS &&
2892 is_next_segment_free(sbi, curseg, type) &&
2893 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894 new_curseg(sbi, type, false);
2895 else if (f2fs_need_SSR(sbi) &&
2896 get_ssr_segment(sbi, type, SSR, 0))
2897 change_curseg(sbi, type, true);
2898 else
2899 new_curseg(sbi, type, false);
2900
2901 stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905 unsigned int start, unsigned int end)
2906{
2907 struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 unsigned int segno;
2909
2910 down_read(&SM_I(sbi)->curseg_lock);
2911 mutex_lock(&curseg->curseg_mutex);
2912 down_write(&SIT_I(sbi)->sentry_lock);
2913
2914 segno = CURSEG_I(sbi, type)->segno;
2915 if (segno < start || segno > end)
2916 goto unlock;
2917
2918 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919 change_curseg(sbi, type, true);
2920 else
2921 new_curseg(sbi, type, true);
2922
2923 stat_inc_seg_type(sbi, curseg);
2924
2925 locate_dirty_segment(sbi, segno);
2926unlock:
2927 up_write(&SIT_I(sbi)->sentry_lock);
2928
2929 if (segno != curseg->segno)
2930 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931 type, segno, curseg->segno);
2932
2933 mutex_unlock(&curseg->curseg_mutex);
2934 up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938 bool new_sec, bool force)
2939{
2940 struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 unsigned int old_segno;
2942
2943 if (!curseg->inited)
2944 goto alloc;
2945
2946 if (force || curseg->next_blkoff ||
2947 get_valid_blocks(sbi, curseg->segno, new_sec))
2948 goto alloc;
2949
2950 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951 return;
2952alloc:
2953 old_segno = curseg->segno;
2954 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955 locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959 int type, bool force)
2960{
2961 __allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966 down_read(&SM_I(sbi)->curseg_lock);
2967 down_write(&SIT_I(sbi)->sentry_lock);
2968 __allocate_new_section(sbi, type, force);
2969 up_write(&SIT_I(sbi)->sentry_lock);
2970 up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975 int i;
2976
2977 down_read(&SM_I(sbi)->curseg_lock);
2978 down_write(&SIT_I(sbi)->sentry_lock);
2979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980 __allocate_new_segment(sbi, i, false, false);
2981 up_write(&SIT_I(sbi)->sentry_lock);
2982 up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986 .allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990 struct cp_control *cpc)
2991{
2992 __u64 trim_start = cpc->trim_start;
2993 bool has_candidate = false;
2994
2995 down_write(&SIT_I(sbi)->sentry_lock);
2996 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997 if (add_discard_addrs(sbi, cpc, true)) {
2998 has_candidate = true;
2999 break;
3000 }
3001 }
3002 up_write(&SIT_I(sbi)->sentry_lock);
3003
3004 cpc->trim_start = trim_start;
3005 return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009 struct discard_policy *dpolicy,
3010 unsigned int start, unsigned int end)
3011{
3012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015 struct discard_cmd *dc;
3016 struct blk_plug plug;
3017 int issued;
3018 unsigned int trimmed = 0;
3019
3020next:
3021 issued = 0;
3022
3023 mutex_lock(&dcc->cmd_lock);
3024 if (unlikely(dcc->rbtree_check))
3025 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026 &dcc->root, false));
3027
3028 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029 NULL, start,
3030 (struct rb_entry **)&prev_dc,
3031 (struct rb_entry **)&next_dc,
3032 &insert_p, &insert_parent, true, NULL);
3033 if (!dc)
3034 dc = next_dc;
3035
3036 blk_start_plug(&plug);
3037
3038 while (dc && dc->lstart <= end) {
3039 struct rb_node *node;
3040 int err = 0;
3041
3042 if (dc->len < dpolicy->granularity)
3043 goto skip;
3044
3045 if (dc->state != D_PREP) {
3046 list_move_tail(&dc->list, &dcc->fstrim_list);
3047 goto skip;
3048 }
3049
3050 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052 if (issued >= dpolicy->max_requests) {
3053 start = dc->lstart + dc->len;
3054
3055 if (err)
3056 __remove_discard_cmd(sbi, dc);
3057
3058 blk_finish_plug(&plug);
3059 mutex_unlock(&dcc->cmd_lock);
3060 trimmed += __wait_all_discard_cmd(sbi, NULL);
3061 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062 goto next;
3063 }
3064skip:
3065 node = rb_next(&dc->rb_node);
3066 if (err)
3067 __remove_discard_cmd(sbi, dc);
3068 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070 if (fatal_signal_pending(current))
3071 break;
3072 }
3073
3074 blk_finish_plug(&plug);
3075 mutex_unlock(&dcc->cmd_lock);
3076
3077 return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3083 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084 unsigned int start_segno, end_segno;
3085 block_t start_block, end_block;
3086 struct cp_control cpc;
3087 struct discard_policy dpolicy;
3088 unsigned long long trimmed = 0;
3089 int err = 0;
3090 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093 return -EINVAL;
3094
3095 if (end < MAIN_BLKADDR(sbi))
3096 goto out;
3097
3098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100 return -EFSCORRUPTED;
3101 }
3102
3103 /* start/end segment number in main_area */
3104 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106 GET_SEGNO(sbi, end);
3107 if (need_align) {
3108 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110 }
3111
3112 cpc.reason = CP_DISCARD;
3113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114 cpc.trim_start = start_segno;
3115 cpc.trim_end = end_segno;
3116
3117 if (sbi->discard_blks == 0)
3118 goto out;
3119
3120 down_write(&sbi->gc_lock);
3121 err = f2fs_write_checkpoint(sbi, &cpc);
3122 up_write(&sbi->gc_lock);
3123 if (err)
3124 goto out;
3125
3126 /*
3127 * We filed discard candidates, but actually we don't need to wait for
3128 * all of them, since they'll be issued in idle time along with runtime
3129 * discard option. User configuration looks like using runtime discard
3130 * or periodic fstrim instead of it.
3131 */
3132 if (f2fs_realtime_discard_enable(sbi))
3133 goto out;
3134
3135 start_block = START_BLOCK(sbi, start_segno);
3136 end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140 start_block, end_block);
3141
3142 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143 start_block, end_block);
3144out:
3145 if (!err)
3146 range->len = F2FS_BLK_TO_BYTES(trimmed);
3147 return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151 struct curseg_info *curseg)
3152{
3153 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154 curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159 switch (hint) {
3160 case WRITE_LIFE_SHORT:
3161 return CURSEG_HOT_DATA;
3162 case WRITE_LIFE_EXTREME:
3163 return CURSEG_COLD_DATA;
3164 default:
3165 return CURSEG_WARM_DATA;
3166 }
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User F2FS Block
3178 * ---- ---- -----
3179 * META WRITE_LIFE_NOT_SET
3180 * HOT_NODE "
3181 * WARM_NODE "
3182 * COLD_NODE "
3183 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3184 * extension list " "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE " "
3191 * WRITE_LIFE_MEDIUM " "
3192 * WRITE_LIFE_LONG " "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User F2FS Block
3205 * ---- ---- -----
3206 * META WRITE_LIFE_MEDIUM;
3207 * HOT_NODE WRITE_LIFE_NOT_SET
3208 * WARM_NODE "
3209 * COLD_NODE WRITE_LIFE_NONE
3210 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3211 * extension list " "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE " "
3218 * WRITE_LIFE_MEDIUM " "
3219 * WRITE_LIFE_LONG " "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231 enum page_type type, enum temp_type temp)
3232{
3233 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234 if (type == DATA) {
3235 if (temp == WARM)
3236 return WRITE_LIFE_NOT_SET;
3237 else if (temp == HOT)
3238 return WRITE_LIFE_SHORT;
3239 else if (temp == COLD)
3240 return WRITE_LIFE_EXTREME;
3241 } else {
3242 return WRITE_LIFE_NOT_SET;
3243 }
3244 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245 if (type == DATA) {
3246 if (temp == WARM)
3247 return WRITE_LIFE_LONG;
3248 else if (temp == HOT)
3249 return WRITE_LIFE_SHORT;
3250 else if (temp == COLD)
3251 return WRITE_LIFE_EXTREME;
3252 } else if (type == NODE) {
3253 if (temp == WARM || temp == HOT)
3254 return WRITE_LIFE_NOT_SET;
3255 else if (temp == COLD)
3256 return WRITE_LIFE_NONE;
3257 } else if (type == META) {
3258 return WRITE_LIFE_MEDIUM;
3259 }
3260 }
3261 return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266 if (fio->type == DATA)
3267 return CURSEG_HOT_DATA;
3268 else
3269 return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274 if (fio->type == DATA) {
3275 struct inode *inode = fio->page->mapping->host;
3276
3277 if (S_ISDIR(inode->i_mode))
3278 return CURSEG_HOT_DATA;
3279 else
3280 return CURSEG_COLD_DATA;
3281 } else {
3282 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283 return CURSEG_WARM_NODE;
3284 else
3285 return CURSEG_COLD_NODE;
3286 }
3287}
3288
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291 if (fio->type == DATA) {
3292 struct inode *inode = fio->page->mapping->host;
3293
3294 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295 return CURSEG_COLD_DATA_PINNED;
3296
3297 if (page_private_gcing(fio->page)) {
3298 if (fio->sbi->am.atgc_enabled &&
3299 (fio->io_type == FS_DATA_IO) &&
3300 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3301 return CURSEG_ALL_DATA_ATGC;
3302 else
3303 return CURSEG_COLD_DATA;
3304 }
3305 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306 return CURSEG_COLD_DATA;
3307 if (file_is_hot(inode) ||
3308 is_inode_flag_set(inode, FI_HOT_DATA) ||
3309 f2fs_is_atomic_file(inode) ||
3310 f2fs_is_volatile_file(inode))
3311 return CURSEG_HOT_DATA;
3312 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313 } else {
3314 if (IS_DNODE(fio->page))
3315 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316 CURSEG_HOT_NODE;
3317 return CURSEG_COLD_NODE;
3318 }
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323 int type = 0;
3324
3325 switch (F2FS_OPTION(fio->sbi).active_logs) {
3326 case 2:
3327 type = __get_segment_type_2(fio);
3328 break;
3329 case 4:
3330 type = __get_segment_type_4(fio);
3331 break;
3332 case 6:
3333 type = __get_segment_type_6(fio);
3334 break;
3335 default:
3336 f2fs_bug_on(fio->sbi, true);
3337 }
3338
3339 if (IS_HOT(type))
3340 fio->temp = HOT;
3341 else if (IS_WARM(type))
3342 fio->temp = WARM;
3343 else
3344 fio->temp = COLD;
3345 return type;
3346}
3347
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349 block_t old_blkaddr, block_t *new_blkaddr,
3350 struct f2fs_summary *sum, int type,
3351 struct f2fs_io_info *fio)
3352{
3353 struct sit_info *sit_i = SIT_I(sbi);
3354 struct curseg_info *curseg = CURSEG_I(sbi, type);
3355 unsigned long long old_mtime;
3356 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357 struct seg_entry *se = NULL;
3358
3359 down_read(&SM_I(sbi)->curseg_lock);
3360
3361 mutex_lock(&curseg->curseg_mutex);
3362 down_write(&sit_i->sentry_lock);
3363
3364 if (from_gc) {
3365 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367 sanity_check_seg_type(sbi, se->type);
3368 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369 }
3370 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376 /*
3377 * __add_sum_entry should be resided under the curseg_mutex
3378 * because, this function updates a summary entry in the
3379 * current summary block.
3380 */
3381 __add_sum_entry(sbi, type, sum);
3382
3383 __refresh_next_blkoff(sbi, curseg);
3384
3385 stat_inc_block_count(sbi, curseg);
3386
3387 if (from_gc) {
3388 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389 } else {
3390 update_segment_mtime(sbi, old_blkaddr, 0);
3391 old_mtime = 0;
3392 }
3393 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395 /*
3396 * SIT information should be updated before segment allocation,
3397 * since SSR needs latest valid block information.
3398 */
3399 update_sit_entry(sbi, *new_blkaddr, 1);
3400 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401 update_sit_entry(sbi, old_blkaddr, -1);
3402
3403 if (!__has_curseg_space(sbi, curseg)) {
3404 if (from_gc)
3405 get_atssr_segment(sbi, type, se->type,
3406 AT_SSR, se->mtime);
3407 else
3408 sit_i->s_ops->allocate_segment(sbi, type, false);
3409 }
3410 /*
3411 * segment dirty status should be updated after segment allocation,
3412 * so we just need to update status only one time after previous
3413 * segment being closed.
3414 */
3415 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
3418 up_write(&sit_i->sentry_lock);
3419
3420 if (page && IS_NODESEG(type)) {
3421 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423 f2fs_inode_chksum_set(sbi, page);
3424 }
3425
3426 if (fio) {
3427 struct f2fs_bio_info *io;
3428
3429 if (F2FS_IO_ALIGNED(sbi))
3430 fio->retry = false;
3431
3432 INIT_LIST_HEAD(&fio->list);
3433 fio->in_list = true;
3434 io = sbi->write_io[fio->type] + fio->temp;
3435 spin_lock(&io->io_lock);
3436 list_add_tail(&fio->list, &io->io_list);
3437 spin_unlock(&io->io_lock);
3438 }
3439
3440 mutex_unlock(&curseg->curseg_mutex);
3441
3442 up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
3446{
3447 struct f2fs_sb_info *sbi = fio->sbi;
3448 unsigned int devidx;
3449
3450 if (!f2fs_is_multi_device(sbi))
3451 return;
3452
3453 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454
3455 /* update device state for fsync */
3456 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458 /* update device state for checkpoint */
3459 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460 spin_lock(&sbi->dev_lock);
3461 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462 spin_unlock(&sbi->dev_lock);
3463 }
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468 int type = __get_segment_type(fio);
3469 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471 if (keep_order)
3472 down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475 &fio->new_blkaddr, sum, type, fio);
3476 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478 fio->old_blkaddr, fio->old_blkaddr);
3479 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480 }
3481
3482 /* writeout dirty page into bdev */
3483 f2fs_submit_page_write(fio);
3484 if (fio->retry) {
3485 fio->old_blkaddr = fio->new_blkaddr;
3486 goto reallocate;
3487 }
3488
3489 update_device_state(fio);
3490
3491 if (keep_order)
3492 up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496 enum iostat_type io_type)
3497{
3498 struct f2fs_io_info fio = {
3499 .sbi = sbi,
3500 .type = META,
3501 .temp = HOT,
3502 .op = REQ_OP_WRITE,
3503 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504 .old_blkaddr = page->index,
3505 .new_blkaddr = page->index,
3506 .page = page,
3507 .encrypted_page = NULL,
3508 .in_list = false,
3509 };
3510
3511 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512 fio.op_flags &= ~REQ_META;
3513
3514 set_page_writeback(page);
3515 ClearPageError(page);
3516 f2fs_submit_page_write(&fio);
3517
3518 stat_inc_meta_count(sbi, page->index);
3519 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524 struct f2fs_summary sum;
3525
3526 set_summary(&sum, nid, 0, 0);
3527 do_write_page(&sum, fio);
3528
3529 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533 struct f2fs_io_info *fio)
3534{
3535 struct f2fs_sb_info *sbi = fio->sbi;
3536 struct f2fs_summary sum;
3537
3538 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540 do_write_page(&sum, fio);
3541 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548 int err;
3549 struct f2fs_sb_info *sbi = fio->sbi;
3550 unsigned int segno;
3551
3552 fio->new_blkaddr = fio->old_blkaddr;
3553 /* i/o temperature is needed for passing down write hints */
3554 __get_segment_type(fio);
3555
3556 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559 set_sbi_flag(sbi, SBI_NEED_FSCK);
3560 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561 __func__, segno);
3562 err = -EFSCORRUPTED;
3563 goto drop_bio;
3564 }
3565
3566 if (f2fs_cp_error(sbi)) {
3567 err = -EIO;
3568 goto drop_bio;
3569 }
3570
3571 stat_inc_inplace_blocks(fio->sbi);
3572
3573 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574 err = f2fs_merge_page_bio(fio);
3575 else
3576 err = f2fs_submit_page_bio(fio);
3577 if (!err) {
3578 update_device_state(fio);
3579 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580 }
3581
3582 return err;
3583drop_bio:
3584 if (fio->bio && *(fio->bio)) {
3585 struct bio *bio = *(fio->bio);
3586
3587 bio->bi_status = BLK_STS_IOERR;
3588 bio_endio(bio);
3589 *(fio->bio) = NULL;
3590 }
3591 return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595 unsigned int segno)
3596{
3597 int i;
3598
3599 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600 if (CURSEG_I(sbi, i)->segno == segno)
3601 break;
3602 }
3603 return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607 block_t old_blkaddr, block_t new_blkaddr,
3608 bool recover_curseg, bool recover_newaddr,
3609 bool from_gc)
3610{
3611 struct sit_info *sit_i = SIT_I(sbi);
3612 struct curseg_info *curseg;
3613 unsigned int segno, old_cursegno;
3614 struct seg_entry *se;
3615 int type;
3616 unsigned short old_blkoff;
3617 unsigned char old_alloc_type;
3618
3619 segno = GET_SEGNO(sbi, new_blkaddr);
3620 se = get_seg_entry(sbi, segno);
3621 type = se->type;
3622
3623 down_write(&SM_I(sbi)->curseg_lock);
3624
3625 if (!recover_curseg) {
3626 /* for recovery flow */
3627 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628 if (old_blkaddr == NULL_ADDR)
3629 type = CURSEG_COLD_DATA;
3630 else
3631 type = CURSEG_WARM_DATA;
3632 }
3633 } else {
3634 if (IS_CURSEG(sbi, segno)) {
3635 /* se->type is volatile as SSR allocation */
3636 type = __f2fs_get_curseg(sbi, segno);
3637 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638 } else {
3639 type = CURSEG_WARM_DATA;
3640 }
3641 }
3642
3643 f2fs_bug_on(sbi, !IS_DATASEG(type));
3644 curseg = CURSEG_I(sbi, type);
3645
3646 mutex_lock(&curseg->curseg_mutex);
3647 down_write(&sit_i->sentry_lock);
3648
3649 old_cursegno = curseg->segno;
3650 old_blkoff = curseg->next_blkoff;
3651 old_alloc_type = curseg->alloc_type;
3652
3653 /* change the current segment */
3654 if (segno != curseg->segno) {
3655 curseg->next_segno = segno;
3656 change_curseg(sbi, type, true);
3657 }
3658
3659 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660 __add_sum_entry(sbi, type, sum);
3661
3662 if (!recover_curseg || recover_newaddr) {
3663 if (!from_gc)
3664 update_segment_mtime(sbi, new_blkaddr, 0);
3665 update_sit_entry(sbi, new_blkaddr, 1);
3666 }
3667 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668 invalidate_mapping_pages(META_MAPPING(sbi),
3669 old_blkaddr, old_blkaddr);
3670 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671 if (!from_gc)
3672 update_segment_mtime(sbi, old_blkaddr, 0);
3673 update_sit_entry(sbi, old_blkaddr, -1);
3674 }
3675
3676 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679 locate_dirty_segment(sbi, old_cursegno);
3680
3681 if (recover_curseg) {
3682 if (old_cursegno != curseg->segno) {
3683 curseg->next_segno = old_cursegno;
3684 change_curseg(sbi, type, true);
3685 }
3686 curseg->next_blkoff = old_blkoff;
3687 curseg->alloc_type = old_alloc_type;
3688 }
3689
3690 up_write(&sit_i->sentry_lock);
3691 mutex_unlock(&curseg->curseg_mutex);
3692 up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696 block_t old_addr, block_t new_addr,
3697 unsigned char version, bool recover_curseg,
3698 bool recover_newaddr)
3699{
3700 struct f2fs_summary sum;
3701
3702 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705 recover_curseg, recover_newaddr, false);
3706
3707 f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711 enum page_type type, bool ordered, bool locked)
3712{
3713 if (PageWriteback(page)) {
3714 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716 /* submit cached LFS IO */
3717 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718 /* sbumit cached IPU IO */
3719 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720 if (ordered) {
3721 wait_on_page_writeback(page);
3722 f2fs_bug_on(sbi, locked && PageWriteback(page));
3723 } else {
3724 wait_for_stable_page(page);
3725 }
3726 }
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732 struct page *cpage;
3733
3734 if (!f2fs_post_read_required(inode))
3735 return;
3736
3737 if (!__is_valid_data_blkaddr(blkaddr))
3738 return;
3739
3740 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741 if (cpage) {
3742 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743 f2fs_put_page(cpage, 1);
3744 }
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748 block_t len)
3749{
3750 block_t i;
3751
3752 for (i = 0; i < len; i++)
3753 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759 struct curseg_info *seg_i;
3760 unsigned char *kaddr;
3761 struct page *page;
3762 block_t start;
3763 int i, j, offset;
3764
3765 start = start_sum_block(sbi);
3766
3767 page = f2fs_get_meta_page(sbi, start++);
3768 if (IS_ERR(page))
3769 return PTR_ERR(page);
3770 kaddr = (unsigned char *)page_address(page);
3771
3772 /* Step 1: restore nat cache */
3773 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776 /* Step 2: restore sit cache */
3777 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779 offset = 2 * SUM_JOURNAL_SIZE;
3780
3781 /* Step 3: restore summary entries */
3782 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783 unsigned short blk_off;
3784 unsigned int segno;
3785
3786 seg_i = CURSEG_I(sbi, i);
3787 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789 seg_i->next_segno = segno;
3790 reset_curseg(sbi, i, 0);
3791 seg_i->alloc_type = ckpt->alloc_type[i];
3792 seg_i->next_blkoff = blk_off;
3793
3794 if (seg_i->alloc_type == SSR)
3795 blk_off = sbi->blocks_per_seg;
3796
3797 for (j = 0; j < blk_off; j++) {
3798 struct f2fs_summary *s;
3799
3800 s = (struct f2fs_summary *)(kaddr + offset);
3801 seg_i->sum_blk->entries[j] = *s;
3802 offset += SUMMARY_SIZE;
3803 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804 SUM_FOOTER_SIZE)
3805 continue;
3806
3807 f2fs_put_page(page, 1);
3808 page = NULL;
3809
3810 page = f2fs_get_meta_page(sbi, start++);
3811 if (IS_ERR(page))
3812 return PTR_ERR(page);
3813 kaddr = (unsigned char *)page_address(page);
3814 offset = 0;
3815 }
3816 }
3817 f2fs_put_page(page, 1);
3818 return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824 struct f2fs_summary_block *sum;
3825 struct curseg_info *curseg;
3826 struct page *new;
3827 unsigned short blk_off;
3828 unsigned int segno = 0;
3829 block_t blk_addr = 0;
3830 int err = 0;
3831
3832 /* get segment number and block addr */
3833 if (IS_DATASEG(type)) {
3834 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836 CURSEG_HOT_DATA]);
3837 if (__exist_node_summaries(sbi))
3838 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839 else
3840 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841 } else {
3842 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843 CURSEG_HOT_NODE]);
3844 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845 CURSEG_HOT_NODE]);
3846 if (__exist_node_summaries(sbi))
3847 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848 type - CURSEG_HOT_NODE);
3849 else
3850 blk_addr = GET_SUM_BLOCK(sbi, segno);
3851 }
3852
3853 new = f2fs_get_meta_page(sbi, blk_addr);
3854 if (IS_ERR(new))
3855 return PTR_ERR(new);
3856 sum = (struct f2fs_summary_block *)page_address(new);
3857
3858 if (IS_NODESEG(type)) {
3859 if (__exist_node_summaries(sbi)) {
3860 struct f2fs_summary *ns = &sum->entries[0];
3861 int i;
3862
3863 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864 ns->version = 0;
3865 ns->ofs_in_node = 0;
3866 }
3867 } else {
3868 err = f2fs_restore_node_summary(sbi, segno, sum);
3869 if (err)
3870 goto out;
3871 }
3872 }
3873
3874 /* set uncompleted segment to curseg */
3875 curseg = CURSEG_I(sbi, type);
3876 mutex_lock(&curseg->curseg_mutex);
3877
3878 /* update journal info */
3879 down_write(&curseg->journal_rwsem);
3880 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881 up_write(&curseg->journal_rwsem);
3882
3883 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885 curseg->next_segno = segno;
3886 reset_curseg(sbi, type, 0);
3887 curseg->alloc_type = ckpt->alloc_type[type];
3888 curseg->next_blkoff = blk_off;
3889 mutex_unlock(&curseg->curseg_mutex);
3890out:
3891 f2fs_put_page(new, 1);
3892 return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899 int type = CURSEG_HOT_DATA;
3900 int err;
3901
3902 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903 int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905 if (npages >= 2)
3906 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907 META_CP, true);
3908
3909 /* restore for compacted data summary */
3910 err = read_compacted_summaries(sbi);
3911 if (err)
3912 return err;
3913 type = CURSEG_HOT_NODE;
3914 }
3915
3916 if (__exist_node_summaries(sbi))
3917 f2fs_ra_meta_pages(sbi,
3918 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921 for (; type <= CURSEG_COLD_NODE; type++) {
3922 err = read_normal_summaries(sbi, type);
3923 if (err)
3924 return err;
3925 }
3926
3927 /* sanity check for summary blocks */
3928 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932 return -EINVAL;
3933 }
3934
3935 return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940 struct page *page;
3941 unsigned char *kaddr;
3942 struct f2fs_summary *summary;
3943 struct curseg_info *seg_i;
3944 int written_size = 0;
3945 int i, j;
3946
3947 page = f2fs_grab_meta_page(sbi, blkaddr++);
3948 kaddr = (unsigned char *)page_address(page);
3949 memset(kaddr, 0, PAGE_SIZE);
3950
3951 /* Step 1: write nat cache */
3952 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954 written_size += SUM_JOURNAL_SIZE;
3955
3956 /* Step 2: write sit cache */
3957 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959 written_size += SUM_JOURNAL_SIZE;
3960
3961 /* Step 3: write summary entries */
3962 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963 unsigned short blkoff;
3964
3965 seg_i = CURSEG_I(sbi, i);
3966 if (sbi->ckpt->alloc_type[i] == SSR)
3967 blkoff = sbi->blocks_per_seg;
3968 else
3969 blkoff = curseg_blkoff(sbi, i);
3970
3971 for (j = 0; j < blkoff; j++) {
3972 if (!page) {
3973 page = f2fs_grab_meta_page(sbi, blkaddr++);
3974 kaddr = (unsigned char *)page_address(page);
3975 memset(kaddr, 0, PAGE_SIZE);
3976 written_size = 0;
3977 }
3978 summary = (struct f2fs_summary *)(kaddr + written_size);
3979 *summary = seg_i->sum_blk->entries[j];
3980 written_size += SUMMARY_SIZE;
3981
3982 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983 SUM_FOOTER_SIZE)
3984 continue;
3985
3986 set_page_dirty(page);
3987 f2fs_put_page(page, 1);
3988 page = NULL;
3989 }
3990 }
3991 if (page) {
3992 set_page_dirty(page);
3993 f2fs_put_page(page, 1);
3994 }
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998 block_t blkaddr, int type)
3999{
4000 int i, end;
4001
4002 if (IS_DATASEG(type))
4003 end = type + NR_CURSEG_DATA_TYPE;
4004 else
4005 end = type + NR_CURSEG_NODE_TYPE;
4006
4007 for (i = type; i < end; i++)
4008 write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014 write_compacted_summaries(sbi, start_blk);
4015 else
4016 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025 unsigned int val, int alloc)
4026{
4027 int i;
4028
4029 if (type == NAT_JOURNAL) {
4030 for (i = 0; i < nats_in_cursum(journal); i++) {
4031 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032 return i;
4033 }
4034 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035 return update_nats_in_cursum(journal, 1);
4036 } else if (type == SIT_JOURNAL) {
4037 for (i = 0; i < sits_in_cursum(journal); i++)
4038 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039 return i;
4040 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041 return update_sits_in_cursum(journal, 1);
4042 }
4043 return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047 unsigned int segno)
4048{
4049 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053 unsigned int start)
4054{
4055 struct sit_info *sit_i = SIT_I(sbi);
4056 struct page *page;
4057 pgoff_t src_off, dst_off;
4058
4059 src_off = current_sit_addr(sbi, start);
4060 dst_off = next_sit_addr(sbi, src_off);
4061
4062 page = f2fs_grab_meta_page(sbi, dst_off);
4063 seg_info_to_sit_page(sbi, page, start);
4064
4065 set_page_dirty(page);
4066 set_to_next_sit(sit_i, start);
4067
4068 return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073 struct sit_entry_set *ses =
4074 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075
4076 ses->entry_cnt = 0;
4077 INIT_LIST_HEAD(&ses->set_list);
4078 return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083 list_del(&ses->set_list);
4084 kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088 struct list_head *head)
4089{
4090 struct sit_entry_set *next = ses;
4091
4092 if (list_is_last(&ses->set_list, head))
4093 return;
4094
4095 list_for_each_entry_continue(next, head, set_list)
4096 if (ses->entry_cnt <= next->entry_cnt)
4097 break;
4098
4099 list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104 struct sit_entry_set *ses;
4105 unsigned int start_segno = START_SEGNO(segno);
4106
4107 list_for_each_entry(ses, head, set_list) {
4108 if (ses->start_segno == start_segno) {
4109 ses->entry_cnt++;
4110 adjust_sit_entry_set(ses, head);
4111 return;
4112 }
4113 }
4114
4115 ses = grab_sit_entry_set();
4116
4117 ses->start_segno = start_segno;
4118 ses->entry_cnt++;
4119 list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124 struct f2fs_sm_info *sm_info = SM_I(sbi);
4125 struct list_head *set_list = &sm_info->sit_entry_set;
4126 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127 unsigned int segno;
4128
4129 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130 add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136 struct f2fs_journal *journal = curseg->journal;
4137 int i;
4138
4139 down_write(&curseg->journal_rwsem);
4140 for (i = 0; i < sits_in_cursum(journal); i++) {
4141 unsigned int segno;
4142 bool dirtied;
4143
4144 segno = le32_to_cpu(segno_in_journal(journal, i));
4145 dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147 if (!dirtied)
4148 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149 }
4150 update_sits_in_cursum(journal, -i);
4151 up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160 struct sit_info *sit_i = SIT_I(sbi);
4161 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163 struct f2fs_journal *journal = curseg->journal;
4164 struct sit_entry_set *ses, *tmp;
4165 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167 struct seg_entry *se;
4168
4169 down_write(&sit_i->sentry_lock);
4170
4171 if (!sit_i->dirty_sentries)
4172 goto out;
4173
4174 /*
4175 * add and account sit entries of dirty bitmap in sit entry
4176 * set temporarily
4177 */
4178 add_sits_in_set(sbi);
4179
4180 /*
4181 * if there are no enough space in journal to store dirty sit
4182 * entries, remove all entries from journal and add and account
4183 * them in sit entry set.
