Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
 
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
  76#include <linux/tracehook.h>
  77#include <linux/printk.h>
  78#include <linux/cache.h>
  79#include <linux/cgroup.h>
  80#include <linux/cpuset.h>
  81#include <linux/audit.h>
  82#include <linux/poll.h>
  83#include <linux/nsproxy.h>
  84#include <linux/oom.h>
  85#include <linux/elf.h>
  86#include <linux/pid_namespace.h>
  87#include <linux/user_namespace.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
 
  98#include <trace/events/oom.h>
  99#include "internal.h"
 100#include "fd.h"
 101
 102#include "../../lib/kstrtox.h"
 103
 104/* NOTE:
 105 *	Implementing inode permission operations in /proc is almost
 106 *	certainly an error.  Permission checks need to happen during
 107 *	each system call not at open time.  The reason is that most of
 108 *	what we wish to check for permissions in /proc varies at runtime.
 109 *
 110 *	The classic example of a problem is opening file descriptors
 111 *	in /proc for a task before it execs a suid executable.
 112 */
 113
 114static u8 nlink_tid __ro_after_init;
 115static u8 nlink_tgid __ro_after_init;
 116
 117struct pid_entry {
 118	const char *name;
 119	unsigned int len;
 120	umode_t mode;
 121	const struct inode_operations *iop;
 122	const struct file_operations *fop;
 123	union proc_op op;
 124};
 125
 126#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 127	.name = (NAME),					\
 128	.len  = sizeof(NAME) - 1,			\
 129	.mode = MODE,					\
 130	.iop  = IOP,					\
 131	.fop  = FOP,					\
 132	.op   = OP,					\
 133}
 134
 135#define DIR(NAME, MODE, iops, fops)	\
 136	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 137#define LNK(NAME, get_link)					\
 138	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 139		&proc_pid_link_inode_operations, NULL,		\
 140		{ .proc_get_link = get_link } )
 141#define REG(NAME, MODE, fops)				\
 142	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 143#define ONE(NAME, MODE, show)				\
 144	NOD(NAME, (S_IFREG|(MODE)),			\
 145		NULL, &proc_single_file_operations,	\
 146		{ .proc_show = show } )
 147#define ATTR(LSM, NAME, MODE)				\
 148	NOD(NAME, (S_IFREG|(MODE)),			\
 149		NULL, &proc_pid_attr_operations,	\
 150		{ .lsm = LSM })
 151
 152/*
 153 * Count the number of hardlinks for the pid_entry table, excluding the .
 154 * and .. links.
 155 */
 156static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 157	unsigned int n)
 158{
 159	unsigned int i;
 160	unsigned int count;
 161
 162	count = 2;
 163	for (i = 0; i < n; ++i) {
 164		if (S_ISDIR(entries[i].mode))
 165			++count;
 166	}
 167
 168	return count;
 169}
 170
 171static int get_task_root(struct task_struct *task, struct path *root)
 172{
 173	int result = -ENOENT;
 174
 175	task_lock(task);
 176	if (task->fs) {
 177		get_fs_root(task->fs, root);
 178		result = 0;
 179	}
 180	task_unlock(task);
 181	return result;
 182}
 183
 184static int proc_cwd_link(struct dentry *dentry, struct path *path)
 185{
 186	struct task_struct *task = get_proc_task(d_inode(dentry));
 187	int result = -ENOENT;
 188
 189	if (task) {
 190		task_lock(task);
 191		if (task->fs) {
 192			get_fs_pwd(task->fs, path);
 193			result = 0;
 194		}
 195		task_unlock(task);
 196		put_task_struct(task);
 197	}
 198	return result;
 199}
 200
 201static int proc_root_link(struct dentry *dentry, struct path *path)
 202{
 203	struct task_struct *task = get_proc_task(d_inode(dentry));
 204	int result = -ENOENT;
 205
 206	if (task) {
 207		result = get_task_root(task, path);
 208		put_task_struct(task);
 209	}
 210	return result;
 211}
 212
 213/*
 214 * If the user used setproctitle(), we just get the string from
 215 * user space at arg_start, and limit it to a maximum of one page.
 216 */
 217static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 218				size_t count, unsigned long pos,
 219				unsigned long arg_start)
 220{
 
 
 221	char *page;
 222	int ret, got;
 223
 224	if (pos >= PAGE_SIZE)
 225		return 0;
 
 
 226
 227	page = (char *)__get_free_page(GFP_KERNEL);
 228	if (!page)
 229		return -ENOMEM;
 230
 231	ret = 0;
 232	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 233	if (got > 0) {
 234		int len = strnlen(page, got);
 235
 236		/* Include the NUL character if it was found */
 237		if (len < got)
 238			len++;
 239
 240		if (len > pos) {
 241			len -= pos;
 242			if (len > count)
 243				len = count;
 244			len -= copy_to_user(buf, page+pos, len);
 245			if (!len)
 246				len = -EFAULT;
 247			ret = len;
 248		}
 249	}
 250	free_page((unsigned long)page);
 251	return ret;
 252}
 253
 254static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 255			      size_t count, loff_t *ppos)
 256{
 257	unsigned long arg_start, arg_end, env_start, env_end;
 258	unsigned long pos, len;
 259	char *page, c;
 260
 261	/* Check if process spawned far enough to have cmdline. */
 262	if (!mm->env_end)
 263		return 0;
 
 
 264
 265	spin_lock(&mm->arg_lock);
 266	arg_start = mm->arg_start;
 267	arg_end = mm->arg_end;
 268	env_start = mm->env_start;
 269	env_end = mm->env_end;
 270	spin_unlock(&mm->arg_lock);
 271
 272	if (arg_start >= arg_end)
 273		return 0;
 274
 275	/*
 276	 * We allow setproctitle() to overwrite the argument
 277	 * strings, and overflow past the original end. But
 278	 * only when it overflows into the environment area.
 279	 */
 280	if (env_start != arg_end || env_end < env_start)
 281		env_start = env_end = arg_end;
 282	len = env_end - arg_start;
 283
 284	/* We're not going to care if "*ppos" has high bits set */
 285	pos = *ppos;
 286	if (pos >= len)
 287		return 0;
 288	if (count > len - pos)
 289		count = len - pos;
 290	if (!count)
 291		return 0;
 292
 
 
 
 
 
 293	/*
 294	 * Magical special case: if the argv[] end byte is not
 295	 * zero, the user has overwritten it with setproctitle(3).
 296	 *
 297	 * Possible future enhancement: do this only once when
 298	 * pos is 0, and set a flag in the 'struct file'.
 299	 */
 300	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 301		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	/*
 304	 * For the non-setproctitle() case we limit things strictly
 305	 * to the [arg_start, arg_end[ range.
 306	 */
 307	pos += arg_start;
 308	if (pos < arg_start || pos >= arg_end)
 309		return 0;
 310	if (count > arg_end - pos)
 311		count = arg_end - pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312
 313	page = (char *)__get_free_page(GFP_KERNEL);
 314	if (!page)
 315		return -ENOMEM;
 
 
 
 
 
 
 
 316
 317	len = 0;
 318	while (count) {
 319		int got;
 320		size_t size = min_t(size_t, PAGE_SIZE, count);
 321
 322		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 323		if (got <= 0)
 324			break;
 325		got -= copy_to_user(buf, page, got);
 326		if (unlikely(!got)) {
 327			if (!len)
 328				len = -EFAULT;
 329			break;
 330		}
 331		pos += got;
 332		buf += got;
 333		len += got;
 334		count -= got;
 335	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336
 337	free_page((unsigned long)page);
 338	return len;
 339}
 
 340
 341static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 342				size_t count, loff_t *pos)
 343{
 344	struct mm_struct *mm;
 345	ssize_t ret;
 346
 347	mm = get_task_mm(tsk);
 348	if (!mm)
 349		return 0;
 
 
 
 350
 351	ret = get_mm_cmdline(mm, buf, count, pos);
 
 
 352	mmput(mm);
 353	return ret;
 354}
 355
 356static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 357				     size_t count, loff_t *pos)
 358{
 359	struct task_struct *tsk;
 360	ssize_t ret;
 361
 362	BUG_ON(*pos < 0);
 363
 364	tsk = get_proc_task(file_inode(file));
 365	if (!tsk)
 366		return -ESRCH;
 367	ret = get_task_cmdline(tsk, buf, count, pos);
 368	put_task_struct(tsk);
 369	if (ret > 0)
 370		*pos += ret;
 371	return ret;
 372}
 373
 374static const struct file_operations proc_pid_cmdline_ops = {
 375	.read	= proc_pid_cmdline_read,
 376	.llseek	= generic_file_llseek,
 377};
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379#ifdef CONFIG_KALLSYMS
 380/*
 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 382 * Returns the resolved symbol.  If that fails, simply return the address.
 383 */
 384static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 385			  struct pid *pid, struct task_struct *task)
 386{
 387	unsigned long wchan;
 
 388
 389	if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390		wchan = get_wchan(task);
 391	else
 392		wchan = 0;
 393
 394	if (wchan)
 395		seq_printf(m, "%ps", (void *) wchan);
 
 396	else
 397		seq_putc(m, '0');
 398
 399	return 0;
 400}
 401#endif /* CONFIG_KALLSYMS */
 402
 403static int lock_trace(struct task_struct *task)
 404{
 405	int err = down_read_killable(&task->signal->exec_update_lock);
 406	if (err)
 407		return err;
 408	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 409		up_read(&task->signal->exec_update_lock);
 410		return -EPERM;
 411	}
 412	return 0;
 413}
 414
 415static void unlock_trace(struct task_struct *task)
 416{
 417	up_read(&task->signal->exec_update_lock);
 418}
 419
 420#ifdef CONFIG_STACKTRACE
 421
 422#define MAX_STACK_TRACE_DEPTH	64
 423
 424static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 425			  struct pid *pid, struct task_struct *task)
 426{
 
 427	unsigned long *entries;
 428	int err;
 
 429
 430	/*
 431	 * The ability to racily run the kernel stack unwinder on a running task
 432	 * and then observe the unwinder output is scary; while it is useful for
 433	 * debugging kernel issues, it can also allow an attacker to leak kernel
 434	 * stack contents.
 435	 * Doing this in a manner that is at least safe from races would require
 436	 * some work to ensure that the remote task can not be scheduled; and
 437	 * even then, this would still expose the unwinder as local attack
 438	 * surface.
 439	 * Therefore, this interface is restricted to root.
 440	 */
 441	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 442		return -EACCES;
 443
 444	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 445				GFP_KERNEL);
 446	if (!entries)
 447		return -ENOMEM;
 448
 
 
 
 
 
 449	err = lock_trace(task);
 450	if (!err) {
 451		unsigned int i, nr_entries;
 452
 453		nr_entries = stack_trace_save_tsk(task, entries,
 454						  MAX_STACK_TRACE_DEPTH, 0);
 455
 456		for (i = 0; i < nr_entries; i++) {
 457			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 458		}
 459
 460		unlock_trace(task);
 461	}
 462	kfree(entries);
 463
 464	return err;
 465}
 466#endif
 467
 468#ifdef CONFIG_SCHED_INFO
 469/*
 470 * Provides /proc/PID/schedstat
 471 */
 472static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 473			      struct pid *pid, struct task_struct *task)
 474{
 475	if (unlikely(!sched_info_on()))
 476		seq_puts(m, "0 0 0\n");
 477	else
 478		seq_printf(m, "%llu %llu %lu\n",
 479		   (unsigned long long)task->se.sum_exec_runtime,
 480		   (unsigned long long)task->sched_info.run_delay,
 481		   task->sched_info.pcount);
 482
 483	return 0;
 484}
 485#endif
 486
 487#ifdef CONFIG_LATENCYTOP
 488static int lstats_show_proc(struct seq_file *m, void *v)
 489{
 490	int i;
 491	struct inode *inode = m->private;
 492	struct task_struct *task = get_proc_task(inode);
 493
 494	if (!task)
 495		return -ESRCH;
 496	seq_puts(m, "Latency Top version : v0.1\n");
 497	for (i = 0; i < LT_SAVECOUNT; i++) {
 498		struct latency_record *lr = &task->latency_record[i];
 499		if (lr->backtrace[0]) {
 500			int q;
 501			seq_printf(m, "%i %li %li",
 502				   lr->count, lr->time, lr->max);
 503			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 504				unsigned long bt = lr->backtrace[q];
 505
 506				if (!bt)
 507					break;
 
 
 508				seq_printf(m, " %ps", (void *)bt);
 509			}
 510			seq_putc(m, '\n');
 511		}
 512
 513	}
 514	put_task_struct(task);
 515	return 0;
 516}
 517
 518static int lstats_open(struct inode *inode, struct file *file)
 519{
 520	return single_open(file, lstats_show_proc, inode);
 521}
 522
 523static ssize_t lstats_write(struct file *file, const char __user *buf,
 524			    size_t count, loff_t *offs)
 525{
 526	struct task_struct *task = get_proc_task(file_inode(file));
 527
 528	if (!task)
 529		return -ESRCH;
 530	clear_tsk_latency_tracing(task);
 531	put_task_struct(task);
 532
 533	return count;
 534}
 535
 536static const struct file_operations proc_lstats_operations = {
 537	.open		= lstats_open,
 538	.read		= seq_read,
 539	.write		= lstats_write,
 540	.llseek		= seq_lseek,
 541	.release	= single_release,
 542};
 543
 544#endif
 545
 546static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 547			  struct pid *pid, struct task_struct *task)
 548{
 549	unsigned long totalpages = totalram_pages() + total_swap_pages;
 550	unsigned long points = 0;
 551	long badness;
 552
 553	badness = oom_badness(task, totalpages);
 554	/*
 555	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 556	 * badness value into [0, 2000] range which we have been
 557	 * exporting for a long time so userspace might depend on it.
 558	 */
 559	if (badness != LONG_MIN)
 560		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 561
 
 
 
 
 
