Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) 	"arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/clocksource_ids.h>
  20#include <linux/interrupt.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_address.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/sched/clock.h>
  26#include <linux/sched_clock.h>
  27#include <linux/acpi.h>
  28#include <linux/arm-smccc.h>
  29#include <linux/ptp_kvm.h>
  30
  31#include <asm/arch_timer.h>
  32#include <asm/virt.h>
  33
  34#include <clocksource/arm_arch_timer.h>
  35
  36#define CNTTIDR		0x08
  37#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  38
  39#define CNTACR(n)	(0x40 + ((n) * 4))
  40#define CNTACR_RPCT	BIT(0)
  41#define CNTACR_RVCT	BIT(1)
  42#define CNTACR_RFRQ	BIT(2)
  43#define CNTACR_RVOFF	BIT(3)
  44#define CNTACR_RWVT	BIT(4)
  45#define CNTACR_RWPT	BIT(5)
  46
  47#define CNTVCT_LO	0x08
  48#define CNTVCT_HI	0x0c
  49#define CNTFRQ		0x10
  50#define CNTP_TVAL	0x28
  51#define CNTP_CTL	0x2c
  52#define CNTV_TVAL	0x38
  53#define CNTV_CTL	0x3c
  54
 
 
  55static unsigned arch_timers_present __initdata;
  56
  57static void __iomem *arch_counter_base __ro_after_init;
  58
  59struct arch_timer {
  60	void __iomem *base;
  61	struct clock_event_device evt;
  62};
  63
  64#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  65
  66static u32 arch_timer_rate __ro_after_init;
  67static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
  68
  69static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
  70	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
  71	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
  72	[ARCH_TIMER_VIRT_PPI]		= "virt",
  73	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
  74	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
  75};
  76
 