4184 */
4185 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186 !to_journal)
4187 remove_sits_in_journal(sbi);
4188
4189 /*
4190 * there are two steps to flush sit entries:
4191 * #1, flush sit entries to journal in current cold data summary block.
4192 * #2, flush sit entries to sit page.
4193 */
4194 list_for_each_entry_safe(ses, tmp, head, set_list) {
4195 struct page *page = NULL;
4196 struct f2fs_sit_block *raw_sit = NULL;
4197 unsigned int start_segno = ses->start_segno;
4198 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199 (unsigned long)MAIN_SEGS(sbi));
4200 unsigned int segno = start_segno;
4201
4202 if (to_journal &&
4203 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204 to_journal = false;
4205
4206 if (to_journal) {
4207 down_write(&curseg->journal_rwsem);
4208 } else {
4209 page = get_next_sit_page(sbi, start_segno);
4210 raw_sit = page_address(page);
4211 }
4212
4213 /* flush dirty sit entries in region of current sit set */
4214 for_each_set_bit_from(segno, bitmap, end) {
4215 int offset, sit_offset;
4216
4217 se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220 SIT_VBLOCK_MAP_SIZE))
4221 f2fs_bug_on(sbi, 1);
4222#endif
4223
4224 /* add discard candidates */
4225 if (!(cpc->reason & CP_DISCARD)) {
4226 cpc->trim_start = segno;
4227 add_discard_addrs(sbi, cpc, false);
4228 }
4229
4230 if (to_journal) {
4231 offset = f2fs_lookup_journal_in_cursum(journal,
4232 SIT_JOURNAL, segno, 1);
4233 f2fs_bug_on(sbi, offset < 0);
4234 segno_in_journal(journal, offset) =
4235 cpu_to_le32(segno);
4236 seg_info_to_raw_sit(se,
4237 &sit_in_journal(journal, offset));
4238 check_block_count(sbi, segno,
4239 &sit_in_journal(journal, offset));
4240 } else {
4241 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242 seg_info_to_raw_sit(se,
4243 &raw_sit->entries[sit_offset]);
4244 check_block_count(sbi, segno,
4245 &raw_sit->entries[sit_offset]);
4246 }
4247
4248 __clear_bit(segno, bitmap);
4249 sit_i->dirty_sentries--;
4250 ses->entry_cnt--;
4251 }
4252
4253 if (to_journal)
4254 up_write(&curseg->journal_rwsem);
4255 else
4256 f2fs_put_page(page, 1);
4257
4258 f2fs_bug_on(sbi, ses->entry_cnt);
4259 release_sit_entry_set(ses);
4260 }
4261
4262 f2fs_bug_on(sbi, !list_empty(head));
4263 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265 if (cpc->reason & CP_DISCARD) {
4266 __u64 trim_start = cpc->trim_start;
4267
4268 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269 add_discard_addrs(sbi, cpc, false);
4270
4271 cpc->trim_start = trim_start;
4272 }
4273 up_write(&sit_i->sentry_lock);
4274
4275 set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281 struct sit_info *sit_i;
4282 unsigned int sit_segs, start;
4283 char *src_bitmap, *bitmap;
4284 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285
4286 /* allocate memory for SIT information */
4287 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288 if (!sit_i)
4289 return -ENOMEM;
4290
4291 SM_I(sbi)->sit_info = sit_i;
4292
4293 sit_i->sentries =
4294 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295 MAIN_SEGS(sbi)),
4296 GFP_KERNEL);
4297 if (!sit_i->sentries)
4298 return -ENOMEM;
4299
4300 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302 GFP_KERNEL);
4303 if (!sit_i->dirty_sentries_bitmap)
4304 return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312 if (!sit_i->bitmap)
4313 return -ENOMEM;
4314
4315 bitmap = sit_i->bitmap;
4316
4317 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318 sit_i->sentries[start].cur_valid_map = bitmap;
4319 bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321 sit_i->sentries[start].ckpt_valid_map = bitmap;
4322 bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326 bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329 sit_i->sentries[start].discard_map = bitmap;
4330 bitmap += SIT_VBLOCK_MAP_SIZE;
4331 }
4332
4333 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334 if (!sit_i->tmp_map)
4335 return -ENOMEM;
4336
4337 if (__is_large_section(sbi)) {
4338 sit_i->sec_entries =
4339 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340 MAIN_SECS(sbi)),
4341 GFP_KERNEL);
4342 if (!sit_i->sec_entries)
4343 return -ENOMEM;
4344 }
4345
4346 /* get information related with SIT */
4347 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349 /* setup SIT bitmap from ckeckpoint pack */
4350 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354 if (!sit_i->sit_bitmap)
4355 return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359 sit_bitmap_size, GFP_KERNEL);
4360 if (!sit_i->sit_bitmap_mir)
4361 return -ENOMEM;
4362
4363 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364 main_bitmap_size, GFP_KERNEL);
4365 if (!sit_i->invalid_segmap)
4366 return -ENOMEM;
4367#endif
4368
4369 /* init SIT information */
4370 sit_i->s_ops = &default_salloc_ops;
4371
4372 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374 sit_i->written_valid_blocks = 0;
4375 sit_i->bitmap_size = sit_bitmap_size;
4376 sit_i->dirty_sentries = 0;
4377 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379 sit_i->mounted_time = ktime_get_boottime_seconds();
4380 init_rwsem(&sit_i->sentry_lock);
4381 return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386 struct free_segmap_info *free_i;
4387 unsigned int bitmap_size, sec_bitmap_size;
4388
4389 /* allocate memory for free segmap information */
4390 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391 if (!free_i)
4392 return -ENOMEM;
4393
4394 SM_I(sbi)->free_info = free_i;
4395
4396 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398 if (!free_i->free_segmap)
4399 return -ENOMEM;
4400
4401 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403 if (!free_i->free_secmap)
4404 return -ENOMEM;
4405
4406 /* set all segments as dirty temporarily */
4407 memset(free_i->free_segmap, 0xff, bitmap_size);
4408 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410 /* init free segmap information */
4411 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412 free_i->free_segments = 0;
4413 free_i->free_sections = 0;
4414 spin_lock_init(&free_i->segmap_lock);
4415 return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420 struct curseg_info *array;
4421 int i;
4422
4423 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424 sizeof(*array)), GFP_KERNEL);
4425 if (!array)
4426 return -ENOMEM;
4427
4428 SM_I(sbi)->curseg_array = array;
4429
4430 for (i = 0; i < NO_CHECK_TYPE; i++) {
4431 mutex_init(&array[i].curseg_mutex);
4432 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433 if (!array[i].sum_blk)
4434 return -ENOMEM;
4435 init_rwsem(&array[i].journal_rwsem);
4436 array[i].journal = f2fs_kzalloc(sbi,
4437 sizeof(struct f2fs_journal), GFP_KERNEL);
4438 if (!array[i].journal)
4439 return -ENOMEM;
4440 if (i < NR_PERSISTENT_LOG)
4441 array[i].seg_type = CURSEG_HOT_DATA + i;
4442 else if (i == CURSEG_COLD_DATA_PINNED)
4443 array[i].seg_type = CURSEG_COLD_DATA;
4444 else if (i == CURSEG_ALL_DATA_ATGC)
4445 array[i].seg_type = CURSEG_COLD_DATA;
4446 array[i].segno = NULL_SEGNO;
4447 array[i].next_blkoff = 0;
4448 array[i].inited = false;
4449 }
4450 return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455 struct sit_info *sit_i = SIT_I(sbi);
4456 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457 struct f2fs_journal *journal = curseg->journal;
4458 struct seg_entry *se;
4459 struct f2fs_sit_entry sit;
4460 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461 unsigned int i, start, end;
4462 unsigned int readed, start_blk = 0;
4463 int err = 0;
4464 block_t total_node_blocks = 0;
4465
4466 do {
4467 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468 META_SIT, true);
4469
4470 start = start_blk * sit_i->sents_per_block;
4471 end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474 struct f2fs_sit_block *sit_blk;
4475 struct page *page;
4476
4477 se = &sit_i->sentries[start];
4478 page = get_current_sit_page(sbi, start);
4479 if (IS_ERR(page))
4480 return PTR_ERR(page);
4481 sit_blk = (struct f2fs_sit_block *)page_address(page);
4482 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483 f2fs_put_page(page, 1);
4484
4485 err = check_block_count(sbi, start, &sit);
4486 if (err)
4487 return err;
4488 seg_info_from_raw_sit(se, &sit);
4489 if (IS_NODESEG(se->type))
4490 total_node_blocks += se->valid_blocks;
4491
4492 /* build discard map only one time */
4493 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494 memset(se->discard_map, 0xff,
4495 SIT_VBLOCK_MAP_SIZE);
4496 } else {
4497 memcpy(se->discard_map,
4498 se->cur_valid_map,
4499 SIT_VBLOCK_MAP_SIZE);
4500 sbi->discard_blks +=
4501 sbi->blocks_per_seg -
4502 se->valid_blocks;
4503 }
4504
4505 if (__is_large_section(sbi))
4506 get_sec_entry(sbi, start)->valid_blocks +=
4507 se->valid_blocks;
4508 }
4509 start_blk += readed;
4510 } while (start_blk < sit_blk_cnt);
4511
4512 down_read(&curseg->journal_rwsem);
4513 for (i = 0; i < sits_in_cursum(journal); i++) {
4514 unsigned int old_valid_blocks;
4515
4516 start = le32_to_cpu(segno_in_journal(journal, i));
4517 if (start >= MAIN_SEGS(sbi)) {
4518 f2fs_err(sbi, "Wrong journal entry on segno %u",
4519 start);
4520 err = -EFSCORRUPTED;
4521 break;
4522 }
4523
4524 se = &sit_i->sentries[start];
4525 sit = sit_in_journal(journal, i);
4526
4527 old_valid_blocks = se->valid_blocks;
4528 if (IS_NODESEG(se->type))
4529 total_node_blocks -= old_valid_blocks;
4530
4531 err = check_block_count(sbi, start, &sit);
4532 if (err)
4533 break;
4534 seg_info_from_raw_sit(se, &sit);
4535 if (IS_NODESEG(se->type))
4536 total_node_blocks += se->valid_blocks;
4537
4538 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540 } else {
4541 memcpy(se->discard_map, se->cur_valid_map,
4542 SIT_VBLOCK_MAP_SIZE);
4543 sbi->discard_blks += old_valid_blocks;
4544 sbi->discard_blks -= se->valid_blocks;
4545 }
4546
4547 if (__is_large_section(sbi)) {
4548 get_sec_entry(sbi, start)->valid_blocks +=
4549 se->valid_blocks;
4550 get_sec_entry(sbi, start)->valid_blocks -=
4551 old_valid_blocks;
4552 }
4553 }
4554 up_read(&curseg->journal_rwsem);
4555
4556 if (!err && total_node_blocks != valid_node_count(sbi)) {
4557 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558 total_node_blocks, valid_node_count(sbi));
4559 err = -EFSCORRUPTED;
4560 }
4561
4562 return err;
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567 unsigned int start;
4568 int type;
4569 struct seg_entry *sentry;
4570
4571 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573 continue;
4574 sentry = get_seg_entry(sbi, start);
4575 if (!sentry->valid_blocks)
4576 __set_free(sbi, start);
4577 else
4578 SIT_I(sbi)->written_valid_blocks +=
4579 sentry->valid_blocks;
4580 }
4581
4582 /* set use the current segments */
4583 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586 __set_test_and_inuse(sbi, curseg_t->segno);
4587 }
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593 struct free_segmap_info *free_i = FREE_I(sbi);
4594 unsigned int segno = 0, offset = 0, secno;
4595 block_t valid_blocks, usable_blks_in_seg;
4596 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598 while (1) {
4599 /* find dirty segment based on free segmap */
4600 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601 if (segno >= MAIN_SEGS(sbi))
4602 break;
4603 offset = segno + 1;
4604 valid_blocks = get_valid_blocks(sbi, segno, false);
4605 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607 continue;
4608 if (valid_blocks > usable_blks_in_seg) {
4609 f2fs_bug_on(sbi, 1);
4610 continue;
4611 }
4612 mutex_lock(&dirty_i->seglist_lock);
4613 __locate_dirty_segment(sbi, segno, DIRTY);
4614 mutex_unlock(&dirty_i->seglist_lock);
4615 }
4616
4617 if (!__is_large_section(sbi))
4618 return;
4619
4620 mutex_lock(&dirty_i->seglist_lock);
4621 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622 valid_blocks = get_valid_blocks(sbi, segno, true);
4623 secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625 if (!valid_blocks || valid_blocks == blks_per_sec)
4626 continue;
4627 if (IS_CURSEC(sbi, secno))
4628 continue;
4629 set_bit(secno, dirty_i->dirty_secmap);
4630 }
4631 mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640 if (!dirty_i->victim_secmap)
4641 return -ENOMEM;
4642 return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647 struct dirty_seglist_info *dirty_i;
4648 unsigned int bitmap_size, i;
4649
4650 /* allocate memory for dirty segments list information */
4651 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652 GFP_KERNEL);
4653 if (!dirty_i)
4654 return -ENOMEM;
4655
4656 SM_I(sbi)->dirty_info = dirty_i;
4657 mutex_init(&dirty_i->seglist_lock);
4658
4659 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663 GFP_KERNEL);
4664 if (!dirty_i->dirty_segmap[i])
4665 return -ENOMEM;
4666 }
4667
4668 if (__is_large_section(sbi)) {
4669 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671 bitmap_size, GFP_KERNEL);
4672 if (!dirty_i->dirty_secmap)
4673 return -ENOMEM;
4674 }
4675
4676 init_dirty_segmap(sbi);
4677 return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682 int i;
4683
4684 /*
4685 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687 */
4688 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689 struct curseg_info *curseg = CURSEG_I(sbi, i);
4690 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691 unsigned int blkofs = curseg->next_blkoff;
4692
4693 if (f2fs_sb_has_readonly(sbi) &&
4694 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695 continue;
4696
4697 sanity_check_seg_type(sbi, curseg->seg_type);
4698
4699 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700 goto out;
4701
4702 if (curseg->alloc_type == SSR)
4703 continue;
4704
4705 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707 continue;
4708out:
4709 f2fs_err(sbi,
4710 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711 i, curseg->segno, curseg->alloc_type,
4712 curseg->next_blkoff, blkofs);
4713 return -EFSCORRUPTED;
4714 }
4715 }
4716 return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722 struct f2fs_dev_info *fdev,
4723 struct blk_zone *zone)
4724{
4725 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726 block_t zone_block, wp_block, last_valid_block;
4727 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728 int i, s, b, ret;
4729 struct seg_entry *se;
4730
4731 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732 return 0;
4733
4734 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735 wp_segno = GET_SEGNO(sbi, wp_block);
4736 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738 zone_segno = GET_SEGNO(sbi, zone_block);
4739 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741 if (zone_segno >= MAIN_SEGS(sbi))
4742 return 0;
4743
4744 /*
4745 * Skip check of zones cursegs point to, since
4746 * fix_curseg_write_pointer() checks them.
4747 */
4748 for (i = 0; i < NO_CHECK_TYPE; i++)
4749 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750 CURSEG_I(sbi, i)->segno))
4751 return 0;
4752
4753 /*
4754 * Get last valid block of the zone.
4755 */
4756 last_valid_block = zone_block - 1;
4757 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758 segno = zone_segno + s;
4759 se = get_seg_entry(sbi, segno);
4760 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761 if (f2fs_test_bit(b, se->cur_valid_map)) {
4762 last_valid_block = START_BLOCK(sbi, segno) + b;
4763 break;
4764 }
4765 if (last_valid_block >= zone_block)
4766 break;
4767 }
4768
4769 /*
4770 * If last valid block is beyond the write pointer, report the
4771 * inconsistency. This inconsistency does not cause write error
4772 * because the zone will not be selected for write operation until
4773 * it get discarded. Just report it.
4774 */
4775 if (last_valid_block >= wp_block) {
4776 f2fs_notice(sbi, "Valid block beyond write pointer: "
4777 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778 GET_SEGNO(sbi, last_valid_block),
4779 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780 wp_segno, wp_blkoff);
4781 return 0;
4782 }
4783
4784 /*
4785 * If there is no valid block in the zone and if write pointer is
4786 * not at zone start, reset the write pointer.
4787 */
4788 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789 f2fs_notice(sbi,
4790 "Zone without valid block has non-zero write "
4791 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792 wp_segno, wp_blkoff);
4793 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794 zone->len >> log_sectors_per_block);
4795 if (ret) {
4796 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797 fdev->path, ret);
4798 return ret;
4799 }
4800 }
4801
4802 return 0;
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806 block_t zone_blkaddr)
4807{
4808 int i;
4809
4810 for (i = 0; i < sbi->s_ndevs; i++) {
4811 if (!bdev_is_zoned(FDEV(i).bdev))
4812 continue;
4813 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814 zone_blkaddr <= FDEV(i).end_blk))
4815 return &FDEV(i);
4816 }
4817
4818 return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822 void *data)
4823{
4824 memcpy(data, zone, sizeof(struct blk_zone));
4825 return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830 struct curseg_info *cs = CURSEG_I(sbi, type);
4831 struct f2fs_dev_info *zbd;
4832 struct blk_zone zone;
4833 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834 block_t cs_zone_block, wp_block;
4835 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836 sector_t zone_sector;
4837 int err;
4838
4839 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843 if (!zbd)
4844 return 0;
4845
4846 /* report zone for the sector the curseg points to */
4847 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848 << log_sectors_per_block;
4849 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850 report_one_zone_cb, &zone);
4851 if (err != 1) {
4852 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853 zbd->path, err);
4854 return err;
4855 }
4856
4857 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858 return 0;
4859
4860 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861 wp_segno = GET_SEGNO(sbi, wp_block);
4862 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866 wp_sector_off == 0)
4867 return 0;
4868
4869 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875
4876 f2fs_allocate_new_section(sbi, type, true);
4877
4878 /* check consistency of the zone curseg pointed to */
4879 if (check_zone_write_pointer(sbi, zbd, &zone))
4880 return -EIO;
4881
4882 /* check newly assigned zone */
4883 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887 if (!zbd)
4888 return 0;
4889
4890 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891 << log_sectors_per_block;
4892 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893 report_one_zone_cb, &zone);
4894 if (err != 1) {
4895 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896 zbd->path, err);
4897 return err;
4898 }
4899
4900 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901 return 0;
4902
4903 if (zone.wp != zone.start) {
4904 f2fs_notice(sbi,
4905 "New zone for curseg[%d] is not yet discarded. "
4906 "Reset the zone: curseg[0x%x,0x%x]",
4907 type, cs->segno, cs->next_blkoff);
4908 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909 zone_sector >> log_sectors_per_block,
4910 zone.len >> log_sectors_per_block);
4911 if (err) {
4912 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913 zbd->path, err);
4914 return err;
4915 }
4916 }
4917
4918 return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923 int i, ret;
4924
4925 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926 ret = fix_curseg_write_pointer(sbi, i);
4927 if (ret)
4928 return ret;
4929 }
4930
4931 return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935 struct f2fs_sb_info *sbi;
4936 struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940 void *data)
4941{
4942 struct check_zone_write_pointer_args *args;
4943
4944 args = (struct check_zone_write_pointer_args *)data;
4945
4946 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951 int i, ret;
4952 struct check_zone_write_pointer_args args;
4953
4954 for (i = 0; i < sbi->s_ndevs; i++) {
4955 if (!bdev_is_zoned(FDEV(i).bdev))
4956 continue;
4957
4958 args.sbi = sbi;
4959 args.fdev = &FDEV(i);
4960 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961 check_zone_write_pointer_cb, &args);
4962 if (ret < 0)
4963 return ret;
4964 }
4965
4966 return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970 unsigned int dev_idx)
4971{
4972 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973 return true;
4974 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979 int dev_idx)
4980{
4981 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984 sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992 struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999 /* Conventional zone's capacity is always equal to zone size */
5000 if (is_conv_zone(sbi, zone_idx, dev_idx))
5001 return sbi->segs_per_sec;
5002
5003 /*
5004 * If the zone_capacity_blocks array is NULL, then zone capacity
5005 * is equal to the zone size for all zones
5006 */
5007 if (!FDEV(dev_idx).zone_capacity_blocks)
5008 return sbi->segs_per_sec;
5009
5010 /* Get the segment count beyond zone capacity block */
5011 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013 sbi->log_blocks_per_seg;
5014 return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026 struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029 unsigned int zone_idx, dev_idx, secno;
5030
5031 secno = GET_SEC_FROM_SEG(sbi, segno);
5032 seg_start = START_BLOCK(sbi, segno);
5033 dev_idx = f2fs_target_device_index(sbi, seg_start);
5034 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036 /*
5037 * Conventional zone's capacity is always equal to zone size,
5038 * so, blocks per segment is unchanged.