 562	seq_printf(m, "%lu\n", points);
 563
 564	return 0;
 565}
 566
 567struct limit_names {
 568	const char *name;
 569	const char *unit;
 570};
 571
 572static const struct limit_names lnames[RLIM_NLIMITS] = {
 573	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 574	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 575	[RLIMIT_DATA] = {"Max data size", "bytes"},
 576	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 577	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 578	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 579	[RLIMIT_NPROC] = {"Max processes", "processes"},
 580	[RLIMIT_NOFILE] = {"Max open files", "files"},
 581	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 582	[RLIMIT_AS] = {"Max address space", "bytes"},
 583	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 584	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 585	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 586	[RLIMIT_NICE] = {"Max nice priority", NULL},
 587	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 588	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 589};
 590
 591/* Display limits for a process */
 592static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 593			   struct pid *pid, struct task_struct *task)
 594{
 595	unsigned int i;
 596	unsigned long flags;
 597
 598	struct rlimit rlim[RLIM_NLIMITS];
 599
 600	if (!lock_task_sighand(task, &flags))
 601		return 0;
 602	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 603	unlock_task_sighand(task, &flags);
 604
 605	/*
 606	 * print the file header
 607	 */
 608	seq_puts(m, "Limit                     "
 609		"Soft Limit           "
 610		"Hard Limit           "
 611		"Units     \n");
 612
 613	for (i = 0; i < RLIM_NLIMITS; i++) {
 614		if (rlim[i].rlim_cur == RLIM_INFINITY)
 615			seq_printf(m, "%-25s %-20s ",
 616				   lnames[i].name, "unlimited");
 617		else
 618			seq_printf(m, "%-25s %-20lu ",
 619				   lnames[i].name, rlim[i].rlim_cur);
 620
 621		if (rlim[i].rlim_max == RLIM_INFINITY)
 622			seq_printf(m, "%-20s ", "unlimited");
 623		else
 624			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 625
 626		if (lnames[i].unit)
 627			seq_printf(m, "%-10s\n", lnames[i].unit);
 628		else
 629			seq_putc(m, '\n');
 630	}
 631
 632	return 0;
 633}
 634
 635#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 636static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 637			    struct pid *pid, struct task_struct *task)
 638{
 639	struct syscall_info info;
 640	u64 *args = &info.data.args[0];
 641	int res;
 642
 643	res = lock_trace(task);
 644	if (res)
 645		return res;
 646
 647	if (task_current_syscall(task, &info))
 648		seq_puts(m, "running\n");
 649	else if (info.data.nr < 0)
 650		seq_printf(m, "%d 0x%llx 0x%llx\n",
 651			   info.data.nr, info.sp, info.data.instruction_pointer);
 652	else
 653		seq_printf(m,
 654		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 655		       info.data.nr,
 656		       args[0], args[1], args[2], args[3], args[4], args[5],
 657		       info.sp, info.data.instruction_pointer);
 658	unlock_trace(task);
 659
 660	return 0;
 661}
 662#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 663
 664/************************************************************************/
 665/*                       Here the fs part begins                        */
 666/************************************************************************/
 667
 668/* permission checks */
 669static int proc_fd_access_allowed(struct inode *inode)
 670{
 671	struct task_struct *task;
 672	int allowed = 0;
 673	/* Allow access to a task's file descriptors if it is us or we
 674	 * may use ptrace attach to the process and find out that
 675	 * information.
 676	 */
 677	task = get_proc_task(inode);
 678	if (task) {
 679		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 680		put_task_struct(task);
 681	}
 682	return allowed;
 683}
 684
 685int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 686		 struct iattr *attr)
 687{
 688	int error;
 689	struct inode *inode = d_inode(dentry);
 690
 691	if (attr->ia_valid & ATTR_MODE)
 692		return -EPERM;
 693
 694	error = setattr_prepare(&init_user_ns, dentry, attr);
 695	if (error)
 696		return error;
 697
 698	setattr_copy(&init_user_ns, inode, attr);
 699	mark_inode_dirty(inode);
 700	return 0;
 701}
 702
 703/*
 704 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 705 * or euid/egid (for hide_pid_min=2)?
 706 */
 707static bool has_pid_permissions(struct proc_fs_info *fs_info,
 708				 struct task_struct *task,
 709				 enum proc_hidepid hide_pid_min)
 710{
 711	/*
 712	 * If 'hidpid' mount option is set force a ptrace check,
 713	 * we indicate that we are using a filesystem syscall
 714	 * by passing PTRACE_MODE_READ_FSCREDS
 715	 */
 716	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 717		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 718
 719	if (fs_info->hide_pid < hide_pid_min)
 720		return true;
 721	if (in_group_p(fs_info->pid_gid))
 722		return true;
 723	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 724}
 725
 726
 727static int proc_pid_permission(struct user_namespace *mnt_userns,
 728			       struct inode *inode, int mask)
 729{
 730	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 731	struct task_struct *task;
 732	bool has_perms;
 733
 734	task = get_proc_task(inode);
 735	if (!task)
 736		return -ESRCH;
 737	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 738	put_task_struct(task);
 739
 740	if (!has_perms) {
 741		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 742			/*
 743			 * Let's make getdents(), stat(), and open()
 744			 * consistent with each other.  If a process
 745			 * may not stat() a file, it shouldn't be seen
 746			 * in procfs at all.
 747			 */
 748			return -ENOENT;
 749		}
 750
 751		return -EPERM;
 752	}
 753	return generic_permission(&init_user_ns, inode, mask);
 754}
 755
 756
 757
 758static const struct inode_operations proc_def_inode_operations = {
 759	.setattr	= proc_setattr,
 760};
 761
 762static int proc_single_show(struct seq_file *m, void *v)
 763{
 764	struct inode *inode = m->private;
 765	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 766	struct pid *pid = proc_pid(inode);
 767	struct task_struct *task;
 768	int ret;
 769
 
 
 770	task = get_pid_task(pid, PIDTYPE_PID);
 771	if (!task)
 772		return -ESRCH;
 773
 774	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 775
 776	put_task_struct(task);
 777	return ret;
 778}
 779
 780static int proc_single_open(struct inode *inode, struct file *filp)
 781{
 782	return single_open(filp, proc_single_show, inode);
 783}
 784
 785static const struct file_operations proc_single_file_operations = {
 786	.open		= proc_single_open,
 787	.read		= seq_read,
 788	.llseek		= seq_lseek,
 789	.release	= single_release,
 790};
 791
 792
 793struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 794{
 795	struct task_struct *task = get_proc_task(inode);
 796	struct mm_struct *mm = ERR_PTR(-ESRCH);
 797
 798	if (task) {
 799		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 800		put_task_struct(task);
 801
 802		if (!IS_ERR_OR_NULL(mm)) {
 803			/* ensure this mm_struct can't be freed */
 804			mmgrab(mm);
 805			/* but do not pin its memory */
 806			mmput(mm);
 807		}
 808	}
 809
 810	return mm;
 811}
 812
 813static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 814{
 815	struct mm_struct *mm = proc_mem_open(inode, mode);
 816
 817	if (IS_ERR(mm))
 818		return PTR_ERR(mm);
 819
 820	file->private_data = mm;
 821	return 0;
 822}
 823
 824static int mem_open(struct inode *inode, struct file *file)
 825{
 826	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 827
 828	/* OK to pass negative loff_t, we can catch out-of-range */
 829	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 830
 831	return ret;
 832}
 833
 834static ssize_t mem_rw(struct file *file, char __user *buf,
 835			size_t count, loff_t *ppos, int write)
 836{
 837	struct mm_struct *mm = file->private_data;
 838	unsigned long addr = *ppos;
 839	ssize_t copied;
 840	char *page;
 841	unsigned int flags;
 842
 843	if (!mm)
 844		return 0;
 845
 846	page = (char *)__get_free_page(GFP_KERNEL);
 847	if (!page)
 848		return -ENOMEM;
 849
 850	copied = 0;
 851	if (!mmget_not_zero(mm))
 852		goto free;
 853
 854	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 855
 856	while (count > 0) {
 857		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_KERNEL);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!mmget_not_zero(mm))
 957		goto free;
 958
 959	spin_lock(&mm->arg_lock);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	spin_unlock(&mm->arg_lock);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
 
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
 
 
 
1050	put_task_struct(task);
1051	if (oom_adj > OOM_ADJUST_MAX)
1052		oom_adj = OOM_ADJUST_MAX;
1053	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1054	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1055}
1056
1057static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1058{
1059	struct mm_struct *mm = NULL;
1060	struct task_struct *task;
1061	int err = 0;
1062
1063	task = get_proc_task(file_inode(file));
1064	if (!task)
1065		return -ESRCH;
1066
1067	mutex_lock(&oom_adj_mutex);
1068	if (legacy) {
1069		if (oom_adj < task->signal->oom_score_adj &&
1070				!capable(CAP_SYS_RESOURCE)) {
1071			err = -EACCES;
1072			goto err_unlock;
1073		}
1074		/*
1075		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076		 * /proc/pid/oom_score_adj instead.
1077		 */
1078		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079			  current->comm, task_pid_nr(current), task_pid_nr(task),
1080			  task_pid_nr(task));
1081	} else {
1082		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083				!capable(CAP_SYS_RESOURCE)) {
1084			err = -EACCES;
1085			goto err_unlock;
1086		}
1087	}
1088
1089	/*
1090	 * Make sure we will check other processes sharing the mm if this is
1091	 * not vfrok which wants its own oom_score_adj.
1092	 * pin the mm so it doesn't go away and get reused after task_unlock
1093	 */
1094	if (!task->vfork_done) {
1095		struct task_struct *p = find_lock_task_mm(task);
1096
1097		if (p) {
1098			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1099				mm = p->mm;
1100				mmgrab(mm);
1101			}
1102			task_unlock(p);
1103		}
1104	}
1105
1106	task->signal->oom_score_adj = oom_adj;
1107	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108		task->signal->oom_score_adj_min = (short)oom_adj;
1109	trace_oom_score_adj_update(task);
1110
1111	if (mm) {
1112		struct task_struct *p;
1113
1114		rcu_read_lock();
1115		for_each_process(p) {
1116			if (same_thread_group(task, p))
1117				continue;
1118
1119			/* do not touch kernel threads or the global init */
1120			if (p->flags & PF_KTHREAD || is_global_init(p))
1121				continue;
1122
1123			task_lock(p);
1124			if (!p->vfork_done && process_shares_mm(p, mm)) {
1125				p->signal->oom_score_adj = oom_adj;
1126				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127					p->signal->oom_score_adj_min = (short)oom_adj;
1128			}
1129			task_unlock(p);
1130		}
1131		rcu_read_unlock();
1132		mmdrop(mm);
1133	}
1134err_unlock:
1135	mutex_unlock(&oom_adj_mutex);
1136	put_task_struct(task);
1137	return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels.  The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151			     size_t count, loff_t *ppos)
1152{
 
1153	char buffer[PROC_NUMBUF];
1154	int oom_adj;
 
1155	int err;
1156
1157	memset(buffer, 0, sizeof(buffer));
1158	if (count > sizeof(buffer) - 1)
1159		count = sizeof(buffer) - 1;
1160	if (copy_from_user(buffer, buf, count)) {
1161		err = -EFAULT;
1162		goto out;
1163	}
1164
1165	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166	if (err)
1167		goto out;
1168	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169	     oom_adj != OOM_DISABLE) {
1170		err = -EINVAL;
1171		goto out;
1172	}
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174	/*
1175	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176	 * value is always attainable.
1177	 */
1178	if (oom_adj == OOM_ADJUST_MAX)
1179		oom_adj = OOM_SCORE_ADJ_MAX;
1180	else
1181		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184out:
1185	return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189	.read		= oom_adj_read,
1190	.write		= oom_adj_write,
1191	.llseek		= generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195					size_t count, loff_t *ppos)
1196{
1197	struct task_struct *task = get_proc_task(file_inode(file));
1198	char buffer[PROC_NUMBUF];
1199	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1200	size_t len;
1201
1202	if (!task)
1203		return -ESRCH;
1204	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1205	put_task_struct(task);
1206	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211					size_t count, loff_t *ppos)
1212{
 
1213	char buffer[PROC_NUMBUF];
 
