Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
 
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
 
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
 
  23#include <trace/events/f2fs.h>
  24
  25#define __reverse_ffz(x) __reverse_ffs(~(x))
  26
  27static struct kmem_cache *discard_entry_slab;
  28static struct kmem_cache *discard_cmd_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34	unsigned long tmp = 0;
  35	int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38	shift = 56;
  39#endif
  40	while (shift >= 0) {
  41		tmp |= (unsigned long)str[idx++] << shift;
  42		shift -= BITS_PER_BYTE;
  43	}
  44	return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53	int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56	if ((word & 0xffffffff00000000UL) == 0)
  57		num += 32;
  58	else
  59		word >>= 32;
  60#endif
  61	if ((word & 0xffff0000) == 0)
  62		num += 16;
  63	else
  64		word >>= 16;
  65
  66	if ((word & 0xff00) == 0)
  67		num += 8;
  68	else
  69		word >>= 8;
  70
  71	if ((word & 0xf0) == 0)
  72		num += 4;
  73	else
  74		word >>= 4;
  75
  76	if ((word & 0xc) == 0)
  77		num += 2;
  78	else
  79		word >>= 2;
  80
  81	if ((word & 0x2) == 0)
  82		num += 1;
  83	return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96			unsigned long size, unsigned long offset)
  97{
  98	const unsigned long *p = addr + BIT_WORD(offset);
  99	unsigned long result = size;
 100	unsigned long tmp;
 101
 102	if (offset >= size)
 103		return size;
 104
 105	size -= (offset & ~(BITS_PER_LONG - 1));
 106	offset %= BITS_PER_LONG;
 107
 108	while (1) {
 109		if (*p == 0)
 110			goto pass;
 111
 112		tmp = __reverse_ulong((unsigned char *)p);
 113
 114		tmp &= ~0UL >> offset;
 115		if (size < BITS_PER_LONG)
 116			tmp &= (~0UL << (BITS_PER_LONG - size));
 117		if (tmp)
 118			goto found;
 119pass:
 120		if (size <= BITS_PER_LONG)
 121			break;
 122		size -= BITS_PER_LONG;
 123		offset = 0;
 124		p++;
 125	}
 126	return result;
 127found:
 128	return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132			unsigned long size, unsigned long offset)
 133{
 134	const unsigned long *p = addr + BIT_WORD(offset);
 135	unsigned long result = size;
 136	unsigned long tmp;
 137
 138	if (offset >= size)
 139		return size;
 140
 141	size -= (offset & ~(BITS_PER_LONG - 1));
 142	offset %= BITS_PER_LONG;
 143
 144	while (1) {
 145		if (*p == ~0UL)
 146			goto pass;
 147
 148		tmp = __reverse_ulong((unsigned char *)p);
 149
 150		if (offset)
 151			tmp |= ~0UL << (BITS_PER_LONG - offset);
 152		if (size < BITS_PER_LONG)
 153			tmp |= ~0UL >> size;
 154		if (tmp != ~0UL)
 155			goto found;
 156pass:
 157		if (size <= BITS_PER_LONG)
 158			break;
 159		size -= BITS_PER_LONG;
 160		offset = 0;
 161		p++;
 162	}
 163	return result;
 164found:
 165	return result - size + __reverse_ffz(tmp);
 166}
 167
 168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 169{
 170	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 171	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 172	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 173
 174	if (f2fs_lfs_mode(sbi))
 175		return false;
 176	if (sbi->gc_mode == GC_URGENT_HIGH)
 177		return true;
 178	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 179		return true;
 180
 181	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 182			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 183}
 184
 185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 186{
 187	struct inmem_pages *new;
 188
 189	set_page_private_atomic(page);
 190
 191	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 
 192
 193	/* add atomic page indices to the list */
 194	new->page = page;
 195	INIT_LIST_HEAD(&new->list);
 
 
 196
 197	/* increase reference count with clean state */
 198	get_page(page);
 199	mutex_lock(&F2FS_I(inode)->inmem_lock);
 200	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 201	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 202	mutex_unlock(&F2FS_I(inode)->inmem_lock);
 203
 204	trace_f2fs_register_inmem_page(page, INMEM);
 
 
 
 
 
 
 205}
 206
 207static int __revoke_inmem_pages(struct inode *inode,
 208				struct list_head *head, bool drop, bool recover,
 209				bool trylock)
 210{
 211	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 212	struct inmem_pages *cur, *tmp;
 213	int err = 0;
 
 214
 215	list_for_each_entry_safe(cur, tmp, head, list) {
 216		struct page *page = cur->page;
 
 
 
 
 
 
 
 
 217
 218		if (drop)
 219			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 
 
 
 220
 221		if (trylock) {
 222			/*
 223			 * to avoid deadlock in between page lock and
 224			 * inmem_lock.
 225			 */
 226			if (!trylock_page(page))
 227				continue;
 228		} else {
 229			lock_page(page);
 
 230		}
 
 
 231
 232		f2fs_wait_on_page_writeback(page, DATA, true, true);
 233
 234		if (recover) {
 235			struct dnode_of_data dn;
 236			struct node_info ni;
 237
 238			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 239retry:
 240			set_new_dnode(&dn, inode, NULL, NULL, 0);
 241			err = f2fs_get_dnode_of_data(&dn, page->index,
 242								LOOKUP_NODE);
 243			if (err) {
 244				if (err == -ENOMEM) {
 245					congestion_wait(BLK_RW_ASYNC,
 246							DEFAULT_IO_TIMEOUT);
 247					cond_resched();
 248					goto retry;
 249				}
 250				err = -EAGAIN;
 251				goto next;
 252			}
 253
 254			err = f2fs_get_node_info(sbi, dn.nid, &ni);
 255			if (err) {
 256				f2fs_put_dnode(&dn);
 257				return err;
 258			}
 259
 260			if (cur->old_addr == NEW_ADDR) {
 261				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 262				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 263			} else
 264				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 265					cur->old_addr, ni.version, true, true);
 266			f2fs_put_dnode(&dn);
 
 267		}
 268next:
 269		/* we don't need to invalidate this in the sccessful status */
 270		if (drop || recover) {
 271			ClearPageUptodate(page);
 272			clear_page_private_gcing(page);
 273		}
 274		detach_page_private(page);
 275		set_page_private(page, 0);
 276		f2fs_put_page(page, 1);
 277
 278		list_del(&cur->list);
 279		kmem_cache_free(inmem_entry_slab, cur);
 280		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 281	}
 282	return err;
 283}
 284
 285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 286{
 287	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 288	struct inode *inode;
 289	struct f2fs_inode_info *fi;
 290	unsigned int count = sbi->atomic_files;
 291	unsigned int looped = 0;
 292next:
 293	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 294	if (list_empty(head)) {
 295		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 296		return;
 297	}
 298	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 299	inode = igrab(&fi->vfs_inode);
 300	if (inode)
 301		list_move_tail(&fi->inmem_ilist, head);
 302	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 303
 304	if (inode) {
 305		if (gc_failure) {
 306			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 307				goto skip;
 308		}
 309		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 310		f2fs_drop_inmem_pages(inode);
 311skip:
 312		iput(inode);
 313	}
 314	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 315	cond_resched();
 316	if (gc_failure) {
 317		if (++looped >= count)
 318			return;
 319	}
 320	goto next;
 321}
 322
 323void f2fs_drop_inmem_pages(struct inode *inode)
 324{
 325	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 326	struct f2fs_inode_info *fi = F2FS_I(inode);
 327
 328	do {
 329		mutex_lock(&fi->inmem_lock);
 330		if (list_empty(&fi->inmem_pages)) {
 331			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 332
 333			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 334			if (!list_empty(&fi->inmem_ilist))
 335				list_del_init(&fi->inmem_ilist);
 336			if (f2fs_is_atomic_file(inode)) {
 337				clear_inode_flag(inode, FI_ATOMIC_FILE);
 338				sbi->atomic_files--;
 339			}
 340			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 341
 342			mutex_unlock(&fi->inmem_lock);
 343			break;
 344		}
 345		__revoke_inmem_pages(inode, &fi->inmem_pages,
 346						true, false, true);
 347		mutex_unlock(&fi->inmem_lock);
 348	} while (1);
 349}
 350
 351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 
 352{
 353	struct f2fs_inode_info *fi = F2FS_I(inode);
 354	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 355	struct list_head *head = &fi->inmem_pages;
 356	struct inmem_pages *cur = NULL;
 357
 358	f2fs_bug_on(sbi, !page_private_atomic(page));
 
 
 
 
 
 
 
 359
 360	mutex_lock(&fi->inmem_lock);
 361	list_for_each_entry(cur, head, list) {
 362		if (cur->page == page)
 363			break;
 364	}
 365
 366	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 367	list_del(&cur->list);
 368	mutex_unlock(&fi->inmem_lock);
 369
 370	dec_page_count(sbi, F2FS_INMEM_PAGES);
 371	kmem_cache_free(inmem_entry_slab, cur);
 372
 373	ClearPageUptodate(page);
 374	clear_page_private_atomic(page);
 375	f2fs_put_page(page, 0);
 376
 377	detach_page_private(page);
 378	set_page_private(page, 0);
 379
 380	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 381}
 382
 383static int __f2fs_commit_inmem_pages(struct inode *inode)
 384{
 385	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 386	struct f2fs_inode_info *fi = F2FS_I(inode);
 387	struct inmem_pages *cur, *tmp;
 388	struct f2fs_io_info fio = {
 389		.sbi = sbi,
 390		.ino = inode->i_ino,
 391		.type = DATA,
 392		.op = REQ_OP_WRITE,
 393		.op_flags = REQ_SYNC | REQ_PRIO,
 394		.io_type = FS_DATA_IO,
 395	};
 396	struct list_head revoke_list;
 397	bool submit_bio = false;
 398	int err = 0;
 
 
 
 399
 400	INIT_LIST_HEAD(&revoke_list);
 401
 402	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 403		struct page *page = cur->page;
 404
 405		lock_page(page);
 406		if (page->mapping == inode->i_mapping) {
 407			trace_f2fs_commit_inmem_page(page, INMEM);
 
 
 
 
 
 
 
 408
 409			f2fs_wait_on_page_writeback(page, DATA, true, true);
 
 
 
 
 410
 411			set_page_dirty(page);
 412			if (clear_page_dirty_for_io(page)) {
 413				inode_dec_dirty_pages(inode);
 414				f2fs_remove_dirty_inode(inode);
 
 
 
 
 
 415			}
 416retry:
 417			fio.page = page;
 418			fio.old_blkaddr = NULL_ADDR;
 419			fio.encrypted_page = NULL;
 420			fio.need_lock = LOCK_DONE;
 421			err = f2fs_do_write_data_page(&fio);
 422			if (err) {
 423				if (err == -ENOMEM) {
 424					congestion_wait(BLK_RW_ASYNC,
 425							DEFAULT_IO_TIMEOUT);
 426					cond_resched();
 427					goto retry;
 428				}
 429				unlock_page(page);
 430				break;
 431			}
 432			/* record old blkaddr for revoking */
 433			cur->old_addr = fio.old_blkaddr;
 434			submit_bio = true;
 
 435		}
 436		unlock_page(page);
 437		list_move_tail(&cur->list, &revoke_list);
 
 
 438	}
 439
 440	if (submit_bio)
 441		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 442
 443	if (err) {
 444		/*
 445		 * try to revoke all committed pages, but still we could fail
 446		 * due to no memory or other reason, if that happened, EAGAIN
 447		 * will be returned, which means in such case, transaction is
 448		 * already not integrity, caller should use journal to do the
 449		 * recovery or rewrite & commit last transaction. For other
 450		 * error number, revoking was done by filesystem itself.
 451		 */
 452		err = __revoke_inmem_pages(inode, &revoke_list,
 453						false, true, false);
 454
 455		/* drop all uncommitted pages */
 456		__revoke_inmem_pages(inode, &fi->inmem_pages,
 457						true, false, false);
 458	} else {
 459		__revoke_inmem_pages(inode, &revoke_list,
 460						false, false, false);
 461	}
 462
 463	return err;
 
 
 464}
 465
 466int f2fs_commit_inmem_pages(struct inode *inode)
 467{
 468	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 469	struct f2fs_inode_info *fi = F2FS_I(inode);
 470	int err;
 471
 472	f2fs_balance_fs(sbi, true);
 473
 474	down_write(&fi->i_gc_rwsem[WRITE]);
 475
 
 476	f2fs_lock_op(sbi);
 477	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 478
 479	mutex_lock(&fi->inmem_lock);
 480	err = __f2fs_commit_inmem_pages(inode);
 481	mutex_unlock(&fi->inmem_lock);
 482
 483	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 484
 485	f2fs_unlock_op(sbi);
 486	up_write(&fi->i_gc_rwsem[WRITE]);
 487
 488	return err;
 489}
 490
 491/*
 492 * This function balances dirty node and dentry pages.
 493 * In addition, it controls garbage collection.
 494 */
 495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 496{
 497	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 498		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 499		f2fs_stop_checkpoint(sbi, false);
 500	}
 501
 502	/* balance_fs_bg is able to be pending */
 503	if (need && excess_cached_nats(sbi))
 504		f2fs_balance_fs_bg(sbi, false);
 505
 506	if (!f2fs_is_checkpoint_ready(sbi))
 507		return;
 508
 509	/*
 510	 * We should do GC or end up with checkpoint, if there are so many dirty
 511	 * dir/node pages without enough free segments.
 512	 */
 513	if (has_not_enough_free_secs(sbi, 0, 0)) {
 514		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 515					sbi->gc_thread->f2fs_gc_task) {
 516			DEFINE_WAIT(wait);
 517
 518			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 519						TASK_UNINTERRUPTIBLE);
 520			wake_up(&sbi->gc_thread->gc_wait_queue_head);
 521			io_schedule();
 522			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 523		} else {
 524			down_write(&sbi->gc_lock);
 525			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 526		}
 
 
 
 
 
 
 
 
 
 527	}
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 531{
 532	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 533		return;
 534
 535	/* try to shrink extent cache when there is no enough memory */
 536	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 537		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 
 
 
 
 
 
 538
 539	/* check the # of cached NAT entries */
 540	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 541		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 542
 543	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 544		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 545	else
 546		f2fs_build_free_nids(sbi, false, false);
 547
 548	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
 549		excess_prefree_segs(sbi))
 550		goto do_sync;
 551
 552	/* there is background inflight IO or foreground operation recently */
 553	if (is_inflight_io(sbi, REQ_TIME) ||
 554		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 555		return;
 556
 557	/* exceed periodical checkpoint timeout threshold */
 558	if (f2fs_time_over(sbi, CP_TIME))
 559		goto do_sync;
 560
 561	/* checkpoint is the only way to shrink partial cached entries */
 562	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 563		f2fs_available_free_memory(sbi, INO_ENTRIES))
 564		return;
 565
 566do_sync:
 567	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 568		struct blk_plug plug;
 569
 570		mutex_lock(&sbi->flush_lock);
 571
 572		blk_start_plug(&plug);
 573		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 574		blk_finish_plug(&plug);
 575
 576		mutex_unlock(&sbi->flush_lock);
 577	}
 578	f2fs_sync_fs(sbi->sb, true);
 579	stat_inc_bg_cp_count(sbi->stat_info);
 580}
 581
 582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 583				struct block_device *bdev)
 584{
 585	int ret = blkdev_issue_flush(bdev);
 586
 587	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 588				test_opt(sbi, FLUSH_MERGE), ret);
 
 
 589	return ret;
 590}
 591
 592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 593{
 594	int ret = 0;
 595	int i;
 596
 597	if (!f2fs_is_multi_device(sbi))
 598		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 599
 600	for (i = 0; i < sbi->s_ndevs; i++) {
 601		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 602			continue;
 603		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 604		if (ret)
 605			break;
 606	}
 607	return ret;
 608}
 609
 610static int issue_flush_thread(void *data)
 611{
 612	struct f2fs_sb_info *sbi = data;
 613	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 614	wait_queue_head_t *q = &fcc->flush_wait_queue;
 615repeat:
 616	if (kthread_should_stop())
 617		return 0;
 618
 619	if (!llist_empty(&fcc->issue_list)) {
 620		struct flush_cmd *cmd, *next;
 621		int ret;
 622
 623		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 624		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 625
 626		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 627
 628		ret = submit_flush_wait(sbi, cmd->ino);
 629		atomic_inc(&fcc->issued_flush);
 630
 631		llist_for_each_entry_safe(cmd, next,
 632					  fcc->dispatch_list, llnode) {
 633			cmd->ret = ret;
 634			complete(&cmd->wait);
 635		}
 636		fcc->dispatch_list = NULL;
 637	}
 638
 639	wait_event_interruptible(*q,
 640		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 641	goto repeat;
 642}
 643
 644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 645{
 646	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 647	struct flush_cmd cmd;
 648	int ret;
 649
 650	if (test_opt(sbi, NOBARRIER))
 651		return 0;
 652
 653	if (!test_opt(sbi, FLUSH_MERGE)) {
 654		atomic_inc(&fcc->queued_flush);
 655		ret = submit_flush_wait(sbi, ino);
 656		atomic_dec(&fcc->queued_flush);
 657		atomic_inc(&fcc->issued_flush);
 658		return ret;
 659	}
 660
 661	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 662	    f2fs_is_multi_device(sbi)) {
 663		ret = submit_flush_wait(sbi, ino);
 664		atomic_dec(&fcc->queued_flush);
 665
 666		atomic_inc(&fcc->issued_flush);
 667		return ret;
 668	}
 669
 670	cmd.ino = ino;
 671	init_completion(&cmd.wait);
 672
 673	llist_add(&cmd.llnode, &fcc->issue_list);
 674
 675	/*
 676	 * update issue_list before we wake up issue_flush thread, this
 677	 * smp_mb() pairs with another barrier in ___wait_event(), see
 678	 * more details in comments of waitqueue_active().
 679	 */
 680	smp_mb();
 681
 682	if (waitqueue_active(&fcc->flush_wait_queue))
 683		wake_up(&fcc->flush_wait_queue);
 684
 685	if (fcc->f2fs_issue_flush) {
 686		wait_for_completion(&cmd.wait);
 687		atomic_dec(&fcc->queued_flush);
 688	} else {
 689		struct llist_node *list;
 690
 691		list = llist_del_all(&fcc->issue_list);
 692		if (!list) {
 693			wait_for_completion(&cmd.wait);
 694			atomic_dec(&fcc->queued_flush);
 695		} else {
 696			struct flush_cmd *tmp, *next;
 697
 698			ret = submit_flush_wait(sbi, ino);
 699
 700			llist_for_each_entry_safe(tmp, next, list, llnode) {
 701				if (tmp == &cmd) {
 702					cmd.ret = ret;
 703					atomic_dec(&fcc->queued_flush);
 704					continue;
 705				}
 706				tmp->ret = ret;
 707				complete(&tmp->wait);
 708			}
 709		}
 710	}
 711
 712	return cmd.ret;
 713}
 714
 715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 716{
 717	dev_t dev = sbi->sb->s_bdev->bd_dev;
 718	struct flush_cmd_control *fcc;
 719	int err = 0;
 720
 721	if (SM_I(sbi)->fcc_info) {
 722		fcc = SM_I(sbi)->fcc_info;
 723		if (fcc->f2fs_issue_flush)
 724			return err;
 725		goto init_thread;
 726	}
 727
 728	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 729	if (!fcc)
 730		return -ENOMEM;
 731	atomic_set(&fcc->issued_flush, 0);
 732	atomic_set(&fcc->queued_flush, 0);
 733	init_waitqueue_head(&fcc->flush_wait_queue);
 734	init_llist_head(&fcc->issue_list);
 735	SM_I(sbi)->fcc_info = fcc;
 736	if (!test_opt(sbi, FLUSH_MERGE))
 737		return err;
 738
 739init_thread:
 740	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 741				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 742	if (IS_ERR(fcc->f2fs_issue_flush)) {
 743		err = PTR_ERR(fcc->f2fs_issue_flush);
 744		kfree(fcc);
 745		SM_I(sbi)->fcc_info = NULL;
 746		return err;
 747	}
 748
 749	return err;
 750}
 751
 752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 753{
 754	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 755
 756	if (fcc && fcc->f2fs_issue_flush) {
 757		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 758
 759		fcc->f2fs_issue_flush = NULL;
 760		kthread_stop(flush_thread);
 761	}
 762	if (free) {
 763		kfree(fcc);
 764		SM_I(sbi)->fcc_info = NULL;
 765	}
 766}
 767
 768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 769{
 770	int ret = 0, i;
 771
 772	if (!f2fs_is_multi_device(sbi))
 773		return 0;
 774
 775	if (test_opt(sbi, NOBARRIER))
 776		return 0;
 777
 778	for (i = 1; i < sbi->s_ndevs; i++) {
 
 
 779		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 780			continue;
 781		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 782		if (ret)
 
 
 
 
 
 
 
 
 783			break;
 
 784
 785		spin_lock(&sbi->dev_lock);
 786		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 787		spin_unlock(&sbi->dev_lock);
 788	}
 789
 790	return ret;
 791}
 792
 793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 794		enum dirty_type dirty_type)
 795{
 796	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 797
 798	/* need not be added */
 799	if (IS_CURSEG(sbi, segno))
 800		return;
 801
 802	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 803		dirty_i->nr_dirty[dirty_type]++;
 804
 805	if (dirty_type == DIRTY) {
 806		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 807		enum dirty_type t = sentry->type;
 808
 809		if (unlikely(t >= DIRTY)) {
 810			f2fs_bug_on(sbi, 1);
 811			return;
 812		}
 813		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 814			dirty_i->nr_dirty[t]++;
 815
 816		if (__is_large_section(sbi)) {
 817			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 818			block_t valid_blocks =
 819				get_valid_blocks(sbi, segno, true);
 820
 821			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 822					valid_blocks == BLKS_PER_SEC(sbi)));
 823
 824			if (!IS_CURSEC(sbi, secno))
 825				set_bit(secno, dirty_i->dirty_secmap);
 826		}
 827	}
 828}
 829
 830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 831		enum dirty_type dirty_type)
 832{
 833	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 834	block_t valid_blocks;
 835
 836	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 837		dirty_i->nr_dirty[dirty_type]--;
 838
 839	if (dirty_type == DIRTY) {
 840		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 841		enum dirty_type t = sentry->type;
 842
 843		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 844			dirty_i->nr_dirty[t]--;
 845
 846		valid_blocks = get_valid_blocks(sbi, segno, true);
 847		if (valid_blocks == 0) {
 848			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 849						dirty_i->victim_secmap);
 850#ifdef CONFIG_F2FS_CHECK_FS
 851			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 852#endif
 853		}
 854		if (__is_large_section(sbi)) {
 855			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 856
 857			if (!valid_blocks ||
 858					valid_blocks == BLKS_PER_SEC(sbi)) {
 859				clear_bit(secno, dirty_i->dirty_secmap);
 860				return;
 861			}
 862
 863			if (!IS_CURSEC(sbi, secno))
 864				set_bit(secno, dirty_i->dirty_secmap);
 865		}
 866	}
 867}
 868
 869/*
 870 * Should not occur error such as -ENOMEM.
 871 * Adding dirty entry into seglist is not critical operation.
 872 * If a given segment is one of current working segments, it won't be added.
 873 */
 874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 875{
 876	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 877	unsigned short valid_blocks, ckpt_valid_blocks;
 878	unsigned int usable_blocks;
 879
 880	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 881		return;
 882
 883	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 884	mutex_lock(&dirty_i->seglist_lock);
 885
 886	valid_blocks = get_valid_blocks(sbi, segno, false);
 887	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 888
 889	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 890		ckpt_valid_blocks == usable_blocks)) {
 891		__locate_dirty_segment(sbi, segno, PRE);
 892		__remove_dirty_segment(sbi, segno, DIRTY);
 893	} else if (valid_blocks < usable_blocks) {
 894		__locate_dirty_segment(sbi, segno, DIRTY);
 895	} else {
 896		/* Recovery routine with SSR needs this */
 897		__remove_dirty_segment(sbi, segno, DIRTY);
 898	}
 899
 900	mutex_unlock(&dirty_i->seglist_lock);
 901}
 902
 903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 905{
 906	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 907	unsigned int segno;
 908
 909	mutex_lock(&dirty_i->seglist_lock);
 910	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 911		if (get_valid_blocks(sbi, segno, false))
 912			continue;
 913		if (IS_CURSEG(sbi, segno))
 914			continue;
 915		__locate_dirty_segment(sbi, segno, PRE);
 916		__remove_dirty_segment(sbi, segno, DIRTY);
 917	}
 918	mutex_unlock(&dirty_i->seglist_lock);
 919}
 920
 921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 922{
 923	int ovp_hole_segs =
 924		(overprovision_segments(sbi) - reserved_segments(sbi));
 925	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 926	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 927	block_t holes[2] = {0, 0};	/* DATA and NODE */
 928	block_t unusable;
 929	struct seg_entry *se;
 930	unsigned int segno;
 931
 932	mutex_lock(&dirty_i->seglist_lock);
 933	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 934		se = get_seg_entry(sbi, segno);
 935		if (IS_NODESEG(se->type))
 936			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 937							se->valid_blocks;
 938		else
 939			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 940							se->valid_blocks;
 941	}
 942	mutex_unlock(&dirty_i->seglist_lock);
 943
 944	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 945	if (unusable > ovp_holes)
 946		return unusable - ovp_holes;
 947	return 0;
 948}
 949
 950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 951{
 952	int ovp_hole_segs =
 953		(overprovision_segments(sbi) - reserved_segments(sbi));
 954	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 955		return -EAGAIN;
 956	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 957		dirty_segments(sbi) > ovp_hole_segs)
 958		return -EAGAIN;
 959	return 0;
 960}
 961
 962/* This is only used by SBI_CP_DISABLED */
 963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 964{
 965	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 966	unsigned int segno = 0;
 967
 968	mutex_lock(&dirty_i->seglist_lock);
 969	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 970		if (get_valid_blocks(sbi, segno, false))
 971			continue;
 972		if (get_ckpt_valid_blocks(sbi, segno, false))
 973			continue;
 974		mutex_unlock(&dirty_i->seglist_lock);
 975		return segno;
 976	}
 977	mutex_unlock(&dirty_i->seglist_lock);
 978	return NULL_SEGNO;
 979}
 980
 981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 982		struct block_device *bdev, block_t lstart,
 983		block_t start, block_t len)
 984{
 985	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 986	struct list_head *pend_list;
 987	struct discard_cmd *dc;
 988
 989	f2fs_bug_on(sbi, !len);
 990
 991	pend_list = &dcc->pend_list[plist_idx(len)];
 992
 993	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 994	INIT_LIST_HEAD(&dc->list);
 995	dc->bdev = bdev;
 996	dc->lstart = lstart;
 997	dc->start = start;
 998	dc->len = len;
 999	dc->ref = 0;
1000	dc->state = D_PREP;
1001	dc->queued = 0;
1002	dc->error = 0;
1003	init_completion(&dc->wait);
1004	list_add_tail(&dc->list, pend_list);
1005	spin_lock_init(&dc->lock);
1006	dc->bio_ref = 0;
1007	atomic_inc(&dcc->discard_cmd_cnt);
1008	dcc->undiscard_blks += len;
1009
1010	return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014				struct block_device *bdev, block_t lstart,
1015				block_t start, block_t len,
1016				struct rb_node *parent, struct rb_node **p,
1017				bool leftmost)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018{
1019	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 
1020	struct discard_cmd *dc;
1021
1022	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 
1023
1024	rb_link_node(&dc->rb_node, parent, p);
1025	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026
 
 
 
 
 
 
 
 
1027	return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031							struct discard_cmd *dc)
1032{
1033	if (dc->state == D_DONE)
1034		atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036	list_del(&dc->list);
1037	rb_erase_cached(&dc->rb_node, &dcc->root);
1038	dcc->undiscard_blks -= dc->len;
1039
1040	kmem_cache_free(discard_cmd_slab, dc);
1041
1042	atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046							struct discard_cmd *dc)
1047{
1048	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049	unsigned long flags;
1050
1051	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053	spin_lock_irqsave(&dc->lock, flags);
1054	if (dc->bio_ref) {
1055		spin_unlock_irqrestore(&dc->lock, flags);
1056		return;
1057	}
1058	spin_unlock_irqrestore(&dc->lock, flags);
1059
1060	f2fs_bug_on(sbi, dc->ref);
1061
1062	if (dc->error == -EOPNOTSUPP)
1063		dc->error = 0;
1064
1065	if (dc->error)
1066		printk_ratelimited(
1067			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068			KERN_INFO, sbi->sb->s_id,
1069			dc->lstart, dc->start, dc->len, dc->error);
1070	__detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076	unsigned long flags;
1077
1078	spin_lock_irqsave(&dc->lock, flags);
1079	if (!dc->error)
1080		dc->error = blk_status_to_errno(bio->bi_status);
1081	dc->bio_ref--;
1082	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083		dc->state = D_DONE;
1084		complete_all(&dc->wait);
1085	}
1086	spin_unlock_irqrestore(&dc->lock, flags);
1087	bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091				block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094	struct seg_entry *sentry;
1095	unsigned int segno;
1096	block_t blk = start;
1097	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098	unsigned long *map;
1099
1100	while (blk < end) {
1101		segno = GET_SEGNO(sbi, blk);
1102		sentry = get_seg_entry(sbi, segno);
1103		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105		if (end < START_BLOCK(sbi, segno + 1))
1106			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107		else
1108			size = max_blocks;
1109		map = (unsigned long *)(sentry->cur_valid_map);
1110		offset = __find_rev_next_bit(map, size, offset);
1111		f2fs_bug_on(sbi, offset != size);
1112		blk = START_BLOCK(sbi, segno + 1);
1113	}
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118				struct discard_policy *dpolicy,
1119				int discard_type, unsigned int granularity)
1120{
1121	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123	/* common policy */
1124	dpolicy->type = discard_type;
1125	dpolicy->sync = true;
1126	dpolicy->ordered = false;
1127	dpolicy->granularity = granularity;
1128
1129	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131	dpolicy->timeout = false;
1132
1133	if (discard_type == DPOLICY_BG) {
1134		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137		dpolicy->io_aware = true;
 
 
 
1138		dpolicy->sync = false;
1139		dpolicy->ordered = true;
1140		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141			dpolicy->granularity = 1;
1142			if (atomic_read(&dcc->discard_cmd_cnt))
1143				dpolicy->max_interval =
1144					DEF_MIN_DISCARD_ISSUE_TIME;
1145		}
1146	} else if (discard_type == DPOLICY_FORCE) {
1147		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150		dpolicy->io_aware = false;
1151	} else if (discard_type == DPOLICY_FSTRIM) {
1152		dpolicy->io_aware = false;
1153	} else if (discard_type == DPOLICY_UMOUNT) {
1154		dpolicy->io_aware = false;
1155		/* we need to issue all to keep CP_TRIMMED_FLAG */
1156		dpolicy->granularity = 1;
1157		dpolicy->timeout = true;
1158	}
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162				struct block_device *bdev, block_t lstart,
1163				block_t start, block_t len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166						struct discard_policy *dpolicy,
1167						struct discard_cmd *dc,
1168						unsigned int *issued)
1169{
1170	struct block_device *bdev = dc->bdev;
1171	struct request_queue *q = bdev_get_queue(bdev);
1172	unsigned int max_discard_blocks =
1173			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176					&(dcc->fstrim_list) : &(dcc->wait_list);
1177	int flag = dpolicy->sync ? REQ_SYNC : 0;
1178	block_t lstart, start, len, total_len;
1179	int err = 0;
1180
1181	if (dc->state != D_PREP)
1182		return 0;
1183
1184	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185		return 0;
1186
1187	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188
1189	lstart = dc->lstart;
1190	start = dc->start;
1191	len = dc->len;
1192	total_len = len;
1193
1194	dc->len = 0;
1195
1196	while (total_len && *issued < dpolicy->max_requests && !err) {
1197		struct bio *bio = NULL;
1198		unsigned long flags;
1199		bool last = true;
1200
1201		if (len > max_discard_blocks) {
1202			len = max_discard_blocks;
1203			last = false;
1204		}
1205
1206		(*issued)++;
1207		if (*issued == dpolicy->max_requests)
1208			last = true;
1209
1210		dc->len += len;
1211
1212		if (time_to_inject(sbi, FAULT_DISCARD)) {
1213			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214			err = -EIO;
1215			goto submit;
1216		}
1217		err = __blkdev_issue_discard(bdev,
1218					SECTOR_FROM_BLOCK(start),
1219					SECTOR_FROM_BLOCK(len),
1220					GFP_NOFS, 0, &bio);
1221submit:
1222		if (err) {
1223			spin_lock_irqsave(&dc->lock, flags);
1224			if (dc->state == D_PARTIAL)
1225				dc->state = D_SUBMIT;
1226			spin_unlock_irqrestore(&dc->lock, flags);
1227
1228			break;
1229		}
1230
1231		f2fs_bug_on(sbi, !bio);
1232
1233		/*
1234		 * should keep before submission to avoid D_DONE
1235		 * right away
1236		 */
1237		spin_lock_irqsave(&dc->lock, flags);
1238		if (last)
1239			dc->state = D_SUBMIT;
1240		else
1241			dc->state = D_PARTIAL;
1242		dc->bio_ref++;
1243		spin_unlock_irqrestore(&dc->lock, flags);
1244
1245		atomic_inc(&dcc->queued_discard);
1246		dc->queued++;
1247		list_move_tail(&dc->list, wait_list);
1248
1249		/* sanity check on discard range */
1250		__check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252		bio->bi_private = dc;
1253		bio->bi_end_io = f2fs_submit_discard_endio;
1254		bio->bi_opf |= flag;
1255		submit_bio(bio);
1256
1257		atomic_inc(&dcc->issued_discard);
1258
1259		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261		lstart += len;
1262		start += len;
1263		total_len -= len;
1264		len = total_len;
1265	}
1266
1267	if (!err && len) {
1268		dcc->undiscard_blks -= len;
1269		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1270	}
1271	return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275				struct block_device *bdev, block_t lstart,
1276				block_t start, block_t len,
1277				struct rb_node **insert_p,
1278				struct rb_node *insert_parent)
1279{
1280	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281	struct rb_node **p;
1282	struct rb_node *parent = NULL;
 
1283	bool leftmost = true;
1284
1285	if (insert_p && insert_parent) {
1286		parent = insert_parent;
1287		p = insert_p;
1288		goto do_insert;
 
 
 
 
 
 
 
 
 
