Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/sched/clock.h>
  26#include <linux/sched_clock.h>
  27#include <linux/acpi.h>
  28#include <linux/arm-smccc.h>
  29#include <linux/ptp_kvm.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#define CNTTIDR		0x08
  37#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  38
  39#define CNTACR(n)	(0x40 + ((n) * 4))
  40#define CNTACR_RPCT	BIT(0)
  41#define CNTACR_RVCT	BIT(1)
  42#define CNTACR_RFRQ	BIT(2)
  43#define CNTACR_RVOFF	BIT(3)
  44#define CNTACR_RWVT	BIT(4)
  45#define CNTACR_RWPT	BIT(5)
  46
  47#define CNTVCT_LO	0x08
  48#define CNTVCT_HI	0x0c
  49#define CNTFRQ		0x10
  50#define CNTP_TVAL	0x28
  51#define CNTP_CTL	0x2c
  52#define CNTV_TVAL	0x38
  53#define CNTV_CTL	0x3c
  54
  55static unsigned arch_timers_present __initdata;
  56
  57static void __iomem *arch_counter_base __ro_after_init;
  58
  59struct arch_timer {
  60	void __iomem *base;
  61	struct clock_event_device evt;
  62};
  63
  64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  65
  66static u32 arch_timer_rate __ro_after_init;
  67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  68
  69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  70	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  71	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  72	[ARCH_TIMER_VIRT_PPI]		= "virt",
  73	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  74	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  75};
  76
  77static struct clock_event_device __percpu *arch_timer_evt;
  78
  79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  80static bool arch_timer_c3stop __ro_after_init;
  81static bool arch_timer_mem_use_virtual __ro_after_init;
  82static bool arch_counter_suspend_stop __ro_after_init;
  83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  85#else
  86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  88
  89static cpumask_t evtstrm_available = CPU_MASK_NONE;
  90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  91
  92static int __init early_evtstrm_cfg(char *buf)
  93{
  94	return strtobool(buf, &evtstrm_enable);
  95}
  96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  97
  98/*
  99 * Architected system timer support.
 100 */
 101
 102static __always_inline
 103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 104			  struct clock_event_device *clk)
 105{
 106	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 107		struct arch_timer *timer = to_arch_timer(clk);
 108		switch (reg) {
 109		case ARCH_TIMER_REG_CTRL:
 110			writel_relaxed(val, timer->base + CNTP_CTL);
 111			break;
 112		case ARCH_TIMER_REG_TVAL:
 113			writel_relaxed(val, timer->base + CNTP_TVAL);
 114			break;
 115		}
 116	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 117		struct arch_timer *timer = to_arch_timer(clk);
 118		switch (reg) {
 119		case ARCH_TIMER_REG_CTRL:
 120			writel_relaxed(val, timer->base + CNTV_CTL);
 121			break;
 122		case ARCH_TIMER_REG_TVAL:
 123			writel_relaxed(val, timer->base + CNTV_TVAL);
 124			break;
 125		}
 126	} else {
 127		arch_timer_reg_write_cp15(access, reg, val);
 128	}
 129}
 130
 131static __always_inline
 132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 133			struct clock_event_device *clk)
 134{
 135	u32 val;
 136
 137	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 138		struct arch_timer *timer = to_arch_timer(clk);
 139		switch (reg) {
 140		case ARCH_TIMER_REG_CTRL:
 141			val = readl_relaxed(timer->base + CNTP_CTL);
 142			break;
 143		case ARCH_TIMER_REG_TVAL:
 144			val = readl_relaxed(timer->base + CNTP_TVAL);
 145			break;
 146		}
 147	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 148		struct arch_timer *timer = to_arch_timer(clk);
 149		switch (reg) {
 150		case ARCH_TIMER_REG_CTRL:
 151			val = readl_relaxed(timer->base + CNTV_CTL);
 152			break;
 153		case ARCH_TIMER_REG_TVAL:
 154			val = readl_relaxed(timer->base + CNTV_TVAL);
 155			break;
 156		}
 157	} else {
 158		val = arch_timer_reg_read_cp15(access, reg);
 159	}
 160
 161	return val;
 162}
 163
 164static notrace u64 arch_counter_get_cntpct_stable(void)
 165{
 166	return __arch_counter_get_cntpct_stable();
 167}
 168
 169static notrace u64 arch_counter_get_cntpct(void)
 170{
 171	return __arch_counter_get_cntpct();
 172}
 173
 174static notrace u64 arch_counter_get_cntvct_stable(void)
 175{
 176	return __arch_counter_get_cntvct_stable();
 177}
 178
 179static notrace u64 arch_counter_get_cntvct(void)
 180{
 181	return __arch_counter_get_cntvct();
 182}
 183
 184/*
 185 * Default to cp15 based access because arm64 uses this function for
 186 * sched_clock() before DT is probed and the cp15 method is guaranteed
 187 * to exist on arm64. arm doesn't use this before DT is probed so even
 188 * if we don't have the cp15 accessors we won't have a problem.
 189 */
 190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 192
 193static u64 arch_counter_read(struct clocksource *cs)
 194{
 195	return arch_timer_read_counter();
 196}
 197
 198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 199{
 200	return arch_timer_read_counter();
 201}
 202
 203static struct clocksource clocksource_counter = {
 204	.name	= "arch_sys_counter",
 205	.id	= CSID_ARM_ARCH_COUNTER,
 206	.rating	= 400,
 207	.read	= arch_counter_read,
 208	.mask	= CLOCKSOURCE_MASK(56),
 209	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 210};
 211
 212static struct cyclecounter cyclecounter __ro_after_init = {
 213	.read	= arch_counter_read_cc,
 214	.mask	= CLOCKSOURCE_MASK(56),
 215};
 216
 217struct ate_acpi_oem_info {
 218	char oem_id[ACPI_OEM_ID_SIZE + 1];
 219	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 220	u32 oem_revision;
 221};
 222
 223#ifdef CONFIG_FSL_ERRATUM_A008585
 224/*
 225 * The number of retries is an arbitrary value well beyond the highest number
 226 * of iterations the loop has been observed to take.
 227 */
 228#define __fsl_a008585_read_reg(reg) ({			\
 229	u64 _old, _new;					\
 230	int _retries = 200;				\
 231							\
 232	do {						\
 233		_old = read_sysreg(reg);		\
 234		_new = read_sysreg(reg);		\
 235		_retries--;				\
 236	} while (unlikely(_old != _new) && _retries);	\
 237							\
 238	WARN_ON_ONCE(!_retries);			\
 239	_new;						\
 240})
 241
 242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 243{
 244	return __fsl_a008585_read_reg(cntp_tval_el0);
 245}
 246
 247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 248{
 249	return __fsl_a008585_read_reg(cntv_tval_el0);
 250}
 251
 252static u64 notrace fsl_a008585_read_cntpct_el0(void)
 253{
 254	return __fsl_a008585_read_reg(cntpct_el0);
 255}
 256
 257static u64 notrace fsl_a008585_read_cntvct_el0(void)
 258{
 259	return __fsl_a008585_read_reg(cntvct_el0);
 260}
 261#endif
 262
 263#ifdef CONFIG_HISILICON_ERRATUM_161010101
 264/*
 265 * Verify whether the value of the second read is larger than the first by
 266 * less than 32 is the only way to confirm the value is correct, so clear the
 267 * lower 5 bits to check whether the difference is greater than 32 or not.
 268 * Theoretically the erratum should not occur more than twice in succession
 269 * when reading the system counter, but it is possible that some interrupts
 270 * may lead to more than twice read errors, triggering the warning, so setting
 271 * the number of retries far beyond the number of iterations the loop has been
 272 * observed to take.
 273 */
 274#define __hisi_161010101_read_reg(reg) ({				\
 275	u64 _old, _new;						\
 276	int _retries = 50;					\
 277								\
 278	do {							\
 279		_old = read_sysreg(reg);			\
 280		_new = read_sysreg(reg);			\
 281		_retries--;					\
 282	} while (unlikely((_new - _old) >> 5) && _retries);	\
 283								\
 284	WARN_ON_ONCE(!_retries);				\
 285	_new;							\
 286})
 287
 288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 289{
 290	return __hisi_161010101_read_reg(cntp_tval_el0);
 291}
 292
 293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 294{
 295	return __hisi_161010101_read_reg(cntv_tval_el0);
 296}
 297
 298static u64 notrace hisi_161010101_read_cntpct_el0(void)
 299{
 300	return __hisi_161010101_read_reg(cntpct_el0);
 301}
 302
 303static u64 notrace hisi_161010101_read_cntvct_el0(void)
 304{
 305	return __hisi_161010101_read_reg(cntvct_el0);
 306}
 307
 308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 309	/*
 310	 * Note that trailing spaces are required to properly match
 311	 * the OEM table information.
 312	 */
 313	{
 314		.oem_id		= "HISI  ",
 315		.oem_table_id	= "HIP05   ",
 316		.oem_revision	= 0,
 317	},
 318	{
 319		.oem_id		= "HISI  ",
 320		.oem_table_id	= "HIP06   ",
 321		.oem_revision	= 0,
 322	},
 323	{
 324		.oem_id		= "HISI  ",
 325		.oem_table_id	= "HIP07   ",
 326		.oem_revision	= 0,
 327	},
 328	{ /* Sentinel indicating the end of the OEM array */ },
 329};
 330#endif
 331
 332#ifdef CONFIG_ARM64_ERRATUM_858921
 333static u64 notrace arm64_858921_read_cntpct_el0(void)
 334{
 335	u64 old, new;
 336
 337	old = read_sysreg(cntpct_el0);
 338	new = read_sysreg(cntpct_el0);
 339	return (((old ^ new) >> 32) & 1) ? old : new;
 340}
 341
 342static u64 notrace arm64_858921_read_cntvct_el0(void)
 343{
 344	u64 old, new;
 345
 346	old = read_sysreg(cntvct_el0);
 347	new = read_sysreg(cntvct_el0);
 348	return (((old ^ new) >> 32) & 1) ? old : new;
 349}
 350#endif
 351
 352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 353/*
 354 * The low bits of the counter registers are indeterminate while bit 10 or
 355 * greater is rolling over. Since the counter value can jump both backward
 356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 359 */
 360#define __sun50i_a64_read_reg(reg) ({					\
 361	u64 _val;							\
 362	int _retries = 150;						\
 363									\
 364	do {								\
 365		_val = read_sysreg(reg);				\
 366		_retries--;						\
 367	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 368									\
 369	WARN_ON_ONCE(!_retries);					\
 370	_val;								\
 371})
 372
 373static u64 notrace sun50i_a64_read_cntpct_el0(void)
 374{
 375	return __sun50i_a64_read_reg(cntpct_el0);
 376}
 377
 378static u64 notrace sun50i_a64_read_cntvct_el0(void)
 379{
 380	return __sun50i_a64_read_reg(cntvct_el0);
 381}
 382
 383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 384{
 385	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 386}
 387
 388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 389{
 390	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 391}
 392#endif
 393
 394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 397
 398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 399
 400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 401						struct clock_event_device *clk)
 402{
 403	unsigned long ctrl;
 404	u64 cval;
 405
 406	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 407	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 408	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 409
 410	if (access == ARCH_TIMER_PHYS_ACCESS) {
 411		cval = evt + arch_counter_get_cntpct_stable();
 412		write_sysreg(cval, cntp_cval_el0);
 413	} else {
 414		cval = evt + arch_counter_get_cntvct_stable();
 415		write_sysreg(cval, cntv_cval_el0);
 416	}
 417
 418	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 419}
 420
 421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 422					    struct clock_event_device *clk)
 423{
 424	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 425	return 0;
 426}
 427
 428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 429					    struct clock_event_device *clk)
 430{
 431	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 432	return 0;
 433}
 434
 435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 436#ifdef CONFIG_FSL_ERRATUM_A008585
 437	{
 438		.match_type = ate_match_dt,
 439		.id = "fsl,erratum-a008585",
 440		.desc = "Freescale erratum a005858",
 441		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 442		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 443		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 444		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 445		.set_next_event_phys = erratum_set_next_event_tval_phys,
 446		.set_next_event_virt = erratum_set_next_event_tval_virt,
 447	},
 448#endif
 449#ifdef CONFIG_HISILICON_ERRATUM_161010101
 450	{
 451		.match_type = ate_match_dt,
 452		.id = "hisilicon,erratum-161010101",
 453		.desc = "HiSilicon erratum 161010101",
