Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/sched/clock.h>
  26#include <linux/sched_clock.h>
  27#include <linux/acpi.h>
  28#include <linux/arm-smccc.h>
  29#include <linux/ptp_kvm.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
 
 
 
  36#define CNTTIDR		0x08
  37#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  38
  39#define CNTACR(n)	(0x40 + ((n) * 4))
  40#define CNTACR_RPCT	BIT(0)
  41#define CNTACR_RVCT	BIT(1)
  42#define CNTACR_RFRQ	BIT(2)
  43#define CNTACR_RVOFF	BIT(3)
  44#define CNTACR_RWVT	BIT(4)
  45#define CNTACR_RWPT	BIT(5)
  46
  47#define CNTVCT_LO	0x08
  48#define CNTVCT_HI	0x0c
  49#define CNTFRQ		0x10
  50#define CNTP_TVAL	0x28
  51#define CNTP_CTL	0x2c
  52#define CNTV_TVAL	0x38
  53#define CNTV_CTL	0x3c
  54
  55static unsigned arch_timers_present __initdata;
  56
  57static void __iomem *arch_counter_base __ro_after_init;
  58
  59struct arch_timer {
  60	void __iomem *base;
  61	struct clock_event_device evt;
  62};
  63
  64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  65
  66static u32 arch_timer_rate __ro_after_init;
  67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  68
  69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  70	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  71	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  72	[ARCH_TIMER_VIRT_PPI]		= "virt",
  73	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  74	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  75};
  76
  77static struct clock_event_device __percpu *arch_timer_evt;
  78
  79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  80static bool arch_timer_c3stop __ro_after_init;
  81static bool arch_timer_mem_use_virtual __ro_after_init;
  82static bool arch_counter_suspend_stop __ro_after_init;
  83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  85#else
  86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  88
  89static cpumask_t evtstrm_available = CPU_MASK_NONE;
  90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  91
  92static int __init early_evtstrm_cfg(char *buf)
  93{
  94	return strtobool(buf, &evtstrm_enable);
  95}
  96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  97
  98/*
  99 * Architected system timer support.
 100 */
 101
 102static __always_inline
 103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 104			  struct clock_event_device *clk)
 105{
 106	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 107		struct arch_timer *timer = to_arch_timer(clk);
 108		switch (reg) {
 109		case ARCH_TIMER_REG_CTRL:
 110			writel_relaxed(val, timer->base + CNTP_CTL);
 111			break;
 112		case ARCH_TIMER_REG_TVAL:
 113			writel_relaxed(val, timer->base + CNTP_TVAL);
 114			break;
 115		}
 116	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 117		struct arch_timer *timer = to_arch_timer(clk);
 118		switch (reg) {
 119		case ARCH_TIMER_REG_CTRL:
 120			writel_relaxed(val, timer->base + CNTV_CTL);
 121			break;
 122		case ARCH_TIMER_REG_TVAL:
 123			writel_relaxed(val, timer->base + CNTV_TVAL);
 124			break;
 125		}
 126	} else {
 127		arch_timer_reg_write_cp15(access, reg, val);
 128	}
 129}
 130
 131static __always_inline
 132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 133			struct clock_event_device *clk)
 134{
 135	u32 val;
 136
 137	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 138		struct arch_timer *timer = to_arch_timer(clk);
 139		switch (reg) {
 140		case ARCH_TIMER_REG_CTRL:
 141			val = readl_relaxed(timer->base + CNTP_CTL);
 142			break;
 143		case ARCH_TIMER_REG_TVAL:
 144			val = readl_relaxed(timer->base + CNTP_TVAL);
 145			break;
 146		}
 147	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 148		struct arch_timer *timer = to_arch_timer(clk);
 149		switch (reg) {
 150		case ARCH_TIMER_REG_CTRL:
 151			val = readl_relaxed(timer->base + CNTV_CTL);
 152			break;
 153		case ARCH_TIMER_REG_TVAL:
 154			val = readl_relaxed(timer->base + CNTV_TVAL);
 155			break;
 156		}
 157	} else {
 158		val = arch_timer_reg_read_cp15(access, reg);
 159	}
 160
 161	return val;
 162}
 163
 164static notrace u64 arch_counter_get_cntpct_stable(void)
 165{
 166	return __arch_counter_get_cntpct_stable();
 167}
 168
 169static notrace u64 arch_counter_get_cntpct(void)
 170{
 171	return __arch_counter_get_cntpct();
 172}
 173
 174static notrace u64 arch_counter_get_cntvct_stable(void)
 175{
 176	return __arch_counter_get_cntvct_stable();
 177}
 178
 179static notrace u64 arch_counter_get_cntvct(void)
 180{
 181	return __arch_counter_get_cntvct();
 182}
 183
 184/*
 185 * Default to cp15 based access because arm64 uses this function for
 186 * sched_clock() before DT is probed and the cp15 method is guaranteed
 187 * to exist on arm64. arm doesn't use this before DT is probed so even
 188 * if we don't have the cp15 accessors we won't have a problem.
 189 */
 190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 192
 193static u64 arch_counter_read(struct clocksource *cs)
 194{
 195	return arch_timer_read_counter();
 196}
 197
 198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 199{
 200	return arch_timer_read_counter();
 201}
 202
 203static struct clocksource clocksource_counter = {
 204	.name	= "arch_sys_counter",
 205	.id	= CSID_ARM_ARCH_COUNTER,
 206	.rating	= 400,
 207	.read	= arch_counter_read,
 208	.mask	= CLOCKSOURCE_MASK(56),
 209	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 210};
 211
 212static struct cyclecounter cyclecounter __ro_after_init = {
 213	.read	= arch_counter_read_cc,
 214	.mask	= CLOCKSOURCE_MASK(56),
 215};
 216
 217struct ate_acpi_oem_info {
 218	char oem_id[ACPI_OEM_ID_SIZE + 1];
 219	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 220	u32 oem_revision;
 221};
 222
 223#ifdef CONFIG_FSL_ERRATUM_A008585
 224/*
 225 * The number of retries is an arbitrary value well beyond the highest number
 226 * of iterations the loop has been observed to take.
 227 */
 228#define __fsl_a008585_read_reg(reg) ({			\
 229	u64 _old, _new;					\
 230	int _retries = 200;				\
 231							\
 232	do {						\
 233		_old = read_sysreg(reg);		\
 234		_new = read_sysreg(reg);		\
 235		_retries--;				\
 236	} while (unlikely(_old != _new) && _retries);	\
 237							\
 238	WARN_ON_ONCE(!_retries);			\
 239	_new;						\
 240})
 241
 242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 243{
 244	return __fsl_a008585_read_reg(cntp_tval_el0);
 245}
 246
 247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 248{
 249	return __fsl_a008585_read_reg(cntv_tval_el0);
 250}
 251
 252static u64 notrace fsl_a008585_read_cntpct_el0(void)
 253{
 254	return __fsl_a008585_read_reg(cntpct_el0);
 255}
 256
 257static u64 notrace fsl_a008585_read_cntvct_el0(void)
 258{
 259	return __fsl_a008585_read_reg(cntvct_el0);
 260}
 261#endif
 262
 263#ifdef CONFIG_HISILICON_ERRATUM_161010101
 264/*
 265 * Verify whether the value of the second read is larger than the first by
 266 * less than 32 is the only way to confirm the value is correct, so clear the
 267 * lower 5 bits to check whether the difference is greater than 32 or not.
 268 * Theoretically the erratum should not occur more than twice in succession
 269 * when reading the system counter, but it is possible that some interrupts
 270 * may lead to more than twice read errors, triggering the warning, so setting
 271 * the number of retries far beyond the number of iterations the loop has been
 272 * observed to take.
 273 */
 274#define __hisi_161010101_read_reg(reg) ({				\
 275	u64 _old, _new;						\
 276	int _retries = 50;					\
 277								\
 278	do {							\
 279		_old = read_sysreg(reg);			\
 280		_new = read_sysreg(reg);			\
 281		_retries--;					\
 282	} while (unlikely((_new - _old) >> 5) && _retries);	\
 283								\
 284	WARN_ON_ONCE(!_retries);				\
 285	_new;							\
 286})
 287
 288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 289{
 290	return __hisi_161010101_read_reg(cntp_tval_el0);
 291}
 292
 293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 294{
 295	return __hisi_161010101_read_reg(cntv_tval_el0);
 296}
 297
 298static u64 notrace hisi_161010101_read_cntpct_el0(void)
 299{
 300	return __hisi_161010101_read_reg(cntpct_el0);
 301}
 302
 303static u64 notrace hisi_161010101_read_cntvct_el0(void)
 304{
 305	return __hisi_161010101_read_reg(cntvct_el0);
 306}
 307
 308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 309	/*
 310	 * Note that trailing spaces are required to properly match
 311	 * the OEM table information.
 312	 */
 313	{
 314		.oem_id		= "HISI  ",
 315		.oem_table_id	= "HIP05   ",
 316		.oem_revision	= 0,
 317	},
 318	{
 319		.oem_id		= "HISI  ",
 320		.oem_table_id	= "HIP06   ",
 321		.oem_revision	= 0,
 322	},
 323	{
 324		.oem_id		= "HISI  ",
 325		.oem_table_id	= "HIP07   ",
 326		.oem_revision	= 0,
 327	},
 328	{ /* Sentinel indicating the end of the OEM array */ },
 329};
 330#endif
 331
 332#ifdef CONFIG_ARM64_ERRATUM_858921
 333static u64 notrace arm64_858921_read_cntpct_el0(void)
 334{
 335	u64 old, new;
 336
 337	old = read_sysreg(cntpct_el0);
 338	new = read_sysreg(cntpct_el0);
 339	return (((old ^ new) >> 32) & 1) ? old : new;
 340}
 341
 342static u64 notrace arm64_858921_read_cntvct_el0(void)
 343{
 344	u64 old, new;
 345
 346	old = read_sysreg(cntvct_el0);
 347	new = read_sysreg(cntvct_el0);
 348	return (((old ^ new) >> 32) & 1) ? old : new;
 349}
 350#endif
 351
 352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 353/*
 354 * The low bits of the counter registers are indeterminate while bit 10 or
 355 * greater is rolling over. Since the counter value can jump both backward
 356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 359 */
 360#define __sun50i_a64_read_reg(reg) ({					\
 361	u64 _val;							\
 362	int _retries = 150;						\
 363									\
 364	do {								\
 365		_val = read_sysreg(reg);				\
 366		_retries--;						\
 367	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 368									\
 369	WARN_ON_ONCE(!_retries);					\
 370	_val;								\
 371})
 372
 373static u64 notrace sun50i_a64_read_cntpct_el0(void)
 374{
 375	return __sun50i_a64_read_reg(cntpct_el0);
 376}
 377
 378static u64 notrace sun50i_a64_read_cntvct_el0(void)
 379{
 380	return __sun50i_a64_read_reg(cntvct_el0);
 381}
 382
 383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 384{
 385	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 386}
 387
 388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 389{
 390	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 391}
 392#endif
 393
 394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 397
 398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 
 399
 400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 401						struct clock_event_device *clk)
 402{
 403	unsigned long ctrl;
 404	u64 cval;
 405
 406	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 407	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 408	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 409
 410	if (access == ARCH_TIMER_PHYS_ACCESS) {
 411		cval = evt + arch_counter_get_cntpct_stable();
 412		write_sysreg(cval, cntp_cval_el0);
 413	} else {
 414		cval = evt + arch_counter_get_cntvct_stable();
 415		write_sysreg(cval, cntv_cval_el0);
 416	}
 417
 418	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 419}
 420
 421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 422					    struct clock_event_device *clk)
 423{
 424	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 425	return 0;
 426}
 427
 428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 429					    struct clock_event_device *clk)
 430{
 431	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 432	return 0;
 433}
 434
 435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 436#ifdef CONFIG_FSL_ERRATUM_A008585
 437	{
 438		.match_type = ate_match_dt,
 439		.id = "fsl,erratum-a008585",
 440		.desc = "Freescale erratum a005858",
 441		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 442		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 443		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 444		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 445		.set_next_event_phys = erratum_set_next_event_tval_phys,
 446		.set_next_event_virt = erratum_set_next_event_tval_virt,
 447	},
 448#endif
 449#ifdef CONFIG_HISILICON_ERRATUM_161010101
 450	{
 451		.match_type = ate_match_dt,
 452		.id = "hisilicon,erratum-161010101",
 453		.desc = "HiSilicon erratum 161010101",
 454		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 455		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 456		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 457		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 458		.set_next_event_phys = erratum_set_next_event_tval_phys,
 459		.set_next_event_virt = erratum_set_next_event_tval_virt,
 460	},
 461	{
 462		.match_type = ate_match_acpi_oem_info,
 463		.id = hisi_161010101_oem_info,
 464		.desc = "HiSilicon erratum 161010101",
 465		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 466		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 467		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 468		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 469		.set_next_event_phys = erratum_set_next_event_tval_phys,
 470		.set_next_event_virt = erratum_set_next_event_tval_virt,
 471	},
 472#endif
 473#ifdef CONFIG_ARM64_ERRATUM_858921
 474	{
 475		.match_type = ate_match_local_cap_id,
 476		.id = (void *)ARM64_WORKAROUND_858921,
 477		.desc = "ARM erratum 858921",
 478		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 479		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 480	},
 481#endif
 482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 483	{
 484		.match_type = ate_match_dt,
 485		.id = "allwinner,erratum-unknown1",
 486		.desc = "Allwinner erratum UNKNOWN1",
 487		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 488		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 489		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 490		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 491		.set_next_event_phys = erratum_set_next_event_tval_phys,
 492		.set_next_event_virt = erratum_set_next_event_tval_virt,
 493	},
 494#endif
 495#ifdef CONFIG_ARM64_ERRATUM_1418040
 496	{
 497		.match_type = ate_match_local_cap_id,
 498		.id = (void *)ARM64_WORKAROUND_1418040,
 499		.desc = "ARM erratum 1418040",
 500		.disable_compat_vdso = true,
 501	},
 502#endif
 503};
 504
 505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 506			       const void *);
 507
 508static
 509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 510				 const void *arg)
 511{
 512	const struct device_node *np = arg;
 513
 514	return of_property_read_bool(np, wa->id);
 515}
 516
 517static
 518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 519					const void *arg)
 520{
 521	return this_cpu_has_cap((uintptr_t)wa->id);
 522}
 523
 524
 525static
 526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 527				       const void *arg)
 528{
 529	static const struct ate_acpi_oem_info empty_oem_info = {};
 530	const struct ate_acpi_oem_info *info = wa->id;
 531	const struct acpi_table_header *table = arg;
 532
 533	/* Iterate over the ACPI OEM info array, looking for a match */
 534	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 535		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 536		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 537		    info->oem_revision == table->oem_revision)
 538			return true;
 539
 540		info++;
 541	}
 542
 543	return false;
 544}
 545
 546static const struct arch_timer_erratum_workaround *
 547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 548			  ate_match_fn_t match_fn,
 549			  void *arg)
 550{
 551	int i;
 552
 553	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 554		if (ool_workarounds[i].match_type != type)
 555			continue;
 556
 557		if (match_fn(&ool_workarounds[i], arg))
 558			return &ool_workarounds[i];
 559	}
 560
 561	return NULL;
 562}
 563
 564static
 565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 566				  bool local)
 567{
 568	int i;
 569
 570	if (local) {
 571		__this_cpu_write(timer_unstable_counter_workaround, wa);
 572	} else {
 573		for_each_possible_cpu(i)
 574			per_cpu(timer_unstable_counter_workaround, i) = wa;
 575	}
 576
 577	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 578		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 
 