1214	int oom_score_adj;
1215	int err;
1216
1217	memset(buffer, 0, sizeof(buffer));
1218	if (count > sizeof(buffer) - 1)
1219		count = sizeof(buffer) - 1;
1220	if (copy_from_user(buffer, buf, count)) {
1221		err = -EFAULT;
1222		goto out;
1223	}
1224
1225	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226	if (err)
1227		goto out;
1228	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230		err = -EINVAL;
1231		goto out;
1232	}
1233
1234	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235out:
1236	return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240	.read		= oom_score_adj_read,
1241	.write		= oom_score_adj_write,
1242	.llseek		= default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248				  size_t count, loff_t *ppos)
1249{
1250	struct inode * inode = file_inode(file);
1251	struct task_struct *task = get_proc_task(inode);
1252	ssize_t length;
1253	char tmpbuf[TMPBUFLEN];
1254
1255	if (!task)
1256		return -ESRCH;
1257	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258			   from_kuid(file->f_cred->user_ns,
1259				     audit_get_loginuid(task)));
1260	put_task_struct(task);
1261	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265				   size_t count, loff_t *ppos)
1266{
1267	struct inode * inode = file_inode(file);
1268	uid_t loginuid;
1269	kuid_t kloginuid;
1270	int rv;
1271
1272	/* Don't let kthreads write their own loginuid */
1273	if (current->flags & PF_KTHREAD)
1274		return -EPERM;
1275
1276	rcu_read_lock();
1277	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1278		rcu_read_unlock();
1279		return -EPERM;
1280	}
1281	rcu_read_unlock();
1282
1283	if (*ppos != 0) {
1284		/* No partial writes. */
1285		return -EINVAL;
1286	}
1287
1288	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1289	if (rv < 0)
1290		return rv;
1291
1292	/* is userspace tring to explicitly UNSET the loginuid? */
1293	if (loginuid == AUDIT_UID_UNSET) {
1294		kloginuid = INVALID_UID;
1295	} else {
1296		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1297		if (!uid_valid(kloginuid))
1298			return -EINVAL;
1299	}
1300
1301	rv = audit_set_loginuid(kloginuid);
1302	if (rv < 0)
1303		return rv;
1304	return count;
1305}
1306
1307static const struct file_operations proc_loginuid_operations = {
1308	.read		= proc_loginuid_read,
1309	.write		= proc_loginuid_write,
1310	.llseek		= generic_file_llseek,
1311};
1312
1313static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1314				  size_t count, loff_t *ppos)
1315{
1316	struct inode * inode = file_inode(file);
1317	struct task_struct *task = get_proc_task(inode);
1318	ssize_t length;
1319	char tmpbuf[TMPBUFLEN];
1320
1321	if (!task)
1322		return -ESRCH;
1323	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1324				audit_get_sessionid(task));
1325	put_task_struct(task);
1326	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1327}
1328
1329static const struct file_operations proc_sessionid_operations = {
1330	.read		= proc_sessionid_read,
1331	.llseek		= generic_file_llseek,
1332};
1333#endif
1334
1335#ifdef CONFIG_FAULT_INJECTION
1336static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1337				      size_t count, loff_t *ppos)
1338{
1339	struct task_struct *task = get_proc_task(file_inode(file));
1340	char buffer[PROC_NUMBUF];
1341	size_t len;
1342	int make_it_fail;
1343
1344	if (!task)
1345		return -ESRCH;
1346	make_it_fail = task->make_it_fail;
1347	put_task_struct(task);
1348
1349	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1350
1351	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1352}
1353
1354static ssize_t proc_fault_inject_write(struct file * file,
1355			const char __user * buf, size_t count, loff_t *ppos)
1356{
1357	struct task_struct *task;
1358	char buffer[PROC_NUMBUF];
1359	int make_it_fail;
1360	int rv;
1361
1362	if (!capable(CAP_SYS_RESOURCE))
1363		return -EPERM;
1364	memset(buffer, 0, sizeof(buffer));
1365	if (count > sizeof(buffer) - 1)
1366		count = sizeof(buffer) - 1;
1367	if (copy_from_user(buffer, buf, count))
1368		return -EFAULT;
1369	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1370	if (rv < 0)
1371		return rv;
1372	if (make_it_fail < 0 || make_it_fail > 1)
1373		return -EINVAL;
1374
1375	task = get_proc_task(file_inode(file));
1376	if (!task)
1377		return -ESRCH;
1378	task->make_it_fail = make_it_fail;
1379	put_task_struct(task);
1380
1381	return count;
1382}
1383
1384static const struct file_operations proc_fault_inject_operations = {
1385	.read		= proc_fault_inject_read,
1386	.write		= proc_fault_inject_write,
1387	.llseek		= generic_file_llseek,
1388};
1389
1390static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1391				   size_t count, loff_t *ppos)
1392{
1393	struct task_struct *task;
1394	int err;
1395	unsigned int n;
1396
1397	err = kstrtouint_from_user(buf, count, 0, &n);
1398	if (err)
1399		return err;
1400
1401	task = get_proc_task(file_inode(file));
1402	if (!task)
1403		return -ESRCH;
1404	task->fail_nth = n;
1405	put_task_struct(task);
1406
1407	return count;
1408}
1409
1410static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1411				  size_t count, loff_t *ppos)
1412{
1413	struct task_struct *task;
1414	char numbuf[PROC_NUMBUF];
1415	ssize_t len;
1416
1417	task = get_proc_task(file_inode(file));
1418	if (!task)
1419		return -ESRCH;
1420	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1421	put_task_struct(task);
1422	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1423}
1424
1425static const struct file_operations proc_fail_nth_operations = {
1426	.read		= proc_fail_nth_read,
1427	.write		= proc_fail_nth_write,
1428};
1429#endif
1430
1431
1432#ifdef CONFIG_SCHED_DEBUG
1433/*
1434 * Print out various scheduling related per-task fields:
1435 */
1436static int sched_show(struct seq_file *m, void *v)
1437{
1438	struct inode *inode = m->private;
1439	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1440	struct task_struct *p;
1441
1442	p = get_proc_task(inode);
1443	if (!p)
1444		return -ESRCH;
1445	proc_sched_show_task(p, ns, m);
1446
1447	put_task_struct(p);
1448
1449	return 0;
1450}
1451
1452static ssize_t
1453sched_write(struct file *file, const char __user *buf,
1454	    size_t count, loff_t *offset)
1455{
1456	struct inode *inode = file_inode(file);
1457	struct task_struct *p;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462	proc_sched_set_task(p);
1463
1464	put_task_struct(p);
1465
1466	return count;
1467}
1468
1469static int sched_open(struct inode *inode, struct file *filp)
1470{
1471	return single_open(filp, sched_show, inode);
1472}
1473
1474static const struct file_operations proc_pid_sched_operations = {
1475	.open		= sched_open,
1476	.read		= seq_read,
1477	.write		= sched_write,
1478	.llseek		= seq_lseek,
1479	.release	= single_release,
1480};
1481
1482#endif
1483
1484#ifdef CONFIG_SCHED_AUTOGROUP
1485/*
1486 * Print out autogroup related information:
1487 */
1488static int sched_autogroup_show(struct seq_file *m, void *v)
1489{
1490	struct inode *inode = m->private;
1491	struct task_struct *p;
1492
1493	p = get_proc_task(inode);
1494	if (!p)
1495		return -ESRCH;
1496	proc_sched_autogroup_show_task(p, m);
1497
1498	put_task_struct(p);
1499
1500	return 0;
1501}
1502
1503static ssize_t
1504sched_autogroup_write(struct file *file, const char __user *buf,
1505	    size_t count, loff_t *offset)
1506{
1507	struct inode *inode = file_inode(file);
1508	struct task_struct *p;
1509	char buffer[PROC_NUMBUF];
1510	int nice;
1511	int err;
1512
1513	memset(buffer, 0, sizeof(buffer));
1514	if (count > sizeof(buffer) - 1)
1515		count = sizeof(buffer) - 1;
1516	if (copy_from_user(buffer, buf, count))
1517		return -EFAULT;
1518
1519	err = kstrtoint(strstrip(buffer), 0, &nice);
1520	if (err < 0)
1521		return err;
1522
1523	p = get_proc_task(inode);
1524	if (!p)
1525		return -ESRCH;
1526
1527	err = proc_sched_autogroup_set_nice(p, nice);
1528	if (err)
1529		count = err;
1530
1531	put_task_struct(p);
1532
1533	return count;
1534}
1535
1536static int sched_autogroup_open(struct inode *inode, struct file *filp)
1537{
1538	int ret;
1539
1540	ret = single_open(filp, sched_autogroup_show, NULL);
1541	if (!ret) {
1542		struct seq_file *m = filp->private_data;
1543
1544		m->private = inode;
1545	}
1546	return ret;
1547}
1548
1549static const struct file_operations proc_pid_sched_autogroup_operations = {
1550	.open		= sched_autogroup_open,
1551	.read		= seq_read,
1552	.write		= sched_autogroup_write,
1553	.llseek		= seq_lseek,
1554	.release	= single_release,
1555};
1556
1557#endif /* CONFIG_SCHED_AUTOGROUP */
1558
1559#ifdef CONFIG_TIME_NS
1560static int timens_offsets_show(struct seq_file *m, void *v)
1561{
1562	struct task_struct *p;
1563
1564	p = get_proc_task(file_inode(m->file));
1565	if (!p)
1566		return -ESRCH;
1567	proc_timens_show_offsets(p, m);
1568
1569	put_task_struct(p);
1570
1571	return 0;
1572}
1573
1574static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1575				    size_t count, loff_t *ppos)
1576{
1577	struct inode *inode = file_inode(file);
1578	struct proc_timens_offset offsets[2];
1579	char *kbuf = NULL, *pos, *next_line;
1580	struct task_struct *p;
1581	int ret, noffsets;
1582
1583	/* Only allow < page size writes at the beginning of the file */
1584	if ((*ppos != 0) || (count >= PAGE_SIZE))
1585		return -EINVAL;
1586
1587	/* Slurp in the user data */
1588	kbuf = memdup_user_nul(buf, count);
1589	if (IS_ERR(kbuf))
1590		return PTR_ERR(kbuf);
1591
1592	/* Parse the user data */
1593	ret = -EINVAL;
1594	noffsets = 0;
1595	for (pos = kbuf; pos; pos = next_line) {
1596		struct proc_timens_offset *off = &offsets[noffsets];
1597		char clock[10];
1598		int err;
1599
1600		/* Find the end of line and ensure we don't look past it */
1601		next_line = strchr(pos, '\n');
1602		if (next_line) {
1603			*next_line = '\0';
1604			next_line++;
1605			if (*next_line == '\0')
1606				next_line = NULL;
1607		}
1608
1609		err = sscanf(pos, "%9s %lld %lu", clock,
1610				&off->val.tv_sec, &off->val.tv_nsec);
1611		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1612			goto out;
1613
1614		clock[sizeof(clock) - 1] = 0;
1615		if (strcmp(clock, "monotonic") == 0 ||
1616		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1617			off->clockid = CLOCK_MONOTONIC;
1618		else if (strcmp(clock, "boottime") == 0 ||
1619			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1620			off->clockid = CLOCK_BOOTTIME;
1621		else
1622			goto out;
1623
1624		noffsets++;
1625		if (noffsets == ARRAY_SIZE(offsets)) {
1626			if (next_line)
1627				count = next_line - kbuf;
1628			break;
1629		}
1630	}
1631
1632	ret = -ESRCH;
1633	p = get_proc_task(inode);
1634	if (!p)
1635		goto out;
1636	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1637	put_task_struct(p);
1638	if (ret)
1639		goto out;
1640
1641	ret = count;
1642out:
1643	kfree(kbuf);
1644	return ret;
1645}
1646
1647static int timens_offsets_open(struct inode *inode, struct file *filp)
1648{
1649	return single_open(filp, timens_offsets_show, inode);
1650}
1651
1652static const struct file_operations proc_timens_offsets_operations = {
1653	.open		= timens_offsets_open,
1654	.read		= seq_read,
1655	.write		= timens_offsets_write,
1656	.llseek		= seq_lseek,
1657	.release	= single_release,
1658};
1659#endif /* CONFIG_TIME_NS */
1660
1661static ssize_t comm_write(struct file *file, const char __user *buf,
1662				size_t count, loff_t *offset)
1663{
1664	struct inode *inode = file_inode(file);
1665	struct task_struct *p;
1666	char buffer[TASK_COMM_LEN];
1667	const size_t maxlen = sizeof(buffer) - 1;
1668
1669	memset(buffer, 0, sizeof(buffer));
1670	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1671		return -EFAULT;
1672
1673	p = get_proc_task(inode);
1674	if (!p)
1675		return -ESRCH;
1676
1677	if (same_thread_group(current, p))
1678		set_task_comm(p, buffer);
1679	else
1680		count = -EINVAL;
1681
1682	put_task_struct(p);
1683
1684	return count;
1685}
1686
1687static int comm_show(struct seq_file *m, void *v)
1688{
1689	struct inode *inode = m->private;
1690	struct task_struct *p;
1691
1692	p = get_proc_task(inode);
1693	if (!p)
1694		return -ESRCH;
1695
1696	proc_task_name(m, p, false);
1697	seq_putc(m, '\n');
 
1698
1699	put_task_struct(p);
1700
1701	return 0;
1702}
1703
1704static int comm_open(struct inode *inode, struct file *filp)
1705{
1706	return single_open(filp, comm_show, inode);
1707}
1708
1709static const struct file_operations proc_pid_set_comm_operations = {
1710	.open		= comm_open,
1711	.read		= seq_read,
1712	.write		= comm_write,
1713	.llseek		= seq_lseek,
1714	.release	= single_release,
1715};
1716
1717static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1718{
1719	struct task_struct *task;
 
1720	struct file *exe_file;
1721
1722	task = get_proc_task(d_inode(dentry));
1723	if (!task)
1724		return -ENOENT;
1725	exe_file = get_task_exe_file(task);
1726	put_task_struct(task);
 
 
 
 
1727	if (exe_file) {
1728		*exe_path = exe_file->f_path;
1729		path_get(&exe_file->f_path);
1730		fput(exe_file);
1731		return 0;
1732	} else
1733		return -ENOENT;
1734}
1735
1736static const char *proc_pid_get_link(struct dentry *dentry,
1737				     struct inode *inode,
1738				     struct delayed_call *done)
1739{
1740	struct path path;
1741	int error = -EACCES;
1742
1743	if (!dentry)
1744		return ERR_PTR(-ECHILD);
1745
1746	/* Are we allowed to snoop on the tasks file descriptors? */
1747	if (!proc_fd_access_allowed(inode))
1748		goto out;
1749
1750	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1751	if (error)
1752		goto out;
1753
1754	error = nd_jump_link(&path);
 