 
1289	}
1290
1291	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292							lstart, &leftmost);
1293do_insert:
1294	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295								p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299						struct discard_cmd *dc)
1300{
1301	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305				struct discard_cmd *dc, block_t blkaddr)
1306{
1307	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308	struct discard_info di = dc->di;
1309	bool modified = false;
1310
1311	if (dc->state == D_DONE || dc->len == 1) {
1312		__remove_discard_cmd(sbi, dc);
1313		return;
1314	}
1315
1316	dcc->undiscard_blks -= di.len;
1317
1318	if (blkaddr > di.lstart) {
1319		dc->len = blkaddr - dc->lstart;
1320		dcc->undiscard_blks += dc->len;
1321		__relocate_discard_cmd(dcc, dc);
1322		modified = true;
1323	}
1324
1325	if (blkaddr < di.lstart + di.len - 1) {
1326		if (modified) {
1327			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328					di.start + blkaddr + 1 - di.lstart,
1329					di.lstart + di.len - 1 - blkaddr,
1330					NULL, NULL);
1331		} else {
1332			dc->lstart++;
1333			dc->len--;
1334			dc->start++;
1335			dcc->undiscard_blks += dc->len;
1336			__relocate_discard_cmd(dcc, dc);
1337		}
1338	}
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342				struct block_device *bdev, block_t lstart,
1343				block_t start, block_t len)
1344{
1345	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347	struct discard_cmd *dc;
1348	struct discard_info di = {0};
1349	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350	struct request_queue *q = bdev_get_queue(bdev);
1351	unsigned int max_discard_blocks =
1352			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353	block_t end = lstart + len;
1354
1355	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356					NULL, lstart,
1357					(struct rb_entry **)&prev_dc,
1358					(struct rb_entry **)&next_dc,
1359					&insert_p, &insert_parent, true, NULL);
1360	if (dc)
1361		prev_dc = dc;
1362
1363	if (!prev_dc) {
1364		di.lstart = lstart;
1365		di.len = next_dc ? next_dc->lstart - lstart : len;
1366		di.len = min(di.len, len);
1367		di.start = start;
1368	}
1369
1370	while (1) {
1371		struct rb_node *node;
1372		bool merged = false;
1373		struct discard_cmd *tdc = NULL;
1374
1375		if (prev_dc) {
1376			di.lstart = prev_dc->lstart + prev_dc->len;
1377			if (di.lstart < lstart)
1378				di.lstart = lstart;
1379			if (di.lstart >= end)
1380				break;
1381
1382			if (!next_dc || next_dc->lstart > end)
1383				di.len = end - di.lstart;
1384			else
1385				di.len = next_dc->lstart - di.lstart;
1386			di.start = start + di.lstart - lstart;
1387		}
1388
1389		if (!di.len)
1390			goto next;
1391
1392		if (prev_dc && prev_dc->state == D_PREP &&
1393			prev_dc->bdev == bdev &&
1394			__is_discard_back_mergeable(&di, &prev_dc->di,
1395							max_discard_blocks)) {
1396			prev_dc->di.len += di.len;
1397			dcc->undiscard_blks += di.len;
1398			__relocate_discard_cmd(dcc, prev_dc);
1399			di = prev_dc->di;
1400			tdc = prev_dc;
1401			merged = true;
1402		}
1403
1404		if (next_dc && next_dc->state == D_PREP &&
1405			next_dc->bdev == bdev &&
1406			__is_discard_front_mergeable(&di, &next_dc->di,
1407							max_discard_blocks)) {
1408			next_dc->di.lstart = di.lstart;
1409			next_dc->di.len += di.len;
1410			next_dc->di.start = di.start;
1411			dcc->undiscard_blks += di.len;
1412			__relocate_discard_cmd(dcc, next_dc);
1413			if (tdc)
1414				__remove_discard_cmd(sbi, tdc);
1415			merged = true;
1416		}
1417
1418		if (!merged) {
1419			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420							di.len, NULL, NULL);
1421		}
1422 next:
1423		prev_dc = next_dc;
1424		if (!prev_dc)
1425			break;
1426
1427		node = rb_next(&prev_dc->rb_node);
1428		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429	}
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
 
 
 
 
 
 
 
 
 
 
 
 
 
1433		struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435	block_t lblkstart = blkstart;
1436
1437	if (!f2fs_bdev_support_discard(bdev))
1438		return 0;
1439
1440	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442	if (f2fs_is_multi_device(sbi)) {
1443		int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445		blkstart -= FDEV(devi).start_blk;
1446	}
1447	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450	return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454					struct discard_policy *dpolicy)
1455{
1456	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459	struct discard_cmd *dc;
1460	struct blk_plug plug;
1461	unsigned int pos = dcc->next_pos;
1462	unsigned int issued = 0;
1463	bool io_interrupted = false;
1464
1465	mutex_lock(&dcc->cmd_lock);
1466	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467					NULL, pos,
1468					(struct rb_entry **)&prev_dc,
1469					(struct rb_entry **)&next_dc,
1470					&insert_p, &insert_parent, true, NULL);
1471	if (!dc)
1472		dc = next_dc;
1473
1474	blk_start_plug(&plug);
1475
1476	while (dc) {
1477		struct rb_node *node;
1478		int err = 0;
1479
1480		if (dc->state != D_PREP)
1481			goto next;
1482
1483		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484			io_interrupted = true;
1485			break;
1486		}
1487
1488		dcc->next_pos = dc->lstart + dc->len;
1489		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491		if (issued >= dpolicy->max_requests)
1492			break;
1493next:
1494		node = rb_next(&dc->rb_node);
1495		if (err)
1496			__remove_discard_cmd(sbi, dc);
1497		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498	}
1499
1500	blk_finish_plug(&plug);
1501
1502	if (!dc)
1503		dcc->next_pos = 0;
1504
1505	mutex_unlock(&dcc->cmd_lock);
1506
1507	if (!issued && io_interrupted)
1508		issued = -1;
1509
1510	return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513					struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516					struct discard_policy *dpolicy)
1517{
1518	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519	struct list_head *pend_list;
1520	struct discard_cmd *dc, *tmp;
1521	struct blk_plug plug;
1522	int i, issued;
1523	bool io_interrupted = false;
1524
1525	if (dpolicy->timeout)
1526		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529	issued = 0;
1530	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531		if (dpolicy->timeout &&
1532				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533			break;
1534
1535		if (i + 1 < dpolicy->granularity)
1536			break;
1537
1538		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539			return __issue_discard_cmd_orderly(sbi, dpolicy);
 
 
1540
1541		pend_list = &dcc->pend_list[i];
1542
1543		mutex_lock(&dcc->cmd_lock);
1544		if (list_empty(pend_list))
1545			goto next;
1546		if (unlikely(dcc->rbtree_check))
1547			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548							&dcc->root, false));
1549		blk_start_plug(&plug);
1550		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551			f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553			if (dpolicy->timeout &&
1554				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555				break;
1556
1557			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558						!is_idle(sbi, DISCARD_TIME)) {
1559				io_interrupted = true;
1560				break;
1561			}
1562
1563			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565			if (issued >= dpolicy->max_requests)
1566				break;
1567		}
1568		blk_finish_plug(&plug);
1569next:
1570		mutex_unlock(&dcc->cmd_lock);
1571
1572		if (issued >= dpolicy->max_requests || io_interrupted)
1573			break;
1574	}
1575
1576	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577		__wait_all_discard_cmd(sbi, dpolicy);
1578		goto retry;
1579	}
1580
1581	if (!issued && io_interrupted)
1582		issued = -1;
1583
1584	return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590	struct list_head *pend_list;
1591	struct discard_cmd *dc, *tmp;
1592	int i;
1593	bool dropped = false;
1594
1595	mutex_lock(&dcc->cmd_lock);
1596	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597		pend_list = &dcc->pend_list[i];
1598		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599			f2fs_bug_on(sbi, dc->state != D_PREP);
1600			__remove_discard_cmd(sbi, dc);
1601			dropped = true;
1602		}
1603	}
1604	mutex_unlock(&dcc->cmd_lock);
1605
1606	return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611	__drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615							struct discard_cmd *dc)
1616{
1617	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618	unsigned int len = 0;
1619
1620	wait_for_completion_io(&dc->wait);
1621	mutex_lock(&dcc->cmd_lock);
1622	f2fs_bug_on(sbi, dc->state != D_DONE);
1623	dc->ref--;
1624	if (!dc->ref) {
1625		if (!dc->error)
1626			len = dc->len;
1627		__remove_discard_cmd(sbi, dc);
1628	}
1629	mutex_unlock(&dcc->cmd_lock);
1630
1631	return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635						struct discard_policy *dpolicy,
1636						block_t start, block_t end)
1637{
1638	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640					&(dcc->fstrim_list) : &(dcc->wait_list);
1641	struct discard_cmd *dc, *tmp;
1642	bool need_wait;
1643	unsigned int trimmed = 0;
1644
1645next:
1646	need_wait = false;
1647
1648	mutex_lock(&dcc->cmd_lock);
1649	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650		if (dc->lstart + dc->len <= start || end <= dc->lstart)
 
1651			continue;
1652		if (dc->len < dpolicy->granularity)
1653			continue;
1654		if (dc->state == D_DONE && !dc->ref) {
1655			wait_for_completion_io(&dc->wait);
1656			if (!dc->error)
1657				trimmed += dc->len;
1658			__remove_discard_cmd(sbi, dc);
1659		} else {
1660			dc->ref++;
1661			need_wait = true;
1662			break;
1663		}
1664	}
1665	mutex_unlock(&dcc->cmd_lock);
1666
1667	if (need_wait) {
1668		trimmed += __wait_one_discard_bio(sbi, dc);
1669		goto next;
1670	}
1671
1672	return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676						struct discard_policy *dpolicy)
1677{
1678	struct discard_policy dp;
1679	unsigned int discard_blks;
1680
1681	if (dpolicy)
1682		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684	/* wait all */
1685	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690	return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697	struct discard_cmd *dc;
1698	bool need_wait = false;
1699
1700	mutex_lock(&dcc->cmd_lock);
1701	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702							NULL, blkaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703	if (dc) {
1704		if (dc->state == D_PREP) {
1705			__punch_discard_cmd(sbi, dc, blkaddr);
1706		} else {
1707			dc->ref++;
1708			need_wait = true;
1709		}
1710	}
1711	mutex_unlock(&dcc->cmd_lock);
1712
1713	if (need_wait)
1714		__wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721	if (dcc && dcc->f2fs_issue_discard) {
1722		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724		dcc->f2fs_issue_discard = NULL;
1725		kthread_stop(discard_thread);
1726	}
1727}
1728
1729/* This comes from f2fs_put_super */
 
 
 
 
 
 
 
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733	struct discard_policy dpolicy;
1734	bool dropped;
1735
 
 
 
1736	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737					dcc->discard_granularity);
1738	__issue_discard_cmd(sbi, &dpolicy);
1739	dropped = __drop_discard_cmd(sbi);
1740
1741	/* just to make sure there is no pending discard commands */
1742	__wait_all_discard_cmd(sbi, NULL);
1743
1744	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745	return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750	struct f2fs_sb_info *sbi = data;
1751	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752	wait_queue_head_t *q = &dcc->discard_wait_queue;
1753	struct discard_policy dpolicy;
1754	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755	int issued;
1756
1757	set_freezable();
1758
1759	do {
 
 
 
 
1760		if (sbi->gc_mode == GC_URGENT_HIGH ||
1761			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
 
1763		else
1764			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765						dcc->discard_granularity);
1766
1767		if (!atomic_read(&dcc->discard_cmd_cnt))
1768		       wait_ms = dpolicy.max_interval;
1769
1770		wait_event_interruptible_timeout(*q,
1771				kthread_should_stop() || freezing(current) ||
1772				dcc->discard_wake,
1773				msecs_to_jiffies(wait_ms));
1774
1775		if (dcc->discard_wake)
1776			dcc->discard_wake = 0;
1777
1778		/* clean up pending candidates before going to sleep */
1779		if (atomic_read(&dcc->queued_discard))
1780			__wait_all_discard_cmd(sbi, NULL);
1781
1782		if (try_to_freeze())
1783			continue;
1784		if (f2fs_readonly(sbi->sb))
1785			continue;
1786		if (kthread_should_stop())
1787			return 0;
1788		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
 
1789			wait_ms = dpolicy.max_interval;
1790			continue;
1791		}
1792		if (!atomic_read(&dcc->discard_cmd_cnt))
1793			continue;
1794
1795		sb_start_intwrite(sbi->sb);
1796
1797		issued = __issue_discard_cmd(sbi, &dpolicy);
1798		if (issued > 0) {
1799			__wait_all_discard_cmd(sbi, &dpolicy);
1800			wait_ms = dpolicy.min_interval;
1801		} else if (issued == -1) {
1802			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803			if (!wait_ms)
1804				wait_ms = dpolicy.mid_interval;
1805		} else {
1806			wait_ms = dpolicy.max_interval;
1807		}
 
 
1808
1809		sb_end_intwrite(sbi->sb);
1810
1811	} while (!kthread_should_stop());
1812	return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817		struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819	sector_t sector, nr_sects;
1820	block_t lblkstart = blkstart;
1821	int devi = 0;
 
1822
1823	if (f2fs_is_multi_device(sbi)) {
1824		devi = f2fs_target_device_index(sbi, blkstart);
1825		if (blkstart < FDEV(devi).start_blk ||
1826		    blkstart > FDEV(devi).end_blk) {
1827			f2fs_err(sbi, "Invalid block %x", blkstart);
1828			return -EIO;
1829		}
1830		blkstart -= FDEV(devi).start_blk;
1831	}
1832
1833	/* For sequential zones, reset the zone write pointer */
1834	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835		sector = SECTOR_FROM_BLOCK(blkstart);
1836		nr_sects = SECTOR_FROM_BLOCK(blklen);
 
1837
1838		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839				nr_sects != bdev_zone_sectors(bdev)) {
1840			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842				 blkstart, blklen);
1843			return -EIO;
1844		}
1845		trace_f2fs_issue_reset_zone(bdev, blkstart);
1846		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847					sector, nr_sects, GFP_NOFS);
 
 
 
 
 
 
1848	}
1849
1850	/* For conventional zones, use regular discard if supported */
1851	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
 
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856		struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
 
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866				block_t blkstart, block_t blklen)
1867{
1868	sector_t start = blkstart, len = 0;
1869	struct block_device *bdev;
1870	struct seg_entry *se;
1871	unsigned int offset;
1872	block_t i;
1873	int err = 0;
1874
1875	bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878		if (i != start) {
1879			struct block_device *bdev2 =
1880				f2fs_target_device(sbi, i, NULL);
1881
1882			if (bdev2 != bdev) {
1883				err = __issue_discard_async(sbi, bdev,
1884						start, len);
1885				if (err)
1886					return err;
1887				bdev = bdev2;
1888				start = i;
1889				len = 0;
1890			}
1891		}
1892
1893		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 
1897			sbi->discard_blks--;
1898	}
1899
1900	if (len)
1901		err = __issue_discard_async(sbi, bdev, start, len);
1902	return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906							bool check_only)
1907{
1908	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909	int max_blocks = sbi->blocks_per_seg;
1910	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913	unsigned long *discard_map = (unsigned long *)se->discard_map;
1914	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915	unsigned int start = 0, end = -1;
1916	bool force = (cpc->reason & CP_DISCARD);
1917	struct discard_entry *de = NULL;
1918	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919	int i;
1920
1921	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
 
1922		return false;
1923
1924	if (!force) {
1925		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926			SM_I(sbi)->dcc_info->nr_discards >=
1927				SM_I(sbi)->dcc_info->max_discards)
1928			return false;
1929	}
1930
1931	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932	for (i = 0; i < entries; i++)
1933		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937				SM_I(sbi)->dcc_info->max_discards) {
1938		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939		if (start >= max_blocks)
1940			break;
1941
1942		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943		if (force && start && end != max_blocks
1944					&& (end - start) < cpc->trim_minlen)
1945			continue;
1946
1947		if (check_only)
1948			return true;
1949
1950		if (!de) {
1951			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952								GFP_F2FS_ZERO);
1953			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954			list_add_tail(&de->list, head);
1955		}
1956
1957		for (i = start; i < end; i++)
1958			__set_bit_le(i, (void *)de->discard_map);
1959
1960		SM_I(sbi)->dcc_info->nr_discards += end - start;
1961	}
1962	return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967	list_del(&entry->list);
1968	kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974	struct discard_entry *entry, *this;
1975
1976	/* drop caches */
1977	list_for_each_entry_safe(entry, this, head, list)
1978		release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987	unsigned int segno;
1988
1989	mutex_lock(&dirty_i->seglist_lock);
1990	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991		__set_test_and_free(sbi, segno, false);
1992	mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996						struct cp_control *cpc)
1997{
1998	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999	struct list_head *head = &dcc->entry_list;
2000	struct discard_entry *entry, *this;
2001	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003	unsigned int start = 0, end = -1;
2004	unsigned int secno, start_segno;
2005	bool force = (cpc->reason & CP_DISCARD);
2006	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
 
 
 
 
2007
2008	mutex_lock(&dirty_i->seglist_lock);
2009
2010	while (1) {
2011		int i;
2012
2013		if (need_align && end != -1)
2014			end--;
2015		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016		if (start >= MAIN_SEGS(sbi))
2017			break;
2018		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019								start + 1);
2020
2021		if (need_align) {
2022			start = rounddown(start, sbi->segs_per_sec);
2023			end = roundup(end, sbi->segs_per_sec);
2024		}
2025
2026		for (i = start; i < end; i++) {
2027			if (test_and_clear_bit(i, prefree_map))
2028				dirty_i->nr_dirty[PRE]--;
2029		}
2030
2031		if (!f2fs_realtime_discard_enable(sbi))
2032			continue;
2033
2034		if (force && start >= cpc->trim_start &&
2035					(end - 1) <= cpc->trim_end)
2036				continue;
2037
2038		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
 
 
2039			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040				(end - start) << sbi->log_blocks_per_seg);
2041			continue;
2042		}
2043next:
2044		secno = GET_SEC_FROM_SEG(sbi, start);
2045		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046		if (!IS_CURSEC(sbi, secno) &&
2047			!get_valid_blocks(sbi, start, true))
2048			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051		start = start_segno + sbi->segs_per_sec;
2052		if (start < end)
2053			goto next;
2054		else
2055			end = start - 1;
2056	}
2057	mutex_unlock(&dirty_i->seglist_lock);
2058
 
 
 
2059	/* send small discards */
2060	list_for_each_entry_safe(entry, this, head, list) {
2061		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062		bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065		if (is_valid) {
2066			next_pos = find_next_zero_bit_le(entry->discard_map,
2067					sbi->blocks_per_seg, cur_pos);
2068			len = next_pos - cur_pos;
2069
2070			if (f2fs_sb_has_blkzoned(sbi) ||
2071			    (force && len < cpc->trim_minlen))
2072				goto skip;
2073
2074			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075									len);
2076			total_len += len;
2077		} else {
2078			next_pos = find_next_bit_le(entry->discard_map,
2079					sbi->blocks_per_seg, cur_pos);
2080		}
2081skip:
2082		cur_pos = next_pos;
2083		is_valid = !is_valid;
2084
2085		if (cur_pos < sbi->blocks_per_seg)
2086			goto find_next;
2087
2088		release_discard_addr(entry);
2089		dcc->nr_discards -= total_len;
2090	}
2091
 
2092	wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097	dev_t dev = sbi->sb->s_bdev->bd_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098	struct discard_cmd_control *dcc;
2099	int err = 0, i;
2100
2101	if (SM_I(sbi)->dcc_info) {
2102		dcc = SM_I(sbi)->dcc_info;
2103		goto init_thread;
2104	}
2105
2106	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107	if (!dcc)
2108		return -ENOMEM;
2109
 
2110	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
 
 
 
 
 
 
 
2111	INIT_LIST_HEAD(&dcc->entry_list);
2112	for (i = 0; i < MAX_PLIST_NUM; i++)
2113		INIT_LIST_HEAD(&dcc->pend_list[i]);
2114	INIT_LIST_HEAD(&dcc->wait_list);
2115	INIT_LIST_HEAD(&dcc->fstrim_list);
2116	mutex_init(&dcc->cmd_lock);
2117	atomic_set(&dcc->issued_discard, 0);
2118	atomic_set(&dcc->queued_discard, 0);
2119	atomic_set(&dcc->discard_cmd_cnt, 0);
2120	dcc->nr_discards = 0;
2121	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
 
 
 
 
 
2122	dcc->undiscard_blks = 0;
2123	dcc->next_pos = 0;
2124	dcc->root = RB_ROOT_CACHED;
2125	dcc->rbtree_check = false;
2126
2127	init_waitqueue_head(&dcc->discard_wait_queue);
2128	SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132	if (IS_ERR(dcc->f2fs_issue_discard)) {
2133		err = PTR_ERR(dcc->f2fs_issue_discard);
2134		kfree(dcc);
2135		SM_I(sbi)->dcc_info = NULL;
2136		return err;
2137	}
2138
2139	return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146	if (!dcc)
2147		return;
2148
2149	f2fs_stop_discard_thread(sbi);
2150
2151	/*
2152	 * Recovery can cache discard commands, so in error path of
2153	 * fill_super(), it needs to give a chance to handle them.
2154	 */
2155	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156		f2fs_issue_discard_timeout(sbi);
2157
2158	kfree(dcc);
2159	SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164	struct sit_info *sit_i = SIT_I(sbi);
2165
2166	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167		sit_i->dirty_sentries++;
2168		return false;
2169	}
2170
2171	return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175					unsigned int segno, int modified)
2176{
2177	struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179	se->type = type;
2180	if (modified)
2181		__mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185								block_t blkaddr)
2186{
2187	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189	if (segno == NULL_SEGNO)
2190		return 0;
2191	return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195						unsigned long long old_mtime)
2196{
2197	struct seg_entry *se;
2198	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199	unsigned long long ctime = get_mtime(sbi, false);
2200	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202	if (segno == NULL_SEGNO)
2203		return;
2204
2205	se = get_seg_entry(sbi, segno);
2206
2207	if (!se->mtime)
2208		se->mtime = mtime;
2209	else
2210		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211						se->valid_blocks + 1);
2212
2213	if (ctime > SIT_I(sbi)->max_mtime)
2214		SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219	struct seg_entry *se;
2220	unsigned int segno, offset;
2221	long int new_vblocks;
2222	bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224	bool mir_exist;
2225#endif
2226
2227	segno = GET_SEGNO(sbi, blkaddr);
2228
2229	se = get_seg_entry(sbi, segno);
2230	new_vblocks = se->valid_blocks + del;
2231	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236	se->valid_blocks = new_vblocks;
2237
2238	/* Update valid block bitmap */
2239	if (del > 0) {
2240		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242		mir_exist = f2fs_test_and_set_bit(offset,
2243						se->cur_valid_map_mir);
2244		if (unlikely(exist != mir_exist)) {
2245			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246				 blkaddr, exist);
2247			f2fs_bug_on(sbi, 1);
2248		}
2249#endif
2250		if (unlikely(exist)) {
2251			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252				 blkaddr);
2253			f2fs_bug_on(sbi, 1);
2254			se->valid_blocks--;
2255			del = 0;
2256		}
2257
2258		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 
2259			sbi->discard_blks--;
2260
2261		/*
2262		 * SSR should never reuse block which is checkpointed
2263		 * or newly invalidated.
2264		 */
2265		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267				se->ckpt_valid_blocks++;
2268		}
2269	} else {
2270		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272		mir_exist = f2fs_test_and_clear_bit(offset,
2273						se->cur_valid_map_mir);
2274		if (unlikely(exist != mir_exist)) {
2275			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276				 blkaddr, exist);
2277			f2fs_bug_on(sbi, 1);
2278		}
2279#endif
2280		if (unlikely(!exist)) {
2281			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282				 blkaddr);
2283			f2fs_bug_on(sbi, 1);
2284			se->valid_blocks++;
2285			del = 0;
2286		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287			/*
2288			 * If checkpoints are off, we must not reuse data that
2289			 * was used in the previous checkpoint. If it was used
2290			 * before, we must track that to know how much space we
2291			 * really have.
2292			 */
2293			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294				spin_lock(&sbi->stat_lock);
2295				sbi->unusable_block_count++;
2296				spin_unlock(&sbi->stat_lock);
2297			}
2298		}
2299
2300		if (f2fs_test_and_clear_bit(offset, se->discard_map))
 
2301			sbi->discard_blks++;
2302	}
2303	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304		se->ckpt_valid_blocks += del;
2305
2306	__mark_sit_entry_dirty(sbi, segno);
2307
2308	/* update total number of valid blocks to be written in ckpt area */
2309	SIT_I(sbi)->written_valid_blocks += del;
2310
2311	if (__is_large_section(sbi))
2312		get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317	unsigned int segno = GET_SEGNO(sbi, addr);
2318	struct sit_info *sit_i = SIT_I(sbi);
2319
2320	f2fs_bug_on(sbi, addr == NULL_ADDR);
2321	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322		return;
2323
2324	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325	f2fs_invalidate_compress_page(sbi, addr);
2326
2327	/* add it into sit main buffer */
2328	down_write(&sit_i->sentry_lock);
2329
2330	update_segment_mtime(sbi, addr, 0);
2331	update_sit_entry(sbi, addr, -1);
2332
2333	/* add it into dirty seglist */
2334	locate_dirty_segment(sbi, segno);
2335
2336	up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341	struct sit_info *sit_i = SIT_I(sbi);
2342	unsigned int segno, offset;
2343	struct seg_entry *se;
2344	bool is_cp = false;
2345
2346	if (!__is_valid_data_blkaddr(blkaddr))
2347		return true;
2348
2349	down_read(&sit_i->sentry_lock);
2350
2351	segno = GET_SEGNO(sbi, blkaddr);
2352	se = get_seg_entry(sbi, segno);
2353	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356		is_cp = true;
2357
2358	up_read(&sit_i->sentry_lock);
2359
2360	return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367					struct f2fs_summary *sum)
2368{
2369	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370	void *addr = curseg->sum_blk;
2371
2372	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373	memcpy(addr, sum, sizeof(struct f2fs_summary));
 
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381	int valid_sum_count = 0;
2382	int i, sum_in_page;
2383
2384	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385		if (sbi->ckpt->alloc_type[i] == SSR)
2386			valid_sum_count += sbi->blocks_per_seg;
2387		else {
2388			if (for_ra)
2389				valid_sum_count += le16_to_cpu(
2390					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391			else
2392				valid_sum_count += curseg_blkoff(sbi, i);
2393		}
2394	}
2395
2396	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398	if (valid_sum_count <= sum_in_page)
2399		return 1;
2400	else if ((valid_sum_count - sum_in_page) <=
2401		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402		return 2;
2403	return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411	if (unlikely(f2fs_cp_error(sbi)))
2412		return ERR_PTR(-EIO);
2413	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417					void *src, block_t blk_addr)
2418{
2419	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421	memcpy(page_address(page), src, PAGE_SIZE);
2422	set_page_dirty(page);
2423	f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433						int type, block_t blk_addr)
2434{
2435	struct curseg_info *curseg = CURSEG_I(sbi, type);
2436	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437	struct f2fs_summary_block *src = curseg->sum_blk;
2438	struct f2fs_summary_block *dst;
2439
2440	dst = (struct f2fs_summary_block *)page_address(page);
2441	memset(dst, 0, PAGE_SIZE);
2442
2443	mutex_lock(&curseg->curseg_mutex);
2444
2445	down_read(&curseg->journal_rwsem);
2446	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447	up_read(&curseg->journal_rwsem);
2448
2449	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452	mutex_unlock(&curseg->curseg_mutex);
2453
2454	set_page_dirty(page);
2455	f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459				struct curseg_info *curseg, int type)
2460{
2461	unsigned int segno = curseg->segno + 1;
2462	struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465		return !test_bit(segno, free_i->free_segmap);
2466	return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474			unsigned int *newseg, bool new_sec, int dir)
2475{
2476	struct free_segmap_info *free_i = FREE_I(sbi);
2477	unsigned int segno, secno, zoneno;
2478	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481	unsigned int left_start = hint;
2482	bool init = true;
2483	int go_left = 0;
2484	int i;
2485
2486	spin_lock(&free_i->segmap_lock);
2487
2488	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489		segno = find_next_zero_bit(free_i->free_segmap,
2490			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492			goto got_it;
2493	}
2494find_other_zone:
2495	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496	if (secno >= MAIN_SECS(sbi)) {
2497		if (dir == ALLOC_RIGHT) {
2498			secno = find_next_zero_bit(free_i->free_secmap,
2499							MAIN_SECS(sbi), 0);
2500			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501		} else {
2502			go_left = 1;
2503			left_start = hint - 1;
2504		}
2505	}
2506	if (go_left == 0)
2507		goto skip_left;
2508
2509	while (test_bit(left_start, free_i->free_secmap)) {
2510		if (left_start > 0) {
2511			left_start--;
2512			continue;
2513		}
2514		left_start = find_next_zero_bit(free_i->free_secmap,
2515							MAIN_SECS(sbi), 0);
2516		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517		break;
2518	}
2519	secno = left_start;
2520skip_left:
2521	segno = GET_SEG_FROM_SEC(sbi, secno);
2522	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524	/* give up on finding another zone */
2525	if (!init)
2526		goto got_it;
2527	if (sbi->secs_per_zone == 1)
2528		goto got_it;
2529	if (zoneno == old_zoneno)
2530		goto got_it;
2531	if (dir == ALLOC_LEFT) {
2532		if (!go_left && zoneno + 1 >= total_zones)
2533			goto got_it;
2534		if (go_left && zoneno == 0)
2535			goto got_it;
2536	}
2537	for (i = 0; i < NR_CURSEG_TYPE; i++)
2538		if (CURSEG_I(sbi, i)->zone == zoneno)
2539			break;
2540
2541	if (i < NR_CURSEG_TYPE) {
2542		/* zone is in user, try another */
2543		if (go_left)
2544			hint = zoneno * sbi->secs_per_zone - 1;
2545		else if (zoneno + 1 >= total_zones)
2546			hint = 0;
2547		else
2548			hint = (zoneno + 1) * sbi->secs_per_zone;
2549		init = false;
2550		goto find_other_zone;
2551	}
2552got_it:
2553	/* set it as dirty segment in free segmap */
2554	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555	__set_inuse(sbi, segno);
2556	*newseg = segno;
2557	spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562	struct curseg_info *curseg = CURSEG_I(sbi, type);
2563	struct summary_footer *sum_footer;
2564	unsigned short seg_type = curseg->seg_type;
2565
2566	curseg->inited = true;
2567	curseg->segno = curseg->next_segno;
2568	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569	curseg->next_blkoff = 0;
2570	curseg->next_segno = NULL_SEGNO;
2571
2572	sum_footer = &(curseg->sum_blk->footer);
2573	memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575	sanity_check_seg_type(sbi, seg_type);
2576
2577	if (IS_DATASEG(seg_type))
2578		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579	if (IS_NODESEG(seg_type))
2580		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586	struct curseg_info *curseg = CURSEG_I(sbi, type);
2587	unsigned short seg_type = curseg->seg_type;
2588
2589	sanity_check_seg_type(sbi, seg_type);
 
 
2590
2591	/* if segs_per_sec is large than 1, we need to keep original policy. */
2592	if (__is_large_section(sbi))
2593		return curseg->segno;
2594
2595	/* inmem log may not locate on any segment after mount */
2596	if (!curseg->inited)
2597		return 0;
2598
2599	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600		return 0;
2601
2602	if (test_opt(sbi, NOHEAP) &&
2603		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604		return 0;
2605
2606	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609	/* find segments from 0 to reuse freed segments */
2610	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611		return 0;
2612
2613	return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623	unsigned short seg_type = curseg->seg_type;
2624	unsigned int segno = curseg->segno;
2625	int dir = ALLOC_LEFT;
2626
2627	if (curseg->inited)
2628		write_sum_page(sbi, curseg->sum_blk,
2629				GET_SUM_BLOCK(sbi, segno));
2630	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631		dir = ALLOC_RIGHT;
2632
2633	if (test_opt(sbi, NOHEAP))
2634		dir = ALLOC_RIGHT;
2635
2636	segno = __get_next_segno(sbi, type);
2637	get_new_segment(sbi, &segno, new_sec, dir);
2638	curseg->next_segno = segno;
2639	reset_curseg(sbi, type, 1);
2640	curseg->alloc_type = LFS;
 
 
 