 454		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 455		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 456		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 457		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 458		.set_next_event_phys = erratum_set_next_event_tval_phys,
 459		.set_next_event_virt = erratum_set_next_event_tval_virt,
 460	},
 461	{
 462		.match_type = ate_match_acpi_oem_info,
 463		.id = hisi_161010101_oem_info,
 464		.desc = "HiSilicon erratum 161010101",
 465		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 466		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 467		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 468		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 469		.set_next_event_phys = erratum_set_next_event_tval_phys,
 470		.set_next_event_virt = erratum_set_next_event_tval_virt,
 471	},
 472#endif
 473#ifdef CONFIG_ARM64_ERRATUM_858921
 474	{
 475		.match_type = ate_match_local_cap_id,
 476		.id = (void *)ARM64_WORKAROUND_858921,
 477		.desc = "ARM erratum 858921",
 478		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 479		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 480	},
 481#endif
 482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 483	{
 484		.match_type = ate_match_dt,
 485		.id = "allwinner,erratum-unknown1",
 486		.desc = "Allwinner erratum UNKNOWN1",
 487		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 488		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 489		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 490		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 491		.set_next_event_phys = erratum_set_next_event_tval_phys,
 492		.set_next_event_virt = erratum_set_next_event_tval_virt,
 493	},
 494#endif
 495#ifdef CONFIG_ARM64_ERRATUM_1418040
 496	{
 497		.match_type = ate_match_local_cap_id,
 498		.id = (void *)ARM64_WORKAROUND_1418040,
 499		.desc = "ARM erratum 1418040",
 500		.disable_compat_vdso = true,
 501	},
 502#endif
 503};
 504
 505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 506			       const void *);
 507
 508static
 509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 510				 const void *arg)
 511{
 512	const struct device_node *np = arg;
 513
 514	return of_property_read_bool(np, wa->id);
 515}
 516
 517static
 518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 519					const void *arg)
 520{
 521	return this_cpu_has_cap((uintptr_t)wa->id);
 522}
 523
 524
 525static
 526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 527				       const void *arg)
 528{
 529	static const struct ate_acpi_oem_info empty_oem_info = {};
 530	const struct ate_acpi_oem_info *info = wa->id;
 531	const struct acpi_table_header *table = arg;
 532
 533	/* Iterate over the ACPI OEM info array, looking for a match */
 534	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 535		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 536		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 537		    info->oem_revision == table->oem_revision)
 538			return true;
 539
 540		info++;
 541	}
 542
 543	return false;
 544}
 545
 546static const struct arch_timer_erratum_workaround *
 547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 548			  ate_match_fn_t match_fn,
 549			  void *arg)
 550{
 551	int i;
 552
 553	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 554		if (ool_workarounds[i].match_type != type)
 555			continue;
 556
 557		if (match_fn(&ool_workarounds[i], arg))
 558			return &ool_workarounds[i];
 559	}
 560
 561	return NULL;
 562}
 563
 564static
 565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 566				  bool local)
 567{
 568	int i;
 569
 570	if (local) {
 571		__this_cpu_write(timer_unstable_counter_workaround, wa);
 572	} else {
 573		for_each_possible_cpu(i)
 574			per_cpu(timer_unstable_counter_workaround, i) = wa;
 575	}
 576
 577	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 578		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 579
 580	/*
 581	 * Don't use the vdso fastpath if errata require using the
 582	 * out-of-line counter accessor. We may change our mind pretty
 583	 * late in the game (with a per-CPU erratum, for example), so
 584	 * change both the default value and the vdso itself.
 585	 */
 586	if (wa->read_cntvct_el0) {
 587		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 588		vdso_default = VDSO_CLOCKMODE_NONE;
 589	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 590		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 591		clocksource_counter.vdso_clock_mode = vdso_default;
 592	}
 593}
 594
 595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 596					    void *arg)
 597{
 598	const struct arch_timer_erratum_workaround *wa, *__wa;
 599	ate_match_fn_t match_fn = NULL;
 600	bool local = false;
 601
 602	switch (type) {
 603	case ate_match_dt:
 604		match_fn = arch_timer_check_dt_erratum;
 605		break;
 606	case ate_match_local_cap_id:
 607		match_fn = arch_timer_check_local_cap_erratum;
 608		local = true;
 609		break;
 610	case ate_match_acpi_oem_info:
 611		match_fn = arch_timer_check_acpi_oem_erratum;
 612		break;
 613	default:
 614		WARN_ON(1);
 615		return;
 616	}
 617
 618	wa = arch_timer_iterate_errata(type, match_fn, arg);
 619	if (!wa)
 620		return;
 621
 622	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 623	if (__wa && wa != __wa)
 624		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 625			wa->desc, __wa->desc);
 626
 627	if (__wa)
 628		return;
 629
 630	arch_timer_enable_workaround(wa, local);
 631	pr_info("Enabling %s workaround for %s\n",
 632		local ? "local" : "global", wa->desc);
 633}
 634
 635static bool arch_timer_this_cpu_has_cntvct_wa(void)
 636{
 637	return has_erratum_handler(read_cntvct_el0);
 638}
 639
 640static bool arch_timer_counter_has_wa(void)
 641{
 642	return atomic_read(&timer_unstable_counter_workaround_in_use);
 643}
 644#else
 645#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 646#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 647#define arch_timer_counter_has_wa()			({false;})
 648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 649
 650static __always_inline irqreturn_t timer_handler(const int access,
 651					struct clock_event_device *evt)
 652{
 653	unsigned long ctrl;
 654
 655	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 656	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 657		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 658		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 659		evt->event_handler(evt);
 660		return IRQ_HANDLED;
 661	}
 662
 663	return IRQ_NONE;
 664}
 665
 666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 667{
 668	struct clock_event_device *evt = dev_id;
 669
 670	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 671}
 672
 673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 674{
 675	struct clock_event_device *evt = dev_id;
 676
 677	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 678}
 679
 680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 681{
 682	struct clock_event_device *evt = dev_id;
 683
 684	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 685}
 686
 687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 688{
 689	struct clock_event_device *evt = dev_id;
 690
 691	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 692}
 693
 694static __always_inline int timer_shutdown(const int access,
 695					  struct clock_event_device *clk)
 696{
 697	unsigned long ctrl;
 698
 699	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 700	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 701	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 702
 703	return 0;
 704}
 705
 706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 707{
 708	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 709}
 710
 711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 712{
 713	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 714}
 715
 716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 717{
 718	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 719}
 720
 721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 722{
 723	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 724}
 725
 726static __always_inline void set_next_event(const int access, unsigned long evt,
 727					   struct clock_event_device *clk)
 728{
 729	unsigned long ctrl;
 730	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 731	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 732	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 733	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 734	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 735}
 736
 737static int arch_timer_set_next_event_virt(unsigned long evt,
 738					  struct clock_event_device *clk)
 739{
 740	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 741	return 0;
 742}
 743
 744static int arch_timer_set_next_event_phys(unsigned long evt,
 745					  struct clock_event_device *clk)
 746{
 747	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 748	return 0;
 749}
 750
 751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 752					      struct clock_event_device *clk)
 753{
 754	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 755	return 0;
 756}
 757
 758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 759					      struct clock_event_device *clk)
 760{
 761	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 762	return 0;
 763}
 764
 765static void __arch_timer_setup(unsigned type,
 766			       struct clock_event_device *clk)
 767{
 768	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 769
 770	if (type == ARCH_TIMER_TYPE_CP15) {
 771		typeof(clk->set_next_event) sne;
 772
 773		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 774
 775		if (arch_timer_c3stop)
 776			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 777		clk->name = "arch_sys_timer";
 778		clk->rating = 450;
 779		clk->cpumask = cpumask_of(smp_processor_id());
 780		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 781		switch (arch_timer_uses_ppi) {
 782		case ARCH_TIMER_VIRT_PPI:
 783			clk->set_state_shutdown = arch_timer_shutdown_virt;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 785			sne = erratum_handler(set_next_event_virt);
 786			break;
 787		case ARCH_TIMER_PHYS_SECURE_PPI:
 788		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 789		case ARCH_TIMER_HYP_PPI:
 790			clk->set_state_shutdown = arch_timer_shutdown_phys;
 791			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 792			sne = erratum_handler(set_next_event_phys);
 793			break;
 794		default:
 795			BUG();
 796		}
 797
 798		clk->set_next_event = sne;
 799	} else {
 800		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 801		clk->name = "arch_mem_timer";
 802		clk->rating = 400;
 803		clk->cpumask = cpu_possible_mask;
 804		if (arch_timer_mem_use_virtual) {
 805			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 806			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 807			clk->set_next_event =
 808				arch_timer_set_next_event_virt_mem;
 809		} else {
 810			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 811			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 812			clk->set_next_event =
 813				arch_timer_set_next_event_phys_mem;
 814		}
 815	}
 816
 817	clk->set_state_shutdown(clk);
 818
 819	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 820}
 821
 822static void arch_timer_evtstrm_enable(int divider)
 823{
 824	u32 cntkctl = arch_timer_get_cntkctl();
 825
 826	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 827	/* Set the divider and enable virtual event stream */
 828	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 829			| ARCH_TIMER_VIRT_EVT_EN;
 830	arch_timer_set_cntkctl(cntkctl);
 831	arch_timer_set_evtstrm_feature();
 832	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 833}
 834
 835static void arch_timer_configure_evtstream(void)
 836{
 837	int evt_stream_div, lsb;
 838
 839	/*
 840	 * As the event stream can at most be generated at half the frequency
 841	 * of the counter, use half the frequency when computing the divider.
 842	 */
 843	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 844
 845	/*
 846	 * Find the closest power of two to the divisor. If the adjacent bit
 847	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 848	 */
 849	lsb = fls(evt_stream_div) - 1;
 850	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 851		lsb++;
 852
 