 
 579
 580	/*
 581	 * Don't use the vdso fastpath if errata require using the
 582	 * out-of-line counter accessor. We may change our mind pretty
 583	 * late in the game (with a per-CPU erratum, for example), so
 584	 * change both the default value and the vdso itself.
 585	 */
 586	if (wa->read_cntvct_el0) {
 587		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 588		vdso_default = VDSO_CLOCKMODE_NONE;
 589	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 590		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 591		clocksource_counter.vdso_clock_mode = vdso_default;
 592	}
 593}
 594
 595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 596					    void *arg)
 597{
 598	const struct arch_timer_erratum_workaround *wa, *__wa;
 599	ate_match_fn_t match_fn = NULL;
 600	bool local = false;
 601
 602	switch (type) {
 603	case ate_match_dt:
 604		match_fn = arch_timer_check_dt_erratum;
 605		break;
 606	case ate_match_local_cap_id:
 607		match_fn = arch_timer_check_local_cap_erratum;
 608		local = true;
 609		break;
 610	case ate_match_acpi_oem_info:
 611		match_fn = arch_timer_check_acpi_oem_erratum;
 612		break;
 613	default:
 614		WARN_ON(1);
 615		return;
 616	}
 617
 618	wa = arch_timer_iterate_errata(type, match_fn, arg);
 619	if (!wa)
 620		return;
 621
 622	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 623	if (__wa && wa != __wa)
 624		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 625			wa->desc, __wa->desc);
 
 
 626
 627	if (__wa)
 628		return;
 
 629
 630	arch_timer_enable_workaround(wa, local);
 631	pr_info("Enabling %s workaround for %s\n",
 632		local ? "local" : "global", wa->desc);
 633}
 634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635static bool arch_timer_this_cpu_has_cntvct_wa(void)
 636{
 637	return has_erratum_handler(read_cntvct_el0);
 638}
 639
 640static bool arch_timer_counter_has_wa(void)
 641{
 642	return atomic_read(&timer_unstable_counter_workaround_in_use);
 643}
 644#else
 645#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 
 
 
 646#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 647#define arch_timer_counter_has_wa()			({false;})
 648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 649
 650static __always_inline irqreturn_t timer_handler(const int access,
 651					struct clock_event_device *evt)
 652{
 653	unsigned long ctrl;
 654
 655	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 656	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 657		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 658		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 659		evt->event_handler(evt);
 660		return IRQ_HANDLED;
 661	}
 662
 663	return IRQ_NONE;
 664}
 665
 666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 667{
 668	struct clock_event_device *evt = dev_id;
 669
 670	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 671}
 672
 673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 674{
 675	struct clock_event_device *evt = dev_id;
 676
 677	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 678}
 679
 680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 681{
 682	struct clock_event_device *evt = dev_id;
 683
 684	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 685}
 686
 687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 688{
 689	struct clock_event_device *evt = dev_id;
 690
 691	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 692}
 693
 694static __always_inline int timer_shutdown(const int access,
 695					  struct clock_event_device *clk)
 696{
 697	unsigned long ctrl;
 698
 699	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 700	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 701	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 702
 703	return 0;
 704}
 705
 706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 707{
 708	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 709}
 710
 711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 712{
 713	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 714}
 715
 716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 717{
 718	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 719}
 720
 721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 722{
 723	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 724}
 725
 726static __always_inline void set_next_event(const int access, unsigned long evt,
 727					   struct clock_event_device *clk)
 728{
 729	unsigned long ctrl;
 730	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 731	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 732	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 733	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 734	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 735}
 736
 737static int arch_timer_set_next_event_virt(unsigned long evt,
 738					  struct clock_event_device *clk)
 739{
 
 
 
 
 
 740	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 741	return 0;
 742}
 743
 744static int arch_timer_set_next_event_phys(unsigned long evt,
 745					  struct clock_event_device *clk)
 746{
 
 
 
 
 