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644					int segno, block_t start)
2645{
2646	struct seg_entry *se = get_seg_entry(sbi, segno);
2647	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651	int i;
2652
2653	for (i = 0; i < entries; i++)
2654		target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665				struct curseg_info *seg)
2666{
2667	if (seg->alloc_type == SSR)
2668		seg->next_blkoff =
2669			__next_free_blkoff(sbi, seg->segno,
2670						seg->next_blkoff + 1);
2671	else
2672		seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687	struct curseg_info *curseg = CURSEG_I(sbi, type);
2688	unsigned int new_segno = curseg->next_segno;
2689	struct f2fs_summary_block *sum_node;
2690	struct page *sum_page;
2691
2692	if (flush)
2693		write_sum_page(sbi, curseg->sum_blk,
2694					GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696	__set_test_and_inuse(sbi, new_segno);
2697
2698	mutex_lock(&dirty_i->seglist_lock);
2699	__remove_dirty_segment(sbi, new_segno, PRE);
2700	__remove_dirty_segment(sbi, new_segno, DIRTY);
2701	mutex_unlock(&dirty_i->seglist_lock);
2702
2703	reset_curseg(sbi, type, 1);
2704	curseg->alloc_type = SSR;
2705	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707	sum_page = f2fs_get_sum_page(sbi, new_segno);
2708	if (IS_ERR(sum_page)) {
2709		/* GC won't be able to use stale summary pages by cp_error */
2710		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711		return;
2712	}
2713	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715	f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719				int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722					int target_type, int alloc_mode,
2723					unsigned long long age)
2724{
2725	struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727	curseg->seg_type = target_type;
2728
2729	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732		curseg->seg_type = se->type;
2733		change_curseg(sbi, type, true);
2734	} else {
2735		/* allocate cold segment by default */
2736		curseg->seg_type = CURSEG_COLD_DATA;
2737		new_curseg(sbi, type, true);
2738	}
2739	stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746	if (!sbi->am.atgc_enabled)
2747		return;
2748
2749	down_read(&SM_I(sbi)->curseg_lock);
2750
2751	mutex_lock(&curseg->curseg_mutex);
2752	down_write(&SIT_I(sbi)->sentry_lock);
2753
2754	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756	up_write(&SIT_I(sbi)->sentry_lock);
2757	mutex_unlock(&curseg->curseg_mutex);
2758
2759	up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764	__f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769	struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771	mutex_lock(&curseg->curseg_mutex);
2772	if (!curseg->inited)
2773		goto out;
2774
2775	if (get_valid_blocks(sbi, curseg->segno, false)) {
2776		write_sum_page(sbi, curseg->sum_blk,
2777				GET_SUM_BLOCK(sbi, curseg->segno));
2778	} else {
2779		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780		__set_test_and_free(sbi, curseg->segno, true);
2781		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782	}
2783out:
2784	mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791	if (sbi->am.atgc_enabled)
2792		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799	mutex_lock(&curseg->curseg_mutex);
2800	if (!curseg->inited)
2801		goto out;
2802	if (get_valid_blocks(sbi, curseg->segno, false))
2803		goto out;
2804
2805	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806	__set_test_and_inuse(sbi, curseg->segno);
2807	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809	mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816	if (sbi->am.atgc_enabled)
2817		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821				int alloc_mode, unsigned long long age)
2822{
2823	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825	unsigned segno = NULL_SEGNO;
2826	unsigned short seg_type = curseg->seg_type;
2827	int i, cnt;
2828	bool reversed = false;
2829
2830	sanity_check_seg_type(sbi, seg_type);
2831
2832	/* f2fs_need_SSR() already forces to do this */
2833	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834		curseg->next_segno = segno;
2835		return 1;
2836	}
2837
2838	/* For node segments, let's do SSR more intensively */
2839	if (IS_NODESEG(seg_type)) {
2840		if (seg_type >= CURSEG_WARM_NODE) {
2841			reversed = true;
2842			i = CURSEG_COLD_NODE;
2843		} else {
2844			i = CURSEG_HOT_NODE;
2845		}
2846		cnt = NR_CURSEG_NODE_TYPE;
2847	} else {
2848		if (seg_type >= CURSEG_WARM_DATA) {
2849			reversed = true;
2850			i = CURSEG_COLD_DATA;
2851		} else {
2852			i = CURSEG_HOT_DATA;
2853		}
2854		cnt = NR_CURSEG_DATA_TYPE;
2855	}
2856
2857	for (; cnt-- > 0; reversed ? i-- : i++) {
2858		if (i == seg_type)
2859			continue;
2860		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861			curseg->next_segno = segno;
2862			return 1;
2863		}
2864	}
2865
2866	/* find valid_blocks=0 in dirty list */
2867	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868		segno = get_free_segment(sbi);
2869		if (segno != NULL_SEGNO) {
2870			curseg->next_segno = segno;
2871			return 1;
2872		}
2873	}
2874	return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882						int type, bool force)
2883{
2884	struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886	if (force)
2887		new_curseg(sbi, type, true);
2888	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889					curseg->seg_type == CURSEG_WARM_NODE)
2890		new_curseg(sbi, type, false);
2891	else if (curseg->alloc_type == LFS &&
2892			is_next_segment_free(sbi, curseg, type) &&
2893			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894		new_curseg(sbi, type, false);
2895	else if (f2fs_need_SSR(sbi) &&
2896			get_ssr_segment(sbi, type, SSR, 0))
2897		change_curseg(sbi, type, true);
2898	else
2899		new_curseg(sbi, type, false);
2900
2901	stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905					unsigned int start, unsigned int end)
2906{
2907	struct curseg_info *curseg = CURSEG_I(sbi, type);
2908	unsigned int segno;
2909
2910	down_read(&SM_I(sbi)->curseg_lock);
2911	mutex_lock(&curseg->curseg_mutex);
2912	down_write(&SIT_I(sbi)->sentry_lock);
2913
2914	segno = CURSEG_I(sbi, type)->segno;
2915	if (segno < start || segno > end)
2916		goto unlock;
2917
2918	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919		change_curseg(sbi, type, true);
2920	else
2921		new_curseg(sbi, type, true);
2922
2923	stat_inc_seg_type(sbi, curseg);
2924
2925	locate_dirty_segment(sbi, segno);
2926unlock:
2927	up_write(&SIT_I(sbi)->sentry_lock);
2928
2929	if (segno != curseg->segno)
2930		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931			    type, segno, curseg->segno);
2932
2933	mutex_unlock(&curseg->curseg_mutex);
2934	up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938						bool new_sec, bool force)
2939{
2940	struct curseg_info *curseg = CURSEG_I(sbi, type);
2941	unsigned int old_segno;
2942
2943	if (!curseg->inited)
2944		goto alloc;
2945
2946	if (force || curseg->next_blkoff ||
2947		get_valid_blocks(sbi, curseg->segno, new_sec))
2948		goto alloc;
2949
2950	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951		return;
2952alloc:
2953	old_segno = curseg->segno;
2954	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
 
2955	locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959						int type, bool force)
2960{
2961	__allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966	down_read(&SM_I(sbi)->curseg_lock);
2967	down_write(&SIT_I(sbi)->sentry_lock);
2968	__allocate_new_section(sbi, type, force);
2969	up_write(&SIT_I(sbi)->sentry_lock);
2970	up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975	int i;
2976
2977	down_read(&SM_I(sbi)->curseg_lock);
2978	down_write(&SIT_I(sbi)->sentry_lock);
2979	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980		__allocate_new_segment(sbi, i, false, false);
2981	up_write(&SIT_I(sbi)->sentry_lock);
2982	up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986	.allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990						struct cp_control *cpc)
2991{
2992	__u64 trim_start = cpc->trim_start;
2993	bool has_candidate = false;
2994
2995	down_write(&SIT_I(sbi)->sentry_lock);
2996	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997		if (add_discard_addrs(sbi, cpc, true)) {
2998			has_candidate = true;
2999			break;
3000		}
3001	}
3002	up_write(&SIT_I(sbi)->sentry_lock);
3003
3004	cpc->trim_start = trim_start;
3005	return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009					struct discard_policy *dpolicy,
3010					unsigned int start, unsigned int end)
3011{
3012	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015	struct discard_cmd *dc;
3016	struct blk_plug plug;
3017	int issued;
3018	unsigned int trimmed = 0;
3019
3020next:
3021	issued = 0;
3022
3023	mutex_lock(&dcc->cmd_lock);
3024	if (unlikely(dcc->rbtree_check))
3025		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026							&dcc->root, false));
3027
3028	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029					NULL, start,
3030					(struct rb_entry **)&prev_dc,
3031					(struct rb_entry **)&next_dc,
3032					&insert_p, &insert_parent, true, NULL);
3033	if (!dc)
3034		dc = next_dc;
3035
3036	blk_start_plug(&plug);
3037
3038	while (dc && dc->lstart <= end) {
3039		struct rb_node *node;
3040		int err = 0;
3041
3042		if (dc->len < dpolicy->granularity)
3043			goto skip;
3044
3045		if (dc->state != D_PREP) {
3046			list_move_tail(&dc->list, &dcc->fstrim_list);
3047			goto skip;
3048		}
3049
3050		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052		if (issued >= dpolicy->max_requests) {
3053			start = dc->lstart + dc->len;
3054
3055			if (err)
3056				__remove_discard_cmd(sbi, dc);
3057
3058			blk_finish_plug(&plug);
3059			mutex_unlock(&dcc->cmd_lock);
3060			trimmed += __wait_all_discard_cmd(sbi, NULL);
3061			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062			goto next;
3063		}
3064skip:
3065		node = rb_next(&dc->rb_node);
3066		if (err)
3067			__remove_discard_cmd(sbi, dc);
3068		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070		if (fatal_signal_pending(current))
3071			break;
3072	}
3073
3074	blk_finish_plug(&plug);
3075	mutex_unlock(&dcc->cmd_lock);
3076
3077	return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3083	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084	unsigned int start_segno, end_segno;
3085	block_t start_block, end_block;
3086	struct cp_control cpc;
3087	struct discard_policy dpolicy;
3088	unsigned long long trimmed = 0;
3089	int err = 0;
3090	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093		return -EINVAL;
3094
3095	if (end < MAIN_BLKADDR(sbi))
3096		goto out;
3097
3098	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100		return -EFSCORRUPTED;
3101	}
3102
3103	/* start/end segment number in main_area */
3104	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106						GET_SEGNO(sbi, end);
3107	if (need_align) {
3108		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110	}
3111
3112	cpc.reason = CP_DISCARD;
3113	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114	cpc.trim_start = start_segno;
3115	cpc.trim_end = end_segno;
3116
3117	if (sbi->discard_blks == 0)
3118		goto out;
3119
3120	down_write(&sbi->gc_lock);
 
3121	err = f2fs_write_checkpoint(sbi, &cpc);
3122	up_write(&sbi->gc_lock);
3123	if (err)
3124		goto out;
3125
3126	/*
3127	 * We filed discard candidates, but actually we don't need to wait for
3128	 * all of them, since they'll be issued in idle time along with runtime
3129	 * discard option. User configuration looks like using runtime discard
3130	 * or periodic fstrim instead of it.
3131	 */
3132	if (f2fs_realtime_discard_enable(sbi))
3133		goto out;
3134
3135	start_block = START_BLOCK(sbi, start_segno);
3136	end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140					start_block, end_block);
3141
3142	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143					start_block, end_block);
3144out:
3145	if (!err)
3146		range->len = F2FS_BLK_TO_BYTES(trimmed);
3147	return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151					struct curseg_info *curseg)
3152{
3153	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154							curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159	switch (hint) {
3160	case WRITE_LIFE_SHORT:
3161		return CURSEG_HOT_DATA;
3162	case WRITE_LIFE_EXTREME:
3163		return CURSEG_COLD_DATA;
3164	default:
3165		return CURSEG_WARM_DATA;
3166	}
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User                  F2FS                     Block
3178 * ----                  ----                     -----
3179 *                       META                     WRITE_LIFE_NOT_SET
3180 *                       HOT_NODE                 "
3181 *                       WARM_NODE                "
3182 *                       COLD_NODE                "
3183 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3184 * extension list        "                        "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE       "                        "
3191 * WRITE_LIFE_MEDIUM     "                        "
3192 * WRITE_LIFE_LONG       "                        "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User                  F2FS                     Block
3205 * ----                  ----                     -----
3206 *                       META                     WRITE_LIFE_MEDIUM;
3207 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3208 *                       WARM_NODE                "
3209 *                       COLD_NODE                WRITE_LIFE_NONE
3210 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3211 * extension list        "                        "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE       "                        "
3218 * WRITE_LIFE_MEDIUM     "                        "
3219 * WRITE_LIFE_LONG       "                        "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231				enum page_type type, enum temp_type temp)
3232{
3233	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234		if (type == DATA) {
3235			if (temp == WARM)
3236				return WRITE_LIFE_NOT_SET;
3237			else if (temp == HOT)
3238				return WRITE_LIFE_SHORT;
3239			else if (temp == COLD)
3240				return WRITE_LIFE_EXTREME;
3241		} else {
3242			return WRITE_LIFE_NOT_SET;
3243		}
3244	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245		if (type == DATA) {
3246			if (temp == WARM)
3247				return WRITE_LIFE_LONG;
3248			else if (temp == HOT)
3249				return WRITE_LIFE_SHORT;
3250			else if (temp == COLD)
3251				return WRITE_LIFE_EXTREME;
3252		} else if (type == NODE) {
3253			if (temp == WARM || temp == HOT)
3254				return WRITE_LIFE_NOT_SET;
3255			else if (temp == COLD)
3256				return WRITE_LIFE_NONE;
3257		} else if (type == META) {
3258			return WRITE_LIFE_MEDIUM;
3259		}
3260	}
3261	return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266	if (fio->type == DATA)
3267		return CURSEG_HOT_DATA;
3268	else
3269		return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274	if (fio->type == DATA) {
3275		struct inode *inode = fio->page->mapping->host;
3276
3277		if (S_ISDIR(inode->i_mode))
3278			return CURSEG_HOT_DATA;
3279		else
3280			return CURSEG_COLD_DATA;
3281	} else {
3282		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283			return CURSEG_WARM_NODE;
3284		else
3285			return CURSEG_COLD_NODE;
3286	}
3287}
3288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291	if (fio->type == DATA) {
3292		struct inode *inode = fio->page->mapping->host;
 
3293
3294		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295			return CURSEG_COLD_DATA_PINNED;
3296
3297		if (page_private_gcing(fio->page)) {
3298			if (fio->sbi->am.atgc_enabled &&
3299				(fio->io_type == FS_DATA_IO) &&
3300				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3301				return CURSEG_ALL_DATA_ATGC;
3302			else
3303				return CURSEG_COLD_DATA;
3304		}
3305		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306			return CURSEG_COLD_DATA;
 
 
 
 
 
3307		if (file_is_hot(inode) ||
3308				is_inode_flag_set(inode, FI_HOT_DATA) ||
3309				f2fs_is_atomic_file(inode) ||
3310				f2fs_is_volatile_file(inode))
3311			return CURSEG_HOT_DATA;
3312		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313	} else {
3314		if (IS_DNODE(fio->page))
3315			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316						CURSEG_HOT_NODE;
3317		return CURSEG_COLD_NODE;
3318	}
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323	int type = 0;
3324
3325	switch (F2FS_OPTION(fio->sbi).active_logs) {
3326	case 2:
3327		type = __get_segment_type_2(fio);
3328		break;
3329	case 4:
3330		type = __get_segment_type_4(fio);
3331		break;
3332	case 6:
3333		type = __get_segment_type_6(fio);
3334		break;
3335	default:
3336		f2fs_bug_on(fio->sbi, true);
3337	}
3338
3339	if (IS_HOT(type))
3340		fio->temp = HOT;
3341	else if (IS_WARM(type))
3342		fio->temp = WARM;
3343	else
3344		fio->temp = COLD;
3345	return type;
3346}
3347
 
 
 
 
 
 
 
 
 
 
 
 
 
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349		block_t old_blkaddr, block_t *new_blkaddr,
3350		struct f2fs_summary *sum, int type,
3351		struct f2fs_io_info *fio)
3352{
3353	struct sit_info *sit_i = SIT_I(sbi);
3354	struct curseg_info *curseg = CURSEG_I(sbi, type);
3355	unsigned long long old_mtime;
3356	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357	struct seg_entry *se = NULL;
 
3358
3359	down_read(&SM_I(sbi)->curseg_lock);
3360
3361	mutex_lock(&curseg->curseg_mutex);
3362	down_write(&sit_i->sentry_lock);
3363
3364	if (from_gc) {
3365		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367		sanity_check_seg_type(sbi, se->type);
3368		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369	}
3370	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376	/*
3377	 * __add_sum_entry should be resided under the curseg_mutex
3378	 * because, this function updates a summary entry in the
3379	 * current summary block.
3380	 */
3381	__add_sum_entry(sbi, type, sum);
3382
3383	__refresh_next_blkoff(sbi, curseg);
3384
 
3385	stat_inc_block_count(sbi, curseg);
3386
3387	if (from_gc) {
3388		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389	} else {
3390		update_segment_mtime(sbi, old_blkaddr, 0);
3391		old_mtime = 0;
3392	}
3393	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395	/*
3396	 * SIT information should be updated before segment allocation,
3397	 * since SSR needs latest valid block information.
3398	 */
3399	update_sit_entry(sbi, *new_blkaddr, 1);
3400	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401		update_sit_entry(sbi, old_blkaddr, -1);
3402
3403	if (!__has_curseg_space(sbi, curseg)) {
3404		if (from_gc)
 
 
 
 
3405			get_atssr_segment(sbi, type, se->type,
3406						AT_SSR, se->mtime);
3407		else
3408			sit_i->s_ops->allocate_segment(sbi, type, false);
 
 
 
 
 
3409	}
3410	/*
3411	 * segment dirty status should be updated after segment allocation,
3412	 * so we just need to update status only one time after previous
3413	 * segment being closed.
3414	 */
3415	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
 
 
 
3418	up_write(&sit_i->sentry_lock);
3419
3420	if (page && IS_NODESEG(type)) {
3421		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423		f2fs_inode_chksum_set(sbi, page);
3424	}
3425
3426	if (fio) {
3427		struct f2fs_bio_info *io;
3428
3429		if (F2FS_IO_ALIGNED(sbi))
3430			fio->retry = false;
3431
3432		INIT_LIST_HEAD(&fio->list);
3433		fio->in_list = true;
3434		io = sbi->write_io[fio->type] + fio->temp;
3435		spin_lock(&io->io_lock);
3436		list_add_tail(&fio->list, &io->io_list);
3437		spin_unlock(&io->io_lock);
3438	}
3439
3440	mutex_unlock(&curseg->curseg_mutex);
3441
3442	up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
 
3446{
3447	struct f2fs_sb_info *sbi = fio->sbi;
3448	unsigned int devidx;
3449
3450	if (!f2fs_is_multi_device(sbi))
3451		return;
3452
3453	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
 
 
3454
3455	/* update device state for fsync */
3456	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458	/* update device state for checkpoint */
3459	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460		spin_lock(&sbi->dev_lock);
3461		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462		spin_unlock(&sbi->dev_lock);
 
 
 
 
 
 
3463	}
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468	int type = __get_segment_type(fio);
3469	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471	if (keep_order)
3472		down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475			&fio->new_blkaddr, sum, type, fio);
3476	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478					fio->old_blkaddr, fio->old_blkaddr);
3479		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480	}
3481
3482	/* writeout dirty page into bdev */
3483	f2fs_submit_page_write(fio);
3484	if (fio->retry) {
3485		fio->old_blkaddr = fio->new_blkaddr;
3486		goto reallocate;
3487	}
3488
3489	update_device_state(fio);
3490
3491	if (keep_order)
3492		up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496					enum iostat_type io_type)
3497{
3498	struct f2fs_io_info fio = {
3499		.sbi = sbi,
3500		.type = META,
3501		.temp = HOT,
3502		.op = REQ_OP_WRITE,
3503		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504		.old_blkaddr = page->index,
3505		.new_blkaddr = page->index,
3506		.page = page,
3507		.encrypted_page = NULL,
3508		.in_list = false,
3509	};
3510
3511	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512		fio.op_flags &= ~REQ_META;
3513
3514	set_page_writeback(page);
3515	ClearPageError(page);
3516	f2fs_submit_page_write(&fio);
3517
3518	stat_inc_meta_count(sbi, page->index);
3519	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524	struct f2fs_summary sum;
3525
3526	set_summary(&sum, nid, 0, 0);
3527	do_write_page(&sum, fio);
3528
3529	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533					struct f2fs_io_info *fio)
3534{
3535	struct f2fs_sb_info *sbi = fio->sbi;
3536	struct f2fs_summary sum;
3537
3538	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
 
 
3539	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540	do_write_page(&sum, fio);
3541	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548	int err;
3549	struct f2fs_sb_info *sbi = fio->sbi;
3550	unsigned int segno;
3551
3552	fio->new_blkaddr = fio->old_blkaddr;
3553	/* i/o temperature is needed for passing down write hints */
3554	__get_segment_type(fio);
3555
3556	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559		set_sbi_flag(sbi, SBI_NEED_FSCK);
3560		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561			  __func__, segno);
3562		err = -EFSCORRUPTED;
 
3563		goto drop_bio;
3564	}
3565
3566	if (f2fs_cp_error(sbi)) {
3567		err = -EIO;
3568		goto drop_bio;
3569	}
3570
 
 
 
 
3571	stat_inc_inplace_blocks(fio->sbi);
3572
3573	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574		err = f2fs_merge_page_bio(fio);
3575	else
3576		err = f2fs_submit_page_bio(fio);
3577	if (!err) {
3578		update_device_state(fio);
3579		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
 
 
3580	}
3581
3582	return err;
3583drop_bio:
3584	if (fio->bio && *(fio->bio)) {
3585		struct bio *bio = *(fio->bio);
3586
3587		bio->bi_status = BLK_STS_IOERR;
3588		bio_endio(bio);
3589		*(fio->bio) = NULL;
3590	}
3591	return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595						unsigned int segno)
3596{
3597	int i;
3598
3599	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600		if (CURSEG_I(sbi, i)->segno == segno)
3601			break;
3602	}
3603	return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607				block_t old_blkaddr, block_t new_blkaddr,
3608				bool recover_curseg, bool recover_newaddr,
3609				bool from_gc)
3610{
3611	struct sit_info *sit_i = SIT_I(sbi);
3612	struct curseg_info *curseg;
3613	unsigned int segno, old_cursegno;
3614	struct seg_entry *se;
3615	int type;
3616	unsigned short old_blkoff;
3617	unsigned char old_alloc_type;
3618
3619	segno = GET_SEGNO(sbi, new_blkaddr);
3620	se = get_seg_entry(sbi, segno);
3621	type = se->type;
3622
3623	down_write(&SM_I(sbi)->curseg_lock);
3624
3625	if (!recover_curseg) {
3626		/* for recovery flow */
3627		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628			if (old_blkaddr == NULL_ADDR)
3629				type = CURSEG_COLD_DATA;
3630			else
3631				type = CURSEG_WARM_DATA;
3632		}
3633	} else {
3634		if (IS_CURSEG(sbi, segno)) {
3635			/* se->type is volatile as SSR allocation */
3636			type = __f2fs_get_curseg(sbi, segno);
3637			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638		} else {
3639			type = CURSEG_WARM_DATA;
3640		}
3641	}
3642
3643	f2fs_bug_on(sbi, !IS_DATASEG(type));
3644	curseg = CURSEG_I(sbi, type);
3645
3646	mutex_lock(&curseg->curseg_mutex);
3647	down_write(&sit_i->sentry_lock);
3648
3649	old_cursegno = curseg->segno;
3650	old_blkoff = curseg->next_blkoff;
3651	old_alloc_type = curseg->alloc_type;
3652
3653	/* change the current segment */
3654	if (segno != curseg->segno) {
3655		curseg->next_segno = segno;
3656		change_curseg(sbi, type, true);
3657	}
3658
3659	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660	__add_sum_entry(sbi, type, sum);
3661
3662	if (!recover_curseg || recover_newaddr) {
3663		if (!from_gc)
3664			update_segment_mtime(sbi, new_blkaddr, 0);
3665		update_sit_entry(sbi, new_blkaddr, 1);
3666	}
3667	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668		invalidate_mapping_pages(META_MAPPING(sbi),
3669					old_blkaddr, old_blkaddr);
3670		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671		if (!from_gc)
3672			update_segment_mtime(sbi, old_blkaddr, 0);
3673		update_sit_entry(sbi, old_blkaddr, -1);
3674	}
3675
3676	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679	locate_dirty_segment(sbi, old_cursegno);
3680
3681	if (recover_curseg) {
3682		if (old_cursegno != curseg->segno) {
3683			curseg->next_segno = old_cursegno;
3684			change_curseg(sbi, type, true);
3685		}
3686		curseg->next_blkoff = old_blkoff;
3687		curseg->alloc_type = old_alloc_type;
3688	}
3689
3690	up_write(&sit_i->sentry_lock);
3691	mutex_unlock(&curseg->curseg_mutex);
3692	up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696				block_t old_addr, block_t new_addr,
3697				unsigned char version, bool recover_curseg,
3698				bool recover_newaddr)
3699{
3700	struct f2fs_summary sum;
3701
3702	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705					recover_curseg, recover_newaddr, false);
3706
3707	f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711				enum page_type type, bool ordered, bool locked)
3712{
3713	if (PageWriteback(page)) {
3714		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716		/* submit cached LFS IO */
3717		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718		/* sbumit cached IPU IO */
3719		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720		if (ordered) {
3721			wait_on_page_writeback(page);
3722			f2fs_bug_on(sbi, locked && PageWriteback(page));
3723		} else {
3724			wait_for_stable_page(page);
3725		}
3726	}
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732	struct page *cpage;
3733
3734	if (!f2fs_post_read_required(inode))
3735		return;
3736
3737	if (!__is_valid_data_blkaddr(blkaddr))
3738		return;
3739
3740	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741	if (cpage) {
3742		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743		f2fs_put_page(cpage, 1);
3744	}
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748								block_t len)
3749{
 
3750	block_t i;
3751
 
 
 
3752	for (i = 0; i < len; i++)
3753		f2fs_wait_on_block_writeback(inode, blkaddr + i);
 
 
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759	struct curseg_info *seg_i;
3760	unsigned char *kaddr;
3761	struct page *page;
3762	block_t start;
3763	int i, j, offset;
3764
3765	start = start_sum_block(sbi);
3766
3767	page = f2fs_get_meta_page(sbi, start++);
3768	if (IS_ERR(page))
3769		return PTR_ERR(page);
3770	kaddr = (unsigned char *)page_address(page);
3771
3772	/* Step 1: restore nat cache */
3773	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776	/* Step 2: restore sit cache */
3777	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779	offset = 2 * SUM_JOURNAL_SIZE;
3780
3781	/* Step 3: restore summary entries */
3782	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783		unsigned short blk_off;
3784		unsigned int segno;
3785
3786		seg_i = CURSEG_I(sbi, i);
3787		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789		seg_i->next_segno = segno;
3790		reset_curseg(sbi, i, 0);
3791		seg_i->alloc_type = ckpt->alloc_type[i];
3792		seg_i->next_blkoff = blk_off;
3793
3794		if (seg_i->alloc_type == SSR)
3795			blk_off = sbi->blocks_per_seg;
3796
3797		for (j = 0; j < blk_off; j++) {
3798			struct f2fs_summary *s;
3799
3800			s = (struct f2fs_summary *)(kaddr + offset);
3801			seg_i->sum_blk->entries[j] = *s;
3802			offset += SUMMARY_SIZE;
3803			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804						SUM_FOOTER_SIZE)
3805				continue;
3806
3807			f2fs_put_page(page, 1);
3808			page = NULL;
3809
3810			page = f2fs_get_meta_page(sbi, start++);
3811			if (IS_ERR(page))
3812				return PTR_ERR(page);
3813			kaddr = (unsigned char *)page_address(page);
3814			offset = 0;
3815		}
3816	}
3817	f2fs_put_page(page, 1);
3818	return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824	struct f2fs_summary_block *sum;
3825	struct curseg_info *curseg;
3826	struct page *new;
3827	unsigned short blk_off;
3828	unsigned int segno = 0;
3829	block_t blk_addr = 0;
3830	int err = 0;
3831
3832	/* get segment number and block addr */
3833	if (IS_DATASEG(type)) {
3834		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836							CURSEG_HOT_DATA]);
3837		if (__exist_node_summaries(sbi))
3838			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839		else
3840			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841	} else {
3842		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843							CURSEG_HOT_NODE]);
3844		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845							CURSEG_HOT_NODE]);
3846		if (__exist_node_summaries(sbi))
3847			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848							type - CURSEG_HOT_NODE);
3849		else
3850			blk_addr = GET_SUM_BLOCK(sbi, segno);
3851	}
3852
3853	new = f2fs_get_meta_page(sbi, blk_addr);
3854	if (IS_ERR(new))
3855		return PTR_ERR(new);
3856	sum = (struct f2fs_summary_block *)page_address(new);
3857
3858	if (IS_NODESEG(type)) {
3859		if (__exist_node_summaries(sbi)) {
3860			struct f2fs_summary *ns = &sum->entries[0];
3861			int i;
3862
3863			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864				ns->version = 0;
3865				ns->ofs_in_node = 0;
3866			}
3867		} else {
3868			err = f2fs_restore_node_summary(sbi, segno, sum);
3869			if (err)
3870				goto out;
3871		}
3872	}
3873
3874	/* set uncompleted segment to curseg */
3875	curseg = CURSEG_I(sbi, type);
3876	mutex_lock(&curseg->curseg_mutex);
3877
3878	/* update journal info */
3879	down_write(&curseg->journal_rwsem);
3880	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881	up_write(&curseg->journal_rwsem);
3882
3883	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885	curseg->next_segno = segno;
3886	reset_curseg(sbi, type, 0);
3887	curseg->alloc_type = ckpt->alloc_type[type];
3888	curseg->next_blkoff = blk_off;
3889	mutex_unlock(&curseg->curseg_mutex);
3890out:
3891	f2fs_put_page(new, 1);
3892	return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899	int type = CURSEG_HOT_DATA;
3900	int err;
3901
3902	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903		int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905		if (npages >= 2)
3906			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907							META_CP, true);
3908
3909		/* restore for compacted data summary */
3910		err = read_compacted_summaries(sbi);
3911		if (err)
3912			return err;
3913		type = CURSEG_HOT_NODE;
3914	}
3915
3916	if (__exist_node_summaries(sbi))
3917		f2fs_ra_meta_pages(sbi,
3918				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921	for (; type <= CURSEG_COLD_NODE; type++) {
3922		err = read_normal_summaries(sbi, type);
3923		if (err)
3924			return err;
3925	}
3926
3927	/* sanity check for summary blocks */
3928	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932		return -EINVAL;
3933	}
3934
3935	return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940	struct page *page;
3941	unsigned char *kaddr;
3942	struct f2fs_summary *summary;
3943	struct curseg_info *seg_i;
3944	int written_size = 0;
3945	int i, j;
3946
3947	page = f2fs_grab_meta_page(sbi, blkaddr++);
3948	kaddr = (unsigned char *)page_address(page);
3949	memset(kaddr, 0, PAGE_SIZE);
3950
3951	/* Step 1: write nat cache */
3952	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954	written_size += SUM_JOURNAL_SIZE;
3955
3956	/* Step 2: write sit cache */
3957	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959	written_size += SUM_JOURNAL_SIZE;
3960
3961	/* Step 3: write summary entries */
3962	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963		unsigned short blkoff;
3964
3965		seg_i = CURSEG_I(sbi, i);
3966		if (sbi->ckpt->alloc_type[i] == SSR)
3967			blkoff = sbi->blocks_per_seg;
3968		else
3969			blkoff = curseg_blkoff(sbi, i);
3970
3971		for (j = 0; j < blkoff; j++) {
3972			if (!page) {
3973				page = f2fs_grab_meta_page(sbi, blkaddr++);
3974				kaddr = (unsigned char *)page_address(page);
3975				memset(kaddr, 0, PAGE_SIZE);
3976				written_size = 0;
3977			}
3978			summary = (struct f2fs_summary *)(kaddr + written_size);
3979			*summary = seg_i->sum_blk->entries[j];
3980			written_size += SUMMARY_SIZE;
3981
3982			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983							SUM_FOOTER_SIZE)
3984				continue;
3985
3986			set_page_dirty(page);
3987			f2fs_put_page(page, 1);
3988			page = NULL;
3989		}
3990	}
3991	if (page) {
3992		set_page_dirty(page);
3993		f2fs_put_page(page, 1);
3994	}
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998					block_t blkaddr, int type)
3999{
4000	int i, end;
4001
4002	if (IS_DATASEG(type))
4003		end = type + NR_CURSEG_DATA_TYPE;
4004	else
4005		end = type + NR_CURSEG_NODE_TYPE;
4006
4007	for (i = type; i < end; i++)
4008		write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014		write_compacted_summaries(sbi, start_blk);
4015	else
4016		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025					unsigned int val, int alloc)
4026{
4027	int i;
4028
4029	if (type == NAT_JOURNAL) {
4030		for (i = 0; i < nats_in_cursum(journal); i++) {
4031			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032				return i;
4033		}
4034		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035			return update_nats_in_cursum(journal, 1);
4036	} else if (type == SIT_JOURNAL) {
4037		for (i = 0; i < sits_in_cursum(journal); i++)
4038			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039				return i;
4040		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041			return update_sits_in_cursum(journal, 1);
4042	}
4043	return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047					unsigned int segno)
4048{
4049	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053					unsigned int start)
4054{
4055	struct sit_info *sit_i = SIT_I(sbi);
4056	struct page *page;
4057	pgoff_t src_off, dst_off;
4058
4059	src_off = current_sit_addr(sbi, start);
4060	dst_off = next_sit_addr(sbi, src_off);
4061
4062	page = f2fs_grab_meta_page(sbi, dst_off);
4063	seg_info_to_sit_page(sbi, page, start);
4064
4065	set_page_dirty(page);
4066	set_to_next_sit(sit_i, start);
4067
4068	return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073	struct sit_entry_set *ses =
4074			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
 
4075
4076	ses->entry_cnt = 0;
4077	INIT_LIST_HEAD(&ses->set_list);
4078	return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083	list_del(&ses->set_list);
4084	kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088						struct list_head *head)
4089{
4090	struct sit_entry_set *next = ses;
4091
4092	if (list_is_last(&ses->set_list, head))
4093		return;
4094
4095	list_for_each_entry_continue(next, head, set_list)
4096		if (ses->entry_cnt <= next->entry_cnt)
4097			break;
 
 
4098
4099	list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104	struct sit_entry_set *ses;
4105	unsigned int start_segno = START_SEGNO(segno);
4106
4107	list_for_each_entry(ses, head, set_list) {
4108		if (ses->start_segno == start_segno) {
4109			ses->entry_cnt++;
4110			adjust_sit_entry_set(ses, head);
4111			return;
4112		}
4113	}
4114
4115	ses = grab_sit_entry_set();
4116
4117	ses->start_segno = start_segno;
4118	ses->entry_cnt++;
4119	list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124	struct f2fs_sm_info *sm_info = SM_I(sbi);
4125	struct list_head *set_list = &sm_info->sit_entry_set;
4126	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127	unsigned int segno;
4128
4129	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130		add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136	struct f2fs_journal *journal = curseg->journal;
4137	int i;
4138
4139	down_write(&curseg->journal_rwsem);
4140	for (i = 0; i < sits_in_cursum(journal); i++) {
4141		unsigned int segno;
4142		bool dirtied;
4143
4144		segno = le32_to_cpu(segno_in_journal(journal, i));
4145		dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147		if (!dirtied)
4148			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149	}
4150	update_sits_in_cursum(journal, -i);
4151	up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160	struct sit_info *sit_i = SIT_I(sbi);
4161	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163	struct f2fs_journal *journal = curseg->journal;
4164	struct sit_entry_set *ses, *tmp;
4165	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167	struct seg_entry *se;
4168
4169	down_write(&sit_i->sentry_lock);
4170
4171	if (!sit_i->dirty_sentries)
4172		goto out;
4173
4174	/*
4175	 * add and account sit entries of dirty bitmap in sit entry
4176	 * set temporarily
4177	 */
4178	add_sits_in_set(sbi);
4179
4180	/*
4181	 * if there are no enough space in journal to store dirty sit
4182	 * entries, remove all entries from journal and add and account
4183	 * them in sit entry set.
4184	 */
4185	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186								!to_journal)
4187		remove_sits_in_journal(sbi);
4188
4189	/*
4190	 * there are two steps to flush sit entries:
4191	 * #1, flush sit entries to journal in current cold data summary block.
4192	 * #2, flush sit entries to sit page.
4193	 */
4194	list_for_each_entry_safe(ses, tmp, head, set_list) {
4195		struct page *page = NULL;
4196		struct f2fs_sit_block *raw_sit = NULL;
4197		unsigned int start_segno = ses->start_segno;
4198		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199						(unsigned long)MAIN_SEGS(sbi));
4200		unsigned int segno = start_segno;
4201
4202		if (to_journal &&
4203			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204			to_journal = false;
4205
4206		if (to_journal) {
4207			down_write(&curseg->journal_rwsem);
4208		} else {
4209			page = get_next_sit_page(sbi, start_segno);
4210			raw_sit = page_address(page);
4211		}
4212
4213		/* flush dirty sit entries in region of current sit set */
4214		for_each_set_bit_from(segno, bitmap, end) {
4215			int offset, sit_offset;
4216
4217			se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220						SIT_VBLOCK_MAP_SIZE))
4221				f2fs_bug_on(sbi, 1);
4222#endif
4223
4224			/* add discard candidates */
4225			if (!(cpc->reason & CP_DISCARD)) {
4226				cpc->trim_start = segno;
4227				add_discard_addrs(sbi, cpc, false);
4228			}
4229
4230			if (to_journal) {
4231				offset = f2fs_lookup_journal_in_cursum(journal,
4232							SIT_JOURNAL, segno, 1);
4233				f2fs_bug_on(sbi, offset < 0);
4234				segno_in_journal(journal, offset) =
4235							cpu_to_le32(segno);
4236				seg_info_to_raw_sit(se,
4237					&sit_in_journal(journal, offset));
4238				check_block_count(sbi, segno,
4239					&sit_in_journal(journal, offset));
4240			} else {
4241				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242				seg_info_to_raw_sit(se,
4243						&raw_sit->entries[sit_offset]);
4244				check_block_count(sbi, segno,
4245						&raw_sit->entries[sit_offset]);
4246			}
4247
4248			__clear_bit(segno, bitmap);
4249			sit_i->dirty_sentries--;
4250			ses->entry_cnt--;
4251		}
4252
4253		if (to_journal)
4254			up_write(&curseg->journal_rwsem);
4255		else
4256			f2fs_put_page(page, 1);
4257
4258		f2fs_bug_on(sbi, ses->entry_cnt);
4259		release_sit_entry_set(ses);
4260	}
4261
4262	f2fs_bug_on(sbi, !list_empty(head));
4263	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265	if (cpc->reason & CP_DISCARD) {
4266		__u64 trim_start = cpc->trim_start;
4267
4268		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269			add_discard_addrs(sbi, cpc, false);
4270
4271		cpc->trim_start = trim_start;
4272	}
4273	up_write(&sit_i->sentry_lock);
4274
4275	set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281	struct sit_info *sit_i;
4282	unsigned int sit_segs, start;
4283	char *src_bitmap, *bitmap;
4284	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
 