5039 */
5040 if (is_conv_zone(sbi, zone_idx, dev_idx))
5041 return sbi->blocks_per_seg;
5042
5043 if (!FDEV(dev_idx).zone_capacity_blocks)
5044 return sbi->blocks_per_seg;
5045
5046 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047 sec_cap_blkaddr = sec_start_blkaddr +
5048 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050 /*
5051 * If segment starts before zone capacity and spans beyond
5052 * zone capacity, then usable blocks are from seg start to
5053 * zone capacity. If the segment starts after the zone capacity,
5054 * then there are no usable blocks.
5055 */
5056 if (seg_start >= sec_cap_blkaddr)
5057 return 0;
5058 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059 return sec_cap_blkaddr - seg_start;
5060
5061 return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066 return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071 return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075 unsigned int segno)
5076{
5077 return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081 unsigned int segno)
5082{
5083 return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087 unsigned int segno)
5088{
5089 if (f2fs_sb_has_blkzoned(sbi))
5090 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092 return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096 unsigned int segno)
5097{
5098 if (f2fs_sb_has_blkzoned(sbi))
5099 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101 return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109 struct sit_info *sit_i = SIT_I(sbi);
5110 unsigned int segno;
5111
5112 down_write(&sit_i->sentry_lock);
5113
5114 sit_i->min_mtime = ULLONG_MAX;
5115
5116 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117 unsigned int i;
5118 unsigned long long mtime = 0;
5119
5120 for (i = 0; i < sbi->segs_per_sec; i++)
5121 mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123 mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125 if (sit_i->min_mtime > mtime)
5126 sit_i->min_mtime = mtime;
5127 }
5128 sit_i->max_mtime = get_mtime(sbi, false);
5129 sit_i->dirty_max_mtime = 0;
5130 up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137 struct f2fs_sm_info *sm_info;
5138 int err;
5139
5140 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141 if (!sm_info)
5142 return -ENOMEM;
5143
5144 /* init sm info */
5145 sbi->sm_info = sm_info;
5146 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153 sm_info->rec_prefree_segments = sm_info->main_segments *
5154 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158 if (!f2fs_lfs_mode(sbi))
5159 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164 sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168 init_rwsem(&sm_info->curseg_lock);
5169
5170 if (!f2fs_readonly(sbi->sb)) {
5171 err = f2fs_create_flush_cmd_control(sbi);
5172 if (err)
5173 return err;
5174 }
5175
5176 err = create_discard_cmd_control(sbi);
5177 if (err)
5178 return err;
5179
5180 err = build_sit_info(sbi);
5181 if (err)
5182 return err;
5183 err = build_free_segmap(sbi);
5184 if (err)
5185 return err;
5186 err = build_curseg(sbi);
5187 if (err)
5188 return err;
5189
5190 /* reinit free segmap based on SIT */
5191 err = build_sit_entries(sbi);
5192 if (err)
5193 return err;
5194
5195 init_free_segmap(sbi);
5196 err = build_dirty_segmap(sbi);
5197 if (err)
5198 return err;
5199
5200 err = sanity_check_curseg(sbi);
5201 if (err)
5202 return err;
5203
5204 init_min_max_mtime(sbi);
5205 return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209 enum dirty_type dirty_type)
5210{
5211 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213 mutex_lock(&dirty_i->seglist_lock);
5214 kvfree(dirty_i->dirty_segmap[dirty_type]);
5215 dirty_i->nr_dirty[dirty_type] = 0;
5216 mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
5223 kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229 int i;
5230
5231 if (!dirty_i)
5232 return;
5233
5234 /* discard pre-free/dirty segments list */
5235 for (i = 0; i < NR_DIRTY_TYPE; i++)
5236 discard_dirty_segmap(sbi, i);
5237
5238 if (__is_large_section(sbi)) {
5239 mutex_lock(&dirty_i->seglist_lock);
5240 kvfree(dirty_i->dirty_secmap);
5241 mutex_unlock(&dirty_i->seglist_lock);
5242 }
5243
5244 destroy_victim_secmap(sbi);
5245 SM_I(sbi)->dirty_info = NULL;
5246 kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251 struct curseg_info *array = SM_I(sbi)->curseg_array;
5252 int i;
5253
5254 if (!array)
5255 return;
5256 SM_I(sbi)->curseg_array = NULL;
5257 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258 kfree(array[i].sum_blk);
5259 kfree(array[i].journal);
5260 }
5261 kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268 if (!free_i)
5269 return;
5270 SM_I(sbi)->free_info = NULL;
5271 kvfree(free_i->free_segmap);
5272 kvfree(free_i->free_secmap);
5273 kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278 struct sit_info *sit_i = SIT_I(sbi);
5279
5280 if (!sit_i)
5281 return;
5282
5283 if (sit_i->sentries)
5284 kvfree(sit_i->bitmap);
5285 kfree(sit_i->tmp_map);
5286
5287 kvfree(sit_i->sentries);
5288 kvfree(sit_i->sec_entries);
5289 kvfree(sit_i->dirty_sentries_bitmap);
5290
5291 SM_I(sbi)->sit_info = NULL;
5292 kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294 kvfree(sit_i->sit_bitmap_mir);
5295 kvfree(sit_i->invalid_segmap);
5296#endif
5297 kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302 struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304 if (!sm_info)
5305 return;
5306 f2fs_destroy_flush_cmd_control(sbi, true);
5307 destroy_discard_cmd_control(sbi);
5308 destroy_dirty_segmap(sbi);
5309 destroy_curseg(sbi);
5310 destroy_free_segmap(sbi);
5311 destroy_sit_info(sbi);
5312 sbi->sm_info = NULL;
5313 kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319 sizeof(struct discard_entry));
5320 if (!discard_entry_slab)
5321 goto fail;
5322
5323 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324 sizeof(struct discard_cmd));
5325 if (!discard_cmd_slab)
5326 goto destroy_discard_entry;
5327
5328 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329 sizeof(struct sit_entry_set));
5330 if (!sit_entry_set_slab)
5331 goto destroy_discard_cmd;
5332
5333 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334 sizeof(struct inmem_pages));
5335 if (!inmem_entry_slab)
5336 goto destroy_sit_entry_set;
5337 return 0;
5338
5339destroy_sit_entry_set:
5340 kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342 kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344 kmem_cache_destroy(discard_entry_slab);
5345fail:
5346 return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351 kmem_cache_destroy(sit_entry_set_slab);
5352 kmem_cache_destroy(discard_cmd_slab);
5353 kmem_cache_destroy(discard_entry_slab);
5354 kmem_cache_destroy(inmem_entry_slab);
5355}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/sched/mm.h>
13#include <linux/prefetch.h>
14#include <linux/kthread.h>
15#include <linux/swap.h>
16#include <linux/timer.h>
17#include <linux/freezer.h>
18#include <linux/sched/signal.h>
19#include <linux/random.h>
20
21#include "f2fs.h"
22#include "segment.h"
23#include "node.h"
24#include "gc.h"
25#include "iostat.h"
26#include <trace/events/f2fs.h>
27
28#define __reverse_ffz(x) __reverse_ffs(~(x))
29
30static struct kmem_cache *discard_entry_slab;
31static struct kmem_cache *discard_cmd_slab;
32static struct kmem_cache *sit_entry_set_slab;
33static struct kmem_cache *revoke_entry_slab;
34
35static unsigned long __reverse_ulong(unsigned char *str)
36{
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40#if BITS_PER_LONG == 64
41 shift = 56;
42#endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48}
49
50/*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
54static inline unsigned long __reverse_ffs(unsigned long word)
55{
56 int num = 0;
57
58#if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63#endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87}
88
89/*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
98static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100{
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130found:
131 return result - size + __reverse_ffs(tmp);
132}
133
134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136{
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167found:
168 return result - size + __reverse_ffz(tmp);
169}
170
171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172{
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186}
187
188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189{
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 release_atomic_write_cnt(inode);
196 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198 clear_inode_flag(inode, FI_ATOMIC_FILE);
199 stat_dec_atomic_inode(inode);
200
201 F2FS_I(inode)->atomic_write_task = NULL;
202
203 if (clean) {
204 truncate_inode_pages_final(inode->i_mapping);
205 f2fs_i_size_write(inode, fi->original_i_size);
206 fi->original_i_size = 0;
207 }
208 /* avoid stale dirty inode during eviction */
209 sync_inode_metadata(inode, 0);
210}
211
212static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
213 block_t new_addr, block_t *old_addr, bool recover)
214{
215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 struct dnode_of_data dn;
217 struct node_info ni;
218 int err;
219
220retry:
221 set_new_dnode(&dn, inode, NULL, NULL, 0);
222 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
223 if (err) {
224 if (err == -ENOMEM) {
225 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
226 goto retry;
227 }
228 return err;
229 }
230
231 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
232 if (err) {
233 f2fs_put_dnode(&dn);
234 return err;
235 }
236
237 if (recover) {
238 /* dn.data_blkaddr is always valid */
239 if (!__is_valid_data_blkaddr(new_addr)) {
240 if (new_addr == NULL_ADDR)
241 dec_valid_block_count(sbi, inode, 1);
242 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
243 f2fs_update_data_blkaddr(&dn, new_addr);
244 } else {
245 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
246 new_addr, ni.version, true, true);
247 }
248 } else {
249 blkcnt_t count = 1;
250
251 err = inc_valid_block_count(sbi, inode, &count);
252 if (err) {
253 f2fs_put_dnode(&dn);
254 return err;
255 }
256
257 *old_addr = dn.data_blkaddr;
258 f2fs_truncate_data_blocks_range(&dn, 1);
259 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
260
261 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
262 ni.version, true, false);
263 }
264
265 f2fs_put_dnode(&dn);
266
267 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
268 index, old_addr ? *old_addr : 0, new_addr, recover);
269 return 0;
270}
271
272static void __complete_revoke_list(struct inode *inode, struct list_head *head,
273 bool revoke)
274{
275 struct revoke_entry *cur, *tmp;
276 pgoff_t start_index = 0;
277 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
278
279 list_for_each_entry_safe(cur, tmp, head, list) {
280 if (revoke) {
281 __replace_atomic_write_block(inode, cur->index,
282 cur->old_addr, NULL, true);
283 } else if (truncate) {
284 f2fs_truncate_hole(inode, start_index, cur->index);
285 start_index = cur->index + 1;
286 }
287
288 list_del(&cur->list);
289 kmem_cache_free(revoke_entry_slab, cur);
290 }
291
292 if (!revoke && truncate)
293 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
294}
295
296static int __f2fs_commit_atomic_write(struct inode *inode)
297{
298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
299 struct f2fs_inode_info *fi = F2FS_I(inode);
300 struct inode *cow_inode = fi->cow_inode;
301 struct revoke_entry *new;
302 struct list_head revoke_list;
303 block_t blkaddr;
304 struct dnode_of_data dn;
305 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
306 pgoff_t off = 0, blen, index;
307 int ret = 0, i;
308
309 INIT_LIST_HEAD(&revoke_list);
310
311 while (len) {
312 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
313
314 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
315 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
316 if (ret && ret != -ENOENT) {
317 goto out;
318 } else if (ret == -ENOENT) {
319 ret = 0;
320 if (dn.max_level == 0)
321 goto out;
322 goto next;
323 }
324
325 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
326 len);
327 index = off;
328 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
329 blkaddr = f2fs_data_blkaddr(&dn);
330
331 if (!__is_valid_data_blkaddr(blkaddr)) {
332 continue;
333 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
334 DATA_GENERIC_ENHANCE)) {
335 f2fs_put_dnode(&dn);
336 ret = -EFSCORRUPTED;
337 f2fs_handle_error(sbi,
338 ERROR_INVALID_BLKADDR);
339 goto out;
340 }
341
342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 true, NULL);
344
345 ret = __replace_atomic_write_block(inode, index, blkaddr,
346 &new->old_addr, false);
347 if (ret) {
348 f2fs_put_dnode(&dn);
349 kmem_cache_free(revoke_entry_slab, new);
350 goto out;
351 }
352
353 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 new->index = index;
355 list_add_tail(&new->list, &revoke_list);
356 }
357 f2fs_put_dnode(&dn);
358next:
359 off += blen;
360 len -= blen;
361 }
362
363out:
364 if (ret) {
365 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 } else {
367 sbi->committed_atomic_block += fi->atomic_write_cnt;
368 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369 }
370
371 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373 return ret;
374}
375
376int f2fs_commit_atomic_write(struct inode *inode)
377{
378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 struct f2fs_inode_info *fi = F2FS_I(inode);
380 int err;
381
382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 if (err)
384 return err;
385
386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 f2fs_lock_op(sbi);
388
389 err = __f2fs_commit_atomic_write(inode);
390
391 f2fs_unlock_op(sbi);
392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394 return err;
395}
396
397/*
398 * This function balances dirty node and dentry pages.
399 * In addition, it controls garbage collection.
400 */
401void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402{
403 if (time_to_inject(sbi, FAULT_CHECKPOINT))
404 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
405
406 /* balance_fs_bg is able to be pending */
407 if (need && excess_cached_nats(sbi))
408 f2fs_balance_fs_bg(sbi, false);
409
410 if (!f2fs_is_checkpoint_ready(sbi))
411 return;
412
413 /*
414 * We should do GC or end up with checkpoint, if there are so many dirty
415 * dir/node pages without enough free segments.
416 */
417 if (has_enough_free_secs(sbi, 0, 0))
418 return;
419
420 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
421 sbi->gc_thread->f2fs_gc_task) {
422 DEFINE_WAIT(wait);
423
424 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
425 TASK_UNINTERRUPTIBLE);
426 wake_up(&sbi->gc_thread->gc_wait_queue_head);
427 io_schedule();
428 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
429 } else {
430 struct f2fs_gc_control gc_control = {
431 .victim_segno = NULL_SEGNO,
432 .init_gc_type = BG_GC,
433 .no_bg_gc = true,
434 .should_migrate_blocks = false,
435 .err_gc_skipped = false,
436 .nr_free_secs = 1 };
437 f2fs_down_write(&sbi->gc_lock);
438 stat_inc_gc_call_count(sbi, FOREGROUND);
439 f2fs_gc(sbi, &gc_control);
440 }
441}
442
443static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
444{
445 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
446 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
447 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
448 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
449 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
450 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
451 unsigned int threshold = sbi->blocks_per_seg * factor *
452 DEFAULT_DIRTY_THRESHOLD;
453 unsigned int global_threshold = threshold * 3 / 2;
454
455 if (dents >= threshold || qdata >= threshold ||
456 nodes >= threshold || meta >= threshold ||
457 imeta >= threshold)
458 return true;
459 return dents + qdata + nodes + meta + imeta > global_threshold;
460}
461
462void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
463{
464 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
465 return;
466
467 /* try to shrink extent cache when there is no enough memory */
468 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
469 f2fs_shrink_read_extent_tree(sbi,
470 READ_EXTENT_CACHE_SHRINK_NUMBER);
471
472 /* try to shrink age extent cache when there is no enough memory */
473 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
474 f2fs_shrink_age_extent_tree(sbi,
475 AGE_EXTENT_CACHE_SHRINK_NUMBER);
476
477 /* check the # of cached NAT entries */
478 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
479 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
480
481 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
482 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
483 else
484 f2fs_build_free_nids(sbi, false, false);
485
486 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
487 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
488 goto do_sync;
489
490 /* there is background inflight IO or foreground operation recently */
491 if (is_inflight_io(sbi, REQ_TIME) ||
492 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
493 return;
494
495 /* exceed periodical checkpoint timeout threshold */
496 if (f2fs_time_over(sbi, CP_TIME))
497 goto do_sync;
498
499 /* checkpoint is the only way to shrink partial cached entries */
500 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
501 f2fs_available_free_memory(sbi, INO_ENTRIES))
502 return;
503
504do_sync:
505 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
506 struct blk_plug plug;
507
508 mutex_lock(&sbi->flush_lock);
509
510 blk_start_plug(&plug);
511 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
512 blk_finish_plug(&plug);
513
514 mutex_unlock(&sbi->flush_lock);
515 }
516 stat_inc_cp_call_count(sbi, BACKGROUND);
517 f2fs_sync_fs(sbi->sb, 1);
518}
519
520static int __submit_flush_wait(struct f2fs_sb_info *sbi,
521 struct block_device *bdev)
522{
523 int ret = blkdev_issue_flush(bdev);
524
525 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
526 test_opt(sbi, FLUSH_MERGE), ret);
527 if (!ret)
528 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
529 return ret;
530}
531
532static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533{
534 int ret = 0;
535 int i;
536
537 if (!f2fs_is_multi_device(sbi))
538 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539
540 for (i = 0; i < sbi->s_ndevs; i++) {
541 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
542 continue;
543 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
544 if (ret)
545 break;
546 }
547 return ret;
548}
549
550static int issue_flush_thread(void *data)
551{
552 struct f2fs_sb_info *sbi = data;
553 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
554 wait_queue_head_t *q = &fcc->flush_wait_queue;
555repeat:
556 if (kthread_should_stop())
557 return 0;
558
559 if (!llist_empty(&fcc->issue_list)) {
560 struct flush_cmd *cmd, *next;
561 int ret;
562
563 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
564 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
565
566 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
567
568 ret = submit_flush_wait(sbi, cmd->ino);
569 atomic_inc(&fcc->issued_flush);
570
571 llist_for_each_entry_safe(cmd, next,
572 fcc->dispatch_list, llnode) {
573 cmd->ret = ret;
574 complete(&cmd->wait);
575 }
576 fcc->dispatch_list = NULL;
577 }
578
579 wait_event_interruptible(*q,
580 kthread_should_stop() || !llist_empty(&fcc->issue_list));
581 goto repeat;
582}
583
584int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
585{
586 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
587 struct flush_cmd cmd;
588 int ret;
589
590 if (test_opt(sbi, NOBARRIER))
591 return 0;
592
593 if (!test_opt(sbi, FLUSH_MERGE)) {
594 atomic_inc(&fcc->queued_flush);
595 ret = submit_flush_wait(sbi, ino);
596 atomic_dec(&fcc->queued_flush);
597 atomic_inc(&fcc->issued_flush);
598 return ret;
599 }
600
601 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
602 f2fs_is_multi_device(sbi)) {
603 ret = submit_flush_wait(sbi, ino);
604 atomic_dec(&fcc->queued_flush);
605
606 atomic_inc(&fcc->issued_flush);
607 return ret;
608 }
609
610 cmd.ino = ino;
611 init_completion(&cmd.wait);
612
613 llist_add(&cmd.llnode, &fcc->issue_list);
614
615 /*
616 * update issue_list before we wake up issue_flush thread, this
617 * smp_mb() pairs with another barrier in ___wait_event(), see
618 * more details in comments of waitqueue_active().
619 */
620 smp_mb();
621
622 if (waitqueue_active(&fcc->flush_wait_queue))
623 wake_up(&fcc->flush_wait_queue);
624
625 if (fcc->f2fs_issue_flush) {
626 wait_for_completion(&cmd.wait);
627 atomic_dec(&fcc->queued_flush);
628 } else {
629 struct llist_node *list;
630
631 list = llist_del_all(&fcc->issue_list);
632 if (!list) {
633 wait_for_completion(&cmd.wait);
634 atomic_dec(&fcc->queued_flush);
635 } else {
636 struct flush_cmd *tmp, *next;
637
638 ret = submit_flush_wait(sbi, ino);
639
640 llist_for_each_entry_safe(tmp, next, list, llnode) {
641 if (tmp == &cmd) {
642 cmd.ret = ret;
643 atomic_dec(&fcc->queued_flush);
644 continue;
645 }
646 tmp->ret = ret;
647 complete(&tmp->wait);
648 }
649 }
650 }
651
652 return cmd.ret;
653}
654
655int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
656{
657 dev_t dev = sbi->sb->s_bdev->bd_dev;
658 struct flush_cmd_control *fcc;
659
660 if (SM_I(sbi)->fcc_info) {
661 fcc = SM_I(sbi)->fcc_info;
662 if (fcc->f2fs_issue_flush)
663 return 0;
664 goto init_thread;
665 }
666
667 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
668 if (!fcc)
669 return -ENOMEM;
670 atomic_set(&fcc->issued_flush, 0);
671 atomic_set(&fcc->queued_flush, 0);
672 init_waitqueue_head(&fcc->flush_wait_queue);
673 init_llist_head(&fcc->issue_list);
674 SM_I(sbi)->fcc_info = fcc;
675 if (!test_opt(sbi, FLUSH_MERGE))
676 return 0;
677
678init_thread:
679 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
680 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
681 if (IS_ERR(fcc->f2fs_issue_flush)) {
682 int err = PTR_ERR(fcc->f2fs_issue_flush);
683
684 fcc->f2fs_issue_flush = NULL;
685 return err;
686 }
687
688 return 0;
689}
690
691void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
692{
693 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
694
695 if (fcc && fcc->f2fs_issue_flush) {
696 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
697
698 fcc->f2fs_issue_flush = NULL;
699 kthread_stop(flush_thread);
700 }
701 if (free) {
702 kfree(fcc);
703 SM_I(sbi)->fcc_info = NULL;
704 }
705}
706
707int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
708{
709 int ret = 0, i;
710
711 if (!f2fs_is_multi_device(sbi))
712 return 0;
713
714 if (test_opt(sbi, NOBARRIER))
715 return 0;
716
717 for (i = 1; i < sbi->s_ndevs; i++) {
718 int count = DEFAULT_RETRY_IO_COUNT;
719
720 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
721 continue;
722
723 do {
724 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
725 if (ret)
726 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
727 } while (ret && --count);
728
729 if (ret) {
730 f2fs_stop_checkpoint(sbi, false,
731 STOP_CP_REASON_FLUSH_FAIL);
732 break;
733 }
734
735 spin_lock(&sbi->dev_lock);
736 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
737 spin_unlock(&sbi->dev_lock);
738 }
739
740 return ret;
741}
742
743static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
744 enum dirty_type dirty_type)
745{
746 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
747
748 /* need not be added */
749 if (IS_CURSEG(sbi, segno))
750 return;
751
752 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753 dirty_i->nr_dirty[dirty_type]++;
754
755 if (dirty_type == DIRTY) {
756 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757 enum dirty_type t = sentry->type;
758
759 if (unlikely(t >= DIRTY)) {
760 f2fs_bug_on(sbi, 1);
761 return;
762 }
763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
764 dirty_i->nr_dirty[t]++;
765
766 if (__is_large_section(sbi)) {
767 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
768 block_t valid_blocks =
769 get_valid_blocks(sbi, segno, true);
770
771 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
772 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
773
774 if (!IS_CURSEC(sbi, secno))
775 set_bit(secno, dirty_i->dirty_secmap);
776 }
777 }
778}
779
780static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 enum dirty_type dirty_type)
782{
783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784 block_t valid_blocks;
785
786 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 dirty_i->nr_dirty[dirty_type]--;
788
789 if (dirty_type == DIRTY) {
790 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 enum dirty_type t = sentry->type;
792
793 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
794 dirty_i->nr_dirty[t]--;
795
796 valid_blocks = get_valid_blocks(sbi, segno, true);
797 if (valid_blocks == 0) {
798 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
799 dirty_i->victim_secmap);
800#ifdef CONFIG_F2FS_CHECK_FS
801 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
802#endif
803 }
804 if (__is_large_section(sbi)) {
805 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
806
807 if (!valid_blocks ||
808 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
809 clear_bit(secno, dirty_i->dirty_secmap);
810 return;
811 }
812
813 if (!IS_CURSEC(sbi, secno))
814 set_bit(secno, dirty_i->dirty_secmap);
815 }
816 }
817}
818
819/*
820 * Should not occur error such as -ENOMEM.
821 * Adding dirty entry into seglist is not critical operation.
822 * If a given segment is one of current working segments, it won't be added.