1755out:
1756	return ERR_PTR(error);
1757}
1758
1759static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1760{
1761	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1762	char *pathname;
1763	int len;
1764
1765	if (!tmp)
1766		return -ENOMEM;
1767
1768	pathname = d_path(path, tmp, PAGE_SIZE);
1769	len = PTR_ERR(pathname);
1770	if (IS_ERR(pathname))
1771		goto out;
1772	len = tmp + PAGE_SIZE - 1 - pathname;
1773
1774	if (len > buflen)
1775		len = buflen;
1776	if (copy_to_user(buffer, pathname, len))
1777		len = -EFAULT;
1778 out:
1779	free_page((unsigned long)tmp);
1780	return len;
1781}
1782
1783static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1784{
1785	int error = -EACCES;
1786	struct inode *inode = d_inode(dentry);
1787	struct path path;
1788
1789	/* Are we allowed to snoop on the tasks file descriptors? */
1790	if (!proc_fd_access_allowed(inode))
1791		goto out;
1792
1793	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1794	if (error)
1795		goto out;
1796
1797	error = do_proc_readlink(&path, buffer, buflen);
1798	path_put(&path);
1799out:
1800	return error;
1801}
1802
1803const struct inode_operations proc_pid_link_inode_operations = {
1804	.readlink	= proc_pid_readlink,
1805	.get_link	= proc_pid_get_link,
1806	.setattr	= proc_setattr,
1807};
1808
1809
1810/* building an inode */
1811
1812void task_dump_owner(struct task_struct *task, umode_t mode,
1813		     kuid_t *ruid, kgid_t *rgid)
1814{
1815	/* Depending on the state of dumpable compute who should own a
1816	 * proc file for a task.
1817	 */
1818	const struct cred *cred;
1819	kuid_t uid;
1820	kgid_t gid;
1821
1822	if (unlikely(task->flags & PF_KTHREAD)) {
1823		*ruid = GLOBAL_ROOT_UID;
1824		*rgid = GLOBAL_ROOT_GID;
1825		return;
1826	}
1827
1828	/* Default to the tasks effective ownership */
1829	rcu_read_lock();
1830	cred = __task_cred(task);
1831	uid = cred->euid;
1832	gid = cred->egid;
1833	rcu_read_unlock();
1834
1835	/*
1836	 * Before the /proc/pid/status file was created the only way to read
1837	 * the effective uid of a /process was to stat /proc/pid.  Reading
1838	 * /proc/pid/status is slow enough that procps and other packages
1839	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1840	 * made this apply to all per process world readable and executable
1841	 * directories.
1842	 */
1843	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1844		struct mm_struct *mm;
1845		task_lock(task);
1846		mm = task->mm;
1847		/* Make non-dumpable tasks owned by some root */
1848		if (mm) {
1849			if (get_dumpable(mm) != SUID_DUMP_USER) {
1850				struct user_namespace *user_ns = mm->user_ns;
1851
1852				uid = make_kuid(user_ns, 0);
1853				if (!uid_valid(uid))
1854					uid = GLOBAL_ROOT_UID;
1855
1856				gid = make_kgid(user_ns, 0);
1857				if (!gid_valid(gid))
1858					gid = GLOBAL_ROOT_GID;
1859			}
1860		} else {
1861			uid = GLOBAL_ROOT_UID;
1862			gid = GLOBAL_ROOT_GID;
1863		}
1864		task_unlock(task);
1865	}
1866	*ruid = uid;
1867	*rgid = gid;
1868}
1869
1870void proc_pid_evict_inode(struct proc_inode *ei)
1871{
1872	struct pid *pid = ei->pid;
1873
1874	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1875		spin_lock(&pid->lock);
1876		hlist_del_init_rcu(&ei->sibling_inodes);
1877		spin_unlock(&pid->lock);
1878	}
1879
1880	put_pid(pid);
1881}
1882
1883struct inode *proc_pid_make_inode(struct super_block * sb,
1884				  struct task_struct *task, umode_t mode)
1885{
1886	struct inode * inode;
1887	struct proc_inode *ei;
1888	struct pid *pid;
1889
1890	/* We need a new inode */
1891
1892	inode = new_inode(sb);
1893	if (!inode)
1894		goto out;
1895
1896	/* Common stuff */
1897	ei = PROC_I(inode);
1898	inode->i_mode = mode;
1899	inode->i_ino = get_next_ino();
1900	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1901	inode->i_op = &proc_def_inode_operations;
1902
1903	/*
1904	 * grab the reference to task.
1905	 */
1906	pid = get_task_pid(task, PIDTYPE_PID);
1907	if (!pid)
1908		goto out_unlock;
1909
1910	/* Let the pid remember us for quick removal */
1911	ei->pid = pid;
1912	if (S_ISDIR(mode)) {
1913		spin_lock(&pid->lock);
1914		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1915		spin_unlock(&pid->lock);
1916	}
1917
1918	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919	security_task_to_inode(task, inode);
1920
1921out:
1922	return inode;
1923
1924out_unlock:
1925	iput(inode);
1926	return NULL;
1927}
1928
1929int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1930		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1931{
1932	struct inode *inode = d_inode(path->dentry);
1933	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1934	struct task_struct *task;
 
 
1935
1936	generic_fillattr(&init_user_ns, inode, stat);
1937
 
1938	stat->uid = GLOBAL_ROOT_UID;
1939	stat->gid = GLOBAL_ROOT_GID;
1940	rcu_read_lock();
1941	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1942	if (task) {
1943		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1944			rcu_read_unlock();
1945			/*
1946			 * This doesn't prevent learning whether PID exists,
1947			 * it only makes getattr() consistent with readdir().
1948			 */
1949			return -ENOENT;
1950		}
1951		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
 
 
 
 
 
1952	}
1953	rcu_read_unlock();
1954	return 0;
1955}
1956
1957/* dentry stuff */
1958
1959/*
1960 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1961 */
1962void pid_update_inode(struct task_struct *task, struct inode *inode)
1963{
1964	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1965
1966	inode->i_mode &= ~(S_ISUID | S_ISGID);
1967	security_task_to_inode(task, inode);
1968}
1969
1970/*
1971 * Rewrite the inode's ownerships here because the owning task may have
1972 * performed a setuid(), etc.
1973 *
 
 
 
 
 
 
1974 */
1975static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1976{
1977	struct inode *inode;
1978	struct task_struct *task;
 
1979
1980	if (flags & LOOKUP_RCU)
1981		return -ECHILD;
1982
1983	inode = d_inode(dentry);
1984	task = get_proc_task(inode);
1985
1986	if (task) {
1987		pid_update_inode(task, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1988		put_task_struct(task);
1989		return 1;
1990	}
1991	return 0;
1992}
1993
1994static inline bool proc_inode_is_dead(struct inode *inode)
1995{
1996	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1997}
1998
1999int pid_delete_dentry(const struct dentry *dentry)
2000{
2001	/* Is the task we represent dead?
2002	 * If so, then don't put the dentry on the lru list,
2003	 * kill it immediately.
2004	 */
2005	return proc_inode_is_dead(d_inode(dentry));
2006}
2007
2008const struct dentry_operations pid_dentry_operations =
2009{
2010	.d_revalidate	= pid_revalidate,
2011	.d_delete	= pid_delete_dentry,
2012};
2013
2014/* Lookups */
2015
2016/*
2017 * Fill a directory entry.
2018 *
2019 * If possible create the dcache entry and derive our inode number and
2020 * file type from dcache entry.
2021 *
2022 * Since all of the proc inode numbers are dynamically generated, the inode
2023 * numbers do not exist until the inode is cache.  This means creating
2024 * the dcache entry in readdir is necessary to keep the inode numbers
2025 * reported by readdir in sync with the inode numbers reported
2026 * by stat.
2027 */
2028bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2029	const char *name, unsigned int len,
2030	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2031{
2032	struct dentry *child, *dir = file->f_path.dentry;
2033	struct qstr qname = QSTR_INIT(name, len);
2034	struct inode *inode;
2035	unsigned type = DT_UNKNOWN;
2036	ino_t ino = 1;
2037
2038	child = d_hash_and_lookup(dir, &qname);
2039	if (!child) {
2040		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041		child = d_alloc_parallel(dir, &qname, &wq);
2042		if (IS_ERR(child))
 
 
2043			goto end_instantiate;
2044		if (d_in_lookup(child)) {
2045			struct dentry *res;
2046			res = instantiate(child, task, ptr);
2047			d_lookup_done(child);
2048			if (unlikely(res)) {
2049				dput(child);
2050				child = res;
2051				if (IS_ERR(child))
2052					goto end_instantiate;
2053			}
2054		}
2055	}
2056	inode = d_inode(child);
2057	ino = inode->i_ino;
2058	type = inode->i_mode >> 12;
2059	dput(child);
2060end_instantiate:
2061	return dir_emit(ctx, name, len, ino, type);
 
 
 
2062}
2063
2064/*
2065 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2066 * which represent vma start and end addresses.
2067 */
2068static int dname_to_vma_addr(struct dentry *dentry,
2069			     unsigned long *start, unsigned long *end)
2070{
2071	const char *str = dentry->d_name.name;
2072	unsigned long long sval, eval;
2073	unsigned int len;
2074
2075	if (str[0] == '0' && str[1] != '-')
2076		return -EINVAL;
2077	len = _parse_integer(str, 16, &sval);
2078	if (len & KSTRTOX_OVERFLOW)
2079		return -EINVAL;
2080	if (sval != (unsigned long)sval)
2081		return -EINVAL;
2082	str += len;
2083
2084	if (*str != '-')
2085		return -EINVAL;
2086	str++;
2087
2088	if (str[0] == '0' && str[1])
2089		return -EINVAL;
2090	len = _parse_integer(str, 16, &eval);
2091	if (len & KSTRTOX_OVERFLOW)
2092		return -EINVAL;
2093	if (eval != (unsigned long)eval)
2094		return -EINVAL;
2095	str += len;
2096
2097	if (*str != '\0')
2098		return -EINVAL;
2099
2100	*start = sval;
2101	*end = eval;
2102
2103	return 0;
2104}
2105
2106static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2107{
2108	unsigned long vm_start, vm_end;
2109	bool exact_vma_exists = false;
2110	struct mm_struct *mm = NULL;
2111	struct task_struct *task;
 
2112	struct inode *inode;
2113	int status = 0;
2114
2115	if (flags & LOOKUP_RCU)
2116		return -ECHILD;
2117
2118	inode = d_inode(dentry);
2119	task = get_proc_task(inode);
2120	if (!task)
2121		goto out_notask;
2122
2123	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2124	if (IS_ERR_OR_NULL(mm))
2125		goto out;
2126
2127	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2128		status = mmap_read_lock_killable(mm);
2129		if (!status) {
2130			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2131							    vm_end);
2132			mmap_read_unlock(mm);
2133		}
2134	}
2135
2136	mmput(mm);
2137
2138	if (exact_vma_exists) {
2139		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2140
 
 
 
 
 
 
 
 
2141		security_task_to_inode(task, inode);
2142		status = 1;
2143	}
2144
2145out:
2146	put_task_struct(task);
2147
2148out_notask:
2149	return status;
2150}
2151
2152static const struct dentry_operations tid_map_files_dentry_operations = {
2153	.d_revalidate	= map_files_d_revalidate,
2154	.d_delete	= pid_delete_dentry,
2155};
2156
2157static int map_files_get_link(struct dentry *dentry, struct path *path)
2158{
2159	unsigned long vm_start, vm_end;
2160	struct vm_area_struct *vma;
2161	struct task_struct *task;
2162	struct mm_struct *mm;
2163	int rc;
2164
2165	rc = -ENOENT;
2166	task = get_proc_task(d_inode(dentry));
2167	if (!task)
2168		goto out;
2169
2170	mm = get_task_mm(task);
2171	put_task_struct(task);
2172	if (!mm)
2173		goto out;
2174
2175	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2176	if (rc)
2177		goto out_mmput;
2178
2179	rc = mmap_read_lock_killable(mm);
2180	if (rc)
2181		goto out_mmput;
2182
2183	rc = -ENOENT;
 
2184	vma = find_exact_vma(mm, vm_start, vm_end);
2185	if (vma && vma->vm_file) {
2186		*path = vma->vm_file->f_path;
2187		path_get(path);
2188		rc = 0;
2189	}
2190	mmap_read_unlock(mm);
2191
2192out_mmput:
2193	mmput(mm);
2194out:
2195	return rc;
2196}
2197
2198struct map_files_info {
2199	unsigned long	start;
2200	unsigned long	end;
2201	fmode_t		mode;
 
 
2202};
2203
2204/*
2205 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2206 * to concerns about how the symlinks may be used to bypass permissions on
2207 * ancestor directories in the path to the file in question.
2208 */
2209static const char *
2210proc_map_files_get_link(struct dentry *dentry,
2211			struct inode *inode,
2212		        struct delayed_call *done)
2213{
2214	if (!checkpoint_restore_ns_capable(&init_user_ns))
2215		return ERR_PTR(-EPERM);
2216
2217	return proc_pid_get_link(dentry, inode, done);
2218}
2219
2220/*
2221 * Identical to proc_pid_link_inode_operations except for get_link()
2222 */
2223static const struct inode_operations proc_map_files_link_inode_operations = {
2224	.readlink	= proc_pid_readlink,
2225	.get_link	= proc_map_files_get_link,
2226	.setattr	= proc_setattr,
2227};
2228
2229static struct dentry *
2230proc_map_files_instantiate(struct dentry *dentry,
2231			   struct task_struct *task, const void *ptr)
2232{
2233	fmode_t mode = (fmode_t)(unsigned long)ptr;
2234	struct proc_inode *ei;
2235	struct inode *inode;
2236
2237	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2238				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2239				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2240	if (!inode)
2241		return ERR_PTR(-ENOENT);
2242
2243	ei = PROC_I(inode);
2244	ei->op.proc_get_link = map_files_get_link;
2245
2246	inode->i_op = &proc_map_files_link_inode_operations;
2247	inode->i_size = 64;
 
 
 
 
 
 
2248
2249	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2250	return d_splice_alias(inode, dentry);
 
 
2251}
2252
2253static struct dentry *proc_map_files_lookup(struct inode *dir,
2254		struct dentry *dentry, unsigned int flags)
2255{
2256	unsigned long vm_start, vm_end;
2257	struct vm_area_struct *vma;
2258	struct task_struct *task;
2259	struct dentry *result;
2260	struct mm_struct *mm;
2261
2262	result = ERR_PTR(-ENOENT);
2263	task = get_proc_task(dir);
2264	if (!task)
2265		goto out;
2266
2267	result = ERR_PTR(-EACCES);
2268	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2269		goto out_put_task;
2270
2271	result = ERR_PTR(-ENOENT);
2272	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2273		goto out_put_task;
2274
2275	mm = get_task_mm(task);
2276	if (!mm)
2277		goto out_put_task;
2278
2279	result = ERR_PTR(-EINTR);
2280	if (mmap_read_lock_killable(mm))
2281		goto out_put_mm;
2282
2283	result = ERR_PTR(-ENOENT);
2284	vma = find_exact_vma(mm, vm_start, vm_end);
2285	if (!vma)
2286		goto out_no_vma;
2287
2288	if (vma->vm_file)
2289		result = proc_map_files_instantiate(dentry, task,
2290				(void *)(unsigned long)vma->vm_file->f_mode);
2291
2292out_no_vma:
2293	mmap_read_unlock(mm);
2294out_put_mm:
2295	mmput(mm);
2296out_put_task:
2297	put_task_struct(task);
2298out:
2299	return result;
2300}
2301
2302static const struct inode_operations proc_map_files_inode_operations = {
2303	.lookup		= proc_map_files_lookup,
2304	.permission	= proc_fd_permission,
2305	.setattr	= proc_setattr,
2306};
2307
2308static int
2309proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2310{
2311	struct vm_area_struct *vma;
2312	struct task_struct *task;
2313	struct mm_struct *mm;
2314	unsigned long nr_files, pos, i;
2315	GENRADIX(struct map_files_info) fa;
 