4285
4286	/* allocate memory for SIT information */
4287	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288	if (!sit_i)
4289		return -ENOMEM;
4290
4291	SM_I(sbi)->sit_info = sit_i;
4292
4293	sit_i->sentries =
4294		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295					      MAIN_SEGS(sbi)),
4296			      GFP_KERNEL);
4297	if (!sit_i->sentries)
4298		return -ENOMEM;
4299
4300	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302								GFP_KERNEL);
4303	if (!sit_i->dirty_sentries_bitmap)
4304		return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312	if (!sit_i->bitmap)
4313		return -ENOMEM;
4314
4315	bitmap = sit_i->bitmap;
4316
4317	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318		sit_i->sentries[start].cur_valid_map = bitmap;
4319		bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321		sit_i->sentries[start].ckpt_valid_map = bitmap;
4322		bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326		bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329		sit_i->sentries[start].discard_map = bitmap;
4330		bitmap += SIT_VBLOCK_MAP_SIZE;
 
 
4331	}
4332
4333	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334	if (!sit_i->tmp_map)
4335		return -ENOMEM;
4336
4337	if (__is_large_section(sbi)) {
4338		sit_i->sec_entries =
4339			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340						      MAIN_SECS(sbi)),
4341				      GFP_KERNEL);
4342		if (!sit_i->sec_entries)
4343			return -ENOMEM;
4344	}
4345
4346	/* get information related with SIT */
4347	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349	/* setup SIT bitmap from ckeckpoint pack */
4350	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354	if (!sit_i->sit_bitmap)
4355		return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359					sit_bitmap_size, GFP_KERNEL);
4360	if (!sit_i->sit_bitmap_mir)
4361		return -ENOMEM;
4362
4363	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364					main_bitmap_size, GFP_KERNEL);
4365	if (!sit_i->invalid_segmap)
4366		return -ENOMEM;
4367#endif
4368
4369	/* init SIT information */
4370	sit_i->s_ops = &default_salloc_ops;
4371
4372	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374	sit_i->written_valid_blocks = 0;
4375	sit_i->bitmap_size = sit_bitmap_size;
4376	sit_i->dirty_sentries = 0;
4377	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379	sit_i->mounted_time = ktime_get_boottime_seconds();
4380	init_rwsem(&sit_i->sentry_lock);
4381	return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386	struct free_segmap_info *free_i;
4387	unsigned int bitmap_size, sec_bitmap_size;
4388
4389	/* allocate memory for free segmap information */
4390	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391	if (!free_i)
4392		return -ENOMEM;
4393
4394	SM_I(sbi)->free_info = free_i;
4395
4396	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398	if (!free_i->free_segmap)
4399		return -ENOMEM;
4400
4401	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403	if (!free_i->free_secmap)
4404		return -ENOMEM;
4405
4406	/* set all segments as dirty temporarily */
4407	memset(free_i->free_segmap, 0xff, bitmap_size);
4408	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410	/* init free segmap information */
4411	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412	free_i->free_segments = 0;
4413	free_i->free_sections = 0;
4414	spin_lock_init(&free_i->segmap_lock);
4415	return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420	struct curseg_info *array;
4421	int i;
4422
4423	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424					sizeof(*array)), GFP_KERNEL);
4425	if (!array)
4426		return -ENOMEM;
4427
4428	SM_I(sbi)->curseg_array = array;
4429
4430	for (i = 0; i < NO_CHECK_TYPE; i++) {
4431		mutex_init(&array[i].curseg_mutex);
4432		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433		if (!array[i].sum_blk)
4434			return -ENOMEM;
4435		init_rwsem(&array[i].journal_rwsem);
4436		array[i].journal = f2fs_kzalloc(sbi,
4437				sizeof(struct f2fs_journal), GFP_KERNEL);
4438		if (!array[i].journal)
4439			return -ENOMEM;
4440		if (i < NR_PERSISTENT_LOG)
4441			array[i].seg_type = CURSEG_HOT_DATA + i;
4442		else if (i == CURSEG_COLD_DATA_PINNED)
4443			array[i].seg_type = CURSEG_COLD_DATA;
4444		else if (i == CURSEG_ALL_DATA_ATGC)
4445			array[i].seg_type = CURSEG_COLD_DATA;
4446		array[i].segno = NULL_SEGNO;
4447		array[i].next_blkoff = 0;
4448		array[i].inited = false;
4449	}
4450	return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455	struct sit_info *sit_i = SIT_I(sbi);
4456	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457	struct f2fs_journal *journal = curseg->journal;
4458	struct seg_entry *se;
4459	struct f2fs_sit_entry sit;
4460	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461	unsigned int i, start, end;
4462	unsigned int readed, start_blk = 0;
4463	int err = 0;
4464	block_t total_node_blocks = 0;
4465
4466	do {
4467		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468							META_SIT, true);
4469
4470		start = start_blk * sit_i->sents_per_block;
4471		end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474			struct f2fs_sit_block *sit_blk;
4475			struct page *page;
4476
4477			se = &sit_i->sentries[start];
4478			page = get_current_sit_page(sbi, start);
4479			if (IS_ERR(page))
4480				return PTR_ERR(page);
4481			sit_blk = (struct f2fs_sit_block *)page_address(page);
4482			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483			f2fs_put_page(page, 1);
4484
4485			err = check_block_count(sbi, start, &sit);
4486			if (err)
4487				return err;
4488			seg_info_from_raw_sit(se, &sit);
4489			if (IS_NODESEG(se->type))
4490				total_node_blocks += se->valid_blocks;
4491
4492			/* build discard map only one time */
4493			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494				memset(se->discard_map, 0xff,
4495					SIT_VBLOCK_MAP_SIZE);
4496			} else {
4497				memcpy(se->discard_map,
4498					se->cur_valid_map,
4499					SIT_VBLOCK_MAP_SIZE);
4500				sbi->discard_blks +=
4501					sbi->blocks_per_seg -
4502					se->valid_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
4503			}
4504
4505			if (__is_large_section(sbi))
4506				get_sec_entry(sbi, start)->valid_blocks +=
4507							se->valid_blocks;
4508		}
4509		start_blk += readed;
4510	} while (start_blk < sit_blk_cnt);
4511
4512	down_read(&curseg->journal_rwsem);
4513	for (i = 0; i < sits_in_cursum(journal); i++) {
4514		unsigned int old_valid_blocks;
4515
4516		start = le32_to_cpu(segno_in_journal(journal, i));
4517		if (start >= MAIN_SEGS(sbi)) {
4518			f2fs_err(sbi, "Wrong journal entry on segno %u",
4519				 start);
4520			err = -EFSCORRUPTED;
 
4521			break;
4522		}
4523
4524		se = &sit_i->sentries[start];
4525		sit = sit_in_journal(journal, i);
4526
4527		old_valid_blocks = se->valid_blocks;
4528		if (IS_NODESEG(se->type))
4529			total_node_blocks -= old_valid_blocks;
4530
4531		err = check_block_count(sbi, start, &sit);
4532		if (err)
4533			break;
4534		seg_info_from_raw_sit(se, &sit);
4535		if (IS_NODESEG(se->type))
4536			total_node_blocks += se->valid_blocks;
4537
4538		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540		} else {
4541			memcpy(se->discard_map, se->cur_valid_map,
4542						SIT_VBLOCK_MAP_SIZE);
4543			sbi->discard_blks += old_valid_blocks;
4544			sbi->discard_blks -= se->valid_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
4545		}
4546
4547		if (__is_large_section(sbi)) {
4548			get_sec_entry(sbi, start)->valid_blocks +=
4549							se->valid_blocks;
4550			get_sec_entry(sbi, start)->valid_blocks -=
4551							old_valid_blocks;
4552		}
4553	}
4554	up_read(&curseg->journal_rwsem);
4555
4556	if (!err && total_node_blocks != valid_node_count(sbi)) {
 
 
 
4557		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558			 total_node_blocks, valid_node_count(sbi));
4559		err = -EFSCORRUPTED;
 
4560	}
4561
4562	return err;
 
 
 
 
 
 
 
 
 
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567	unsigned int start;
4568	int type;
4569	struct seg_entry *sentry;
4570
4571	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573			continue;
4574		sentry = get_seg_entry(sbi, start);
4575		if (!sentry->valid_blocks)
4576			__set_free(sbi, start);
4577		else
4578			SIT_I(sbi)->written_valid_blocks +=
4579						sentry->valid_blocks;
4580	}
4581
4582	/* set use the current segments */
4583	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586		__set_test_and_inuse(sbi, curseg_t->segno);
4587	}
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593	struct free_segmap_info *free_i = FREE_I(sbi);
4594	unsigned int segno = 0, offset = 0, secno;
4595	block_t valid_blocks, usable_blks_in_seg;
4596	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598	while (1) {
4599		/* find dirty segment based on free segmap */
4600		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601		if (segno >= MAIN_SEGS(sbi))
4602			break;
4603		offset = segno + 1;
4604		valid_blocks = get_valid_blocks(sbi, segno, false);
4605		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607			continue;
4608		if (valid_blocks > usable_blks_in_seg) {
4609			f2fs_bug_on(sbi, 1);
4610			continue;
4611		}
4612		mutex_lock(&dirty_i->seglist_lock);
4613		__locate_dirty_segment(sbi, segno, DIRTY);
4614		mutex_unlock(&dirty_i->seglist_lock);
4615	}
4616
4617	if (!__is_large_section(sbi))
4618		return;
4619
4620	mutex_lock(&dirty_i->seglist_lock);
4621	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622		valid_blocks = get_valid_blocks(sbi, segno, true);
4623		secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625		if (!valid_blocks || valid_blocks == blks_per_sec)
4626			continue;
4627		if (IS_CURSEC(sbi, secno))
4628			continue;
4629		set_bit(secno, dirty_i->dirty_secmap);
4630	}
4631	mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640	if (!dirty_i->victim_secmap)
4641		return -ENOMEM;
 
 
 
 
 
 
 
4642	return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647	struct dirty_seglist_info *dirty_i;
4648	unsigned int bitmap_size, i;
4649
4650	/* allocate memory for dirty segments list information */
4651	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652								GFP_KERNEL);
4653	if (!dirty_i)
4654		return -ENOMEM;
4655
4656	SM_I(sbi)->dirty_info = dirty_i;
4657	mutex_init(&dirty_i->seglist_lock);
4658
4659	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663								GFP_KERNEL);
4664		if (!dirty_i->dirty_segmap[i])
4665			return -ENOMEM;
4666	}
4667
4668	if (__is_large_section(sbi)) {
4669		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671						bitmap_size, GFP_KERNEL);
4672		if (!dirty_i->dirty_secmap)
4673			return -ENOMEM;
4674	}
4675
4676	init_dirty_segmap(sbi);
4677	return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682	int i;
4683
4684	/*
4685	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687	 */
4688	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689		struct curseg_info *curseg = CURSEG_I(sbi, i);
4690		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691		unsigned int blkofs = curseg->next_blkoff;
4692
4693		if (f2fs_sb_has_readonly(sbi) &&
4694			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695			continue;
4696
4697		sanity_check_seg_type(sbi, curseg->seg_type);
4698
 
 
 
 
 
 
 
 
4699		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700			goto out;
4701
4702		if (curseg->alloc_type == SSR)
4703			continue;
4704
4705		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707				continue;
4708out:
4709			f2fs_err(sbi,
4710				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711				 i, curseg->segno, curseg->alloc_type,
4712				 curseg->next_blkoff, blkofs);
 
4713			return -EFSCORRUPTED;
4714		}
4715	}
4716	return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722				    struct f2fs_dev_info *fdev,
4723				    struct blk_zone *zone)
4724{
4725	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726	block_t zone_block, wp_block, last_valid_block;
4727	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728	int i, s, b, ret;
4729	struct seg_entry *se;
4730
4731	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732		return 0;
4733
4734	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735	wp_segno = GET_SEGNO(sbi, wp_block);
4736	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738	zone_segno = GET_SEGNO(sbi, zone_block);
4739	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741	if (zone_segno >= MAIN_SEGS(sbi))
4742		return 0;
4743
4744	/*
4745	 * Skip check of zones cursegs point to, since
4746	 * fix_curseg_write_pointer() checks them.
4747	 */
4748	for (i = 0; i < NO_CHECK_TYPE; i++)
4749		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750						   CURSEG_I(sbi, i)->segno))
4751			return 0;
4752
4753	/*
4754	 * Get last valid block of the zone.
4755	 */
4756	last_valid_block = zone_block - 1;
4757	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758		segno = zone_segno + s;
4759		se = get_seg_entry(sbi, segno);
4760		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761			if (f2fs_test_bit(b, se->cur_valid_map)) {
4762				last_valid_block = START_BLOCK(sbi, segno) + b;
4763				break;
4764			}
4765		if (last_valid_block >= zone_block)
4766			break;
4767	}
4768
4769	/*
4770	 * If last valid block is beyond the write pointer, report the
4771	 * inconsistency. This inconsistency does not cause write error
4772	 * because the zone will not be selected for write operation until
4773	 * it get discarded. Just report it.
4774	 */
4775	if (last_valid_block >= wp_block) {
4776		f2fs_notice(sbi, "Valid block beyond write pointer: "
4777			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778			    GET_SEGNO(sbi, last_valid_block),
4779			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780			    wp_segno, wp_blkoff);
4781		return 0;
4782	}
4783
4784	/*
4785	 * If there is no valid block in the zone and if write pointer is
4786	 * not at zone start, reset the write pointer.
4787	 */
4788	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789		f2fs_notice(sbi,
4790			    "Zone without valid block has non-zero write "
4791			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792			    wp_segno, wp_blkoff);
4793		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794					zone->len >> log_sectors_per_block);
4795		if (ret) {
4796			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797				 fdev->path, ret);
4798			return ret;
4799		}
4800	}
4801
4802	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806						  block_t zone_blkaddr)
4807{
4808	int i;
4809
4810	for (i = 0; i < sbi->s_ndevs; i++) {
4811		if (!bdev_is_zoned(FDEV(i).bdev))
4812			continue;
4813		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814				zone_blkaddr <= FDEV(i).end_blk))
4815			return &FDEV(i);
4816	}
4817
4818	return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822			      void *data)
4823{
4824	memcpy(data, zone, sizeof(struct blk_zone));
4825	return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830	struct curseg_info *cs = CURSEG_I(sbi, type);
4831	struct f2fs_dev_info *zbd;
4832	struct blk_zone zone;
4833	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834	block_t cs_zone_block, wp_block;
4835	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836	sector_t zone_sector;
4837	int err;
4838
4839	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843	if (!zbd)
4844		return 0;
4845
4846	/* report zone for the sector the curseg points to */
4847	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848		<< log_sectors_per_block;
4849	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850				  report_one_zone_cb, &zone);
4851	if (err != 1) {
4852		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853			 zbd->path, err);
4854		return err;
4855	}
4856
4857	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858		return 0;
4859
4860	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861	wp_segno = GET_SEGNO(sbi, wp_block);
4862	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866		wp_sector_off == 0)
4867		return 0;
 
4868
4869	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
 
 
4875
4876	f2fs_allocate_new_section(sbi, type, true);
 
 
 
 
 
 
 
 
 
4877
4878	/* check consistency of the zone curseg pointed to */
4879	if (check_zone_write_pointer(sbi, zbd, &zone))
4880		return -EIO;
4881
4882	/* check newly assigned zone */
4883	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887	if (!zbd)
4888		return 0;
4889
4890	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891		<< log_sectors_per_block;
4892	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893				  report_one_zone_cb, &zone);
4894	if (err != 1) {
4895		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896			 zbd->path, err);
4897		return err;
4898	}
4899
4900	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901		return 0;
4902
4903	if (zone.wp != zone.start) {
4904		f2fs_notice(sbi,
4905			    "New zone for curseg[%d] is not yet discarded. "
4906			    "Reset the zone: curseg[0x%x,0x%x]",
4907			    type, cs->segno, cs->next_blkoff);
4908		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909				zone_sector >> log_sectors_per_block,
4910				zone.len >> log_sectors_per_block);
4911		if (err) {
4912			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913				 zbd->path, err);
4914			return err;
4915		}
4916	}
4917
4918	return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923	int i, ret;
4924
4925	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926		ret = fix_curseg_write_pointer(sbi, i);
4927		if (ret)
4928			return ret;
4929	}
4930
4931	return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935	struct f2fs_sb_info *sbi;
4936	struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940				      void *data)
4941{
4942	struct check_zone_write_pointer_args *args;
4943
4944	args = (struct check_zone_write_pointer_args *)data;
4945
4946	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951	int i, ret;
4952	struct check_zone_write_pointer_args args;
4953
4954	for (i = 0; i < sbi->s_ndevs; i++) {
4955		if (!bdev_is_zoned(FDEV(i).bdev))
4956			continue;
4957
4958		args.sbi = sbi;
4959		args.fdev = &FDEV(i);
4960		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961					  check_zone_write_pointer_cb, &args);
4962		if (ret < 0)
4963			return ret;
4964	}
4965
4966	return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970						unsigned int dev_idx)
4971{
4972	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973		return true;
4974	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979					int dev_idx)
4980{
4981	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984						sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992		struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999	/* Conventional zone's capacity is always equal to zone size */
5000	if (is_conv_zone(sbi, zone_idx, dev_idx))
5001		return sbi->segs_per_sec;
5002
5003	/*
5004	 * If the zone_capacity_blocks array is NULL, then zone capacity
5005	 * is equal to the zone size for all zones
5006	 */
5007	if (!FDEV(dev_idx).zone_capacity_blocks)
5008		return sbi->segs_per_sec;
5009
5010	/* Get the segment count beyond zone capacity block */
5011	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013				sbi->log_blocks_per_seg;
5014	return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026			struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029	unsigned int zone_idx, dev_idx, secno;
5030
5031	secno = GET_SEC_FROM_SEG(sbi, segno);
5032	seg_start = START_BLOCK(sbi, segno);
5033	dev_idx = f2fs_target_device_index(sbi, seg_start);
5034	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036	/*
5037	 * Conventional zone's capacity is always equal to zone size,
5038	 * so, blocks per segment is unchanged.
5039	 */
5040	if (is_conv_zone(sbi, zone_idx, dev_idx))
5041		return sbi->blocks_per_seg;
5042
5043	if (!FDEV(dev_idx).zone_capacity_blocks)
5044		return sbi->blocks_per_seg;
5045
 
 
5046	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047	sec_cap_blkaddr = sec_start_blkaddr +
5048				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050	/*
5051	 * If segment starts before zone capacity and spans beyond
5052	 * zone capacity, then usable blocks are from seg start to
5053	 * zone capacity. If the segment starts after the zone capacity,
5054	 * then there are no usable blocks.
5055	 */
5056	if (seg_start >= sec_cap_blkaddr)
5057		return 0;
5058	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059		return sec_cap_blkaddr - seg_start;
5060
5061	return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066	return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071	return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075							unsigned int segno)
5076{
5077	return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081							unsigned int segno)
5082{
5083	return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087					unsigned int segno)
5088{
5089	if (f2fs_sb_has_blkzoned(sbi))
5090		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092	return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096					unsigned int segno)
5097{
5098	if (f2fs_sb_has_blkzoned(sbi))
5099		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101	return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109	struct sit_info *sit_i = SIT_I(sbi);
5110	unsigned int segno;
5111
5112	down_write(&sit_i->sentry_lock);
5113
5114	sit_i->min_mtime = ULLONG_MAX;
5115
5116	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117		unsigned int i;
5118		unsigned long long mtime = 0;
5119
5120		for (i = 0; i < sbi->segs_per_sec; i++)
5121			mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123		mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125		if (sit_i->min_mtime > mtime)
5126			sit_i->min_mtime = mtime;
5127	}
5128	sit_i->max_mtime = get_mtime(sbi, false);
5129	sit_i->dirty_max_mtime = 0;
5130	up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137	struct f2fs_sm_info *sm_info;
5138	int err;
5139
5140	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141	if (!sm_info)
5142		return -ENOMEM;
5143
5144	/* init sm info */
5145	sbi->sm_info = sm_info;
5146	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153	sm_info->rec_prefree_segments = sm_info->main_segments *
5154					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158	if (!f2fs_lfs_mode(sbi))
5159		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164	sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168	init_rwsem(&sm_info->curseg_lock);
5169
5170	if (!f2fs_readonly(sbi->sb)) {
5171		err = f2fs_create_flush_cmd_control(sbi);
5172		if (err)
5173			return err;
5174	}
5175
5176	err = create_discard_cmd_control(sbi);
5177	if (err)
5178		return err;
5179
5180	err = build_sit_info(sbi);
5181	if (err)
5182		return err;
5183	err = build_free_segmap(sbi);
5184	if (err)
5185		return err;
5186	err = build_curseg(sbi);
5187	if (err)
5188		return err;
5189
5190	/* reinit free segmap based on SIT */
5191	err = build_sit_entries(sbi);
5192	if (err)
5193		return err;
5194
5195	init_free_segmap(sbi);
5196	err = build_dirty_segmap(sbi);
5197	if (err)
5198		return err;
5199
5200	err = sanity_check_curseg(sbi);
5201	if (err)
5202		return err;
5203
5204	init_min_max_mtime(sbi);
5205	return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209		enum dirty_type dirty_type)
5210{
5211	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213	mutex_lock(&dirty_i->seglist_lock);
5214	kvfree(dirty_i->dirty_segmap[dirty_type]);
5215	dirty_i->nr_dirty[dirty_type] = 0;
5216	mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
 
5223	kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229	int i;
5230
5231	if (!dirty_i)
5232		return;
5233
5234	/* discard pre-free/dirty segments list */
5235	for (i = 0; i < NR_DIRTY_TYPE; i++)
5236		discard_dirty_segmap(sbi, i);
5237
5238	if (__is_large_section(sbi)) {
5239		mutex_lock(&dirty_i->seglist_lock);
5240		kvfree(dirty_i->dirty_secmap);
5241		mutex_unlock(&dirty_i->seglist_lock);
5242	}
5243
5244	destroy_victim_secmap(sbi);
5245	SM_I(sbi)->dirty_info = NULL;
5246	kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251	struct curseg_info *array = SM_I(sbi)->curseg_array;
5252	int i;
5253
5254	if (!array)
5255		return;
5256	SM_I(sbi)->curseg_array = NULL;
5257	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258		kfree(array[i].sum_blk);
5259		kfree(array[i].journal);
5260	}
5261	kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268	if (!free_i)
5269		return;
5270	SM_I(sbi)->free_info = NULL;
5271	kvfree(free_i->free_segmap);
5272	kvfree(free_i->free_secmap);
5273	kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278	struct sit_info *sit_i = SIT_I(sbi);
5279
5280	if (!sit_i)
5281		return;
5282
5283	if (sit_i->sentries)
5284		kvfree(sit_i->bitmap);
5285	kfree(sit_i->tmp_map);
5286
5287	kvfree(sit_i->sentries);
5288	kvfree(sit_i->sec_entries);
5289	kvfree(sit_i->dirty_sentries_bitmap);
5290
5291	SM_I(sbi)->sit_info = NULL;
5292	kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294	kvfree(sit_i->sit_bitmap_mir);
5295	kvfree(sit_i->invalid_segmap);
5296#endif
5297	kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302	struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304	if (!sm_info)
5305		return;
5306	f2fs_destroy_flush_cmd_control(sbi, true);
5307	destroy_discard_cmd_control(sbi);
5308	destroy_dirty_segmap(sbi);
5309	destroy_curseg(sbi);
5310	destroy_free_segmap(sbi);
5311	destroy_sit_info(sbi);
5312	sbi->sm_info = NULL;
5313	kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319			sizeof(struct discard_entry));
5320	if (!discard_entry_slab)
5321		goto fail;
5322
5323	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324			sizeof(struct discard_cmd));
5325	if (!discard_cmd_slab)
5326		goto destroy_discard_entry;
5327
5328	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329			sizeof(struct sit_entry_set));
5330	if (!sit_entry_set_slab)
5331		goto destroy_discard_cmd;
5332
5333	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334			sizeof(struct inmem_pages));
5335	if (!inmem_entry_slab)
5336		goto destroy_sit_entry_set;
5337	return 0;
5338
5339destroy_sit_entry_set:
5340	kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342	kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344	kmem_cache_destroy(discard_entry_slab);
5345fail:
5346	return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351	kmem_cache_destroy(sit_entry_set_slab);
5352	kmem_cache_destroy(discard_cmd_slab);
5353	kmem_cache_destroy(discard_entry_slab);
5354	kmem_cache_destroy(inmem_entry_slab);
5355}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *revoke_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37	unsigned long tmp = 0;
  38	int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41	shift = 56;
  42#endif
  43	while (shift >= 0) {
  44		tmp |= (unsigned long)str[idx++] << shift;
  45		shift -= BITS_PER_BYTE;
  46	}
  47	return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56	int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59	if ((word & 0xffffffff00000000UL) == 0)
  60		num += 32;
  61	else
  62		word >>= 32;
  63#endif
  64	if ((word & 0xffff0000) == 0)
  65		num += 16;
  66	else
  67		word >>= 16;
  68
  69	if ((word & 0xff00) == 0)
  70		num += 8;
  71	else
  72		word >>= 8;
  73
  74	if ((word & 0xf0) == 0)
  75		num += 4;
  76	else
  77		word >>= 4;
  78
  79	if ((word & 0xc) == 0)
  80		num += 2;
  81	else
  82		word >>= 2;
  83
  84	if ((word & 0x2) == 0)
  85		num += 1;
  86	return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99			unsigned long size, unsigned long offset)
 100{
 101	const unsigned long *p = addr + BIT_WORD(offset);
 102	unsigned long result = size;
 103	unsigned long tmp;
 104
 105	if (offset >= size)
 106		return size;
 107
 108	size -= (offset & ~(BITS_PER_LONG - 1));
 109	offset %= BITS_PER_LONG;
 110
 111	while (1) {
 112		if (*p == 0)
 113			goto pass;
 114
 115		tmp = __reverse_ulong((unsigned char *)p);
 116
 117		tmp &= ~0UL >> offset;
 118		if (size < BITS_PER_LONG)
 119			tmp &= (~0UL << (BITS_PER_LONG - size));
 120		if (tmp)
 121			goto found;
 122pass:
 123		if (size <= BITS_PER_LONG)
 124			break;
 125		size -= BITS_PER_LONG;
 126		offset = 0;
 127		p++;
 128	}
 129	return result;
 130found:
 131	return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135			unsigned long size, unsigned long offset)
 136{
 137	const unsigned long *p = addr + BIT_WORD(offset);
 138	unsigned long result = size;
 139	unsigned long tmp;
 140
 141	if (offset >= size)
 142		return size;
 143
 144	size -= (offset & ~(BITS_PER_LONG - 1));
 145	offset %= BITS_PER_LONG;
 146
 147	while (1) {
 148		if (*p == ~0UL)
 149			goto pass;
 150
 151		tmp = __reverse_ulong((unsigned char *)p);
 152
 153		if (offset)
 154			tmp |= ~0UL << (BITS_PER_LONG - offset);
 155		if (size < BITS_PER_LONG)
 156			tmp |= ~0UL >> size;
 157		if (tmp != ~0UL)
 158			goto found;
 159pass:
 160		if (size <= BITS_PER_LONG)
 161			break;
 162		size -= BITS_PER_LONG;
 163		offset = 0;
 164		p++;
 165	}
 166	return result;
 167found:
 168	return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 176
 177	if (f2fs_lfs_mode(sbi))
 178		return false;
 179	if (sbi->gc_mode == GC_URGENT_HIGH)
 180		return true;
 181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182		return true;
 183
 184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
 189{
 190	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 
 191
 192	if (!f2fs_is_atomic_file(inode))
 193		return;
 194
 195	release_atomic_write_cnt(inode);
 196	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
 197	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
 198	clear_inode_flag(inode, FI_ATOMIC_FILE);
 199	stat_dec_atomic_inode(inode);
 200
 201	F2FS_I(inode)->atomic_write_task = NULL;
 
 
 
 
 
 202
 203	if (clean) {
 204		truncate_inode_pages_final(inode->i_mapping);
 205		f2fs_i_size_write(inode, fi->original_i_size);
 206		fi->original_i_size = 0;
 207	}
 208	/* avoid stale dirty inode during eviction */
 209	sync_inode_metadata(inode, 0);
 210}
 211
 212static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
 213			block_t new_addr, block_t *old_addr, bool recover)
 
 214{
 215	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 216	struct dnode_of_data dn;
 217	struct node_info ni;
 218	int err;
 219
 220retry:
 221	set_new_dnode(&dn, inode, NULL, NULL, 0);
 222	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
 223	if (err) {
 224		if (err == -ENOMEM) {
 225			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 226			goto retry;
 227		}
 228		return err;
 229	}
 230
 231	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 232	if (err) {
 233		f2fs_put_dnode(&dn);
 234		return err;
 235	}
 236
 237	if (recover) {
 238		/* dn.data_blkaddr is always valid */
 239		if (!__is_valid_data_blkaddr(new_addr)) {
 240			if (new_addr == NULL_ADDR)
 241				dec_valid_block_count(sbi, inode, 1);
 242			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 243			f2fs_update_data_blkaddr(&dn, new_addr);
 244		} else {
 245			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 246				new_addr, ni.version, true, true);
 247		}
 248	} else {
 249		blkcnt_t count = 1;
 250
 251		err = inc_valid_block_count(sbi, inode, &count);
 252		if (err) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253			f2fs_put_dnode(&dn);
 254			return err;
 255		}
 
 
 
 
 
 
 
 
 
 256
 257		*old_addr = dn.data_blkaddr;
 258		f2fs_truncate_data_blocks_range(&dn, 1);
 259		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
 
 
 
 260
 261		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
 262					ni.version, true, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263	}
 
 
 264
 265	f2fs_put_dnode(&dn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266
 267	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
 268			index, old_addr ? *old_addr : 0, new_addr, recover);
 269	return 0;
 
 
 
 
 270}
 271
 272static void __complete_revoke_list(struct inode *inode, struct list_head *head,
 273					bool revoke)
 274{
 275	struct revoke_entry *cur, *tmp;
 276	pgoff_t start_index = 0;
 277	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
 
 278
 279	list_for_each_entry_safe(cur, tmp, head, list) {
 280		if (revoke) {
 281			__replace_atomic_write_block(inode, cur->index,
 282						cur->old_addr, NULL, true);
 283		} else if (truncate) {
 284			f2fs_truncate_hole(inode, start_index, cur->index);
 285			start_index = cur->index + 1;
 286		}
 287
 288		list_del(&cur->list);
 289		kmem_cache_free(revoke_entry_slab, cur);
 
 
 290	}
 291
 292	if (!revoke && truncate)
 293		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 296static int __f2fs_commit_atomic_write(struct inode *inode)
 297{
 298	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 299	struct f2fs_inode_info *fi = F2FS_I(inode);
 300	struct inode *cow_inode = fi->cow_inode;
 301	struct revoke_entry *new;
 
 
 
 
 
 
 
 302	struct list_head revoke_list;
 303	block_t blkaddr;
 304	struct dnode_of_data dn;
 305	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 306	pgoff_t off = 0, blen, index;
 307	int ret = 0, i;
 308
 309	INIT_LIST_HEAD(&revoke_list);
 310
 311	while (len) {
 312		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
 313
 314		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
 315		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 316		if (ret && ret != -ENOENT) {
 317			goto out;
 318		} else if (ret == -ENOENT) {
 319			ret = 0;
 320			if (dn.max_level == 0)
 321				goto out;
 322			goto next;
 323		}
 324
 325		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
 326				len);
 327		index = off;
 328		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
 329			blkaddr = f2fs_data_blkaddr(&dn);
 330
 331			if (!__is_valid_data_blkaddr(blkaddr)) {
 332				continue;
 333			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
 334					DATA_GENERIC_ENHANCE)) {
 335				f2fs_put_dnode(&dn);
 336				ret = -EFSCORRUPTED;
 337				f2fs_handle_error(sbi,
 338						ERROR_INVALID_BLKADDR);
 339				goto out;
 340			}
 341
 342			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
 343							true, NULL);
 344
 345			ret = __replace_atomic_write_block(inode, index, blkaddr,
 346							&new->old_addr, false);
 347			if (ret) {
 348				f2fs_put_dnode(&dn);
 349				kmem_cache_free(revoke_entry_slab, new);
 350				goto out;
 
 
 
 
 
 351			}
 352
 353			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 354			new->index = index;
 355			list_add_tail(&new->list, &revoke_list);
 356		}
 357		f2fs_put_dnode(&dn);
 358next:
 359		off += blen;
 360		len -= blen;
 361	}
 362
 363out:
 364	if (ret) {
 365		sbi->revoked_atomic_block += fi->atomic_write_cnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	} else {
 367		sbi->committed_atomic_block += fi->atomic_write_cnt;
 368		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
 369	}
 370
 371	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
 372
 373	return ret;
 374}
 375
 376int f2fs_commit_atomic_write(struct inode *inode)
 377{
 378	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 379	struct f2fs_inode_info *fi = F2FS_I(inode);
 380	int err;
 381
 382	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
 383	if (err)
 384		return err;
 385
 386	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
 387	f2fs_lock_op(sbi);
 
 388
 389	err = __f2fs_commit_atomic_write(inode);
 
 
 
 
 390
 391	f2fs_unlock_op(sbi);
 392	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 393
 394	return err;
 395}
 396
 397/*
 398 * This function balances dirty node and dentry pages.
 399 * In addition, it controls garbage collection.
 400 */
 401void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 402{
 403	if (time_to_inject(sbi, FAULT_CHECKPOINT))
 404		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
 