823 */
824static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
825{
826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827 unsigned short valid_blocks, ckpt_valid_blocks;
828 unsigned int usable_blocks;
829
830 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
831 return;
832
833 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
834 mutex_lock(&dirty_i->seglist_lock);
835
836 valid_blocks = get_valid_blocks(sbi, segno, false);
837 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
838
839 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840 ckpt_valid_blocks == usable_blocks)) {
841 __locate_dirty_segment(sbi, segno, PRE);
842 __remove_dirty_segment(sbi, segno, DIRTY);
843 } else if (valid_blocks < usable_blocks) {
844 __locate_dirty_segment(sbi, segno, DIRTY);
845 } else {
846 /* Recovery routine with SSR needs this */
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 }
849
850 mutex_unlock(&dirty_i->seglist_lock);
851}
852
853/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855{
856 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 unsigned int segno;
858
859 mutex_lock(&dirty_i->seglist_lock);
860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 if (get_valid_blocks(sbi, segno, false))
862 continue;
863 if (IS_CURSEG(sbi, segno))
864 continue;
865 __locate_dirty_segment(sbi, segno, PRE);
866 __remove_dirty_segment(sbi, segno, DIRTY);
867 }
868 mutex_unlock(&dirty_i->seglist_lock);
869}
870
871block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
872{
873 int ovp_hole_segs =
874 (overprovision_segments(sbi) - reserved_segments(sbi));
875 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 block_t holes[2] = {0, 0}; /* DATA and NODE */
878 block_t unusable;
879 struct seg_entry *se;
880 unsigned int segno;
881
882 mutex_lock(&dirty_i->seglist_lock);
883 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
884 se = get_seg_entry(sbi, segno);
885 if (IS_NODESEG(se->type))
886 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
887 se->valid_blocks;
888 else
889 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
890 se->valid_blocks;
891 }
892 mutex_unlock(&dirty_i->seglist_lock);
893
894 unusable = max(holes[DATA], holes[NODE]);
895 if (unusable > ovp_holes)
896 return unusable - ovp_holes;
897 return 0;
898}
899
900int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
901{
902 int ovp_hole_segs =
903 (overprovision_segments(sbi) - reserved_segments(sbi));
904 if (unusable > F2FS_OPTION(sbi).unusable_cap)
905 return -EAGAIN;
906 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
907 dirty_segments(sbi) > ovp_hole_segs)
908 return -EAGAIN;
909 return 0;
910}
911
912/* This is only used by SBI_CP_DISABLED */
913static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
914{
915 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
916 unsigned int segno = 0;
917
918 mutex_lock(&dirty_i->seglist_lock);
919 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
920 if (get_valid_blocks(sbi, segno, false))
921 continue;
922 if (get_ckpt_valid_blocks(sbi, segno, false))
923 continue;
924 mutex_unlock(&dirty_i->seglist_lock);
925 return segno;
926 }
927 mutex_unlock(&dirty_i->seglist_lock);
928 return NULL_SEGNO;
929}
930
931static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
932 struct block_device *bdev, block_t lstart,
933 block_t start, block_t len)
934{
935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
936 struct list_head *pend_list;
937 struct discard_cmd *dc;
938
939 f2fs_bug_on(sbi, !len);
940
941 pend_list = &dcc->pend_list[plist_idx(len)];
942
943 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
944 INIT_LIST_HEAD(&dc->list);
945 dc->bdev = bdev;
946 dc->di.lstart = lstart;
947 dc->di.start = start;
948 dc->di.len = len;
949 dc->ref = 0;
950 dc->state = D_PREP;
951 dc->queued = 0;
952 dc->error = 0;
953 init_completion(&dc->wait);
954 list_add_tail(&dc->list, pend_list);
955 spin_lock_init(&dc->lock);
956 dc->bio_ref = 0;
957 atomic_inc(&dcc->discard_cmd_cnt);
958 dcc->undiscard_blks += len;
959
960 return dc;
961}
962
963static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
964{
965#ifdef CONFIG_F2FS_CHECK_FS
966 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
967 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
968 struct discard_cmd *cur_dc, *next_dc;
969
970 while (cur) {
971 next = rb_next(cur);
972 if (!next)
973 return true;
974
975 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
976 next_dc = rb_entry(next, struct discard_cmd, rb_node);
977
978 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
979 f2fs_info(sbi, "broken discard_rbtree, "
980 "cur(%u, %u) next(%u, %u)",
981 cur_dc->di.lstart, cur_dc->di.len,
982 next_dc->di.lstart, next_dc->di.len);
983 return false;
984 }
985 cur = next;
986 }
987#endif
988 return true;
989}
990
991static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
992 block_t blkaddr)
993{
994 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
995 struct rb_node *node = dcc->root.rb_root.rb_node;
996 struct discard_cmd *dc;
997
998 while (node) {
999 dc = rb_entry(node, struct discard_cmd, rb_node);
1000
1001 if (blkaddr < dc->di.lstart)
1002 node = node->rb_left;
1003 else if (blkaddr >= dc->di.lstart + dc->di.len)
1004 node = node->rb_right;
1005 else
1006 return dc;
1007 }
1008 return NULL;
1009}
1010
1011static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012 block_t blkaddr,
1013 struct discard_cmd **prev_entry,
1014 struct discard_cmd **next_entry,
1015 struct rb_node ***insert_p,
1016 struct rb_node **insert_parent)
1017{
1018 struct rb_node **pnode = &root->rb_root.rb_node;
1019 struct rb_node *parent = NULL, *tmp_node;
1020 struct discard_cmd *dc;
1021
1022 *insert_p = NULL;
1023 *insert_parent = NULL;
1024 *prev_entry = NULL;
1025 *next_entry = NULL;
1026
1027 if (RB_EMPTY_ROOT(&root->rb_root))
1028 return NULL;
1029
1030 while (*pnode) {
1031 parent = *pnode;
1032 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033
1034 if (blkaddr < dc->di.lstart)
1035 pnode = &(*pnode)->rb_left;
1036 else if (blkaddr >= dc->di.lstart + dc->di.len)
1037 pnode = &(*pnode)->rb_right;
1038 else
1039 goto lookup_neighbors;
1040 }
1041
1042 *insert_p = pnode;
1043 *insert_parent = parent;
1044
1045 dc = rb_entry(parent, struct discard_cmd, rb_node);
1046 tmp_node = parent;
1047 if (parent && blkaddr > dc->di.lstart)
1048 tmp_node = rb_next(parent);
1049 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050
1051 tmp_node = parent;
1052 if (parent && blkaddr < dc->di.lstart)
1053 tmp_node = rb_prev(parent);
1054 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055 return NULL;
1056
1057lookup_neighbors:
1058 /* lookup prev node for merging backward later */
1059 tmp_node = rb_prev(&dc->rb_node);
1060 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061
1062 /* lookup next node for merging frontward later */
1063 tmp_node = rb_next(&dc->rb_node);
1064 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 return dc;
1066}
1067
1068static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069 struct discard_cmd *dc)
1070{
1071 if (dc->state == D_DONE)
1072 atomic_sub(dc->queued, &dcc->queued_discard);
1073
1074 list_del(&dc->list);
1075 rb_erase_cached(&dc->rb_node, &dcc->root);
1076 dcc->undiscard_blks -= dc->di.len;
1077
1078 kmem_cache_free(discard_cmd_slab, dc);
1079
1080 atomic_dec(&dcc->discard_cmd_cnt);
1081}
1082
1083static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084 struct discard_cmd *dc)
1085{
1086 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087 unsigned long flags;
1088
1089 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090
1091 spin_lock_irqsave(&dc->lock, flags);
1092 if (dc->bio_ref) {
1093 spin_unlock_irqrestore(&dc->lock, flags);
1094 return;
1095 }
1096 spin_unlock_irqrestore(&dc->lock, flags);
1097
1098 f2fs_bug_on(sbi, dc->ref);
1099
1100 if (dc->error == -EOPNOTSUPP)
1101 dc->error = 0;
1102
1103 if (dc->error)
1104 printk_ratelimited(
1105 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106 KERN_INFO, sbi->sb->s_id,
1107 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108 __detach_discard_cmd(dcc, dc);
1109}
1110
1111static void f2fs_submit_discard_endio(struct bio *bio)
1112{
1113 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&dc->lock, flags);
1117 if (!dc->error)
1118 dc->error = blk_status_to_errno(bio->bi_status);
1119 dc->bio_ref--;
1120 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121 dc->state = D_DONE;
1122 complete_all(&dc->wait);
1123 }
1124 spin_unlock_irqrestore(&dc->lock, flags);
1125 bio_put(bio);
1126}
1127
1128static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129 block_t start, block_t end)
1130{
1131#ifdef CONFIG_F2FS_CHECK_FS
1132 struct seg_entry *sentry;
1133 unsigned int segno;
1134 block_t blk = start;
1135 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136 unsigned long *map;
1137
1138 while (blk < end) {
1139 segno = GET_SEGNO(sbi, blk);
1140 sentry = get_seg_entry(sbi, segno);
1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142
1143 if (end < START_BLOCK(sbi, segno + 1))
1144 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145 else
1146 size = max_blocks;
1147 map = (unsigned long *)(sentry->cur_valid_map);
1148 offset = __find_rev_next_bit(map, size, offset);
1149 f2fs_bug_on(sbi, offset != size);
1150 blk = START_BLOCK(sbi, segno + 1);
1151 }
1152#endif
1153}
1154
1155static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156 struct discard_policy *dpolicy,
1157 int discard_type, unsigned int granularity)
1158{
1159 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160
1161 /* common policy */
1162 dpolicy->type = discard_type;
1163 dpolicy->sync = true;
1164 dpolicy->ordered = false;
1165 dpolicy->granularity = granularity;
1166
1167 dpolicy->max_requests = dcc->max_discard_request;
1168 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169 dpolicy->timeout = false;
1170
1171 if (discard_type == DPOLICY_BG) {
1172 dpolicy->min_interval = dcc->min_discard_issue_time;
1173 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174 dpolicy->max_interval = dcc->max_discard_issue_time;
1175 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1176 dpolicy->io_aware = true;
1177 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1178 dpolicy->io_aware = false;
1179 dpolicy->sync = false;
1180 dpolicy->ordered = true;
1181 if (utilization(sbi) > dcc->discard_urgent_util) {
1182 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1183 if (atomic_read(&dcc->discard_cmd_cnt))
1184 dpolicy->max_interval =
1185 dcc->min_discard_issue_time;
1186 }
1187 } else if (discard_type == DPOLICY_FORCE) {
1188 dpolicy->min_interval = dcc->min_discard_issue_time;
1189 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190 dpolicy->max_interval = dcc->max_discard_issue_time;
1191 dpolicy->io_aware = false;
1192 } else if (discard_type == DPOLICY_FSTRIM) {
1193 dpolicy->io_aware = false;
1194 } else if (discard_type == DPOLICY_UMOUNT) {
1195 dpolicy->io_aware = false;
1196 /* we need to issue all to keep CP_TRIMMED_FLAG */
1197 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1198 dpolicy->timeout = true;
1199 }
1200}
1201
1202static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203 struct block_device *bdev, block_t lstart,
1204 block_t start, block_t len);
1205
1206#ifdef CONFIG_BLK_DEV_ZONED
1207static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1208 struct discard_cmd *dc, blk_opf_t flag,
1209 struct list_head *wait_list,
1210 unsigned int *issued)
1211{
1212 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213 struct block_device *bdev = dc->bdev;
1214 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1215 unsigned long flags;
1216
1217 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1218
1219 spin_lock_irqsave(&dc->lock, flags);
1220 dc->state = D_SUBMIT;
1221 dc->bio_ref++;
1222 spin_unlock_irqrestore(&dc->lock, flags);
1223
1224 if (issued)
1225 (*issued)++;
1226
1227 atomic_inc(&dcc->queued_discard);
1228 dc->queued++;
1229 list_move_tail(&dc->list, wait_list);
1230
1231 /* sanity check on discard range */
1232 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1233
1234 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1235 bio->bi_private = dc;
1236 bio->bi_end_io = f2fs_submit_discard_endio;
1237 submit_bio(bio);
1238
1239 atomic_inc(&dcc->issued_discard);
1240 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1241}
1242#endif
1243
1244/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1245static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1246 struct discard_policy *dpolicy,
1247 struct discard_cmd *dc, int *issued)
1248{
1249 struct block_device *bdev = dc->bdev;
1250 unsigned int max_discard_blocks =
1251 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1252 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1254 &(dcc->fstrim_list) : &(dcc->wait_list);
1255 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1256 block_t lstart, start, len, total_len;
1257 int err = 0;
1258
1259 if (dc->state != D_PREP)
1260 return 0;
1261
1262 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1263 return 0;
1264
1265#ifdef CONFIG_BLK_DEV_ZONED
1266 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1267 int devi = f2fs_bdev_index(sbi, bdev);
1268
1269 if (devi < 0)
1270 return -EINVAL;
1271
1272 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1273 __submit_zone_reset_cmd(sbi, dc, flag,
1274 wait_list, issued);
1275 return 0;
1276 }
1277 }
1278#endif
1279
1280 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1281
1282 lstart = dc->di.lstart;
1283 start = dc->di.start;
1284 len = dc->di.len;
1285 total_len = len;
1286
1287 dc->di.len = 0;
1288
1289 while (total_len && *issued < dpolicy->max_requests && !err) {
1290 struct bio *bio = NULL;
1291 unsigned long flags;
1292 bool last = true;
1293
1294 if (len > max_discard_blocks) {
1295 len = max_discard_blocks;
1296 last = false;
1297 }
1298
1299 (*issued)++;
1300 if (*issued == dpolicy->max_requests)
1301 last = true;
1302
1303 dc->di.len += len;
1304
1305 if (time_to_inject(sbi, FAULT_DISCARD)) {
1306 err = -EIO;
1307 } else {
1308 err = __blkdev_issue_discard(bdev,
1309 SECTOR_FROM_BLOCK(start),
1310 SECTOR_FROM_BLOCK(len),
1311 GFP_NOFS, &bio);
1312 }
1313 if (err) {
1314 spin_lock_irqsave(&dc->lock, flags);
1315 if (dc->state == D_PARTIAL)
1316 dc->state = D_SUBMIT;
1317 spin_unlock_irqrestore(&dc->lock, flags);
1318
1319 break;
1320 }
1321
1322 f2fs_bug_on(sbi, !bio);
1323
1324 /*
1325 * should keep before submission to avoid D_DONE
1326 * right away
1327 */
1328 spin_lock_irqsave(&dc->lock, flags);
1329 if (last)
1330 dc->state = D_SUBMIT;
1331 else
1332 dc->state = D_PARTIAL;
1333 dc->bio_ref++;
1334 spin_unlock_irqrestore(&dc->lock, flags);
1335
1336 atomic_inc(&dcc->queued_discard);
1337 dc->queued++;
1338 list_move_tail(&dc->list, wait_list);
1339
1340 /* sanity check on discard range */
1341 __check_sit_bitmap(sbi, lstart, lstart + len);
1342
1343 bio->bi_private = dc;
1344 bio->bi_end_io = f2fs_submit_discard_endio;
1345 bio->bi_opf |= flag;
1346 submit_bio(bio);
1347
1348 atomic_inc(&dcc->issued_discard);
1349
1350 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1351
1352 lstart += len;
1353 start += len;
1354 total_len -= len;
1355 len = total_len;
1356 }
1357
1358 if (!err && len) {
1359 dcc->undiscard_blks -= len;
1360 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1361 }
1362 return err;
1363}
1364
1365static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1366 struct block_device *bdev, block_t lstart,
1367 block_t start, block_t len)
1368{
1369 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 struct rb_node **p = &dcc->root.rb_root.rb_node;
1371 struct rb_node *parent = NULL;
1372 struct discard_cmd *dc;
1373 bool leftmost = true;
1374
1375 /* look up rb tree to find parent node */
1376 while (*p) {
1377 parent = *p;
1378 dc = rb_entry(parent, struct discard_cmd, rb_node);
1379
1380 if (lstart < dc->di.lstart) {
1381 p = &(*p)->rb_left;
1382 } else if (lstart >= dc->di.lstart + dc->di.len) {
1383 p = &(*p)->rb_right;
1384 leftmost = false;
1385 } else {
1386 /* Let's skip to add, if exists */
1387 return;
1388 }
1389 }
1390
1391 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1392
1393 rb_link_node(&dc->rb_node, parent, p);
1394 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1395}
1396
1397static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1398 struct discard_cmd *dc)
1399{
1400 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1401}
1402
1403static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1404 struct discard_cmd *dc, block_t blkaddr)
1405{
1406 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407 struct discard_info di = dc->di;
1408 bool modified = false;
1409
1410 if (dc->state == D_DONE || dc->di.len == 1) {
1411 __remove_discard_cmd(sbi, dc);
1412 return;
1413 }
1414
1415 dcc->undiscard_blks -= di.len;
1416
1417 if (blkaddr > di.lstart) {
1418 dc->di.len = blkaddr - dc->di.lstart;
1419 dcc->undiscard_blks += dc->di.len;
1420 __relocate_discard_cmd(dcc, dc);
1421 modified = true;
1422 }
1423
1424 if (blkaddr < di.lstart + di.len - 1) {
1425 if (modified) {
1426 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1427 di.start + blkaddr + 1 - di.lstart,
1428 di.lstart + di.len - 1 - blkaddr);
1429 } else {
1430 dc->di.lstart++;
1431 dc->di.len--;
1432 dc->di.start++;
1433 dcc->undiscard_blks += dc->di.len;
1434 __relocate_discard_cmd(dcc, dc);
1435 }
1436 }
1437}
1438
1439static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1440 struct block_device *bdev, block_t lstart,
1441 block_t start, block_t len)
1442{
1443 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1445 struct discard_cmd *dc;
1446 struct discard_info di = {0};
1447 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1448 unsigned int max_discard_blocks =
1449 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1450 block_t end = lstart + len;
1451
1452 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1453 &prev_dc, &next_dc, &insert_p, &insert_parent);
1454 if (dc)
1455 prev_dc = dc;
1456
1457 if (!prev_dc) {
1458 di.lstart = lstart;
1459 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1460 di.len = min(di.len, len);
1461 di.start = start;
1462 }
1463
1464 while (1) {
1465 struct rb_node *node;
1466 bool merged = false;
1467 struct discard_cmd *tdc = NULL;
1468
1469 if (prev_dc) {
1470 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1471 if (di.lstart < lstart)
1472 di.lstart = lstart;
1473 if (di.lstart >= end)
1474 break;
1475
1476 if (!next_dc || next_dc->di.lstart > end)
1477 di.len = end - di.lstart;
1478 else
1479 di.len = next_dc->di.lstart - di.lstart;
1480 di.start = start + di.lstart - lstart;
1481 }
1482
1483 if (!di.len)
1484 goto next;
1485
1486 if (prev_dc && prev_dc->state == D_PREP &&
1487 prev_dc->bdev == bdev &&
1488 __is_discard_back_mergeable(&di, &prev_dc->di,
1489 max_discard_blocks)) {
1490 prev_dc->di.len += di.len;
1491 dcc->undiscard_blks += di.len;
1492 __relocate_discard_cmd(dcc, prev_dc);
1493 di = prev_dc->di;
1494 tdc = prev_dc;
1495 merged = true;
1496 }
1497
1498 if (next_dc && next_dc->state == D_PREP &&
1499 next_dc->bdev == bdev &&
1500 __is_discard_front_mergeable(&di, &next_dc->di,
1501 max_discard_blocks)) {
1502 next_dc->di.lstart = di.lstart;
1503 next_dc->di.len += di.len;
1504 next_dc->di.start = di.start;
1505 dcc->undiscard_blks += di.len;
1506 __relocate_discard_cmd(dcc, next_dc);
1507 if (tdc)
1508 __remove_discard_cmd(sbi, tdc);
1509 merged = true;
1510 }
1511
1512 if (!merged)
1513 __insert_discard_cmd(sbi, bdev,
1514 di.lstart, di.start, di.len);
1515 next:
1516 prev_dc = next_dc;
1517 if (!prev_dc)
1518 break;
1519
1520 node = rb_next(&prev_dc->rb_node);
1521 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1522 }
1523}
1524
1525#ifdef CONFIG_BLK_DEV_ZONED
1526static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1527 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1528 block_t blklen)
1529{
1530 trace_f2fs_queue_reset_zone(bdev, blkstart);
1531
1532 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1533 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1534 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1535}
1536#endif
1537
1538static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1539 struct block_device *bdev, block_t blkstart, block_t blklen)
1540{
1541 block_t lblkstart = blkstart;
1542
1543 if (!f2fs_bdev_support_discard(bdev))
1544 return;
1545
1546 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1547
1548 if (f2fs_is_multi_device(sbi)) {
1549 int devi = f2fs_target_device_index(sbi, blkstart);
1550
1551 blkstart -= FDEV(devi).start_blk;
1552 }
1553 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1554 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1555 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1556}
1557
1558static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1559 struct discard_policy *dpolicy, int *issued)
1560{
1561 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1563 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1564 struct discard_cmd *dc;
1565 struct blk_plug plug;
1566 bool io_interrupted = false;
1567
1568 mutex_lock(&dcc->cmd_lock);
1569 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1570 &prev_dc, &next_dc, &insert_p, &insert_parent);
1571 if (!dc)
1572 dc = next_dc;
1573
1574 blk_start_plug(&plug);
1575
1576 while (dc) {
1577 struct rb_node *node;
1578 int err = 0;
1579
1580 if (dc->state != D_PREP)
1581 goto next;
1582
1583 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1584 io_interrupted = true;
1585 break;
1586 }
1587
1588 dcc->next_pos = dc->di.lstart + dc->di.len;
1589 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1590
1591 if (*issued >= dpolicy->max_requests)
1592 break;
1593next:
1594 node = rb_next(&dc->rb_node);
1595 if (err)
1596 __remove_discard_cmd(sbi, dc);
1597 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1598 }
1599
1600 blk_finish_plug(&plug);
1601
1602 if (!dc)
1603 dcc->next_pos = 0;
1604
1605 mutex_unlock(&dcc->cmd_lock);
1606
1607 if (!(*issued) && io_interrupted)
1608 *issued = -1;
1609}
1610static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1611 struct discard_policy *dpolicy);
1612
1613static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1614 struct discard_policy *dpolicy)
1615{
1616 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617 struct list_head *pend_list;
1618 struct discard_cmd *dc, *tmp;
1619 struct blk_plug plug;
1620 int i, issued;
1621 bool io_interrupted = false;
1622
1623 if (dpolicy->timeout)
1624 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1625
1626retry:
1627 issued = 0;
1628 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1629 if (dpolicy->timeout &&
1630 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1631 break;
1632
1633 if (i + 1 < dpolicy->granularity)
1634 break;
1635
1636 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1637 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1638 return issued;
1639 }
1640
1641 pend_list = &dcc->pend_list[i];
1642
1643 mutex_lock(&dcc->cmd_lock);
1644 if (list_empty(pend_list))
1645 goto next;
1646 if (unlikely(dcc->rbtree_check))
1647 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1648 blk_start_plug(&plug);
1649 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1650 f2fs_bug_on(sbi, dc->state != D_PREP);
1651
1652 if (dpolicy->timeout &&
1653 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654 break;
1655
1656 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1657 !is_idle(sbi, DISCARD_TIME)) {
1658 io_interrupted = true;
1659 break;
1660 }
1661
1662 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1663
1664 if (issued >= dpolicy->max_requests)
1665 break;
1666 }
1667 blk_finish_plug(&plug);
1668next:
1669 mutex_unlock(&dcc->cmd_lock);
1670
1671 if (issued >= dpolicy->max_requests || io_interrupted)
1672 break;
1673 }
1674
1675 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1676 __wait_all_discard_cmd(sbi, dpolicy);
1677 goto retry;
1678 }
1679
1680 if (!issued && io_interrupted)
1681 issued = -1;
1682
1683 return issued;
1684}
1685
1686static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1687{
1688 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1689 struct list_head *pend_list;
1690 struct discard_cmd *dc, *tmp;
1691 int i;
1692 bool dropped = false;
1693
1694 mutex_lock(&dcc->cmd_lock);
1695 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1696 pend_list = &dcc->pend_list[i];
1697 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1698 f2fs_bug_on(sbi, dc->state != D_PREP);
1699 __remove_discard_cmd(sbi, dc);
1700 dropped = true;
1701 }
1702 }
1703 mutex_unlock(&dcc->cmd_lock);
1704
1705 return dropped;
1706}
1707
1708void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1709{
1710 __drop_discard_cmd(sbi);
1711}
1712
1713static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1714 struct discard_cmd *dc)
1715{
1716 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1717 unsigned int len = 0;
1718
1719 wait_for_completion_io(&dc->wait);
1720 mutex_lock(&dcc->cmd_lock);
1721 f2fs_bug_on(sbi, dc->state != D_DONE);
1722 dc->ref--;
1723 if (!dc->ref) {
1724 if (!dc->error)
1725 len = dc->di.len;
1726 __remove_discard_cmd(sbi, dc);
1727 }
1728 mutex_unlock(&dcc->cmd_lock);
1729
1730 return len;
1731}
1732
1733static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1734 struct discard_policy *dpolicy,
1735 block_t start, block_t end)
1736{
1737 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1738 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1739 &(dcc->fstrim_list) : &(dcc->wait_list);
1740 struct discard_cmd *dc = NULL, *iter, *tmp;
1741 unsigned int trimmed = 0;
1742
1743next:
1744 dc = NULL;
1745
1746 mutex_lock(&dcc->cmd_lock);
1747 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1748 if (iter->di.lstart + iter->di.len <= start ||
1749 end <= iter->di.lstart)
1750 continue;
1751 if (iter->di.len < dpolicy->granularity)
1752 continue;
1753 if (iter->state == D_DONE && !iter->ref) {
1754 wait_for_completion_io(&iter->wait);
1755 if (!iter->error)
1756 trimmed += iter->di.len;
1757 __remove_discard_cmd(sbi, iter);
1758 } else {
1759 iter->ref++;
1760 dc = iter;
1761 break;
1762 }
1763 }
1764 mutex_unlock(&dcc->cmd_lock);
1765
1766 if (dc) {
1767 trimmed += __wait_one_discard_bio(sbi, dc);
1768 goto next;
1769 }
1770
1771 return trimmed;
1772}
1773
1774static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1775 struct discard_policy *dpolicy)
1776{
1777 struct discard_policy dp;
1778 unsigned int discard_blks;
1779
1780 if (dpolicy)
1781 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1782
1783 /* wait all */
1784 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1785 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1786 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1787 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1788
1789 return discard_blks;
1790}
1791
1792/* This should be covered by global mutex, &sit_i->sentry_lock */
1793static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1794{
1795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1796 struct discard_cmd *dc;
1797 bool need_wait = false;
1798
1799 mutex_lock(&dcc->cmd_lock);
1800 dc = __lookup_discard_cmd(sbi, blkaddr);
1801#ifdef CONFIG_BLK_DEV_ZONED
1802 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1803 int devi = f2fs_bdev_index(sbi, dc->bdev);
1804
1805 if (devi < 0) {
1806 mutex_unlock(&dcc->cmd_lock);
1807 return;
1808 }
1809
1810 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1811 /* force submit zone reset */
1812 if (dc->state == D_PREP)
1813 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1814 &dcc->wait_list, NULL);
1815 dc->ref++;
1816 mutex_unlock(&dcc->cmd_lock);
1817 /* wait zone reset */
1818 __wait_one_discard_bio(sbi, dc);
1819 return;
1820 }
1821 }
1822#endif
1823 if (dc) {
1824 if (dc->state == D_PREP) {
1825 __punch_discard_cmd(sbi, dc, blkaddr);
1826 } else {
1827 dc->ref++;
1828 need_wait = true;
1829 }