 
  77static struct clock_event_device __percpu *arch_timer_evt;
  78
  79static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
  80static bool arch_timer_c3stop __ro_after_init;
  81static bool arch_timer_mem_use_virtual __ro_after_init;
  82static bool arch_counter_suspend_stop __ro_after_init;
  83#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  84static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  85#else
  86static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  87#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  88
  89static cpumask_t evtstrm_available = CPU_MASK_NONE;
  90static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  91
  92static int __init early_evtstrm_cfg(char *buf)
  93{
  94	return strtobool(buf, &evtstrm_enable);
  95}
  96early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  97
  98/*
  99 * Architected system timer support.
 100 */
 101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102static __always_inline
 103void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 104			  struct clock_event_device *clk)
 105{
 106	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 107		struct arch_timer *timer = to_arch_timer(clk);
 108		switch (reg) {
 109		case ARCH_TIMER_REG_CTRL:
 110			writel_relaxed(val, timer->base + CNTP_CTL);
 111			break;
 112		case ARCH_TIMER_REG_TVAL:
 113			writel_relaxed(val, timer->base + CNTP_TVAL);
 114			break;
 115		}
 116	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 117		struct arch_timer *timer = to_arch_timer(clk);
 118		switch (reg) {
 119		case ARCH_TIMER_REG_CTRL:
 120			writel_relaxed(val, timer->base + CNTV_CTL);
 121			break;
 122		case ARCH_TIMER_REG_TVAL:
 123			writel_relaxed(val, timer->base + CNTV_TVAL);
 124			break;
 125		}
 126	} else {
 127		arch_timer_reg_write_cp15(access, reg, val);
 128	}
 129}
 130
 131static __always_inline
 132u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 133			struct clock_event_device *clk)
 134{
 135	u32 val;
 136
 137	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 138		struct arch_timer *timer = to_arch_timer(clk);
 139		switch (reg) {
 140		case ARCH_TIMER_REG_CTRL:
 141			val = readl_relaxed(timer->base + CNTP_CTL);
 142			break;
 143		case ARCH_TIMER_REG_TVAL:
 144			val = readl_relaxed(timer->base + CNTP_TVAL);
 145			break;
 146		}
 147	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 148		struct arch_timer *timer = to_arch_timer(clk);
 149		switch (reg) {
 150		case ARCH_TIMER_REG_CTRL:
 151			val = readl_relaxed(timer->base + CNTV_CTL);
 152			break;
 153		case ARCH_TIMER_REG_TVAL:
 154			val = readl_relaxed(timer->base + CNTV_TVAL);
 155			break;
 156		}
 157	} else {
 158		val = arch_timer_reg_read_cp15(access, reg);
 159	}
 160
 161	return val;
 162}
 163
 164static notrace u64 arch_counter_get_cntpct_stable(void)
 165{
 166	return __arch_counter_get_cntpct_stable();
 167}
 168
 169static notrace u64 arch_counter_get_cntpct(void)
 170{
 171	return __arch_counter_get_cntpct();
 172}
 173
 174static notrace u64 arch_counter_get_cntvct_stable(void)
 175{
 176	return __arch_counter_get_cntvct_stable();
 177}
 178
 179static notrace u64 arch_counter_get_cntvct(void)
 180{
 181	return __arch_counter_get_cntvct();
 182}
 183
 184/*
 185 * Default to cp15 based access because arm64 uses this function for
 186 * sched_clock() before DT is probed and the cp15 method is guaranteed
 187 * to exist on arm64. arm doesn't use this before DT is probed so even
 188 * if we don't have the cp15 accessors we won't have a problem.
 189 */
 190u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
 191EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 192
 193static u64 arch_counter_read(struct clocksource *cs)
 194{
 195	return arch_timer_read_counter();
 196}
 197
 198static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 199{
 200	return arch_timer_read_counter();
 201}
 202
 203static struct clocksource clocksource_counter = {
 204	.name	= "arch_sys_counter",
 205	.id	= CSID_ARM_ARCH_COUNTER,
 206	.rating	= 400,
 207	.read	= arch_counter_read,
 208	.mask	= CLOCKSOURCE_MASK(56),
 209	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 210};
 211
 212static struct cyclecounter cyclecounter __ro_after_init = {
 213	.read	= arch_counter_read_cc,
 214	.mask	= CLOCKSOURCE_MASK(56),
 215};
 216
 217struct ate_acpi_oem_info {
 218	char oem_id[ACPI_OEM_ID_SIZE + 1];
 219	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 220	u32 oem_revision;
 221};
 222
 223#ifdef CONFIG_FSL_ERRATUM_A008585
 224/*
 225 * The number of retries is an arbitrary value well beyond the highest number
 226 * of iterations the loop has been observed to take.
 227 */
 228#define __fsl_a008585_read_reg(reg) ({			\
 229	u64 _old, _new;					\
 230	int _retries = 200;				\
 231							\
 232	do {						\
 233		_old = read_sysreg(reg);		\
 234		_new = read_sysreg(reg);		\
 235		_retries--;				\
 236	} while (unlikely(_old != _new) && _retries);	\
 237							\
 238	WARN_ON_ONCE(!_retries);			\
 239	_new;						\
 240})
 241
 242static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 243{
 244	return __fsl_a008585_read_reg(cntp_tval_el0);
 245}
 246
 247static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 248{
 249	return __fsl_a008585_read_reg(cntv_tval_el0);
 250}
 251
 252static u64 notrace fsl_a008585_read_cntpct_el0(void)
 253{
 254	return __fsl_a008585_read_reg(cntpct_el0);
 255}
 256
 257static u64 notrace fsl_a008585_read_cntvct_el0(void)
 258{
 259	return __fsl_a008585_read_reg(cntvct_el0);
 260}
 261#endif
 262
 263#ifdef CONFIG_HISILICON_ERRATUM_161010101
 264/*
 265 * Verify whether the value of the second read is larger than the first by
 266 * less than 32 is the only way to confirm the value is correct, so clear the
 267 * lower 5 bits to check whether the difference is greater than 32 or not.
 268 * Theoretically the erratum should not occur more than twice in succession
 269 * when reading the system counter, but it is possible that some interrupts
 270 * may lead to more than twice read errors, triggering the warning, so setting
 271 * the number of retries far beyond the number of iterations the loop has been
 272 * observed to take.
 273 */
 274#define __hisi_161010101_read_reg(reg) ({				\
 275	u64 _old, _new;						\
 276	int _retries = 50;					\
 277								\
 278	do {							\
 279		_old = read_sysreg(reg);			\
 280		_new = read_sysreg(reg);			\
 281		_retries--;					\
 282	} while (unlikely((_new - _old) >> 5) && _retries);	\
 283								\
 284	WARN_ON_ONCE(!_retries);				\
 285	_new;							\
 286})
 287
 288static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 289{
 290	return __hisi_161010101_read_reg(cntp_tval_el0);
 291}
 292
 293static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 294{
 295	return __hisi_161010101_read_reg(cntv_tval_el0);
 296}
 297
 298static u64 notrace hisi_161010101_read_cntpct_el0(void)
 299{
 300	return __hisi_161010101_read_reg(cntpct_el0);
 301}
 302
 303static u64 notrace hisi_161010101_read_cntvct_el0(void)
 304{
 305	return __hisi_161010101_read_reg(cntvct_el0);
 306}
 307
 308static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 309	/*
 310	 * Note that trailing spaces are required to properly match
 311	 * the OEM table information.
 312	 */
 313	{
 314		.oem_id		= "HISI  ",
 315		.oem_table_id	= "HIP05   ",
 316		.oem_revision	= 0,
 317	},
 318	{
 319		.oem_id		= "HISI  ",
 320		.oem_table_id	= "HIP06   ",
 321		.oem_revision	= 0,
 322	},
 323	{
 324		.oem_id		= "HISI  ",
 325		.oem_table_id	= "HIP07   ",
 326		.oem_revision	= 0,
 327	},
 328	{ /* Sentinel indicating the end of the OEM array */ },
 329};
 330#endif
 331
 332#ifdef CONFIG_ARM64_ERRATUM_858921
 333static u64 notrace arm64_858921_read_cntpct_el0(void)
 334{
 335	u64 old, new;
 336
 337	old = read_sysreg(cntpct_el0);
 338	new = read_sysreg(cntpct_el0);
 339	return (((old ^ new) >> 32) & 1) ? old : new;
 340}
 341
 342static u64 notrace arm64_858921_read_cntvct_el0(void)
 343{
 344	u64 old, new;
 345
 346	old = read_sysreg(cntvct_el0);
 347	new = read_sysreg(cntvct_el0);
 348	return (((old ^ new) >> 32) & 1) ? old : new;
 349}
 350#endif
 351
 352#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 353/*
 354 * The low bits of the counter registers are indeterminate while bit 10 or
 355 * greater is rolling over. Since the counter value can jump both backward
 356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 359 */
 360#define __sun50i_a64_read_reg(reg) ({					\
 361	u64 _val;							\
 362	int _retries = 150;						\
 363									\
 364	do {								\
 365		_val = read_sysreg(reg);				\
 366		_retries--;						\
 367	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
 368									\
 369	WARN_ON_ONCE(!_retries);					\
 370	_val;								\
 371})
 372
 373static u64 notrace sun50i_a64_read_cntpct_el0(void)
 374{
 375	return __sun50i_a64_read_reg(cntpct_el0);
 376}
 377
 378static u64 notrace sun50i_a64_read_cntvct_el0(void)
 379{
 380	return __sun50i_a64_read_reg(cntvct_el0);
 381}
 382
 383static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 384{
 385	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 386}
 387
 388static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 389{
 390	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 391}
 392#endif
 393
 394#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 395DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 396EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 397
 398static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 399
 400static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 401						struct clock_event_device *clk)
 402{
 403	unsigned long ctrl;
 404	u64 cval;
 405
 406	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 407	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 408	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 409
 410	if (access == ARCH_TIMER_PHYS_ACCESS) {
 411		cval = evt + arch_counter_get_cntpct_stable();
 412		write_sysreg(cval, cntp_cval_el0);
 413	} else {
 414		cval = evt + arch_counter_get_cntvct_stable();
 415		write_sysreg(cval, cntv_cval_el0);
 416	}
 417
 418	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 419}
 420
 421static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 422					    struct clock_event_device *clk)
 423{
 424	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 425	return 0;
 426}
 427
 428static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 429					    struct clock_event_device *clk)
 430{
 431	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 432	return 0;
 433}
 434
 435static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 436#ifdef CONFIG_FSL_ERRATUM_A008585
 437	{
 438		.match_type = ate_match_dt,
 439		.id = "fsl,erratum-a008585",
 440		.desc = "Freescale erratum a005858",
 441		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 442		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 443		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 444		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 445		.set_next_event_phys = erratum_set_next_event_tval_phys,
 446		.set_next_event_virt = erratum_set_next_event_tval_virt,
 447	},
 448#endif
 449#ifdef CONFIG_HISILICON_ERRATUM_161010101
 450	{
 451		.match_type = ate_match_dt,
 452		.id = "hisilicon,erratum-161010101",
 453		.desc = "HiSilicon erratum 161010101",
 454		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 455		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 456		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 457		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 458		.set_next_event_phys = erratum_set_next_event_tval_phys,
 459		.set_next_event_virt = erratum_set_next_event_tval_virt,
 460	},
 461	{
 462		.match_type = ate_match_acpi_oem_info,
 463		.id = hisi_161010101_oem_info,
 464		.desc = "HiSilicon erratum 161010101",
 465		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 466		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 467		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 468		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 469		.set_next_event_phys = erratum_set_next_event_tval_phys,
 470		.set_next_event_virt = erratum_set_next_event_tval_virt,
 471	},
 472#endif
 473#ifdef CONFIG_ARM64_ERRATUM_858921
 474	{
 475		.match_type = ate_match_local_cap_id,
 476		.id = (void *)ARM64_WORKAROUND_858921,
 477		.desc = "ARM erratum 858921",
 478		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 479		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 480	},
 481#endif
 482#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 483	{
 484		.match_type = ate_match_dt,
 485		.id = "allwinner,erratum-unknown1",
 486		.desc = "Allwinner erratum UNKNOWN1",
 487		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 488		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 489		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 490		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 491		.set_next_event_phys = erratum_set_next_event_tval_phys,
 492		.set_next_event_virt = erratum_set_next_event_tval_virt,
 493	},
 494#endif
 495#ifdef CONFIG_ARM64_ERRATUM_1418040
 496	{
 497		.match_type = ate_match_local_cap_id,
 498		.id = (void *)ARM64_WORKAROUND_1418040,
 499		.desc = "ARM erratum 1418040",
 500		.disable_compat_vdso = true,
 501	},
 502#endif
 503};
 504
 505typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 506			       const void *);
 507
 508static
 509bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 510				 const void *arg)
 511{
 512	const struct device_node *np = arg;
 513
 514	return of_property_read_bool(np, wa->id);
 515}
 516
 517static
 518bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 519					const void *arg)
 520{
 521	return this_cpu_has_cap((uintptr_t)wa->id);
 522}
 523
 524
 525static
 526bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 527				       const void *arg)
 528{
 529	static const struct ate_acpi_oem_info empty_oem_info = {};
 530	const struct ate_acpi_oem_info *info = wa->id;
 531	const struct acpi_table_header *table = arg;
 532
 533	/* Iterate over the ACPI OEM info array, looking for a match */
 534	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 535		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 536		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 537		    info->oem_revision == table->oem_revision)
 538			return true;
 539
 540		info++;
 541	}
 542
 543	return false;
 544}
 545
 546static const struct arch_timer_erratum_workaround *
 547arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 548			  ate_match_fn_t match_fn,
 549			  void *arg)
 550{
 551	int i;
 552
 553	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 554		if (ool_workarounds[i].match_type != type)
 555			continue;
 556
 557		if (match_fn(&ool_workarounds[i], arg))
 558			return &ool_workarounds[i];
 559	}
 560
 561	return NULL;
 562}
 563
 564static
 565void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 566				  bool local)
 567{
 568	int i;
 569
 570	if (local) {
 571		__this_cpu_write(timer_unstable_counter_workaround, wa);
 572	} else {
 573		for_each_possible_cpu(i)
 574			per_cpu(timer_unstable_counter_workaround, i) = wa;
 575	}
 576
 577	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 578		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 579
 580	/*
 581	 * Don't use the vdso fastpath if errata require using the
 582	 * out-of-line counter accessor. We may change our mind pretty
 583	 * late in the game (with a per-CPU erratum, for example), so
 584	 * change both the default value and the vdso itself.
 585	 */
 586	if (wa->read_cntvct_el0) {
 587		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 588		vdso_default = VDSO_CLOCKMODE_NONE;
 589	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 590		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 591		clocksource_counter.vdso_clock_mode = vdso_default;
 592	}
 593}
 594
 595static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 596					    void *arg)
 597{
 598	const struct arch_timer_erratum_workaround *wa, *__wa;
 599	ate_match_fn_t match_fn = NULL;
 600	bool local = false;
 601
 602	switch (type) {
 603	case ate_match_dt:
 604		match_fn = arch_timer_check_dt_erratum;
 605		break;
 606	case ate_match_local_cap_id:
 607		match_fn = arch_timer_check_local_cap_erratum;
 608		local = true;
 609		break;
 610	case ate_match_acpi_oem_info:
 611		match_fn = arch_timer_check_acpi_oem_erratum;
 612		break;
 613	default:
 614		WARN_ON(1);
 615		return;
 616	}
 617
 618	wa = arch_timer_iterate_errata(type, match_fn, arg);
 619	if (!wa)
 620		return;
 621
 622	__wa = __this_cpu_read(timer_unstable_counter_workaround);
 623	if (__wa && wa != __wa)
 624		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 625			wa->desc, __wa->desc);
 626
 627	if (__wa)
 628		return;
 629
 630	arch_timer_enable_workaround(wa, local);
 631	pr_info("Enabling %s workaround for %s\n",
 632		local ? "local" : "global", wa->desc);
 633}
 634
 635static bool arch_timer_this_cpu_has_cntvct_wa(void)
 636{
 637	return has_erratum_handler(read_cntvct_el0);
 638}
 639
 640static bool arch_timer_counter_has_wa(void)
 641{
 642	return atomic_read(&timer_unstable_counter_workaround_in_use);
 643}
 644#else
 645#define arch_timer_check_ool_workaround(t,a)		do { } while(0)
 646#define arch_timer_this_cpu_has_cntvct_wa()		({false;})
 647#define arch_timer_counter_has_wa()			({false;})
 648#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 649
 650static __always_inline irqreturn_t timer_handler(const int access,
 651					struct clock_event_device *evt)
 652{
 653	unsigned long ctrl;
 654
 655	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 656	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 657		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 658		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 659		evt->event_handler(evt);
 660		return IRQ_HANDLED;
 661	}
 662
 663	return IRQ_NONE;
 664}
 665
 666static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 667{
 668	struct clock_event_device *evt = dev_id;
 669
 670	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 671}
 672
 673static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 674{
 675	struct clock_event_device *evt = dev_id;
 676
 677	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 678}
 679
 680static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 681{
 682	struct clock_event_device *evt = dev_id;
 683
 684	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 685}
 686
 687static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 688{
 689	struct clock_event_device *evt = dev_id;
 690
 691	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 692}
 693
 694static __always_inline int timer_shutdown(const int access,
 695					  struct clock_event_device *clk)
 696{
 697	unsigned long ctrl;
 698
 699	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 700	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 701	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 702
 703	return 0;
 704}
 705
 706static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 707{
 708	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 709}
 710
 711static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 712{
 713	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 714}
 715
 716static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 717{
 718	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 719}
 720
 721static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 722{
 723	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 724}
 725
 726static __always_inline void set_next_event(const int access, unsigned long evt,
 727					   struct clock_event_device *clk)
 728{
 729	unsigned long ctrl;
 730	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 731	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 732	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 733	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 734	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 735}
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737static int arch_timer_set_next_event_virt(unsigned long evt,
 738					  struct clock_event_device *clk)
 739{
 740	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 741	return 0;
 742}
 743
 744static int arch_timer_set_next_event_phys(unsigned long evt,
 745					  struct clock_event_device *clk)
 746{
 747	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 748	return 0;
 749}
 750
 751static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 752					      struct clock_event_device *clk)
 753{
 754	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 755	return 0;
 756}
 757
 758static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 759					      struct clock_event_device *clk)
 760{
 761	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 762	return 0;
 763}
 764
 