 
 405
 406	/* balance_fs_bg is able to be pending */
 407	if (need && excess_cached_nats(sbi))
 408		f2fs_balance_fs_bg(sbi, false);
 409
 410	if (!f2fs_is_checkpoint_ready(sbi))
 411		return;
 412
 413	/*
 414	 * We should do GC or end up with checkpoint, if there are so many dirty
 415	 * dir/node pages without enough free segments.
 416	 */
 417	if (has_enough_free_secs(sbi, 0, 0))
 418		return;
 419
 420	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 421				sbi->gc_thread->f2fs_gc_task) {
 422		DEFINE_WAIT(wait);
 423
 424		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 425					TASK_UNINTERRUPTIBLE);
 426		wake_up(&sbi->gc_thread->gc_wait_queue_head);
 427		io_schedule();
 428		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 429	} else {
 430		struct f2fs_gc_control gc_control = {
 431			.victim_segno = NULL_SEGNO,
 432			.init_gc_type = BG_GC,
 433			.no_bg_gc = true,
 434			.should_migrate_blocks = false,
 435			.err_gc_skipped = false,
 436			.nr_free_secs = 1 };
 437		f2fs_down_write(&sbi->gc_lock);
 438		stat_inc_gc_call_count(sbi, FOREGROUND);
 439		f2fs_gc(sbi, &gc_control);
 440	}
 441}
 442
 443static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 444{
 445	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 446	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 447	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 448	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 449	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 450	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 451	unsigned int threshold = sbi->blocks_per_seg * factor *
 452					DEFAULT_DIRTY_THRESHOLD;
 453	unsigned int global_threshold = threshold * 3 / 2;
 454
 455	if (dents >= threshold || qdata >= threshold ||
 456		nodes >= threshold || meta >= threshold ||
 457		imeta >= threshold)
 458		return true;
 459	return dents + qdata + nodes + meta + imeta >  global_threshold;
 460}
 461
 462void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 463{
 464	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 465		return;
 466
 467	/* try to shrink extent cache when there is no enough memory */
 468	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
 469		f2fs_shrink_read_extent_tree(sbi,
 470				READ_EXTENT_CACHE_SHRINK_NUMBER);
 471
 472	/* try to shrink age extent cache when there is no enough memory */
 473	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
 474		f2fs_shrink_age_extent_tree(sbi,
 475				AGE_EXTENT_CACHE_SHRINK_NUMBER);
 476
 477	/* check the # of cached NAT entries */
 478	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 479		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 480
 481	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 482		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 483	else
 484		f2fs_build_free_nids(sbi, false, false);
 485
 486	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 487		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 488		goto do_sync;
 489
 490	/* there is background inflight IO or foreground operation recently */
 491	if (is_inflight_io(sbi, REQ_TIME) ||
 492		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
 493		return;
 494
 495	/* exceed periodical checkpoint timeout threshold */
 496	if (f2fs_time_over(sbi, CP_TIME))
 497		goto do_sync;
 498
 499	/* checkpoint is the only way to shrink partial cached entries */
 500	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 501		f2fs_available_free_memory(sbi, INO_ENTRIES))
 502		return;
 503
 504do_sync:
 505	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 506		struct blk_plug plug;
 507
 508		mutex_lock(&sbi->flush_lock);
 509
 510		blk_start_plug(&plug);
 511		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
 512		blk_finish_plug(&plug);
 513
 514		mutex_unlock(&sbi->flush_lock);
 515	}
 516	stat_inc_cp_call_count(sbi, BACKGROUND);
 517	f2fs_sync_fs(sbi->sb, 1);
 518}
 519
 520static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 521				struct block_device *bdev)
 522{
 523	int ret = blkdev_issue_flush(bdev);
 524
 525	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 526				test_opt(sbi, FLUSH_MERGE), ret);
 527	if (!ret)
 528		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
 529	return ret;
 530}
 531
 532static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 533{
 534	int ret = 0;
 535	int i;
 536
 537	if (!f2fs_is_multi_device(sbi))
 538		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 539
 540	for (i = 0; i < sbi->s_ndevs; i++) {
 541		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 542			continue;
 543		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 544		if (ret)
 545			break;
 546	}
 547	return ret;
 548}
 549
 550static int issue_flush_thread(void *data)
 551{
 552	struct f2fs_sb_info *sbi = data;
 553	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 554	wait_queue_head_t *q = &fcc->flush_wait_queue;
 555repeat:
 556	if (kthread_should_stop())
 557		return 0;
 558
 559	if (!llist_empty(&fcc->issue_list)) {
 560		struct flush_cmd *cmd, *next;
 561		int ret;
 562
 563		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 564		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 565
 566		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 567
 568		ret = submit_flush_wait(sbi, cmd->ino);
 569		atomic_inc(&fcc->issued_flush);
 570
 571		llist_for_each_entry_safe(cmd, next,
 572					  fcc->dispatch_list, llnode) {
 573			cmd->ret = ret;
 574			complete(&cmd->wait);
 575		}
 576		fcc->dispatch_list = NULL;
 577	}
 578
 579	wait_event_interruptible(*q,
 580		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 581	goto repeat;
 582}
 583
 584int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 585{
 586	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 587	struct flush_cmd cmd;
 588	int ret;
 589
 590	if (test_opt(sbi, NOBARRIER))
 591		return 0;
 592
 593	if (!test_opt(sbi, FLUSH_MERGE)) {
 594		atomic_inc(&fcc->queued_flush);
 595		ret = submit_flush_wait(sbi, ino);
 596		atomic_dec(&fcc->queued_flush);
 597		atomic_inc(&fcc->issued_flush);
 598		return ret;
 599	}
 600
 601	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 602	    f2fs_is_multi_device(sbi)) {
 603		ret = submit_flush_wait(sbi, ino);
 604		atomic_dec(&fcc->queued_flush);
 605
 606		atomic_inc(&fcc->issued_flush);
 607		return ret;
 608	}
 609
 610	cmd.ino = ino;
 611	init_completion(&cmd.wait);
 612
 613	llist_add(&cmd.llnode, &fcc->issue_list);
 614
 615	/*
 616	 * update issue_list before we wake up issue_flush thread, this
 617	 * smp_mb() pairs with another barrier in ___wait_event(), see
 618	 * more details in comments of waitqueue_active().
 619	 */
 620	smp_mb();
 621
 622	if (waitqueue_active(&fcc->flush_wait_queue))
 623		wake_up(&fcc->flush_wait_queue);
 624
 625	if (fcc->f2fs_issue_flush) {
 626		wait_for_completion(&cmd.wait);
 627		atomic_dec(&fcc->queued_flush);
 628	} else {
 629		struct llist_node *list;
 630
 631		list = llist_del_all(&fcc->issue_list);
 632		if (!list) {
 633			wait_for_completion(&cmd.wait);
 634			atomic_dec(&fcc->queued_flush);
 635		} else {
 636			struct flush_cmd *tmp, *next;
 637
 638			ret = submit_flush_wait(sbi, ino);
 639
 640			llist_for_each_entry_safe(tmp, next, list, llnode) {
 641				if (tmp == &cmd) {
 642					cmd.ret = ret;
 643					atomic_dec(&fcc->queued_flush);
 644					continue;
 645				}
 646				tmp->ret = ret;
 647				complete(&tmp->wait);
 648			}
 649		}
 650	}
 651
 652	return cmd.ret;
 653}
 654
 655int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 656{
 657	dev_t dev = sbi->sb->s_bdev->bd_dev;
 658	struct flush_cmd_control *fcc;
 
 659
 660	if (SM_I(sbi)->fcc_info) {
 661		fcc = SM_I(sbi)->fcc_info;
 662		if (fcc->f2fs_issue_flush)
 663			return 0;
 664		goto init_thread;
 665	}
 666
 667	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 668	if (!fcc)
 669		return -ENOMEM;
 670	atomic_set(&fcc->issued_flush, 0);
 671	atomic_set(&fcc->queued_flush, 0);
 672	init_waitqueue_head(&fcc->flush_wait_queue);
 673	init_llist_head(&fcc->issue_list);
 674	SM_I(sbi)->fcc_info = fcc;
 675	if (!test_opt(sbi, FLUSH_MERGE))
 676		return 0;
 677
 678init_thread:
 679	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 680				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 681	if (IS_ERR(fcc->f2fs_issue_flush)) {
 682		int err = PTR_ERR(fcc->f2fs_issue_flush);
 683
 684		fcc->f2fs_issue_flush = NULL;
 685		return err;
 686	}
 687
 688	return 0;
 689}
 690
 691void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 692{
 693	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 694
 695	if (fcc && fcc->f2fs_issue_flush) {
 696		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 697
 698		fcc->f2fs_issue_flush = NULL;
 699		kthread_stop(flush_thread);
 700	}
 701	if (free) {
 702		kfree(fcc);
 703		SM_I(sbi)->fcc_info = NULL;
 704	}
 705}
 706
 707int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 708{
 709	int ret = 0, i;
 710
 711	if (!f2fs_is_multi_device(sbi))
 712		return 0;
 713
 714	if (test_opt(sbi, NOBARRIER))
 715		return 0;
 716
 717	for (i = 1; i < sbi->s_ndevs; i++) {
 718		int count = DEFAULT_RETRY_IO_COUNT;
 719
 720		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 721			continue;
 722
 723		do {
 724			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 725			if (ret)
 726				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 727		} while (ret && --count);
 728
 729		if (ret) {
 730			f2fs_stop_checkpoint(sbi, false,
 731					STOP_CP_REASON_FLUSH_FAIL);
 732			break;
 733		}
 734
 735		spin_lock(&sbi->dev_lock);
 736		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 737		spin_unlock(&sbi->dev_lock);
 738	}
 739
 740	return ret;
 741}
 742
 743static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 744		enum dirty_type dirty_type)
 745{
 746	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 747
 748	/* need not be added */
 749	if (IS_CURSEG(sbi, segno))
 750		return;
 751
 752	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 753		dirty_i->nr_dirty[dirty_type]++;
 754
 755	if (dirty_type == DIRTY) {
 756		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 757		enum dirty_type t = sentry->type;
 758
 759		if (unlikely(t >= DIRTY)) {
 760			f2fs_bug_on(sbi, 1);
 761			return;
 762		}
 763		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 764			dirty_i->nr_dirty[t]++;
 765
 766		if (__is_large_section(sbi)) {
 767			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 768			block_t valid_blocks =
 769				get_valid_blocks(sbi, segno, true);
 770
 771			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 772					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
 773
 774			if (!IS_CURSEC(sbi, secno))
 775				set_bit(secno, dirty_i->dirty_secmap);
 776		}
 777	}
 778}
 779
 780static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 781		enum dirty_type dirty_type)
 782{
 783	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 784	block_t valid_blocks;
 785
 786	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 787		dirty_i->nr_dirty[dirty_type]--;
 788
 789	if (dirty_type == DIRTY) {
 790		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 791		enum dirty_type t = sentry->type;
 792
 793		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 794			dirty_i->nr_dirty[t]--;
 795
 796		valid_blocks = get_valid_blocks(sbi, segno, true);
 797		if (valid_blocks == 0) {
 798			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 799						dirty_i->victim_secmap);
 800#ifdef CONFIG_F2FS_CHECK_FS
 801			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 802#endif
 803		}
 804		if (__is_large_section(sbi)) {
 805			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 806
 807			if (!valid_blocks ||
 808					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
 809				clear_bit(secno, dirty_i->dirty_secmap);
 810				return;
 811			}
 812
 813			if (!IS_CURSEC(sbi, secno))
 814				set_bit(secno, dirty_i->dirty_secmap);
 815		}
 816	}
 817}
 818
 819/*
 820 * Should not occur error such as -ENOMEM.
 821 * Adding dirty entry into seglist is not critical operation.
 822 * If a given segment is one of current working segments, it won't be added.
 823 */
 824static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 825{
 826	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 827	unsigned short valid_blocks, ckpt_valid_blocks;
 828	unsigned int usable_blocks;
 829
 830	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 831		return;
 832
 833	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 834	mutex_lock(&dirty_i->seglist_lock);
 835
 836	valid_blocks = get_valid_blocks(sbi, segno, false);
 837	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 838
 839	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 840		ckpt_valid_blocks == usable_blocks)) {
 841		__locate_dirty_segment(sbi, segno, PRE);
 842		__remove_dirty_segment(sbi, segno, DIRTY);
 843	} else if (valid_blocks < usable_blocks) {
 844		__locate_dirty_segment(sbi, segno, DIRTY);
 845	} else {
 846		/* Recovery routine with SSR needs this */
 847		__remove_dirty_segment(sbi, segno, DIRTY);
 848	}
 849
 850	mutex_unlock(&dirty_i->seglist_lock);
 851}
 852
 853/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 854void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 855{
 856	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 857	unsigned int segno;
 858
 859	mutex_lock(&dirty_i->seglist_lock);
 860	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 861		if (get_valid_blocks(sbi, segno, false))
 862			continue;
 863		if (IS_CURSEG(sbi, segno))
 864			continue;
 865		__locate_dirty_segment(sbi, segno, PRE);
 866		__remove_dirty_segment(sbi, segno, DIRTY);
 867	}
 868	mutex_unlock(&dirty_i->seglist_lock);
 869}
 870
 871block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 872{
 873	int ovp_hole_segs =
 874		(overprovision_segments(sbi) - reserved_segments(sbi));
 875	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 876	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 877	block_t holes[2] = {0, 0};	/* DATA and NODE */
 878	block_t unusable;
 879	struct seg_entry *se;
 880	unsigned int segno;
 881
 882	mutex_lock(&dirty_i->seglist_lock);
 883	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 884		se = get_seg_entry(sbi, segno);
 885		if (IS_NODESEG(se->type))
 886			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 887							se->valid_blocks;
 888		else
 889			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 890							se->valid_blocks;
 891	}
 892	mutex_unlock(&dirty_i->seglist_lock);
 893
 894	unusable = max(holes[DATA], holes[NODE]);
 895	if (unusable > ovp_holes)
 896		return unusable - ovp_holes;
 897	return 0;
 898}
 899
 900int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 901{
 902	int ovp_hole_segs =
 903		(overprovision_segments(sbi) - reserved_segments(sbi));
 904	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 905		return -EAGAIN;
 906	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 907		dirty_segments(sbi) > ovp_hole_segs)
 908		return -EAGAIN;
 909	return 0;
 910}
 911
 912/* This is only used by SBI_CP_DISABLED */
 913static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 914{
 915	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 916	unsigned int segno = 0;
 917
 918	mutex_lock(&dirty_i->seglist_lock);
 919	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 920		if (get_valid_blocks(sbi, segno, false))
 921			continue;
 922		if (get_ckpt_valid_blocks(sbi, segno, false))
 923			continue;
 924		mutex_unlock(&dirty_i->seglist_lock);
 925		return segno;
 926	}
 927	mutex_unlock(&dirty_i->seglist_lock);
 928	return NULL_SEGNO;
 929}
 930
 931static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 932		struct block_device *bdev, block_t lstart,
 933		block_t start, block_t len)
 934{
 935	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 936	struct list_head *pend_list;
 937	struct discard_cmd *dc;
 938
 939	f2fs_bug_on(sbi, !len);
 940
 941	pend_list = &dcc->pend_list[plist_idx(len)];
 942
 943	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 944	INIT_LIST_HEAD(&dc->list);
 945	dc->bdev = bdev;
 946	dc->di.lstart = lstart;
 947	dc->di.start = start;
 948	dc->di.len = len;
 949	dc->ref = 0;
 950	dc->state = D_PREP;
 951	dc->queued = 0;
 952	dc->error = 0;
 953	init_completion(&dc->wait);
 954	list_add_tail(&dc->list, pend_list);
 955	spin_lock_init(&dc->lock);
 956	dc->bio_ref = 0;
 957	atomic_inc(&dcc->discard_cmd_cnt);
 958	dcc->undiscard_blks += len;
 959
 960	return dc;
 961}
 962
 963static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
 964{
 965#ifdef CONFIG_F2FS_CHECK_FS
 966	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 967	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
 968	struct discard_cmd *cur_dc, *next_dc;
 969
 970	while (cur) {
 971		next = rb_next(cur);
 972		if (!next)
 973			return true;
 974
 975		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
 976		next_dc = rb_entry(next, struct discard_cmd, rb_node);
 977
 978		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
 979			f2fs_info(sbi, "broken discard_rbtree, "
 980				"cur(%u, %u) next(%u, %u)",
 981				cur_dc->di.lstart, cur_dc->di.len,
 982				next_dc->di.lstart, next_dc->di.len);
 983			return false;
 984		}
 985		cur = next;
 986	}
 987#endif
 988	return true;
 989}
 990
 991static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
 992						block_t blkaddr)
 993{
 994	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 995	struct rb_node *node = dcc->root.rb_root.rb_node;
 996	struct discard_cmd *dc;
 997
 998	while (node) {
 999		dc = rb_entry(node, struct discard_cmd, rb_node);
1000
1001		if (blkaddr < dc->di.lstart)
1002			node = node->rb_left;
1003		else if (blkaddr >= dc->di.lstart + dc->di.len)
1004			node = node->rb_right;
1005		else
1006			return dc;
1007	}
1008	return NULL;
1009}
1010
1011static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1012				block_t blkaddr,
1013				struct discard_cmd **prev_entry,
1014				struct discard_cmd **next_entry,
1015				struct rb_node ***insert_p,
1016				struct rb_node **insert_parent)
1017{
1018	struct rb_node **pnode = &root->rb_root.rb_node;
1019	struct rb_node *parent = NULL, *tmp_node;
1020	struct discard_cmd *dc;
1021
1022	*insert_p = NULL;
1023	*insert_parent = NULL;
1024	*prev_entry = NULL;
1025	*next_entry = NULL;
1026
1027	if (RB_EMPTY_ROOT(&root->rb_root))
1028		return NULL;
1029
1030	while (*pnode) {
1031		parent = *pnode;
1032		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1033
1034		if (blkaddr < dc->di.lstart)
1035			pnode = &(*pnode)->rb_left;
1036		else if (blkaddr >= dc->di.lstart + dc->di.len)
1037			pnode = &(*pnode)->rb_right;
1038		else
1039			goto lookup_neighbors;
1040	}
1041
1042	*insert_p = pnode;
1043	*insert_parent = parent;
1044
1045	dc = rb_entry(parent, struct discard_cmd, rb_node);
1046	tmp_node = parent;
1047	if (parent && blkaddr > dc->di.lstart)
1048		tmp_node = rb_next(parent);
1049	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1050
1051	tmp_node = parent;
1052	if (parent && blkaddr < dc->di.lstart)
1053		tmp_node = rb_prev(parent);
1054	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1055	return NULL;
1056
1057lookup_neighbors:
1058	/* lookup prev node for merging backward later */
1059	tmp_node = rb_prev(&dc->rb_node);
1060	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061
1062	/* lookup next node for merging frontward later */
1063	tmp_node = rb_next(&dc->rb_node);
1064	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065	return dc;
1066}
1067
1068static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1069							struct discard_cmd *dc)
1070{
1071	if (dc->state == D_DONE)
1072		atomic_sub(dc->queued, &dcc->queued_discard);
1073
1074	list_del(&dc->list);
1075	rb_erase_cached(&dc->rb_node, &dcc->root);
1076	dcc->undiscard_blks -= dc->di.len;
1077
1078	kmem_cache_free(discard_cmd_slab, dc);
1079
1080	atomic_dec(&dcc->discard_cmd_cnt);
1081}
1082
1083static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1084							struct discard_cmd *dc)
1085{
1086	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1087	unsigned long flags;
1088
1089	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1090
1091	spin_lock_irqsave(&dc->lock, flags);
1092	if (dc->bio_ref) {
1093		spin_unlock_irqrestore(&dc->lock, flags);
1094		return;
1095	}
1096	spin_unlock_irqrestore(&dc->lock, flags);
1097
1098	f2fs_bug_on(sbi, dc->ref);
1099
1100	if (dc->error == -EOPNOTSUPP)
1101		dc->error = 0;
1102
1103	if (dc->error)
1104		printk_ratelimited(
1105			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1106			KERN_INFO, sbi->sb->s_id,
1107			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1108	__detach_discard_cmd(dcc, dc);
1109}
1110
1111static void f2fs_submit_discard_endio(struct bio *bio)
1112{
1113	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1114	unsigned long flags;
1115
1116	spin_lock_irqsave(&dc->lock, flags);
1117	if (!dc->error)
1118		dc->error = blk_status_to_errno(bio->bi_status);
1119	dc->bio_ref--;
1120	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1121		dc->state = D_DONE;
1122		complete_all(&dc->wait);
1123	}
1124	spin_unlock_irqrestore(&dc->lock, flags);
1125	bio_put(bio);
1126}
1127
1128static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1129				block_t start, block_t end)
1130{
1131#ifdef CONFIG_F2FS_CHECK_FS
1132	struct seg_entry *sentry;
1133	unsigned int segno;
1134	block_t blk = start;
1135	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1136	unsigned long *map;
1137
1138	while (blk < end) {
1139		segno = GET_SEGNO(sbi, blk);
1140		sentry = get_seg_entry(sbi, segno);
1141		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1142
1143		if (end < START_BLOCK(sbi, segno + 1))
1144			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1145		else
1146			size = max_blocks;
1147		map = (unsigned long *)(sentry->cur_valid_map);
1148		offset = __find_rev_next_bit(map, size, offset);
1149		f2fs_bug_on(sbi, offset != size);
1150		blk = START_BLOCK(sbi, segno + 1);
1151	}
1152#endif
1153}
1154
1155static void __init_discard_policy(struct f2fs_sb_info *sbi,
1156				struct discard_policy *dpolicy,
1157				int discard_type, unsigned int granularity)
1158{
1159	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1160
1161	/* common policy */
1162	dpolicy->type = discard_type;
1163	dpolicy->sync = true;
1164	dpolicy->ordered = false;
1165	dpolicy->granularity = granularity;
1166
1167	dpolicy->max_requests = dcc->max_discard_request;
1168	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1169	dpolicy->timeout = false;
1170
1171	if (discard_type == DPOLICY_BG) {
1172		dpolicy->min_interval = dcc->min_discard_issue_time;
1173		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1174		dpolicy->max_interval = dcc->max_discard_issue_time;
1175		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1176			dpolicy->io_aware = true;
1177		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1178			dpolicy->io_aware = false;
1179		dpolicy->sync = false;
1180		dpolicy->ordered = true;
1181		if (utilization(sbi) > dcc->discard_urgent_util) {
1182			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1183			if (atomic_read(&dcc->discard_cmd_cnt))
1184				dpolicy->max_interval =
1185					dcc->min_discard_issue_time;
1186		}
1187	} else if (discard_type == DPOLICY_FORCE) {
1188		dpolicy->min_interval = dcc->min_discard_issue_time;
1189		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190		dpolicy->max_interval = dcc->max_discard_issue_time;
1191		dpolicy->io_aware = false;
1192	} else if (discard_type == DPOLICY_FSTRIM) {
1193		dpolicy->io_aware = false;
1194	} else if (discard_type == DPOLICY_UMOUNT) {
1195		dpolicy->io_aware = false;
1196		/* we need to issue all to keep CP_TRIMMED_FLAG */
1197		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1198		dpolicy->timeout = true;
1199	}
1200}
1201
1202static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1203				struct block_device *bdev, block_t lstart,
1204				block_t start, block_t len);
1205
1206#ifdef CONFIG_BLK_DEV_ZONED
1207static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1208				   struct discard_cmd *dc, blk_opf_t flag,
1209				   struct list_head *wait_list,
1210				   unsigned int *issued)
1211{
1212	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1213	struct block_device *bdev = dc->bdev;
1214	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1215	unsigned long flags;
1216
1217	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1218
1219	spin_lock_irqsave(&dc->lock, flags);
1220	dc->state = D_SUBMIT;
1221	dc->bio_ref++;
1222	spin_unlock_irqrestore(&dc->lock, flags);
1223
1224	if (issued)
1225		(*issued)++;
1226
1227	atomic_inc(&dcc->queued_discard);
1228	dc->queued++;
1229	list_move_tail(&dc->list, wait_list);
1230
1231	/* sanity check on discard range */
1232	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1233
1234	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1235	bio->bi_private = dc;
1236	bio->bi_end_io = f2fs_submit_discard_endio;
1237	submit_bio(bio);
1238
1239	atomic_inc(&dcc->issued_discard);
1240	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1241}
1242#endif
1243
1244/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1245static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1246				struct discard_policy *dpolicy,
1247				struct discard_cmd *dc, int *issued)
 
1248{
1249	struct block_device *bdev = dc->bdev;
 
1250	unsigned int max_discard_blocks =
1251			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1252	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1253	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1254					&(dcc->fstrim_list) : &(dcc->wait_list);
1255	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1256	block_t lstart, start, len, total_len;
1257	int err = 0;
1258
1259	if (dc->state != D_PREP)
1260		return 0;
1261
1262	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1263		return 0;
1264
1265#ifdef CONFIG_BLK_DEV_ZONED
1266	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1267		int devi = f2fs_bdev_index(sbi, bdev);
1268
1269		if (devi < 0)
1270			return -EINVAL;
1271
1272		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1273			__submit_zone_reset_cmd(sbi, dc, flag,
1274						wait_list, issued);
1275			return 0;
1276		}
1277	}
1278#endif
1279
1280	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1281
1282	lstart = dc->di.lstart;
1283	start = dc->di.start;
1284	len = dc->di.len;
1285	total_len = len;
1286
1287	dc->di.len = 0;
1288
1289	while (total_len && *issued < dpolicy->max_requests && !err) {
1290		struct bio *bio = NULL;
1291		unsigned long flags;
1292		bool last = true;
1293
1294		if (len > max_discard_blocks) {
1295			len = max_discard_blocks;
1296			last = false;
1297		}
1298
1299		(*issued)++;
1300		if (*issued == dpolicy->max_requests)
1301			last = true;
1302
1303		dc->di.len += len;
1304
1305		if (time_to_inject(sbi, FAULT_DISCARD)) {
 
1306			err = -EIO;
1307		} else {
1308			err = __blkdev_issue_discard(bdev,
 
1309					SECTOR_FROM_BLOCK(start),
1310					SECTOR_FROM_BLOCK(len),
1311					GFP_NOFS, &bio);
1312		}
1313		if (err) {
1314			spin_lock_irqsave(&dc->lock, flags);
1315			if (dc->state == D_PARTIAL)
1316				dc->state = D_SUBMIT;
1317			spin_unlock_irqrestore(&dc->lock, flags);
1318
1319			break;
1320		}
1321
1322		f2fs_bug_on(sbi, !bio);
1323
1324		/*
1325		 * should keep before submission to avoid D_DONE
1326		 * right away
1327		 */
1328		spin_lock_irqsave(&dc->lock, flags);
1329		if (last)
1330			dc->state = D_SUBMIT;
1331		else
1332			dc->state = D_PARTIAL;
1333		dc->bio_ref++;
1334		spin_unlock_irqrestore(&dc->lock, flags);
1335
1336		atomic_inc(&dcc->queued_discard);
1337		dc->queued++;
1338		list_move_tail(&dc->list, wait_list);
1339
1340		/* sanity check on discard range */
1341		__check_sit_bitmap(sbi, lstart, lstart + len);
1342
1343		bio->bi_private = dc;
1344		bio->bi_end_io = f2fs_submit_discard_endio;
1345		bio->bi_opf |= flag;
1346		submit_bio(bio);
1347
1348		atomic_inc(&dcc->issued_discard);
1349
1350		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1351
1352		lstart += len;
1353		start += len;
1354		total_len -= len;
1355		len = total_len;
1356	}
1357
1358	if (!err && len) {
1359		dcc->undiscard_blks -= len;
1360		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1361	}
1362	return err;
1363}
1364
1365static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1366				struct block_device *bdev, block_t lstart,
1367				block_t start, block_t len)
 
 
1368{
1369	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370	struct rb_node **p = &dcc->root.rb_root.rb_node;
1371	struct rb_node *parent = NULL;
1372	struct discard_cmd *dc;
1373	bool leftmost = true;
1374
1375	/* look up rb tree to find parent node */
1376	while (*p) {
1377		parent = *p;
1378		dc = rb_entry(parent, struct discard_cmd, rb_node);
1379
1380		if (lstart < dc->di.lstart) {
1381			p = &(*p)->rb_left;
1382		} else if (lstart >= dc->di.lstart + dc->di.len) {
1383			p = &(*p)->rb_right;
1384			leftmost = false;
1385		} else {
1386			/* Let's skip to add, if exists */
1387			return;
1388		}
1389	}
1390
1391	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1392
1393	rb_link_node(&dc->rb_node, parent, p);
1394	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 
1395}
1396
1397static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1398						struct discard_cmd *dc)
1399{
1400	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1401}
1402
1403static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1404				struct discard_cmd *dc, block_t blkaddr)
1405{
1406	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1407	struct discard_info di = dc->di;
1408	bool modified = false;
1409
1410	if (dc->state == D_DONE || dc->di.len == 1) {
1411		__remove_discard_cmd(sbi, dc);
1412		return;
1413	}
1414
1415	dcc->undiscard_blks -= di.len;
1416
1417	if (blkaddr > di.lstart) {
1418		dc->di.len = blkaddr - dc->di.lstart;
1419		dcc->undiscard_blks += dc->di.len;
1420		__relocate_discard_cmd(dcc, dc);
1421		modified = true;
1422	}
1423
1424	if (blkaddr < di.lstart + di.len - 1) {
1425		if (modified) {
1426			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1427					di.start + blkaddr + 1 - di.lstart,
1428					di.lstart + di.len - 1 - blkaddr);
 
1429		} else {
1430			dc->di.lstart++;
1431			dc->di.len--;
1432			dc->di.start++;
1433			dcc->undiscard_blks += dc->di.len;
1434			__relocate_discard_cmd(dcc, dc);
1435		}
1436	}
1437}
1438
1439static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1440				struct block_device *bdev, block_t lstart,
1441				block_t start, block_t len)
1442{
1443	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1444	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1445	struct discard_cmd *dc;
1446	struct discard_info di = {0};
1447	struct rb_node **insert_p = NULL, *insert_parent = NULL;
 
1448	unsigned int max_discard_blocks =
1449			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1450	block_t end = lstart + len;
1451
1452	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1453				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
1454	if (dc)
1455		prev_dc = dc;
1456
1457	if (!prev_dc) {
1458		di.lstart = lstart;
1459		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1460		di.len = min(di.len, len);
1461		di.start = start;
1462	}
1463
1464	while (1) {
1465		struct rb_node *node;
1466		bool merged = false;
1467		struct discard_cmd *tdc = NULL;
1468
1469		if (prev_dc) {
1470			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1471			if (di.lstart < lstart)
1472				di.lstart = lstart;
1473			if (di.lstart >= end)
1474				break;
1475
1476			if (!next_dc || next_dc->di.lstart > end)
1477				di.len = end - di.lstart;
1478			else
1479				di.len = next_dc->di.lstart - di.lstart;
1480			di.start = start + di.lstart - lstart;
1481		}
1482
1483		if (!di.len)
1484			goto next;
1485
1486		if (prev_dc && prev_dc->state == D_PREP &&
1487			prev_dc->bdev == bdev &&
1488			__is_discard_back_mergeable(&di, &prev_dc->di,
1489							max_discard_blocks)) {
1490			prev_dc->di.len += di.len;
1491			dcc->undiscard_blks += di.len;
1492			__relocate_discard_cmd(dcc, prev_dc);
1493			di = prev_dc->di;
1494			tdc = prev_dc;
1495			merged = true;
1496		}
1497
1498		if (next_dc && next_dc->state == D_PREP &&
1499			next_dc->bdev == bdev &&
1500			__is_discard_front_mergeable(&di, &next_dc->di,
1501							max_discard_blocks)) {
1502			next_dc->di.lstart = di.lstart;
1503			next_dc->di.len += di.len;
1504			next_dc->di.start = di.start;
1505			dcc->undiscard_blks += di.len;
1506			__relocate_discard_cmd(dcc, next_dc);
1507			if (tdc)
1508				__remove_discard_cmd(sbi, tdc);
1509			merged = true;
1510		}
1511
1512		if (!merged)
1513			__insert_discard_cmd(sbi, bdev,
1514						di.lstart, di.start, di.len);
 
1515 next:
1516		prev_dc = next_dc;
1517		if (!prev_dc)
1518			break;
1519
1520		node = rb_next(&prev_dc->rb_node);
1521		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1522	}
1523}
1524
1525#ifdef CONFIG_BLK_DEV_ZONED
1526static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1527		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1528		block_t blklen)
1529{
1530	trace_f2fs_queue_reset_zone(bdev, blkstart);
1531
1532	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1533	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1534	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1535}
1536#endif
1537
1538static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1539		struct block_device *bdev, block_t blkstart, block_t blklen)
1540{
1541	block_t lblkstart = blkstart;
1542
1543	if (!f2fs_bdev_support_discard(bdev))
1544		return;
1545
1546	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1547
1548	if (f2fs_is_multi_device(sbi)) {
1549		int devi = f2fs_target_device_index(sbi, blkstart);
1550
1551		blkstart -= FDEV(devi).start_blk;
1552	}
1553	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1554	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1555	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
 
1556}
1557
1558static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1559		struct discard_policy *dpolicy, int *issued)
1560{
1561	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1562	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1563	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1564	struct discard_cmd *dc;
1565	struct blk_plug plug;
 
 
1566	bool io_interrupted = false;
1567
1568	mutex_lock(&dcc->cmd_lock);
1569	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1570				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
1571	if (!dc)
1572		dc = next_dc;
1573
1574	blk_start_plug(&plug);
1575
1576	while (dc) {
1577		struct rb_node *node;
1578		int err = 0;
1579
1580		if (dc->state != D_PREP)
1581			goto next;
1582
1583		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1584			io_interrupted = true;
1585			break;
1586		}
1587
1588		dcc->next_pos = dc->di.lstart + dc->di.len;
1589		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1590
1591		if (*issued >= dpolicy->max_requests)
1592			break;
1593next:
1594		node = rb_next(&dc->rb_node);
1595		if (err)
1596			__remove_discard_cmd(sbi, dc);
1597		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1598	}
1599
1600	blk_finish_plug(&plug);
1601
1602	if (!dc)
1603		dcc->next_pos = 0;
1604
1605	mutex_unlock(&dcc->cmd_lock);
1606
1607	if (!(*issued) && io_interrupted)
1608		*issued = -1;
 
 
1609}
1610static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1611					struct discard_policy *dpolicy);
1612
1613static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1614					struct discard_policy *dpolicy)
1615{
1616	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617	struct list_head *pend_list;
1618	struct discard_cmd *dc, *tmp;
1619	struct blk_plug plug;
1620	int i, issued;
1621	bool io_interrupted = false;
1622
1623	if (dpolicy->timeout)
1624		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1625
1626retry:
1627	issued = 0;
1628	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1629		if (dpolicy->timeout &&
1630				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1631			break;
1632
1633		if (i + 1 < dpolicy->granularity)
1634			break;
1635
1636		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1637			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1638			return issued;
1639		}
1640
1641		pend_list = &dcc->pend_list[i];
1642
1643		mutex_lock(&dcc->cmd_lock);
1644		if (list_empty(pend_list))
1645			goto next;
1646		if (unlikely(dcc->rbtree_check))
1647			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
 