2316	struct map_files_info *p;
2317	int ret;
2318
2319	genradix_init(&fa);
2320
2321	ret = -ENOENT;
2322	task = get_proc_task(file_inode(file));
2323	if (!task)
2324		goto out;
2325
2326	ret = -EACCES;
2327	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2328		goto out_put_task;
2329
2330	ret = 0;
2331	if (!dir_emit_dots(file, ctx))
2332		goto out_put_task;
2333
2334	mm = get_task_mm(task);
2335	if (!mm)
2336		goto out_put_task;
2337
2338	ret = mmap_read_lock_killable(mm);
2339	if (ret) {
2340		mmput(mm);
2341		goto out_put_task;
2342	}
2343
2344	nr_files = 0;
2345
2346	/*
2347	 * We need two passes here:
2348	 *
2349	 *  1) Collect vmas of mapped files with mmap_lock taken
2350	 *  2) Release mmap_lock and instantiate entries
2351	 *
2352	 * otherwise we get lockdep complained, since filldir()
2353	 * routine might require mmap_lock taken in might_fault().
2354	 */
2355
2356	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2357		if (!vma->vm_file)
2358			continue;
2359		if (++pos <= ctx->pos)
2360			continue;
2361
2362		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2363		if (!p) {
 
 
 
2364			ret = -ENOMEM;
2365			mmap_read_unlock(mm);
 
 
2366			mmput(mm);
2367			goto out_put_task;
2368		}
 
 
 
 
 
 
2369
2370		p->start = vma->vm_start;
2371		p->end = vma->vm_end;
2372		p->mode = vma->vm_file->f_mode;
 
 
 
 
2373	}
2374	mmap_read_unlock(mm);
2375	mmput(mm);
2376
2377	for (i = 0; i < nr_files; i++) {
2378		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2379		unsigned int len;
2380
2381		p = genradix_ptr(&fa, i);
2382		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2383		if (!proc_fill_cache(file, ctx,
2384				      buf, len,
2385				      proc_map_files_instantiate,
2386				      task,
2387				      (void *)(unsigned long)p->mode))
2388			break;
2389		ctx->pos++;
2390	}
 
 
 
2391
2392out_put_task:
2393	put_task_struct(task);
2394out:
2395	genradix_free(&fa);
2396	return ret;
2397}
2398
2399static const struct file_operations proc_map_files_operations = {
2400	.read		= generic_read_dir,
2401	.iterate_shared	= proc_map_files_readdir,
2402	.llseek		= generic_file_llseek,
2403};
2404
2405#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2406struct timers_private {
2407	struct pid *pid;
2408	struct task_struct *task;
2409	struct sighand_struct *sighand;
2410	struct pid_namespace *ns;
2411	unsigned long flags;
2412};
2413
2414static void *timers_start(struct seq_file *m, loff_t *pos)
2415{
2416	struct timers_private *tp = m->private;
2417
2418	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2419	if (!tp->task)
2420		return ERR_PTR(-ESRCH);
2421
2422	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2423	if (!tp->sighand)
2424		return ERR_PTR(-ESRCH);
2425
2426	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2427}
2428
2429static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2430{
2431	struct timers_private *tp = m->private;
2432	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2433}
2434
2435static void timers_stop(struct seq_file *m, void *v)
2436{
2437	struct timers_private *tp = m->private;
2438
2439	if (tp->sighand) {
2440		unlock_task_sighand(tp->task, &tp->flags);
2441		tp->sighand = NULL;
2442	}
2443
2444	if (tp->task) {
2445		put_task_struct(tp->task);
2446		tp->task = NULL;
2447	}
2448}
2449
2450static int show_timer(struct seq_file *m, void *v)
2451{
2452	struct k_itimer *timer;
2453	struct timers_private *tp = m->private;
2454	int notify;
2455	static const char * const nstr[] = {
2456		[SIGEV_SIGNAL] = "signal",
2457		[SIGEV_NONE] = "none",
2458		[SIGEV_THREAD] = "thread",
2459	};
2460
2461	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2462	notify = timer->it_sigev_notify;
2463
2464	seq_printf(m, "ID: %d\n", timer->it_id);
2465	seq_printf(m, "signal: %d/%px\n",
2466		   timer->sigq->info.si_signo,
2467		   timer->sigq->info.si_value.sival_ptr);
2468	seq_printf(m, "notify: %s/%s.%d\n",
2469		   nstr[notify & ~SIGEV_THREAD_ID],
2470		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2471		   pid_nr_ns(timer->it_pid, tp->ns));
2472	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2473
2474	return 0;
2475}
2476
2477static const struct seq_operations proc_timers_seq_ops = {
2478	.start	= timers_start,
2479	.next	= timers_next,
2480	.stop	= timers_stop,
2481	.show	= show_timer,
2482};
2483
2484static int proc_timers_open(struct inode *inode, struct file *file)
2485{
2486	struct timers_private *tp;
2487
2488	tp = __seq_open_private(file, &proc_timers_seq_ops,
2489			sizeof(struct timers_private));
2490	if (!tp)
2491		return -ENOMEM;
2492
2493	tp->pid = proc_pid(inode);
2494	tp->ns = proc_pid_ns(inode->i_sb);
2495	return 0;
2496}
2497
2498static const struct file_operations proc_timers_operations = {
2499	.open		= proc_timers_open,
2500	.read		= seq_read,
2501	.llseek		= seq_lseek,
2502	.release	= seq_release_private,
2503};
2504#endif
2505
2506static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2507					size_t count, loff_t *offset)
2508{
2509	struct inode *inode = file_inode(file);
2510	struct task_struct *p;
2511	u64 slack_ns;
2512	int err;
2513
2514	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2515	if (err < 0)
2516		return err;
2517
2518	p = get_proc_task(inode);
2519	if (!p)
2520		return -ESRCH;
2521
2522	if (p != current) {
2523		rcu_read_lock();
2524		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2525			rcu_read_unlock();
2526			count = -EPERM;
2527			goto out;
2528		}
2529		rcu_read_unlock();
2530
2531		err = security_task_setscheduler(p);
2532		if (err) {
2533			count = err;
2534			goto out;
2535		}
2536	}
2537
2538	task_lock(p);
2539	if (slack_ns == 0)
2540		p->timer_slack_ns = p->default_timer_slack_ns;
2541	else
2542		p->timer_slack_ns = slack_ns;
2543	task_unlock(p);
2544
2545out:
2546	put_task_struct(p);
2547
2548	return count;
2549}
2550
2551static int timerslack_ns_show(struct seq_file *m, void *v)
2552{
2553	struct inode *inode = m->private;
2554	struct task_struct *p;
2555	int err = 0;
2556
2557	p = get_proc_task(inode);
2558	if (!p)
2559		return -ESRCH;
2560
2561	if (p != current) {
2562		rcu_read_lock();
2563		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2564			rcu_read_unlock();
2565			err = -EPERM;
2566			goto out;
2567		}
2568		rcu_read_unlock();
2569
2570		err = security_task_getscheduler(p);
2571		if (err)
2572			goto out;
2573	}
2574
2575	task_lock(p);
2576	seq_printf(m, "%llu\n", p->timer_slack_ns);
2577	task_unlock(p);
2578
2579out:
2580	put_task_struct(p);
2581
2582	return err;
2583}
2584
2585static int timerslack_ns_open(struct inode *inode, struct file *filp)
2586{
2587	return single_open(filp, timerslack_ns_show, inode);
2588}
2589
2590static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2591	.open		= timerslack_ns_open,
2592	.read		= seq_read,
2593	.write		= timerslack_ns_write,
2594	.llseek		= seq_lseek,
2595	.release	= single_release,
2596};
2597
2598static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2599	struct task_struct *task, const void *ptr)
2600{
2601	const struct pid_entry *p = ptr;
2602	struct inode *inode;
2603	struct proc_inode *ei;
2604
2605	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2606	if (!inode)
2607		return ERR_PTR(-ENOENT);
2608
2609	ei = PROC_I(inode);
 
2610	if (S_ISDIR(inode->i_mode))
2611		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2612	if (p->iop)
2613		inode->i_op = p->iop;
2614	if (p->fop)
2615		inode->i_fop = p->fop;
2616	ei->op = p->op;
2617	pid_update_inode(task, inode);
2618	d_set_d_op(dentry, &pid_dentry_operations);
2619	return d_splice_alias(inode, dentry);
 
 
 
 
 
2620}
2621
2622static struct dentry *proc_pident_lookup(struct inode *dir, 
2623					 struct dentry *dentry,
2624					 const struct pid_entry *p,
2625					 const struct pid_entry *end)
2626{
 
2627	struct task_struct *task = get_proc_task(dir);
2628	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2629
2630	if (!task)
2631		goto out_no_task;
2632
2633	/*
2634	 * Yes, it does not scale. And it should not. Don't add
2635	 * new entries into /proc/<tgid>/ without very good reasons.
2636	 */
2637	for (; p < end; p++) {
 
2638		if (p->len != dentry->d_name.len)
2639			continue;
2640		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2641			res = proc_pident_instantiate(dentry, task, p);
2642			break;
2643		}
2644	}
 
 
 
 
 
2645	put_task_struct(task);
2646out_no_task:
2647	return res;
2648}
2649
2650static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2651		const struct pid_entry *ents, unsigned int nents)
2652{
2653	struct task_struct *task = get_proc_task(file_inode(file));
2654	const struct pid_entry *p;
2655
2656	if (!task)
2657		return -ENOENT;
2658
2659	if (!dir_emit_dots(file, ctx))
2660		goto out;
2661
2662	if (ctx->pos >= nents + 2)
2663		goto out;
2664
2665	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2666		if (!proc_fill_cache(file, ctx, p->name, p->len,
2667				proc_pident_instantiate, task, p))
2668			break;
2669		ctx->pos++;
2670	}
2671out:
2672	put_task_struct(task);
2673	return 0;
2674}
2675
2676#ifdef CONFIG_SECURITY
2677static int proc_pid_attr_open(struct inode *inode, struct file *file)
2678{
2679	file->private_data = NULL;
2680	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2681	return 0;
2682}
2683
2684static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2685				  size_t count, loff_t *ppos)
2686{
2687	struct inode * inode = file_inode(file);
2688	char *p = NULL;
2689	ssize_t length;
2690	struct task_struct *task = get_proc_task(inode);
2691
2692	if (!task)
2693		return -ESRCH;
2694
2695	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2696				      (char*)file->f_path.dentry->d_name.name,
2697				      &p);
2698	put_task_struct(task);
2699	if (length > 0)
2700		length = simple_read_from_buffer(buf, count, ppos, p, length);
2701	kfree(p);
2702	return length;
2703}
2704
2705static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2706				   size_t count, loff_t *ppos)
2707{
2708	struct inode * inode = file_inode(file);
2709	struct task_struct *task;
2710	void *page;
2711	int rv;
2712
2713	/* A task may only write when it was the opener. */
2714	if (file->private_data != current->mm)
2715		return -EPERM;
2716
2717	rcu_read_lock();
2718	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2719	if (!task) {
2720		rcu_read_unlock();
2721		return -ESRCH;
2722	}
2723	/* A task may only write its own attributes. */
2724	if (current != task) {
2725		rcu_read_unlock();
2726		return -EACCES;
2727	}
2728	/* Prevent changes to overridden credentials. */
2729	if (current_cred() != current_real_cred()) {
2730		rcu_read_unlock();
2731		return -EBUSY;
2732	}
2733	rcu_read_unlock();
2734
 
 
 
2735	if (count > PAGE_SIZE)
2736		count = PAGE_SIZE;
2737
2738	/* No partial writes. */
 
2739	if (*ppos != 0)
2740		return -EINVAL;
2741
2742	page = memdup_user(buf, count);
2743	if (IS_ERR(page)) {
2744		rv = PTR_ERR(page);
2745		goto out;
2746	}
2747
2748	/* Guard against adverse ptrace interaction */
2749	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2750	if (rv < 0)
2751		goto out_free;
2752
2753	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2754				  file->f_path.dentry->d_name.name, page,
2755				  count);
2756	mutex_unlock(&current->signal->cred_guard_mutex);
2757out_free:
2758	kfree(page);
2759out:
2760	return rv;
 