1830 }
1831 mutex_unlock(&dcc->cmd_lock);
1832
1833 if (need_wait)
1834 __wait_one_discard_bio(sbi, dc);
1835}
1836
1837void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1838{
1839 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1840
1841 if (dcc && dcc->f2fs_issue_discard) {
1842 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1843
1844 dcc->f2fs_issue_discard = NULL;
1845 kthread_stop(discard_thread);
1846 }
1847}
1848
1849/**
1850 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1851 * @sbi: the f2fs_sb_info data for discard cmd to issue
1852 *
1853 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1854 *
1855 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1856 */
1857bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1858{
1859 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1860 struct discard_policy dpolicy;
1861 bool dropped;
1862
1863 if (!atomic_read(&dcc->discard_cmd_cnt))
1864 return true;
1865
1866 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1867 dcc->discard_granularity);
1868 __issue_discard_cmd(sbi, &dpolicy);
1869 dropped = __drop_discard_cmd(sbi);
1870
1871 /* just to make sure there is no pending discard commands */
1872 __wait_all_discard_cmd(sbi, NULL);
1873
1874 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1875 return !dropped;
1876}
1877
1878static int issue_discard_thread(void *data)
1879{
1880 struct f2fs_sb_info *sbi = data;
1881 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1882 wait_queue_head_t *q = &dcc->discard_wait_queue;
1883 struct discard_policy dpolicy;
1884 unsigned int wait_ms = dcc->min_discard_issue_time;
1885 int issued;
1886
1887 set_freezable();
1888
1889 do {
1890 wait_event_freezable_timeout(*q,
1891 kthread_should_stop() || dcc->discard_wake,
1892 msecs_to_jiffies(wait_ms));
1893
1894 if (sbi->gc_mode == GC_URGENT_HIGH ||
1895 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1896 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1897 MIN_DISCARD_GRANULARITY);
1898 else
1899 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1900 dcc->discard_granularity);
1901
1902 if (dcc->discard_wake)
1903 dcc->discard_wake = false;
1904
1905 /* clean up pending candidates before going to sleep */
1906 if (atomic_read(&dcc->queued_discard))
1907 __wait_all_discard_cmd(sbi, NULL);
1908
1909 if (f2fs_readonly(sbi->sb))
1910 continue;
1911 if (kthread_should_stop())
1912 return 0;
1913 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914 !atomic_read(&dcc->discard_cmd_cnt)) {
1915 wait_ms = dpolicy.max_interval;
1916 continue;
1917 }
1918
1919 sb_start_intwrite(sbi->sb);
1920
1921 issued = __issue_discard_cmd(sbi, &dpolicy);
1922 if (issued > 0) {
1923 __wait_all_discard_cmd(sbi, &dpolicy);
1924 wait_ms = dpolicy.min_interval;
1925 } else if (issued == -1) {
1926 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927 if (!wait_ms)
1928 wait_ms = dpolicy.mid_interval;
1929 } else {
1930 wait_ms = dpolicy.max_interval;
1931 }
1932 if (!atomic_read(&dcc->discard_cmd_cnt))
1933 wait_ms = dpolicy.max_interval;
1934
1935 sb_end_intwrite(sbi->sb);
1936
1937 } while (!kthread_should_stop());
1938 return 0;
1939}
1940
1941#ifdef CONFIG_BLK_DEV_ZONED
1942static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943 struct block_device *bdev, block_t blkstart, block_t blklen)
1944{
1945 sector_t sector, nr_sects;
1946 block_t lblkstart = blkstart;
1947 int devi = 0;
1948 u64 remainder = 0;
1949
1950 if (f2fs_is_multi_device(sbi)) {
1951 devi = f2fs_target_device_index(sbi, blkstart);
1952 if (blkstart < FDEV(devi).start_blk ||
1953 blkstart > FDEV(devi).end_blk) {
1954 f2fs_err(sbi, "Invalid block %x", blkstart);
1955 return -EIO;
1956 }
1957 blkstart -= FDEV(devi).start_blk;
1958 }
1959
1960 /* For sequential zones, reset the zone write pointer */
1961 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962 sector = SECTOR_FROM_BLOCK(blkstart);
1963 nr_sects = SECTOR_FROM_BLOCK(blklen);
1964 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965
1966 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1967 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969 blkstart, blklen);
1970 return -EIO;
1971 }
1972
1973 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974 trace_f2fs_issue_reset_zone(bdev, blkstart);
1975 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1976 sector, nr_sects, GFP_NOFS);
1977 }
1978
1979 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1980 return 0;
1981 }
1982
1983 /* For conventional zones, use regular discard if supported */
1984 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1985 return 0;
1986}
1987#endif
1988
1989static int __issue_discard_async(struct f2fs_sb_info *sbi,
1990 struct block_device *bdev, block_t blkstart, block_t blklen)
1991{
1992#ifdef CONFIG_BLK_DEV_ZONED
1993 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1994 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1995#endif
1996 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1997 return 0;
1998}
1999
2000static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2001 block_t blkstart, block_t blklen)
2002{
2003 sector_t start = blkstart, len = 0;
2004 struct block_device *bdev;
2005 struct seg_entry *se;
2006 unsigned int offset;
2007 block_t i;
2008 int err = 0;
2009
2010 bdev = f2fs_target_device(sbi, blkstart, NULL);
2011
2012 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2013 if (i != start) {
2014 struct block_device *bdev2 =
2015 f2fs_target_device(sbi, i, NULL);
2016
2017 if (bdev2 != bdev) {
2018 err = __issue_discard_async(sbi, bdev,
2019 start, len);
2020 if (err)
2021 return err;
2022 bdev = bdev2;
2023 start = i;
2024 len = 0;
2025 }
2026 }
2027
2028 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2029 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2030
2031 if (f2fs_block_unit_discard(sbi) &&
2032 !f2fs_test_and_set_bit(offset, se->discard_map))
2033 sbi->discard_blks--;
2034 }
2035
2036 if (len)
2037 err = __issue_discard_async(sbi, bdev, start, len);
2038 return err;
2039}
2040
2041static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2042 bool check_only)
2043{
2044 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2045 int max_blocks = sbi->blocks_per_seg;
2046 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2047 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2048 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2049 unsigned long *discard_map = (unsigned long *)se->discard_map;
2050 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2051 unsigned int start = 0, end = -1;
2052 bool force = (cpc->reason & CP_DISCARD);
2053 struct discard_entry *de = NULL;
2054 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2055 int i;
2056
2057 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2058 !f2fs_block_unit_discard(sbi))
2059 return false;
2060
2061 if (!force) {
2062 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2063 SM_I(sbi)->dcc_info->nr_discards >=
2064 SM_I(sbi)->dcc_info->max_discards)
2065 return false;
2066 }
2067
2068 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2069 for (i = 0; i < entries; i++)
2070 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2071 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2072
2073 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2074 SM_I(sbi)->dcc_info->max_discards) {
2075 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2076 if (start >= max_blocks)
2077 break;
2078
2079 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2080 if (force && start && end != max_blocks
2081 && (end - start) < cpc->trim_minlen)
2082 continue;
2083
2084 if (check_only)
2085 return true;
2086
2087 if (!de) {
2088 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2089 GFP_F2FS_ZERO, true, NULL);
2090 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2091 list_add_tail(&de->list, head);
2092 }
2093
2094 for (i = start; i < end; i++)
2095 __set_bit_le(i, (void *)de->discard_map);
2096
2097 SM_I(sbi)->dcc_info->nr_discards += end - start;
2098 }
2099 return false;
2100}
2101
2102static void release_discard_addr(struct discard_entry *entry)
2103{
2104 list_del(&entry->list);
2105 kmem_cache_free(discard_entry_slab, entry);
2106}
2107
2108void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2109{
2110 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2111 struct discard_entry *entry, *this;
2112
2113 /* drop caches */
2114 list_for_each_entry_safe(entry, this, head, list)
2115 release_discard_addr(entry);
2116}
2117
2118/*
2119 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2120 */
2121static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2122{
2123 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2124 unsigned int segno;
2125
2126 mutex_lock(&dirty_i->seglist_lock);
2127 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2128 __set_test_and_free(sbi, segno, false);
2129 mutex_unlock(&dirty_i->seglist_lock);
2130}
2131
2132void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2133 struct cp_control *cpc)
2134{
2135 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2136 struct list_head *head = &dcc->entry_list;
2137 struct discard_entry *entry, *this;
2138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2140 unsigned int start = 0, end = -1;
2141 unsigned int secno, start_segno;
2142 bool force = (cpc->reason & CP_DISCARD);
2143 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2144 DISCARD_UNIT_SECTION;
2145
2146 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2147 section_alignment = true;
2148
2149 mutex_lock(&dirty_i->seglist_lock);
2150
2151 while (1) {
2152 int i;
2153
2154 if (section_alignment && end != -1)
2155 end--;
2156 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2157 if (start >= MAIN_SEGS(sbi))
2158 break;
2159 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2160 start + 1);
2161
2162 if (section_alignment) {
2163 start = rounddown(start, sbi->segs_per_sec);
2164 end = roundup(end, sbi->segs_per_sec);
2165 }
2166
2167 for (i = start; i < end; i++) {
2168 if (test_and_clear_bit(i, prefree_map))
2169 dirty_i->nr_dirty[PRE]--;
2170 }
2171
2172 if (!f2fs_realtime_discard_enable(sbi))
2173 continue;
2174
2175 if (force && start >= cpc->trim_start &&
2176 (end - 1) <= cpc->trim_end)
2177 continue;
2178
2179 /* Should cover 2MB zoned device for zone-based reset */
2180 if (!f2fs_sb_has_blkzoned(sbi) &&
2181 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2182 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2183 (end - start) << sbi->log_blocks_per_seg);
2184 continue;
2185 }
2186next:
2187 secno = GET_SEC_FROM_SEG(sbi, start);
2188 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2189 if (!IS_CURSEC(sbi, secno) &&
2190 !get_valid_blocks(sbi, start, true))
2191 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2192 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2193
2194 start = start_segno + sbi->segs_per_sec;
2195 if (start < end)
2196 goto next;
2197 else
2198 end = start - 1;
2199 }
2200 mutex_unlock(&dirty_i->seglist_lock);
2201
2202 if (!f2fs_block_unit_discard(sbi))
2203 goto wakeup;
2204
2205 /* send small discards */
2206 list_for_each_entry_safe(entry, this, head, list) {
2207 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2208 bool is_valid = test_bit_le(0, entry->discard_map);
2209
2210find_next:
2211 if (is_valid) {
2212 next_pos = find_next_zero_bit_le(entry->discard_map,
2213 sbi->blocks_per_seg, cur_pos);
2214 len = next_pos - cur_pos;
2215
2216 if (f2fs_sb_has_blkzoned(sbi) ||
2217 (force && len < cpc->trim_minlen))
2218 goto skip;
2219
2220 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2221 len);
2222 total_len += len;
2223 } else {
2224 next_pos = find_next_bit_le(entry->discard_map,
2225 sbi->blocks_per_seg, cur_pos);
2226 }
2227skip:
2228 cur_pos = next_pos;
2229 is_valid = !is_valid;
2230
2231 if (cur_pos < sbi->blocks_per_seg)
2232 goto find_next;
2233
2234 release_discard_addr(entry);
2235 dcc->nr_discards -= total_len;
2236 }
2237
2238wakeup:
2239 wake_up_discard_thread(sbi, false);
2240}
2241
2242int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2243{
2244 dev_t dev = sbi->sb->s_bdev->bd_dev;
2245 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2246 int err = 0;
2247
2248 if (!f2fs_realtime_discard_enable(sbi))
2249 return 0;
2250
2251 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2252 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2253 if (IS_ERR(dcc->f2fs_issue_discard)) {
2254 err = PTR_ERR(dcc->f2fs_issue_discard);
2255 dcc->f2fs_issue_discard = NULL;
2256 }
2257
2258 return err;
2259}
2260
2261static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2262{
2263 struct discard_cmd_control *dcc;
2264 int err = 0, i;
2265
2266 if (SM_I(sbi)->dcc_info) {
2267 dcc = SM_I(sbi)->dcc_info;
2268 goto init_thread;
2269 }
2270
2271 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2272 if (!dcc)
2273 return -ENOMEM;
2274
2275 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2276 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2277 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2278 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2279 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2280 dcc->discard_granularity = sbi->blocks_per_seg;
2281 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2282 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2283
2284 INIT_LIST_HEAD(&dcc->entry_list);
2285 for (i = 0; i < MAX_PLIST_NUM; i++)
2286 INIT_LIST_HEAD(&dcc->pend_list[i]);
2287 INIT_LIST_HEAD(&dcc->wait_list);
2288 INIT_LIST_HEAD(&dcc->fstrim_list);
2289 mutex_init(&dcc->cmd_lock);
2290 atomic_set(&dcc->issued_discard, 0);
2291 atomic_set(&dcc->queued_discard, 0);
2292 atomic_set(&dcc->discard_cmd_cnt, 0);
2293 dcc->nr_discards = 0;
2294 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2295 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2296 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2297 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2298 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2299 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2300 dcc->undiscard_blks = 0;
2301 dcc->next_pos = 0;
2302 dcc->root = RB_ROOT_CACHED;
2303 dcc->rbtree_check = false;
2304
2305 init_waitqueue_head(&dcc->discard_wait_queue);
2306 SM_I(sbi)->dcc_info = dcc;
2307init_thread:
2308 err = f2fs_start_discard_thread(sbi);
2309 if (err) {
2310 kfree(dcc);
2311 SM_I(sbi)->dcc_info = NULL;
2312 }
2313
2314 return err;
2315}
2316
2317static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2318{
2319 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2320
2321 if (!dcc)
2322 return;
2323
2324 f2fs_stop_discard_thread(sbi);
2325
2326 /*
2327 * Recovery can cache discard commands, so in error path of
2328 * fill_super(), it needs to give a chance to handle them.
2329 */
2330 f2fs_issue_discard_timeout(sbi);
2331
2332 kfree(dcc);
2333 SM_I(sbi)->dcc_info = NULL;
2334}
2335
2336static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2337{
2338 struct sit_info *sit_i = SIT_I(sbi);
2339
2340 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2341 sit_i->dirty_sentries++;
2342 return false;
2343 }
2344
2345 return true;
2346}
2347
2348static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2349 unsigned int segno, int modified)
2350{
2351 struct seg_entry *se = get_seg_entry(sbi, segno);
2352
2353 se->type = type;
2354 if (modified)
2355 __mark_sit_entry_dirty(sbi, segno);
2356}
2357
2358static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2359 block_t blkaddr)
2360{
2361 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2362
2363 if (segno == NULL_SEGNO)
2364 return 0;
2365 return get_seg_entry(sbi, segno)->mtime;
2366}
2367
2368static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2369 unsigned long long old_mtime)
2370{
2371 struct seg_entry *se;
2372 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2373 unsigned long long ctime = get_mtime(sbi, false);
2374 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2375
2376 if (segno == NULL_SEGNO)
2377 return;
2378
2379 se = get_seg_entry(sbi, segno);
2380
2381 if (!se->mtime)
2382 se->mtime = mtime;
2383 else
2384 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2385 se->valid_blocks + 1);
2386
2387 if (ctime > SIT_I(sbi)->max_mtime)
2388 SIT_I(sbi)->max_mtime = ctime;
2389}
2390
2391static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2392{
2393 struct seg_entry *se;
2394 unsigned int segno, offset;
2395 long int new_vblocks;
2396 bool exist;
2397#ifdef CONFIG_F2FS_CHECK_FS
2398 bool mir_exist;
2399#endif
2400
2401 segno = GET_SEGNO(sbi, blkaddr);
2402
2403 se = get_seg_entry(sbi, segno);
2404 new_vblocks = se->valid_blocks + del;
2405 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2406
2407 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2408 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2409
2410 se->valid_blocks = new_vblocks;
2411
2412 /* Update valid block bitmap */
2413 if (del > 0) {
2414 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2415#ifdef CONFIG_F2FS_CHECK_FS
2416 mir_exist = f2fs_test_and_set_bit(offset,
2417 se->cur_valid_map_mir);
2418 if (unlikely(exist != mir_exist)) {
2419 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2420 blkaddr, exist);
2421 f2fs_bug_on(sbi, 1);
2422 }
2423#endif
2424 if (unlikely(exist)) {
2425 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2426 blkaddr);
2427 f2fs_bug_on(sbi, 1);
2428 se->valid_blocks--;
2429 del = 0;
2430 }
2431
2432 if (f2fs_block_unit_discard(sbi) &&
2433 !f2fs_test_and_set_bit(offset, se->discard_map))
2434 sbi->discard_blks--;
2435
2436 /*
2437 * SSR should never reuse block which is checkpointed
2438 * or newly invalidated.
2439 */
2440 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2441 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2442 se->ckpt_valid_blocks++;
2443 }
2444 } else {
2445 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2446#ifdef CONFIG_F2FS_CHECK_FS
2447 mir_exist = f2fs_test_and_clear_bit(offset,
2448 se->cur_valid_map_mir);
2449 if (unlikely(exist != mir_exist)) {
2450 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2451 blkaddr, exist);
2452 f2fs_bug_on(sbi, 1);
2453 }
2454#endif
2455 if (unlikely(!exist)) {
2456 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2457 blkaddr);
2458 f2fs_bug_on(sbi, 1);
2459 se->valid_blocks++;
2460 del = 0;
2461 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2462 /*
2463 * If checkpoints are off, we must not reuse data that
2464 * was used in the previous checkpoint. If it was used
2465 * before, we must track that to know how much space we
2466 * really have.
2467 */
2468 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2469 spin_lock(&sbi->stat_lock);
2470 sbi->unusable_block_count++;
2471 spin_unlock(&sbi->stat_lock);
2472 }
2473 }
2474
2475 if (f2fs_block_unit_discard(sbi) &&
2476 f2fs_test_and_clear_bit(offset, se->discard_map))
2477 sbi->discard_blks++;
2478 }
2479 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2480 se->ckpt_valid_blocks += del;
2481
2482 __mark_sit_entry_dirty(sbi, segno);
2483
2484 /* update total number of valid blocks to be written in ckpt area */
2485 SIT_I(sbi)->written_valid_blocks += del;
2486
2487 if (__is_large_section(sbi))
2488 get_sec_entry(sbi, segno)->valid_blocks += del;
2489}
2490
2491void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2492{
2493 unsigned int segno = GET_SEGNO(sbi, addr);
2494 struct sit_info *sit_i = SIT_I(sbi);
2495
2496 f2fs_bug_on(sbi, addr == NULL_ADDR);
2497 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2498 return;
2499
2500 f2fs_invalidate_internal_cache(sbi, addr);
2501
2502 /* add it into sit main buffer */
2503 down_write(&sit_i->sentry_lock);
2504
2505 update_segment_mtime(sbi, addr, 0);
2506 update_sit_entry(sbi, addr, -1);
2507
2508 /* add it into dirty seglist */
2509 locate_dirty_segment(sbi, segno);
2510
2511 up_write(&sit_i->sentry_lock);
2512}
2513
2514bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2515{
2516 struct sit_info *sit_i = SIT_I(sbi);
2517 unsigned int segno, offset;
2518 struct seg_entry *se;
2519 bool is_cp = false;
2520
2521 if (!__is_valid_data_blkaddr(blkaddr))
2522 return true;
2523
2524 down_read(&sit_i->sentry_lock);
2525
2526 segno = GET_SEGNO(sbi, blkaddr);
2527 se = get_seg_entry(sbi, segno);
2528 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2529
2530 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2531 is_cp = true;
2532
2533 up_read(&sit_i->sentry_lock);
2534
2535 return is_cp;
2536}
2537
2538static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2539{
2540 struct curseg_info *curseg = CURSEG_I(sbi, type);
2541
2542 if (sbi->ckpt->alloc_type[type] == SSR)
2543 return sbi->blocks_per_seg;
2544 return curseg->next_blkoff;
2545}
2546
2547/*
2548 * Calculate the number of current summary pages for writing
2549 */
2550int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2551{
2552 int valid_sum_count = 0;
2553 int i, sum_in_page;
2554
2555 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2556 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2557 valid_sum_count +=
2558 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2559 else
2560 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2561 }
2562
2563 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2564 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2565 if (valid_sum_count <= sum_in_page)
2566 return 1;
2567 else if ((valid_sum_count - sum_in_page) <=
2568 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2569 return 2;
2570 return 3;
2571}
2572
2573/*
2574 * Caller should put this summary page
2575 */
2576struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2577{
2578 if (unlikely(f2fs_cp_error(sbi)))
2579 return ERR_PTR(-EIO);
2580 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2581}
2582
2583void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2584 void *src, block_t blk_addr)
2585{
2586 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2587
2588 memcpy(page_address(page), src, PAGE_SIZE);
2589 set_page_dirty(page);
2590 f2fs_put_page(page, 1);
2591}
2592
2593static void write_sum_page(struct f2fs_sb_info *sbi,
2594 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2595{
2596 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2597}
2598
2599static void write_current_sum_page(struct f2fs_sb_info *sbi,
2600 int type, block_t blk_addr)
2601{
2602 struct curseg_info *curseg = CURSEG_I(sbi, type);
2603 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2604 struct f2fs_summary_block *src = curseg->sum_blk;
2605 struct f2fs_summary_block *dst;
2606
2607 dst = (struct f2fs_summary_block *)page_address(page);
2608 memset(dst, 0, PAGE_SIZE);
2609
2610 mutex_lock(&curseg->curseg_mutex);
2611
2612 down_read(&curseg->journal_rwsem);
2613 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2614 up_read(&curseg->journal_rwsem);
2615
2616 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2617 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2618
2619 mutex_unlock(&curseg->curseg_mutex);
2620
2621 set_page_dirty(page);
2622 f2fs_put_page(page, 1);
2623}
2624
2625static int is_next_segment_free(struct f2fs_sb_info *sbi,
2626 struct curseg_info *curseg, int type)
2627{
2628 unsigned int segno = curseg->segno + 1;
2629 struct free_segmap_info *free_i = FREE_I(sbi);
2630
2631 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2632 return !test_bit(segno, free_i->free_segmap);
2633 return 0;
2634}
2635
2636/*
2637 * Find a new segment from the free segments bitmap to right order
2638 * This function should be returned with success, otherwise BUG
2639 */
2640static void get_new_segment(struct f2fs_sb_info *sbi,
2641 unsigned int *newseg, bool new_sec, int dir)
2642{
2643 struct free_segmap_info *free_i = FREE_I(sbi);
2644 unsigned int segno, secno, zoneno;
2645 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2646 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2647 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2648 unsigned int left_start = hint;
2649 bool init = true;
2650 int go_left = 0;
2651 int i;
2652
2653 spin_lock(&free_i->segmap_lock);
2654
2655 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2656 segno = find_next_zero_bit(free_i->free_segmap,
2657 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2658 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2659 goto got_it;
2660 }
2661find_other_zone:
2662 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2663 if (secno >= MAIN_SECS(sbi)) {
2664 if (dir == ALLOC_RIGHT) {
2665 secno = find_first_zero_bit(free_i->free_secmap,
2666 MAIN_SECS(sbi));
2667 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2668 } else {
2669 go_left = 1;
2670 left_start = hint - 1;
2671 }
2672 }
2673 if (go_left == 0)
2674 goto skip_left;
2675
2676 while (test_bit(left_start, free_i->free_secmap)) {
2677 if (left_start > 0) {
2678 left_start--;
2679 continue;
2680 }
2681 left_start = find_first_zero_bit(free_i->free_secmap,
2682 MAIN_SECS(sbi));
2683 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2684 break;
2685 }
2686 secno = left_start;
2687skip_left:
2688 segno = GET_SEG_FROM_SEC(sbi, secno);
2689 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2690
2691 /* give up on finding another zone */
2692 if (!init)
2693 goto got_it;
2694 if (sbi->secs_per_zone == 1)
2695 goto got_it;
2696 if (zoneno == old_zoneno)
2697 goto got_it;
2698 if (dir == ALLOC_LEFT) {
2699 if (!go_left && zoneno + 1 >= total_zones)
2700 goto got_it;
2701 if (go_left && zoneno == 0)
2702 goto got_it;
2703 }
2704 for (i = 0; i < NR_CURSEG_TYPE; i++)
2705 if (CURSEG_I(sbi, i)->zone == zoneno)
2706 break;
2707
2708 if (i < NR_CURSEG_TYPE) {
2709 /* zone is in user, try another */
2710 if (go_left)
2711 hint = zoneno * sbi->secs_per_zone - 1;
2712 else if (zoneno + 1 >= total_zones)
2713 hint = 0;
2714 else
2715 hint = (zoneno + 1) * sbi->secs_per_zone;
2716 init = false;
2717 goto find_other_zone;
2718 }
2719got_it:
2720 /* set it as dirty segment in free segmap */
2721 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2722 __set_inuse(sbi, segno);
2723 *newseg = segno;
2724 spin_unlock(&free_i->segmap_lock);
2725}
2726
2727static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2728{
2729 struct curseg_info *curseg = CURSEG_I(sbi, type);
2730 struct summary_footer *sum_footer;
2731 unsigned short seg_type = curseg->seg_type;
2732
2733 curseg->inited = true;
2734 curseg->segno = curseg->next_segno;
2735 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2736 curseg->next_blkoff = 0;
2737 curseg->next_segno = NULL_SEGNO;
2738
2739 sum_footer = &(curseg->sum_blk->footer);
2740 memset(sum_footer, 0, sizeof(struct summary_footer));
2741
2742 sanity_check_seg_type(sbi, seg_type);
2743
2744 if (IS_DATASEG(seg_type))
2745 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2746 if (IS_NODESEG(seg_type))
2747 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2748 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2749}
2750
2751static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2752{
2753 struct curseg_info *curseg = CURSEG_I(sbi, type);
2754 unsigned short seg_type = curseg->seg_type;
2755
2756 sanity_check_seg_type(sbi, seg_type);
2757 if (f2fs_need_rand_seg(sbi))
2758 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2759
2760 /* if segs_per_sec is large than 1, we need to keep original policy. */
2761 if (__is_large_section(sbi))
2762 return curseg->segno;
2763
2764 /* inmem log may not locate on any segment after mount */
2765 if (!curseg->inited)
2766 return 0;
2767
2768 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2769 return 0;
2770
2771 if (test_opt(sbi, NOHEAP) &&
2772 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2773 return 0;
2774
2775 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2776 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2777
2778 /* find segments from 0 to reuse freed segments */
2779 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2780 return 0;
2781
2782 return curseg->segno;
2783}
2784
2785/*
2786 * Allocate a current working segment.