 
 
 
 
 
 
 
 
 
 
 
 
 765static void __arch_timer_setup(unsigned type,
 766			       struct clock_event_device *clk)
 767{
 768	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 769
 770	if (type == ARCH_TIMER_TYPE_CP15) {
 771		typeof(clk->set_next_event) sne;
 772
 773		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 774
 775		if (arch_timer_c3stop)
 776			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 777		clk->name = "arch_sys_timer";
 778		clk->rating = 450;
 779		clk->cpumask = cpumask_of(smp_processor_id());
 780		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 781		switch (arch_timer_uses_ppi) {
 782		case ARCH_TIMER_VIRT_PPI:
 783			clk->set_state_shutdown = arch_timer_shutdown_virt;
 784			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 785			sne = erratum_handler(set_next_event_virt);
 786			break;
 787		case ARCH_TIMER_PHYS_SECURE_PPI:
 788		case ARCH_TIMER_PHYS_NONSECURE_PPI:
 789		case ARCH_TIMER_HYP_PPI:
 790			clk->set_state_shutdown = arch_timer_shutdown_phys;
 791			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 792			sne = erratum_handler(set_next_event_phys);
 793			break;
 794		default:
 795			BUG();
 796		}
 797
 798		clk->set_next_event = sne;
 799	} else {
 800		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 801		clk->name = "arch_mem_timer";
 802		clk->rating = 400;
 803		clk->cpumask = cpu_possible_mask;
 804		if (arch_timer_mem_use_virtual) {
 805			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 806			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 807			clk->set_next_event =
 808				arch_timer_set_next_event_virt_mem;
 809		} else {
 810			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 811			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 812			clk->set_next_event =
 813				arch_timer_set_next_event_phys_mem;
 814		}
 815	}
 816
 817	clk->set_state_shutdown(clk);
 818
 819	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 820}
 821
 822static void arch_timer_evtstrm_enable(int divider)
 823{
 824	u32 cntkctl = arch_timer_get_cntkctl();
 825
 826	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 827	/* Set the divider and enable virtual event stream */
 828	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 829			| ARCH_TIMER_VIRT_EVT_EN;
 830	arch_timer_set_cntkctl(cntkctl);
 831	arch_timer_set_evtstrm_feature();
 832	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 
 
 833}
 834
 835static void arch_timer_configure_evtstream(void)
 836{
 837	int evt_stream_div, lsb;
 838
 839	/*
 840	 * As the event stream can at most be generated at half the frequency
 841	 * of the counter, use half the frequency when computing the divider.
 842	 */
 843	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 844
 845	/*
 846	 * Find the closest power of two to the divisor. If the adjacent bit
 847	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 848	 */
 849	lsb = fls(evt_stream_div) - 1;
 850	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 851		lsb++;
 852
 
 
 
 
 
 853	/* enable event stream */
 854	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 855}
 856
 857static void arch_counter_set_user_access(void)
 858{
 859	u32 cntkctl = arch_timer_get_cntkctl();
 860
 861	/* Disable user access to the timers and both counters */
 862	/* Also disable virtual event stream */
 863	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 864			| ARCH_TIMER_USR_VT_ACCESS_EN
 865		        | ARCH_TIMER_USR_VCT_ACCESS_EN
 866			| ARCH_TIMER_VIRT_EVT_EN
 867			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 868
 869	/*
 870	 * Enable user access to the virtual counter if it doesn't
 871	 * need to be workaround. The vdso may have been already
 872	 * disabled though.
 873	 */
 874	if (arch_timer_this_cpu_has_cntvct_wa())
 875		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 876	else
 877		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 878
 879	arch_timer_set_cntkctl(cntkctl);
 880}
 881
 882static bool arch_timer_has_nonsecure_ppi(void)
 883{
 884	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 885		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 886}
 887
 888static u32 check_ppi_trigger(int irq)
 889{
 890	u32 flags = irq_get_trigger_type(irq);
 891
 892	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 893		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 894		pr_warn("WARNING: Please fix your firmware\n");
 895		flags = IRQF_TRIGGER_LOW;
 896	}
 897
 898	return flags;
 899}
 900
 901static int arch_timer_starting_cpu(unsigned int cpu)
 902{
 903	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 904	u32 flags;
 905
 906	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 907
 908	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 909	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 910
 911	if (arch_timer_has_nonsecure_ppi()) {
 912		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 913		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 914				  flags);
 915	}
 916
 917	arch_counter_set_user_access();
 918	if (evtstrm_enable)
 919		arch_timer_configure_evtstream();
 920
 921	return 0;
 922}
 923
 924static int validate_timer_rate(void)
 925{
 926	if (!arch_timer_rate)
 927		return -EINVAL;
 928
 929	/* Arch timer frequency < 1MHz can cause trouble */
 930	WARN_ON(arch_timer_rate < 1000000);
 931
 932	return 0;
 933}
 934
 935/*
 936 * For historical reasons, when probing with DT we use whichever (non-zero)
 937 * rate was probed first, and don't verify that others match. If the first node
 938 * probed has a clock-frequency property, this overrides the HW register.
 939 */
 940static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 941{
 942	/* Who has more than one independent system counter? */
 943	if (arch_timer_rate)
 944		return;
 945
 946	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 947		arch_timer_rate = rate;
 
 
 
 
 
 
 
 
 
 948
 949	/* Check the timer frequency. */
 950	if (validate_timer_rate())
 951		pr_warn("frequency not available\n");
 952}
 953
 954static void __init arch_timer_banner(unsigned type)
 955{
 956	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 957		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 958		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 959			" and " : "",
 960		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 961		(unsigned long)arch_timer_rate / 1000000,
 962		(unsigned long)(arch_timer_rate / 10000) % 100,
 963		type & ARCH_TIMER_TYPE_CP15 ?
 964			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 965			"",
 966		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 967		type & ARCH_TIMER_TYPE_MEM ?
 968			arch_timer_mem_use_virtual ? "virt" : "phys" :
 969			"");
 970}
 971
 972u32 arch_timer_get_rate(void)
 973{
 974	return arch_timer_rate;
 975}
 976
 977bool arch_timer_evtstrm_available(void)
 978{
 979	/*
 980	 * We might get called from a preemptible context. This is fine
 981	 * because availability of the event stream should be always the same
 982	 * for a preemptible context and context where we might resume a task.
 983	 */
 984	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 985}
 986
 987static u64 arch_counter_get_cntvct_mem(void)
 988{
 989	u32 vct_lo, vct_hi, tmp_hi;
 990
 991	do {
 992		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 993		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 994		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 995	} while (vct_hi != tmp_hi);
 996
 997	return ((u64) vct_hi << 32) | vct_lo;
 998}
 999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000static struct arch_timer_kvm_info arch_timer_kvm_info;
1001
1002struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003{
1004	return &arch_timer_kvm_info;
1005}
1006
1007static void __init arch_counter_register(unsigned type)
1008{
1009	u64 start_count;
1010
1011	/* Register the CP15 based counter if we have one */
1012	if (type & ARCH_TIMER_TYPE_CP15) {
1013		u64 (*rd)(void);
 
 
 
1014
1015		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017			if (arch_timer_counter_has_wa())
1018				rd = arch_counter_get_cntvct_stable;
1019			else
1020				rd = arch_counter_get_cntvct;
1021		} else {
1022			if (arch_timer_counter_has_wa())
1023				rd = arch_counter_get_cntpct_stable;
1024			else
1025				rd = arch_counter_get_cntpct;
1026		}
1027
1028		arch_timer_read_counter = rd;
1029		clocksource_counter.vdso_clock_mode = vdso_default;
 
 
 
 
 