 
2761}
2762
2763static const struct file_operations proc_pid_attr_operations = {
2764	.open		= proc_pid_attr_open,
2765	.read		= proc_pid_attr_read,
2766	.write		= proc_pid_attr_write,
2767	.llseek		= generic_file_llseek,
2768	.release	= mem_release,
2769};
2770
2771#define LSM_DIR_OPS(LSM) \
2772static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2773			     struct dir_context *ctx) \
2774{ \
2775	return proc_pident_readdir(filp, ctx, \
2776				   LSM##_attr_dir_stuff, \
2777				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2778} \
2779\
2780static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2781	.read		= generic_read_dir, \
2782	.iterate	= proc_##LSM##_attr_dir_iterate, \
2783	.llseek		= default_llseek, \
2784}; \
2785\
2786static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2787				struct dentry *dentry, unsigned int flags) \
2788{ \
2789	return proc_pident_lookup(dir, dentry, \
2790				  LSM##_attr_dir_stuff, \
2791				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2792} \
2793\
2794static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2795	.lookup		= proc_##LSM##_attr_dir_lookup, \
2796	.getattr	= pid_getattr, \
2797	.setattr	= proc_setattr, \
2798}
2799
2800#ifdef CONFIG_SECURITY_SMACK
2801static const struct pid_entry smack_attr_dir_stuff[] = {
2802	ATTR("smack", "current",	0666),
2803};
2804LSM_DIR_OPS(smack);
2805#endif
2806
2807#ifdef CONFIG_SECURITY_APPARMOR
2808static const struct pid_entry apparmor_attr_dir_stuff[] = {
2809	ATTR("apparmor", "current",	0666),
2810	ATTR("apparmor", "prev",	0444),
2811	ATTR("apparmor", "exec",	0666),
2812};
2813LSM_DIR_OPS(apparmor);
2814#endif
2815
2816static const struct pid_entry attr_dir_stuff[] = {
2817	ATTR(NULL, "current",		0666),
2818	ATTR(NULL, "prev",		0444),
2819	ATTR(NULL, "exec",		0666),
2820	ATTR(NULL, "fscreate",		0666),
2821	ATTR(NULL, "keycreate",		0666),
2822	ATTR(NULL, "sockcreate",	0666),
2823#ifdef CONFIG_SECURITY_SMACK
2824	DIR("smack",			0555,
2825	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2826#endif
2827#ifdef CONFIG_SECURITY_APPARMOR
2828	DIR("apparmor",			0555,
2829	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2830#endif
2831};
2832
2833static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2834{
2835	return proc_pident_readdir(file, ctx, 
2836				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2837}
2838
2839static const struct file_operations proc_attr_dir_operations = {
2840	.read		= generic_read_dir,
2841	.iterate_shared	= proc_attr_dir_readdir,
2842	.llseek		= generic_file_llseek,
2843};
2844
2845static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2846				struct dentry *dentry, unsigned int flags)
2847{
2848	return proc_pident_lookup(dir, dentry,
2849				  attr_dir_stuff,
2850				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2851}
2852
2853static const struct inode_operations proc_attr_dir_inode_operations = {
2854	.lookup		= proc_attr_dir_lookup,
2855	.getattr	= pid_getattr,
2856	.setattr	= proc_setattr,
2857};
2858
2859#endif
2860
2861#ifdef CONFIG_ELF_CORE
2862static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2863					 size_t count, loff_t *ppos)
2864{
2865	struct task_struct *task = get_proc_task(file_inode(file));
2866	struct mm_struct *mm;
2867	char buffer[PROC_NUMBUF];
2868	size_t len;
2869	int ret;
2870
2871	if (!task)
2872		return -ESRCH;
2873
2874	ret = 0;
2875	mm = get_task_mm(task);
2876	if (mm) {
2877		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2878			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2879				MMF_DUMP_FILTER_SHIFT));
2880		mmput(mm);
2881		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2882	}
2883
2884	put_task_struct(task);
2885
2886	return ret;
2887}
2888
2889static ssize_t proc_coredump_filter_write(struct file *file,
2890					  const char __user *buf,
2891					  size_t count,
2892					  loff_t *ppos)
2893{
2894	struct task_struct *task;
2895	struct mm_struct *mm;
2896	unsigned int val;
2897	int ret;
2898	int i;
2899	unsigned long mask;
2900
2901	ret = kstrtouint_from_user(buf, count, 0, &val);
2902	if (ret < 0)
2903		return ret;
2904
2905	ret = -ESRCH;
2906	task = get_proc_task(file_inode(file));
2907	if (!task)
2908		goto out_no_task;
2909
2910	mm = get_task_mm(task);
2911	if (!mm)
2912		goto out_no_mm;
2913	ret = 0;
2914
2915	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2916		if (val & mask)
2917			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2918		else
2919			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2920	}
2921
2922	mmput(mm);
2923 out_no_mm:
2924	put_task_struct(task);
2925 out_no_task:
2926	if (ret < 0)
2927		return ret;
2928	return count;
2929}
2930
2931static const struct file_operations proc_coredump_filter_operations = {
2932	.read		= proc_coredump_filter_read,
2933	.write		= proc_coredump_filter_write,
2934	.llseek		= generic_file_llseek,
2935};
2936#endif
2937
2938#ifdef CONFIG_TASK_IO_ACCOUNTING
2939static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2940{
2941	struct task_io_accounting acct = task->ioac;
2942	unsigned long flags;
2943	int result;
2944
2945	result = down_read_killable(&task->signal->exec_update_lock);
2946	if (result)
2947		return result;
2948
2949	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2950		result = -EACCES;
2951		goto out_unlock;
2952	}
2953
2954	if (whole && lock_task_sighand(task, &flags)) {
2955		struct task_struct *t = task;
2956
2957		task_io_accounting_add(&acct, &task->signal->ioac);
2958		while_each_thread(task, t)
2959			task_io_accounting_add(&acct, &t->ioac);
2960
2961		unlock_task_sighand(task, &flags);
2962	}
2963	seq_printf(m,
2964		   "rchar: %llu\n"
2965		   "wchar: %llu\n"
2966		   "syscr: %llu\n"
2967		   "syscw: %llu\n"
2968		   "read_bytes: %llu\n"
2969		   "write_bytes: %llu\n"
2970		   "cancelled_write_bytes: %llu\n",
2971		   (unsigned long long)acct.rchar,
2972		   (unsigned long long)acct.wchar,
2973		   (unsigned long long)acct.syscr,
2974		   (unsigned long long)acct.syscw,
2975		   (unsigned long long)acct.read_bytes,
2976		   (unsigned long long)acct.write_bytes,
2977		   (unsigned long long)acct.cancelled_write_bytes);
2978	result = 0;
2979
2980out_unlock:
2981	up_read(&task->signal->exec_update_lock);
2982	return result;
2983}
2984
2985static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2986				  struct pid *pid, struct task_struct *task)
2987{
2988	return do_io_accounting(task, m, 0);
2989}
2990
2991static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2992				   struct pid *pid, struct task_struct *task)
2993{
2994	return do_io_accounting(task, m, 1);
2995}
2996#endif /* CONFIG_TASK_IO_ACCOUNTING */
2997
2998#ifdef CONFIG_USER_NS
2999static int proc_id_map_open(struct inode *inode, struct file *file,
3000	const struct seq_operations *seq_ops)
3001{
3002	struct user_namespace *ns = NULL;
3003	struct task_struct *task;
3004	struct seq_file *seq;
3005	int ret = -EINVAL;
3006
3007	task = get_proc_task(inode);
3008	if (task) {
3009		rcu_read_lock();
3010		ns = get_user_ns(task_cred_xxx(task, user_ns));
3011		rcu_read_unlock();
3012		put_task_struct(task);
3013	}
3014	if (!ns)
3015		goto err;
3016
3017	ret = seq_open(file, seq_ops);
3018	if (ret)
3019		goto err_put_ns;
3020
3021	seq = file->private_data;
3022	seq->private = ns;
3023
3024	return 0;
3025err_put_ns:
3026	put_user_ns(ns);
3027err:
3028	return ret;
3029}
3030
3031static int proc_id_map_release(struct inode *inode, struct file *file)
3032{
3033	struct seq_file *seq = file->private_data;
3034	struct user_namespace *ns = seq->private;
3035	put_user_ns(ns);
3036	return seq_release(inode, file);
3037}
3038
3039static int proc_uid_map_open(struct inode *inode, struct file *file)
3040{
3041	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3042}
3043
3044static int proc_gid_map_open(struct inode *inode, struct file *file)
3045{
3046	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3047}
3048
3049static int proc_projid_map_open(struct inode *inode, struct file *file)
3050{
3051	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3052}
3053
3054static const struct file_operations proc_uid_map_operations = {
3055	.open		= proc_uid_map_open,
3056	.write		= proc_uid_map_write,
3057	.read		= seq_read,
3058	.llseek		= seq_lseek,
3059	.release	= proc_id_map_release,
3060};
3061
3062static const struct file_operations proc_gid_map_operations = {
3063	.open		= proc_gid_map_open,
3064	.write		= proc_gid_map_write,
3065	.read		= seq_read,
3066	.llseek		= seq_lseek,
3067	.release	= proc_id_map_release,
3068};
3069
3070static const struct file_operations proc_projid_map_operations = {
3071	.open		= proc_projid_map_open,
3072	.write		= proc_projid_map_write,
3073	.read		= seq_read,
3074	.llseek		= seq_lseek,
3075	.release	= proc_id_map_release,
3076};
3077
3078static int proc_setgroups_open(struct inode *inode, struct file *file)
3079{
3080	struct user_namespace *ns = NULL;
3081	struct task_struct *task;
3082	int ret;
3083
3084	ret = -ESRCH;
3085	task = get_proc_task(inode);
3086	if (task) {
3087		rcu_read_lock();
3088		ns = get_user_ns(task_cred_xxx(task, user_ns));
3089		rcu_read_unlock();
3090		put_task_struct(task);
3091	}
3092	if (!ns)
3093		goto err;
3094
3095	if (file->f_mode & FMODE_WRITE) {
3096		ret = -EACCES;
3097		if (!ns_capable(ns, CAP_SYS_ADMIN))
3098			goto err_put_ns;
3099	}
3100
3101	ret = single_open(file, &proc_setgroups_show, ns);
3102	if (ret)
3103		goto err_put_ns;
3104
3105	return 0;
3106err_put_ns:
3107	put_user_ns(ns);
3108err:
3109	return ret;
3110}
3111
3112static int proc_setgroups_release(struct inode *inode, struct file *file)
3113{
3114	struct seq_file *seq = file->private_data;
3115	struct user_namespace *ns = seq->private;
3116	int ret = single_release(inode, file);
3117	put_user_ns(ns);
3118	return ret;
3119}
3120
3121static const struct file_operations proc_setgroups_operations = {
3122	.open		= proc_setgroups_open,
3123	.write		= proc_setgroups_write,
3124	.read		= seq_read,
3125	.llseek		= seq_lseek,
3126	.release	= proc_setgroups_release,
3127};
3128#endif /* CONFIG_USER_NS */
3129
3130static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3131				struct pid *pid, struct task_struct *task)
3132{
3133	int err = lock_trace(task);
3134	if (!err) {
3135		seq_printf(m, "%08x\n", task->personality);
3136		unlock_trace(task);
3137	}
3138	return err;
3139}
3140
3141#ifdef CONFIG_LIVEPATCH
3142static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3143				struct pid *pid, struct task_struct *task)
3144{
3145	seq_printf(m, "%d\n", task->patch_state);
3146	return 0;
3147}
3148#endif /* CONFIG_LIVEPATCH */
3149
3150#ifdef CONFIG_STACKLEAK_METRICS
3151static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3152				struct pid *pid, struct task_struct *task)
3153{
3154	unsigned long prev_depth = THREAD_SIZE -
3155				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3156	unsigned long depth = THREAD_SIZE -
3157				(task->lowest_stack & (THREAD_SIZE - 1));
3158
3159	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3160							prev_depth, depth);
3161	return 0;
3162}
3163#endif /* CONFIG_STACKLEAK_METRICS */
3164
3165/*
3166 * Thread groups
3167 */
3168static const struct file_operations proc_task_operations;
3169static const struct inode_operations proc_task_inode_operations;
3170
3171static const struct pid_entry tgid_base_stuff[] = {
3172	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3173	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3174	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3175	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3176	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3177#ifdef CONFIG_NET
3178	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3179#endif
3180	REG("environ",    S_IRUSR, proc_environ_operations),
3181	REG("auxv",       S_IRUSR, proc_auxv_operations),
3182	ONE("status",     S_IRUGO, proc_pid_status),
3183	ONE("personality", S_IRUSR, proc_pid_personality),
3184	ONE("limits",	  S_IRUGO, proc_pid_limits),
3185#ifdef CONFIG_SCHED_DEBUG
3186	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3187#endif
3188#ifdef CONFIG_SCHED_AUTOGROUP
3189	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3190#endif
3191#ifdef CONFIG_TIME_NS
3192	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3193#endif
3194	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3195#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3196	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3197#endif
3198	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3199	ONE("stat",       S_IRUGO, proc_tgid_stat),
3200	ONE("statm",      S_IRUGO, proc_pid_statm),
3201	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3202#ifdef CONFIG_NUMA
3203	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3204#endif
3205	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3206	LNK("cwd",        proc_cwd_link),
3207	LNK("root",       proc_root_link),
3208	LNK("exe",        proc_exe_link),
3209	REG("mounts",     S_IRUGO, proc_mounts_operations),
3210	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3211	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3212#ifdef CONFIG_PROC_PAGE_MONITOR
3213	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3214	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3215	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3216	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3217#endif
3218#ifdef CONFIG_SECURITY
3219	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3220#endif
3221#ifdef CONFIG_KALLSYMS
3222	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3223#endif
3224#ifdef CONFIG_STACKTRACE
3225	ONE("stack",      S_IRUSR, proc_pid_stack),
3226#endif
3227#ifdef CONFIG_SCHED_INFO
3228	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3229#endif
3230#ifdef CONFIG_LATENCYTOP
3231	REG("latency",  S_IRUGO, proc_lstats_operations),
3232#endif
3233#ifdef CONFIG_PROC_PID_CPUSET
3234	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3235#endif
3236#ifdef CONFIG_CGROUPS
3237	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3238#endif
3239#ifdef CONFIG_PROC_CPU_RESCTRL
3240	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3241#endif
3242	ONE("oom_score",  S_IRUGO, proc_oom_score),
3243	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3244	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3245#ifdef CONFIG_AUDIT
3246	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3247	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3248#endif
3249#ifdef CONFIG_FAULT_INJECTION
3250	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3251	REG("fail-nth", 0644, proc_fail_nth_operations),
3252#endif
3253#ifdef CONFIG_ELF_CORE
3254	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3255#endif
3256#ifdef CONFIG_TASK_IO_ACCOUNTING
3257	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3258#endif
 
 
 
3259#ifdef CONFIG_USER_NS
3260	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3261	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3262	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3263	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3264#endif
3265#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3266	REG("timers",	  S_IRUGO, proc_timers_operations),
3267#endif
3268	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3269#ifdef CONFIG_LIVEPATCH
3270	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3271#endif
3272#ifdef CONFIG_STACKLEAK_METRICS
3273	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3274#endif
3275#ifdef CONFIG_PROC_PID_ARCH_STATUS
3276	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3277#endif
3278#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3279	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3280#endif
3281};
3282
3283static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3284{
3285	return proc_pident_readdir(file, ctx,
3286				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3287}
3288
3289static const struct file_operations proc_tgid_base_operations = {
3290	.read		= generic_read_dir,
3291	.iterate_shared	= proc_tgid_base_readdir,
3292	.llseek		= generic_file_llseek,
3293};
3294
3295struct pid *tgid_pidfd_to_pid(const struct file *file)
3296{
3297	if (file->f_op != &proc_tgid_base_operations)
3298		return ERR_PTR(-EBADF);
3299
3300	return proc_pid(file_inode(file));
3301}
3302
3303static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3304{
3305	return proc_pident_lookup(dir, dentry,
3306				  tgid_base_stuff,
3307				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3308}
3309
3310static const struct inode_operations proc_tgid_base_inode_operations = {
3311	.lookup		= proc_tgid_base_lookup,
3312	.getattr	= pid_getattr,
3313	.setattr	= proc_setattr,
3314	.permission	= proc_pid_permission,
3315};
3316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3317/**
3318 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3319 * @pid: pid that should be flushed.
3320 *
3321 * This function walks a list of inodes (that belong to any proc
3322 * filesystem) that are attached to the pid and flushes them from
3323 * the dentry cache.
 