 747	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 748	return 0;
 749}
 750
 751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 752					      struct clock_event_device *clk)
 753{
 754	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 755	return 0;
 756}
 757
 758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 759					      struct clock_event_device *clk)
 760{
 761	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 762	return 0;
 763}
 764
 765static void __arch_timer_setup(unsigned type,
 766			       struct clock_event_device *clk)
 767{
 768	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 769
 770	if (type == ARCH_TIMER_TYPE_CP15) {
 771		typeof(clk->set_next_event) sne;
 772
 773		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 774
 775		if (arch_timer_c3stop)
 776			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 777		clk->name = "arch_sys_timer";
 778		clk->rating = 450;
 779		clk->cpumask = cpumask_of(smp_processor_id());
 780		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 781		switch (arch_timer_uses_ppi) {
 782		case ARCH_TIMER_VIRT_PPI:
 783			clk->set_state_shutdown = arch_timer_shutdown_virt;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 785			sne = erratum_handler(set_next_event_virt);
 786			break;
 787		case ARCH_TIMER_PHYS_SECURE_PPI:
 788		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 789		case ARCH_TIMER_HYP_PPI:
 790			clk->set_state_shutdown = arch_timer_shutdown_phys;
 791			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 792			sne = erratum_handler(set_next_event_phys);
 793			break;
 794		default:
 795			BUG();
 796		}
 797
 798		clk->set_next_event = sne;
 799	} else {
 800		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 801		clk->name = "arch_mem_timer";
 802		clk->rating = 400;
 803		clk->cpumask = cpu_possible_mask;
 804		if (arch_timer_mem_use_virtual) {
 805			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 806			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 807			clk->set_next_event =
 808				arch_timer_set_next_event_virt_mem;
 809		} else {
 810			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 811			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 812			clk->set_next_event =
 813				arch_timer_set_next_event_phys_mem;
 814		}
 815	}
 816
 817	clk->set_state_shutdown(clk);
 818
 819	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 820}
 821
 822static void arch_timer_evtstrm_enable(int divider)
 823{
 824	u32 cntkctl = arch_timer_get_cntkctl();
 825
 826	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 827	/* Set the divider and enable virtual event stream */
 828	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 829			| ARCH_TIMER_VIRT_EVT_EN;
 830	arch_timer_set_cntkctl(cntkctl);
 831	arch_timer_set_evtstrm_feature();
 
 
 
 832	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 833}
 834
 835static void arch_timer_configure_evtstream(void)
 836{
 837	int evt_stream_div, lsb;
 838
 839	/*
 840	 * As the event stream can at most be generated at half the frequency
 841	 * of the counter, use half the frequency when computing the divider.
 842	 */
 843	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 844
 845	/*
 846	 * Find the closest power of two to the divisor. If the adjacent bit
 847	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 848	 */
 849	lsb = fls(evt_stream_div) - 1;
 850	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 851		lsb++;
 852
 
 
 
 
 
 853	/* enable event stream */
 854	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 855}
 856
 857static void arch_counter_set_user_access(void)
 858{
 859	u32 cntkctl = arch_timer_get_cntkctl();
 860
 861	/* Disable user access to the timers and both counters */
 862	/* Also disable virtual event stream */
 863	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 864			| ARCH_TIMER_USR_VT_ACCESS_EN
 865		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 866			| ARCH_TIMER_VIRT_EVT_EN
 867			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 868
 869	/*
 870	 * Enable user access to the virtual counter if it doesn't
 871	 * need to be workaround. The vdso may have been already
 872	 * disabled though.
 873	 */
 874	if (arch_timer_this_cpu_has_cntvct_wa())
 875		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 876	else
 877		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 878
 879	arch_timer_set_cntkctl(cntkctl);
 880}
 881
 882static bool arch_timer_has_nonsecure_ppi(void)
 883{
 884	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 885		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 886}
 887
 888static u32 check_ppi_trigger(int irq)
 889{
 890	u32 flags = irq_get_trigger_type(irq);
 891
 892	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 893		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 894		pr_warn("WARNING: Please fix your firmware\n");
 895		flags = IRQF_TRIGGER_LOW;
 896	}
 897
 898	return flags;
 899}
 900
 901static int arch_timer_starting_cpu(unsigned int cpu)
 902{
 903	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 904	u32 flags;
 905
 906	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 907
 908	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 909	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 910
 911	if (arch_timer_has_nonsecure_ppi()) {
 912		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 913		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 914				  flags);
 915	}
 916
 917	arch_counter_set_user_access();
 918	if (evtstrm_enable)
 919		arch_timer_configure_evtstream();
 920
 921	return 0;
 922}
 923
 924static int validate_timer_rate(void)
 925{
 926	if (!arch_timer_rate)
 927		return -EINVAL;
 928
 929	/* Arch timer frequency < 1MHz can cause trouble */
 930	WARN_ON(arch_timer_rate < 1000000);
 931
 932	return 0;
 933}
 934
 935/*
 936 * For historical reasons, when probing with DT we use whichever (non-zero)
 937 * rate was probed first, and don't verify that others match. If the first node
 938 * probed has a clock-frequency property, this overrides the HW register.
 939 */
 940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 941{
 942	/* Who has more than one independent system counter? */
 943	if (arch_timer_rate)
 944		return;
 945
 946	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 947		arch_timer_rate = rate;
 948
 949	/* Check the timer frequency. */
 950	if (validate_timer_rate())
 951		pr_warn("frequency not available\n");
 952}
 953
 954static void __init arch_timer_banner(unsigned type)
 955{
 956	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 957		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 958		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 959			" and " : "",
 960		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 961		(unsigned long)arch_timer_rate / 1000000,
 962		(unsigned long)(arch_timer_rate / 10000) % 100,
 963		type & ARCH_TIMER_TYPE_CP15 ?
 964			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 965			"",
 966		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 967		type & ARCH_TIMER_TYPE_MEM ?
 968			arch_timer_mem_use_virtual ? "virt" : "phys" :
 969			"");
 970}
 971
 972u32 arch_timer_get_rate(void)
 973{
 974	return arch_timer_rate;
 975}
 976
 977bool arch_timer_evtstrm_available(void)
 978{
 979	/*
 980	 * We might get called from a preemptible context. This is fine
 981	 * because availability of the event stream should be always the same
 982	 * for a preemptible context and context where we might resume a task.
 983	 */
 984	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 985}
 986
 987static u64 arch_counter_get_cntvct_mem(void)
 988{
 989	u32 vct_lo, vct_hi, tmp_hi;
 990
 991	do {
 992		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 993		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 994		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 995	} while (vct_hi != tmp_hi);
 996
 997	return ((u64) vct_hi << 32) | vct_lo;
 998}
 999
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004	return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
1009	u64 start_count;
1010
1011	/* Register the CP15 based counter if we have one */
1012	if (type & ARCH_TIMER_TYPE_CP15) {
1013		u64 (*rd)(void);
1014
1015		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017			if (arch_timer_counter_has_wa())
1018				rd = arch_counter_get_cntvct_stable;
1019			else
1020				rd = arch_counter_get_cntvct;
1021		} else {
1022			if (arch_timer_counter_has_wa())
1023				rd = arch_counter_get_cntpct_stable;
1024			else
1025				rd = arch_counter_get_cntpct;
1026		}
1027
1028		arch_timer_read_counter = rd;
1029		clocksource_counter.vdso_clock_mode = vdso_default;
1030	} else {
1031		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032	}
1033
1034	if (!arch_counter_suspend_stop)
1035		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036	start_count = arch_timer_read_counter();
1037	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038	cyclecounter.mult = clocksource_counter.mult;
1039	cyclecounter.shift = clocksource_counter.shift;
1040	timecounter_init(&arch_timer_kvm_info.timecounter,
1041			 &cyclecounter, start_count);
1042
1043	/* 56 bits minimum, so we assume worst case rollover */
1044	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050
1051	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052	if (arch_timer_has_nonsecure_ppi())
1053		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055	clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064	arch_timer_stop(clk);
1065	return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071				    unsigned long action, void *hcpu)
1072{
1073	if (action == CPU_PM_ENTER) {
1074		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080		if (arch_timer_have_evtstrm_feature())
1081			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082	}
1083	return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087	.notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103	return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113	int err;
1114	int ppi;
1115
1116	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117	if (!arch_timer_evt) {
1118		err = -ENOMEM;
1119		goto out;
1120	}
1121
1122	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123	switch (arch_timer_uses_ppi) {
1124	case ARCH_TIMER_VIRT_PPI:
1125		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126					 "arch_timer", arch_timer_evt);
1127		break;
1128	case ARCH_TIMER_PHYS_SECURE_PPI:
1129	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131					 "arch_timer", arch_timer_evt);
1132		if (!err && arch_timer_has_nonsecure_ppi()) {
1133			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135						 "arch_timer", arch_timer_evt);
1136			if (err)
1137				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138						arch_timer_evt);
1139		}
1140		break;
1141	case ARCH_TIMER_HYP_PPI:
1142		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143					 "arch_timer", arch_timer_evt);
1144		break;
1145	default:
1146		BUG();
1147	}
1148
1149	if (err) {
1150		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151		goto out_free;
1152	}
1153
1154	err = arch_timer_cpu_pm_init();
1155	if (err)
1156		goto out_unreg_notify;
1157
1158	/* Register and immediately configure the timer on the boot CPU */
1159	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160				"clockevents/arm/arch_timer:starting",
1161				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162	if (err)
1163		goto out_unreg_cpupm;
1164	return 0;
1165
1166out_unreg_cpupm:
1167	arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171	if (arch_timer_has_nonsecure_ppi())
1172		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173				arch_timer_evt);
1174
1175out_free:
1176	free_percpu(arch_timer_evt);
1177out:
1178	return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183	int ret;
1184	irq_handler_t func;
1185	struct arch_timer *t;
1186
1187	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188	if (!t)
1189		return -ENOMEM;
1190
1191	t->base = base;
1192	t->evt.irq = irq;
1193	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195	if (arch_timer_mem_use_virtual)
1196		func = arch_timer_handler_virt_mem;
1197	else
1198		func = arch_timer_handler_phys_mem;
1199
1200	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201	if (ret) {
1202		pr_err("Failed to request mem timer irq\n");
1203		kfree(t);
1204	}
1205
1206	return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210	{ .compatible   = "arm,armv7-timer",    },
1211	{ .compatible   = "arm,armv8-timer",    },
1212	{},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216	{ .compatible   = "arm,armv7-timer-mem", },
1217	{},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
1221{
1222	struct device_node *dn;
1223	bool needs_probing = false;
1224	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226	/* We have two timers, and both device-tree nodes are probed. */
1227	if ((arch_timers_present & mask) == mask)
1228		return false;
1229
1230	/*
1231	 * Only one type of timer is probed,
1232	 * check if we have another type of timer node in device-tree.
1233	 */
1234	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236	else
1237		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239	if (dn && of_device_is_available(dn))
1240		needs_probing = true;
1241
1242	of_node_put(dn);
1243
1244	return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
1249	arch_timer_banner(arch_timers_present);
1250	arch_counter_register(arch_timers_present);
1251	return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274	if (is_kernel_in_hyp_mode())
1275		return ARCH_TIMER_HYP_PPI;
1276
1277	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278		return ARCH_TIMER_VIRT_PPI;
1279
1280	if (IS_ENABLED(CONFIG_ARM64))
1281		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282
1283	return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289	if (is_kernel_in_hyp_mode())
1290		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295	int i, irq, ret;
1296	u32 rate;
1297	bool has_names;
1298
1299	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300		pr_warn("multiple nodes in dt, skipping\n");
1301		return 0;
1302	}
1303
1304	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
 