 
1030	} else {
1031		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032	}
1033
1034	if (!arch_counter_suspend_stop)
1035		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036	start_count = arch_timer_read_counter();
1037	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038	cyclecounter.mult = clocksource_counter.mult;
1039	cyclecounter.shift = clocksource_counter.shift;
1040	timecounter_init(&arch_timer_kvm_info.timecounter,
1041			 &cyclecounter, start_count);
1042
1043	/* 56 bits minimum, so we assume worst case rollover */
1044	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045}
1046
1047static void arch_timer_stop(struct clock_event_device *clk)
1048{
1049	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
 
1050
1051	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052	if (arch_timer_has_nonsecure_ppi())
1053		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054
1055	clk->set_state_shutdown(clk);
1056}
1057
1058static int arch_timer_dying_cpu(unsigned int cpu)
1059{
1060	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061
1062	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063
1064	arch_timer_stop(clk);
1065	return 0;
1066}
1067
1068#ifdef CONFIG_CPU_PM
1069static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071				    unsigned long action, void *hcpu)
1072{
1073	if (action == CPU_PM_ENTER) {
1074		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075
1076		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079
1080		if (arch_timer_have_evtstrm_feature())
1081			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082	}
1083	return NOTIFY_OK;
1084}
1085
1086static struct notifier_block arch_timer_cpu_pm_notifier = {
1087	.notifier_call = arch_timer_cpu_pm_notify,
1088};
1089
1090static int __init arch_timer_cpu_pm_init(void)
1091{
1092	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093}
1094
1095static void __init arch_timer_cpu_pm_deinit(void)
1096{
1097	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098}
1099
1100#else
1101static int __init arch_timer_cpu_pm_init(void)
1102{
1103	return 0;
1104}
1105
1106static void __init arch_timer_cpu_pm_deinit(void)
1107{
1108}
1109#endif
1110
1111static int __init arch_timer_register(void)
1112{
1113	int err;
1114	int ppi;
1115
1116	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117	if (!arch_timer_evt) {
1118		err = -ENOMEM;
1119		goto out;
1120	}
1121
1122	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123	switch (arch_timer_uses_ppi) {
1124	case ARCH_TIMER_VIRT_PPI:
1125		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126					 "arch_timer", arch_timer_evt);
1127		break;
1128	case ARCH_TIMER_PHYS_SECURE_PPI:
1129	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131					 "arch_timer", arch_timer_evt);
1132		if (!err && arch_timer_has_nonsecure_ppi()) {
1133			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135						 "arch_timer", arch_timer_evt);
1136			if (err)
1137				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138						arch_timer_evt);
1139		}
1140		break;
1141	case ARCH_TIMER_HYP_PPI:
1142		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143					 "arch_timer", arch_timer_evt);
1144		break;
1145	default:
1146		BUG();
1147	}
1148
1149	if (err) {
1150		pr_err("can't register interrupt %d (%d)\n", ppi, err);
 
1151		goto out_free;
1152	}
1153
1154	err = arch_timer_cpu_pm_init();
1155	if (err)
1156		goto out_unreg_notify;
1157
 
1158	/* Register and immediately configure the timer on the boot CPU */
1159	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160				"clockevents/arm/arch_timer:starting",
1161				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162	if (err)
1163		goto out_unreg_cpupm;
1164	return 0;
1165
1166out_unreg_cpupm:
1167	arch_timer_cpu_pm_deinit();
1168
1169out_unreg_notify:
1170	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171	if (arch_timer_has_nonsecure_ppi())
1172		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173				arch_timer_evt);
1174
1175out_free:
1176	free_percpu(arch_timer_evt);
1177out:
1178	return err;
1179}
1180
1181static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182{
1183	int ret;
1184	irq_handler_t func;
1185	struct arch_timer *t;
1186
1187	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188	if (!t)
1189		return -ENOMEM;
1190
1191	t->base = base;
1192	t->evt.irq = irq;
1193	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194
1195	if (arch_timer_mem_use_virtual)
1196		func = arch_timer_handler_virt_mem;
1197	else
1198		func = arch_timer_handler_phys_mem;
1199
1200	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201	if (ret) {
1202		pr_err("Failed to request mem timer irq\n");
1203		kfree(t);
1204	}
1205
1206	return ret;
1207}
1208
1209static const struct of_device_id arch_timer_of_match[] __initconst = {
1210	{ .compatible   = "arm,armv7-timer",    },
1211	{ .compatible   = "arm,armv8-timer",    },
1212	{},
1213};
1214
1215static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216	{ .compatible   = "arm,armv7-timer-mem", },
1217	{},
1218};
1219
1220static bool __init arch_timer_needs_of_probing(void)
 
1221{
1222	struct device_node *dn;
1223	bool needs_probing = false;
1224	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225
1226	/* We have two timers, and both device-tree nodes are probed. */
1227	if ((arch_timers_present & mask) == mask)
1228		return false;
1229
1230	/*
1231	 * Only one type of timer is probed,
1232	 * check if we have another type of timer node in device-tree.
1233	 */
1234	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236	else
1237		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238
1239	if (dn && of_device_is_available(dn))
 
1240		needs_probing = true;
1241
1242	of_node_put(dn);
1243
1244	return needs_probing;
1245}
1246
1247static int __init arch_timer_common_init(void)
1248{
 
 
 
 
 
 
 
 
 
 
1249	arch_timer_banner(arch_timers_present);
1250	arch_counter_register(arch_timers_present);
1251	return arch_timer_arch_init();
1252}
1253
1254/**
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256 *
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1260 *
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1264 * number.
1265 *
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1269 *
1270 * Return: a suitable PPI type for the current system.
1271 */
1272static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273{
1274	if (is_kernel_in_hyp_mode())
1275		return ARCH_TIMER_HYP_PPI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276
1277	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278		return ARCH_TIMER_VIRT_PPI;
 
 
 
 
 
 
1279
1280	if (IS_ENABLED(CONFIG_ARM64))
1281		return ARCH_TIMER_PHYS_NONSECURE_PPI;
 
 
 
1282
1283	return ARCH_TIMER_PHYS_SECURE_PPI;
1284}
 
1285
1286static void __init arch_timer_populate_kvm_info(void)
1287{
1288	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289	if (is_kernel_in_hyp_mode())
1290		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
 
 
1291}
1292
1293static int __init arch_timer_of_init(struct device_node *np)
1294{
1295	int i, irq, ret;
1296	u32 rate;
1297	bool has_names;
1298
1299	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300		pr_warn("multiple nodes in dt, skipping\n");
1301		return 0;
1302	}
1303
1304	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305
1306	has_names = of_property_read_bool(np, "interrupt-names");
1307
1308	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309		if (has_names)
1310			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311		else
1312			irq = of_irq_get(np, i);
1313		if (irq > 0)
1314			arch_timer_ppi[i] = irq;
1315	}
1316
1317	arch_timer_populate_kvm_info();
1318
1319	rate = arch_timer_get_cntfrq();
1320	arch_timer_of_configure_rate(rate, np);
1321
1322	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323
1324	/* Check for globally applicable workarounds */
1325	arch_timer_check_ool_workaround(ate_match_dt, np);
 
 
 
 
 
 
1326
1327	/*
1328	 * If we cannot rely on firmware initializing the timer registers then
1329	 * we should use the physical timers instead.
1330	 */
1331	if (IS_ENABLED(CONFIG_ARM) &&
1332	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334	else
1335		arch_timer_uses_ppi = arch_timer_select_ppi();
1336
1337	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338		pr_err("No interrupt available, giving up\n");
1339		return -EINVAL;
1340	}
1341
1342	/* On some systems, the counter stops ticking when in suspend. */
1343	arch_counter_suspend_stop = of_property_read_bool(np,
1344							 "arm,no-tick-in-suspend");
1345
1346	ret = arch_timer_register();
1347	if (ret)
1348		return ret;
1349
1350	if (arch_timer_needs_of_probing())
1351		return 0;
1352
1353	return arch_timer_common_init();
1354}
1355TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357
1358static u32 __init
1359arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360{
1361	void __iomem *base;
1362	u32 rate;
1363
1364	base = ioremap(frame->cntbase, frame->size);
1365	if (!base) {
1366		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367		return 0;
1368	}
1369
1370	rate = readl_relaxed(base + CNTFRQ);
1371
1372	iounmap(base);
1373
1374	return rate;
1375}
1376
1377static struct arch_timer_mem_frame * __init
1378arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379{
1380	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381	void __iomem *cntctlbase;
1382	u32 cnttidr;
1383	int i;
1384
1385	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
 
1386	if (!cntctlbase) {
1387		pr_err("Can't map CNTCTLBase @ %pa\n",
1388			&timer_mem->cntctlbase);
1389		return NULL;
1390	}
1391
1392	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393
1394	/*
1395	 * Try to find a virtual capable frame. Otherwise fall back to a
1396	 * physical capable frame.
1397	 */
1398	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401
1402		frame = &timer_mem->frame[i];
1403		if (!frame->valid)
1404			continue;
 
 
1405
1406		/* Try enabling everything, and see what sticks */
1407		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
 
 
1409
1410		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
 
1412			best_frame = frame;
1413			arch_timer_mem_use_virtual = true;
1414			break;
1415		}
1416
1417		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418			continue;
1419
1420		best_frame = frame;
 