 
 
 
 
 853	/* enable event stream */
 854	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 855}
 856
 857static void arch_counter_set_user_access(void)
 858{
 859	u32 cntkctl = arch_timer_get_cntkctl();
 860
 861	/* Disable user access to the timers and both counters */
 862	/* Also disable virtual event stream */
 863	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 864			| ARCH_TIMER_USR_VT_ACCESS_EN
 865		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 866			| ARCH_TIMER_VIRT_EVT_EN
 867			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 868
 869	/*
 870	 * Enable user access to the virtual counter if it doesn't
 871	 * need to be workaround. The vdso may have been already
 872	 * disabled though.
 873	 */
 874	if (arch_timer_this_cpu_has_cntvct_wa())
 875		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 876	else
 877		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 878
 879	arch_timer_set_cntkctl(cntkctl);
 880}
 881
 882static bool arch_timer_has_nonsecure_ppi(void)
 883{
 884	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 885		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 886}
 887
 888static u32 check_ppi_trigger(int irq)
 889{
 890	u32 flags = irq_get_trigger_type(irq);
 891
 892	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 893		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 894		pr_warn("WARNING: Please fix your firmware\n");
 895		flags = IRQF_TRIGGER_LOW;
 896	}
 897
 898	return flags;
 899}
 900
 901static int arch_timer_starting_cpu(unsigned int cpu)
 902{
 903	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 904	u32 flags;
 905
 906	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 907
 908	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 909	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 910
 911	if (arch_timer_has_nonsecure_ppi()) {
 912		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 913		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 914				  flags);
 915	}
 916
 917	arch_counter_set_user_access();
 918	if (evtstrm_enable)
 919		arch_timer_configure_evtstream();
 920
 921	return 0;
 922}
 923
 924static int validate_timer_rate(void)
 925{
 926	if (!arch_timer_rate)
 927		return -EINVAL;
 928
 929	/* Arch timer frequency < 1MHz can cause trouble */
 930	WARN_ON(arch_timer_rate < 1000000);
 931
 932	return 0;
 933}
 934
 935/*
 936 * For historical reasons, when probing with DT we use whichever (non-zero)
 937 * rate was probed first, and don't verify that others match. If the first node
 938 * probed has a clock-frequency property, this overrides the HW register.
 939 */
 940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 941{
 942	/* Who has more than one independent system counter? */
 943	if (arch_timer_rate)
 944		return;
 945
 946	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 947		arch_timer_rate = rate;
 948
 949	/* Check the timer frequency. */
 950	if (validate_timer_rate())
 951		pr_warn("frequency not available\n");
 952}
 953
 954static void __init arch_timer_banner(unsigned type)
 955{
 956	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 957		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 958		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 959			" and " : "",
 960		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 961		(unsigned long)arch_timer_rate / 1000000,
 962		(unsigned long)(arch_timer_rate / 10000) % 100,
 963		type & ARCH_TIMER_TYPE_CP15 ?
 964			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 965			"",
 966		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 967		type & ARCH_TIMER_TYPE_MEM ?
 968			arch_timer_mem_use_virtual ? "virt" : "phys" :
 969			"");
 970}
 971
 972u32 arch_timer_get_rate(void)
 973{
 974	return arch_timer_rate;
 975}
 976
 977bool arch_timer_evtstrm_available(void)
 978{
 979	/*
 980	 * We might get called from a preemptible context. This is fine
 981	 * because availability of the event stream should be always the same
 982	 * for a preemptible context and context where we might resume a task.
 983	 */
 984	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 985}
 986
 987static u64 arch_counter_get_cntvct_mem(void)
 988{
 989	u32 vct_lo, vct_hi, tmp_hi;
 990
 991	do {
 992		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 993		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 994		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 995	} while (vct_hi != tmp_hi);
 996
 997	return ((u64) vct_hi << 32) | vct_lo;
 998}
 999
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004	return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
1009	u64 start_count;
1010
1011	/* Register the CP15 based counter if we have one */
1012	if (type & ARCH_TIMER_TYPE_CP15) {
1013		u64 (*rd)(void);
1014
1015		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017			if (arch_timer_counter_has_wa())
1018				rd = arch_counter_get_cntvct_stable;
1019			else
1020				rd = arch_counter_get_cntvct;
1021		} else {
1022			if (arch_timer_counter_has_wa())
1023				rd = arch_counter_get_cntpct_stable;
1024			else
1025				rd = arch_counter_get_cntpct;
1026		}
1027
1028		arch_timer_read_counter = rd;
1029		clocksource_counter.vdso_clock_mode = vdso_default;
1030	} else {
1031		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032	}
1033
1034	if (!arch_counter_suspend_stop)
1035		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036	start_count = arch_timer_read_counter();
1037	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038	cyclecounter.mult = clocksource_counter.mult;
1039	cyclecounter.shift = clocksource_counter.shift;
1040	timecounter_init(&arch_timer_kvm_info.timecounter,
1041			 &cyclecounter, start_count);
1042
1043	/* 56 bits minimum, so we assume worst case rollover */
1044	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052	if (arch_timer_has_nonsecure_ppi())
1053		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055	clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064	arch_timer_stop(clk);
1065	return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071				    unsigned long action, void *hcpu)
1072{
1073	if (action == CPU_PM_ENTER) {
1074		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080		if (arch_timer_have_evtstrm_feature())
1081			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082	}
1083	return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087	.notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103	return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113	int err;
1114	int ppi;
1115
1116	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117	if (!arch_timer_evt) {
1118		err = -ENOMEM;
1119		goto out;
1120	}
1121
1122	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123	switch (arch_timer_uses_ppi) {
1124	case ARCH_TIMER_VIRT_PPI:
1125		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126					 "arch_timer", arch_timer_evt);
1127		break;
1128	case ARCH_TIMER_PHYS_SECURE_PPI:
1129	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131					 "arch_timer", arch_timer_evt);
1132		if (!err && arch_timer_has_nonsecure_ppi()) {
1133			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135						 "arch_timer", arch_timer_evt);
1136			if (err)
1137				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138						arch_timer_evt);
1139		}
1140		break;
1141	case ARCH_TIMER_HYP_PPI:
1142		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143					 "arch_timer", arch_timer_evt);
1144		break;
1145	default:
1146		BUG();
1147	}
1148
1149	if (err) {
1150		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151		goto out_free;
1152	}
1153
1154	err = arch_timer_cpu_pm_init();
1155	if (err)
1156		goto out_unreg_notify;
1157
1158	/* Register and immediately configure the timer on the boot CPU */
1159	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160				"clockevents/arm/arch_timer:starting",
1161				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162	if (err)
1163		goto out_unreg_cpupm;
1164	return 0;
1165
1166out_unreg_cpupm:
1167	arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171	if (arch_timer_has_nonsecure_ppi())
1172		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173				arch_timer_evt);
1174
1175out_free:
1176	free_percpu(arch_timer_evt);
1177out:
1178	return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183	int ret;
1184	irq_handler_t func;
1185	struct arch_timer *t;
1186
1187	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188	if (!t)
1189		return -ENOMEM;
1190
1191	t->base = base;
1192	t->evt.irq = irq;
1193	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195	if (arch_timer_mem_use_virtual)
1196		func = arch_timer_handler_virt_mem;
1197	else
1198		func = arch_timer_handler_phys_mem;
1199
1200	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201	if (ret) {
1202		pr_err("Failed to request mem timer irq\n");
1203		kfree(t);
1204	}
1205
1206	return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210	{ .compatible   = "arm,armv7-timer",    },
1211	{ .compatible   = "arm,armv8-timer",    },
1212	{},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216	{ .compatible   = "arm,armv7-timer-mem", },
1217	{},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
1221{
1222	struct device_node *dn;
1223	bool needs_probing = false;
1224	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226	/* We have two timers, and both device-tree nodes are probed. */
1227	if ((arch_timers_present & mask) == mask)
1228		return false;
1229
1230	/*
1231	 * Only one type of timer is probed,
1232	 * check if we have another type of timer node in device-tree.
1233	 */
1234	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236	else
1237		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239	if (dn && of_device_is_available(dn))
1240		needs_probing = true;
1241
1242	of_node_put(dn);
1243
1244	return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
1249	arch_timer_banner(arch_timers_present);
1250	arch_counter_register(arch_timers_present);
1251	return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274	if (is_kernel_in_hyp_mode())
1275		return ARCH_TIMER_HYP_PPI;
1276
1277	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278		return ARCH_TIMER_VIRT_PPI;
1279
1280	if (IS_ENABLED(CONFIG_ARM64))
1281		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283	return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289	if (is_kernel_in_hyp_mode())
1290		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295	int i, irq, ret;
1296	u32 rate;
1297	bool has_names;
1298
1299	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300		pr_warn("multiple nodes in dt, skipping\n");
1301		return 0;
1302	}
1303
1304	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306	has_names = of_property_read_bool(np, "interrupt-names");
1307
1308	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309		if (has_names)
1310			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311		else
1312			irq = of_irq_get(np, i);
1313		if (irq > 0)
1314			arch_timer_ppi[i] = irq;
1315	}
1316
1317	arch_timer_populate_kvm_info();
1318
1319	rate = arch_timer_get_cntfrq();
1320	arch_timer_of_configure_rate(rate, np);
1321
1322	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324	/* Check for globally applicable workarounds */
1325	arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327	/*
1328	 * If we cannot rely on firmware initializing the timer registers then
1329	 * we should use the physical timers instead.
1330	 */
1331	if (IS_ENABLED(CONFIG_ARM) &&
1332	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334	else
1335		arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338		pr_err("No interrupt available, giving up\n");
1339		return -EINVAL;
1340	}
1341
1342	/* On some systems, the counter stops ticking when in suspend. */
1343	arch_counter_suspend_stop = of_property_read_bool(np,
1344							 "arm,no-tick-in-suspend");
1345
1346	ret = arch_timer_register();
1347	if (ret)
1348		return ret;
1349
1350	if (arch_timer_needs_of_probing())
1351		return 0;
1352
1353	return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361	void __iomem *base;
1362	u32 rate;
1363
1364	base = ioremap(frame->cntbase, frame->size);
1365	if (!base) {
1366		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367		return 0;
1368	}
1369
1370	rate = readl_relaxed(base + CNTFRQ);
1371
1372	iounmap(base);
1373
1374	return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381	void __iomem *cntctlbase;
1382	u32 cnttidr;
1383	int i;
1384
1385	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386	if (!cntctlbase) {
1387		pr_err("Can't map CNTCTLBase @ %pa\n",
1388			&timer_mem->cntctlbase);
1389		return NULL;
1390	}
1391
1392	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394	/*
1395	 * Try to find a virtual capable frame. Otherwise fall back to a
1396	 * physical capable frame.
1397	 */
1398	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402		frame = &timer_mem->frame[i];
1403		if (!frame->valid)
1404			continue;
1405
1406		/* Try enabling everything, and see what sticks */
1407		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412			best_frame = frame;
1413			arch_timer_mem_use_virtual = true;
1414			break;
1415		}
1416
1417		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418			continue;
1419
1420		best_frame = frame;
1421	}
1422
1423	iounmap(cntctlbase);
1424
1425	return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431	void __iomem *base;
1432	int ret, irq = 0;
1433
1434	if (arch_timer_mem_use_virtual)
1435		irq = frame->virt_irq;
1436	else
1437		irq = frame->phys_irq;
1438
1439	if (!irq) {
1440		pr_err("Frame missing %s irq.\n",
1441		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442		return -EINVAL;
1443	}
1444
1445	if (!request_mem_region(frame->cntbase, frame->size,
1446				"arch_mem_timer"))
1447		return -EBUSY;
1448
1449	base = ioremap(frame->cntbase, frame->size);
1450	if (!base) {
1451		pr_err("Can't map frame's registers\n");
1452		return -ENXIO;
1453	}
1454
1455	ret = arch_timer_mem_register(base, irq);
1456	if (ret) {
1457		iounmap(base);
1458		return ret;
1459	}
1460
1461	arch_counter_base = base;
1462	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464	return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469	struct arch_timer_mem *timer_mem;
1470	struct arch_timer_mem_frame *frame;
1471	struct device_node *frame_node;
1472	struct resource res;
1473	int ret = -EINVAL;
1474	u32 rate;
1475
1476	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477	if (!timer_mem)
1478		return -ENOMEM;
1479
1480	if (of_address_to_resource(np, 0, &res))
1481		goto out;
1482	timer_mem->cntctlbase = res.start;
1483	timer_mem->size = resource_size(&res);
1484
1485	for_each_available_child_of_node(np, frame_node) {
1486		u32 n;
1487		struct arch_timer_mem_frame *frame;
1488
1489		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490			pr_err(FW_BUG "Missing frame-number.\n");
1491			of_node_put(frame_node);
1492			goto out;
1493		}
1494		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497			of_node_put(frame_node);
1498			goto out;
1499		}
1500		frame = &timer_mem->frame[n];
1501
1502		if (frame->valid) {
1503			pr_err(FW_BUG "Duplicated frame-number.\n");
1504			of_node_put(frame_node);
1505			goto out;
1506		}
1507
1508		if (of_address_to_resource(frame_node, 0, &res)) {
1509			of_node_put(frame_node);
1510			goto out;
1511		}
1512		frame->cntbase = res.start;
1513		frame->size = resource_size(&res);
1514
1515		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516						       ARCH_TIMER_VIRT_SPI);
1517		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518						       ARCH_TIMER_PHYS_SPI);
1519
1520		frame->valid = true;
1521	}
1522
1523	frame = arch_timer_mem_find_best_frame(timer_mem);
1524	if (!frame) {
1525		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526			&timer_mem->cntctlbase);
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532	arch_timer_of_configure_rate(rate, np);
1533
1534	ret = arch_timer_mem_frame_register(frame);
1535	if (!ret && !arch_timer_needs_of_probing())
1536		ret = arch_timer_common_init();
1537out:
1538	kfree(timer_mem);
1539	return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542		       arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548	struct arch_timer_mem_frame *frame;
1549	u32 rate;
1550	int i;
1551
1552	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553		frame = &timer_mem->frame[i];
1554
1555		if (!frame->valid)
1556			continue;
1557
1558		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559		if (rate == arch_timer_rate)
1560			continue;
1561
1562		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563			&frame->cntbase,
1564			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566		return -EINVAL;
1567	}
1568
1569	return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574	struct arch_timer_mem *timers, *timer;
1575	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576	int timer_count, i, ret = 0;
1577
1578	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579			    GFP_KERNEL);
1580	if (!timers)
1581		return -ENOMEM;
1582
1583	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584	if (ret || !timer_count)
1585		goto out;
1586
1587	/*
1588	 * While unlikely, it's theoretically possible that none of the frames
1589	 * in a timer expose the combination of feature we want.
1590	 */
1591	for (i = 0; i < timer_count; i++) {
1592		timer = &timers[i];
1593
1594		frame = arch_timer_mem_find_best_frame(timer);
1595		if (!best_frame)
1596			best_frame = frame;
1597
1598		ret = arch_timer_mem_verify_cntfrq(timer);
1599		if (ret) {
1600			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601			goto out;
1602		}
1603
1604		if (!best_frame) /* implies !frame */
1605			/*
1606			 * Only complain about missing suitable frames if we
1607			 * haven't already found one in a previous iteration.
1608			 */
1609			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610				&timer->cntctlbase);
1611	}
1612
1613	if (best_frame)
1614		ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616	kfree(timers);
1617	return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623	int ret, platform_timer_count;
1624
1625	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626		pr_warn("already initialized, skipping\n");
1627		return -EINVAL;
1628	}
1629
1630	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632	ret = acpi_gtdt_init(table, &platform_timer_count);
1633	if (ret)
 