 
1305
1306	has_names = of_property_read_bool(np, "interrupt-names");
1307
1308	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309		if (has_names)
1310			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311		else
1312			irq = of_irq_get(np, i);
1313		if (irq > 0)
1314			arch_timer_ppi[i] = irq;
1315	}
1316
1317	arch_timer_populate_kvm_info();
1318
1319	rate = arch_timer_get_cntfrq();
1320	arch_timer_of_configure_rate(rate, np);
1321
1322	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324	/* Check for globally applicable workarounds */
1325	arch_timer_check_ool_workaround(ate_match_dt, np);
1326
1327	/*
1328	 * If we cannot rely on firmware initializing the timer registers then
1329	 * we should use the physical timers instead.
1330	 */
1331	if (IS_ENABLED(CONFIG_ARM) &&
1332	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334	else
1335		arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338		pr_err("No interrupt available, giving up\n");
1339		return -EINVAL;
1340	}
1341
1342	/* On some systems, the counter stops ticking when in suspend. */
1343	arch_counter_suspend_stop = of_property_read_bool(np,
1344							 "arm,no-tick-in-suspend");
1345
1346	ret = arch_timer_register();
1347	if (ret)
1348		return ret;
1349
1350	if (arch_timer_needs_of_probing())
1351		return 0;
1352
1353	return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361	void __iomem *base;
1362	u32 rate;
1363
1364	base = ioremap(frame->cntbase, frame->size);
1365	if (!base) {
1366		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367		return 0;
1368	}
1369
1370	rate = readl_relaxed(base + CNTFRQ);
1371
1372	iounmap(base);
1373
1374	return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381	void __iomem *cntctlbase;
1382	u32 cnttidr;
1383	int i;
1384
1385	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386	if (!cntctlbase) {
1387		pr_err("Can't map CNTCTLBase @ %pa\n",
1388			&timer_mem->cntctlbase);
1389		return NULL;
1390	}
1391
1392	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394	/*
1395	 * Try to find a virtual capable frame. Otherwise fall back to a
1396	 * physical capable frame.
1397	 */
1398	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402		frame = &timer_mem->frame[i];
1403		if (!frame->valid)
1404			continue;
1405
1406		/* Try enabling everything, and see what sticks */
1407		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409
1410		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412			best_frame = frame;
1413			arch_timer_mem_use_virtual = true;
1414			break;
1415		}
1416
1417		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418			continue;
1419
1420		best_frame = frame;
1421	}
1422
1423	iounmap(cntctlbase);
1424
1425	return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431	void __iomem *base;
1432	int ret, irq = 0;
1433
1434	if (arch_timer_mem_use_virtual)
1435		irq = frame->virt_irq;
1436	else
1437		irq = frame->phys_irq;
1438
1439	if (!irq) {
1440		pr_err("Frame missing %s irq.\n",
1441		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442		return -EINVAL;
1443	}
1444
1445	if (!request_mem_region(frame->cntbase, frame->size,
1446				"arch_mem_timer"))
1447		return -EBUSY;
1448
1449	base = ioremap(frame->cntbase, frame->size);
1450	if (!base) {
1451		pr_err("Can't map frame's registers\n");
1452		return -ENXIO;
1453	}
1454
1455	ret = arch_timer_mem_register(base, irq);
1456	if (ret) {
1457		iounmap(base);
1458		return ret;
1459	}
1460
1461	arch_counter_base = base;
1462	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464	return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469	struct arch_timer_mem *timer_mem;
1470	struct arch_timer_mem_frame *frame;
1471	struct device_node *frame_node;
1472	struct resource res;
1473	int ret = -EINVAL;
1474	u32 rate;
1475
1476	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477	if (!timer_mem)
1478		return -ENOMEM;
1479
1480	if (of_address_to_resource(np, 0, &res))
1481		goto out;
1482	timer_mem->cntctlbase = res.start;
1483	timer_mem->size = resource_size(&res);
1484
1485	for_each_available_child_of_node(np, frame_node) {
1486		u32 n;
1487		struct arch_timer_mem_frame *frame;
1488
1489		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490			pr_err(FW_BUG "Missing frame-number.\n");
1491			of_node_put(frame_node);
1492			goto out;
1493		}
1494		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497			of_node_put(frame_node);
1498			goto out;
1499		}
1500		frame = &timer_mem->frame[n];
1501
1502		if (frame->valid) {
1503			pr_err(FW_BUG "Duplicated frame-number.\n");
1504			of_node_put(frame_node);
1505			goto out;
1506		}
1507
1508		if (of_address_to_resource(frame_node, 0, &res)) {
1509			of_node_put(frame_node);
1510			goto out;
1511		}
1512		frame->cntbase = res.start;
1513		frame->size = resource_size(&res);
1514
1515		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516						       ARCH_TIMER_VIRT_SPI);
1517		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518						       ARCH_TIMER_PHYS_SPI);
1519
1520		frame->valid = true;
1521	}
1522
1523	frame = arch_timer_mem_find_best_frame(timer_mem);
1524	if (!frame) {
1525		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526			&timer_mem->cntctlbase);
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532	arch_timer_of_configure_rate(rate, np);
1533
1534	ret = arch_timer_mem_frame_register(frame);
1535	if (!ret && !arch_timer_needs_of_probing())
1536		ret = arch_timer_common_init();
1537out:
1538	kfree(timer_mem);
1539	return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542		       arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548	struct arch_timer_mem_frame *frame;
1549	u32 rate;
1550	int i;
1551
1552	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553		frame = &timer_mem->frame[i];
1554
1555		if (!frame->valid)
1556			continue;
1557
1558		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559		if (rate == arch_timer_rate)
1560			continue;
1561
1562		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563			&frame->cntbase,
1564			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566		return -EINVAL;
1567	}
1568
1569	return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574	struct arch_timer_mem *timers, *timer;
1575	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576	int timer_count, i, ret = 0;
1577
1578	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579			    GFP_KERNEL);
1580	if (!timers)
1581		return -ENOMEM;
1582
1583	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584	if (ret || !timer_count)
1585		goto out;
1586
1587	/*
1588	 * While unlikely, it's theoretically possible that none of the frames
1589	 * in a timer expose the combination of feature we want.
1590	 */
1591	for (i = 0; i < timer_count; i++) {
1592		timer = &timers[i];
1593
1594		frame = arch_timer_mem_find_best_frame(timer);
1595		if (!best_frame)
1596			best_frame = frame;
1597
1598		ret = arch_timer_mem_verify_cntfrq(timer);
1599		if (ret) {
1600			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601			goto out;
1602		}
1603
1604		if (!best_frame) /* implies !frame */
1605			/*
1606			 * Only complain about missing suitable frames if we
1607			 * haven't already found one in a previous iteration.
1608			 */
1609			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610				&timer->cntctlbase);
1611	}
1612
1613	if (best_frame)
1614		ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616	kfree(timers);
1617	return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623	int ret, platform_timer_count;
1624
1625	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626		pr_warn("already initialized, skipping\n");
1627		return -EINVAL;
1628	}
1629
1630	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632	ret = acpi_gtdt_init(table, &platform_timer_count);
1633	if (ret)
 
1634		return ret;
 
1635
1636	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638
1639	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641
1642	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644
1645	arch_timer_populate_kvm_info();
1646
1647	/*
1648	 * When probing via ACPI, we have no mechanism to override the sysreg
1649	 * CNTFRQ value. This *must* be correct.
1650	 */
1651	arch_timer_rate = arch_timer_get_cntfrq();
1652	ret = validate_timer_rate();
1653	if (ret) {
1654		pr_err(FW_BUG "frequency not available.\n");
1655		return ret;
1656	}
1657
1658	arch_timer_uses_ppi = arch_timer_select_ppi();
1659	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660		pr_err("No interrupt available, giving up\n");
1661		return -EINVAL;
1662	}
1663
1664	/* Always-on capability */
1665	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667	/* Check for globally applicable workarounds */
1668	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670	ret = arch_timer_register();
1671	if (ret)
1672		return ret;
1673
1674	if (platform_timer_count &&
1675	    arch_timer_mem_acpi_init(platform_timer_count))
1676		pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678	return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684				 struct clocksource **cs)
1685{
1686	struct arm_smccc_res hvc_res;
1687	u32 ptp_counter;
1688	ktime_t ktime;
1689
1690	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691		return -EOPNOTSUPP;
1692
1693	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695	else
1696		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699			     ptp_counter, &hvc_res);
1700
1701	if ((int)(hvc_res.a0) < 0)
1702		return -EOPNOTSUPP;
1703
1704	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705	*ts = ktime_to_timespec64(ktime);
1706	if (cycle)
1707		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708	if (cs)
1709		*cs = &clocksource_counter;
1710
1711	return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
v4.17
 
   1/*
   2 *  linux/drivers/clocksource/arm_arch_timer.c
   3 *
   4 *  Copyright (C) 2011 ARM Ltd.
   5 *  All Rights Reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)	"arm_arch_timer: " fmt
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/device.h>
  17#include <linux/smp.h>
  18#include <linux/cpu.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/clockchips.h>
  21#include <linux/clocksource.h>
 