1421	}
1422
1423	iounmap(cntctlbase);
1424
1425	return best_frame;
1426}
1427
1428static int __init
1429arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430{
1431	void __iomem *base;
1432	int ret, irq = 0;
1433
1434	if (arch_timer_mem_use_virtual)
1435		irq = frame->virt_irq;
1436	else
1437		irq = frame->phys_irq;
1438
 
1439	if (!irq) {
1440		pr_err("Frame missing %s irq.\n",
1441		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442		return -EINVAL;
1443	}
1444
1445	if (!request_mem_region(frame->cntbase, frame->size,
1446				"arch_mem_timer"))
1447		return -EBUSY;
1448
1449	base = ioremap(frame->cntbase, frame->size);
1450	if (!base) {
1451		pr_err("Can't map frame's registers\n");
1452		return -ENXIO;
1453	}
1454
 
1455	ret = arch_timer_mem_register(base, irq);
1456	if (ret) {
1457		iounmap(base);
1458		return ret;
1459	}
1460
1461	arch_counter_base = base;
1462	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463
1464	return 0;
1465}
1466
1467static int __init arch_timer_mem_of_init(struct device_node *np)
1468{
1469	struct arch_timer_mem *timer_mem;
1470	struct arch_timer_mem_frame *frame;
1471	struct device_node *frame_node;
1472	struct resource res;
1473	int ret = -EINVAL;
1474	u32 rate;
1475
1476	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477	if (!timer_mem)
1478		return -ENOMEM;
1479
1480	if (of_address_to_resource(np, 0, &res))
1481		goto out;
1482	timer_mem->cntctlbase = res.start;
1483	timer_mem->size = resource_size(&res);
1484
1485	for_each_available_child_of_node(np, frame_node) {
1486		u32 n;
1487		struct arch_timer_mem_frame *frame;
1488
1489		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490			pr_err(FW_BUG "Missing frame-number.\n");
1491			of_node_put(frame_node);
1492			goto out;
1493		}
1494		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497			of_node_put(frame_node);
1498			goto out;
1499		}
1500		frame = &timer_mem->frame[n];
1501
1502		if (frame->valid) {
1503			pr_err(FW_BUG "Duplicated frame-number.\n");
1504			of_node_put(frame_node);
1505			goto out;
1506		}
1507
1508		if (of_address_to_resource(frame_node, 0, &res)) {
1509			of_node_put(frame_node);
1510			goto out;
1511		}
1512		frame->cntbase = res.start;
1513		frame->size = resource_size(&res);
1514
1515		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516						       ARCH_TIMER_VIRT_SPI);
1517		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518						       ARCH_TIMER_PHYS_SPI);
1519
1520		frame->valid = true;
1521	}
1522
1523	frame = arch_timer_mem_find_best_frame(timer_mem);
1524	if (!frame) {
1525		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526			&timer_mem->cntctlbase);
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532	arch_timer_of_configure_rate(rate, np);
1533
1534	ret = arch_timer_mem_frame_register(frame);
1535	if (!ret && !arch_timer_needs_of_probing())
1536		ret = arch_timer_common_init();
1537out:
1538	kfree(timer_mem);
 
1539	return ret;
1540}
1541TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542		       arch_timer_mem_of_init);
1543
1544#ifdef CONFIG_ACPI_GTDT
1545static int __init
1546arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547{
1548	struct arch_timer_mem_frame *frame;
1549	u32 rate;
1550	int i;
1551
1552	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553		frame = &timer_mem->frame[i];
1554
1555		if (!frame->valid)
1556			continue;
1557
1558		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559		if (rate == arch_timer_rate)
1560			continue;
1561
1562		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563			&frame->cntbase,
1564			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565
1566		return -EINVAL;
1567	}
1568
1569	return 0;
1570}
1571
1572static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573{
1574	struct arch_timer_mem *timers, *timer;
1575	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576	int timer_count, i, ret = 0;
1577
1578	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579			    GFP_KERNEL);
1580	if (!timers)
1581		return -ENOMEM;
1582
1583	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584	if (ret || !timer_count)
1585		goto out;
1586
1587	/*
1588	 * While unlikely, it's theoretically possible that none of the frames
1589	 * in a timer expose the combination of feature we want.
1590	 */
1591	for (i = 0; i < timer_count; i++) {
1592		timer = &timers[i];
1593
1594		frame = arch_timer_mem_find_best_frame(timer);
1595		if (!best_frame)
1596			best_frame = frame;
1597
1598		ret = arch_timer_mem_verify_cntfrq(timer);
1599		if (ret) {
1600			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601			goto out;
1602		}
1603
1604		if (!best_frame) /* implies !frame */
1605			/*
1606			 * Only complain about missing suitable frames if we
1607			 * haven't already found one in a previous iteration.
1608			 */
1609			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610				&timer->cntctlbase);
1611	}
1612
1613	if (best_frame)
1614		ret = arch_timer_mem_frame_register(best_frame);
1615out:
1616	kfree(timers);
1617	return ret;
1618}
1619
1620/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622{
1623	int ret, platform_timer_count;
1624
1625	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626		pr_warn("already initialized, skipping\n");
1627		return -EINVAL;
1628	}
1629
1630	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631
1632	ret = acpi_gtdt_init(table, &platform_timer_count);
1633	if (ret)
1634		return ret;
1635
1636	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
 
1638
1639	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
 
1641
1642	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
 
1644
1645	arch_timer_populate_kvm_info();
 
 
1646
1647	/*
1648	 * When probing via ACPI, we have no mechanism to override the sysreg
1649	 * CNTFRQ value. This *must* be correct.
1650	 */
1651	arch_timer_rate = arch_timer_get_cntfrq();
1652	ret = validate_timer_rate();
1653	if (ret) {
1654		pr_err(FW_BUG "frequency not available.\n");
1655		return ret;
1656	}
1657
1658	arch_timer_uses_ppi = arch_timer_select_ppi();
1659	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660		pr_err("No interrupt available, giving up\n");
1661		return -EINVAL;
1662	}
1663
1664	/* Always-on capability */
1665	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666
1667	/* Check for globally applicable workarounds */
1668	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669
1670	ret = arch_timer_register();
1671	if (ret)
1672		return ret;
1673
1674	if (platform_timer_count &&
1675	    arch_timer_mem_acpi_init(platform_timer_count))
1676		pr_err("Failed to initialize memory-mapped timer.\n");
1677
1678	return arch_timer_common_init();
1679}
1680TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681#endif
1682
1683int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684				 struct clocksource **cs)
1685{
1686	struct arm_smccc_res hvc_res;
1687	u32 ptp_counter;
1688	ktime_t ktime;
1689
1690	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691		return -EOPNOTSUPP;
1692
1693	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695	else
1696		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697
1698	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699			     ptp_counter, &hvc_res);
1700
1701	if ((int)(hvc_res.a0) < 0)
1702		return -EOPNOTSUPP;
1703
1704	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705	*ts = ktime_to_timespec64(ktime);
1706	if (cycle)
1707		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708	if (cs)
1709		*cs = &clocksource_counter;
1710
 
1711	return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
 
v4.10.11
 
   1/*
   2 *  linux/drivers/clocksource/arm_arch_timer.c
   3 *
   4 *  Copyright (C) 2011 ARM Ltd.
   5 *  All Rights Reserved
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt)	"arm_arch_timer: " fmt
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/device.h>
  17#include <linux/smp.h>
  18#include <linux/cpu.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/clockchips.h>
  21#include <linux/clocksource.h>
 
  22#include <linux/interrupt.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_address.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
 
  27#include <linux/sched_clock.h>
  28#include <linux/acpi.h>
 
 
  29
  30#include <asm/arch_timer.h>
  31#include <asm/virt.h>
  32
  33#include <clocksource/arm_arch_timer.h>
  34
  35#define CNTTIDR		0x08
  36#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
  37
  38#define CNTACR(n)	(0x40 + ((n) * 4))
  39#define CNTACR_RPCT	BIT(0)
  40#define CNTACR_RVCT	BIT(1)
  41#define CNTACR_RFRQ	BIT(2)
  42#define CNTACR_RVOFF	BIT(3)
  43#define CNTACR_RWVT	BIT(4)
  44#define CNTACR_RWPT	BIT(5)
  45
  46#define CNTVCT_LO	0x08
  47#define CNTVCT_HI	0x0c
  48#define CNTFRQ		0x10
  49#define CNTP_TVAL	0x28
  50#define CNTP_CTL	0x2c
  51#define CNTV_TVAL	0x38
  52#define CNTV_CTL	0x3c
  53
  54#define ARCH_CP15_TIMER	BIT(0)
  55#define ARCH_MEM_TIMER	BIT(1)
  56static unsigned arch_timers_present __initdata;
  57
  58static void __iomem *arch_counter_base;
  59
  60struct arch_timer {
  61	void __iomem *base;
  62	struct clock_event_device evt;
  63};
  64
  65#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  66
  67static u32 arch_timer_rate;
 
  68
  69enum ppi_nr {
  70	PHYS_SECURE_PPI,
  71	PHYS_NONSECURE_PPI,
  72	VIRT_PPI,
  73	HYP_PPI,
  74	MAX_TIMER_PPI
  75};
  76
  77static int arch_timer_ppi[MAX_TIMER_PPI];
  78
  79static struct clock_event_device __percpu *arch_timer_evt;
  80
  81static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
  82static bool arch_timer_c3stop;
  83static bool arch_timer_mem_use_virtual;
  84static bool arch_counter_suspend_stop;
 