 
 
 
 
 
3324 *
3325 * It is safe and reasonable to cache /proc entries for a task until
3326 * that task exits.  After that they just clog up the dcache with
3327 * useless entries, possibly causing useful dcache entries to be
3328 * flushed instead.  This routine is provided to flush those useless
3329 * dcache entries when a process is reaped.
3330 *
3331 * NOTE: This routine is just an optimization so it does not guarantee
3332 *       that no dcache entries will exist after a process is reaped
3333 *       it just makes it very unlikely that any will persist.
3334 */
3335
3336void proc_flush_pid(struct pid *pid)
3337{
3338	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
 
 
 
 
 
 
 
 
 
 
 
3339}
3340
3341static struct dentry *proc_pid_instantiate(struct dentry * dentry,
 
3342				   struct task_struct *task, const void *ptr)
3343{
3344	struct inode *inode;
3345
3346	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3347	if (!inode)
3348		return ERR_PTR(-ENOENT);
3349
 
3350	inode->i_op = &proc_tgid_base_inode_operations;
3351	inode->i_fop = &proc_tgid_base_operations;
3352	inode->i_flags|=S_IMMUTABLE;
3353
3354	set_nlink(inode, nlink_tgid);
3355	pid_update_inode(task, inode);
3356
3357	d_set_d_op(dentry, &pid_dentry_operations);
3358	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3359}
3360
3361struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3362{
 
3363	struct task_struct *task;
3364	unsigned tgid;
3365	struct proc_fs_info *fs_info;
3366	struct pid_namespace *ns;
3367	struct dentry *result = ERR_PTR(-ENOENT);
3368
3369	tgid = name_to_int(&dentry->d_name);
3370	if (tgid == ~0U)
3371		goto out;
3372
3373	fs_info = proc_sb_info(dentry->d_sb);
3374	ns = fs_info->pid_ns;
3375	rcu_read_lock();
3376	task = find_task_by_pid_ns(tgid, ns);
3377	if (task)
3378		get_task_struct(task);
3379	rcu_read_unlock();
3380	if (!task)
3381		goto out;
3382
3383	/* Limit procfs to only ptraceable tasks */
3384	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3385		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3386			goto out_put_task;
3387	}
3388
3389	result = proc_pid_instantiate(dentry, task, NULL);
3390out_put_task:
3391	put_task_struct(task);
3392out:
3393	return result;
3394}
3395
3396/*
3397 * Find the first task with tgid >= tgid
3398 *
3399 */
3400struct tgid_iter {
3401	unsigned int tgid;
3402	struct task_struct *task;
3403};
3404static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3405{
3406	struct pid *pid;
3407
3408	if (iter.task)
3409		put_task_struct(iter.task);
3410	rcu_read_lock();
3411retry:
3412	iter.task = NULL;
3413	pid = find_ge_pid(iter.tgid, ns);
3414	if (pid) {
3415		iter.tgid = pid_nr_ns(pid, ns);
3416		iter.task = pid_task(pid, PIDTYPE_TGID);
3417		if (!iter.task) {
 
 
 
 
 
 
 
 
 
 
 
 
3418			iter.tgid += 1;
3419			goto retry;
3420		}
3421		get_task_struct(iter.task);
3422	}
3423	rcu_read_unlock();
3424	return iter;
3425}
3426
3427#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3428
3429/* for the /proc/ directory itself, after non-process stuff has been done */
3430int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3431{
3432	struct tgid_iter iter;
3433	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3434	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3435	loff_t pos = ctx->pos;
3436
3437	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3438		return 0;
3439
3440	if (pos == TGID_OFFSET - 2) {
3441		struct inode *inode = d_inode(fs_info->proc_self);
3442		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3443			return 0;
3444		ctx->pos = pos = pos + 1;
3445	}
3446	if (pos == TGID_OFFSET - 1) {
3447		struct inode *inode = d_inode(fs_info->proc_thread_self);
3448		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3449			return 0;
3450		ctx->pos = pos = pos + 1;
3451	}
3452	iter.tgid = pos - TGID_OFFSET;
3453	iter.task = NULL;
3454	for (iter = next_tgid(ns, iter);
3455	     iter.task;
3456	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3457		char name[10 + 1];
3458		unsigned int len;
3459
3460		cond_resched();
3461		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3462			continue;
3463
3464		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3465		ctx->pos = iter.tgid + TGID_OFFSET;
3466		if (!proc_fill_cache(file, ctx, name, len,
3467				     proc_pid_instantiate, iter.task, NULL)) {
3468			put_task_struct(iter.task);
3469			return 0;
3470		}
3471	}
3472	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3473	return 0;
3474}
3475
3476/*
3477 * proc_tid_comm_permission is a special permission function exclusively
3478 * used for the node /proc/<pid>/task/<tid>/comm.
3479 * It bypasses generic permission checks in the case where a task of the same
3480 * task group attempts to access the node.
3481 * The rationale behind this is that glibc and bionic access this node for
3482 * cross thread naming (pthread_set/getname_np(!self)). However, if
3483 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3484 * which locks out the cross thread naming implementation.
3485 * This function makes sure that the node is always accessible for members of
3486 * same thread group.
3487 */
3488static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3489				    struct inode *inode, int mask)
3490{
3491	bool is_same_tgroup;
3492	struct task_struct *task;
3493
3494	task = get_proc_task(inode);
3495	if (!task)
3496		return -ESRCH;
3497	is_same_tgroup = same_thread_group(current, task);
3498	put_task_struct(task);
3499
3500	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3501		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3502		 * read or written by the members of the corresponding
3503		 * thread group.
3504		 */
3505		return 0;
3506	}
3507
3508	return generic_permission(&init_user_ns, inode, mask);
3509}
3510
3511static const struct inode_operations proc_tid_comm_inode_operations = {
3512		.permission = proc_tid_comm_permission,
3513};
3514
3515/*
3516 * Tasks
3517 */
3518static const struct pid_entry tid_base_stuff[] = {
3519	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3520	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3521	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3522#ifdef CONFIG_NET
3523	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3524#endif
3525	REG("environ",   S_IRUSR, proc_environ_operations),
3526	REG("auxv",      S_IRUSR, proc_auxv_operations),
3527	ONE("status",    S_IRUGO, proc_pid_status),
3528	ONE("personality", S_IRUSR, proc_pid_personality),
3529	ONE("limits",	 S_IRUGO, proc_pid_limits),
3530#ifdef CONFIG_SCHED_DEBUG
3531	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3532#endif
3533	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3534			 &proc_tid_comm_inode_operations,
3535			 &proc_pid_set_comm_operations, {}),
3536#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3537	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3538#endif
3539	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3540	ONE("stat",      S_IRUGO, proc_tid_stat),
3541	ONE("statm",     S_IRUGO, proc_pid_statm),
3542	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3543#ifdef CONFIG_PROC_CHILDREN
3544	REG("children",  S_IRUGO, proc_tid_children_operations),
3545#endif
3546#ifdef CONFIG_NUMA
3547	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3548#endif
3549	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3550	LNK("cwd",       proc_cwd_link),
3551	LNK("root",      proc_root_link),
3552	LNK("exe",       proc_exe_link),
3553	REG("mounts",    S_IRUGO, proc_mounts_operations),
3554	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3555#ifdef CONFIG_PROC_PAGE_MONITOR
3556	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3557	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3558	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3559	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3560#endif
3561#ifdef CONFIG_SECURITY
3562	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3563#endif
3564#ifdef CONFIG_KALLSYMS
3565	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3566#endif
3567#ifdef CONFIG_STACKTRACE
3568	ONE("stack",      S_IRUSR, proc_pid_stack),
3569#endif
3570#ifdef CONFIG_SCHED_INFO
3571	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3572#endif
3573#ifdef CONFIG_LATENCYTOP
3574	REG("latency",  S_IRUGO, proc_lstats_operations),
3575#endif
3576#ifdef CONFIG_PROC_PID_CPUSET
3577	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3578#endif
3579#ifdef CONFIG_CGROUPS
3580	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3581#endif
3582#ifdef CONFIG_PROC_CPU_RESCTRL
3583	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3584#endif
3585	ONE("oom_score", S_IRUGO, proc_oom_score),
3586	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3587	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3588#ifdef CONFIG_AUDIT
3589	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3590	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3591#endif
3592#ifdef CONFIG_FAULT_INJECTION
3593	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3594	REG("fail-nth", 0644, proc_fail_nth_operations),
3595#endif
3596#ifdef CONFIG_TASK_IO_ACCOUNTING
3597	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3598#endif
 
 
 
3599#ifdef CONFIG_USER_NS
3600	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3601	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3602	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3603	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3604#endif
3605#ifdef CONFIG_LIVEPATCH
3606	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3607#endif
3608#ifdef CONFIG_PROC_PID_ARCH_STATUS
3609	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3610#endif
3611#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3612	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3613#endif
3614};
3615
3616static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3617{
3618	return proc_pident_readdir(file, ctx,
3619				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3620}
3621
3622static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3623{
3624	return proc_pident_lookup(dir, dentry,
3625				  tid_base_stuff,
3626				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3627}
3628
3629static const struct file_operations proc_tid_base_operations = {
3630	.read		= generic_read_dir,
3631	.iterate_shared	= proc_tid_base_readdir,
3632	.llseek		= generic_file_llseek,
3633};
3634
3635static const struct inode_operations proc_tid_base_inode_operations = {
3636	.lookup		= proc_tid_base_lookup,
3637	.getattr	= pid_getattr,
3638	.setattr	= proc_setattr,
3639};
3640
3641static struct dentry *proc_task_instantiate(struct dentry *dentry,
3642	struct task_struct *task, const void *ptr)
3643{
3644	struct inode *inode;
3645	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3646	if (!inode)
3647		return ERR_PTR(-ENOENT);
3648
 
 
 
3649	inode->i_op = &proc_tid_base_inode_operations;
3650	inode->i_fop = &proc_tid_base_operations;
3651	inode->i_flags |= S_IMMUTABLE;
3652
3653	set_nlink(inode, nlink_tid);
3654	pid_update_inode(task, inode);
3655
3656	d_set_d_op(dentry, &pid_dentry_operations);
3657	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3658}
3659
3660static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3661{
 