  22#include <linux/interrupt.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_address.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
  27#include <linux/sched/clock.h>
  28#include <linux/sched_clock.h>
  29#include <linux/acpi.h>
 
 
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#undef pr_fmt
  37#define pr_fmt(fmt) "arch_timer: " fmt
  38
  39#define CNTTIDR		0x08
  40#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  41
  42#define CNTACR(n)	(0x40 + ((n) * 4))
  43#define CNTACR_RPCT	BIT(0)
  44#define CNTACR_RVCT	BIT(1)
  45#define CNTACR_RFRQ	BIT(2)
  46#define CNTACR_RVOFF	BIT(3)
  47#define CNTACR_RWVT	BIT(4)
  48#define CNTACR_RWPT	BIT(5)
  49
  50#define CNTVCT_LO	0x08
  51#define CNTVCT_HI	0x0c
  52#define CNTFRQ		0x10
  53#define CNTP_TVAL	0x28
  54#define CNTP_CTL	0x2c
  55#define CNTV_TVAL	0x38
  56#define CNTV_CTL	0x3c
  57
  58static unsigned arch_timers_present __initdata;
  59
  60static void __iomem *arch_counter_base;
  61
  62struct arch_timer {
  63	void __iomem *base;
  64	struct clock_event_device evt;
  65};
  66
  67#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  68
  69static u32 arch_timer_rate;
  70static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
 
 
 
 
 
 
 
 
  71
  72static struct clock_event_device __percpu *arch_timer_evt;
  73
  74static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  75static bool arch_timer_c3stop;
  76static bool arch_timer_mem_use_virtual;
  77static bool arch_counter_suspend_stop;
  78static bool vdso_default = true;
 
 
 
 
  79
  80static cpumask_t evtstrm_available = CPU_MASK_NONE;
  81static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  82
  83static int __init early_evtstrm_cfg(char *buf)
  84{
  85	return strtobool(buf, &evtstrm_enable);
  86}
  87early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  88
  89/*
  90 * Architected system timer support.
  91 */
  92
  93static __always_inline
  94void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  95			  struct clock_event_device *clk)
  96{
  97	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  98		struct arch_timer *timer = to_arch_timer(clk);
  99		switch (reg) {
 100		case ARCH_TIMER_REG_CTRL:
 101			writel_relaxed(val, timer->base + CNTP_CTL);
 102			break;
 103		case ARCH_TIMER_REG_TVAL:
 104			writel_relaxed(val, timer->base + CNTP_TVAL);
 105			break;
 106		}
 107	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 108		struct arch_timer *timer = to_arch_timer(clk);
 109		switch (reg) {
 110		case ARCH_TIMER_REG_CTRL:
 111			writel_relaxed(val, timer->base + CNTV_CTL);
 112			break;
 113		case ARCH_TIMER_REG_TVAL:
 114			writel_relaxed(val, timer->base + CNTV_TVAL);
 115			break;
 116		}
 117	} else {
 118		arch_timer_reg_write_cp15(access, reg, val);
 119	}
 120}
 121
 122static __always_inline
 123u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 124			struct clock_event_device *clk)
 125{
 126	u32 val;
 127
 128	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 129		struct arch_timer *timer = to_arch_timer(clk);
 130		switch (reg) {
 131		case ARCH_TIMER_REG_CTRL:
 132			val = readl_relaxed(timer->base + CNTP_CTL);
 133			break;
 134		case ARCH_TIMER_REG_TVAL:
 135			val = readl_relaxed(timer->base + CNTP_TVAL);
 136			break;
 137		}
 138	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 139		struct arch_timer *timer = to_arch_timer(clk);
 140		switch (reg) {
 141		case ARCH_TIMER_REG_CTRL:
 142			val = readl_relaxed(timer->base + CNTV_CTL);
 143			break;
 144		case ARCH_TIMER_REG_TVAL:
 145			val = readl_relaxed(timer->base + CNTV_TVAL);
 146			break;
 147		}
 148	} else {
 149		val = arch_timer_reg_read_cp15(access, reg);
 150	}
 151
 152	return val;
 153}
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155/*
 156 * Default to cp15 based access because arm64 uses this function for
 157 * sched_clock() before DT is probed and the cp15 method is guaranteed
 158 * to exist on arm64. arm doesn't use this before DT is probed so even
 159 * if we don't have the cp15 accessors we won't have a problem.
 160 */
 161u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 162EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 163
 164static u64 arch_counter_read(struct clocksource *cs)
 165{
 166	return arch_timer_read_counter();
 167}
 168
 169static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 170{
 171	return arch_timer_read_counter();
 172}
 173
 174static struct clocksource clocksource_counter = {
 175	.name	= "arch_sys_counter",
 
 176	.rating	= 400,
 177	.read	= arch_counter_read,
 178	.mask	= CLOCKSOURCE_MASK(56),
 179	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 180};
 181
 182static struct cyclecounter cyclecounter __ro_after_init = {
 183	.read	= arch_counter_read_cc,
 184	.mask	= CLOCKSOURCE_MASK(56),
 185};
 186
 187struct ate_acpi_oem_info {
 188	char oem_id[ACPI_OEM_ID_SIZE + 1];
 189	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 190	u32 oem_revision;
 191};
 192
 193#ifdef CONFIG_FSL_ERRATUM_A008585
 194/*
 195 * The number of retries is an arbitrary value well beyond the highest number
 196 * of iterations the loop has been observed to take.
 197 */
 198#define __fsl_a008585_read_reg(reg) ({			\
 199	u64 _old, _new;					\
 200	int _retries = 200;				\
 201							\
 202	do {						\
 203		_old = read_sysreg(reg);		\
 204		_new = read_sysreg(reg);		\
 205		_retries--;				\
 206	} while (unlikely(_old != _new) && _retries);	\
 207							\
 208	WARN_ON_ONCE(!_retries);			\
 209	_new;						\
 210})
 211
 212static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 213{
 214	return __fsl_a008585_read_reg(cntp_tval_el0);
 215}
 216
 217static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 218{
 219	return __fsl_a008585_read_reg(cntv_tval_el0);
 220}
 221
 222static u64 notrace fsl_a008585_read_cntpct_el0(void)
 223{
 224	return __fsl_a008585_read_reg(cntpct_el0);
 225}
 226
 227static u64 notrace fsl_a008585_read_cntvct_el0(void)
 228{
 229	return __fsl_a008585_read_reg(cntvct_el0);
 230}
 231#endif
 232
 233#ifdef CONFIG_HISILICON_ERRATUM_161010101
 234/*
 235 * Verify whether the value of the second read is larger than the first by
 236 * less than 32 is the only way to confirm the value is correct, so clear the
 237 * lower 5 bits to check whether the difference is greater than 32 or not.
 238 * Theoretically the erratum should not occur more than twice in succession
 239 * when reading the system counter, but it is possible that some interrupts
 240 * may lead to more than twice read errors, triggering the warning, so setting
 241 * the number of retries far beyond the number of iterations the loop has been
 242 * observed to take.
 243 */
 244#define __hisi_161010101_read_reg(reg) ({				\
 245	u64 _old, _new;						\
 246	int _retries = 50;					\
 247								\
 248	do {							\
 249		_old = read_sysreg(reg);			\
 250		_new = read_sysreg(reg);			\
 251		_retries--;					\
 252	} while (unlikely((_new - _old) >> 5) && _retries);	\
 253								\
 254	WARN_ON_ONCE(!_retries);				\
 255	_new;							\
 256})
 257
 258static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 259{
 260	return __hisi_161010101_read_reg(cntp_tval_el0);
 261}
 262
 263static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 264{
 265	return __hisi_161010101_read_reg(cntv_tval_el0);
 266}
 267
 268static u64 notrace hisi_161010101_read_cntpct_el0(void)
 269{
 270	return __hisi_161010101_read_reg(cntpct_el0);
 271}
 272
 273static u64 notrace hisi_161010101_read_cntvct_el0(void)
 274{
 275	return __hisi_161010101_read_reg(cntvct_el0);
 276}
 277
 278static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 279	/*
 280	 * Note that trailing spaces are required to properly match
 281	 * the OEM table information.
 282	 */
 283	{
 284		.oem_id		= "HISI  ",
 285		.oem_table_id	= "HIP05   ",
 286		.oem_revision	= 0,
 287	},
 288	{
 289		.oem_id		= "HISI  ",
 290		.oem_table_id	= "HIP06   ",
 291		.oem_revision	= 0,
 292	},
 293	{
 294		.oem_id		= "HISI  ",
 295		.oem_table_id	= "HIP07   ",
 296		.oem_revision	= 0,
 297	},
 298	{ /* Sentinel indicating the end of the OEM array */ },
 299};
 300#endif
 301
 302#ifdef CONFIG_ARM64_ERRATUM_858921
 303static u64 notrace arm64_858921_read_cntpct_el0(void)
 304{
 305	u64 old, new;
 306
 307	old = read_sysreg(cntpct_el0);
 308	new = read_sysreg(cntpct_el0);
 309	return (((old ^ new) >> 32) & 1) ? old : new;
 310}
 311
 312static u64 notrace arm64_858921_read_cntvct_el0(void)
 313{
 314	u64 old, new;
 315
 316	old = read_sysreg(cntvct_el0);
 317	new = read_sysreg(cntvct_el0);
 318	return (((old ^ new) >> 32) & 1) ? old : new;
 319}
 320#endif
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 323DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 324EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 325
 326DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
 327EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
 328
 329static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 330						struct clock_event_device *clk)
 331{
 332	unsigned long ctrl;
 333	u64 cval;
 334
 335	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 336	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 337	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 338
 339	if (access == ARCH_TIMER_PHYS_ACCESS) {
 340		cval = evt + arch_counter_get_cntpct();
 341		write_sysreg(cval, cntp_cval_el0);
 342	} else {
 343		cval = evt + arch_counter_get_cntvct();
 344		write_sysreg(cval, cntv_cval_el0);
 345	}
 346
 347	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 348}
 349
 350static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 351					    struct clock_event_device *clk)
 352{
 353	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 354	return 0;
 355}
 356
 357static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 358					    struct clock_event_device *clk)
 359{
 360	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 361	return 0;
 362}
 363
 364static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 365#ifdef CONFIG_FSL_ERRATUM_A008585
 366	{
 367		.match_type = ate_match_dt,
 368		.id = "fsl,erratum-a008585",
 369		.desc = "Freescale erratum a005858",
 370		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 371		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 372		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 373		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 374		.set_next_event_phys = erratum_set_next_event_tval_phys,
 375		.set_next_event_virt = erratum_set_next_event_tval_virt,
 376	},
 377#endif
 378#ifdef CONFIG_HISILICON_ERRATUM_161010101
 379	{
 380		.match_type = ate_match_dt,
 381		.id = "hisilicon,erratum-161010101",
 382		.desc = "HiSilicon erratum 161010101",
 383		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 384		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 385		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 386		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 387		.set_next_event_phys = erratum_set_next_event_tval_phys,
 388		.set_next_event_virt = erratum_set_next_event_tval_virt,
 389	},
 390	{
 391		.match_type = ate_match_acpi_oem_info,
 392		.id = hisi_161010101_oem_info,
 393		.desc = "HiSilicon erratum 161010101",
 394		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 395		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 396		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 397		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 398		.set_next_event_phys = erratum_set_next_event_tval_phys,
 399		.set_next_event_virt = erratum_set_next_event_tval_virt,
 400	},
 401#endif
 402#ifdef CONFIG_ARM64_ERRATUM_858921
 403	{
 404		.match_type = ate_match_local_cap_id,
 405		.id = (void *)ARM64_WORKAROUND_858921,
 406		.desc = "ARM erratum 858921",
 407		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 408		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 409	},
 410#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411};
 412
 413typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 414			       const void *);
 415
 416static
 417bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 418				 const void *arg)
 419{
 420	const struct device_node *np = arg;
 421
 422	return of_property_read_bool(np, wa->id);
 423}
 424
 425static
 426bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 427					const void *arg)
 428{
 429	return this_cpu_has_cap((uintptr_t)wa->id);
 430}
 431
 432
 433static
 434bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 435				       const void *arg)
 436{
 437	static const struct ate_acpi_oem_info empty_oem_info = {};
 438	const struct ate_acpi_oem_info *info = wa->id;
 439	const struct acpi_table_header *table = arg;
 440
 441	/* Iterate over the ACPI OEM info array, looking for a match */
 442	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 443		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 444		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 445		    info->oem_revision == table->oem_revision)
 446			return true;
 447
 448		info++;
 449	}
 450
 451	return false;
 452}
 453
 454static const struct arch_timer_erratum_workaround *
 455arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 456			  ate_match_fn_t match_fn,
 457			  void *arg)
 458{
 459	int i;
 460
 461	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 462		if (ool_workarounds[i].match_type != type)
 463			continue;
 464
 465		if (match_fn(&ool_workarounds[i], arg))
 466			return &ool_workarounds[i];
 467	}
 468
 469	return NULL;
 470}
 471
 472static
 473void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 474				  bool local)
 475{
 476	int i;
 477
 478	if (local) {
 479		__this_cpu_write(timer_unstable_counter_workaround, wa);
 480	} else {
 481		for_each_possible_cpu(i)
 482			per_cpu(timer_unstable_counter_workaround, i) = wa;
 483	}
 484
 485	/*
 486	 * Use the locked version, as we're called from the CPU
 487	 * hotplug framework. Otherwise, we end-up in deadlock-land.
 488	 */
 489	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
 490
 491	/*
 492	 * Don't use the vdso fastpath if errata require using the
 493	 * out-of-line counter accessor. We may change our mind pretty
 494	 * late in the game (with a per-CPU erratum, for example), so
 495	 * change both the default value and the vdso itself.
 496	 */
 497	if (wa->read_cntvct_el0) {
 498		clocksource_counter.archdata.vdso_direct = false;
 499		vdso_default = false;
 