1648		blk_start_plug(&plug);
1649		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1650			f2fs_bug_on(sbi, dc->state != D_PREP);
1651
1652			if (dpolicy->timeout &&
1653				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1654				break;
1655
1656			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1657						!is_idle(sbi, DISCARD_TIME)) {
1658				io_interrupted = true;
1659				break;
1660			}
1661
1662			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1663
1664			if (issued >= dpolicy->max_requests)
1665				break;
1666		}
1667		blk_finish_plug(&plug);
1668next:
1669		mutex_unlock(&dcc->cmd_lock);
1670
1671		if (issued >= dpolicy->max_requests || io_interrupted)
1672			break;
1673	}
1674
1675	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1676		__wait_all_discard_cmd(sbi, dpolicy);
1677		goto retry;
1678	}
1679
1680	if (!issued && io_interrupted)
1681		issued = -1;
1682
1683	return issued;
1684}
1685
1686static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1687{
1688	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1689	struct list_head *pend_list;
1690	struct discard_cmd *dc, *tmp;
1691	int i;
1692	bool dropped = false;
1693
1694	mutex_lock(&dcc->cmd_lock);
1695	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1696		pend_list = &dcc->pend_list[i];
1697		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1698			f2fs_bug_on(sbi, dc->state != D_PREP);
1699			__remove_discard_cmd(sbi, dc);
1700			dropped = true;
1701		}
1702	}
1703	mutex_unlock(&dcc->cmd_lock);
1704
1705	return dropped;
1706}
1707
1708void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1709{
1710	__drop_discard_cmd(sbi);
1711}
1712
1713static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1714							struct discard_cmd *dc)
1715{
1716	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1717	unsigned int len = 0;
1718
1719	wait_for_completion_io(&dc->wait);
1720	mutex_lock(&dcc->cmd_lock);
1721	f2fs_bug_on(sbi, dc->state != D_DONE);
1722	dc->ref--;
1723	if (!dc->ref) {
1724		if (!dc->error)
1725			len = dc->di.len;
1726		__remove_discard_cmd(sbi, dc);
1727	}
1728	mutex_unlock(&dcc->cmd_lock);
1729
1730	return len;
1731}
1732
1733static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1734						struct discard_policy *dpolicy,
1735						block_t start, block_t end)
1736{
1737	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1738	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1739					&(dcc->fstrim_list) : &(dcc->wait_list);
1740	struct discard_cmd *dc = NULL, *iter, *tmp;
 
1741	unsigned int trimmed = 0;
1742
1743next:
1744	dc = NULL;
1745
1746	mutex_lock(&dcc->cmd_lock);
1747	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1748		if (iter->di.lstart + iter->di.len <= start ||
1749					end <= iter->di.lstart)
1750			continue;
1751		if (iter->di.len < dpolicy->granularity)
1752			continue;
1753		if (iter->state == D_DONE && !iter->ref) {
1754			wait_for_completion_io(&iter->wait);
1755			if (!iter->error)
1756				trimmed += iter->di.len;
1757			__remove_discard_cmd(sbi, iter);
1758		} else {
1759			iter->ref++;
1760			dc = iter;
1761			break;
1762		}
1763	}
1764	mutex_unlock(&dcc->cmd_lock);
1765
1766	if (dc) {
1767		trimmed += __wait_one_discard_bio(sbi, dc);
1768		goto next;
1769	}
1770
1771	return trimmed;
1772}
1773
1774static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1775						struct discard_policy *dpolicy)
1776{
1777	struct discard_policy dp;
1778	unsigned int discard_blks;
1779
1780	if (dpolicy)
1781		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1782
1783	/* wait all */
1784	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1785	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1786	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1787	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1788
1789	return discard_blks;
1790}
1791
1792/* This should be covered by global mutex, &sit_i->sentry_lock */
1793static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1794{
1795	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1796	struct discard_cmd *dc;
1797	bool need_wait = false;
1798
1799	mutex_lock(&dcc->cmd_lock);
1800	dc = __lookup_discard_cmd(sbi, blkaddr);
1801#ifdef CONFIG_BLK_DEV_ZONED
1802	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1803		int devi = f2fs_bdev_index(sbi, dc->bdev);
1804
1805		if (devi < 0) {
1806			mutex_unlock(&dcc->cmd_lock);
1807			return;
1808		}
1809
1810		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1811			/* force submit zone reset */
1812			if (dc->state == D_PREP)
1813				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1814							&dcc->wait_list, NULL);
1815			dc->ref++;
1816			mutex_unlock(&dcc->cmd_lock);
1817			/* wait zone reset */
1818			__wait_one_discard_bio(sbi, dc);
1819			return;
1820		}
1821	}
1822#endif
1823	if (dc) {
1824		if (dc->state == D_PREP) {
1825			__punch_discard_cmd(sbi, dc, blkaddr);
1826		} else {
1827			dc->ref++;
1828			need_wait = true;
1829		}
1830	}
1831	mutex_unlock(&dcc->cmd_lock);
1832
1833	if (need_wait)
1834		__wait_one_discard_bio(sbi, dc);
1835}
1836
1837void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1838{
1839	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1840
1841	if (dcc && dcc->f2fs_issue_discard) {
1842		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1843
1844		dcc->f2fs_issue_discard = NULL;
1845		kthread_stop(discard_thread);
1846	}
1847}
1848
1849/**
1850 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1851 * @sbi: the f2fs_sb_info data for discard cmd to issue
1852 *
1853 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1854 *
1855 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1856 */
1857bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1858{
1859	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1860	struct discard_policy dpolicy;
1861	bool dropped;
1862
1863	if (!atomic_read(&dcc->discard_cmd_cnt))
1864		return true;
1865
1866	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1867					dcc->discard_granularity);
1868	__issue_discard_cmd(sbi, &dpolicy);
1869	dropped = __drop_discard_cmd(sbi);
1870
1871	/* just to make sure there is no pending discard commands */
1872	__wait_all_discard_cmd(sbi, NULL);
1873
1874	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1875	return !dropped;
1876}
1877
1878static int issue_discard_thread(void *data)
1879{
1880	struct f2fs_sb_info *sbi = data;
1881	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1882	wait_queue_head_t *q = &dcc->discard_wait_queue;
1883	struct discard_policy dpolicy;
1884	unsigned int wait_ms = dcc->min_discard_issue_time;
1885	int issued;
1886
1887	set_freezable();
1888
1889	do {
1890		wait_event_freezable_timeout(*q,
1891				kthread_should_stop() || dcc->discard_wake,
1892				msecs_to_jiffies(wait_ms));
1893
1894		if (sbi->gc_mode == GC_URGENT_HIGH ||
1895			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1896			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1897						MIN_DISCARD_GRANULARITY);
1898		else
1899			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1900						dcc->discard_granularity);
1901
 
 
 
 
 
 
 
 
1902		if (dcc->discard_wake)
1903			dcc->discard_wake = false;
1904
1905		/* clean up pending candidates before going to sleep */
1906		if (atomic_read(&dcc->queued_discard))
1907			__wait_all_discard_cmd(sbi, NULL);
1908
 
 
1909		if (f2fs_readonly(sbi->sb))
1910			continue;
1911		if (kthread_should_stop())
1912			return 0;
1913		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914			!atomic_read(&dcc->discard_cmd_cnt)) {
1915			wait_ms = dpolicy.max_interval;
1916			continue;
1917		}
 
 
1918
1919		sb_start_intwrite(sbi->sb);
1920
1921		issued = __issue_discard_cmd(sbi, &dpolicy);
1922		if (issued > 0) {
1923			__wait_all_discard_cmd(sbi, &dpolicy);
1924			wait_ms = dpolicy.min_interval;
1925		} else if (issued == -1) {
1926			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927			if (!wait_ms)
1928				wait_ms = dpolicy.mid_interval;
1929		} else {
1930			wait_ms = dpolicy.max_interval;
1931		}
1932		if (!atomic_read(&dcc->discard_cmd_cnt))
1933			wait_ms = dpolicy.max_interval;
1934
1935		sb_end_intwrite(sbi->sb);
1936
1937	} while (!kthread_should_stop());
1938	return 0;
1939}
1940
1941#ifdef CONFIG_BLK_DEV_ZONED
1942static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943		struct block_device *bdev, block_t blkstart, block_t blklen)
1944{
1945	sector_t sector, nr_sects;
1946	block_t lblkstart = blkstart;
1947	int devi = 0;
1948	u64 remainder = 0;
1949
1950	if (f2fs_is_multi_device(sbi)) {
1951		devi = f2fs_target_device_index(sbi, blkstart);
1952		if (blkstart < FDEV(devi).start_blk ||
1953		    blkstart > FDEV(devi).end_blk) {
1954			f2fs_err(sbi, "Invalid block %x", blkstart);
1955			return -EIO;
1956		}
1957		blkstart -= FDEV(devi).start_blk;
1958	}
1959
1960	/* For sequential zones, reset the zone write pointer */
1961	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962		sector = SECTOR_FROM_BLOCK(blkstart);
1963		nr_sects = SECTOR_FROM_BLOCK(blklen);
1964		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965
1966		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
 
1967			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969				 blkstart, blklen);
1970			return -EIO;
1971		}
1972
1973		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974			trace_f2fs_issue_reset_zone(bdev, blkstart);
1975			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1976						sector, nr_sects, GFP_NOFS);
1977		}
1978
1979		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1980		return 0;
1981	}
1982
1983	/* For conventional zones, use regular discard if supported */
1984	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1985	return 0;
1986}
1987#endif
1988
1989static int __issue_discard_async(struct f2fs_sb_info *sbi,
1990		struct block_device *bdev, block_t blkstart, block_t blklen)
1991{
1992#ifdef CONFIG_BLK_DEV_ZONED
1993	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1994		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1995#endif
1996	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1997	return 0;
1998}
1999
2000static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2001				block_t blkstart, block_t blklen)
2002{
2003	sector_t start = blkstart, len = 0;
2004	struct block_device *bdev;
2005	struct seg_entry *se;
2006	unsigned int offset;
2007	block_t i;
2008	int err = 0;
2009
2010	bdev = f2fs_target_device(sbi, blkstart, NULL);
2011
2012	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2013		if (i != start) {
2014			struct block_device *bdev2 =
2015				f2fs_target_device(sbi, i, NULL);
2016
2017			if (bdev2 != bdev) {
2018				err = __issue_discard_async(sbi, bdev,
2019						start, len);
2020				if (err)
2021					return err;
2022				bdev = bdev2;
2023				start = i;
2024				len = 0;
2025			}
2026		}
2027
2028		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2029		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2030
2031		if (f2fs_block_unit_discard(sbi) &&
2032				!f2fs_test_and_set_bit(offset, se->discard_map))
2033			sbi->discard_blks--;
2034	}
2035
2036	if (len)
2037		err = __issue_discard_async(sbi, bdev, start, len);
2038	return err;
2039}
2040
2041static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2042							bool check_only)
2043{
2044	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2045	int max_blocks = sbi->blocks_per_seg;
2046	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2047	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2048	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2049	unsigned long *discard_map = (unsigned long *)se->discard_map;
2050	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2051	unsigned int start = 0, end = -1;
2052	bool force = (cpc->reason & CP_DISCARD);
2053	struct discard_entry *de = NULL;
2054	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2055	int i;
2056
2057	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2058			!f2fs_block_unit_discard(sbi))
2059		return false;
2060
2061	if (!force) {
2062		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2063			SM_I(sbi)->dcc_info->nr_discards >=
2064				SM_I(sbi)->dcc_info->max_discards)
2065			return false;
2066	}
2067
2068	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2069	for (i = 0; i < entries; i++)
2070		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2071				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2072
2073	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2074				SM_I(sbi)->dcc_info->max_discards) {
2075		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2076		if (start >= max_blocks)
2077			break;
2078
2079		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2080		if (force && start && end != max_blocks
2081					&& (end - start) < cpc->trim_minlen)
2082			continue;
2083
2084		if (check_only)
2085			return true;
2086
2087		if (!de) {
2088			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2089						GFP_F2FS_ZERO, true, NULL);
2090			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2091			list_add_tail(&de->list, head);
2092		}
2093
2094		for (i = start; i < end; i++)
2095			__set_bit_le(i, (void *)de->discard_map);
2096
2097		SM_I(sbi)->dcc_info->nr_discards += end - start;
2098	}
2099	return false;
2100}
2101
2102static void release_discard_addr(struct discard_entry *entry)
2103{
2104	list_del(&entry->list);
2105	kmem_cache_free(discard_entry_slab, entry);
2106}
2107
2108void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2109{
2110	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2111	struct discard_entry *entry, *this;
2112
2113	/* drop caches */
2114	list_for_each_entry_safe(entry, this, head, list)
2115		release_discard_addr(entry);
2116}
2117
2118/*
2119 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2120 */
2121static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2122{
2123	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2124	unsigned int segno;
2125
2126	mutex_lock(&dirty_i->seglist_lock);
2127	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2128		__set_test_and_free(sbi, segno, false);
2129	mutex_unlock(&dirty_i->seglist_lock);
2130}
2131
2132void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2133						struct cp_control *cpc)
2134{
2135	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2136	struct list_head *head = &dcc->entry_list;
2137	struct discard_entry *entry, *this;
2138	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2140	unsigned int start = 0, end = -1;
2141	unsigned int secno, start_segno;
2142	bool force = (cpc->reason & CP_DISCARD);
2143	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2144						DISCARD_UNIT_SECTION;
2145
2146	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2147		section_alignment = true;
2148
2149	mutex_lock(&dirty_i->seglist_lock);
2150
2151	while (1) {
2152		int i;
2153
2154		if (section_alignment && end != -1)
2155			end--;
2156		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2157		if (start >= MAIN_SEGS(sbi))
2158			break;
2159		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2160								start + 1);
2161
2162		if (section_alignment) {
2163			start = rounddown(start, sbi->segs_per_sec);
2164			end = roundup(end, sbi->segs_per_sec);
2165		}
2166
2167		for (i = start; i < end; i++) {
2168			if (test_and_clear_bit(i, prefree_map))
2169				dirty_i->nr_dirty[PRE]--;
2170		}
2171
2172		if (!f2fs_realtime_discard_enable(sbi))
2173			continue;
2174
2175		if (force && start >= cpc->trim_start &&
2176					(end - 1) <= cpc->trim_end)
2177			continue;
2178
2179		/* Should cover 2MB zoned device for zone-based reset */
2180		if (!f2fs_sb_has_blkzoned(sbi) &&
2181		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2182			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2183				(end - start) << sbi->log_blocks_per_seg);
2184			continue;
2185		}
2186next:
2187		secno = GET_SEC_FROM_SEG(sbi, start);
2188		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2189		if (!IS_CURSEC(sbi, secno) &&
2190			!get_valid_blocks(sbi, start, true))
2191			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2192				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2193
2194		start = start_segno + sbi->segs_per_sec;
2195		if (start < end)
2196			goto next;
2197		else
2198			end = start - 1;
2199	}
2200	mutex_unlock(&dirty_i->seglist_lock);
2201
2202	if (!f2fs_block_unit_discard(sbi))
2203		goto wakeup;
2204
2205	/* send small discards */
2206	list_for_each_entry_safe(entry, this, head, list) {
2207		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2208		bool is_valid = test_bit_le(0, entry->discard_map);
2209
2210find_next:
2211		if (is_valid) {
2212			next_pos = find_next_zero_bit_le(entry->discard_map,
2213					sbi->blocks_per_seg, cur_pos);
2214			len = next_pos - cur_pos;
2215
2216			if (f2fs_sb_has_blkzoned(sbi) ||
2217			    (force && len < cpc->trim_minlen))
2218				goto skip;
2219
2220			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2221									len);
2222			total_len += len;
2223		} else {
2224			next_pos = find_next_bit_le(entry->discard_map,
2225					sbi->blocks_per_seg, cur_pos);
2226		}
2227skip:
2228		cur_pos = next_pos;
2229		is_valid = !is_valid;
2230
2231		if (cur_pos < sbi->blocks_per_seg)
2232			goto find_next;
2233
2234		release_discard_addr(entry);
2235		dcc->nr_discards -= total_len;
2236	}
2237
2238wakeup:
2239	wake_up_discard_thread(sbi, false);
2240}
2241
2242int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2243{
2244	dev_t dev = sbi->sb->s_bdev->bd_dev;
2245	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2246	int err = 0;
2247
2248	if (!f2fs_realtime_discard_enable(sbi))
2249		return 0;
2250
2251	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2252				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2253	if (IS_ERR(dcc->f2fs_issue_discard)) {
2254		err = PTR_ERR(dcc->f2fs_issue_discard);
2255		dcc->f2fs_issue_discard = NULL;
2256	}
2257
2258	return err;
2259}
2260
2261static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2262{
2263	struct discard_cmd_control *dcc;
2264	int err = 0, i;
2265
2266	if (SM_I(sbi)->dcc_info) {
2267		dcc = SM_I(sbi)->dcc_info;
2268		goto init_thread;
2269	}
2270
2271	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2272	if (!dcc)
2273		return -ENOMEM;
2274
2275	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2276	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2277	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2278	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2279	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2280		dcc->discard_granularity = sbi->blocks_per_seg;
2281	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2282		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2283
2284	INIT_LIST_HEAD(&dcc->entry_list);
2285	for (i = 0; i < MAX_PLIST_NUM; i++)
2286		INIT_LIST_HEAD(&dcc->pend_list[i]);
2287	INIT_LIST_HEAD(&dcc->wait_list);
2288	INIT_LIST_HEAD(&dcc->fstrim_list);
2289	mutex_init(&dcc->cmd_lock);
2290	atomic_set(&dcc->issued_discard, 0);
2291	atomic_set(&dcc->queued_discard, 0);
2292	atomic_set(&dcc->discard_cmd_cnt, 0);
2293	dcc->nr_discards = 0;
2294	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2295	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2296	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2297	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2298	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2299	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2300	dcc->undiscard_blks = 0;
2301	dcc->next_pos = 0;
2302	dcc->root = RB_ROOT_CACHED;
2303	dcc->rbtree_check = false;
2304
2305	init_waitqueue_head(&dcc->discard_wait_queue);
2306	SM_I(sbi)->dcc_info = dcc;
2307init_thread:
2308	err = f2fs_start_discard_thread(sbi);
2309	if (err) {
 
 
2310		kfree(dcc);
2311		SM_I(sbi)->dcc_info = NULL;
 
2312	}
2313
2314	return err;
2315}
2316
2317static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2318{
2319	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2320
2321	if (!dcc)
2322		return;
2323
2324	f2fs_stop_discard_thread(sbi);
2325
2326	/*
2327	 * Recovery can cache discard commands, so in error path of
2328	 * fill_super(), it needs to give a chance to handle them.
2329	 */
2330	f2fs_issue_discard_timeout(sbi);
 
2331
2332	kfree(dcc);
2333	SM_I(sbi)->dcc_info = NULL;
2334}
2335
2336static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2337{
2338	struct sit_info *sit_i = SIT_I(sbi);
2339
2340	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2341		sit_i->dirty_sentries++;
2342		return false;
2343	}
2344
2345	return true;
2346}
2347
2348static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2349					unsigned int segno, int modified)
2350{
2351	struct seg_entry *se = get_seg_entry(sbi, segno);
2352
2353	se->type = type;
2354	if (modified)
2355		__mark_sit_entry_dirty(sbi, segno);
2356}
2357
2358static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2359								block_t blkaddr)
2360{
2361	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2362
2363	if (segno == NULL_SEGNO)
2364		return 0;
2365	return get_seg_entry(sbi, segno)->mtime;
2366}
2367
2368static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2369						unsigned long long old_mtime)
2370{
2371	struct seg_entry *se;
2372	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2373	unsigned long long ctime = get_mtime(sbi, false);
2374	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2375
2376	if (segno == NULL_SEGNO)
2377		return;
2378
2379	se = get_seg_entry(sbi, segno);
2380
2381	if (!se->mtime)
2382		se->mtime = mtime;
2383	else
2384		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2385						se->valid_blocks + 1);
2386
2387	if (ctime > SIT_I(sbi)->max_mtime)
2388		SIT_I(sbi)->max_mtime = ctime;
2389}
2390
2391static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2392{
2393	struct seg_entry *se;
2394	unsigned int segno, offset;
2395	long int new_vblocks;
2396	bool exist;
2397#ifdef CONFIG_F2FS_CHECK_FS
2398	bool mir_exist;
2399#endif
2400
2401	segno = GET_SEGNO(sbi, blkaddr);
2402
2403	se = get_seg_entry(sbi, segno);
2404	new_vblocks = se->valid_blocks + del;
2405	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2406
2407	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2408			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2409
2410	se->valid_blocks = new_vblocks;
2411
2412	/* Update valid block bitmap */
2413	if (del > 0) {
2414		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2415#ifdef CONFIG_F2FS_CHECK_FS
2416		mir_exist = f2fs_test_and_set_bit(offset,
2417						se->cur_valid_map_mir);
2418		if (unlikely(exist != mir_exist)) {
2419			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2420				 blkaddr, exist);
2421			f2fs_bug_on(sbi, 1);
2422		}
2423#endif
2424		if (unlikely(exist)) {
2425			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2426				 blkaddr);
2427			f2fs_bug_on(sbi, 1);
2428			se->valid_blocks--;
2429			del = 0;
2430		}
2431
2432		if (f2fs_block_unit_discard(sbi) &&
2433				!f2fs_test_and_set_bit(offset, se->discard_map))
2434			sbi->discard_blks--;
2435
2436		/*
2437		 * SSR should never reuse block which is checkpointed
2438		 * or newly invalidated.
2439		 */
2440		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2441			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2442				se->ckpt_valid_blocks++;
2443		}
2444	} else {
2445		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2446#ifdef CONFIG_F2FS_CHECK_FS
2447		mir_exist = f2fs_test_and_clear_bit(offset,
2448						se->cur_valid_map_mir);
2449		if (unlikely(exist != mir_exist)) {
2450			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2451				 blkaddr, exist);
2452			f2fs_bug_on(sbi, 1);
2453		}
2454#endif
2455		if (unlikely(!exist)) {
2456			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2457				 blkaddr);
2458			f2fs_bug_on(sbi, 1);
2459			se->valid_blocks++;
2460			del = 0;
2461		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2462			/*
2463			 * If checkpoints are off, we must not reuse data that
2464			 * was used in the previous checkpoint. If it was used
2465			 * before, we must track that to know how much space we
2466			 * really have.
2467			 */
2468			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2469				spin_lock(&sbi->stat_lock);
2470				sbi->unusable_block_count++;
2471				spin_unlock(&sbi->stat_lock);
2472			}
2473		}
2474
2475		if (f2fs_block_unit_discard(sbi) &&
2476			f2fs_test_and_clear_bit(offset, se->discard_map))
2477			sbi->discard_blks++;
2478	}
2479	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2480		se->ckpt_valid_blocks += del;
2481
2482	__mark_sit_entry_dirty(sbi, segno);
2483
2484	/* update total number of valid blocks to be written in ckpt area */
2485	SIT_I(sbi)->written_valid_blocks += del;
2486
2487	if (__is_large_section(sbi))
2488		get_sec_entry(sbi, segno)->valid_blocks += del;
2489}
2490
2491void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2492{
2493	unsigned int segno = GET_SEGNO(sbi, addr);
2494	struct sit_info *sit_i = SIT_I(sbi);
2495
2496	f2fs_bug_on(sbi, addr == NULL_ADDR);
2497	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2498		return;
2499
2500	f2fs_invalidate_internal_cache(sbi, addr);
 
2501
2502	/* add it into sit main buffer */
2503	down_write(&sit_i->sentry_lock);
2504
2505	update_segment_mtime(sbi, addr, 0);
2506	update_sit_entry(sbi, addr, -1);
2507
2508	/* add it into dirty seglist */
2509	locate_dirty_segment(sbi, segno);
2510
2511	up_write(&sit_i->sentry_lock);
2512}
2513
2514bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2515{
2516	struct sit_info *sit_i = SIT_I(sbi);
2517	unsigned int segno, offset;
2518	struct seg_entry *se;
2519	bool is_cp = false;
2520
2521	if (!__is_valid_data_blkaddr(blkaddr))
2522		return true;
2523
2524	down_read(&sit_i->sentry_lock);
2525
2526	segno = GET_SEGNO(sbi, blkaddr);
2527	se = get_seg_entry(sbi, segno);
2528	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2529
2530	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2531		is_cp = true;
2532
2533	up_read(&sit_i->sentry_lock);
2534
2535	return is_cp;
2536}
2537
2538static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
 
 
 
 
2539{
2540	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
2541
2542	if (sbi->ckpt->alloc_type[type] == SSR)
2543		return sbi->blocks_per_seg;
2544	return curseg->next_blkoff;
2545}
2546
2547/*
2548 * Calculate the number of current summary pages for writing
2549 */
2550int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2551{
2552	int valid_sum_count = 0;
2553	int i, sum_in_page;
2554
2555	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2556		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2557			valid_sum_count +=
2558				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2559		else
2560			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
 
 
 
 
2561	}
2562
2563	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2564			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2565	if (valid_sum_count <= sum_in_page)
2566		return 1;
2567	else if ((valid_sum_count - sum_in_page) <=
2568		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2569		return 2;
2570	return 3;
2571}
2572
2573/*
2574 * Caller should put this summary page
2575 */
2576struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2577{
2578	if (unlikely(f2fs_cp_error(sbi)))
2579		return ERR_PTR(-EIO);
2580	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2581}
2582
2583void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2584					void *src, block_t blk_addr)
2585{
2586	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2587
2588	memcpy(page_address(page), src, PAGE_SIZE);
2589	set_page_dirty(page);
2590	f2fs_put_page(page, 1);
2591}
2592
2593static void write_sum_page(struct f2fs_sb_info *sbi,
2594			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2595{
2596	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2597}
2598
2599static void write_current_sum_page(struct f2fs_sb_info *sbi,
2600						int type, block_t blk_addr)
2601{
2602	struct curseg_info *curseg = CURSEG_I(sbi, type);
2603	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2604	struct f2fs_summary_block *src = curseg->sum_blk;
2605	struct f2fs_summary_block *dst;
2606
2607	dst = (struct f2fs_summary_block *)page_address(page);
2608	memset(dst, 0, PAGE_SIZE);
2609
2610	mutex_lock(&curseg->curseg_mutex);
2611
2612	down_read(&curseg->journal_rwsem);
2613	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2614	up_read(&curseg->journal_rwsem);
2615
2616	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2617	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2618
2619	mutex_unlock(&curseg->curseg_mutex);
2620
2621	set_page_dirty(page);
2622	f2fs_put_page(page, 1);
2623}
2624
2625static int is_next_segment_free(struct f2fs_sb_info *sbi,
2626				struct curseg_info *curseg, int type)
2627{
2628	unsigned int segno = curseg->segno + 1;
2629	struct free_segmap_info *free_i = FREE_I(sbi);
2630
2631	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2632		return !test_bit(segno, free_i->free_segmap);
2633	return 0;
2634}
2635
2636/*
2637 * Find a new segment from the free segments bitmap to right order
2638 * This function should be returned with success, otherwise BUG
2639 */
2640static void get_new_segment(struct f2fs_sb_info *sbi,
2641			unsigned int *newseg, bool new_sec, int dir)
2642{
2643	struct free_segmap_info *free_i = FREE_I(sbi);
2644	unsigned int segno, secno, zoneno;
2645	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2646	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2647	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2648	unsigned int left_start = hint;
2649	bool init = true;
2650	int go_left = 0;
2651	int i;
2652
2653	spin_lock(&free_i->segmap_lock);
2654
2655	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2656		segno = find_next_zero_bit(free_i->free_segmap,
2657			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2658		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2659			goto got_it;
2660	}
2661find_other_zone:
2662	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2663	if (secno >= MAIN_SECS(sbi)) {
2664		if (dir == ALLOC_RIGHT) {
2665			secno = find_first_zero_bit(free_i->free_secmap,
2666							MAIN_SECS(sbi));
2667			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2668		} else {
2669			go_left = 1;
2670			left_start = hint - 1;
2671		}
2672	}
2673	if (go_left == 0)
2674		goto skip_left;
2675
2676	while (test_bit(left_start, free_i->free_secmap)) {
2677		if (left_start > 0) {
2678			left_start--;
2679			continue;
2680		}
2681		left_start = find_first_zero_bit(free_i->free_secmap,
2682							MAIN_SECS(sbi));
2683		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2684		break;
2685	}
2686	secno = left_start;
2687skip_left:
2688	segno = GET_SEG_FROM_SEC(sbi, secno);
2689	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2690
2691	/* give up on finding another zone */
2692	if (!init)
2693		goto got_it;
2694	if (sbi->secs_per_zone == 1)
2695		goto got_it;
2696	if (zoneno == old_zoneno)
2697		goto got_it;
2698	if (dir == ALLOC_LEFT) {
2699		if (!go_left && zoneno + 1 >= total_zones)
2700			goto got_it;
2701		if (go_left && zoneno == 0)
2702			goto got_it;
2703	}
2704	for (i = 0; i < NR_CURSEG_TYPE; i++)
2705		if (CURSEG_I(sbi, i)->zone == zoneno)
2706			break;
2707
2708	if (i < NR_CURSEG_TYPE) {
2709		/* zone is in user, try another */
2710		if (go_left)
2711			hint = zoneno * sbi->secs_per_zone - 1;
2712		else if (zoneno + 1 >= total_zones)
2713			hint = 0;
2714		else
2715			hint = (zoneno + 1) * sbi->secs_per_zone;
2716		init = false;
2717		goto find_other_zone;
2718	}
2719got_it:
2720	/* set it as dirty segment in free segmap */
2721	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2722	__set_inuse(sbi, segno);
2723	*newseg = segno;
2724	spin_unlock(&free_i->segmap_lock);
2725}
2726
2727static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2728{
2729	struct curseg_info *curseg = CURSEG_I(sbi, type);
2730	struct summary_footer *sum_footer;
2731	unsigned short seg_type = curseg->seg_type;
2732
2733	curseg->inited = true;
2734	curseg->segno = curseg->next_segno;
2735	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2736	curseg->next_blkoff = 0;
2737	curseg->next_segno = NULL_SEGNO;
2738
2739	sum_footer = &(curseg->sum_blk->footer);
2740	memset(sum_footer, 0, sizeof(struct summary_footer));
2741
2742	sanity_check_seg_type(sbi, seg_type);
2743
2744	if (IS_DATASEG(seg_type))
2745		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2746	if (IS_NODESEG(seg_type))
2747		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2748	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2749}
2750
2751static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2752{
2753	struct curseg_info *curseg = CURSEG_I(sbi, type);
2754	unsigned short seg_type = curseg->seg_type;
2755
2756	sanity_check_seg_type(sbi, seg_type);
2757	if (f2fs_need_rand_seg(sbi))
2758		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2759
2760	/* if segs_per_sec is large than 1, we need to keep original policy. */
2761	if (__is_large_section(sbi))
2762		return curseg->segno;
2763
2764	/* inmem log may not locate on any segment after mount */
2765	if (!curseg->inited)
2766		return 0;
2767
2768	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2769		return 0;
2770
2771	if (test_opt(sbi, NOHEAP) &&
2772		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2773		return 0;
2774
2775	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2776		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2777
2778	/* find segments from 0 to reuse freed segments */
2779	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2780		return 0;
2781
2782	return curseg->segno;
2783}
2784
2785/*
2786 * Allocate a current working segment.
2787 * This function always allocates a free segment in LFS manner.
2788 */
2789static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2790{
2791	struct curseg_info *curseg = CURSEG_I(sbi, type);
2792	unsigned short seg_type = curseg->seg_type;
2793	unsigned int segno = curseg->segno;
2794	int dir = ALLOC_LEFT;
2795
2796	if (curseg->inited)
2797		write_sum_page(sbi, curseg->sum_blk,
2798				GET_SUM_BLOCK(sbi, segno));
2799	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2800		dir = ALLOC_RIGHT;
2801
2802	if (test_opt(sbi, NOHEAP))
2803		dir = ALLOC_RIGHT;
2804
2805	segno = __get_next_segno(sbi, type);
2806	get_new_segment(sbi, &segno, new_sec, dir);
2807	curseg->next_segno = segno;
2808	reset_curseg(sbi, type, 1);
2809	curseg->alloc_type = LFS;
2810	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2811		curseg->fragment_remained_chunk =
2812				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2813}
2814
2815static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2816					int segno, block_t start)
2817{
2818	struct seg_entry *se = get_seg_entry(sbi, segno);
2819	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2820	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2821	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2822	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2823	int i;
2824
2825	for (i = 0; i < entries; i++)
2826		target_map[i] = ckpt_map[i] | cur_map[i];
2827
2828	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2829}
2830
2831static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2832		struct curseg_info *seg)
 
 
 
 
 
2833{
2834	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
 
 
 
 
 
2835}
2836
2837bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2838{
2839	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2840}
2841
2842/*
2843 * This function always allocates a used segment(from dirty seglist) by SSR
2844 * manner, so it should recover the existing segment information of valid blocks
2845 */
2846static void change_curseg(struct f2fs_sb_info *sbi, int type)
2847{
2848	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2849	struct curseg_info *curseg = CURSEG_I(sbi, type);
2850	unsigned int new_segno = curseg->next_segno;
2851	struct f2fs_summary_block *sum_node;
2852	struct page *sum_page;
2853
2854	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
 