2787 * This function always allocates a free segment in LFS manner.
2788 */
2789static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2790{
2791 struct curseg_info *curseg = CURSEG_I(sbi, type);
2792 unsigned short seg_type = curseg->seg_type;
2793 unsigned int segno = curseg->segno;
2794 int dir = ALLOC_LEFT;
2795
2796 if (curseg->inited)
2797 write_sum_page(sbi, curseg->sum_blk,
2798 GET_SUM_BLOCK(sbi, segno));
2799 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2800 dir = ALLOC_RIGHT;
2801
2802 if (test_opt(sbi, NOHEAP))
2803 dir = ALLOC_RIGHT;
2804
2805 segno = __get_next_segno(sbi, type);
2806 get_new_segment(sbi, &segno, new_sec, dir);
2807 curseg->next_segno = segno;
2808 reset_curseg(sbi, type, 1);
2809 curseg->alloc_type = LFS;
2810 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2811 curseg->fragment_remained_chunk =
2812 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2813}
2814
2815static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2816 int segno, block_t start)
2817{
2818 struct seg_entry *se = get_seg_entry(sbi, segno);
2819 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2820 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2821 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2822 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2823 int i;
2824
2825 for (i = 0; i < entries; i++)
2826 target_map[i] = ckpt_map[i] | cur_map[i];
2827
2828 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2829}
2830
2831static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2832 struct curseg_info *seg)
2833{
2834 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2835}
2836
2837bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2838{
2839 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2840}
2841
2842/*
2843 * This function always allocates a used segment(from dirty seglist) by SSR
2844 * manner, so it should recover the existing segment information of valid blocks
2845 */
2846static void change_curseg(struct f2fs_sb_info *sbi, int type)
2847{
2848 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2849 struct curseg_info *curseg = CURSEG_I(sbi, type);
2850 unsigned int new_segno = curseg->next_segno;
2851 struct f2fs_summary_block *sum_node;
2852 struct page *sum_page;
2853
2854 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2855
2856 __set_test_and_inuse(sbi, new_segno);
2857
2858 mutex_lock(&dirty_i->seglist_lock);
2859 __remove_dirty_segment(sbi, new_segno, PRE);
2860 __remove_dirty_segment(sbi, new_segno, DIRTY);
2861 mutex_unlock(&dirty_i->seglist_lock);
2862
2863 reset_curseg(sbi, type, 1);
2864 curseg->alloc_type = SSR;
2865 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2866
2867 sum_page = f2fs_get_sum_page(sbi, new_segno);
2868 if (IS_ERR(sum_page)) {
2869 /* GC won't be able to use stale summary pages by cp_error */
2870 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2871 return;
2872 }
2873 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2874 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2875 f2fs_put_page(sum_page, 1);
2876}
2877
2878static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2879 int alloc_mode, unsigned long long age);
2880
2881static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2882 int target_type, int alloc_mode,
2883 unsigned long long age)
2884{
2885 struct curseg_info *curseg = CURSEG_I(sbi, type);
2886
2887 curseg->seg_type = target_type;
2888
2889 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2890 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2891
2892 curseg->seg_type = se->type;
2893 change_curseg(sbi, type);
2894 } else {
2895 /* allocate cold segment by default */
2896 curseg->seg_type = CURSEG_COLD_DATA;
2897 new_curseg(sbi, type, true);
2898 }
2899 stat_inc_seg_type(sbi, curseg);
2900}
2901
2902static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2903{
2904 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2905
2906 if (!sbi->am.atgc_enabled)
2907 return;
2908
2909 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2910
2911 mutex_lock(&curseg->curseg_mutex);
2912 down_write(&SIT_I(sbi)->sentry_lock);
2913
2914 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2915
2916 up_write(&SIT_I(sbi)->sentry_lock);
2917 mutex_unlock(&curseg->curseg_mutex);
2918
2919 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2920
2921}
2922void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2923{
2924 __f2fs_init_atgc_curseg(sbi);
2925}
2926
2927static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2928{
2929 struct curseg_info *curseg = CURSEG_I(sbi, type);
2930
2931 mutex_lock(&curseg->curseg_mutex);
2932 if (!curseg->inited)
2933 goto out;
2934
2935 if (get_valid_blocks(sbi, curseg->segno, false)) {
2936 write_sum_page(sbi, curseg->sum_blk,
2937 GET_SUM_BLOCK(sbi, curseg->segno));
2938 } else {
2939 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2940 __set_test_and_free(sbi, curseg->segno, true);
2941 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2942 }
2943out:
2944 mutex_unlock(&curseg->curseg_mutex);
2945}
2946
2947void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2948{
2949 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2950
2951 if (sbi->am.atgc_enabled)
2952 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2953}
2954
2955static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2956{
2957 struct curseg_info *curseg = CURSEG_I(sbi, type);
2958
2959 mutex_lock(&curseg->curseg_mutex);
2960 if (!curseg->inited)
2961 goto out;
2962 if (get_valid_blocks(sbi, curseg->segno, false))
2963 goto out;
2964
2965 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2966 __set_test_and_inuse(sbi, curseg->segno);
2967 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2968out:
2969 mutex_unlock(&curseg->curseg_mutex);
2970}
2971
2972void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2973{
2974 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2975
2976 if (sbi->am.atgc_enabled)
2977 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2978}
2979
2980static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2981 int alloc_mode, unsigned long long age)
2982{
2983 struct curseg_info *curseg = CURSEG_I(sbi, type);
2984 unsigned segno = NULL_SEGNO;
2985 unsigned short seg_type = curseg->seg_type;
2986 int i, cnt;
2987 bool reversed = false;
2988
2989 sanity_check_seg_type(sbi, seg_type);
2990
2991 /* f2fs_need_SSR() already forces to do this */
2992 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2993 curseg->next_segno = segno;
2994 return 1;
2995 }
2996
2997 /* For node segments, let's do SSR more intensively */
2998 if (IS_NODESEG(seg_type)) {
2999 if (seg_type >= CURSEG_WARM_NODE) {
3000 reversed = true;
3001 i = CURSEG_COLD_NODE;
3002 } else {
3003 i = CURSEG_HOT_NODE;
3004 }
3005 cnt = NR_CURSEG_NODE_TYPE;
3006 } else {
3007 if (seg_type >= CURSEG_WARM_DATA) {
3008 reversed = true;
3009 i = CURSEG_COLD_DATA;
3010 } else {
3011 i = CURSEG_HOT_DATA;
3012 }
3013 cnt = NR_CURSEG_DATA_TYPE;
3014 }
3015
3016 for (; cnt-- > 0; reversed ? i-- : i++) {
3017 if (i == seg_type)
3018 continue;
3019 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3020 curseg->next_segno = segno;
3021 return 1;
3022 }
3023 }
3024
3025 /* find valid_blocks=0 in dirty list */
3026 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3027 segno = get_free_segment(sbi);
3028 if (segno != NULL_SEGNO) {
3029 curseg->next_segno = segno;
3030 return 1;
3031 }
3032 }
3033 return 0;
3034}
3035
3036static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3037{
3038 struct curseg_info *curseg = CURSEG_I(sbi, type);
3039
3040 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3041 curseg->seg_type == CURSEG_WARM_NODE)
3042 return true;
3043 if (curseg->alloc_type == LFS &&
3044 is_next_segment_free(sbi, curseg, type) &&
3045 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3046 return true;
3047 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3048 return true;
3049 return false;
3050}
3051
3052void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3053 unsigned int start, unsigned int end)
3054{
3055 struct curseg_info *curseg = CURSEG_I(sbi, type);
3056 unsigned int segno;
3057
3058 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3059 mutex_lock(&curseg->curseg_mutex);
3060 down_write(&SIT_I(sbi)->sentry_lock);
3061
3062 segno = CURSEG_I(sbi, type)->segno;
3063 if (segno < start || segno > end)
3064 goto unlock;
3065
3066 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3067 change_curseg(sbi, type);
3068 else
3069 new_curseg(sbi, type, true);
3070
3071 stat_inc_seg_type(sbi, curseg);
3072
3073 locate_dirty_segment(sbi, segno);
3074unlock:
3075 up_write(&SIT_I(sbi)->sentry_lock);
3076
3077 if (segno != curseg->segno)
3078 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3079 type, segno, curseg->segno);
3080
3081 mutex_unlock(&curseg->curseg_mutex);
3082 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3083}
3084
3085static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3086 bool new_sec, bool force)
3087{
3088 struct curseg_info *curseg = CURSEG_I(sbi, type);
3089 unsigned int old_segno;
3090
3091 if (!force && curseg->inited &&
3092 !curseg->next_blkoff &&
3093 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3094 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3095 return;
3096
3097 old_segno = curseg->segno;
3098 new_curseg(sbi, type, true);
3099 stat_inc_seg_type(sbi, curseg);
3100 locate_dirty_segment(sbi, old_segno);
3101}
3102
3103void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3104{
3105 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3106 down_write(&SIT_I(sbi)->sentry_lock);
3107 __allocate_new_segment(sbi, type, true, force);
3108 up_write(&SIT_I(sbi)->sentry_lock);
3109 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3110}
3111
3112void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3113{
3114 int i;
3115
3116 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3117 down_write(&SIT_I(sbi)->sentry_lock);
3118 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3119 __allocate_new_segment(sbi, i, false, false);
3120 up_write(&SIT_I(sbi)->sentry_lock);
3121 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3122}
3123
3124bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3125 struct cp_control *cpc)
3126{
3127 __u64 trim_start = cpc->trim_start;
3128 bool has_candidate = false;
3129
3130 down_write(&SIT_I(sbi)->sentry_lock);
3131 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3132 if (add_discard_addrs(sbi, cpc, true)) {
3133 has_candidate = true;
3134 break;
3135 }
3136 }
3137 up_write(&SIT_I(sbi)->sentry_lock);
3138
3139 cpc->trim_start = trim_start;
3140 return has_candidate;
3141}
3142
3143static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3144 struct discard_policy *dpolicy,
3145 unsigned int start, unsigned int end)
3146{
3147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3148 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3149 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3150 struct discard_cmd *dc;
3151 struct blk_plug plug;
3152 int issued;
3153 unsigned int trimmed = 0;
3154
3155next:
3156 issued = 0;
3157
3158 mutex_lock(&dcc->cmd_lock);
3159 if (unlikely(dcc->rbtree_check))
3160 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3161
3162 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3163 &prev_dc, &next_dc, &insert_p, &insert_parent);
3164 if (!dc)
3165 dc = next_dc;
3166
3167 blk_start_plug(&plug);
3168
3169 while (dc && dc->di.lstart <= end) {
3170 struct rb_node *node;
3171 int err = 0;
3172
3173 if (dc->di.len < dpolicy->granularity)
3174 goto skip;
3175
3176 if (dc->state != D_PREP) {
3177 list_move_tail(&dc->list, &dcc->fstrim_list);
3178 goto skip;
3179 }
3180
3181 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3182
3183 if (issued >= dpolicy->max_requests) {
3184 start = dc->di.lstart + dc->di.len;
3185
3186 if (err)
3187 __remove_discard_cmd(sbi, dc);
3188
3189 blk_finish_plug(&plug);
3190 mutex_unlock(&dcc->cmd_lock);
3191 trimmed += __wait_all_discard_cmd(sbi, NULL);
3192 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3193 goto next;
3194 }
3195skip:
3196 node = rb_next(&dc->rb_node);
3197 if (err)
3198 __remove_discard_cmd(sbi, dc);
3199 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3200
3201 if (fatal_signal_pending(current))
3202 break;
3203 }
3204
3205 blk_finish_plug(&plug);
3206 mutex_unlock(&dcc->cmd_lock);
3207
3208 return trimmed;
3209}
3210
3211int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3212{
3213 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3214 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3215 unsigned int start_segno, end_segno;
3216 block_t start_block, end_block;
3217 struct cp_control cpc;
3218 struct discard_policy dpolicy;
3219 unsigned long long trimmed = 0;
3220 int err = 0;
3221 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3222
3223 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3224 return -EINVAL;
3225
3226 if (end < MAIN_BLKADDR(sbi))
3227 goto out;
3228
3229 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3230 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3231 return -EFSCORRUPTED;
3232 }
3233
3234 /* start/end segment number in main_area */
3235 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3236 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3237 GET_SEGNO(sbi, end);
3238 if (need_align) {
3239 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3240 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3241 }
3242
3243 cpc.reason = CP_DISCARD;
3244 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3245 cpc.trim_start = start_segno;
3246 cpc.trim_end = end_segno;
3247
3248 if (sbi->discard_blks == 0)
3249 goto out;
3250
3251 f2fs_down_write(&sbi->gc_lock);
3252 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3253 err = f2fs_write_checkpoint(sbi, &cpc);
3254 f2fs_up_write(&sbi->gc_lock);
3255 if (err)
3256 goto out;
3257
3258 /*
3259 * We filed discard candidates, but actually we don't need to wait for
3260 * all of them, since they'll be issued in idle time along with runtime
3261 * discard option. User configuration looks like using runtime discard
3262 * or periodic fstrim instead of it.
3263 */
3264 if (f2fs_realtime_discard_enable(sbi))
3265 goto out;
3266
3267 start_block = START_BLOCK(sbi, start_segno);
3268 end_block = START_BLOCK(sbi, end_segno + 1);
3269
3270 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3271 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3272 start_block, end_block);
3273
3274 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3275 start_block, end_block);
3276out:
3277 if (!err)
3278 range->len = F2FS_BLK_TO_BYTES(trimmed);
3279 return err;
3280}
3281
3282int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3283{
3284 switch (hint) {
3285 case WRITE_LIFE_SHORT:
3286 return CURSEG_HOT_DATA;
3287 case WRITE_LIFE_EXTREME:
3288 return CURSEG_COLD_DATA;
3289 default:
3290 return CURSEG_WARM_DATA;
3291 }
3292}
3293
3294static int __get_segment_type_2(struct f2fs_io_info *fio)
3295{
3296 if (fio->type == DATA)
3297 return CURSEG_HOT_DATA;
3298 else
3299 return CURSEG_HOT_NODE;
3300}
3301
3302static int __get_segment_type_4(struct f2fs_io_info *fio)
3303{
3304 if (fio->type == DATA) {
3305 struct inode *inode = fio->page->mapping->host;
3306
3307 if (S_ISDIR(inode->i_mode))
3308 return CURSEG_HOT_DATA;
3309 else
3310 return CURSEG_COLD_DATA;
3311 } else {
3312 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3313 return CURSEG_WARM_NODE;
3314 else
3315 return CURSEG_COLD_NODE;
3316 }
3317}
3318
3319static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3320{
3321 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322 struct extent_info ei = {};
3323
3324 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3325 if (!ei.age)
3326 return NO_CHECK_TYPE;
3327 if (ei.age <= sbi->hot_data_age_threshold)
3328 return CURSEG_HOT_DATA;
3329 if (ei.age <= sbi->warm_data_age_threshold)
3330 return CURSEG_WARM_DATA;
3331 return CURSEG_COLD_DATA;
3332 }
3333 return NO_CHECK_TYPE;
3334}
3335
3336static int __get_segment_type_6(struct f2fs_io_info *fio)
3337{
3338 if (fio->type == DATA) {
3339 struct inode *inode = fio->page->mapping->host;
3340 int type;
3341
3342 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3343 return CURSEG_COLD_DATA_PINNED;
3344
3345 if (page_private_gcing(fio->page)) {
3346 if (fio->sbi->am.atgc_enabled &&
3347 (fio->io_type == FS_DATA_IO) &&
3348 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3349 return CURSEG_ALL_DATA_ATGC;
3350 else
3351 return CURSEG_COLD_DATA;
3352 }
3353 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3354 return CURSEG_COLD_DATA;
3355
3356 type = __get_age_segment_type(inode, fio->page->index);
3357 if (type != NO_CHECK_TYPE)
3358 return type;
3359
3360 if (file_is_hot(inode) ||
3361 is_inode_flag_set(inode, FI_HOT_DATA) ||
3362 f2fs_is_cow_file(inode))
3363 return CURSEG_HOT_DATA;
3364 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3365 } else {
3366 if (IS_DNODE(fio->page))
3367 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3368 CURSEG_HOT_NODE;
3369 return CURSEG_COLD_NODE;
3370 }
3371}
3372
3373static int __get_segment_type(struct f2fs_io_info *fio)
3374{
3375 int type = 0;
3376
3377 switch (F2FS_OPTION(fio->sbi).active_logs) {
3378 case 2:
3379 type = __get_segment_type_2(fio);
3380 break;
3381 case 4:
3382 type = __get_segment_type_4(fio);
3383 break;
3384 case 6:
3385 type = __get_segment_type_6(fio);
3386 break;
3387 default:
3388 f2fs_bug_on(fio->sbi, true);
3389 }
3390
3391 if (IS_HOT(type))
3392 fio->temp = HOT;
3393 else if (IS_WARM(type))
3394 fio->temp = WARM;
3395 else
3396 fio->temp = COLD;
3397 return type;
3398}
3399
3400static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3401 struct curseg_info *seg)
3402{
3403 /* To allocate block chunks in different sizes, use random number */
3404 if (--seg->fragment_remained_chunk > 0)
3405 return;
3406
3407 seg->fragment_remained_chunk =
3408 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3409 seg->next_blkoff +=
3410 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3411}
3412
3413void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3414 block_t old_blkaddr, block_t *new_blkaddr,
3415 struct f2fs_summary *sum, int type,
3416 struct f2fs_io_info *fio)
3417{
3418 struct sit_info *sit_i = SIT_I(sbi);
3419 struct curseg_info *curseg = CURSEG_I(sbi, type);
3420 unsigned long long old_mtime;
3421 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3422 struct seg_entry *se = NULL;
3423 bool segment_full = false;
3424
3425 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3426
3427 mutex_lock(&curseg->curseg_mutex);
3428 down_write(&sit_i->sentry_lock);
3429
3430 if (from_gc) {
3431 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3432 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3433 sanity_check_seg_type(sbi, se->type);
3434 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3435 }
3436 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3437
3438 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3439
3440 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3441
3442 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3443 if (curseg->alloc_type == SSR) {
3444 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3445 } else {
3446 curseg->next_blkoff++;
3447 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3448 f2fs_randomize_chunk(sbi, curseg);
3449 }
3450 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3451 segment_full = true;
3452 stat_inc_block_count(sbi, curseg);
3453
3454 if (from_gc) {
3455 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3456 } else {
3457 update_segment_mtime(sbi, old_blkaddr, 0);
3458 old_mtime = 0;
3459 }
3460 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3461
3462 /*
3463 * SIT information should be updated before segment allocation,
3464 * since SSR needs latest valid block information.
3465 */
3466 update_sit_entry(sbi, *new_blkaddr, 1);
3467 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3468 update_sit_entry(sbi, old_blkaddr, -1);
3469
3470 /*
3471 * If the current segment is full, flush it out and replace it with a
3472 * new segment.
3473 */
3474 if (segment_full) {
3475 if (from_gc) {
3476 get_atssr_segment(sbi, type, se->type,
3477 AT_SSR, se->mtime);
3478 } else {
3479 if (need_new_seg(sbi, type))
3480 new_curseg(sbi, type, false);
3481 else
3482 change_curseg(sbi, type);
3483 stat_inc_seg_type(sbi, curseg);
3484 }
3485 }
3486 /*
3487 * segment dirty status should be updated after segment allocation,
3488 * so we just need to update status only one time after previous
3489 * segment being closed.