 
 
 500	}
 501}
 502
 503static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 504					    void *arg)
 505{
 506	const struct arch_timer_erratum_workaround *wa;
 507	ate_match_fn_t match_fn = NULL;
 508	bool local = false;
 509
 510	switch (type) {
 511	case ate_match_dt:
 512		match_fn = arch_timer_check_dt_erratum;
 513		break;
 514	case ate_match_local_cap_id:
 515		match_fn = arch_timer_check_local_cap_erratum;
 516		local = true;
 517		break;
 518	case ate_match_acpi_oem_info:
 519		match_fn = arch_timer_check_acpi_oem_erratum;
 520		break;
 521	default:
 522		WARN_ON(1);
 523		return;
 524	}
 525
 526	wa = arch_timer_iterate_errata(type, match_fn, arg);
 527	if (!wa)
 528		return;
 529
 530	if (needs_unstable_timer_counter_workaround()) {
 531		const struct arch_timer_erratum_workaround *__wa;
 532		__wa = __this_cpu_read(timer_unstable_counter_workaround);
 533		if (__wa && wa != __wa)
 534			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 535				wa->desc, __wa->desc);
 536
 537		if (__wa)
 538			return;
 539	}
 540
 541	arch_timer_enable_workaround(wa, local);
 542	pr_info("Enabling %s workaround for %s\n",
 543		local ? "local" : "global", wa->desc);
 544}
 545
 546#define erratum_handler(fn, r, ...)					\
 547({									\
 548	bool __val;							\
 549	if (needs_unstable_timer_counter_workaround()) {		\
 550		const struct arch_timer_erratum_workaround *__wa;	\
 551		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
 552		if (__wa && __wa->fn) {					\
 553			r = __wa->fn(__VA_ARGS__);			\
 554			__val = true;					\
 555		} else {						\
 556			__val = false;					\
 557		}							\
 558	} else {							\
 559		__val = false;						\
 560	}								\
 561	__val;								\
 562})
 563
 564static bool arch_timer_this_cpu_has_cntvct_wa(void)
 565{
 566	const struct arch_timer_erratum_workaround *wa;
 
 567
 568	wa = __this_cpu_read(timer_unstable_counter_workaround);
 569	return wa && wa->read_cntvct_el0;
 
 570}
 571#else
 572#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 573#define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
 574#define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
 575#define erratum_handler(fn, r, ...)			({false;})
 576#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 
 577#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 578
 579static __always_inline irqreturn_t timer_handler(const int access,
 580					struct clock_event_device *evt)
 581{
 582	unsigned long ctrl;
 583
 584	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 585	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 586		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 587		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 588		evt->event_handler(evt);
 589		return IRQ_HANDLED;
 590	}
 591
 592	return IRQ_NONE;
 593}
 594
 595static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 596{
 597	struct clock_event_device *evt = dev_id;
 598
 599	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 600}
 601
 602static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 603{
 604	struct clock_event_device *evt = dev_id;
 605
 606	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 607}
 608
 609static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 610{
 611	struct clock_event_device *evt = dev_id;
 612
 613	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 614}
 615
 616static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 617{
 618	struct clock_event_device *evt = dev_id;
 619
 620	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 621}
 622
 623static __always_inline int timer_shutdown(const int access,
 624					  struct clock_event_device *clk)
 625{
 626	unsigned long ctrl;
 627
 628	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 629	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 630	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 631
 632	return 0;
 633}
 634
 635static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 636{
 637	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 638}
 639
 640static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 641{
 642	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 643}
 644
 645static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 646{
 647	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 648}
 649
 650static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 651{
 652	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 653}
 654
 655static __always_inline void set_next_event(const int access, unsigned long evt,
 656					   struct clock_event_device *clk)
 657{
 658	unsigned long ctrl;
 659	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 660	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 661	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 662	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 663	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 664}
 665
 666static int arch_timer_set_next_event_virt(unsigned long evt,
 667					  struct clock_event_device *clk)
 668{
 669	int ret;
 670
 671	if (erratum_handler(set_next_event_virt, ret, evt, clk))
 672		return ret;
 673
 674	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 675	return 0;
 676}
 677
 678static int arch_timer_set_next_event_phys(unsigned long evt,
 679					  struct clock_event_device *clk)
 680{
 681	int ret;
 682
 683	if (erratum_handler(set_next_event_phys, ret, evt, clk))
 684		return ret;
 685
 686	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 687	return 0;
 688}
 689
 690static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 691					      struct clock_event_device *clk)
 692{
 693	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 694	return 0;
 695}
 696
 697static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 698					      struct clock_event_device *clk)
 699{
 700	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 701	return 0;
 702}
 703
 704static void __arch_timer_setup(unsigned type,
 705			       struct clock_event_device *clk)
 706{
 707	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 708
 709	if (type == ARCH_TIMER_TYPE_CP15) {
 
 
 