 
 
 
 
  85
  86static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
 
  87
  88static int __init early_evtstrm_cfg(char *buf)
  89{
  90	return strtobool(buf, &evtstrm_enable);
  91}
  92early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  93
  94/*
  95 * Architected system timer support.
  96 */
  97
  98#ifdef CONFIG_FSL_ERRATUM_A008585
  99DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
 100EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
 101
 102static int fsl_a008585_enable = -1;
 103
 104static int __init early_fsl_a008585_cfg(char *buf)
 105{
 106	int ret;
 107	bool val;
 108
 109	ret = strtobool(buf, &val);
 110	if (ret)
 111		return ret;
 112
 113	fsl_a008585_enable = val;
 114	return 0;
 115}
 116early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
 117
 118u32 __fsl_a008585_read_cntp_tval_el0(void)
 119{
 120	return __fsl_a008585_read_reg(cntp_tval_el0);
 121}
 122
 123u32 __fsl_a008585_read_cntv_tval_el0(void)
 124{
 125	return __fsl_a008585_read_reg(cntv_tval_el0);
 126}
 127
 128u64 __fsl_a008585_read_cntvct_el0(void)
 129{
 130	return __fsl_a008585_read_reg(cntvct_el0);
 131}
 132EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
 133#endif /* CONFIG_FSL_ERRATUM_A008585 */
 134
 135static __always_inline
 136void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 137			  struct clock_event_device *clk)
 138{
 139	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 140		struct arch_timer *timer = to_arch_timer(clk);
 141		switch (reg) {
 142		case ARCH_TIMER_REG_CTRL:
 143			writel_relaxed(val, timer->base + CNTP_CTL);
 144			break;
 145		case ARCH_TIMER_REG_TVAL:
 146			writel_relaxed(val, timer->base + CNTP_TVAL);
 147			break;
 148		}
 149	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 150		struct arch_timer *timer = to_arch_timer(clk);
 151		switch (reg) {
 152		case ARCH_TIMER_REG_CTRL:
 153			writel_relaxed(val, timer->base + CNTV_CTL);
 154			break;
 155		case ARCH_TIMER_REG_TVAL:
 156			writel_relaxed(val, timer->base + CNTV_TVAL);
 157			break;
 158		}
 159	} else {
 160		arch_timer_reg_write_cp15(access, reg, val);
 161	}
 162}
 163
 164static __always_inline
 165u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 166			struct clock_event_device *clk)
 167{
 168	u32 val;
 169
 170	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 171		struct arch_timer *timer = to_arch_timer(clk);
 172		switch (reg) {
 173		case ARCH_TIMER_REG_CTRL:
 174			val = readl_relaxed(timer->base + CNTP_CTL);
 175			break;
 176		case ARCH_TIMER_REG_TVAL:
 177			val = readl_relaxed(timer->base + CNTP_TVAL);
 178			break;
 179		}
 180	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 181		struct arch_timer *timer = to_arch_timer(clk);
 182		switch (reg) {
 183		case ARCH_TIMER_REG_CTRL:
 184			val = readl_relaxed(timer->base + CNTV_CTL);
 185			break;
 186		case ARCH_TIMER_REG_TVAL:
 187			val = readl_relaxed(timer->base + CNTV_TVAL);
 188			break;
 189		}
 190	} else {
 191		val = arch_timer_reg_read_cp15(access, reg);
 192	}
 193
 194	return val;
 195}
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197static __always_inline irqreturn_t timer_handler(const int access,
 198					struct clock_event_device *evt)
 199{
 200	unsigned long ctrl;
 201
 202	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 203	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 204		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 205		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 206		evt->event_handler(evt);
 207		return IRQ_HANDLED;
 208	}
 209
 210	return IRQ_NONE;
 211}
 212
 213static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 214{
 215	struct clock_event_device *evt = dev_id;
 216
 217	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 218}
 219
 220static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 221{
 222	struct clock_event_device *evt = dev_id;
 223
 224	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 225}
 226
 227static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 228{
 229	struct clock_event_device *evt = dev_id;
 230
 231	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 232}
 233
 234static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 235{
 236	struct clock_event_device *evt = dev_id;
 237
 238	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 239}
 240
 241static __always_inline int timer_shutdown(const int access,
 242					  struct clock_event_device *clk)
 243{
 244	unsigned long ctrl;
 245
 246	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 247	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 248	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 249
 250	return 0;
 251}
 252
 253static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 254{
 255	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 256}
 257
 258static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 259{
 260	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 261}
 262
 263static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 264{
 265	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 266}
 267
 268static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 269{
 270	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 271}
 272
 273static __always_inline void set_next_event(const int access, unsigned long evt,
 274					   struct clock_event_device *clk)
 275{
 276	unsigned long ctrl;
 277	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 278	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 279	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 280	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 281	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 282}
 283
 284#ifdef CONFIG_FSL_ERRATUM_A008585
 285static __always_inline void fsl_a008585_set_next_event(const int access,
 286		unsigned long evt, struct clock_event_device *clk)
 287{
 288	unsigned long ctrl;
 289	u64 cval = evt + arch_counter_get_cntvct();
 290
 291	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 292	ctrl |= ARCH_TIMER_CTRL_ENABLE;
 293	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 294
 295	if (access == ARCH_TIMER_PHYS_ACCESS)
 296		write_sysreg(cval, cntp_cval_el0);
 297	else if (access == ARCH_TIMER_VIRT_ACCESS)
 298		write_sysreg(cval, cntv_cval_el0);
 299
 300	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 301}
 302
 303static int fsl_a008585_set_next_event_virt(unsigned long evt,
 304					   struct clock_event_device *clk)
 305{
 306	fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 307	return 0;
 308}
 309
 310static int fsl_a008585_set_next_event_phys(unsigned long evt,
 311					   struct clock_event_device *clk)
 312{
 313	fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 314	return 0;
 315}
 316#endif /* CONFIG_FSL_ERRATUM_A008585 */
 317
 318static int arch_timer_set_next_event_virt(unsigned long evt,
 319					  struct clock_event_device *clk)
 320{
 321	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 322	return 0;
 323}
 324
 325static int arch_timer_set_next_event_phys(unsigned long evt,
 326					  struct clock_event_device *clk)
 327{
 328	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 329	return 0;
 330}
 331
 332static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 333					      struct clock_event_device *clk)
 334{
 335	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 336	return 0;
 337}
 338
 339static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 340					      struct clock_event_device *clk)
 341{
 342	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 343	return 0;
 344}
 345
 346static void fsl_a008585_set_sne(struct clock_event_device *clk)
 347{
 348#ifdef CONFIG_FSL_ERRATUM_A008585
 349	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
 350		return;
 351
 352	if (arch_timer_uses_ppi == VIRT_PPI)
 353		clk->set_next_event = fsl_a008585_set_next_event_virt;
 354	else
 355		clk->set_next_event = fsl_a008585_set_next_event_phys;
 356#endif
 357}
 358
 359static void __arch_timer_setup(unsigned type,
 360			       struct clock_event_device *clk)
 361{
 362	clk->features = CLOCK_EVT_FEAT_ONESHOT;
 363
 364	if (type == ARCH_CP15_TIMER) {
 
 
 
 
 365		if (arch_timer_c3stop)
 366			clk->features |= CLOCK_EVT_FEAT_C3STOP;
 367		clk->name = "arch_sys_timer";
 368		clk->rating = 450;
 369		clk->cpumask = cpumask_of(smp_processor_id());
 370		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 371		switch (arch_timer_uses_ppi) {
 372		case VIRT_PPI:
 373			clk->set_state_shutdown = arch_timer_shutdown_virt;
 374			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 375			clk->set_next_event = arch_timer_set_next_event_virt;
 376			break;
 377		case PHYS_SECURE_PPI:
 378		case PHYS_NONSECURE_PPI:
 379		case HYP_PPI:
 380			clk->set_state_shutdown = arch_timer_shutdown_phys;
 381			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 382			clk->set_next_event = arch_timer_set_next_event_phys;
 383			break;
 384		default:
 385			BUG();
 386		}
 387
 388		fsl_a008585_set_sne(clk);
 389	} else {
 390		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 391		clk->name = "arch_mem_timer";
 392		clk->rating = 400;
 393		clk->cpumask = cpu_all_mask;
 394		if (arch_timer_mem_use_virtual) {
 395			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 396			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 397			clk->set_next_event =
 398				arch_timer_set_next_event_virt_mem;
 399		} else {
 400			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 401			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 402			clk->set_next_event =
 403				arch_timer_set_next_event_phys_mem;
 404		}
 405	}
 406
 407	clk->set_state_shutdown(clk);
 408
 409	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 410}
 411
 412static void arch_timer_evtstrm_enable(int divider)
 413{
 414	u32 cntkctl = arch_timer_get_cntkctl();
 415
 416	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 417	/* Set the divider and enable virtual event stream */
 418	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 419			| ARCH_TIMER_VIRT_EVT_EN;
 420	arch_timer_set_cntkctl(cntkctl);
 421	elf_hwcap |= HWCAP_EVTSTRM;
 422#ifdef CONFIG_COMPAT
 423	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
 424#endif
 425}
 426
 427static void arch_timer_configure_evtstream(void)
 428{
 429	int evt_stream_div, pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431	/* Find the closest power of two to the divisor */
 432	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
 433	pos = fls(evt_stream_div);
 434	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
 435		pos--;
 436	/* enable event stream */
 437	arch_timer_evtstrm_enable(min(pos, 15));
 438}
 439
 440static void arch_counter_set_user_access(void)
 441{
 442	u32 cntkctl = arch_timer_get_cntkctl();
 443
 444	/* Disable user access to the timers and the physical counter */
 445	/* Also disable virtual event stream */
 446	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 447			| ARCH_TIMER_USR_VT_ACCESS_EN
 