3490 */
3491 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3492 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3493
3494 if (IS_DATASEG(type))
3495 atomic64_inc(&sbi->allocated_data_blocks);
3496
3497 up_write(&sit_i->sentry_lock);
3498
3499 if (page && IS_NODESEG(type)) {
3500 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3501
3502 f2fs_inode_chksum_set(sbi, page);
3503 }
3504
3505 if (fio) {
3506 struct f2fs_bio_info *io;
3507
3508 if (F2FS_IO_ALIGNED(sbi))
3509 fio->retry = 0;
3510
3511 INIT_LIST_HEAD(&fio->list);
3512 fio->in_list = 1;
3513 io = sbi->write_io[fio->type] + fio->temp;
3514 spin_lock(&io->io_lock);
3515 list_add_tail(&fio->list, &io->io_list);
3516 spin_unlock(&io->io_lock);
3517 }
3518
3519 mutex_unlock(&curseg->curseg_mutex);
3520
3521 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3522}
3523
3524void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3525 block_t blkaddr, unsigned int blkcnt)
3526{
3527 if (!f2fs_is_multi_device(sbi))
3528 return;
3529
3530 while (1) {
3531 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3532 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3533
3534 /* update device state for fsync */
3535 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3536
3537 /* update device state for checkpoint */
3538 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3539 spin_lock(&sbi->dev_lock);
3540 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3541 spin_unlock(&sbi->dev_lock);
3542 }
3543
3544 if (blkcnt <= blks)
3545 break;
3546 blkcnt -= blks;
3547 blkaddr += blks;
3548 }
3549}
3550
3551static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3552{
3553 int type = __get_segment_type(fio);
3554 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3555
3556 if (keep_order)
3557 f2fs_down_read(&fio->sbi->io_order_lock);
3558reallocate:
3559 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3560 &fio->new_blkaddr, sum, type, fio);
3561 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3562 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3563
3564 /* writeout dirty page into bdev */
3565 f2fs_submit_page_write(fio);
3566 if (fio->retry) {
3567 fio->old_blkaddr = fio->new_blkaddr;
3568 goto reallocate;
3569 }
3570
3571 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3572
3573 if (keep_order)
3574 f2fs_up_read(&fio->sbi->io_order_lock);
3575}
3576
3577void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3578 enum iostat_type io_type)
3579{
3580 struct f2fs_io_info fio = {
3581 .sbi = sbi,
3582 .type = META,
3583 .temp = HOT,
3584 .op = REQ_OP_WRITE,
3585 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3586 .old_blkaddr = page->index,
3587 .new_blkaddr = page->index,
3588 .page = page,
3589 .encrypted_page = NULL,
3590 .in_list = 0,
3591 };
3592
3593 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3594 fio.op_flags &= ~REQ_META;
3595
3596 set_page_writeback(page);
3597 f2fs_submit_page_write(&fio);
3598
3599 stat_inc_meta_count(sbi, page->index);
3600 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3601}
3602
3603void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604{
3605 struct f2fs_summary sum;
3606
3607 set_summary(&sum, nid, 0, 0);
3608 do_write_page(&sum, fio);
3609
3610 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3611}
3612
3613void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614 struct f2fs_io_info *fio)
3615{
3616 struct f2fs_sb_info *sbi = fio->sbi;
3617 struct f2fs_summary sum;
3618
3619 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3621 f2fs_update_age_extent_cache(dn);
3622 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3623 do_write_page(&sum, fio);
3624 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3625
3626 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3627}
3628
3629int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3630{
3631 int err;
3632 struct f2fs_sb_info *sbi = fio->sbi;
3633 unsigned int segno;
3634
3635 fio->new_blkaddr = fio->old_blkaddr;
3636 /* i/o temperature is needed for passing down write hints */
3637 __get_segment_type(fio);
3638
3639 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3640
3641 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3642 set_sbi_flag(sbi, SBI_NEED_FSCK);
3643 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3644 __func__, segno);
3645 err = -EFSCORRUPTED;
3646 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3647 goto drop_bio;
3648 }
3649
3650 if (f2fs_cp_error(sbi)) {
3651 err = -EIO;
3652 goto drop_bio;
3653 }
3654
3655 if (fio->post_read)
3656 invalidate_mapping_pages(META_MAPPING(sbi),
3657 fio->new_blkaddr, fio->new_blkaddr);
3658
3659 stat_inc_inplace_blocks(fio->sbi);
3660
3661 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3662 err = f2fs_merge_page_bio(fio);
3663 else
3664 err = f2fs_submit_page_bio(fio);
3665 if (!err) {
3666 f2fs_update_device_state(fio->sbi, fio->ino,
3667 fio->new_blkaddr, 1);
3668 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3669 fio->io_type, F2FS_BLKSIZE);
3670 }
3671
3672 return err;
3673drop_bio:
3674 if (fio->bio && *(fio->bio)) {
3675 struct bio *bio = *(fio->bio);
3676
3677 bio->bi_status = BLK_STS_IOERR;
3678 bio_endio(bio);
3679 *(fio->bio) = NULL;
3680 }
3681 return err;
3682}
3683
3684static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3685 unsigned int segno)
3686{
3687 int i;
3688
3689 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3690 if (CURSEG_I(sbi, i)->segno == segno)
3691 break;
3692 }
3693 return i;
3694}
3695
3696void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3697 block_t old_blkaddr, block_t new_blkaddr,
3698 bool recover_curseg, bool recover_newaddr,
3699 bool from_gc)
3700{
3701 struct sit_info *sit_i = SIT_I(sbi);
3702 struct curseg_info *curseg;
3703 unsigned int segno, old_cursegno;
3704 struct seg_entry *se;
3705 int type;
3706 unsigned short old_blkoff;
3707 unsigned char old_alloc_type;
3708
3709 segno = GET_SEGNO(sbi, new_blkaddr);
3710 se = get_seg_entry(sbi, segno);
3711 type = se->type;
3712
3713 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3714
3715 if (!recover_curseg) {
3716 /* for recovery flow */
3717 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3718 if (old_blkaddr == NULL_ADDR)
3719 type = CURSEG_COLD_DATA;
3720 else
3721 type = CURSEG_WARM_DATA;
3722 }
3723 } else {
3724 if (IS_CURSEG(sbi, segno)) {
3725 /* se->type is volatile as SSR allocation */
3726 type = __f2fs_get_curseg(sbi, segno);
3727 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3728 } else {
3729 type = CURSEG_WARM_DATA;
3730 }
3731 }
3732
3733 f2fs_bug_on(sbi, !IS_DATASEG(type));
3734 curseg = CURSEG_I(sbi, type);
3735
3736 mutex_lock(&curseg->curseg_mutex);
3737 down_write(&sit_i->sentry_lock);
3738
3739 old_cursegno = curseg->segno;
3740 old_blkoff = curseg->next_blkoff;
3741 old_alloc_type = curseg->alloc_type;
3742
3743 /* change the current segment */
3744 if (segno != curseg->segno) {
3745 curseg->next_segno = segno;
3746 change_curseg(sbi, type);
3747 }
3748
3749 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3750 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3751
3752 if (!recover_curseg || recover_newaddr) {
3753 if (!from_gc)
3754 update_segment_mtime(sbi, new_blkaddr, 0);
3755 update_sit_entry(sbi, new_blkaddr, 1);
3756 }
3757 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3758 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3759 if (!from_gc)
3760 update_segment_mtime(sbi, old_blkaddr, 0);
3761 update_sit_entry(sbi, old_blkaddr, -1);
3762 }
3763
3764 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3765 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3766
3767 locate_dirty_segment(sbi, old_cursegno);
3768
3769 if (recover_curseg) {
3770 if (old_cursegno != curseg->segno) {
3771 curseg->next_segno = old_cursegno;
3772 change_curseg(sbi, type);
3773 }
3774 curseg->next_blkoff = old_blkoff;
3775 curseg->alloc_type = old_alloc_type;
3776 }
3777
3778 up_write(&sit_i->sentry_lock);
3779 mutex_unlock(&curseg->curseg_mutex);
3780 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3781}
3782
3783void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3784 block_t old_addr, block_t new_addr,
3785 unsigned char version, bool recover_curseg,
3786 bool recover_newaddr)
3787{
3788 struct f2fs_summary sum;
3789
3790 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3791
3792 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3793 recover_curseg, recover_newaddr, false);
3794
3795 f2fs_update_data_blkaddr(dn, new_addr);
3796}
3797
3798void f2fs_wait_on_page_writeback(struct page *page,
3799 enum page_type type, bool ordered, bool locked)
3800{
3801 if (PageWriteback(page)) {
3802 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3803
3804 /* submit cached LFS IO */
3805 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3806 /* submit cached IPU IO */
3807 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3808 if (ordered) {
3809 wait_on_page_writeback(page);
3810 f2fs_bug_on(sbi, locked && PageWriteback(page));
3811 } else {
3812 wait_for_stable_page(page);
3813 }
3814 }
3815}
3816
3817void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3818{
3819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820 struct page *cpage;
3821
3822 if (!f2fs_post_read_required(inode))
3823 return;
3824
3825 if (!__is_valid_data_blkaddr(blkaddr))
3826 return;
3827
3828 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3829 if (cpage) {
3830 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3831 f2fs_put_page(cpage, 1);
3832 }
3833}
3834
3835void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3836 block_t len)
3837{
3838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839 block_t i;
3840
3841 if (!f2fs_post_read_required(inode))
3842 return;
3843
3844 for (i = 0; i < len; i++)
3845 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3846
3847 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3848}
3849
3850static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3851{
3852 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3853 struct curseg_info *seg_i;
3854 unsigned char *kaddr;
3855 struct page *page;
3856 block_t start;
3857 int i, j, offset;
3858
3859 start = start_sum_block(sbi);
3860
3861 page = f2fs_get_meta_page(sbi, start++);
3862 if (IS_ERR(page))
3863 return PTR_ERR(page);
3864 kaddr = (unsigned char *)page_address(page);
3865
3866 /* Step 1: restore nat cache */
3867 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3868 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3869
3870 /* Step 2: restore sit cache */
3871 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3872 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3873 offset = 2 * SUM_JOURNAL_SIZE;
3874
3875 /* Step 3: restore summary entries */
3876 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3877 unsigned short blk_off;
3878 unsigned int segno;
3879
3880 seg_i = CURSEG_I(sbi, i);
3881 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3882 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3883 seg_i->next_segno = segno;
3884 reset_curseg(sbi, i, 0);
3885 seg_i->alloc_type = ckpt->alloc_type[i];
3886 seg_i->next_blkoff = blk_off;
3887
3888 if (seg_i->alloc_type == SSR)
3889 blk_off = sbi->blocks_per_seg;
3890
3891 for (j = 0; j < blk_off; j++) {
3892 struct f2fs_summary *s;
3893
3894 s = (struct f2fs_summary *)(kaddr + offset);
3895 seg_i->sum_blk->entries[j] = *s;
3896 offset += SUMMARY_SIZE;
3897 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3898 SUM_FOOTER_SIZE)
3899 continue;
3900
3901 f2fs_put_page(page, 1);
3902 page = NULL;
3903
3904 page = f2fs_get_meta_page(sbi, start++);
3905 if (IS_ERR(page))
3906 return PTR_ERR(page);
3907 kaddr = (unsigned char *)page_address(page);
3908 offset = 0;
3909 }
3910 }
3911 f2fs_put_page(page, 1);
3912 return 0;
3913}
3914
3915static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3916{
3917 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3918 struct f2fs_summary_block *sum;
3919 struct curseg_info *curseg;
3920 struct page *new;
3921 unsigned short blk_off;
3922 unsigned int segno = 0;
3923 block_t blk_addr = 0;
3924 int err = 0;
3925
3926 /* get segment number and block addr */
3927 if (IS_DATASEG(type)) {
3928 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3929 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3930 CURSEG_HOT_DATA]);
3931 if (__exist_node_summaries(sbi))
3932 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3933 else
3934 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3935 } else {
3936 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3937 CURSEG_HOT_NODE]);
3938 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3939 CURSEG_HOT_NODE]);
3940 if (__exist_node_summaries(sbi))
3941 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3942 type - CURSEG_HOT_NODE);
3943 else
3944 blk_addr = GET_SUM_BLOCK(sbi, segno);
3945 }
3946
3947 new = f2fs_get_meta_page(sbi, blk_addr);
3948 if (IS_ERR(new))
3949 return PTR_ERR(new);
3950 sum = (struct f2fs_summary_block *)page_address(new);
3951
3952 if (IS_NODESEG(type)) {
3953 if (__exist_node_summaries(sbi)) {
3954 struct f2fs_summary *ns = &sum->entries[0];
3955 int i;
3956
3957 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3958 ns->version = 0;
3959 ns->ofs_in_node = 0;
3960 }
3961 } else {
3962 err = f2fs_restore_node_summary(sbi, segno, sum);
3963 if (err)
3964 goto out;
3965 }
3966 }
3967
3968 /* set uncompleted segment to curseg */
3969 curseg = CURSEG_I(sbi, type);
3970 mutex_lock(&curseg->curseg_mutex);
3971
3972 /* update journal info */
3973 down_write(&curseg->journal_rwsem);
3974 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3975 up_write(&curseg->journal_rwsem);
3976
3977 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3978 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3979 curseg->next_segno = segno;
3980 reset_curseg(sbi, type, 0);
3981 curseg->alloc_type = ckpt->alloc_type[type];
3982 curseg->next_blkoff = blk_off;
3983 mutex_unlock(&curseg->curseg_mutex);
3984out:
3985 f2fs_put_page(new, 1);
3986 return err;
3987}
3988
3989static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3990{
3991 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3992 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3993 int type = CURSEG_HOT_DATA;
3994 int err;
3995
3996 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3997 int npages = f2fs_npages_for_summary_flush(sbi, true);
3998
3999 if (npages >= 2)
4000 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4001 META_CP, true);
4002
4003 /* restore for compacted data summary */
4004 err = read_compacted_summaries(sbi);
4005 if (err)
4006 return err;
4007 type = CURSEG_HOT_NODE;
4008 }
4009
4010 if (__exist_node_summaries(sbi))
4011 f2fs_ra_meta_pages(sbi,
4012 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4013 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4014
4015 for (; type <= CURSEG_COLD_NODE; type++) {
4016 err = read_normal_summaries(sbi, type);
4017 if (err)
4018 return err;
4019 }
4020
4021 /* sanity check for summary blocks */
4022 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4023 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4024 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4025 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4026 return -EINVAL;
4027 }
4028
4029 return 0;
4030}
4031
4032static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4033{
4034 struct page *page;
4035 unsigned char *kaddr;
4036 struct f2fs_summary *summary;
4037 struct curseg_info *seg_i;
4038 int written_size = 0;
4039 int i, j;
4040
4041 page = f2fs_grab_meta_page(sbi, blkaddr++);
4042 kaddr = (unsigned char *)page_address(page);
4043 memset(kaddr, 0, PAGE_SIZE);
4044
4045 /* Step 1: write nat cache */
4046 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4047 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4048 written_size += SUM_JOURNAL_SIZE;
4049
4050 /* Step 2: write sit cache */
4051 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4052 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4053 written_size += SUM_JOURNAL_SIZE;
4054
4055 /* Step 3: write summary entries */
4056 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4057 seg_i = CURSEG_I(sbi, i);
4058 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4059 if (!page) {
4060 page = f2fs_grab_meta_page(sbi, blkaddr++);
4061 kaddr = (unsigned char *)page_address(page);
4062 memset(kaddr, 0, PAGE_SIZE);
4063 written_size = 0;
4064 }
4065 summary = (struct f2fs_summary *)(kaddr + written_size);
4066 *summary = seg_i->sum_blk->entries[j];
4067 written_size += SUMMARY_SIZE;
4068
4069 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4070 SUM_FOOTER_SIZE)
4071 continue;
4072
4073 set_page_dirty(page);
4074 f2fs_put_page(page, 1);
4075 page = NULL;
4076 }
4077 }
4078 if (page) {
4079 set_page_dirty(page);
4080 f2fs_put_page(page, 1);
4081 }
4082}
4083
4084static void write_normal_summaries(struct f2fs_sb_info *sbi,
4085 block_t blkaddr, int type)
4086{
4087 int i, end;
4088
4089 if (IS_DATASEG(type))
4090 end = type + NR_CURSEG_DATA_TYPE;
4091 else
4092 end = type + NR_CURSEG_NODE_TYPE;
4093
4094 for (i = type; i < end; i++)
4095 write_current_sum_page(sbi, i, blkaddr + (i - type));
4096}
4097
4098void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4099{
4100 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4101 write_compacted_summaries(sbi, start_blk);
4102 else
4103 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4104}
4105
4106void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4107{
4108 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4109}
4110
4111int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4112 unsigned int val, int alloc)
4113{
4114 int i;
4115
4116 if (type == NAT_JOURNAL) {
4117 for (i = 0; i < nats_in_cursum(journal); i++) {
4118 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4119 return i;
4120 }
4121 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4122 return update_nats_in_cursum(journal, 1);
4123 } else if (type == SIT_JOURNAL) {
4124 for (i = 0; i < sits_in_cursum(journal); i++)
4125 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4126 return i;
4127 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4128 return update_sits_in_cursum(journal, 1);
4129 }
4130 return -1;
4131}
4132
4133static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4134 unsigned int segno)
4135{
4136 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4137}
4138
4139static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4140 unsigned int start)
4141{
4142 struct sit_info *sit_i = SIT_I(sbi);
4143 struct page *page;
4144 pgoff_t src_off, dst_off;
4145
4146 src_off = current_sit_addr(sbi, start);
4147 dst_off = next_sit_addr(sbi, src_off);
4148
4149 page = f2fs_grab_meta_page(sbi, dst_off);
4150 seg_info_to_sit_page(sbi, page, start);
4151
4152 set_page_dirty(page);
4153 set_to_next_sit(sit_i, start);
4154
4155 return page;
4156}
4157
4158static struct sit_entry_set *grab_sit_entry_set(void)
4159{
4160 struct sit_entry_set *ses =
4161 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4162 GFP_NOFS, true, NULL);
4163
4164 ses->entry_cnt = 0;
4165 INIT_LIST_HEAD(&ses->set_list);
4166 return ses;
4167}
4168
4169static void release_sit_entry_set(struct sit_entry_set *ses)
4170{
4171 list_del(&ses->set_list);
4172 kmem_cache_free(sit_entry_set_slab, ses);
4173}
4174
4175static void adjust_sit_entry_set(struct sit_entry_set *ses,
4176 struct list_head *head)
4177{
4178 struct sit_entry_set *next = ses;
4179
4180 if (list_is_last(&ses->set_list, head))
4181 return;
4182
4183 list_for_each_entry_continue(next, head, set_list)
4184 if (ses->entry_cnt <= next->entry_cnt) {
4185 list_move_tail(&ses->set_list, &next->set_list);
4186 return;
4187 }
4188
4189 list_move_tail(&ses->set_list, head);
4190}
4191
4192static void add_sit_entry(unsigned int segno, struct list_head *head)
4193{
4194 struct sit_entry_set *ses;
4195 unsigned int start_segno = START_SEGNO(segno);
4196
4197 list_for_each_entry(ses, head, set_list) {
4198 if (ses->start_segno == start_segno) {
4199 ses->entry_cnt++;
4200 adjust_sit_entry_set(ses, head);
4201 return;
4202 }
4203 }
4204
4205 ses = grab_sit_entry_set();
4206
4207 ses->start_segno = start_segno;
4208 ses->entry_cnt++;
4209 list_add(&ses->set_list, head);
4210}
4211
4212static void add_sits_in_set(struct f2fs_sb_info *sbi)
4213{
4214 struct f2fs_sm_info *sm_info = SM_I(sbi);
4215 struct list_head *set_list = &sm_info->sit_entry_set;
4216 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4217 unsigned int segno;
4218
4219 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4220 add_sit_entry(segno, set_list);
4221}
4222
4223static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4224{
4225 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4226 struct f2fs_journal *journal = curseg->journal;
4227 int i;
4228
4229 down_write(&curseg->journal_rwsem);
4230 for (i = 0; i < sits_in_cursum(journal); i++) {
4231 unsigned int segno;
4232 bool dirtied;
4233
4234 segno = le32_to_cpu(segno_in_journal(journal, i));
4235 dirtied = __mark_sit_entry_dirty(sbi, segno);
4236
4237 if (!dirtied)
4238 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4239 }
4240 update_sits_in_cursum(journal, -i);
4241 up_write(&curseg->journal_rwsem);
4242}
4243
4244/*
4245 * CP calls this function, which flushes SIT entries including sit_journal,
4246 * and moves prefree segs to free segs.
4247 */
4248void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4249{
4250 struct sit_info *sit_i = SIT_I(sbi);
4251 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4252 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4253 struct f2fs_journal *journal = curseg->journal;
4254 struct sit_entry_set *ses, *tmp;
4255 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4256 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4257 struct seg_entry *se;
4258
4259 down_write(&sit_i->sentry_lock);
4260
4261 if (!sit_i->dirty_sentries)
4262 goto out;
4263
4264 /*
4265 * add and account sit entries of dirty bitmap in sit entry
4266 * set temporarily
4267 */
4268 add_sits_in_set(sbi);
4269
4270 /*
4271 * if there are no enough space in journal to store dirty sit
4272 * entries, remove all entries from journal and add and account
4273 * them in sit entry set.
4274 */
4275 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4276 !to_journal)
4277 remove_sits_in_journal(sbi);
4278
4279 /*
4280 * there are two steps to flush sit entries:
4281 * #1, flush sit entries to journal in current cold data summary block.
4282 * #2, flush sit entries to sit page.