 
2855
2856	__set_test_and_inuse(sbi, new_segno);
2857
2858	mutex_lock(&dirty_i->seglist_lock);
2859	__remove_dirty_segment(sbi, new_segno, PRE);
2860	__remove_dirty_segment(sbi, new_segno, DIRTY);
2861	mutex_unlock(&dirty_i->seglist_lock);
2862
2863	reset_curseg(sbi, type, 1);
2864	curseg->alloc_type = SSR;
2865	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2866
2867	sum_page = f2fs_get_sum_page(sbi, new_segno);
2868	if (IS_ERR(sum_page)) {
2869		/* GC won't be able to use stale summary pages by cp_error */
2870		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2871		return;
2872	}
2873	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2874	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2875	f2fs_put_page(sum_page, 1);
2876}
2877
2878static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2879				int alloc_mode, unsigned long long age);
2880
2881static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2882					int target_type, int alloc_mode,
2883					unsigned long long age)
2884{
2885	struct curseg_info *curseg = CURSEG_I(sbi, type);
2886
2887	curseg->seg_type = target_type;
2888
2889	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2890		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2891
2892		curseg->seg_type = se->type;
2893		change_curseg(sbi, type);
2894	} else {
2895		/* allocate cold segment by default */
2896		curseg->seg_type = CURSEG_COLD_DATA;
2897		new_curseg(sbi, type, true);
2898	}
2899	stat_inc_seg_type(sbi, curseg);
2900}
2901
2902static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2903{
2904	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2905
2906	if (!sbi->am.atgc_enabled)
2907		return;
2908
2909	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2910
2911	mutex_lock(&curseg->curseg_mutex);
2912	down_write(&SIT_I(sbi)->sentry_lock);
2913
2914	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2915
2916	up_write(&SIT_I(sbi)->sentry_lock);
2917	mutex_unlock(&curseg->curseg_mutex);
2918
2919	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2920
2921}
2922void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2923{
2924	__f2fs_init_atgc_curseg(sbi);
2925}
2926
2927static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2928{
2929	struct curseg_info *curseg = CURSEG_I(sbi, type);
2930
2931	mutex_lock(&curseg->curseg_mutex);
2932	if (!curseg->inited)
2933		goto out;
2934
2935	if (get_valid_blocks(sbi, curseg->segno, false)) {
2936		write_sum_page(sbi, curseg->sum_blk,
2937				GET_SUM_BLOCK(sbi, curseg->segno));
2938	} else {
2939		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2940		__set_test_and_free(sbi, curseg->segno, true);
2941		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2942	}
2943out:
2944	mutex_unlock(&curseg->curseg_mutex);
2945}
2946
2947void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2948{
2949	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2950
2951	if (sbi->am.atgc_enabled)
2952		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2953}
2954
2955static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2956{
2957	struct curseg_info *curseg = CURSEG_I(sbi, type);
2958
2959	mutex_lock(&curseg->curseg_mutex);
2960	if (!curseg->inited)
2961		goto out;
2962	if (get_valid_blocks(sbi, curseg->segno, false))
2963		goto out;
2964
2965	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2966	__set_test_and_inuse(sbi, curseg->segno);
2967	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2968out:
2969	mutex_unlock(&curseg->curseg_mutex);
2970}
2971
2972void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2973{
2974	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2975
2976	if (sbi->am.atgc_enabled)
2977		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2978}
2979
2980static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2981				int alloc_mode, unsigned long long age)
2982{
2983	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
2984	unsigned segno = NULL_SEGNO;
2985	unsigned short seg_type = curseg->seg_type;
2986	int i, cnt;
2987	bool reversed = false;
2988
2989	sanity_check_seg_type(sbi, seg_type);
2990
2991	/* f2fs_need_SSR() already forces to do this */
2992	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2993		curseg->next_segno = segno;
2994		return 1;
2995	}
2996
2997	/* For node segments, let's do SSR more intensively */
2998	if (IS_NODESEG(seg_type)) {
2999		if (seg_type >= CURSEG_WARM_NODE) {
3000			reversed = true;
3001			i = CURSEG_COLD_NODE;
3002		} else {
3003			i = CURSEG_HOT_NODE;
3004		}
3005		cnt = NR_CURSEG_NODE_TYPE;
3006	} else {
3007		if (seg_type >= CURSEG_WARM_DATA) {
3008			reversed = true;
3009			i = CURSEG_COLD_DATA;
3010		} else {
3011			i = CURSEG_HOT_DATA;
3012		}
3013		cnt = NR_CURSEG_DATA_TYPE;
3014	}
3015
3016	for (; cnt-- > 0; reversed ? i-- : i++) {
3017		if (i == seg_type)
3018			continue;
3019		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3020			curseg->next_segno = segno;
3021			return 1;
3022		}
3023	}
3024
3025	/* find valid_blocks=0 in dirty list */
3026	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3027		segno = get_free_segment(sbi);
3028		if (segno != NULL_SEGNO) {
3029			curseg->next_segno = segno;
3030			return 1;
3031		}
3032	}
3033	return 0;
3034}
3035
3036static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
3037{
3038	struct curseg_info *curseg = CURSEG_I(sbi, type);
3039
3040	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3041	    curseg->seg_type == CURSEG_WARM_NODE)
3042		return true;
3043	if (curseg->alloc_type == LFS &&
3044	    is_next_segment_free(sbi, curseg, type) &&
3045	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3046		return true;
3047	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3048		return true;
3049	return false;
 
 
 
 
 
 
3050}
3051
3052void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3053					unsigned int start, unsigned int end)
3054{
3055	struct curseg_info *curseg = CURSEG_I(sbi, type);
3056	unsigned int segno;
3057
3058	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3059	mutex_lock(&curseg->curseg_mutex);
3060	down_write(&SIT_I(sbi)->sentry_lock);
3061
3062	segno = CURSEG_I(sbi, type)->segno;
3063	if (segno < start || segno > end)
3064		goto unlock;
3065
3066	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3067		change_curseg(sbi, type);
3068	else
3069		new_curseg(sbi, type, true);
3070
3071	stat_inc_seg_type(sbi, curseg);
3072
3073	locate_dirty_segment(sbi, segno);
3074unlock:
3075	up_write(&SIT_I(sbi)->sentry_lock);
3076
3077	if (segno != curseg->segno)
3078		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3079			    type, segno, curseg->segno);
3080
3081	mutex_unlock(&curseg->curseg_mutex);
3082	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3083}
3084
3085static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3086						bool new_sec, bool force)
3087{
3088	struct curseg_info *curseg = CURSEG_I(sbi, type);
3089	unsigned int old_segno;
3090
3091	if (!force && curseg->inited &&
3092	    !curseg->next_blkoff &&
3093	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3094	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
 
 
 
 
3095		return;
3096
3097	old_segno = curseg->segno;
3098	new_curseg(sbi, type, true);
3099	stat_inc_seg_type(sbi, curseg);
3100	locate_dirty_segment(sbi, old_segno);
3101}
3102
 
 
 
 
 
 
3103void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3104{
3105	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3106	down_write(&SIT_I(sbi)->sentry_lock);
3107	__allocate_new_segment(sbi, type, true, force);
3108	up_write(&SIT_I(sbi)->sentry_lock);
3109	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3110}
3111
3112void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3113{
3114	int i;
3115
3116	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3117	down_write(&SIT_I(sbi)->sentry_lock);
3118	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3119		__allocate_new_segment(sbi, i, false, false);
3120	up_write(&SIT_I(sbi)->sentry_lock);
3121	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3122}
3123
 
 
 
 
3124bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3125						struct cp_control *cpc)
3126{
3127	__u64 trim_start = cpc->trim_start;
3128	bool has_candidate = false;
3129
3130	down_write(&SIT_I(sbi)->sentry_lock);
3131	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3132		if (add_discard_addrs(sbi, cpc, true)) {
3133			has_candidate = true;
3134			break;
3135		}
3136	}
3137	up_write(&SIT_I(sbi)->sentry_lock);
3138
3139	cpc->trim_start = trim_start;
3140	return has_candidate;
3141}
3142
3143static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3144					struct discard_policy *dpolicy,
3145					unsigned int start, unsigned int end)
3146{
3147	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3148	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3149	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3150	struct discard_cmd *dc;
3151	struct blk_plug plug;
3152	int issued;
3153	unsigned int trimmed = 0;
3154
3155next:
3156	issued = 0;
3157
3158	mutex_lock(&dcc->cmd_lock);
3159	if (unlikely(dcc->rbtree_check))
3160		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
 
3161
3162	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3163				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
3164	if (!dc)
3165		dc = next_dc;
3166
3167	blk_start_plug(&plug);
3168
3169	while (dc && dc->di.lstart <= end) {
3170		struct rb_node *node;
3171		int err = 0;
3172
3173		if (dc->di.len < dpolicy->granularity)
3174			goto skip;
3175
3176		if (dc->state != D_PREP) {
3177			list_move_tail(&dc->list, &dcc->fstrim_list);
3178			goto skip;
3179		}
3180
3181		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3182
3183		if (issued >= dpolicy->max_requests) {
3184			start = dc->di.lstart + dc->di.len;
3185
3186			if (err)
3187				__remove_discard_cmd(sbi, dc);
3188
3189			blk_finish_plug(&plug);
3190			mutex_unlock(&dcc->cmd_lock);
3191			trimmed += __wait_all_discard_cmd(sbi, NULL);
3192			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3193			goto next;
3194		}
3195skip:
3196		node = rb_next(&dc->rb_node);
3197		if (err)
3198			__remove_discard_cmd(sbi, dc);
3199		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3200
3201		if (fatal_signal_pending(current))
3202			break;
3203	}
3204
3205	blk_finish_plug(&plug);
3206	mutex_unlock(&dcc->cmd_lock);
3207
3208	return trimmed;
3209}
3210
3211int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3212{
3213	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3214	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3215	unsigned int start_segno, end_segno;
3216	block_t start_block, end_block;
3217	struct cp_control cpc;
3218	struct discard_policy dpolicy;
3219	unsigned long long trimmed = 0;
3220	int err = 0;
3221	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3222
3223	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3224		return -EINVAL;
3225
3226	if (end < MAIN_BLKADDR(sbi))
3227		goto out;
3228
3229	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3230		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3231		return -EFSCORRUPTED;
3232	}
3233
3234	/* start/end segment number in main_area */
3235	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3236	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3237						GET_SEGNO(sbi, end);
3238	if (need_align) {
3239		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3240		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3241	}
3242
3243	cpc.reason = CP_DISCARD;
3244	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3245	cpc.trim_start = start_segno;
3246	cpc.trim_end = end_segno;
3247
3248	if (sbi->discard_blks == 0)
3249		goto out;
3250
3251	f2fs_down_write(&sbi->gc_lock);
3252	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3253	err = f2fs_write_checkpoint(sbi, &cpc);
3254	f2fs_up_write(&sbi->gc_lock);
3255	if (err)
3256		goto out;
3257
3258	/*
3259	 * We filed discard candidates, but actually we don't need to wait for
3260	 * all of them, since they'll be issued in idle time along with runtime
3261	 * discard option. User configuration looks like using runtime discard
3262	 * or periodic fstrim instead of it.
3263	 */
3264	if (f2fs_realtime_discard_enable(sbi))
3265		goto out;
3266
3267	start_block = START_BLOCK(sbi, start_segno);
3268	end_block = START_BLOCK(sbi, end_segno + 1);
3269
3270	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3271	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3272					start_block, end_block);
3273
3274	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3275					start_block, end_block);
3276out:
3277	if (!err)
3278		range->len = F2FS_BLK_TO_BYTES(trimmed);
3279	return err;
3280}
3281
 
 
 
 
 
 
 
3282int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3283{
3284	switch (hint) {
3285	case WRITE_LIFE_SHORT:
3286		return CURSEG_HOT_DATA;
3287	case WRITE_LIFE_EXTREME:
3288		return CURSEG_COLD_DATA;
3289	default:
3290		return CURSEG_WARM_DATA;
3291	}
3292}
3293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3294static int __get_segment_type_2(struct f2fs_io_info *fio)
3295{
3296	if (fio->type == DATA)
3297		return CURSEG_HOT_DATA;
3298	else
3299		return CURSEG_HOT_NODE;
3300}
3301
3302static int __get_segment_type_4(struct f2fs_io_info *fio)
3303{
3304	if (fio->type == DATA) {
3305		struct inode *inode = fio->page->mapping->host;
3306
3307		if (S_ISDIR(inode->i_mode))
3308			return CURSEG_HOT_DATA;
3309		else
3310			return CURSEG_COLD_DATA;
3311	} else {
3312		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3313			return CURSEG_WARM_NODE;
3314		else
3315			return CURSEG_COLD_NODE;
3316	}
3317}
3318
3319static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3320{
3321	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322	struct extent_info ei = {};
3323
3324	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3325		if (!ei.age)
3326			return NO_CHECK_TYPE;
3327		if (ei.age <= sbi->hot_data_age_threshold)
3328			return CURSEG_HOT_DATA;
3329		if (ei.age <= sbi->warm_data_age_threshold)
3330			return CURSEG_WARM_DATA;
3331		return CURSEG_COLD_DATA;
3332	}
3333	return NO_CHECK_TYPE;
3334}
3335
3336static int __get_segment_type_6(struct f2fs_io_info *fio)
3337{
3338	if (fio->type == DATA) {
3339		struct inode *inode = fio->page->mapping->host;
3340		int type;
3341
3342		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3343			return CURSEG_COLD_DATA_PINNED;
3344
3345		if (page_private_gcing(fio->page)) {
3346			if (fio->sbi->am.atgc_enabled &&
3347				(fio->io_type == FS_DATA_IO) &&
3348				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3349				return CURSEG_ALL_DATA_ATGC;
3350			else
3351				return CURSEG_COLD_DATA;
3352		}
3353		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3354			return CURSEG_COLD_DATA;
3355
3356		type = __get_age_segment_type(inode, fio->page->index);
3357		if (type != NO_CHECK_TYPE)
3358			return type;
3359
3360		if (file_is_hot(inode) ||
3361				is_inode_flag_set(inode, FI_HOT_DATA) ||
3362				f2fs_is_cow_file(inode))
 
3363			return CURSEG_HOT_DATA;
3364		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3365	} else {
3366		if (IS_DNODE(fio->page))
3367			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3368						CURSEG_HOT_NODE;
3369		return CURSEG_COLD_NODE;
3370	}
3371}
3372
3373static int __get_segment_type(struct f2fs_io_info *fio)
3374{
3375	int type = 0;
3376
3377	switch (F2FS_OPTION(fio->sbi).active_logs) {
3378	case 2:
3379		type = __get_segment_type_2(fio);
3380		break;
3381	case 4:
3382		type = __get_segment_type_4(fio);
3383		break;
3384	case 6:
3385		type = __get_segment_type_6(fio);
3386		break;
3387	default:
3388		f2fs_bug_on(fio->sbi, true);
3389	}
3390
3391	if (IS_HOT(type))
3392		fio->temp = HOT;
3393	else if (IS_WARM(type))
3394		fio->temp = WARM;
3395	else
3396		fio->temp = COLD;
3397	return type;
3398}
3399
3400static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3401		struct curseg_info *seg)
3402{
3403	/* To allocate block chunks in different sizes, use random number */
3404	if (--seg->fragment_remained_chunk > 0)
3405		return;
3406
3407	seg->fragment_remained_chunk =
3408		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3409	seg->next_blkoff +=
3410		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3411}
3412
3413void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3414		block_t old_blkaddr, block_t *new_blkaddr,
3415		struct f2fs_summary *sum, int type,
3416		struct f2fs_io_info *fio)
3417{
3418	struct sit_info *sit_i = SIT_I(sbi);
3419	struct curseg_info *curseg = CURSEG_I(sbi, type);
3420	unsigned long long old_mtime;
3421	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3422	struct seg_entry *se = NULL;
3423	bool segment_full = false;
3424
3425	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3426
3427	mutex_lock(&curseg->curseg_mutex);
3428	down_write(&sit_i->sentry_lock);
3429
3430	if (from_gc) {
3431		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3432		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3433		sanity_check_seg_type(sbi, se->type);
3434		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3435	}
3436	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3437
3438	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3439
3440	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3441
3442	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3443	if (curseg->alloc_type == SSR) {
3444		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3445	} else {
3446		curseg->next_blkoff++;
3447		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3448			f2fs_randomize_chunk(sbi, curseg);
3449	}
3450	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3451		segment_full = true;
3452	stat_inc_block_count(sbi, curseg);
3453
3454	if (from_gc) {
3455		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3456	} else {
3457		update_segment_mtime(sbi, old_blkaddr, 0);
3458		old_mtime = 0;
3459	}
3460	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3461
3462	/*
3463	 * SIT information should be updated before segment allocation,
3464	 * since SSR needs latest valid block information.
3465	 */
3466	update_sit_entry(sbi, *new_blkaddr, 1);
3467	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3468		update_sit_entry(sbi, old_blkaddr, -1);
3469
3470	/*
3471	 * If the current segment is full, flush it out and replace it with a
3472	 * new segment.
3473	 */
3474	if (segment_full) {
3475		if (from_gc) {
3476			get_atssr_segment(sbi, type, se->type,
3477						AT_SSR, se->mtime);
3478		} else {
3479			if (need_new_seg(sbi, type))
3480				new_curseg(sbi, type, false);
3481			else
3482				change_curseg(sbi, type);
3483			stat_inc_seg_type(sbi, curseg);
3484		}
3485	}
3486	/*
3487	 * segment dirty status should be updated after segment allocation,
3488	 * so we just need to update status only one time after previous
3489	 * segment being closed.
3490	 */
3491	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3492	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3493
3494	if (IS_DATASEG(type))
3495		atomic64_inc(&sbi->allocated_data_blocks);
3496
3497	up_write(&sit_i->sentry_lock);
3498
3499	if (page && IS_NODESEG(type)) {
3500		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3501
3502		f2fs_inode_chksum_set(sbi, page);
3503	}
3504
3505	if (fio) {
3506		struct f2fs_bio_info *io;
3507
3508		if (F2FS_IO_ALIGNED(sbi))
3509			fio->retry = 0;
3510
3511		INIT_LIST_HEAD(&fio->list);
3512		fio->in_list = 1;
3513		io = sbi->write_io[fio->type] + fio->temp;
3514		spin_lock(&io->io_lock);
3515		list_add_tail(&fio->list, &io->io_list);
3516		spin_unlock(&io->io_lock);
3517	}
3518
3519	mutex_unlock(&curseg->curseg_mutex);
3520
3521	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3522}
3523
3524void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3525					block_t blkaddr, unsigned int blkcnt)
3526{
 
 
 
3527	if (!f2fs_is_multi_device(sbi))
3528		return;
3529
3530	while (1) {
3531		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3532		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3533
3534		/* update device state for fsync */
3535		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3536
3537		/* update device state for checkpoint */
3538		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3539			spin_lock(&sbi->dev_lock);
3540			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3541			spin_unlock(&sbi->dev_lock);
3542		}
3543
3544		if (blkcnt <= blks)
3545			break;
3546		blkcnt -= blks;
3547		blkaddr += blks;
3548	}
3549}
3550
3551static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3552{
3553	int type = __get_segment_type(fio);
3554	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3555
3556	if (keep_order)
3557		f2fs_down_read(&fio->sbi->io_order_lock);
3558reallocate:
3559	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3560			&fio->new_blkaddr, sum, type, fio);
3561	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3562		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
 
 
 
3563
3564	/* writeout dirty page into bdev */
3565	f2fs_submit_page_write(fio);
3566	if (fio->retry) {
3567		fio->old_blkaddr = fio->new_blkaddr;
3568		goto reallocate;
3569	}
3570
3571	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3572
3573	if (keep_order)
3574		f2fs_up_read(&fio->sbi->io_order_lock);
3575}
3576
3577void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3578					enum iostat_type io_type)
3579{
3580	struct f2fs_io_info fio = {
3581		.sbi = sbi,
3582		.type = META,
3583		.temp = HOT,
3584		.op = REQ_OP_WRITE,
3585		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3586		.old_blkaddr = page->index,
3587		.new_blkaddr = page->index,
3588		.page = page,
3589		.encrypted_page = NULL,
3590		.in_list = 0,
3591	};
3592
3593	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3594		fio.op_flags &= ~REQ_META;
3595
3596	set_page_writeback(page);
 
3597	f2fs_submit_page_write(&fio);
3598
3599	stat_inc_meta_count(sbi, page->index);
3600	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3601}
3602
3603void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604{
3605	struct f2fs_summary sum;
3606
3607	set_summary(&sum, nid, 0, 0);
3608	do_write_page(&sum, fio);
3609
3610	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3611}
3612
3613void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614					struct f2fs_io_info *fio)
3615{
3616	struct f2fs_sb_info *sbi = fio->sbi;
3617	struct f2fs_summary sum;
3618
3619	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3621		f2fs_update_age_extent_cache(dn);
3622	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3623	do_write_page(&sum, fio);
3624	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3625
3626	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3627}
3628
3629int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3630{
3631	int err;
3632	struct f2fs_sb_info *sbi = fio->sbi;
3633	unsigned int segno;
3634
3635	fio->new_blkaddr = fio->old_blkaddr;
3636	/* i/o temperature is needed for passing down write hints */
3637	__get_segment_type(fio);
3638
3639	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3640
3641	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3642		set_sbi_flag(sbi, SBI_NEED_FSCK);
3643		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3644			  __func__, segno);
3645		err = -EFSCORRUPTED;
3646		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3647		goto drop_bio;
3648	}
3649
3650	if (f2fs_cp_error(sbi)) {
3651		err = -EIO;
3652		goto drop_bio;
3653	}
3654
3655	if (fio->post_read)
3656		invalidate_mapping_pages(META_MAPPING(sbi),
3657				fio->new_blkaddr, fio->new_blkaddr);
3658
3659	stat_inc_inplace_blocks(fio->sbi);
3660
3661	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3662		err = f2fs_merge_page_bio(fio);
3663	else
3664		err = f2fs_submit_page_bio(fio);
3665	if (!err) {
3666		f2fs_update_device_state(fio->sbi, fio->ino,
3667						fio->new_blkaddr, 1);
3668		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3669						fio->io_type, F2FS_BLKSIZE);
3670	}
3671
3672	return err;
3673drop_bio:
3674	if (fio->bio && *(fio->bio)) {
3675		struct bio *bio = *(fio->bio);
3676
3677		bio->bi_status = BLK_STS_IOERR;
3678		bio_endio(bio);
3679		*(fio->bio) = NULL;
3680	}
3681	return err;
3682}
3683
3684static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3685						unsigned int segno)
3686{
3687	int i;
3688
3689	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3690		if (CURSEG_I(sbi, i)->segno == segno)
3691			break;
3692	}
3693	return i;
3694}
3695
3696void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3697				block_t old_blkaddr, block_t new_blkaddr,
3698				bool recover_curseg, bool recover_newaddr,
3699				bool from_gc)
3700{
3701	struct sit_info *sit_i = SIT_I(sbi);
3702	struct curseg_info *curseg;
3703	unsigned int segno, old_cursegno;
3704	struct seg_entry *se;
3705	int type;
3706	unsigned short old_blkoff;
3707	unsigned char old_alloc_type;
3708
3709	segno = GET_SEGNO(sbi, new_blkaddr);
3710	se = get_seg_entry(sbi, segno);
3711	type = se->type;
3712
3713	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3714
3715	if (!recover_curseg) {
3716		/* for recovery flow */
3717		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3718			if (old_blkaddr == NULL_ADDR)
3719				type = CURSEG_COLD_DATA;
3720			else
3721				type = CURSEG_WARM_DATA;
3722		}
3723	} else {
3724		if (IS_CURSEG(sbi, segno)) {
3725			/* se->type is volatile as SSR allocation */
3726			type = __f2fs_get_curseg(sbi, segno);
3727			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3728		} else {
3729			type = CURSEG_WARM_DATA;
3730		}
3731	}
3732
3733	f2fs_bug_on(sbi, !IS_DATASEG(type));
3734	curseg = CURSEG_I(sbi, type);
3735
3736	mutex_lock(&curseg->curseg_mutex);
3737	down_write(&sit_i->sentry_lock);
3738
3739	old_cursegno = curseg->segno;
3740	old_blkoff = curseg->next_blkoff;
3741	old_alloc_type = curseg->alloc_type;
3742
3743	/* change the current segment */
3744	if (segno != curseg->segno) {
3745		curseg->next_segno = segno;
3746		change_curseg(sbi, type);
3747	}
3748
3749	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3750	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3751
3752	if (!recover_curseg || recover_newaddr) {
3753		if (!from_gc)
3754			update_segment_mtime(sbi, new_blkaddr, 0);
3755		update_sit_entry(sbi, new_blkaddr, 1);
3756	}
3757	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3758		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
 
 
3759		if (!from_gc)
3760			update_segment_mtime(sbi, old_blkaddr, 0);
3761		update_sit_entry(sbi, old_blkaddr, -1);
3762	}
3763
3764	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3765	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3766
3767	locate_dirty_segment(sbi, old_cursegno);
3768
3769	if (recover_curseg) {
3770		if (old_cursegno != curseg->segno) {
3771			curseg->next_segno = old_cursegno;
3772			change_curseg(sbi, type);
3773		}
3774		curseg->next_blkoff = old_blkoff;
3775		curseg->alloc_type = old_alloc_type;
3776	}
3777
3778	up_write(&sit_i->sentry_lock);
3779	mutex_unlock(&curseg->curseg_mutex);
3780	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3781}
3782
3783void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3784				block_t old_addr, block_t new_addr,
3785				unsigned char version, bool recover_curseg,
3786				bool recover_newaddr)
3787{
3788	struct f2fs_summary sum;
3789
3790	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3791
3792	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3793					recover_curseg, recover_newaddr, false);
3794
3795	f2fs_update_data_blkaddr(dn, new_addr);
3796}
3797
3798void f2fs_wait_on_page_writeback(struct page *page,
3799				enum page_type type, bool ordered, bool locked)
3800{
3801	if (PageWriteback(page)) {
3802		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3803
3804		/* submit cached LFS IO */
3805		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3806		/* submit cached IPU IO */
3807		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3808		if (ordered) {
3809			wait_on_page_writeback(page);
3810			f2fs_bug_on(sbi, locked && PageWriteback(page));
3811		} else {
3812			wait_for_stable_page(page);
3813		}
3814	}
3815}
3816
3817void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3818{
3819	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3820	struct page *cpage;
3821
3822	if (!f2fs_post_read_required(inode))
3823		return;
3824
3825	if (!__is_valid_data_blkaddr(blkaddr))
3826		return;
3827
3828	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3829	if (cpage) {
3830		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3831		f2fs_put_page(cpage, 1);
3832	}
3833}
3834
3835void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3836								block_t len)
3837{
3838	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839	block_t i;
3840
3841	if (!f2fs_post_read_required(inode))
3842		return;
3843
3844	for (i = 0; i < len; i++)
3845		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3846
3847	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3848}
3849
3850static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3851{
3852	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3853	struct curseg_info *seg_i;
3854	unsigned char *kaddr;
3855	struct page *page;
3856	block_t start;
3857	int i, j, offset;
3858
3859	start = start_sum_block(sbi);
3860
3861	page = f2fs_get_meta_page(sbi, start++);
3862	if (IS_ERR(page))
3863		return PTR_ERR(page);
3864	kaddr = (unsigned char *)page_address(page);
3865
3866	/* Step 1: restore nat cache */
3867	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3868	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3869
3870	/* Step 2: restore sit cache */
3871	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3872	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3873	offset = 2 * SUM_JOURNAL_SIZE;
3874
3875	/* Step 3: restore summary entries */
3876	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3877		unsigned short blk_off;
3878		unsigned int segno;
3879
3880		seg_i = CURSEG_I(sbi, i);
3881		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3882		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3883		seg_i->next_segno = segno;
3884		reset_curseg(sbi, i, 0);
3885		seg_i->alloc_type = ckpt->alloc_type[i];
3886		seg_i->next_blkoff = blk_off;
3887
3888		if (seg_i->alloc_type == SSR)
3889			blk_off = sbi->blocks_per_seg;
3890
3891		for (j = 0; j < blk_off; j++) {
3892			struct f2fs_summary *s;
3893
3894			s = (struct f2fs_summary *)(kaddr + offset);
3895			seg_i->sum_blk->entries[j] = *s;
3896			offset += SUMMARY_SIZE;
3897			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3898						SUM_FOOTER_SIZE)
3899				continue;
3900
3901			f2fs_put_page(page, 1);
3902			page = NULL;
3903
3904			page = f2fs_get_meta_page(sbi, start++);
3905			if (IS_ERR(page))
3906				return PTR_ERR(page);
3907			kaddr = (unsigned char *)page_address(page);
3908			offset = 0;
3909		}
3910	}
3911	f2fs_put_page(page, 1);
3912	return 0;
3913}
3914
3915static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3916{
3917	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3918	struct f2fs_summary_block *sum;
3919	struct curseg_info *curseg;
3920	struct page *new;
3921	unsigned short blk_off;
3922	unsigned int segno = 0;
3923	block_t blk_addr = 0;
3924	int err = 0;
3925
3926	/* get segment number and block addr */
3927	if (IS_DATASEG(type)) {
3928		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3929		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3930							CURSEG_HOT_DATA]);
3931		if (__exist_node_summaries(sbi))
3932			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3933		else
3934			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3935	} else {
3936		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3937							CURSEG_HOT_NODE]);
3938		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3939							CURSEG_HOT_NODE]);
3940		if (__exist_node_summaries(sbi))
3941			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3942							type - CURSEG_HOT_NODE);
3943		else
3944			blk_addr = GET_SUM_BLOCK(sbi, segno);
3945	}
3946
3947	new = f2fs_get_meta_page(sbi, blk_addr);
3948	if (IS_ERR(new))
3949		return PTR_ERR(new);
3950	sum = (struct f2fs_summary_block *)page_address(new);
3951
3952	if (IS_NODESEG(type)) {
3953		if (__exist_node_summaries(sbi)) {
3954			struct f2fs_summary *ns = &sum->entries[0];
3955			int i;
3956
3957			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3958				ns->version = 0;
3959				ns->ofs_in_node = 0;
3960			}
3961		} else {
3962			err = f2fs_restore_node_summary(sbi, segno, sum);
3963			if (err)
3964				goto out;
3965		}
3966	}
3967
3968	/* set uncompleted segment to curseg */
3969	curseg = CURSEG_I(sbi, type);
3970	mutex_lock(&curseg->curseg_mutex);
3971
3972	/* update journal info */
3973	down_write(&curseg->journal_rwsem);
3974	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3975	up_write(&curseg->journal_rwsem);
3976
3977	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3978	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3979	curseg->next_segno = segno;
3980	reset_curseg(sbi, type, 0);
3981	curseg->alloc_type = ckpt->alloc_type[type];
3982	curseg->next_blkoff = blk_off;
3983	mutex_unlock(&curseg->curseg_mutex);
3984out:
3985	f2fs_put_page(new, 1);
3986	return err;
3987}
3988
3989static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3990{
3991	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3992	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3993	int type = CURSEG_HOT_DATA;
3994	int err;
3995
3996	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3997		int npages = f2fs_npages_for_summary_flush(sbi, true);
3998
3999		if (npages >= 2)
4000			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4001							META_CP, true);
4002
4003		/* restore for compacted data summary */
4004		err = read_compacted_summaries(sbi);
4005		if (err)
4006			return err;
4007		type = CURSEG_HOT_NODE;
4008	}
4009
4010	if (__exist_node_summaries(sbi))
4011		f2fs_ra_meta_pages(sbi,
4012				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4013				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4014
4015	for (; type <= CURSEG_COLD_NODE; type++) {
4016		err = read_normal_summaries(sbi, type);
4017		if (err)
4018			return err;
4019	}
4020
4021	/* sanity check for summary blocks */
4022	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4023			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4024		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4025			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4026		return -EINVAL;
4027	}
4028
4029	return 0;
4030}
4031
4032static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4033{
4034	struct page *page;
4035	unsigned char *kaddr;
4036	struct f2fs_summary *summary;
4037	struct curseg_info *seg_i;
4038	int written_size = 0;
4039	int i, j;
4040
4041	page = f2fs_grab_meta_page(sbi, blkaddr++);
4042	kaddr = (unsigned char *)page_address(page);
4043	memset(kaddr, 0, PAGE_SIZE);
4044
4045	/* Step 1: write nat cache */
4046	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4047	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4048	written_size += SUM_JOURNAL_SIZE;
4049
4050	/* Step 2: write sit cache */
4051	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4052	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4053	written_size += SUM_JOURNAL_SIZE;
4054
4055	/* Step 3: write summary entries */
4056	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 
 
4057		seg_i = CURSEG_I(sbi, i);
4058		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
 
 
 
 
 