 448			| ARCH_TIMER_VIRT_EVT_EN
 449			| ARCH_TIMER_USR_PCT_ACCESS_EN);
 450
 451	/* Enable user access to the virtual counter */
 452	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 
 
 
 
 
 
 
 453
 454	arch_timer_set_cntkctl(cntkctl);
 455}
 456
 457static bool arch_timer_has_nonsecure_ppi(void)
 458{
 459	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
 460		arch_timer_ppi[PHYS_NONSECURE_PPI]);
 461}
 462
 463static u32 check_ppi_trigger(int irq)
 464{
 465	u32 flags = irq_get_trigger_type(irq);
 466
 467	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 468		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 469		pr_warn("WARNING: Please fix your firmware\n");
 470		flags = IRQF_TRIGGER_LOW;
 471	}
 472
 473	return flags;
 474}
 475
 476static int arch_timer_starting_cpu(unsigned int cpu)
 477{
 478	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 479	u32 flags;
 480
 481	__arch_timer_setup(ARCH_CP15_TIMER, clk);
 482
 483	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 484	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 485
 486	if (arch_timer_has_nonsecure_ppi()) {
 487		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
 488		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
 
 489	}
 490
 491	arch_counter_set_user_access();
 492	if (evtstrm_enable)
 493		arch_timer_configure_evtstream();
 494
 495	return 0;
 496}
 497
 498static void
 499arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500{
 501	/* Who has more than one independent system counter? */
 502	if (arch_timer_rate)
 503		return;
 504
 505	/*
 506	 * Try to determine the frequency from the device tree or CNTFRQ,
 507	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
 508	 */
 509	if (!acpi_disabled ||
 510	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
 511		if (cntbase)
 512			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
 513		else
 514			arch_timer_rate = arch_timer_get_cntfrq();
 515	}
 516
 517	/* Check the timer frequency. */
 518	if (arch_timer_rate == 0)
 519		pr_warn("Architected timer frequency not available\n");
 520}
 521
 522static void arch_timer_banner(unsigned type)
 523{
 524	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 525		     type & ARCH_CP15_TIMER ? "cp15" : "",
 526		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
 527		     type & ARCH_MEM_TIMER ? "mmio" : "",
 528		     (unsigned long)arch_timer_rate / 1000000,
 529		     (unsigned long)(arch_timer_rate / 10000) % 100,
 530		     type & ARCH_CP15_TIMER ?
 531		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
 
 532			"",
 533		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
 534		     type & ARCH_MEM_TIMER ?
 535			arch_timer_mem_use_virtual ? "virt" : "phys" :
 536			"");
 537}
 538
 539u32 arch_timer_get_rate(void)
 540{
 541	return arch_timer_rate;
 542}
 543
 
 
 
 
 
 
 
 
 
 
 544static u64 arch_counter_get_cntvct_mem(void)
 545{
 546	u32 vct_lo, vct_hi, tmp_hi;
 547
 548	do {
 549		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 550		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 551		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 552	} while (vct_hi != tmp_hi);
 553
 554	return ((u64) vct_hi << 32) | vct_lo;
 555}
 556
 557/*
 558 * Default to cp15 based access because arm64 uses this function for
 559 * sched_clock() before DT is probed and the cp15 method is guaranteed
 560 * to exist on arm64. arm doesn't use this before DT is probed so even
 561 * if we don't have the cp15 accessors we won't have a problem.
 562 */
 563u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 564
 565static u64 arch_counter_read(struct clocksource *cs)
 566{
 567	return arch_timer_read_counter();
 568}
 569
 570static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 571{
 572	return arch_timer_read_counter();
 573}
 574
 575static struct clocksource clocksource_counter = {
 576	.name	= "arch_sys_counter",
 577	.rating	= 400,
 578	.read	= arch_counter_read,
 579	.mask	= CLOCKSOURCE_MASK(56),
 580	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 581};
 582
 583static struct cyclecounter cyclecounter = {
 584	.read	= arch_counter_read_cc,
 585	.mask	= CLOCKSOURCE_MASK(56),
 586};
 587
 588static struct arch_timer_kvm_info arch_timer_kvm_info;
 589
 590struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 591{
 592	return &arch_timer_kvm_info;
 593}
 594
 595static void __init arch_counter_register(unsigned type)
 596{
 597	u64 start_count;
 598
 599	/* Register the CP15 based counter if we have one */
 600	if (type & ARCH_CP15_TIMER) {
 601		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
 602			arch_timer_read_counter = arch_counter_get_cntvct;
 603		else
 604			arch_timer_read_counter = arch_counter_get_cntpct;
 605
 606		clocksource_counter.archdata.vdso_direct = true;
 
 
 
 
 
 
 
 
 
 
 
 607
 608#ifdef CONFIG_FSL_ERRATUM_A008585
 609		/*
 610		 * Don't use the vdso fastpath if errata require using
 611		 * the out-of-line counter accessor.
 612		 */
 613		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
 614			clocksource_counter.archdata.vdso_direct = false;
 615#endif
 616	} else {
 617		arch_timer_read_counter = arch_counter_get_cntvct_mem;
 618	}
 619
 620	if (!arch_counter_suspend_stop)
 621		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
 622	start_count = arch_timer_read_counter();
 623	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
 624	cyclecounter.mult = clocksource_counter.mult;
 625	cyclecounter.shift = clocksource_counter.shift;
 626	timecounter_init(&arch_timer_kvm_info.timecounter,
 627			 &cyclecounter, start_count);
 628
 629	/* 56 bits minimum, so we assume worst case rollover */
 630	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
 631}
 632
 633static void arch_timer_stop(struct clock_event_device *clk)
 634{
 635	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
 636		 clk->irq, smp_processor_id());
 637
 638	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
 639	if (arch_timer_has_nonsecure_ppi())
 640		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
 641
 642	clk->set_state_shutdown(clk);
 643}
 644
 645static int arch_timer_dying_cpu(unsigned int cpu)
 646{
 647	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 648
 
 
 649	arch_timer_stop(clk);
 650	return 0;
 651}
 652
 653#ifdef CONFIG_CPU_PM
 654static unsigned int saved_cntkctl;
 655static int arch_timer_cpu_pm_notify(struct notifier_block *self,
 656				    unsigned long action, void *hcpu)
 657{
 658	if (action == CPU_PM_ENTER)
 659		saved_cntkctl = arch_timer_get_cntkctl();
 660	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
 661		arch_timer_set_cntkctl(saved_cntkctl);
 
 
 
 
 
 
 662	return NOTIFY_OK;
 663}
 664
 665static struct notifier_block arch_timer_cpu_pm_notifier = {
 666	.notifier_call = arch_timer_cpu_pm_notify,
 667};
 668
 669static int __init arch_timer_cpu_pm_init(void)
 670{
 671	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
 672}
 673
 674static void __init arch_timer_cpu_pm_deinit(void)
 675{
 676	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
 677}
 678
 679#else
 680static int __init arch_timer_cpu_pm_init(void)
 681{
 682	return 0;
 683}
 684
 685static void __init arch_timer_cpu_pm_deinit(void)
 686{
 687}
 688#endif
 689
 690static int __init arch_timer_register(void)
 691{
 692	int err;
 693	int ppi;
 694
 695	arch_timer_evt = alloc_percpu(struct clock_event_device);
 696	if (!arch_timer_evt) {
 697		err = -ENOMEM;
 698		goto out;
 699	}
 700
 701	ppi = arch_timer_ppi[arch_timer_uses_ppi];
 702	switch (arch_timer_uses_ppi) {
 703	case VIRT_PPI:
 704		err = request_percpu_irq(ppi, arch_timer_handler_virt,
 705					 "arch_timer", arch_timer_evt);
 706		break;
 707	case PHYS_SECURE_PPI:
 708	case PHYS_NONSECURE_PPI:
 709		err = request_percpu_irq(ppi, arch_timer_handler_phys,
 710					 "arch_timer", arch_timer_evt);
 711		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
 712			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
 713			err = request_percpu_irq(ppi, arch_timer_handler_phys,
 714						 "arch_timer", arch_timer_evt);
 715			if (err)
 716				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
 717						arch_timer_evt);
 718		}
 719		break;
 720	case HYP_PPI:
 721		err = request_percpu_irq(ppi, arch_timer_handler_phys,
 722					 "arch_timer", arch_timer_evt);
 723		break;
 724	default:
 725		BUG();
 726	}
 727
 728	if (err) {
 729		pr_err("arch_timer: can't register interrupt %d (%d)\n",
 730		       ppi, err);
 731		goto out_free;
 732	}
 733
 734	err = arch_timer_cpu_pm_init();
 735	if (err)
 736		goto out_unreg_notify;
 737
 738
 739	/* Register and immediately configure the timer on the boot CPU */
 740	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
 741				"clockevents/arm/arch_timer:starting",
 742				arch_timer_starting_cpu, arch_timer_dying_cpu);
 743	if (err)
 744		goto out_unreg_cpupm;
 745	return 0;
 746
 747out_unreg_cpupm:
 748	arch_timer_cpu_pm_deinit();
 749
 750out_unreg_notify:
 751	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
 752	if (arch_timer_has_nonsecure_ppi())
 753		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
 754				arch_timer_evt);
 755
 756out_free:
 757	free_percpu(arch_timer_evt);
 758out:
 759	return err;
 760}
 761
 762static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
 763{
 764	int ret;
 765	irq_handler_t func;
 766	struct arch_timer *t;
 767
 768	t = kzalloc(sizeof(*t), GFP_KERNEL);
 769	if (!t)
 770		return -ENOMEM;
 771
 772	t->base = base;
 773	t->evt.irq = irq;
 774	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
 775
 776	if (arch_timer_mem_use_virtual)
 777		func = arch_timer_handler_virt_mem;
 778	else
 779		func = arch_timer_handler_phys_mem;
 780
 781	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
 782	if (ret) {
 783		pr_err("arch_timer: Failed to request mem timer irq\n");
 784		kfree(t);
 785	}
 786
 787	return ret;
 788}
 789
 790static const struct of_device_id arch_timer_of_match[] __initconst = {
 791	{ .compatible   = "arm,armv7-timer",    },
 792	{ .compatible   = "arm,armv8-timer",    },
 793	{},
 794};
 795
 796static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
 797	{ .compatible   = "arm,armv7-timer-mem", },
 798	{},
 799};
 800
 801static bool __init
 802arch_timer_needs_probing(int type, const struct of_device_id *matches)
 803{
 804	struct device_node *dn;
 805	bool needs_probing = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	dn = of_find_matching_node(NULL, matches);
 808	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
 809		needs_probing = true;
 