1634		return ret;
 
1635
1636	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645	arch_timer_populate_kvm_info();
1646
1647	/*
1648	 * When probing via ACPI, we have no mechanism to override the sysreg
1649	 * CNTFRQ value. This *must* be correct.
1650	 */
1651	arch_timer_rate = arch_timer_get_cntfrq();
1652	ret = validate_timer_rate();
1653	if (ret) {
1654		pr_err(FW_BUG "frequency not available.\n");
1655		return ret;
1656	}
1657
1658	arch_timer_uses_ppi = arch_timer_select_ppi();
1659	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660		pr_err("No interrupt available, giving up\n");
1661		return -EINVAL;
1662	}
1663
1664	/* Always-on capability */
1665	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667	/* Check for globally applicable workarounds */
1668	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670	ret = arch_timer_register();
1671	if (ret)
1672		return ret;
1673
1674	if (platform_timer_count &&
1675	    arch_timer_mem_acpi_init(platform_timer_count))
1676		pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678	return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684				 struct clocksource **cs)
1685{
1686	struct arm_smccc_res hvc_res;
1687	u32 ptp_counter;
1688	ktime_t ktime;
1689
1690	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691		return -EOPNOTSUPP;
1692
1693	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695	else
1696		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699			     ptp_counter, &hvc_res);
1700
1701	if ((int)(hvc_res.a0) < 0)
1702		return -EOPNOTSUPP;
1703
1704	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705	*ts = ktime_to_timespec64(ktime);
1706	if (cycle)
1707		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708	if (cs)
1709		*cs = &clocksource_counter;
1710
1711	return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
 
  19#include <linux/interrupt.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
  22#include <linux/io.h>
  23#include <linux/slab.h>
  24#include <linux/sched/clock.h>
  25#include <linux/sched_clock.h>
  26#include <linux/acpi.h>
 
 
  27
  28#include <asm/arch_timer.h>
  29#include <asm/virt.h>
  30
  31#include <clocksource/arm_arch_timer.h>
  32
  33#define CNTTIDR		0x08
  34#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  35
  36#define CNTACR(n)	(0x40 + ((n) * 4))
  37#define CNTACR_RPCT	BIT(0)
  38#define CNTACR_RVCT	BIT(1)
  39#define CNTACR_RFRQ	BIT(2)
  40#define CNTACR_RVOFF	BIT(3)
  41#define CNTACR_RWVT	BIT(4)
  42#define CNTACR_RWPT	BIT(5)
  43
  44#define CNTVCT_LO	0x08
  45#define CNTVCT_HI	0x0c
  46#define CNTFRQ		0x10
  47#define CNTP_TVAL	0x28
  48#define CNTP_CTL	0x2c
  49#define CNTV_TVAL	0x38
  50#define CNTV_CTL	0x3c
  51
  52static unsigned arch_timers_present __initdata;
  53
  54static void __iomem *arch_counter_base;
  55
  56struct arch_timer {
  57	void __iomem *base;
  58	struct clock_event_device evt;
  59};
  60
  61#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  62
  63static u32 arch_timer_rate;
  64static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
 
 
 
 
 
 
 
 
  65
  66static struct clock_event_device __percpu *arch_timer_evt;
  67
  68static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  69static bool arch_timer_c3stop;
  70static bool arch_timer_mem_use_virtual;
  71static bool arch_counter_suspend_stop;
  72static bool vdso_default = true;
 