 
 710		if (arch_timer_c3stop)
 711			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 712		clk->name = "arch_sys_timer";
 713		clk->rating = 450;
 714		clk->cpumask = cpumask_of(smp_processor_id());
 715		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 716		switch (arch_timer_uses_ppi) {
 717		case ARCH_TIMER_VIRT_PPI:
 718			clk->set_state_shutdown = arch_timer_shutdown_virt;
 719			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 720			clk->set_next_event = arch_timer_set_next_event_virt;
 721			break;
 722		case ARCH_TIMER_PHYS_SECURE_PPI:
 723		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 724		case ARCH_TIMER_HYP_PPI:
 725			clk->set_state_shutdown = arch_timer_shutdown_phys;
 726			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 727			clk->set_next_event = arch_timer_set_next_event_phys;
 728			break;
 729		default:
 730			BUG();
 731		}
 732
 733		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 734	} else {
 735		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 736		clk->name = "arch_mem_timer";
 737		clk->rating = 400;
 738		clk->cpumask = cpu_all_mask;
 739		if (arch_timer_mem_use_virtual) {
 740			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 741			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 742			clk->set_next_event =
 743				arch_timer_set_next_event_virt_mem;
 744		} else {
 745			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 746			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 747			clk->set_next_event =
 748				arch_timer_set_next_event_phys_mem;
 749		}
 750	}
 751
 752	clk->set_state_shutdown(clk);
 753
 754	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 755}
 756
 757static void arch_timer_evtstrm_enable(int divider)
 758{
 759	u32 cntkctl = arch_timer_get_cntkctl();
 760
 761	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 762	/* Set the divider and enable virtual event stream */
 763	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 764			| ARCH_TIMER_VIRT_EVT_EN;
 765	arch_timer_set_cntkctl(cntkctl);
 766	elf_hwcap |= HWCAP_EVTSTRM;
 767#ifdef CONFIG_COMPAT
 768	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
 769#endif
 770	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 771}
 772
 773static void arch_timer_configure_evtstream(void)
 774{
 775	int evt_stream_div, pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777	/* Find the closest power of two to the divisor */
 778	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 779	pos = fls(evt_stream_div);
 780	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 781		pos--;
 782	/* enable event stream */
 783	arch_timer_evtstrm_enable(min(pos, 15));
 784}
 785
 786static void arch_counter_set_user_access(void)
 787{
 788	u32 cntkctl = arch_timer_get_cntkctl();
 789
 790	/* Disable user access to the timers and both counters */
 791	/* Also disable virtual event stream */
 792	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 793			| ARCH_TIMER_USR_VT_ACCESS_EN
 794		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 795			| ARCH_TIMER_VIRT_EVT_EN
 796			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 797
 798	/*
 799	 * Enable user access to the virtual counter if it doesn't
 800	 * need to be workaround. The vdso may have been already
 801	 * disabled though.
 802	 */
 803	if (arch_timer_this_cpu_has_cntvct_wa())
 804		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 805	else
 806		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 807
 808	arch_timer_set_cntkctl(cntkctl);
 809}
 810
 811static bool arch_timer_has_nonsecure_ppi(void)
 812{
 813	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 814		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 815}
 816
 817static u32 check_ppi_trigger(int irq)
 818{
 819	u32 flags = irq_get_trigger_type(irq);
 820
 821	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 822		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 823		pr_warn("WARNING: Please fix your firmware\n");
 824		flags = IRQF_TRIGGER_LOW;
 825	}
 826
 827	return flags;
 828}
 829
 830static int arch_timer_starting_cpu(unsigned int cpu)
 831{
 832	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 833	u32 flags;
 834
 835	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 836
 837	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 838	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 839
 840	if (arch_timer_has_nonsecure_ppi()) {
 841		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 842		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 843				  flags);
 844	}
 845
 846	arch_counter_set_user_access();
 847	if (evtstrm_enable)
 848		arch_timer_configure_evtstream();
 849
 850	return 0;
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 853/*
 854 * For historical reasons, when probing with DT we use whichever (non-zero)
 855 * rate was probed first, and don't verify that others match. If the first node
 856 * probed has a clock-frequency property, this overrides the HW register.
 857 */
 858static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 859{
 860	/* Who has more than one independent system counter? */
 861	if (arch_timer_rate)
 862		return;
 863
 864	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 865		arch_timer_rate = rate;
 866
 867	/* Check the timer frequency. */
 868	if (arch_timer_rate == 0)
 869		pr_warn("frequency not available\n");
 870}
 871
 872static void arch_timer_banner(unsigned type)
 873{
 874	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 875		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 876		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 877			" and " : "",
 878		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 879		(unsigned long)arch_timer_rate / 1000000,
 880		(unsigned long)(arch_timer_rate / 10000) % 100,
 881		type & ARCH_TIMER_TYPE_CP15 ?
 882			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 883			"",
 884		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 885		type & ARCH_TIMER_TYPE_MEM ?
 886			arch_timer_mem_use_virtual ? "virt" : "phys" :
 887			"");
 888}
 889
 890u32 arch_timer_get_rate(void)
 891{
 892	return arch_timer_rate;
 893}
 894
 895bool arch_timer_evtstrm_available(void)
 896{
 897	/*
 898	 * We might get called from a preemptible context. This is fine
 899	 * because availability of the event stream should be always the same
 900	 * for a preemptible context and context where we might resume a task.
 901	 */
 902	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 903}
 904
 905static u64 arch_counter_get_cntvct_mem(void)
 906{
 907	u32 vct_lo, vct_hi, tmp_hi;
 908
 909	do {
 910		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 911		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 912		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 913	} while (vct_hi != tmp_hi);
 914
 915	return ((u64) vct_hi << 32) | vct_lo;
 916}
 917
 918static struct arch_timer_kvm_info arch_timer_kvm_info;
 919
 920struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 921{
 922	return &arch_timer_kvm_info;
 923}
 924
 925static void __init arch_counter_register(unsigned type)
 926{
 927	u64 start_count;
 928
 929	/* Register the CP15 based counter if we have one */
 930	if (type & ARCH_TIMER_TYPE_CP15) {
 
 
 931		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
 932		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
 933			arch_timer_read_counter = arch_counter_get_cntvct;
 934		else
 935			arch_timer_read_counter = arch_counter_get_cntpct;
 
 
 
 
 
 
 
 936
 937		clocksource_counter.archdata.vdso_direct = vdso_default;
 
 938	} else {
 939		arch_timer_read_counter = arch_counter_get_cntvct_mem;
 940	}
 941
 942	if (!arch_counter_suspend_stop)
 943		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 944	start_count = arch_timer_read_counter();
 945	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 946	cyclecounter.mult = clocksource_counter.mult;
 947	cyclecounter.shift = clocksource_counter.shift;
 948	timecounter_init(&arch_timer_kvm_info.timecounter,
 949			 &cyclecounter, start_count);
 950
 951	/* 56 bits minimum, so we assume worst case rollover */
 952	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 953}
 954
 955static void arch_timer_stop(struct clock_event_device *clk)
 956{
 957	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
 958
 959	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
 960	if (arch_timer_has_nonsecure_ppi())
 961		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 962
 963	clk->set_state_shutdown(clk);
 964}
 965
 966static int arch_timer_dying_cpu(unsigned int cpu)
 967{
 968	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 969
 970	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 971
 972	arch_timer_stop(clk);
 973	return 0;
 974}
 975
 976#ifdef CONFIG_CPU_PM
 977static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
 978static int arch_timer_cpu_pm_notify(struct notifier_block *self,
 979				    unsigned long action, void *hcpu)
 980{
 981	if (action == CPU_PM_ENTER) {
 982		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
 983
 984		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
 985	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
 986		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
 987
 988		if (elf_hwcap & HWCAP_EVTSTRM)
 989			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 990	}
 991	return NOTIFY_OK;
 992}
 993
 994static struct notifier_block arch_timer_cpu_pm_notifier = {
 995	.notifier_call = arch_timer_cpu_pm_notify,
 996};
 997
 998static int __init arch_timer_cpu_pm_init(void)
 999{
1000	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001}
1002
1003static void __init arch_timer_cpu_pm_deinit(void)
1004{
1005	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006}
1007
1008#else
1009static int __init arch_timer_cpu_pm_init(void)
1010{
1011	return 0;
1012}
1013
1014static void __init arch_timer_cpu_pm_deinit(void)
1015{
1016}
1017#endif
1018
1019static int __init arch_timer_register(void)
1020{
1021	int err;
1022	int ppi;
1023
1024	arch_timer_evt = alloc_percpu(struct clock_event_device);
1025	if (!arch_timer_evt) {
1026		err = -ENOMEM;
1027		goto out;
1028	}
1029
1030	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031	switch (arch_timer_uses_ppi) {
1032	case ARCH_TIMER_VIRT_PPI:
1033		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034					 "arch_timer", arch_timer_evt);
1035		break;
1036	case ARCH_TIMER_PHYS_SECURE_PPI:
1037	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039					 "arch_timer", arch_timer_evt);
1040		if (!err && arch_timer_has_nonsecure_ppi()) {
1041			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043						 "arch_timer", arch_timer_evt);
1044			if (err)
1045				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046						arch_timer_evt);
1047		}
1048		break;
1049	case ARCH_TIMER_HYP_PPI:
1050		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051					 "arch_timer", arch_timer_evt);
1052		break;
1053	default:
1054		BUG();
1055	}
1056
1057	if (err) {
1058		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059		goto out_free;
1060	}
1061
1062	err = arch_timer_cpu_pm_init();
1063	if (err)
1064		goto out_unreg_notify;
1065
1066	/* Register and immediately configure the timer on the boot CPU */
1067	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068				"clockevents/arm/arch_timer:starting",
1069				arch_timer_starting_cpu, arch_timer_dying_cpu);
1070	if (err)
1071		goto out_unreg_cpupm;
1072	return 0;
1073
1074out_unreg_cpupm:
1075	arch_timer_cpu_pm_deinit();
1076
1077out_unreg_notify:
1078	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079	if (arch_timer_has_nonsecure_ppi())
1080		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081				arch_timer_evt);
1082
1083out_free:
1084	free_percpu(arch_timer_evt);
1085out:
1086	return err;
1087}
1088
1089static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090{
1091	int ret;
1092	irq_handler_t func;
1093	struct arch_timer *t;
1094
1095	t = kzalloc(sizeof(*t), GFP_KERNEL);
1096	if (!t)
1097		return -ENOMEM;
1098
1099	t->base = base;
1100	t->evt.irq = irq;
1101	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103	if (arch_timer_mem_use_virtual)
1104		func = arch_timer_handler_virt_mem;
1105	else
1106		func = arch_timer_handler_phys_mem;
1107
1108	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109	if (ret) {
1110		pr_err("Failed to request mem timer irq\n");
1111		kfree(t);
1112	}
1113
1114	return ret;
1115}
1116
1117static const struct of_device_id arch_timer_of_match[] __initconst = {
1118	{ .compatible   = "arm,armv7-timer",    },
1119	{ .compatible   = "arm,armv8-timer",    },
1120	{},
1121};
1122
1123static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124	{ .compatible   = "arm,armv7-timer-mem", },
1125	{},
1126};
1127
1128static bool __init arch_timer_needs_of_probing(void)
1129{
1130	struct device_node *dn;
1131	bool needs_probing = false;
1132	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134	/* We have two timers, and both device-tree nodes are probed. */
1135	if ((arch_timers_present & mask) == mask)
1136		return false;
1137
1138	/*
1139	 * Only one type of timer is probed,
1140	 * check if we have another type of timer node in device-tree.
1141	 */
1142	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144	else
1145		dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147	if (dn && of_device_is_available(dn))
1148		needs_probing = true;
1149
1150	of_node_put(dn);
1151
1152	return needs_probing;
1153}
1154
1155static int __init arch_timer_common_init(void)
1156{
1157	arch_timer_banner(arch_timers_present);
1158	arch_counter_register(arch_timers_present);
1159	return arch_timer_arch_init();
1160}
1161
1162/**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
1180static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181{
1182	if (is_kernel_in_hyp_mode())
1183		return ARCH_TIMER_HYP_PPI;
1184
1185	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186		return ARCH_TIMER_VIRT_PPI;
1187
1188	if (IS_ENABLED(CONFIG_ARM64))
1189		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191	return ARCH_TIMER_PHYS_SECURE_PPI;
1192}
1193
 