4283 */
4284 list_for_each_entry_safe(ses, tmp, head, set_list) {
4285 struct page *page = NULL;
4286 struct f2fs_sit_block *raw_sit = NULL;
4287 unsigned int start_segno = ses->start_segno;
4288 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4289 (unsigned long)MAIN_SEGS(sbi));
4290 unsigned int segno = start_segno;
4291
4292 if (to_journal &&
4293 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4294 to_journal = false;
4295
4296 if (to_journal) {
4297 down_write(&curseg->journal_rwsem);
4298 } else {
4299 page = get_next_sit_page(sbi, start_segno);
4300 raw_sit = page_address(page);
4301 }
4302
4303 /* flush dirty sit entries in region of current sit set */
4304 for_each_set_bit_from(segno, bitmap, end) {
4305 int offset, sit_offset;
4306
4307 se = get_seg_entry(sbi, segno);
4308#ifdef CONFIG_F2FS_CHECK_FS
4309 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4310 SIT_VBLOCK_MAP_SIZE))
4311 f2fs_bug_on(sbi, 1);
4312#endif
4313
4314 /* add discard candidates */
4315 if (!(cpc->reason & CP_DISCARD)) {
4316 cpc->trim_start = segno;
4317 add_discard_addrs(sbi, cpc, false);
4318 }
4319
4320 if (to_journal) {
4321 offset = f2fs_lookup_journal_in_cursum(journal,
4322 SIT_JOURNAL, segno, 1);
4323 f2fs_bug_on(sbi, offset < 0);
4324 segno_in_journal(journal, offset) =
4325 cpu_to_le32(segno);
4326 seg_info_to_raw_sit(se,
4327 &sit_in_journal(journal, offset));
4328 check_block_count(sbi, segno,
4329 &sit_in_journal(journal, offset));
4330 } else {
4331 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4332 seg_info_to_raw_sit(se,
4333 &raw_sit->entries[sit_offset]);
4334 check_block_count(sbi, segno,
4335 &raw_sit->entries[sit_offset]);
4336 }
4337
4338 __clear_bit(segno, bitmap);
4339 sit_i->dirty_sentries--;
4340 ses->entry_cnt--;
4341 }
4342
4343 if (to_journal)
4344 up_write(&curseg->journal_rwsem);
4345 else
4346 f2fs_put_page(page, 1);
4347
4348 f2fs_bug_on(sbi, ses->entry_cnt);
4349 release_sit_entry_set(ses);
4350 }
4351
4352 f2fs_bug_on(sbi, !list_empty(head));
4353 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4354out:
4355 if (cpc->reason & CP_DISCARD) {
4356 __u64 trim_start = cpc->trim_start;
4357
4358 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4359 add_discard_addrs(sbi, cpc, false);
4360
4361 cpc->trim_start = trim_start;
4362 }
4363 up_write(&sit_i->sentry_lock);
4364
4365 set_prefree_as_free_segments(sbi);
4366}
4367
4368static int build_sit_info(struct f2fs_sb_info *sbi)
4369{
4370 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4371 struct sit_info *sit_i;
4372 unsigned int sit_segs, start;
4373 char *src_bitmap, *bitmap;
4374 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4375 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4376
4377 /* allocate memory for SIT information */
4378 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4379 if (!sit_i)
4380 return -ENOMEM;
4381
4382 SM_I(sbi)->sit_info = sit_i;
4383
4384 sit_i->sentries =
4385 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4386 MAIN_SEGS(sbi)),
4387 GFP_KERNEL);
4388 if (!sit_i->sentries)
4389 return -ENOMEM;
4390
4391 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4392 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4393 GFP_KERNEL);
4394 if (!sit_i->dirty_sentries_bitmap)
4395 return -ENOMEM;
4396
4397#ifdef CONFIG_F2FS_CHECK_FS
4398 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4399#else
4400 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4401#endif
4402 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4403 if (!sit_i->bitmap)
4404 return -ENOMEM;
4405
4406 bitmap = sit_i->bitmap;
4407
4408 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4409 sit_i->sentries[start].cur_valid_map = bitmap;
4410 bitmap += SIT_VBLOCK_MAP_SIZE;
4411
4412 sit_i->sentries[start].ckpt_valid_map = bitmap;
4413 bitmap += SIT_VBLOCK_MAP_SIZE;
4414
4415#ifdef CONFIG_F2FS_CHECK_FS
4416 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4417 bitmap += SIT_VBLOCK_MAP_SIZE;
4418#endif
4419
4420 if (discard_map) {
4421 sit_i->sentries[start].discard_map = bitmap;
4422 bitmap += SIT_VBLOCK_MAP_SIZE;
4423 }
4424 }
4425
4426 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4427 if (!sit_i->tmp_map)
4428 return -ENOMEM;
4429
4430 if (__is_large_section(sbi)) {
4431 sit_i->sec_entries =
4432 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4433 MAIN_SECS(sbi)),
4434 GFP_KERNEL);
4435 if (!sit_i->sec_entries)
4436 return -ENOMEM;
4437 }
4438
4439 /* get information related with SIT */
4440 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4441
4442 /* setup SIT bitmap from ckeckpoint pack */
4443 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4444 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4445
4446 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4447 if (!sit_i->sit_bitmap)
4448 return -ENOMEM;
4449
4450#ifdef CONFIG_F2FS_CHECK_FS
4451 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4452 sit_bitmap_size, GFP_KERNEL);
4453 if (!sit_i->sit_bitmap_mir)
4454 return -ENOMEM;
4455
4456 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4457 main_bitmap_size, GFP_KERNEL);
4458 if (!sit_i->invalid_segmap)
4459 return -ENOMEM;
4460#endif
4461
4462 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4463 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4464 sit_i->written_valid_blocks = 0;
4465 sit_i->bitmap_size = sit_bitmap_size;
4466 sit_i->dirty_sentries = 0;
4467 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4468 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4469 sit_i->mounted_time = ktime_get_boottime_seconds();
4470 init_rwsem(&sit_i->sentry_lock);
4471 return 0;
4472}
4473
4474static int build_free_segmap(struct f2fs_sb_info *sbi)
4475{
4476 struct free_segmap_info *free_i;
4477 unsigned int bitmap_size, sec_bitmap_size;
4478
4479 /* allocate memory for free segmap information */
4480 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4481 if (!free_i)
4482 return -ENOMEM;
4483
4484 SM_I(sbi)->free_info = free_i;
4485
4486 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4487 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4488 if (!free_i->free_segmap)
4489 return -ENOMEM;
4490
4491 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4492 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4493 if (!free_i->free_secmap)
4494 return -ENOMEM;
4495
4496 /* set all segments as dirty temporarily */
4497 memset(free_i->free_segmap, 0xff, bitmap_size);
4498 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4499
4500 /* init free segmap information */
4501 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4502 free_i->free_segments = 0;
4503 free_i->free_sections = 0;
4504 spin_lock_init(&free_i->segmap_lock);
4505 return 0;
4506}
4507
4508static int build_curseg(struct f2fs_sb_info *sbi)
4509{
4510 struct curseg_info *array;
4511 int i;
4512
4513 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4514 sizeof(*array)), GFP_KERNEL);
4515 if (!array)
4516 return -ENOMEM;
4517
4518 SM_I(sbi)->curseg_array = array;
4519
4520 for (i = 0; i < NO_CHECK_TYPE; i++) {
4521 mutex_init(&array[i].curseg_mutex);
4522 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4523 if (!array[i].sum_blk)
4524 return -ENOMEM;
4525 init_rwsem(&array[i].journal_rwsem);
4526 array[i].journal = f2fs_kzalloc(sbi,
4527 sizeof(struct f2fs_journal), GFP_KERNEL);
4528 if (!array[i].journal)
4529 return -ENOMEM;
4530 if (i < NR_PERSISTENT_LOG)
4531 array[i].seg_type = CURSEG_HOT_DATA + i;
4532 else if (i == CURSEG_COLD_DATA_PINNED)
4533 array[i].seg_type = CURSEG_COLD_DATA;
4534 else if (i == CURSEG_ALL_DATA_ATGC)
4535 array[i].seg_type = CURSEG_COLD_DATA;
4536 array[i].segno = NULL_SEGNO;
4537 array[i].next_blkoff = 0;
4538 array[i].inited = false;
4539 }
4540 return restore_curseg_summaries(sbi);
4541}
4542
4543static int build_sit_entries(struct f2fs_sb_info *sbi)
4544{
4545 struct sit_info *sit_i = SIT_I(sbi);
4546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4547 struct f2fs_journal *journal = curseg->journal;
4548 struct seg_entry *se;
4549 struct f2fs_sit_entry sit;
4550 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4551 unsigned int i, start, end;
4552 unsigned int readed, start_blk = 0;
4553 int err = 0;
4554 block_t sit_valid_blocks[2] = {0, 0};
4555
4556 do {
4557 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4558 META_SIT, true);
4559
4560 start = start_blk * sit_i->sents_per_block;
4561 end = (start_blk + readed) * sit_i->sents_per_block;
4562
4563 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4564 struct f2fs_sit_block *sit_blk;
4565 struct page *page;
4566
4567 se = &sit_i->sentries[start];
4568 page = get_current_sit_page(sbi, start);
4569 if (IS_ERR(page))
4570 return PTR_ERR(page);
4571 sit_blk = (struct f2fs_sit_block *)page_address(page);
4572 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4573 f2fs_put_page(page, 1);
4574
4575 err = check_block_count(sbi, start, &sit);
4576 if (err)
4577 return err;
4578 seg_info_from_raw_sit(se, &sit);
4579
4580 if (se->type >= NR_PERSISTENT_LOG) {
4581 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4582 se->type, start);
4583 f2fs_handle_error(sbi,
4584 ERROR_INCONSISTENT_SUM_TYPE);
4585 return -EFSCORRUPTED;
4586 }
4587
4588 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4589
4590 if (f2fs_block_unit_discard(sbi)) {
4591 /* build discard map only one time */
4592 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4593 memset(se->discard_map, 0xff,
4594 SIT_VBLOCK_MAP_SIZE);
4595 } else {
4596 memcpy(se->discard_map,
4597 se->cur_valid_map,
4598 SIT_VBLOCK_MAP_SIZE);
4599 sbi->discard_blks +=
4600 sbi->blocks_per_seg -
4601 se->valid_blocks;
4602 }
4603 }
4604
4605 if (__is_large_section(sbi))
4606 get_sec_entry(sbi, start)->valid_blocks +=
4607 se->valid_blocks;
4608 }
4609 start_blk += readed;
4610 } while (start_blk < sit_blk_cnt);
4611
4612 down_read(&curseg->journal_rwsem);
4613 for (i = 0; i < sits_in_cursum(journal); i++) {
4614 unsigned int old_valid_blocks;
4615
4616 start = le32_to_cpu(segno_in_journal(journal, i));
4617 if (start >= MAIN_SEGS(sbi)) {
4618 f2fs_err(sbi, "Wrong journal entry on segno %u",
4619 start);
4620 err = -EFSCORRUPTED;
4621 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4622 break;
4623 }
4624
4625 se = &sit_i->sentries[start];
4626 sit = sit_in_journal(journal, i);
4627
4628 old_valid_blocks = se->valid_blocks;
4629
4630 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4631
4632 err = check_block_count(sbi, start, &sit);
4633 if (err)
4634 break;
4635 seg_info_from_raw_sit(se, &sit);
4636
4637 if (se->type >= NR_PERSISTENT_LOG) {
4638 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4639 se->type, start);
4640 err = -EFSCORRUPTED;
4641 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4642 break;
4643 }
4644
4645 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4646
4647 if (f2fs_block_unit_discard(sbi)) {
4648 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4649 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4650 } else {
4651 memcpy(se->discard_map, se->cur_valid_map,
4652 SIT_VBLOCK_MAP_SIZE);
4653 sbi->discard_blks += old_valid_blocks;
4654 sbi->discard_blks -= se->valid_blocks;
4655 }
4656 }
4657
4658 if (__is_large_section(sbi)) {
4659 get_sec_entry(sbi, start)->valid_blocks +=
4660 se->valid_blocks;
4661 get_sec_entry(sbi, start)->valid_blocks -=
4662 old_valid_blocks;
4663 }
4664 }
4665 up_read(&curseg->journal_rwsem);
4666
4667 if (err)
4668 return err;
4669
4670 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4671 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4672 sit_valid_blocks[NODE], valid_node_count(sbi));
4673 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4674 return -EFSCORRUPTED;
4675 }
4676
4677 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4678 valid_user_blocks(sbi)) {
4679 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4680 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4681 valid_user_blocks(sbi));
4682 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4683 return -EFSCORRUPTED;
4684 }
4685
4686 return 0;
4687}
4688
4689static void init_free_segmap(struct f2fs_sb_info *sbi)
4690{
4691 unsigned int start;
4692 int type;
4693 struct seg_entry *sentry;
4694
4695 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4696 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4697 continue;
4698 sentry = get_seg_entry(sbi, start);
4699 if (!sentry->valid_blocks)
4700 __set_free(sbi, start);
4701 else
4702 SIT_I(sbi)->written_valid_blocks +=
4703 sentry->valid_blocks;
4704 }
4705
4706 /* set use the current segments */
4707 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4708 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4709
4710 __set_test_and_inuse(sbi, curseg_t->segno);
4711 }
4712}
4713
4714static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4715{
4716 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4717 struct free_segmap_info *free_i = FREE_I(sbi);
4718 unsigned int segno = 0, offset = 0, secno;
4719 block_t valid_blocks, usable_blks_in_seg;
4720
4721 while (1) {
4722 /* find dirty segment based on free segmap */
4723 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4724 if (segno >= MAIN_SEGS(sbi))
4725 break;
4726 offset = segno + 1;
4727 valid_blocks = get_valid_blocks(sbi, segno, false);
4728 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4729 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4730 continue;
4731 if (valid_blocks > usable_blks_in_seg) {
4732 f2fs_bug_on(sbi, 1);
4733 continue;
4734 }
4735 mutex_lock(&dirty_i->seglist_lock);
4736 __locate_dirty_segment(sbi, segno, DIRTY);
4737 mutex_unlock(&dirty_i->seglist_lock);
4738 }
4739
4740 if (!__is_large_section(sbi))
4741 return;
4742
4743 mutex_lock(&dirty_i->seglist_lock);
4744 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4745 valid_blocks = get_valid_blocks(sbi, segno, true);
4746 secno = GET_SEC_FROM_SEG(sbi, segno);
4747
4748 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4749 continue;
4750 if (IS_CURSEC(sbi, secno))
4751 continue;
4752 set_bit(secno, dirty_i->dirty_secmap);
4753 }
4754 mutex_unlock(&dirty_i->seglist_lock);
4755}
4756
4757static int init_victim_secmap(struct f2fs_sb_info *sbi)
4758{
4759 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4760 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4761
4762 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4763 if (!dirty_i->victim_secmap)
4764 return -ENOMEM;
4765
4766 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4767 if (!dirty_i->pinned_secmap)
4768 return -ENOMEM;
4769
4770 dirty_i->pinned_secmap_cnt = 0;
4771 dirty_i->enable_pin_section = true;
4772 return 0;
4773}
4774
4775static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4776{
4777 struct dirty_seglist_info *dirty_i;
4778 unsigned int bitmap_size, i;
4779
4780 /* allocate memory for dirty segments list information */
4781 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4782 GFP_KERNEL);
4783 if (!dirty_i)
4784 return -ENOMEM;
4785
4786 SM_I(sbi)->dirty_info = dirty_i;
4787 mutex_init(&dirty_i->seglist_lock);
4788
4789 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4790
4791 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4792 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4793 GFP_KERNEL);
4794 if (!dirty_i->dirty_segmap[i])
4795 return -ENOMEM;
4796 }
4797
4798 if (__is_large_section(sbi)) {
4799 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4800 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4801 bitmap_size, GFP_KERNEL);
4802 if (!dirty_i->dirty_secmap)
4803 return -ENOMEM;
4804 }
4805
4806 init_dirty_segmap(sbi);
4807 return init_victim_secmap(sbi);
4808}
4809
4810static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4811{
4812 int i;
4813
4814 /*
4815 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4816 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4817 */
4818 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4819 struct curseg_info *curseg = CURSEG_I(sbi, i);
4820 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4821 unsigned int blkofs = curseg->next_blkoff;
4822
4823 if (f2fs_sb_has_readonly(sbi) &&
4824 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4825 continue;
4826
4827 sanity_check_seg_type(sbi, curseg->seg_type);
4828
4829 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4830 f2fs_err(sbi,
4831 "Current segment has invalid alloc_type:%d",
4832 curseg->alloc_type);
4833 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4834 return -EFSCORRUPTED;
4835 }
4836
4837 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4838 goto out;
4839
4840 if (curseg->alloc_type == SSR)
4841 continue;
4842
4843 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4844 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4845 continue;
4846out:
4847 f2fs_err(sbi,
4848 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4849 i, curseg->segno, curseg->alloc_type,
4850 curseg->next_blkoff, blkofs);
4851 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4852 return -EFSCORRUPTED;
4853 }
4854 }
4855 return 0;
4856}
4857
4858#ifdef CONFIG_BLK_DEV_ZONED
4859
4860static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4861 struct f2fs_dev_info *fdev,
4862 struct blk_zone *zone)
4863{
4864 unsigned int zone_segno;
4865 block_t zone_block, valid_block_cnt;
4866 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4867 int ret;
4868
4869 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4870 return 0;
4871
4872 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4873 zone_segno = GET_SEGNO(sbi, zone_block);
4874
4875 /*
4876 * Skip check of zones cursegs point to, since
4877 * fix_curseg_write_pointer() checks them.
4878 */
4879 if (zone_segno >= MAIN_SEGS(sbi) ||
4880 IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno)))
4881 return 0;
4882
4883 /*
4884 * Get # of valid block of the zone.
4885 */
4886 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
4887
4888 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
4889 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
4890 return 0;
4891
4892 if (!valid_block_cnt) {
4893 f2fs_notice(sbi, "Zone without valid block has non-zero write "
4894 "pointer. Reset the write pointer: cond[0x%x]",
4895 zone->cond);
4896 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4897 zone->len >> log_sectors_per_block);
4898 if (ret)
4899 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4900 fdev->path, ret);
4901 return ret;
4902 }
4903
4904 /*
4905 * If there are valid blocks and the write pointer doesn't match
4906 * with them, we need to report the inconsistency and fill
4907 * the zone till the end to close the zone. This inconsistency
4908 * does not cause write error because the zone will not be
4909 * selected for write operation until it get discarded.
4910 */
4911 f2fs_notice(sbi, "Valid blocks are not aligned with write "
4912 "pointer: valid block[0x%x,0x%x] cond[0x%x]",
4913 zone_segno, valid_block_cnt, zone->cond);
4914
4915 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4916 zone->start, zone->len, GFP_NOFS);
4917 if (ret == -EOPNOTSUPP) {
4918 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4919 zone->len - (zone->wp - zone->start),
4920 GFP_NOFS, 0);
4921 if (ret)
4922 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4923 fdev->path, ret);
4924 } else if (ret) {
4925 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4926 fdev->path, ret);
4927 }
4928
4929 return ret;
4930}
4931
4932static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4933 block_t zone_blkaddr)
4934{
4935 int i;
4936
4937 for (i = 0; i < sbi->s_ndevs; i++) {
4938 if (!bdev_is_zoned(FDEV(i).bdev))
4939 continue;
4940 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4941 zone_blkaddr <= FDEV(i).end_blk))
4942 return &FDEV(i);
4943 }
4944
4945 return NULL;
4946}
4947
4948static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4949 void *data)
4950{
4951 memcpy(data, zone, sizeof(struct blk_zone));
4952 return 0;
4953}
4954
4955static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4956{
4957 struct curseg_info *cs = CURSEG_I(sbi, type);
4958 struct f2fs_dev_info *zbd;
4959 struct blk_zone zone;
4960 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4961 block_t cs_zone_block, wp_block;
4962 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4963 sector_t zone_sector;
4964 int err;
4965
4966 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4967 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4968
4969 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4970 if (!zbd)
4971 return 0;
4972
4973 /* report zone for the sector the curseg points to */
4974 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4975 << log_sectors_per_block;
4976 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4977 report_one_zone_cb, &zone);
4978 if (err != 1) {
4979 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4980 zbd->path, err);
4981 return err;
4982 }
4983
4984 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4985 return 0;
4986
4987 /*
4988 * When safely unmounted in the previous mount, we could use current
4989 * segments. Otherwise, allocate new sections.
4990 */
4991 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4992 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4993 wp_segno = GET_SEGNO(sbi, wp_block);
4994 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4995 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4996
4997 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4998 wp_sector_off == 0)
4999 return 0;
5000
5001 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5002 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5003 cs->next_blkoff, wp_segno, wp_blkoff);
5004 }
5005
5006 /* Allocate a new section if it's not new. */
5007 if (cs->next_blkoff) {
5008 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5009
5010 f2fs_allocate_new_section(sbi, type, true);
5011 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5012 "[0x%x,0x%x] -> [0x%x,0x%x]",
5013 type, old_segno, old_blkoff,
5014 cs->segno, cs->next_blkoff);
5015 }
5016
5017 /* check consistency of the zone curseg pointed to */
5018 if (check_zone_write_pointer(sbi, zbd, &zone))
5019 return -EIO;
5020
5021 /* check newly assigned zone */
5022 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5023 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5024
5025 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5026 if (!zbd)
5027 return 0;
5028
5029 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5030 << log_sectors_per_block;
5031 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5032 report_one_zone_cb, &zone);
5033 if (err != 1) {
5034 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5035 zbd->path, err);
5036 return err;
5037 }
5038
5039 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5040 return 0;
5041
5042 if (zone.wp != zone.start) {
5043 f2fs_notice(sbi,
5044 "New zone for curseg[%d] is not yet discarded. "
5045 "Reset the zone: curseg[0x%x,0x%x]",
5046 type, cs->segno, cs->next_blkoff);
5047 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5048 zone.len >> log_sectors_per_block);
5049 if (err) {
5050 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5051 zbd->path, err);
5052 return err;
5053 }
5054 }
5055
5056 return 0;
5057}
5058
5059int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5060{
5061 int i, ret;
5062
5063 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5064 ret = fix_curseg_write_pointer(sbi, i);
5065 if (ret)
5066 return ret;
5067 }
5068
5069 return 0;
5070}
5071
5072struct check_zone_write_pointer_args {
5073 struct f2fs_sb_info *sbi;
5074 struct f2fs_dev_info *fdev;
5075};
5076
5077static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5078 void *data)
5079{
5080 struct check_zone_write_pointer_args *args;
5081
5082 args = (struct check_zone_write_pointer_args *)data;
5083
5084 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5085}
5086
5087int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5088{
5089 int i, ret;
5090 struct check_zone_write_pointer_args args;
5091
5092 for (i = 0; i < sbi->s_ndevs; i++) {
5093 if (!bdev_is_zoned(FDEV(i).bdev))
5094 continue;
5095
5096 args.sbi = sbi;
5097 args.fdev = &FDEV(i);
5098 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5099 check_zone_write_pointer_cb, &args);
5100 if (ret < 0)
5101 return ret;
5102 }
5103
5104 return 0;
5105}
5106
5107/*
5108 * Return the number of usable blocks in a segment. The number of blocks
5109 * returned is always equal to the number of blocks in a segment for
5110 * segments fully contained within a sequential zone capacity or a
5111 * conventional zone. For segments partially contained in a sequential
5112 * zone capacity, the number of usable blocks up to the zone capacity
5113 * is returned. 0 is returned in all other cases.
5114 */
5115static inline unsigned int f2fs_usable_zone_blks_in_seg(
5116 struct f2fs_sb_info *sbi, unsigned int segno)
5117{
5118 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5119 unsigned int secno;
5120
5121 if (!sbi->unusable_blocks_per_sec)
5122 return sbi->blocks_per_seg;
5123
5124 secno = GET_SEC_FROM_SEG(sbi, segno);
5125 seg_start = START_BLOCK(sbi, segno);
5126 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5127 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5128
5129 /*
5130 * If segment starts before zone capacity and spans beyond
5131 * zone capacity, then usable blocks are from seg start to
5132 * zone capacity. If the segment starts after the zone capacity,
5133 * then there are no usable blocks.
5134 */
5135 if (seg_start >= sec_cap_blkaddr)
5136 return 0;
5137 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5138 return sec_cap_blkaddr - seg_start;
5139
5140 return sbi->blocks_per_seg;
5141}
5142#else
5143int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5144{
5145 return 0;
5146}
5147
5148int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5149{
5150 return 0;
5151}
5152
5153static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5154 unsigned int segno)
5155{
5156 return 0;
5157}
5158
5159#endif
5160unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5161 unsigned int segno)
5162{
5163 if (f2fs_sb_has_blkzoned(sbi))
5164 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5165
5166 return sbi->blocks_per_seg;
5167}
5168
5169unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5170 unsigned int segno)
5171{
5172 if (f2fs_sb_has_blkzoned(sbi))
5173 return CAP_SEGS_PER_SEC(sbi);
5174
5175 return sbi->segs_per_sec;
5176}
5177
5178/*
5179 * Update min, max modified time for cost-benefit GC algorithm
5180 */
5181static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5182{
5183 struct sit_info *sit_i = SIT_I(sbi);
5184 unsigned int segno;
5185
5186 down_write(&sit_i->sentry_lock);
5187
5188 sit_i->min_mtime = ULLONG_MAX;
5189
5190 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5191 unsigned int i;
5192 unsigned long long mtime = 0;
5193
5194 for (i = 0; i < sbi->segs_per_sec; i++)
5195 mtime += get_seg_entry(sbi, segno + i)->mtime;
5196
5197 mtime = div_u64(mtime, sbi->segs_per_sec);
5198
5199 if (sit_i->min_mtime > mtime)
5200 sit_i->min_mtime = mtime;
5201 }
5202 sit_i->max_mtime = get_mtime(sbi, false);
5203 sit_i->dirty_max_mtime = 0;
5204 up_write(&sit_i->sentry_lock);
5205}
5206
5207int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5208{
5209 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5210 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5211 struct f2fs_sm_info *sm_info;
5212 int err;
5213
5214 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5215 if (!sm_info)
5216 return -ENOMEM;
5217
5218 /* init sm info */
5219 sbi->sm_info = sm_info;
5220 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5221 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5222 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5223 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5224 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5225 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5226 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5227 sm_info->rec_prefree_segments = sm_info->main_segments *
5228 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5229 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5230 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5231
5232 if (!f2fs_lfs_mode(sbi))
5233 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5234 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5235 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5236 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5237 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5238 sm_info->min_ssr_sections = reserved_sections(sbi);
5239
5240 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5241
5242 init_f2fs_rwsem(&sm_info->curseg_lock);
5243
5244 err = f2fs_create_flush_cmd_control(sbi);
5245 if (err)
5246 return err;
5247
5248 err = create_discard_cmd_control(sbi);
5249 if (err)
5250 return err;
5251
5252 err = build_sit_info(sbi);
5253 if (err)
5254 return err;
5255 err = build_free_segmap(sbi);
5256 if (err)
5257 return err;
5258 err = build_curseg(sbi);
5259 if (err)
5260 return err;
5261
5262 /* reinit free segmap based on SIT */
5263 err = build_sit_entries(sbi);
5264 if (err)
5265 return err;
5266
5267 init_free_segmap(sbi);
5268 err = build_dirty_segmap(sbi);
5269 if (err)
5270 return err;
5271
5272 err = sanity_check_curseg(sbi);
5273 if (err)
5274 return err;
5275
5276 init_min_max_mtime(sbi);
5277 return 0;
5278}
5279
5280static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5281 enum dirty_type dirty_type)
5282{
5283 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5284
5285 mutex_lock(&dirty_i->seglist_lock);
5286 kvfree(dirty_i->dirty_segmap[dirty_type]);
5287 dirty_i->nr_dirty[dirty_type] = 0;
5288 mutex_unlock(&dirty_i->seglist_lock);
5289}
5290
5291static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5292{
5293 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5294
5295 kvfree(dirty_i->pinned_secmap);
5296 kvfree(dirty_i->victim_secmap);
5297}
5298
5299static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5300{
5301 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5302 int i;
5303
5304 if (!dirty_i)
5305 return;
5306
5307 /* discard pre-free/dirty segments list */
5308 for (i = 0; i < NR_DIRTY_TYPE; i++)
5309 discard_dirty_segmap(sbi, i);
5310
5311 if (__is_large_section(sbi)) {
5312 mutex_lock(&dirty_i->seglist_lock);
5313 kvfree(dirty_i->dirty_secmap);
5314 mutex_unlock(&dirty_i->seglist_lock);
5315 }
5316
5317 destroy_victim_secmap(sbi);
5318 SM_I(sbi)->dirty_info = NULL;
5319 kfree(dirty_i);
5320}
5321
5322static void destroy_curseg(struct f2fs_sb_info *sbi)
5323{
5324 struct curseg_info *array = SM_I(sbi)->curseg_array;
5325 int i;
5326
5327 if (!array)
5328 return;
5329 SM_I(sbi)->curseg_array = NULL;
5330 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5331 kfree(array[i].sum_blk);
5332 kfree(array[i].journal);
5333 }
5334 kfree(array);
5335}
5336
5337static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5338{
5339 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5340
5341 if (!free_i)
5342 return;
5343 SM_I(sbi)->free_info = NULL;
5344 kvfree(free_i->free_segmap);
5345 kvfree(free_i->free_secmap);
5346 kfree(free_i);
5347}
5348
5349static void destroy_sit_info(struct f2fs_sb_info *sbi)
5350{
5351 struct sit_info *sit_i = SIT_I(sbi);
5352
5353 if (!sit_i)
5354 return;
5355
5356 if (sit_i->sentries)
5357 kvfree(sit_i->bitmap);
5358 kfree(sit_i->tmp_map);
5359
5360 kvfree(sit_i->sentries);
5361 kvfree(sit_i->sec_entries);
5362 kvfree(sit_i->dirty_sentries_bitmap);
5363
5364 SM_I(sbi)->sit_info = NULL;
5365 kvfree(sit_i->sit_bitmap);
5366#ifdef CONFIG_F2FS_CHECK_FS
5367 kvfree(sit_i->sit_bitmap_mir);
5368 kvfree(sit_i->invalid_segmap);
5369#endif
5370 kfree(sit_i);
5371}
5372
5373void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5374{
5375 struct f2fs_sm_info *sm_info = SM_I(sbi);
5376
5377 if (!sm_info)
5378 return;
5379 f2fs_destroy_flush_cmd_control(sbi, true);
5380 destroy_discard_cmd_control(sbi);
5381 destroy_dirty_segmap(sbi);
5382 destroy_curseg(sbi);
5383 destroy_free_segmap(sbi);
5384 destroy_sit_info(sbi);
5385 sbi->sm_info = NULL;
5386 kfree(sm_info);
5387}
5388
5389int __init f2fs_create_segment_manager_caches(void)
5390{
5391 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5392 sizeof(struct discard_entry));
5393 if (!discard_entry_slab)
5394 goto fail;
5395
5396 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5397 sizeof(struct discard_cmd));
5398 if (!discard_cmd_slab)
5399 goto destroy_discard_entry;
5400
5401 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5402 sizeof(struct sit_entry_set));
5403 if (!sit_entry_set_slab)
5404 goto destroy_discard_cmd;
5405
5406 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5407 sizeof(struct revoke_entry));
5408 if (!revoke_entry_slab)
5409 goto destroy_sit_entry_set;
5410 return 0;
5411
5412destroy_sit_entry_set:
5413 kmem_cache_destroy(sit_entry_set_slab);
5414destroy_discard_cmd:
5415 kmem_cache_destroy(discard_cmd_slab);
5416destroy_discard_entry:
5417 kmem_cache_destroy(discard_entry_slab);
5418fail:
5419 return -ENOMEM;
5420}
5421
5422void f2fs_destroy_segment_manager_caches(void)
5423{
5424 kmem_cache_destroy(sit_entry_set_slab);
5425 kmem_cache_destroy(discard_cmd_slab);
5426 kmem_cache_destroy(discard_entry_slab);
5427 kmem_cache_destroy(revoke_entry_slab);
5428}