 
 
 
  73
  74static cpumask_t evtstrm_available = CPU_MASK_NONE;
  75static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  76
  77static int __init early_evtstrm_cfg(char *buf)
  78{
  79	return strtobool(buf, &evtstrm_enable);
  80}
  81early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  82
  83/*
  84 * Architected system timer support.
  85 */
  86
  87static __always_inline
  88void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  89			  struct clock_event_device *clk)
  90{
  91	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  92		struct arch_timer *timer = to_arch_timer(clk);
  93		switch (reg) {
  94		case ARCH_TIMER_REG_CTRL:
  95			writel_relaxed(val, timer->base + CNTP_CTL);
  96			break;
  97		case ARCH_TIMER_REG_TVAL:
  98			writel_relaxed(val, timer->base + CNTP_TVAL);
  99			break;
 100		}
 101	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 102		struct arch_timer *timer = to_arch_timer(clk);
 103		switch (reg) {
 104		case ARCH_TIMER_REG_CTRL:
 105			writel_relaxed(val, timer->base + CNTV_CTL);
 106			break;
 107		case ARCH_TIMER_REG_TVAL:
 108			writel_relaxed(val, timer->base + CNTV_TVAL);
 109			break;
 110		}
 111	} else {
 112		arch_timer_reg_write_cp15(access, reg, val);
 113	}
 114}
 115
 116static __always_inline
 117u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 118			struct clock_event_device *clk)
 119{
 120	u32 val;
 121
 122	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 123		struct arch_timer *timer = to_arch_timer(clk);
 124		switch (reg) {
 125		case ARCH_TIMER_REG_CTRL:
 126			val = readl_relaxed(timer->base + CNTP_CTL);
 127			break;
 128		case ARCH_TIMER_REG_TVAL:
 129			val = readl_relaxed(timer->base + CNTP_TVAL);
 130			break;
 131		}
 132	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 133		struct arch_timer *timer = to_arch_timer(clk);
 134		switch (reg) {
 135		case ARCH_TIMER_REG_CTRL:
 136			val = readl_relaxed(timer->base + CNTV_CTL);
 137			break;
 138		case ARCH_TIMER_REG_TVAL:
 139			val = readl_relaxed(timer->base + CNTV_TVAL);
 140			break;
 141		}
 142	} else {
 143		val = arch_timer_reg_read_cp15(access, reg);
 144	}
 145
 146	return val;
 147}
 148
 149static notrace u64 arch_counter_get_cntpct_stable(void)
 150{
 151	return __arch_counter_get_cntpct_stable();
 152}
 153
 154static notrace u64 arch_counter_get_cntpct(void)
 155{
 156	return __arch_counter_get_cntpct();
 157}
 158
 159static notrace u64 arch_counter_get_cntvct_stable(void)
 160{
 161	return __arch_counter_get_cntvct_stable();
 162}
 163
 164static notrace u64 arch_counter_get_cntvct(void)
 165{
 166	return __arch_counter_get_cntvct();
 167}
 168
 169/*
 170 * Default to cp15 based access because arm64 uses this function for
 171 * sched_clock() before DT is probed and the cp15 method is guaranteed
 172 * to exist on arm64. arm doesn't use this before DT is probed so even
 173 * if we don't have the cp15 accessors we won't have a problem.
 174 */
 175u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 176EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 177
 178static u64 arch_counter_read(struct clocksource *cs)
 179{
 180	return arch_timer_read_counter();
 181}
 182
 183static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 184{
 185	return arch_timer_read_counter();
 186}
 187
 188static struct clocksource clocksource_counter = {
 189	.name	= "arch_sys_counter",
 
 190	.rating	= 400,
 191	.read	= arch_counter_read,
 192	.mask	= CLOCKSOURCE_MASK(56),
 193	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 194};
 195
 196static struct cyclecounter cyclecounter __ro_after_init = {
 197	.read	= arch_counter_read_cc,
 198	.mask	= CLOCKSOURCE_MASK(56),
 199};
 200
 201struct ate_acpi_oem_info {
 202	char oem_id[ACPI_OEM_ID_SIZE + 1];
 203	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 204	u32 oem_revision;
 205};
 206
 207#ifdef CONFIG_FSL_ERRATUM_A008585
 208/*
 209 * The number of retries is an arbitrary value well beyond the highest number
 210 * of iterations the loop has been observed to take.
 211 */
 212#define __fsl_a008585_read_reg(reg) ({			\
 213	u64 _old, _new;					\
 214	int _retries = 200;				\
 215							\
 216	do {						\
 217		_old = read_sysreg(reg);		\
 218		_new = read_sysreg(reg);		\
 219		_retries--;				\
 220	} while (unlikely(_old != _new) && _retries);	\
 221							\
 222	WARN_ON_ONCE(!_retries);			\
 223	_new;						\
 224})
 225
 226static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 227{
 228	return __fsl_a008585_read_reg(cntp_tval_el0);
 229}
 230
 231static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 232{
 233	return __fsl_a008585_read_reg(cntv_tval_el0);
 234}
 235
 236static u64 notrace fsl_a008585_read_cntpct_el0(void)
 237{
 238	return __fsl_a008585_read_reg(cntpct_el0);
 239}
 240
 241static u64 notrace fsl_a008585_read_cntvct_el0(void)
 242{
 243	return __fsl_a008585_read_reg(cntvct_el0);
 244}
 245#endif
 246
 247#ifdef CONFIG_HISILICON_ERRATUM_161010101
 248/*
 249 * Verify whether the value of the second read is larger than the first by
 250 * less than 32 is the only way to confirm the value is correct, so clear the
 251 * lower 5 bits to check whether the difference is greater than 32 or not.
 252 * Theoretically the erratum should not occur more than twice in succession
 253 * when reading the system counter, but it is possible that some interrupts
 254 * may lead to more than twice read errors, triggering the warning, so setting
 255 * the number of retries far beyond the number of iterations the loop has been
 256 * observed to take.
 257 */
 258#define __hisi_161010101_read_reg(reg) ({				\
 259	u64 _old, _new;						\
 260	int _retries = 50;					\
 261								\
 262	do {							\
 263		_old = read_sysreg(reg);			\
 264		_new = read_sysreg(reg);			\
 265		_retries--;					\
 266	} while (unlikely((_new - _old) >> 5) && _retries);	\
 267								\
 268	WARN_ON_ONCE(!_retries);				\
 269	_new;							\
 270})
 271
 272static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 273{
 274	return __hisi_161010101_read_reg(cntp_tval_el0);
 275}
 276
 277static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 278{
 279	return __hisi_161010101_read_reg(cntv_tval_el0);
 280}
 281
 282static u64 notrace hisi_161010101_read_cntpct_el0(void)
 283{
 284	return __hisi_161010101_read_reg(cntpct_el0);
 285}
 286
 287static u64 notrace hisi_161010101_read_cntvct_el0(void)
 288{
 289	return __hisi_161010101_read_reg(cntvct_el0);
 290}
 291
 292static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 293	/*
 294	 * Note that trailing spaces are required to properly match
 295	 * the OEM table information.
 296	 */
 297	{
 298		.oem_id		= "HISI  ",
 299		.oem_table_id	= "HIP05   ",
 300		.oem_revision	= 0,
 301	},
 302	{
 303		.oem_id		= "HISI  ",
 304		.oem_table_id	= "HIP06   ",
 305		.oem_revision	= 0,
 306	},
 307	{
 308		.oem_id		= "HISI  ",
 309		.oem_table_id	= "HIP07   ",
 310		.oem_revision	= 0,
 311	},
 312	{ /* Sentinel indicating the end of the OEM array */ },
 313};
 314#endif
 315
 316#ifdef CONFIG_ARM64_ERRATUM_858921
 317static u64 notrace arm64_858921_read_cntpct_el0(void)
 318{
 319	u64 old, new;
 320
 321	old = read_sysreg(cntpct_el0);
 322	new = read_sysreg(cntpct_el0);
 323	return (((old ^ new) >> 32) & 1) ? old : new;
 324}
 325
 326static u64 notrace arm64_858921_read_cntvct_el0(void)
 327{
 328	u64 old, new;
 329
 330	old = read_sysreg(cntvct_el0);
 331	new = read_sysreg(cntvct_el0);
 332	return (((old ^ new) >> 32) & 1) ? old : new;
 333}
 334#endif
 335
 336#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 337/*
 338 * The low bits of the counter registers are indeterminate while bit 10 or
 339 * greater is rolling over. Since the counter value can jump both backward
 340 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 341 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 342 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 343 */
 344#define __sun50i_a64_read_reg(reg) ({					\
 345	u64 _val;							\
 346	int _retries = 150;						\
 347									\
 348	do {								\
 349		_val = read_sysreg(reg);				\
 350		_retries--;						\
 351	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
 352									\
 353	WARN_ON_ONCE(!_retries);					\
 354	_val;								\
 355})
 356
 357static u64 notrace sun50i_a64_read_cntpct_el0(void)
 358{
 359	return __sun50i_a64_read_reg(cntpct_el0);
 360}
 361
 362static u64 notrace sun50i_a64_read_cntvct_el0(void)
 363{
 364	return __sun50i_a64_read_reg(cntvct_el0);
 365}
 366
 367static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 368{
 369	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 370}
 371
 372static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 373{
 374	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 375}
 376#endif
 377
 378#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 379DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 380EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 381
 382static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 383
 384static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 385						struct clock_event_device *clk)
 386{
 387	unsigned long ctrl;
 388	u64 cval;
 389
 390	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 391	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 392	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 393
 394	if (access == ARCH_TIMER_PHYS_ACCESS) {
 395		cval = evt + arch_counter_get_cntpct();
 396		write_sysreg(cval, cntp_cval_el0);
 397	} else {
 398		cval = evt + arch_counter_get_cntvct();
 399		write_sysreg(cval, cntv_cval_el0);
 400	}
 401
 402	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 403}
 404
 405static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 406					    struct clock_event_device *clk)
 407{
 408	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 409	return 0;
 410}
 411
 412static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 413					    struct clock_event_device *clk)
 414{
 415	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 416	return 0;
 417}
 418
 419static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 420#ifdef CONFIG_FSL_ERRATUM_A008585
 421	{
 422		.match_type = ate_match_dt,
 423		.id = "fsl,erratum-a008585",
 424		.desc = "Freescale erratum a005858",
 425		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 426		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 427		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 428		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 429		.set_next_event_phys = erratum_set_next_event_tval_phys,
 430		.set_next_event_virt = erratum_set_next_event_tval_virt,
 431	},
 432#endif
 433#ifdef CONFIG_HISILICON_ERRATUM_161010101
 434	{
 435		.match_type = ate_match_dt,
 436		.id = "hisilicon,erratum-161010101",
 437		.desc = "HiSilicon erratum 161010101",
 438		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 439		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 440		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 441		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 442		.set_next_event_phys = erratum_set_next_event_tval_phys,
 443		.set_next_event_virt = erratum_set_next_event_tval_virt,
 444	},
 445	{
 446		.match_type = ate_match_acpi_oem_info,
 447		.id = hisi_161010101_oem_info,
 448		.desc = "HiSilicon erratum 161010101",
 449		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 450		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 451		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 452		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 453		.set_next_event_phys = erratum_set_next_event_tval_phys,
 454		.set_next_event_virt = erratum_set_next_event_tval_virt,
 455	},
 456#endif
 457#ifdef CONFIG_ARM64_ERRATUM_858921
 458	{
 459		.match_type = ate_match_local_cap_id,
 460		.id = (void *)ARM64_WORKAROUND_858921,
 461		.desc = "ARM erratum 858921",
 462		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 463		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 464	},
 465#endif
 466#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 467	{
 468		.match_type = ate_match_dt,
 469		.id = "allwinner,erratum-unknown1",
 470		.desc = "Allwinner erratum UNKNOWN1",
 471		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 472		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 473		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 474		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 475		.set_next_event_phys = erratum_set_next_event_tval_phys,
 476		.set_next_event_virt = erratum_set_next_event_tval_virt,
 477	},
 478#endif
 