 810	of_node_put(dn);
 811
 812	return needs_probing;
 813}
 814
 815static int __init arch_timer_common_init(void)
 816{
 817	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
 818
 819	/* Wait until both nodes are probed if we have two timers */
 820	if ((arch_timers_present & mask) != mask) {
 821		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
 822			return 0;
 823		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
 824			return 0;
 825	}
 826
 827	arch_timer_banner(arch_timers_present);
 828	arch_counter_register(arch_timers_present);
 829	return arch_timer_arch_init();
 830}
 831
 832static int __init arch_timer_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833{
 834	int ret;
 835	/*
 836	 * If HYP mode is available, we know that the physical timer
 837	 * has been configured to be accessible from PL1. Use it, so
 838	 * that a guest can use the virtual timer instead.
 839	 *
 840	 * If no interrupt provided for virtual timer, we'll have to
 841	 * stick to the physical timer. It'd better be accessible...
 842	 *
 843	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
 844	 * accesses to CNTP_*_EL1 registers are silently redirected to
 845	 * their CNTHP_*_EL2 counterparts, and use a different PPI
 846	 * number.
 847	 */
 848	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
 849		bool has_ppi;
 850
 851		if (is_kernel_in_hyp_mode()) {
 852			arch_timer_uses_ppi = HYP_PPI;
 853			has_ppi = !!arch_timer_ppi[HYP_PPI];
 854		} else {
 855			arch_timer_uses_ppi = PHYS_SECURE_PPI;
 856			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
 857				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
 858		}
 859
 860		if (!has_ppi) {
 861			pr_warn("arch_timer: No interrupt available, giving up\n");
 862			return -EINVAL;
 863		}
 864	}
 865
 866	ret = arch_timer_register();
 867	if (ret)
 868		return ret;
 869
 870	ret = arch_timer_common_init();
 871	if (ret)
 872		return ret;
 873
 874	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
 875	
 876	return 0;
 877}
 878
 879static int __init arch_timer_of_init(struct device_node *np)
 880{
 881	int i;
 
 
 882
 883	if (arch_timers_present & ARCH_CP15_TIMER) {
 884		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
 885		return 0;
 886	}
 887
 888	arch_timers_present |= ARCH_CP15_TIMER;
 889	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
 890		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
 
 
 
 
 
 
 
 
 
 
 
 891
 892	arch_timer_detect_rate(NULL, np);
 
 893
 894	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
 895
 896#ifdef CONFIG_FSL_ERRATUM_A008585
 897	if (fsl_a008585_enable < 0)
 898		fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
 899	if (fsl_a008585_enable) {
 900		static_branch_enable(&arch_timer_read_ool_enabled);
 901		pr_info("Enabling workaround for FSL erratum A-008585\n");
 902	}
 903#endif
 904
 905	/*
 906	 * If we cannot rely on firmware initializing the timer registers then
 907	 * we should use the physical timers instead.
 908	 */
 909	if (IS_ENABLED(CONFIG_ARM) &&
 910	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
 911		arch_timer_uses_ppi = PHYS_SECURE_PPI;
 
 
 
 
 
 
 
 912
 913	/* On some systems, the counter stops ticking when in suspend. */
 914	arch_counter_suspend_stop = of_property_read_bool(np,
 915							 "arm,no-tick-in-suspend");
 916
 917	return arch_timer_init();
 
 
 
 
 
 
 
 918}
 919CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
 920CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
 921
 922static int __init arch_timer_mem_init(struct device_node *np)
 
 923{
 924	struct device_node *frame, *best_frame = NULL;
 925	void __iomem *cntctlbase, *base;
 926	unsigned int irq, ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927	u32 cnttidr;
 
 928
 929	arch_timers_present |= ARCH_MEM_TIMER;
 930	cntctlbase = of_iomap(np, 0);
 931	if (!cntctlbase) {
 932		pr_err("arch_timer: Can't find CNTCTLBase\n");
 933		return -ENXIO;
 
 934	}
 935
 936	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
 937
 938	/*
 939	 * Try to find a virtual capable frame. Otherwise fall back to a
 940	 * physical capable frame.
 941	 */
 942	for_each_available_child_of_node(np, frame) {
 943		int n;
 944		u32 cntacr;
 945
 946		if (of_property_read_u32(frame, "frame-number", &n)) {
 947			pr_err("arch_timer: Missing frame-number\n");
 948			of_node_put(frame);
 949			goto out;
 950		}
 951
 952		/* Try enabling everything, and see what sticks */
 953		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
 954			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
 955		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
 956		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
 957
 958		if ((cnttidr & CNTTIDR_VIRT(n)) &&
 959		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
 960			of_node_put(best_frame);
 961			best_frame = frame;
 962			arch_timer_mem_use_virtual = true;
 963			break;
 964		}
 965
 966		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
 967			continue;
 968
 969		of_node_put(best_frame);
 970		best_frame = of_node_get(frame);
 971	}
 972
 973	ret= -ENXIO;
 974	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
 975							 "arch_mem_timer");
 976	if (IS_ERR(base)) {
 977		pr_err("arch_timer: Can't map frame's registers\n");
 978		goto out;
 979	}
 
 
 
 980
 981	if (arch_timer_mem_use_virtual)
 982		irq = irq_of_parse_and_map(best_frame, 1);
 983	else
 984		irq = irq_of_parse_and_map(best_frame, 0);
 985
 986	ret = -EINVAL;
 987	if (!irq) {
 988		pr_err("arch_timer: Frame missing %s irq",
 989		       arch_timer_mem_use_virtual ? "virt" : "phys");
 990		goto out;
 
 
 
 
 
 
 
 
 
 
 991	}
 992
 993	arch_timer_detect_rate(base, np);
 994	ret = arch_timer_mem_register(base, irq);
 995	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	return arch_timer_common_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999out:
1000	iounmap(cntctlbase);
1001	of_node_put(best_frame);
1002	return ret;
1003}
1004CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005		       arch_timer_mem_init);
1006
1007#ifdef CONFIG_ACPI
1008static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
 
1009{
1010	int trigger, polarity;
 
 
 
 
 
 
 
 
1011
1012	if (!interrupt)
1013		return 0;
 
1014
1015	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1016			: ACPI_LEVEL_SENSITIVE;
 
1017
1018	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1019			: ACPI_ACTIVE_HIGH;
1020
1021	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1022}
1023
1024/* Initialize per-processor generic timer */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1026{
1027	struct acpi_table_gtdt *gtdt;
1028
1029	if (arch_timers_present & ARCH_CP15_TIMER) {
1030		pr_warn("arch_timer: already initialized, skipping\n");
1031		return -EINVAL;
1032	}
1033
1034	gtdt = container_of(table, struct acpi_table_gtdt, header);
1035
1036	arch_timers_present |= ARCH_CP15_TIMER;
 
 
1037
1038	arch_timer_ppi[PHYS_SECURE_PPI] =
1039		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1040		gtdt->secure_el1_flags);
1041
1042	arch_timer_ppi[PHYS_NONSECURE_PPI] =
1043		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1044		gtdt->non_secure_el1_flags);
1045
1046	arch_timer_ppi[VIRT_PPI] =
1047		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1048		gtdt->virtual_timer_flags);
1049
1050	arch_timer_ppi[HYP_PPI] =
1051		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1052		gtdt->non_secure_el2_flags);
1053
1054	/* Get the frequency from CNTFRQ */
1055	arch_timer_detect_rate(NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056
1057	/* Always-on capability */
1058	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	arch_timer_init();
1061	return 0;
1062}
1063CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064#endif