4059			if (!page) {
4060				page = f2fs_grab_meta_page(sbi, blkaddr++);
4061				kaddr = (unsigned char *)page_address(page);
4062				memset(kaddr, 0, PAGE_SIZE);
4063				written_size = 0;
4064			}
4065			summary = (struct f2fs_summary *)(kaddr + written_size);
4066			*summary = seg_i->sum_blk->entries[j];
4067			written_size += SUMMARY_SIZE;
4068
4069			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4070							SUM_FOOTER_SIZE)
4071				continue;
4072
4073			set_page_dirty(page);
4074			f2fs_put_page(page, 1);
4075			page = NULL;
4076		}
4077	}
4078	if (page) {
4079		set_page_dirty(page);
4080		f2fs_put_page(page, 1);
4081	}
4082}
4083
4084static void write_normal_summaries(struct f2fs_sb_info *sbi,
4085					block_t blkaddr, int type)
4086{
4087	int i, end;
4088
4089	if (IS_DATASEG(type))
4090		end = type + NR_CURSEG_DATA_TYPE;
4091	else
4092		end = type + NR_CURSEG_NODE_TYPE;
4093
4094	for (i = type; i < end; i++)
4095		write_current_sum_page(sbi, i, blkaddr + (i - type));
4096}
4097
4098void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4099{
4100	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4101		write_compacted_summaries(sbi, start_blk);
4102	else
4103		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4104}
4105
4106void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4107{
4108	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4109}
4110
4111int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4112					unsigned int val, int alloc)
4113{
4114	int i;
4115
4116	if (type == NAT_JOURNAL) {
4117		for (i = 0; i < nats_in_cursum(journal); i++) {
4118			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4119				return i;
4120		}
4121		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4122			return update_nats_in_cursum(journal, 1);
4123	} else if (type == SIT_JOURNAL) {
4124		for (i = 0; i < sits_in_cursum(journal); i++)
4125			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4126				return i;
4127		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4128			return update_sits_in_cursum(journal, 1);
4129	}
4130	return -1;
4131}
4132
4133static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4134					unsigned int segno)
4135{
4136	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4137}
4138
4139static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4140					unsigned int start)
4141{
4142	struct sit_info *sit_i = SIT_I(sbi);
4143	struct page *page;
4144	pgoff_t src_off, dst_off;
4145
4146	src_off = current_sit_addr(sbi, start);
4147	dst_off = next_sit_addr(sbi, src_off);
4148
4149	page = f2fs_grab_meta_page(sbi, dst_off);
4150	seg_info_to_sit_page(sbi, page, start);
4151
4152	set_page_dirty(page);
4153	set_to_next_sit(sit_i, start);
4154
4155	return page;
4156}
4157
4158static struct sit_entry_set *grab_sit_entry_set(void)
4159{
4160	struct sit_entry_set *ses =
4161			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4162						GFP_NOFS, true, NULL);
4163
4164	ses->entry_cnt = 0;
4165	INIT_LIST_HEAD(&ses->set_list);
4166	return ses;
4167}
4168
4169static void release_sit_entry_set(struct sit_entry_set *ses)
4170{
4171	list_del(&ses->set_list);
4172	kmem_cache_free(sit_entry_set_slab, ses);
4173}
4174
4175static void adjust_sit_entry_set(struct sit_entry_set *ses,
4176						struct list_head *head)
4177{
4178	struct sit_entry_set *next = ses;
4179
4180	if (list_is_last(&ses->set_list, head))
4181		return;
4182
4183	list_for_each_entry_continue(next, head, set_list)
4184		if (ses->entry_cnt <= next->entry_cnt) {
4185			list_move_tail(&ses->set_list, &next->set_list);
4186			return;
4187		}
4188
4189	list_move_tail(&ses->set_list, head);
4190}
4191
4192static void add_sit_entry(unsigned int segno, struct list_head *head)
4193{
4194	struct sit_entry_set *ses;
4195	unsigned int start_segno = START_SEGNO(segno);
4196
4197	list_for_each_entry(ses, head, set_list) {
4198		if (ses->start_segno == start_segno) {
4199			ses->entry_cnt++;
4200			adjust_sit_entry_set(ses, head);
4201			return;
4202		}
4203	}
4204
4205	ses = grab_sit_entry_set();
4206
4207	ses->start_segno = start_segno;
4208	ses->entry_cnt++;
4209	list_add(&ses->set_list, head);
4210}
4211
4212static void add_sits_in_set(struct f2fs_sb_info *sbi)
4213{
4214	struct f2fs_sm_info *sm_info = SM_I(sbi);
4215	struct list_head *set_list = &sm_info->sit_entry_set;
4216	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4217	unsigned int segno;
4218
4219	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4220		add_sit_entry(segno, set_list);
4221}
4222
4223static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4224{
4225	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4226	struct f2fs_journal *journal = curseg->journal;
4227	int i;
4228
4229	down_write(&curseg->journal_rwsem);
4230	for (i = 0; i < sits_in_cursum(journal); i++) {
4231		unsigned int segno;
4232		bool dirtied;
4233
4234		segno = le32_to_cpu(segno_in_journal(journal, i));
4235		dirtied = __mark_sit_entry_dirty(sbi, segno);
4236
4237		if (!dirtied)
4238			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4239	}
4240	update_sits_in_cursum(journal, -i);
4241	up_write(&curseg->journal_rwsem);
4242}
4243
4244/*
4245 * CP calls this function, which flushes SIT entries including sit_journal,
4246 * and moves prefree segs to free segs.
4247 */
4248void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4249{
4250	struct sit_info *sit_i = SIT_I(sbi);
4251	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4252	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4253	struct f2fs_journal *journal = curseg->journal;
4254	struct sit_entry_set *ses, *tmp;
4255	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4256	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4257	struct seg_entry *se;
4258
4259	down_write(&sit_i->sentry_lock);
4260
4261	if (!sit_i->dirty_sentries)
4262		goto out;
4263
4264	/*
4265	 * add and account sit entries of dirty bitmap in sit entry
4266	 * set temporarily
4267	 */
4268	add_sits_in_set(sbi);
4269
4270	/*
4271	 * if there are no enough space in journal to store dirty sit
4272	 * entries, remove all entries from journal and add and account
4273	 * them in sit entry set.
4274	 */
4275	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4276								!to_journal)
4277		remove_sits_in_journal(sbi);
4278
4279	/*
4280	 * there are two steps to flush sit entries:
4281	 * #1, flush sit entries to journal in current cold data summary block.
4282	 * #2, flush sit entries to sit page.
4283	 */
4284	list_for_each_entry_safe(ses, tmp, head, set_list) {
4285		struct page *page = NULL;
4286		struct f2fs_sit_block *raw_sit = NULL;
4287		unsigned int start_segno = ses->start_segno;
4288		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4289						(unsigned long)MAIN_SEGS(sbi));
4290		unsigned int segno = start_segno;
4291
4292		if (to_journal &&
4293			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4294			to_journal = false;
4295
4296		if (to_journal) {
4297			down_write(&curseg->journal_rwsem);
4298		} else {
4299			page = get_next_sit_page(sbi, start_segno);
4300			raw_sit = page_address(page);
4301		}
4302
4303		/* flush dirty sit entries in region of current sit set */
4304		for_each_set_bit_from(segno, bitmap, end) {
4305			int offset, sit_offset;
4306
4307			se = get_seg_entry(sbi, segno);
4308#ifdef CONFIG_F2FS_CHECK_FS
4309			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4310						SIT_VBLOCK_MAP_SIZE))
4311				f2fs_bug_on(sbi, 1);
4312#endif
4313
4314			/* add discard candidates */
4315			if (!(cpc->reason & CP_DISCARD)) {
4316				cpc->trim_start = segno;
4317				add_discard_addrs(sbi, cpc, false);
4318			}
4319
4320			if (to_journal) {
4321				offset = f2fs_lookup_journal_in_cursum(journal,
4322							SIT_JOURNAL, segno, 1);
4323				f2fs_bug_on(sbi, offset < 0);
4324				segno_in_journal(journal, offset) =
4325							cpu_to_le32(segno);
4326				seg_info_to_raw_sit(se,
4327					&sit_in_journal(journal, offset));
4328				check_block_count(sbi, segno,
4329					&sit_in_journal(journal, offset));
4330			} else {
4331				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4332				seg_info_to_raw_sit(se,
4333						&raw_sit->entries[sit_offset]);
4334				check_block_count(sbi, segno,
4335						&raw_sit->entries[sit_offset]);
4336			}
4337
4338			__clear_bit(segno, bitmap);
4339			sit_i->dirty_sentries--;
4340			ses->entry_cnt--;
4341		}
4342
4343		if (to_journal)
4344			up_write(&curseg->journal_rwsem);
4345		else
4346			f2fs_put_page(page, 1);
4347
4348		f2fs_bug_on(sbi, ses->entry_cnt);
4349		release_sit_entry_set(ses);
4350	}
4351
4352	f2fs_bug_on(sbi, !list_empty(head));
4353	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4354out:
4355	if (cpc->reason & CP_DISCARD) {
4356		__u64 trim_start = cpc->trim_start;
4357
4358		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4359			add_discard_addrs(sbi, cpc, false);
4360
4361		cpc->trim_start = trim_start;
4362	}
4363	up_write(&sit_i->sentry_lock);
4364
4365	set_prefree_as_free_segments(sbi);
4366}
4367
4368static int build_sit_info(struct f2fs_sb_info *sbi)
4369{
4370	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4371	struct sit_info *sit_i;
4372	unsigned int sit_segs, start;
4373	char *src_bitmap, *bitmap;
4374	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4375	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4376
4377	/* allocate memory for SIT information */
4378	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4379	if (!sit_i)
4380		return -ENOMEM;
4381
4382	SM_I(sbi)->sit_info = sit_i;
4383
4384	sit_i->sentries =
4385		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4386					      MAIN_SEGS(sbi)),
4387			      GFP_KERNEL);
4388	if (!sit_i->sentries)
4389		return -ENOMEM;
4390
4391	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4392	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4393								GFP_KERNEL);
4394	if (!sit_i->dirty_sentries_bitmap)
4395		return -ENOMEM;
4396
4397#ifdef CONFIG_F2FS_CHECK_FS
4398	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4399#else
4400	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4401#endif
4402	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4403	if (!sit_i->bitmap)
4404		return -ENOMEM;
4405
4406	bitmap = sit_i->bitmap;
4407
4408	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4409		sit_i->sentries[start].cur_valid_map = bitmap;
4410		bitmap += SIT_VBLOCK_MAP_SIZE;
4411
4412		sit_i->sentries[start].ckpt_valid_map = bitmap;
4413		bitmap += SIT_VBLOCK_MAP_SIZE;
4414
4415#ifdef CONFIG_F2FS_CHECK_FS
4416		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4417		bitmap += SIT_VBLOCK_MAP_SIZE;
4418#endif
4419
4420		if (discard_map) {
4421			sit_i->sentries[start].discard_map = bitmap;
4422			bitmap += SIT_VBLOCK_MAP_SIZE;
4423		}
4424	}
4425
4426	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4427	if (!sit_i->tmp_map)
4428		return -ENOMEM;
4429
4430	if (__is_large_section(sbi)) {
4431		sit_i->sec_entries =
4432			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4433						      MAIN_SECS(sbi)),
4434				      GFP_KERNEL);
4435		if (!sit_i->sec_entries)
4436			return -ENOMEM;
4437	}
4438
4439	/* get information related with SIT */
4440	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4441
4442	/* setup SIT bitmap from ckeckpoint pack */
4443	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4444	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4445
4446	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4447	if (!sit_i->sit_bitmap)
4448		return -ENOMEM;
4449
4450#ifdef CONFIG_F2FS_CHECK_FS
4451	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4452					sit_bitmap_size, GFP_KERNEL);
4453	if (!sit_i->sit_bitmap_mir)
4454		return -ENOMEM;
4455
4456	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4457					main_bitmap_size, GFP_KERNEL);
4458	if (!sit_i->invalid_segmap)
4459		return -ENOMEM;
4460#endif
4461
 
 
 
4462	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4463	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4464	sit_i->written_valid_blocks = 0;
4465	sit_i->bitmap_size = sit_bitmap_size;
4466	sit_i->dirty_sentries = 0;
4467	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4468	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4469	sit_i->mounted_time = ktime_get_boottime_seconds();
4470	init_rwsem(&sit_i->sentry_lock);
4471	return 0;
4472}
4473
4474static int build_free_segmap(struct f2fs_sb_info *sbi)
4475{
4476	struct free_segmap_info *free_i;
4477	unsigned int bitmap_size, sec_bitmap_size;
4478
4479	/* allocate memory for free segmap information */
4480	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4481	if (!free_i)
4482		return -ENOMEM;
4483
4484	SM_I(sbi)->free_info = free_i;
4485
4486	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4487	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4488	if (!free_i->free_segmap)
4489		return -ENOMEM;
4490
4491	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4492	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4493	if (!free_i->free_secmap)
4494		return -ENOMEM;
4495
4496	/* set all segments as dirty temporarily */
4497	memset(free_i->free_segmap, 0xff, bitmap_size);
4498	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4499
4500	/* init free segmap information */
4501	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4502	free_i->free_segments = 0;
4503	free_i->free_sections = 0;
4504	spin_lock_init(&free_i->segmap_lock);
4505	return 0;
4506}
4507
4508static int build_curseg(struct f2fs_sb_info *sbi)
4509{
4510	struct curseg_info *array;
4511	int i;
4512
4513	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4514					sizeof(*array)), GFP_KERNEL);
4515	if (!array)
4516		return -ENOMEM;
4517
4518	SM_I(sbi)->curseg_array = array;
4519
4520	for (i = 0; i < NO_CHECK_TYPE; i++) {
4521		mutex_init(&array[i].curseg_mutex);
4522		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4523		if (!array[i].sum_blk)
4524			return -ENOMEM;
4525		init_rwsem(&array[i].journal_rwsem);
4526		array[i].journal = f2fs_kzalloc(sbi,
4527				sizeof(struct f2fs_journal), GFP_KERNEL);
4528		if (!array[i].journal)
4529			return -ENOMEM;
4530		if (i < NR_PERSISTENT_LOG)
4531			array[i].seg_type = CURSEG_HOT_DATA + i;
4532		else if (i == CURSEG_COLD_DATA_PINNED)
4533			array[i].seg_type = CURSEG_COLD_DATA;
4534		else if (i == CURSEG_ALL_DATA_ATGC)
4535			array[i].seg_type = CURSEG_COLD_DATA;
4536		array[i].segno = NULL_SEGNO;
4537		array[i].next_blkoff = 0;
4538		array[i].inited = false;
4539	}
4540	return restore_curseg_summaries(sbi);
4541}
4542
4543static int build_sit_entries(struct f2fs_sb_info *sbi)
4544{
4545	struct sit_info *sit_i = SIT_I(sbi);
4546	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4547	struct f2fs_journal *journal = curseg->journal;
4548	struct seg_entry *se;
4549	struct f2fs_sit_entry sit;
4550	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4551	unsigned int i, start, end;
4552	unsigned int readed, start_blk = 0;
4553	int err = 0;
4554	block_t sit_valid_blocks[2] = {0, 0};
4555
4556	do {
4557		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4558							META_SIT, true);
4559
4560		start = start_blk * sit_i->sents_per_block;
4561		end = (start_blk + readed) * sit_i->sents_per_block;
4562
4563		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4564			struct f2fs_sit_block *sit_blk;
4565			struct page *page;
4566
4567			se = &sit_i->sentries[start];
4568			page = get_current_sit_page(sbi, start);
4569			if (IS_ERR(page))
4570				return PTR_ERR(page);
4571			sit_blk = (struct f2fs_sit_block *)page_address(page);
4572			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4573			f2fs_put_page(page, 1);
4574
4575			err = check_block_count(sbi, start, &sit);
4576			if (err)
4577				return err;
4578			seg_info_from_raw_sit(se, &sit);
 
 
4579
4580			if (se->type >= NR_PERSISTENT_LOG) {
4581				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4582							se->type, start);
4583				f2fs_handle_error(sbi,
4584						ERROR_INCONSISTENT_SUM_TYPE);
4585				return -EFSCORRUPTED;
4586			}
4587
4588			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4589
4590			if (f2fs_block_unit_discard(sbi)) {
4591				/* build discard map only one time */
4592				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4593					memset(se->discard_map, 0xff,
4594						SIT_VBLOCK_MAP_SIZE);
4595				} else {
4596					memcpy(se->discard_map,
4597						se->cur_valid_map,
4598						SIT_VBLOCK_MAP_SIZE);
4599					sbi->discard_blks +=
4600						sbi->blocks_per_seg -
4601						se->valid_blocks;
4602				}
4603			}
4604
4605			if (__is_large_section(sbi))
4606				get_sec_entry(sbi, start)->valid_blocks +=
4607							se->valid_blocks;
4608		}
4609		start_blk += readed;
4610	} while (start_blk < sit_blk_cnt);
4611
4612	down_read(&curseg->journal_rwsem);
4613	for (i = 0; i < sits_in_cursum(journal); i++) {
4614		unsigned int old_valid_blocks;
4615
4616		start = le32_to_cpu(segno_in_journal(journal, i));
4617		if (start >= MAIN_SEGS(sbi)) {
4618			f2fs_err(sbi, "Wrong journal entry on segno %u",
4619				 start);
4620			err = -EFSCORRUPTED;
4621			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4622			break;
4623		}
4624
4625		se = &sit_i->sentries[start];
4626		sit = sit_in_journal(journal, i);
4627
4628		old_valid_blocks = se->valid_blocks;
4629
4630		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4631
4632		err = check_block_count(sbi, start, &sit);
4633		if (err)
4634			break;
4635		seg_info_from_raw_sit(se, &sit);
 
 
4636
4637		if (se->type >= NR_PERSISTENT_LOG) {
4638			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4639							se->type, start);
4640			err = -EFSCORRUPTED;
4641			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4642			break;
4643		}
4644
4645		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4646
4647		if (f2fs_block_unit_discard(sbi)) {
4648			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4649				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4650			} else {
4651				memcpy(se->discard_map, se->cur_valid_map,
4652							SIT_VBLOCK_MAP_SIZE);
4653				sbi->discard_blks += old_valid_blocks;
4654				sbi->discard_blks -= se->valid_blocks;
4655			}
4656		}
4657
4658		if (__is_large_section(sbi)) {
4659			get_sec_entry(sbi, start)->valid_blocks +=
4660							se->valid_blocks;
4661			get_sec_entry(sbi, start)->valid_blocks -=
4662							old_valid_blocks;
4663		}
4664	}
4665	up_read(&curseg->journal_rwsem);
4666
4667	if (err)
4668		return err;
4669
4670	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4671		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4672			 sit_valid_blocks[NODE], valid_node_count(sbi));
4673		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4674		return -EFSCORRUPTED;
4675	}
4676
4677	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4678				valid_user_blocks(sbi)) {
4679		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4680			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4681			 valid_user_blocks(sbi));
4682		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4683		return -EFSCORRUPTED;
4684	}
4685
4686	return 0;
4687}
4688
4689static void init_free_segmap(struct f2fs_sb_info *sbi)
4690{
4691	unsigned int start;
4692	int type;
4693	struct seg_entry *sentry;
4694
4695	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4696		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4697			continue;
4698		sentry = get_seg_entry(sbi, start);
4699		if (!sentry->valid_blocks)
4700			__set_free(sbi, start);
4701		else
4702			SIT_I(sbi)->written_valid_blocks +=
4703						sentry->valid_blocks;
4704	}
4705
4706	/* set use the current segments */
4707	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4708		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4709
4710		__set_test_and_inuse(sbi, curseg_t->segno);
4711	}
4712}
4713
4714static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4715{
4716	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4717	struct free_segmap_info *free_i = FREE_I(sbi);
4718	unsigned int segno = 0, offset = 0, secno;
4719	block_t valid_blocks, usable_blks_in_seg;
 
4720
4721	while (1) {
4722		/* find dirty segment based on free segmap */
4723		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4724		if (segno >= MAIN_SEGS(sbi))
4725			break;
4726		offset = segno + 1;
4727		valid_blocks = get_valid_blocks(sbi, segno, false);
4728		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4729		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4730			continue;
4731		if (valid_blocks > usable_blks_in_seg) {
4732			f2fs_bug_on(sbi, 1);
4733			continue;
4734		}
4735		mutex_lock(&dirty_i->seglist_lock);
4736		__locate_dirty_segment(sbi, segno, DIRTY);
4737		mutex_unlock(&dirty_i->seglist_lock);
4738	}
4739
4740	if (!__is_large_section(sbi))
4741		return;
4742
4743	mutex_lock(&dirty_i->seglist_lock);
4744	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4745		valid_blocks = get_valid_blocks(sbi, segno, true);
4746		secno = GET_SEC_FROM_SEG(sbi, segno);
4747
4748		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4749			continue;
4750		if (IS_CURSEC(sbi, secno))
4751			continue;
4752		set_bit(secno, dirty_i->dirty_secmap);
4753	}
4754	mutex_unlock(&dirty_i->seglist_lock);
4755}
4756
4757static int init_victim_secmap(struct f2fs_sb_info *sbi)
4758{
4759	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4760	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4761
4762	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4763	if (!dirty_i->victim_secmap)
4764		return -ENOMEM;
4765
4766	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4767	if (!dirty_i->pinned_secmap)
4768		return -ENOMEM;
4769
4770	dirty_i->pinned_secmap_cnt = 0;
4771	dirty_i->enable_pin_section = true;
4772	return 0;
4773}
4774
4775static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4776{
4777	struct dirty_seglist_info *dirty_i;
4778	unsigned int bitmap_size, i;
4779
4780	/* allocate memory for dirty segments list information */
4781	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4782								GFP_KERNEL);
4783	if (!dirty_i)
4784		return -ENOMEM;
4785
4786	SM_I(sbi)->dirty_info = dirty_i;
4787	mutex_init(&dirty_i->seglist_lock);
4788
4789	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4790
4791	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4792		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4793								GFP_KERNEL);
4794		if (!dirty_i->dirty_segmap[i])
4795			return -ENOMEM;
4796	}
4797
4798	if (__is_large_section(sbi)) {
4799		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4800		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4801						bitmap_size, GFP_KERNEL);
4802		if (!dirty_i->dirty_secmap)
4803			return -ENOMEM;
4804	}
4805
4806	init_dirty_segmap(sbi);
4807	return init_victim_secmap(sbi);
4808}
4809
4810static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4811{
4812	int i;
4813
4814	/*
4815	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4816	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4817	 */
4818	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4819		struct curseg_info *curseg = CURSEG_I(sbi, i);
4820		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4821		unsigned int blkofs = curseg->next_blkoff;
4822
4823		if (f2fs_sb_has_readonly(sbi) &&
4824			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4825			continue;
4826
4827		sanity_check_seg_type(sbi, curseg->seg_type);
4828
4829		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4830			f2fs_err(sbi,
4831				 "Current segment has invalid alloc_type:%d",
4832				 curseg->alloc_type);
4833			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4834			return -EFSCORRUPTED;
4835		}
4836
4837		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4838			goto out;
4839
4840		if (curseg->alloc_type == SSR)
4841			continue;
4842
4843		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4844			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4845				continue;
4846out:
4847			f2fs_err(sbi,
4848				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4849				 i, curseg->segno, curseg->alloc_type,
4850				 curseg->next_blkoff, blkofs);
4851			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4852			return -EFSCORRUPTED;
4853		}
4854	}
4855	return 0;
4856}
4857
4858#ifdef CONFIG_BLK_DEV_ZONED
4859
4860static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4861				    struct f2fs_dev_info *fdev,
4862				    struct blk_zone *zone)
4863{
4864	unsigned int zone_segno;
4865	block_t zone_block, valid_block_cnt;
4866	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4867	int ret;
 
4868
4869	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4870		return 0;
4871
 
 
 
4872	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4873	zone_segno = GET_SEGNO(sbi, zone_block);
 
 
 
 
4874
4875	/*
4876	 * Skip check of zones cursegs point to, since
4877	 * fix_curseg_write_pointer() checks them.
4878	 */
4879	if (zone_segno >= MAIN_SEGS(sbi) ||
4880	    IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno)))
4881		return 0;
 
4882
4883	/*
4884	 * Get # of valid block of the zone.
4885	 */
4886	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
 
 
 
 
 
 
 
 
 
 
 
4887
4888	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
4889	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
 
 
 
 
 
 
 
 
 
 
4890		return 0;
 
4891
4892	if (!valid_block_cnt) {
4893		f2fs_notice(sbi, "Zone without valid block has non-zero write "
4894			    "pointer. Reset the write pointer: cond[0x%x]",
4895			    zone->cond);
 
 
 
 
 
4896		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4897					zone->len >> log_sectors_per_block);
4898		if (ret)
4899			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4900				 fdev->path, ret);
4901		return ret;
 
4902	}
4903
4904	/*
4905	 * If there are valid blocks and the write pointer doesn't match
4906	 * with them, we need to report the inconsistency and fill
4907	 * the zone till the end to close the zone. This inconsistency
4908	 * does not cause write error because the zone will not be
4909	 * selected for write operation until it get discarded.
4910	 */
4911	f2fs_notice(sbi, "Valid blocks are not aligned with write "
4912		    "pointer: valid block[0x%x,0x%x] cond[0x%x]",
4913		    zone_segno, valid_block_cnt, zone->cond);
4914
4915	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4916				zone->start, zone->len, GFP_NOFS);
4917	if (ret == -EOPNOTSUPP) {
4918		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4919					zone->len - (zone->wp - zone->start),
4920					GFP_NOFS, 0);
4921		if (ret)
4922			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4923					fdev->path, ret);
4924	} else if (ret) {
4925		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4926				fdev->path, ret);
4927	}
4928
4929	return ret;
4930}
4931
4932static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4933						  block_t zone_blkaddr)
4934{
4935	int i;
4936
4937	for (i = 0; i < sbi->s_ndevs; i++) {
4938		if (!bdev_is_zoned(FDEV(i).bdev))
4939			continue;
4940		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4941				zone_blkaddr <= FDEV(i).end_blk))
4942			return &FDEV(i);
4943	}
4944
4945	return NULL;
4946}
4947
4948static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4949			      void *data)
4950{
4951	memcpy(data, zone, sizeof(struct blk_zone));
4952	return 0;
4953}
4954
4955static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4956{
4957	struct curseg_info *cs = CURSEG_I(sbi, type);
4958	struct f2fs_dev_info *zbd;
4959	struct blk_zone zone;
4960	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4961	block_t cs_zone_block, wp_block;
4962	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4963	sector_t zone_sector;
4964	int err;
4965
4966	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4967	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4968
4969	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4970	if (!zbd)
4971		return 0;
4972
4973	/* report zone for the sector the curseg points to */
4974	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4975		<< log_sectors_per_block;
4976	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4977				  report_one_zone_cb, &zone);
4978	if (err != 1) {
4979		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4980			 zbd->path, err);
4981		return err;
4982	}
4983
4984	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4985		return 0;
4986
4987	/*
4988	 * When safely unmounted in the previous mount, we could use current
4989	 * segments. Otherwise, allocate new sections.
4990	 */
4991	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4992		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4993		wp_segno = GET_SEGNO(sbi, wp_block);
4994		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4995		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4996
4997		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4998				wp_sector_off == 0)
4999			return 0;
5000
5001		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5002			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5003			    cs->next_blkoff, wp_segno, wp_blkoff);
5004	}
5005
5006	/* Allocate a new section if it's not new. */
5007	if (cs->next_blkoff) {
5008		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5009
5010		f2fs_allocate_new_section(sbi, type, true);
5011		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5012				"[0x%x,0x%x] -> [0x%x,0x%x]",
5013				type, old_segno, old_blkoff,
5014				cs->segno, cs->next_blkoff);
5015	}
5016
5017	/* check consistency of the zone curseg pointed to */
5018	if (check_zone_write_pointer(sbi, zbd, &zone))
5019		return -EIO;
5020
5021	/* check newly assigned zone */
5022	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5023	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5024
5025	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5026	if (!zbd)
5027		return 0;
5028
5029	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5030		<< log_sectors_per_block;
5031	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5032				  report_one_zone_cb, &zone);
5033	if (err != 1) {
5034		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5035			 zbd->path, err);
5036		return err;
5037	}
5038
5039	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5040		return 0;
5041
5042	if (zone.wp != zone.start) {
5043		f2fs_notice(sbi,
5044			    "New zone for curseg[%d] is not yet discarded. "
5045			    "Reset the zone: curseg[0x%x,0x%x]",
5046			    type, cs->segno, cs->next_blkoff);
5047		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5048					zone.len >> log_sectors_per_block);
 
5049		if (err) {
5050			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5051				 zbd->path, err);
5052			return err;
5053		}
5054	}
5055
5056	return 0;
5057}
5058
5059int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5060{
5061	int i, ret;
5062
5063	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5064		ret = fix_curseg_write_pointer(sbi, i);
5065		if (ret)
5066			return ret;
5067	}
5068
5069	return 0;
5070}
5071
5072struct check_zone_write_pointer_args {
5073	struct f2fs_sb_info *sbi;
5074	struct f2fs_dev_info *fdev;
5075};
5076
5077static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5078				      void *data)
5079{
5080	struct check_zone_write_pointer_args *args;
5081
5082	args = (struct check_zone_write_pointer_args *)data;
5083
5084	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5085}
5086
5087int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5088{
5089	int i, ret;
5090	struct check_zone_write_pointer_args args;
5091
5092	for (i = 0; i < sbi->s_ndevs; i++) {
5093		if (!bdev_is_zoned(FDEV(i).bdev))
5094			continue;
5095
5096		args.sbi = sbi;
5097		args.fdev = &FDEV(i);
5098		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5099					  check_zone_write_pointer_cb, &args);
5100		if (ret < 0)
5101			return ret;
5102	}
5103
5104	return 0;
5105}
5106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107/*
5108 * Return the number of usable blocks in a segment. The number of blocks
5109 * returned is always equal to the number of blocks in a segment for
5110 * segments fully contained within a sequential zone capacity or a
5111 * conventional zone. For segments partially contained in a sequential
5112 * zone capacity, the number of usable blocks up to the zone capacity
5113 * is returned. 0 is returned in all other cases.
5114 */
5115static inline unsigned int f2fs_usable_zone_blks_in_seg(
5116			struct f2fs_sb_info *sbi, unsigned int segno)
5117{
5118	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5119	unsigned int secno;
 
 
 
 
 
5120
5121	if (!sbi->unusable_blocks_per_sec)
 
 
 
 
 
 
 
5122		return sbi->blocks_per_seg;
5123
5124	secno = GET_SEC_FROM_SEG(sbi, segno);
5125	seg_start = START_BLOCK(sbi, segno);
5126	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5127	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
 
5128
5129	/*
5130	 * If segment starts before zone capacity and spans beyond
5131	 * zone capacity, then usable blocks are from seg start to
5132	 * zone capacity. If the segment starts after the zone capacity,
5133	 * then there are no usable blocks.
5134	 */
5135	if (seg_start >= sec_cap_blkaddr)
5136		return 0;
5137	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5138		return sec_cap_blkaddr - seg_start;
5139
5140	return sbi->blocks_per_seg;
5141}
5142#else
5143int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5144{
5145	return 0;
5146}
5147
5148int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5149{
5150	return 0;
5151}
5152
5153static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5154							unsigned int segno)
5155{
5156	return 0;
5157}
5158
 
 
 
 
 
5159#endif
5160unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5161					unsigned int segno)
5162{
5163	if (f2fs_sb_has_blkzoned(sbi))
5164		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5165
5166	return sbi->blocks_per_seg;
5167}
5168
5169unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5170					unsigned int segno)
5171{
5172	if (f2fs_sb_has_blkzoned(sbi))
5173		return CAP_SEGS_PER_SEC(sbi);
5174
5175	return sbi->segs_per_sec;
5176}
5177
5178/*
5179 * Update min, max modified time for cost-benefit GC algorithm
5180 */
5181static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5182{
5183	struct sit_info *sit_i = SIT_I(sbi);
5184	unsigned int segno;
5185
5186	down_write(&sit_i->sentry_lock);
5187
5188	sit_i->min_mtime = ULLONG_MAX;
5189
5190	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5191		unsigned int i;
5192		unsigned long long mtime = 0;
5193
5194		for (i = 0; i < sbi->segs_per_sec; i++)
5195			mtime += get_seg_entry(sbi, segno + i)->mtime;
5196
5197		mtime = div_u64(mtime, sbi->segs_per_sec);
5198
5199		if (sit_i->min_mtime > mtime)
5200			sit_i->min_mtime = mtime;
5201	}
5202	sit_i->max_mtime = get_mtime(sbi, false);
5203	sit_i->dirty_max_mtime = 0;
5204	up_write(&sit_i->sentry_lock);
5205}
5206
5207int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5208{
5209	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5210	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5211	struct f2fs_sm_info *sm_info;
5212	int err;
5213
5214	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5215	if (!sm_info)
5216		return -ENOMEM;
5217
5218	/* init sm info */
5219	sbi->sm_info = sm_info;
5220	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5221	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5222	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5223	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5224	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5225	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5226	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5227	sm_info->rec_prefree_segments = sm_info->main_segments *
5228					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5229	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5230		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5231
5232	if (!f2fs_lfs_mode(sbi))
5233		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5234	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5235	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5236	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5237	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5238	sm_info->min_ssr_sections = reserved_sections(sbi);
5239
5240	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5241
5242	init_f2fs_rwsem(&sm_info->curseg_lock);
5243
5244	err = f2fs_create_flush_cmd_control(sbi);
5245	if (err)
5246		return err;
 
 
5247
5248	err = create_discard_cmd_control(sbi);
5249	if (err)
5250		return err;
5251
5252	err = build_sit_info(sbi);
5253	if (err)
5254		return err;
5255	err = build_free_segmap(sbi);
5256	if (err)
5257		return err;
5258	err = build_curseg(sbi);
5259	if (err)
5260		return err;
5261
5262	/* reinit free segmap based on SIT */
5263	err = build_sit_entries(sbi);
5264	if (err)
5265		return err;
5266
5267	init_free_segmap(sbi);
5268	err = build_dirty_segmap(sbi);
5269	if (err)
5270		return err;
5271
5272	err = sanity_check_curseg(sbi);
5273	if (err)
5274		return err;
5275
5276	init_min_max_mtime(sbi);
5277	return 0;
5278}
5279
5280static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5281		enum dirty_type dirty_type)
5282{
5283	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5284
5285	mutex_lock(&dirty_i->seglist_lock);
5286	kvfree(dirty_i->dirty_segmap[dirty_type]);
5287	dirty_i->nr_dirty[dirty_type] = 0;
5288	mutex_unlock(&dirty_i->seglist_lock);
5289}
5290
5291static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5292{
5293	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5294
5295	kvfree(dirty_i->pinned_secmap);
5296	kvfree(dirty_i->victim_secmap);
5297}
5298
5299static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5300{
5301	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5302	int i;
5303
5304	if (!dirty_i)
5305		return;
5306
5307	/* discard pre-free/dirty segments list */
5308	for (i = 0; i < NR_DIRTY_TYPE; i++)
5309		discard_dirty_segmap(sbi, i);
5310
5311	if (__is_large_section(sbi)) {
5312		mutex_lock(&dirty_i->seglist_lock);
5313		kvfree(dirty_i->dirty_secmap);
5314		mutex_unlock(&dirty_i->seglist_lock);
5315	}
5316
5317	destroy_victim_secmap(sbi);
5318	SM_I(sbi)->dirty_info = NULL;
5319	kfree(dirty_i);
5320}
5321
5322static void destroy_curseg(struct f2fs_sb_info *sbi)
5323{
5324	struct curseg_info *array = SM_I(sbi)->curseg_array;
5325	int i;
5326
5327	if (!array)
5328		return;
5329	SM_I(sbi)->curseg_array = NULL;
5330	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5331		kfree(array[i].sum_blk);
5332		kfree(array[i].journal);
5333	}
5334	kfree(array);
5335}
5336
5337static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5338{
5339	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5340
5341	if (!free_i)
5342		return;
5343	SM_I(sbi)->free_info = NULL;
5344	kvfree(free_i->free_segmap);
5345	kvfree(free_i->free_secmap);
5346	kfree(free_i);
5347}
5348
5349static void destroy_sit_info(struct f2fs_sb_info *sbi)
5350{
5351	struct sit_info *sit_i = SIT_I(sbi);
5352
5353	if (!sit_i)
5354		return;
5355
5356	if (sit_i->sentries)
5357		kvfree(sit_i->bitmap);
5358	kfree(sit_i->tmp_map);
5359
5360	kvfree(sit_i->sentries);
5361	kvfree(sit_i->sec_entries);
5362	kvfree(sit_i->dirty_sentries_bitmap);
5363
5364	SM_I(sbi)->sit_info = NULL;
5365	kvfree(sit_i->sit_bitmap);
5366#ifdef CONFIG_F2FS_CHECK_FS
5367	kvfree(sit_i->sit_bitmap_mir);
5368	kvfree(sit_i->invalid_segmap);
5369#endif
5370	kfree(sit_i);
5371}
5372
5373void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5374{
5375	struct f2fs_sm_info *sm_info = SM_I(sbi);
5376
5377	if (!sm_info)
5378		return;
5379	f2fs_destroy_flush_cmd_control(sbi, true);
5380	destroy_discard_cmd_control(sbi);
5381	destroy_dirty_segmap(sbi);
5382	destroy_curseg(sbi);
5383	destroy_free_segmap(sbi);
5384	destroy_sit_info(sbi);
5385	sbi->sm_info = NULL;
5386	kfree(sm_info);
5387}
5388
5389int __init f2fs_create_segment_manager_caches(void)
5390{
5391	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5392			sizeof(struct discard_entry));
5393	if (!discard_entry_slab)
5394		goto fail;
5395
5396	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5397			sizeof(struct discard_cmd));
5398	if (!discard_cmd_slab)
5399		goto destroy_discard_entry;
5400
5401	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5402			sizeof(struct sit_entry_set));
5403	if (!sit_entry_set_slab)
5404		goto destroy_discard_cmd;
5405
5406	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5407			sizeof(struct revoke_entry));
5408	if (!revoke_entry_slab)
5409		goto destroy_sit_entry_set;
5410	return 0;
5411
5412destroy_sit_entry_set:
5413	kmem_cache_destroy(sit_entry_set_slab);
5414destroy_discard_cmd:
5415	kmem_cache_destroy(discard_cmd_slab);
5416destroy_discard_entry:
5417	kmem_cache_destroy(discard_entry_slab);
5418fail:
5419	return -ENOMEM;
5420}
5421
5422void f2fs_destroy_segment_manager_caches(void)
5423{
5424	kmem_cache_destroy(sit_entry_set_slab);
5425	kmem_cache_destroy(discard_cmd_slab);
5426	kmem_cache_destroy(discard_entry_slab);
5427	kmem_cache_destroy(revoke_entry_slab);
5428}