 
 
 
 
 
 
 
 479};
 480
 481typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 482			       const void *);
 483
 484static
 485bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 486				 const void *arg)
 487{
 488	const struct device_node *np = arg;
 489
 490	return of_property_read_bool(np, wa->id);
 491}
 492
 493static
 494bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 495					const void *arg)
 496{
 497	return this_cpu_has_cap((uintptr_t)wa->id);
 498}
 499
 500
 501static
 502bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 503				       const void *arg)
 504{
 505	static const struct ate_acpi_oem_info empty_oem_info = {};
 506	const struct ate_acpi_oem_info *info = wa->id;
 507	const struct acpi_table_header *table = arg;
 508
 509	/* Iterate over the ACPI OEM info array, looking for a match */
 510	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 511		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 512		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 513		    info->oem_revision == table->oem_revision)
 514			return true;
 515
 516		info++;
 517	}
 518
 519	return false;
 520}
 521
 522static const struct arch_timer_erratum_workaround *
 523arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 524			  ate_match_fn_t match_fn,
 525			  void *arg)
 526{
 527	int i;
 528
 529	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 530		if (ool_workarounds[i].match_type != type)
 531			continue;
 532
 533		if (match_fn(&ool_workarounds[i], arg))
 534			return &ool_workarounds[i];
 535	}
 536
 537	return NULL;
 538}
 539
 540static
 541void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 542				  bool local)
 543{
 544	int i;
 545
 546	if (local) {
 547		__this_cpu_write(timer_unstable_counter_workaround, wa);
 548	} else {
 549		for_each_possible_cpu(i)
 550			per_cpu(timer_unstable_counter_workaround, i) = wa;
 551	}
 552
 553	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 554		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 555
 556	/*
 557	 * Don't use the vdso fastpath if errata require using the
 558	 * out-of-line counter accessor. We may change our mind pretty
 559	 * late in the game (with a per-CPU erratum, for example), so
 560	 * change both the default value and the vdso itself.
 561	 */
 562	if (wa->read_cntvct_el0) {
 563		clocksource_counter.archdata.vdso_direct = false;
 564		vdso_default = false;
 
 
 
 565	}
 566}
 567
 568static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 569					    void *arg)
 570{
 571	const struct arch_timer_erratum_workaround *wa, *__wa;
 572	ate_match_fn_t match_fn = NULL;
 573	bool local = false;
 574
 575	switch (type) {
 576	case ate_match_dt:
 577		match_fn = arch_timer_check_dt_erratum;
 578		break;
 579	case ate_match_local_cap_id:
 580		match_fn = arch_timer_check_local_cap_erratum;
 581		local = true;
 582		break;
 583	case ate_match_acpi_oem_info:
 584		match_fn = arch_timer_check_acpi_oem_erratum;
 585		break;
 586	default:
 587		WARN_ON(1);
 588		return;
 589	}
 590
 591	wa = arch_timer_iterate_errata(type, match_fn, arg);
 592	if (!wa)
 593		return;
 594
 595	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 596	if (__wa && wa != __wa)
 597		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 598			wa->desc, __wa->desc);
 599
 600	if (__wa)
 601		return;
 602
 603	arch_timer_enable_workaround(wa, local);
 604	pr_info("Enabling %s workaround for %s\n",
 605		local ? "local" : "global", wa->desc);
 606}
 607
 608static bool arch_timer_this_cpu_has_cntvct_wa(void)
 609{
 610	return has_erratum_handler(read_cntvct_el0);
 611}
 612
 613static bool arch_timer_counter_has_wa(void)
 614{
 615	return atomic_read(&timer_unstable_counter_workaround_in_use);
 616}
 617#else
 618#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 619#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 620#define arch_timer_counter_has_wa()			({false;})
 621#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 622
 623static __always_inline irqreturn_t timer_handler(const int access,
 624					struct clock_event_device *evt)
 625{
 626	unsigned long ctrl;
 627
 628	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 629	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 630		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 631		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 632		evt->event_handler(evt);
 633		return IRQ_HANDLED;
 634	}
 635
 636	return IRQ_NONE;
 637}
 638
 639static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 640{
 641	struct clock_event_device *evt = dev_id;
 642
 643	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 644}
 645
 646static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 647{
 648	struct clock_event_device *evt = dev_id;
 649
 650	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 651}
 652
 653static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 654{
 655	struct clock_event_device *evt = dev_id;
 656
 657	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 658}
 659
 660static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 661{
 662	struct clock_event_device *evt = dev_id;
 663
 664	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 665}
 666
 667static __always_inline int timer_shutdown(const int access,
 668					  struct clock_event_device *clk)
 669{
 670	unsigned long ctrl;
 671
 672	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 673	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 674	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 675
 676	return 0;
 677}
 678
 679static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 680{
 681	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 682}
 683
 684static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 685{
 686	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 687}
 688
 689static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 690{
 691	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 692}
 693
 694static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 695{
 696	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 697}
 698
 699static __always_inline void set_next_event(const int access, unsigned long evt,
 700					   struct clock_event_device *clk)
 701{
 702	unsigned long ctrl;
 703	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 704	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 705	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 706	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 707	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 708}
 709
 710static int arch_timer_set_next_event_virt(unsigned long evt,
 711					  struct clock_event_device *clk)
 712{
 713	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 714	return 0;
 715}
 716
 717static int arch_timer_set_next_event_phys(unsigned long evt,
 718					  struct clock_event_device *clk)
 719{
 720	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 721	return 0;
 722}
 723
 724static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 725					      struct clock_event_device *clk)
 726{
 727	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 728	return 0;
 729}
 730
 731static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 732					      struct clock_event_device *clk)
 733{
 734	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 735	return 0;
 736}
 737
 738static void __arch_timer_setup(unsigned type,
 739			       struct clock_event_device *clk)
 740{
 741	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 742
 743	if (type == ARCH_TIMER_TYPE_CP15) {
 744		typeof(clk->set_next_event) sne;
 745
 746		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 747
 748		if (arch_timer_c3stop)
 749			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 750		clk->name = "arch_sys_timer";
 751		clk->rating = 450;
 752		clk->cpumask = cpumask_of(smp_processor_id());
 753		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 754		switch (arch_timer_uses_ppi) {
 755		case ARCH_TIMER_VIRT_PPI:
 756			clk->set_state_shutdown = arch_timer_shutdown_virt;
 757			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 758			sne = erratum_handler(set_next_event_virt);
 759			break;
 760		case ARCH_TIMER_PHYS_SECURE_PPI:
 761		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 762		case ARCH_TIMER_HYP_PPI:
 763			clk->set_state_shutdown = arch_timer_shutdown_phys;
 764			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 765			sne = erratum_handler(set_next_event_phys);
 766			break;
 767		default:
 768			BUG();
 769		}
 770
 771		clk->set_next_event = sne;
 772	} else {
 773		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 774		clk->name = "arch_mem_timer";
 775		clk->rating = 400;
 776		clk->cpumask = cpu_possible_mask;
 777		if (arch_timer_mem_use_virtual) {
 778			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 779			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 780			clk->set_next_event =
 781				arch_timer_set_next_event_virt_mem;
 782		} else {
 783			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 785			clk->set_next_event =
 786				arch_timer_set_next_event_phys_mem;
 787		}
 788	}
 789
 790	clk->set_state_shutdown(clk);
 791
 792	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 793}
 794
 795static void arch_timer_evtstrm_enable(int divider)
 796{
 797	u32 cntkctl = arch_timer_get_cntkctl();
 798
 799	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 800	/* Set the divider and enable virtual event stream */
 801	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 802			| ARCH_TIMER_VIRT_EVT_EN;
 803	arch_timer_set_cntkctl(cntkctl);
 804	arch_timer_set_evtstrm_feature();
 805	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 806}
 807
 808static void arch_timer_configure_evtstream(void)
 809{
 810	int evt_stream_div, pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812	/* Find the closest power of two to the divisor */
 813	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 814	pos = fls(evt_stream_div);
 815	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 816		pos--;
 817	/* enable event stream */
 818	arch_timer_evtstrm_enable(min(pos, 15));
 819}
 820
 821static void arch_counter_set_user_access(void)
 822{
 823	u32 cntkctl = arch_timer_get_cntkctl();
 824
 825	/* Disable user access to the timers and both counters */
 826	/* Also disable virtual event stream */
 827	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 828			| ARCH_TIMER_USR_VT_ACCESS_EN
 829		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 830			| ARCH_TIMER_VIRT_EVT_EN
 831			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 832
 833	/*
 834	 * Enable user access to the virtual counter if it doesn't
 835	 * need to be workaround. The vdso may have been already
 836	 * disabled though.
 837	 */
 838	if (arch_timer_this_cpu_has_cntvct_wa())
 839		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 840	else
 841		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 842
 843	arch_timer_set_cntkctl(cntkctl);
 844}
 845
 846static bool arch_timer_has_nonsecure_ppi(void)
 847{
 848	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 849		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 850}
 851
 852static u32 check_ppi_trigger(int irq)
 853{
 854	u32 flags = irq_get_trigger_type(irq);
 855
 856	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 857		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 858		pr_warn("WARNING: Please fix your firmware\n");
 859		flags = IRQF_TRIGGER_LOW;
 860	}
 861
 862	return flags;
 863}
 864
 865static int arch_timer_starting_cpu(unsigned int cpu)
 866{
 867	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 868	u32 flags;
 869
 870	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 871
 872	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 873	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 874
 875	if (arch_timer_has_nonsecure_ppi()) {
 876		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 877		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 878				  flags);
 879	}
 880
 881	arch_counter_set_user_access();
 882	if (evtstrm_enable)
 883		arch_timer_configure_evtstream();
 884
 885	return 0;
 886}
 887
 