 
 
 
 
 
 
1194static int __init arch_timer_of_init(struct device_node *np)
1195{
1196	int i, ret;
1197	u32 rate;
 
1198
1199	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200		pr_warn("multiple nodes in dt, skipping\n");
1201		return 0;
1202	}
1203
1204	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
 
 
 
 
 
 
 
 
 
 
 
1209
1210	rate = arch_timer_get_cntfrq();
1211	arch_timer_of_configure_rate(rate, np);
1212
1213	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215	/* Check for globally applicable workarounds */
1216	arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218	/*
1219	 * If we cannot rely on firmware initializing the timer registers then
1220	 * we should use the physical timers instead.
1221	 */
1222	if (IS_ENABLED(CONFIG_ARM) &&
1223	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225	else
1226		arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229		pr_err("No interrupt available, giving up\n");
1230		return -EINVAL;
1231	}
1232
1233	/* On some systems, the counter stops ticking when in suspend. */
1234	arch_counter_suspend_stop = of_property_read_bool(np,
1235							 "arm,no-tick-in-suspend");
1236
1237	ret = arch_timer_register();
1238	if (ret)
1239		return ret;
1240
1241	if (arch_timer_needs_of_probing())
1242		return 0;
1243
1244	return arch_timer_common_init();
1245}
1246TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249static u32 __init
1250arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251{
1252	void __iomem *base;
1253	u32 rate;
1254
1255	base = ioremap(frame->cntbase, frame->size);
1256	if (!base) {
1257		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258		return 0;
1259	}
1260
1261	rate = readl_relaxed(base + CNTFRQ);
1262
1263	iounmap(base);
1264
1265	return rate;
1266}
1267
1268static struct arch_timer_mem_frame * __init
1269arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270{
1271	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272	void __iomem *cntctlbase;
1273	u32 cnttidr;
1274	int i;
1275
1276	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277	if (!cntctlbase) {
1278		pr_err("Can't map CNTCTLBase @ %pa\n",
1279			&timer_mem->cntctlbase);
1280		return NULL;
1281	}
1282
1283	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285	/*
1286	 * Try to find a virtual capable frame. Otherwise fall back to a
1287	 * physical capable frame.
1288	 */
1289	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293		frame = &timer_mem->frame[i];
1294		if (!frame->valid)
1295			continue;
1296
1297		/* Try enabling everything, and see what sticks */
1298		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303			best_frame = frame;
1304			arch_timer_mem_use_virtual = true;
1305			break;
1306		}
1307
1308		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309			continue;
1310
1311		best_frame = frame;
1312	}
1313
1314	iounmap(cntctlbase);
1315
1316	return best_frame;
1317}
1318
1319static int __init
1320arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321{
1322	void __iomem *base;
1323	int ret, irq = 0;
1324
1325	if (arch_timer_mem_use_virtual)
1326		irq = frame->virt_irq;
1327	else
1328		irq = frame->phys_irq;
1329
1330	if (!irq) {
1331		pr_err("Frame missing %s irq.\n",
1332		       arch_timer_mem_use_virtual ? "virt" : "phys");
1333		return -EINVAL;
1334	}
1335
1336	if (!request_mem_region(frame->cntbase, frame->size,
1337				"arch_mem_timer"))
1338		return -EBUSY;
1339
1340	base = ioremap(frame->cntbase, frame->size);
1341	if (!base) {
1342		pr_err("Can't map frame's registers\n");
1343		return -ENXIO;
1344	}
1345
1346	ret = arch_timer_mem_register(base, irq);
1347	if (ret) {
1348		iounmap(base);
1349		return ret;
1350	}
1351
1352	arch_counter_base = base;
1353	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355	return 0;
1356}
1357
1358static int __init arch_timer_mem_of_init(struct device_node *np)
1359{
1360	struct arch_timer_mem *timer_mem;
1361	struct arch_timer_mem_frame *frame;
1362	struct device_node *frame_node;
1363	struct resource res;
1364	int ret = -EINVAL;
1365	u32 rate;
1366
1367	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368	if (!timer_mem)
1369		return -ENOMEM;
1370
1371	if (of_address_to_resource(np, 0, &res))
1372		goto out;
1373	timer_mem->cntctlbase = res.start;
1374	timer_mem->size = resource_size(&res);
1375
1376	for_each_available_child_of_node(np, frame_node) {
1377		u32 n;
1378		struct arch_timer_mem_frame *frame;
1379
1380		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381			pr_err(FW_BUG "Missing frame-number.\n");
1382			of_node_put(frame_node);
1383			goto out;
1384		}
1385		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388			of_node_put(frame_node);
1389			goto out;
1390		}
1391		frame = &timer_mem->frame[n];
1392
1393		if (frame->valid) {
1394			pr_err(FW_BUG "Duplicated frame-number.\n");
1395			of_node_put(frame_node);
1396			goto out;
1397		}
1398
1399		if (of_address_to_resource(frame_node, 0, &res)) {
1400			of_node_put(frame_node);
1401			goto out;
1402		}
1403		frame->cntbase = res.start;
1404		frame->size = resource_size(&res);
1405
1406		frame->virt_irq = irq_of_parse_and_map(frame_node,
1407						       ARCH_TIMER_VIRT_SPI);
1408		frame->phys_irq = irq_of_parse_and_map(frame_node,
1409						       ARCH_TIMER_PHYS_SPI);
1410
1411		frame->valid = true;
1412	}
1413
1414	frame = arch_timer_mem_find_best_frame(timer_mem);
1415	if (!frame) {
1416		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417			&timer_mem->cntctlbase);
1418		ret = -EINVAL;
1419		goto out;
1420	}
1421
1422	rate = arch_timer_mem_frame_get_cntfrq(frame);
1423	arch_timer_of_configure_rate(rate, np);
1424
1425	ret = arch_timer_mem_frame_register(frame);
1426	if (!ret && !arch_timer_needs_of_probing())
1427		ret = arch_timer_common_init();
1428out:
1429	kfree(timer_mem);
1430	return ret;
1431}
1432TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433		       arch_timer_mem_of_init);
1434
1435#ifdef CONFIG_ACPI_GTDT
1436static int __init
1437arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438{
1439	struct arch_timer_mem_frame *frame;
1440	u32 rate;
1441	int i;
1442
1443	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444		frame = &timer_mem->frame[i];
1445
1446		if (!frame->valid)
1447			continue;
1448
1449		rate = arch_timer_mem_frame_get_cntfrq(frame);
1450		if (rate == arch_timer_rate)
1451			continue;
1452
1453		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454			&frame->cntbase,
1455			(unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457		return -EINVAL;
1458	}
1459
1460	return 0;
1461}
1462
1463static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464{
1465	struct arch_timer_mem *timers, *timer;
1466	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467	int timer_count, i, ret = 0;
1468
1469	timers = kcalloc(platform_timer_count, sizeof(*timers),
1470			    GFP_KERNEL);
1471	if (!timers)
1472		return -ENOMEM;
1473
1474	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475	if (ret || !timer_count)
1476		goto out;
1477
1478	/*
1479	 * While unlikely, it's theoretically possible that none of the frames
1480	 * in a timer expose the combination of feature we want.
1481	 */
1482	for (i = 0; i < timer_count; i++) {
1483		timer = &timers[i];
1484
1485		frame = arch_timer_mem_find_best_frame(timer);
1486		if (!best_frame)
1487			best_frame = frame;
1488
1489		ret = arch_timer_mem_verify_cntfrq(timer);
1490		if (ret) {
1491			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492			goto out;
1493		}
1494
1495		if (!best_frame) /* implies !frame */
1496			/*
1497			 * Only complain about missing suitable frames if we
1498			 * haven't already found one in a previous iteration.
1499			 */
1500			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501				&timer->cntctlbase);
1502	}
1503
1504	if (best_frame)
1505		ret = arch_timer_mem_frame_register(best_frame);
1506out:
1507	kfree(timers);
1508	return ret;
1509}
1510
1511/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513{
1514	int ret, platform_timer_count;
1515
1516	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517		pr_warn("already initialized, skipping\n");
1518		return -EINVAL;
1519	}
1520
1521	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523	ret = acpi_gtdt_init(table, &platform_timer_count);
1524	if (ret) {
1525		pr_err("Failed to init GTDT table.\n");
1526		return ret;
1527	}
1528
1529	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540	/*
1541	 * When probing via ACPI, we have no mechanism to override the sysreg
1542	 * CNTFRQ value. This *must* be correct.
1543	 */
1544	arch_timer_rate = arch_timer_get_cntfrq();
1545	if (!arch_timer_rate) {
 
1546		pr_err(FW_BUG "frequency not available.\n");
1547		return -EINVAL;
1548	}
1549
1550	arch_timer_uses_ppi = arch_timer_select_ppi();
1551	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552		pr_err("No interrupt available, giving up\n");
1553		return -EINVAL;
1554	}
1555
1556	/* Always-on capability */
1557	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559	/* Check for globally applicable workarounds */
1560	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562	ret = arch_timer_register();
1563	if (ret)
1564		return ret;
1565
1566	if (platform_timer_count &&
1567	    arch_timer_mem_acpi_init(platform_timer_count))
1568		pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570	return arch_timer_common_init();
1571}
1572TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573#endif