 
 
 
 
 
 
 
 
 
 
 888/*
 889 * For historical reasons, when probing with DT we use whichever (non-zero)
 890 * rate was probed first, and don't verify that others match. If the first node
 891 * probed has a clock-frequency property, this overrides the HW register.
 892 */
 893static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 894{
 895	/* Who has more than one independent system counter? */
 896	if (arch_timer_rate)
 897		return;
 898
 899	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 900		arch_timer_rate = rate;
 901
 902	/* Check the timer frequency. */
 903	if (arch_timer_rate == 0)
 904		pr_warn("frequency not available\n");
 905}
 906
 907static void arch_timer_banner(unsigned type)
 908{
 909	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 910		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 911		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 912			" and " : "",
 913		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 914		(unsigned long)arch_timer_rate / 1000000,
 915		(unsigned long)(arch_timer_rate / 10000) % 100,
 916		type & ARCH_TIMER_TYPE_CP15 ?
 917			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 918			"",
 919		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 920		type & ARCH_TIMER_TYPE_MEM ?
 921			arch_timer_mem_use_virtual ? "virt" : "phys" :
 922			"");
 923}
 924
 925u32 arch_timer_get_rate(void)
 926{
 927	return arch_timer_rate;
 928}
 929
 930bool arch_timer_evtstrm_available(void)
 931{
 932	/*
 933	 * We might get called from a preemptible context. This is fine
 934	 * because availability of the event stream should be always the same
 935	 * for a preemptible context and context where we might resume a task.
 936	 */
 937	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 938}
 939
 940static u64 arch_counter_get_cntvct_mem(void)
 941{
 942	u32 vct_lo, vct_hi, tmp_hi;
 943
 944	do {
 945		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 946		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 947		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 948	} while (vct_hi != tmp_hi);
 949
 950	return ((u64) vct_hi << 32) | vct_lo;
 951}
 952
 953static struct arch_timer_kvm_info arch_timer_kvm_info;
 954
 955struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 956{
 957	return &arch_timer_kvm_info;
 958}
 959
 960static void __init arch_counter_register(unsigned type)
 961{
 962	u64 start_count;
 963
 964	/* Register the CP15 based counter if we have one */
 965	if (type & ARCH_TIMER_TYPE_CP15) {
 966		u64 (*rd)(void);
 967
 968		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 969		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
 970			if (arch_timer_counter_has_wa())
 971				rd = arch_counter_get_cntvct_stable;
 972			else
 973				rd = arch_counter_get_cntvct;
 974		} else {
 975			if (arch_timer_counter_has_wa())
 976				rd = arch_counter_get_cntpct_stable;
 977			else
 978				rd = arch_counter_get_cntpct;
 979		}
 980
 981		arch_timer_read_counter = rd;
 982		clocksource_counter.archdata.vdso_direct = vdso_default;
 983	} else {
 984		arch_timer_read_counter = arch_counter_get_cntvct_mem;
 985	}
 986
 987	if (!arch_counter_suspend_stop)
 988		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 989	start_count = arch_timer_read_counter();
 990	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 991	cyclecounter.mult = clocksource_counter.mult;
 992	cyclecounter.shift = clocksource_counter.shift;
 993	timecounter_init(&arch_timer_kvm_info.timecounter,
 994			 &cyclecounter, start_count);
 995
 996	/* 56 bits minimum, so we assume worst case rollover */
 997	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 998}
 999
1000static void arch_timer_stop(struct clock_event_device *clk)
1001{
1002	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1003
1004	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1005	if (arch_timer_has_nonsecure_ppi())
1006		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007
1008	clk->set_state_shutdown(clk);
1009}
1010
1011static int arch_timer_dying_cpu(unsigned int cpu)
1012{
1013	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1014
1015	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1016
1017	arch_timer_stop(clk);
1018	return 0;
1019}
1020
1021#ifdef CONFIG_CPU_PM
1022static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1023static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1024				    unsigned long action, void *hcpu)
1025{
1026	if (action == CPU_PM_ENTER) {
1027		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1028
1029		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1030	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1031		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1032
1033		if (arch_timer_have_evtstrm_feature())
1034			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1035	}
1036	return NOTIFY_OK;
1037}
1038
1039static struct notifier_block arch_timer_cpu_pm_notifier = {
1040	.notifier_call = arch_timer_cpu_pm_notify,
1041};
1042
1043static int __init arch_timer_cpu_pm_init(void)
1044{
1045	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1046}
1047
1048static void __init arch_timer_cpu_pm_deinit(void)
1049{
1050	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1051}
1052
1053#else
1054static int __init arch_timer_cpu_pm_init(void)
1055{
1056	return 0;
1057}
1058
1059static void __init arch_timer_cpu_pm_deinit(void)
1060{
1061}
1062#endif
1063
1064static int __init arch_timer_register(void)
1065{
1066	int err;
1067	int ppi;
1068
1069	arch_timer_evt = alloc_percpu(struct clock_event_device);
1070	if (!arch_timer_evt) {
1071		err = -ENOMEM;
1072		goto out;
1073	}
1074
1075	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1076	switch (arch_timer_uses_ppi) {
1077	case ARCH_TIMER_VIRT_PPI:
1078		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1079					 "arch_timer", arch_timer_evt);
1080		break;
1081	case ARCH_TIMER_PHYS_SECURE_PPI:
1082	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1083		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1084					 "arch_timer", arch_timer_evt);
1085		if (!err && arch_timer_has_nonsecure_ppi()) {
1086			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1087			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088						 "arch_timer", arch_timer_evt);
1089			if (err)
1090				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1091						arch_timer_evt);
1092		}
1093		break;
1094	case ARCH_TIMER_HYP_PPI:
1095		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1096					 "arch_timer", arch_timer_evt);
1097		break;
1098	default:
1099		BUG();
1100	}
1101
1102	if (err) {
1103		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1104		goto out_free;
1105	}
1106
1107	err = arch_timer_cpu_pm_init();
1108	if (err)
1109		goto out_unreg_notify;
1110
1111	/* Register and immediately configure the timer on the boot CPU */
1112	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1113				"clockevents/arm/arch_timer:starting",
1114				arch_timer_starting_cpu, arch_timer_dying_cpu);
1115	if (err)
1116		goto out_unreg_cpupm;
1117	return 0;
1118
1119out_unreg_cpupm:
1120	arch_timer_cpu_pm_deinit();
1121
1122out_unreg_notify:
1123	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1124	if (arch_timer_has_nonsecure_ppi())
1125		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1126				arch_timer_evt);
1127
1128out_free:
1129	free_percpu(arch_timer_evt);
1130out:
1131	return err;
1132}
1133
1134static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1135{
1136	int ret;
1137	irq_handler_t func;
1138	struct arch_timer *t;
1139
1140	t = kzalloc(sizeof(*t), GFP_KERNEL);
1141	if (!t)
1142		return -ENOMEM;
1143
1144	t->base = base;
1145	t->evt.irq = irq;
1146	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1147
1148	if (arch_timer_mem_use_virtual)
1149		func = arch_timer_handler_virt_mem;
1150	else
1151		func = arch_timer_handler_phys_mem;
1152
1153	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1154	if (ret) {
1155		pr_err("Failed to request mem timer irq\n");
1156		kfree(t);
1157	}
1158
1159	return ret;
1160}
1161
1162static const struct of_device_id arch_timer_of_match[] __initconst = {
1163	{ .compatible   = "arm,armv7-timer",    },
1164	{ .compatible   = "arm,armv8-timer",    },
1165	{},
1166};
1167
1168static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1169	{ .compatible   = "arm,armv7-timer-mem", },
1170	{},
1171};
1172
1173static bool __init arch_timer_needs_of_probing(void)
1174{
1175	struct device_node *dn;
1176	bool needs_probing = false;
1177	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1178
1179	/* We have two timers, and both device-tree nodes are probed. */
1180	if ((arch_timers_present & mask) == mask)
1181		return false;
1182
1183	/*
1184	 * Only one type of timer is probed,
1185	 * check if we have another type of timer node in device-tree.
1186	 */
1187	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1188		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1189	else
1190		dn = of_find_matching_node(NULL, arch_timer_of_match);
1191
1192	if (dn && of_device_is_available(dn))
1193		needs_probing = true;
1194
1195	of_node_put(dn);
1196
1197	return needs_probing;
1198}
1199
1200static int __init arch_timer_common_init(void)
1201{
1202	arch_timer_banner(arch_timers_present);
1203	arch_counter_register(arch_timers_present);
1204	return arch_timer_arch_init();
1205}
1206
1207/**
1208 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1209 *
1210 * If HYP mode is available, we know that the physical timer
1211 * has been configured to be accessible from PL1. Use it, so
1212 * that a guest can use the virtual timer instead.
1213 *
1214 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215 * accesses to CNTP_*_EL1 registers are silently redirected to
1216 * their CNTHP_*_EL2 counterparts, and use a different PPI
1217 * number.
1218 *
1219 * If no interrupt provided for virtual timer, we'll have to
1220 * stick to the physical timer. It'd better be accessible...
1221 * For arm64 we never use the secure interrupt.
1222 *
1223 * Return: a suitable PPI type for the current system.
1224 */
1225static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1226{
1227	if (is_kernel_in_hyp_mode())
1228		return ARCH_TIMER_HYP_PPI;
1229
1230	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1231		return ARCH_TIMER_VIRT_PPI;
1232
1233	if (IS_ENABLED(CONFIG_ARM64))
1234		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1235
1236	return ARCH_TIMER_PHYS_SECURE_PPI;
1237}
1238
1239static void __init arch_timer_populate_kvm_info(void)
1240{
1241	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1242	if (is_kernel_in_hyp_mode())
1243		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1244}
1245
1246static int __init arch_timer_of_init(struct device_node *np)
1247{
1248	int i, ret;
1249	u32 rate;
 
1250
1251	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1252		pr_warn("multiple nodes in dt, skipping\n");
1253		return 0;
1254	}
1255
1256	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1257	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1258		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
 
 
 
 
 
 
 
 
 
1259
1260	arch_timer_populate_kvm_info();
1261
1262	rate = arch_timer_get_cntfrq();
1263	arch_timer_of_configure_rate(rate, np);
1264
1265	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1266
1267	/* Check for globally applicable workarounds */
1268	arch_timer_check_ool_workaround(ate_match_dt, np);
1269
1270	/*
1271	 * If we cannot rely on firmware initializing the timer registers then
1272	 * we should use the physical timers instead.
1273	 */
1274	if (IS_ENABLED(CONFIG_ARM) &&
1275	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1276		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1277	else
1278		arch_timer_uses_ppi = arch_timer_select_ppi();
1279
1280	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1281		pr_err("No interrupt available, giving up\n");
1282		return -EINVAL;
1283	}
1284
1285	/* On some systems, the counter stops ticking when in suspend. */
1286	arch_counter_suspend_stop = of_property_read_bool(np,
1287							 "arm,no-tick-in-suspend");
1288
1289	ret = arch_timer_register();
1290	if (ret)
1291		return ret;
1292
1293	if (arch_timer_needs_of_probing())
1294		return 0;
1295
1296	return arch_timer_common_init();
1297}
1298TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1299TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1300
1301static u32 __init
1302arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1303{
1304	void __iomem *base;
1305	u32 rate;
1306
1307	base = ioremap(frame->cntbase, frame->size);
1308	if (!base) {
1309		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1310		return 0;
1311	}
1312
1313	rate = readl_relaxed(base + CNTFRQ);
1314
1315	iounmap(base);
1316
1317	return rate;
1318}
1319
1320static struct arch_timer_mem_frame * __init
1321arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1322{
1323	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1324	void __iomem *cntctlbase;
1325	u32 cnttidr;
1326	int i;
1327
1328	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1329	if (!cntctlbase) {
1330		pr_err("Can't map CNTCTLBase @ %pa\n",
1331			&timer_mem->cntctlbase);
1332		return NULL;
1333	}
1334
1335	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1336
1337	/*
1338	 * Try to find a virtual capable frame. Otherwise fall back to a
1339	 * physical capable frame.
1340	 */
1341	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1342		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1343			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1344
1345		frame = &timer_mem->frame[i];
1346		if (!frame->valid)
1347			continue;
1348
1349		/* Try enabling everything, and see what sticks */
1350		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1351		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1352
1353		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1354		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1355			best_frame = frame;
1356			arch_timer_mem_use_virtual = true;
1357			break;
1358		}
1359
1360		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1361			continue;
1362
1363		best_frame = frame;
1364	}
1365
1366	iounmap(cntctlbase);
1367
1368	return best_frame;
1369}
1370
1371static int __init
1372arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1373{
1374	void __iomem *base;
1375	int ret, irq = 0;
1376
1377	if (arch_timer_mem_use_virtual)
1378		irq = frame->virt_irq;
1379	else
1380		irq = frame->phys_irq;
1381
1382	if (!irq) {
1383		pr_err("Frame missing %s irq.\n",
1384		       arch_timer_mem_use_virtual ? "virt" : "phys");
1385		return -EINVAL;
1386	}
1387
1388	if (!request_mem_region(frame->cntbase, frame->size,
1389				"arch_mem_timer"))
1390		return -EBUSY;
1391
1392	base = ioremap(frame->cntbase, frame->size);
1393	if (!base) {
1394		pr_err("Can't map frame's registers\n");
1395		return -ENXIO;
1396	}
1397
1398	ret = arch_timer_mem_register(base, irq);
1399	if (ret) {
1400		iounmap(base);
1401		return ret;
1402	}
1403
1404	arch_counter_base = base;
1405	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1406
1407	return 0;
1408}
1409
1410static int __init arch_timer_mem_of_init(struct device_node *np)
1411{
1412	struct arch_timer_mem *timer_mem;
1413	struct arch_timer_mem_frame *frame;
1414	struct device_node *frame_node;
1415	struct resource res;
1416	int ret = -EINVAL;
1417	u32 rate;
1418
1419	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1420	if (!timer_mem)
1421		return -ENOMEM;
1422
1423	if (of_address_to_resource(np, 0, &res))
1424		goto out;
1425	timer_mem->cntctlbase = res.start;
1426	timer_mem->size = resource_size(&res);
1427
1428	for_each_available_child_of_node(np, frame_node) {
1429		u32 n;
1430		struct arch_timer_mem_frame *frame;
1431
1432		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1433			pr_err(FW_BUG "Missing frame-number.\n");
1434			of_node_put(frame_node);
1435			goto out;
1436		}
1437		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1438			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1439			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1440			of_node_put(frame_node);
1441			goto out;
1442		}
1443		frame = &timer_mem->frame[n];
1444
1445		if (frame->valid) {
1446			pr_err(FW_BUG "Duplicated frame-number.\n");
1447			of_node_put(frame_node);
1448			goto out;
1449		}
1450
1451		if (of_address_to_resource(frame_node, 0, &res)) {
1452			of_node_put(frame_node);
1453			goto out;
1454		}
1455		frame->cntbase = res.start;
1456		frame->size = resource_size(&res);
1457
1458		frame->virt_irq = irq_of_parse_and_map(frame_node,
1459						       ARCH_TIMER_VIRT_SPI);
1460		frame->phys_irq = irq_of_parse_and_map(frame_node,
1461						       ARCH_TIMER_PHYS_SPI);
1462
1463		frame->valid = true;
1464	}
1465
1466	frame = arch_timer_mem_find_best_frame(timer_mem);
1467	if (!frame) {
1468		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469			&timer_mem->cntctlbase);
1470		ret = -EINVAL;
1471		goto out;
1472	}
1473
1474	rate = arch_timer_mem_frame_get_cntfrq(frame);
1475	arch_timer_of_configure_rate(rate, np);
1476
1477	ret = arch_timer_mem_frame_register(frame);
1478	if (!ret && !arch_timer_needs_of_probing())
1479		ret = arch_timer_common_init();
1480out:
1481	kfree(timer_mem);
1482	return ret;
1483}
1484TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1485		       arch_timer_mem_of_init);
1486
1487#ifdef CONFIG_ACPI_GTDT
1488static int __init
1489arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1490{
1491	struct arch_timer_mem_frame *frame;
1492	u32 rate;
1493	int i;
1494
1495	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1496		frame = &timer_mem->frame[i];
1497
1498		if (!frame->valid)
1499			continue;
1500
1501		rate = arch_timer_mem_frame_get_cntfrq(frame);
1502		if (rate == arch_timer_rate)
1503			continue;
1504
1505		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1506			&frame->cntbase,
1507			(unsigned long)rate, (unsigned long)arch_timer_rate);
1508
1509		return -EINVAL;
1510	}
1511
1512	return 0;
1513}
1514
1515static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1516{
1517	struct arch_timer_mem *timers, *timer;
1518	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1519	int timer_count, i, ret = 0;
1520
1521	timers = kcalloc(platform_timer_count, sizeof(*timers),
1522			    GFP_KERNEL);
1523	if (!timers)
1524		return -ENOMEM;
1525
1526	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1527	if (ret || !timer_count)
1528		goto out;
1529
1530	/*
1531	 * While unlikely, it's theoretically possible that none of the frames
1532	 * in a timer expose the combination of feature we want.
1533	 */
1534	for (i = 0; i < timer_count; i++) {
1535		timer = &timers[i];
1536
1537		frame = arch_timer_mem_find_best_frame(timer);
1538		if (!best_frame)
1539			best_frame = frame;
1540
1541		ret = arch_timer_mem_verify_cntfrq(timer);
1542		if (ret) {
1543			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1544			goto out;
1545		}
1546
1547		if (!best_frame) /* implies !frame */
1548			/*
1549			 * Only complain about missing suitable frames if we
1550			 * haven't already found one in a previous iteration.
1551			 */
1552			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553				&timer->cntctlbase);
1554	}
1555
1556	if (best_frame)
1557		ret = arch_timer_mem_frame_register(best_frame);
1558out:
1559	kfree(timers);
1560	return ret;
1561}
1562
1563/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1565{
1566	int ret, platform_timer_count;
1567
1568	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1569		pr_warn("already initialized, skipping\n");
1570		return -EINVAL;
1571	}
1572
1573	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1574
1575	ret = acpi_gtdt_init(table, &platform_timer_count);
1576	if (ret) {
1577		pr_err("Failed to init GTDT table.\n");
1578		return ret;
1579	}
1580
1581	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1582		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1583
1584	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1585		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1586
1587	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1588		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1589
1590	arch_timer_populate_kvm_info();
1591
1592	/*
1593	 * When probing via ACPI, we have no mechanism to override the sysreg
1594	 * CNTFRQ value. This *must* be correct.
1595	 */
1596	arch_timer_rate = arch_timer_get_cntfrq();
1597	if (!arch_timer_rate) {
 
1598		pr_err(FW_BUG "frequency not available.\n");
1599		return -EINVAL;
1600	}
1601
1602	arch_timer_uses_ppi = arch_timer_select_ppi();
1603	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1604		pr_err("No interrupt available, giving up\n");
1605		return -EINVAL;
1606	}
1607
1608	/* Always-on capability */
1609	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1610
1611	/* Check for globally applicable workarounds */
1612	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1613
1614	ret = arch_timer_register();
1615	if (ret)
1616		return ret;
1617
1618	if (platform_timer_count &&
1619	    arch_timer_mem_acpi_init(platform_timer_count))
1620		pr_err("Failed to initialize memory-mapped timer.\n");
1621
1622	return arch_timer_common_init();
1623}
1624TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1625#endif