3662	struct task_struct *task;
3663	struct task_struct *leader = get_proc_task(dir);
3664	unsigned tid;
3665	struct proc_fs_info *fs_info;
3666	struct pid_namespace *ns;
3667	struct dentry *result = ERR_PTR(-ENOENT);
3668
3669	if (!leader)
3670		goto out_no_task;
3671
3672	tid = name_to_int(&dentry->d_name);
3673	if (tid == ~0U)
3674		goto out;
3675
3676	fs_info = proc_sb_info(dentry->d_sb);
3677	ns = fs_info->pid_ns;
3678	rcu_read_lock();
3679	task = find_task_by_pid_ns(tid, ns);
3680	if (task)
3681		get_task_struct(task);
3682	rcu_read_unlock();
3683	if (!task)
3684		goto out;
3685	if (!same_thread_group(leader, task))
3686		goto out_drop_task;
3687
3688	result = proc_task_instantiate(dentry, task, NULL);
3689out_drop_task:
3690	put_task_struct(task);
3691out:
3692	put_task_struct(leader);
3693out_no_task:
3694	return result;
3695}
3696
3697/*
3698 * Find the first tid of a thread group to return to user space.
3699 *
3700 * Usually this is just the thread group leader, but if the users
3701 * buffer was too small or there was a seek into the middle of the
3702 * directory we have more work todo.
3703 *
3704 * In the case of a short read we start with find_task_by_pid.
3705 *
3706 * In the case of a seek we start with the leader and walk nr
3707 * threads past it.
3708 */
3709static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3710					struct pid_namespace *ns)
3711{
3712	struct task_struct *pos, *task;
3713	unsigned long nr = f_pos;
3714
3715	if (nr != f_pos)	/* 32bit overflow? */
3716		return NULL;
3717
3718	rcu_read_lock();
3719	task = pid_task(pid, PIDTYPE_PID);
3720	if (!task)
3721		goto fail;
3722
3723	/* Attempt to start with the tid of a thread */
3724	if (tid && nr) {
3725		pos = find_task_by_pid_ns(tid, ns);
3726		if (pos && same_thread_group(pos, task))
3727			goto found;
3728	}
3729
3730	/* If nr exceeds the number of threads there is nothing todo */
3731	if (nr >= get_nr_threads(task))
3732		goto fail;
3733
3734	/* If we haven't found our starting place yet start
3735	 * with the leader and walk nr threads forward.
3736	 */
3737	pos = task = task->group_leader;
3738	do {
3739		if (!nr--)
3740			goto found;
3741	} while_each_thread(task, pos);
3742fail:
3743	pos = NULL;
3744	goto out;
3745found:
3746	get_task_struct(pos);
3747out:
3748	rcu_read_unlock();
3749	return pos;
3750}
3751
3752/*
3753 * Find the next thread in the thread list.
3754 * Return NULL if there is an error or no next thread.
3755 *
3756 * The reference to the input task_struct is released.
3757 */
3758static struct task_struct *next_tid(struct task_struct *start)
3759{
3760	struct task_struct *pos = NULL;
3761	rcu_read_lock();
3762	if (pid_alive(start)) {
3763		pos = next_thread(start);
3764		if (thread_group_leader(pos))
3765			pos = NULL;
3766		else
3767			get_task_struct(pos);
3768	}
3769	rcu_read_unlock();
3770	put_task_struct(start);
3771	return pos;
3772}
3773
3774/* for the /proc/TGID/task/ directories */
3775static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3776{
3777	struct inode *inode = file_inode(file);
3778	struct task_struct *task;
3779	struct pid_namespace *ns;
3780	int tid;
3781
3782	if (proc_inode_is_dead(inode))
3783		return -ENOENT;
3784
3785	if (!dir_emit_dots(file, ctx))
3786		return 0;
3787
3788	/* f_version caches the tgid value that the last readdir call couldn't
3789	 * return. lseek aka telldir automagically resets f_version to 0.
3790	 */
3791	ns = proc_pid_ns(inode->i_sb);
3792	tid = (int)file->f_version;
3793	file->f_version = 0;
3794	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3795	     task;
3796	     task = next_tid(task), ctx->pos++) {
3797		char name[10 + 1];
3798		unsigned int len;
3799		tid = task_pid_nr_ns(task, ns);
3800		len = snprintf(name, sizeof(name), "%u", tid);
3801		if (!proc_fill_cache(file, ctx, name, len,
3802				proc_task_instantiate, task, NULL)) {
3803			/* returning this tgid failed, save it as the first
3804			 * pid for the next readir call */
3805			file->f_version = (u64)tid;
3806			put_task_struct(task);
3807			break;
3808		}
3809	}
3810
3811	return 0;
3812}
3813
3814static int proc_task_getattr(struct user_namespace *mnt_userns,
3815			     const struct path *path, struct kstat *stat,
3816			     u32 request_mask, unsigned int query_flags)
3817{
3818	struct inode *inode = d_inode(path->dentry);
3819	struct task_struct *p = get_proc_task(inode);
3820	generic_fillattr(&init_user_ns, inode, stat);
3821
3822	if (p) {
3823		stat->nlink += get_nr_threads(p);
3824		put_task_struct(p);
3825	}
3826
3827	return 0;
3828}
3829
3830static const struct inode_operations proc_task_inode_operations = {
3831	.lookup		= proc_task_lookup,
3832	.getattr	= proc_task_getattr,
3833	.setattr	= proc_setattr,
3834	.permission	= proc_pid_permission,
3835};
3836
3837static const struct file_operations proc_task_operations = {
3838	.read		= generic_read_dir,
3839	.iterate_shared	= proc_task_readdir,
3840	.llseek		= generic_file_llseek,
3841};
3842
3843void __init set_proc_pid_nlink(void)
3844{
3845	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3846	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3847}
v4.6
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
 
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
 
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
 
 
 
 
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
 
 
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 
 
 
 107struct pid_entry {
 108	const char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define ONE(NAME, MODE, show)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_single_file_operations,	\
 136		{ .proc_show = show } )
 
 
 
 
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143	unsigned int n)
 144{
 145	unsigned int i;
 146	unsigned int count;
 147
 148	count = 0;
 149	for (i = 0; i < n; ++i) {
 150		if (S_ISDIR(entries[i].mode))
 151			++count;
 152	}
 153
 154	return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159	int result = -ENOENT;
 160
 161	task_lock(task);
 162	if (task->fs) {
 163		get_fs_root(task->fs, root);
 164		result = 0;
 165	}
 166	task_unlock(task);
 167	return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172	struct task_struct *task = get_proc_task(d_inode(dentry));
 173	int result = -ENOENT;
 174
 175	if (task) {
 176		task_lock(task);
 177		if (task->fs) {
 178			get_fs_pwd(task->fs, path);
 179			result = 0;
 180		}
 181		task_unlock(task);
 182		put_task_struct(task);
 183	}
 184	return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189	struct task_struct *task = get_proc_task(d_inode(dentry));
 190	int result = -ENOENT;
 191
 192	if (task) {
 193		result = get_task_root(task, path);
 194		put_task_struct(task);
 195	}
 196	return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200				     size_t _count, loff_t *pos)
 
 
 
 
 
 201{
 202	struct task_struct *tsk;
 203	struct mm_struct *mm;
 204	char *page;
 205	unsigned long count = _count;
 206	unsigned long arg_start, arg_end, env_start, env_end;
 207	unsigned long len1, len2, len;
 208	unsigned long p;
 209	char c;
 210	ssize_t rv;
 211
 212	BUG_ON(*pos < 0);
 
 
 213
 214	tsk = get_proc_task(file_inode(file));
 215	if (!tsk)
 216		return -ESRCH;
 217	mm = get_task_mm(tsk);
 218	put_task_struct(tsk);
 219	if (!mm)
 220		return 0;
 221	/* Check if process spawned far enough to have cmdline. */
 222	if (!mm->env_end) {
 223		rv = 0;
 224		goto out_mmput;
 
 
 
 
 
 
 
 225	}
 
 
 
 
 
 
 
 
 
 
 226
 227	page = (char *)__get_free_page(GFP_TEMPORARY);
 228	if (!page) {
 229		rv = -ENOMEM;
 230		goto out_mmput;
 231	}
 232
 233	down_read(&mm->mmap_sem);
 234	arg_start = mm->arg_start;
 235	arg_end = mm->arg_end;
 236	env_start = mm->env_start;
 237	env_end = mm->env_end;
 238	up_read(&mm->mmap_sem);
 239
 240	BUG_ON(arg_start > arg_end);
 241	BUG_ON(env_start > env_end);
 242
 243	len1 = arg_end - arg_start;
 244	len2 = env_end - env_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245
 246	/* Empty ARGV. */
 247	if (len1 == 0) {
 248		rv = 0;
 249		goto out_free_page;
 250	}
 251	/*
 252	 * Inherently racy -- command line shares address space
 253	 * with code and data.
 
 
 
 254	 */
 255	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256	if (rv <= 0)
 257		goto out_free_page;
 258
 259	rv = 0;
 260
 261	if (c == '\0') {
 262		/* Command line (set of strings) occupies whole ARGV. */
 263		if (len1 <= *pos)
 264			goto out_free_page;
 265
 266		p = arg_start + *pos;
 267		len = len1 - *pos;
 268		while (count > 0 && len > 0) {
 269			unsigned int _count;
 270			int nr_read;
 271
 272			_count = min3(count, len, PAGE_SIZE);
 273			nr_read = access_remote_vm(mm, p, page, _count, 0);
 274			if (nr_read < 0)
 275				rv = nr_read;
 276			if (nr_read <= 0)
 277				goto out_free_page;
 278
 279			if (copy_to_user(buf, page, nr_read)) {
 280				rv = -EFAULT;
 281				goto out_free_page;
 282			}
 283
 284			p	+= nr_read;
 285			len	-= nr_read;
 286			buf	+= nr_read;
 287			count	-= nr_read;
 288			rv	+= nr_read;
 289		}
 290	} else {
 291		/*
 292		 * Command line (1 string) occupies ARGV and maybe
 293		 * extends into ENVP.
 294		 */
 295		if (len1 + len2 <= *pos)
 296			goto skip_argv_envp;
 297		if (len1 <= *pos)
 298			goto skip_argv;
 299
 300		p = arg_start + *pos;
 301		len = len1 - *pos;
 302		while (count > 0 && len > 0) {
 303			unsigned int _count, l;
 304			int nr_read;
 305			bool final;
 306
 307			_count = min3(count, len, PAGE_SIZE);
 308			nr_read = access_remote_vm(mm, p, page, _count, 0);
 309			if (nr_read < 0)
 310				rv = nr_read;
 311			if (nr_read <= 0)
 312				goto out_free_page;
 313
 314			/*
 315			 * Command line can be shorter than whole ARGV
 316			 * even if last "marker" byte says it is not.
 317			 */
 318			final = false;
 319			l = strnlen(page, nr_read);
 320			if (l < nr_read) {
 321				nr_read = l;
 322				final = true;
 323			}
 324
 325			if (copy_to_user(buf, page, nr_read)) {
 326				rv = -EFAULT;
 327				goto out_free_page;
 328			}
 329
 330			p	+= nr_read;
 331			len	-= nr_read;
 332			buf	+= nr_read;
 333			count	-= nr_read;
 334			rv	+= nr_read;
 335
 336			if (final)
 337				goto out_free_page;
 338		}
 339skip_argv:
 340		/*
 341		 * Command line (1 string) occupies ARGV and
 342		 * extends into ENVP.
 343		 */
 344		if (len1 <= *pos) {
 345			p = env_start + *pos - len1;
 346			len = len1 + len2 - *pos;
 347		} else {
 348			p = env_start;
 349			len = len2;
 350		}
 351		while (count > 0 && len > 0) {
 352			unsigned int _count, l;
 353			int nr_read;
 354			bool final;
 355
 356			_count = min3(count, len, PAGE_SIZE);
 357			nr_read = access_remote_vm(mm, p, page, _count, 0);
 358			if (nr_read < 0)
 359				rv = nr_read;
 360			if (nr_read <= 0)
 361				goto out_free_page;
 362
 363			/* Find EOS. */
 364			final = false;
 365			l = strnlen(page, nr_read);
 366			if (l < nr_read) {
 367				nr_read = l;
 368				final = true;
 369			}
 370
 371			if (copy_to_user(buf, page, nr_read)) {
 372				rv = -EFAULT;
 373				goto out_free_page;
 374			}
 375
 376			p	+= nr_read;
 377			len	-= nr_read;
 378			buf	+= nr_read;
 379			count	-= nr_read;
 380			rv	+= nr_read;
 381
 382			if (final)
 383				goto out_free_page;
 384		}
 385skip_argv_envp:
 386		;
 387	}
 388
 389out_free_page:
 390	free_page((unsigned long)page);
 391out_mmput:
 392	mmput(mm);
 393	if (rv > 0)
 394		*pos += rv;
 395	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399	.read	= proc_pid_cmdline_read,
 400	.llseek	= generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404			 struct pid *pid, struct task_struct *task)
 405{
 406	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
 407	if (mm && !IS_ERR(mm)) {
 408		unsigned int nwords = 0;
 409		do {
 410			nwords += 2;
 411		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 413		mmput(mm);
 414		return 0;
 415	} else
 416		return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 428	unsigned long wchan;
 429	char symname[KSYM_NAME_LEN];
 430
 431	wchan = get_wchan(task);
 
 
 
 432
 433	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 434			&& !lookup_symbol_name(wchan, symname))
 435		seq_printf(m, "%s", symname);
 436	else
 437		seq_putc(m, '0');
 438
 439	return 0;
 440}
 441#endif /* CONFIG_KALLSYMS */
 442
 443static int lock_trace(struct task_struct *task)
 444{
 445	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 446	if (err)
 447		return err;
 448	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 449		mutex_unlock(&task->signal->cred_guard_mutex);
 450		return -EPERM;
 451	}
 452	return 0;
 453}
 454
 455static void unlock_trace(struct task_struct *task)
 456{
 457	mutex_unlock(&task->signal->cred_guard_mutex);
 458}
 459
 460#ifdef CONFIG_STACKTRACE
 461
 462#define MAX_STACK_TRACE_DEPTH	64
 463
 464static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 465			  struct pid *pid, struct task_struct *task)
 466{
 467	struct stack_trace trace;
 468	unsigned long *entries;
 469	int err;
 470	int i;
 471
 472	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	if (!entries)
 474		return -ENOMEM;
 475
 476	trace.nr_entries	= 0;
 477	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 478	trace.entries		= entries;
 479	trace.skip		= 0;
 480
 481	err = lock_trace(task);
 482	if (!err) {
 483		save_stack_trace_tsk(task, &trace);
 484
 485		for (i = 0; i < trace.nr_entries; i++) {
 486			seq_printf(m, "[<%pK>] %pS\n",
 487				   (void *)entries[i], (void *)entries[i]);
 
 
 488		}
 
 489		unlock_trace(task);
 490	}
 491	kfree(entries);
 492
 493	return err;
 494}
 495#endif
 496
 497#ifdef CONFIG_SCHED_INFO
 498/*
 499 * Provides /proc/PID/schedstat
 500 */
 501static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 502			      struct pid *pid, struct task_struct *task)
 503{
 504	if (unlikely(!sched_info_on()))
 505		seq_printf(m, "0 0 0\n");
 506	else
 507		seq_printf(m, "%llu %llu %lu\n",
 508		   (unsigned long long)task->se.sum_exec_runtime,
 509		   (unsigned long long)task->sched_info.run_delay,
 510		   task->sched_info.pcount);
 511
 512	return 0;
 513}
 514#endif
 515
 516#ifdef CONFIG_LATENCYTOP
 517static int lstats_show_proc(struct seq_file *m, void *v)
 518{
 519	int i;
 520	struct inode *inode = m->private;
 521	struct task_struct *task = get_proc_task(inode);
 522
 523	if (!task)
 524		return -ESRCH;
 525	seq_puts(m, "Latency Top version : v0.1\n");
 526	for (i = 0; i < 32; i++) {
 527		struct latency_record *lr = &task->latency_record[i];
 528		if (lr->backtrace[0]) {
 529			int q;
 530			seq_printf(m, "%i %li %li",
 531				   lr->count, lr->time, lr->max);
 532			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 533				unsigned long bt = lr->backtrace[q];
 
 534				if (!bt)
 535					break;
 536				if (bt == ULONG_MAX)
 537					break;
 538				seq_printf(m, " %ps", (void *)bt);
 539			}
 540			seq_putc(m, '\n');
 541		}
 542
 543	}
 544	put_task_struct(task);
 545	return 0;
 546}
 547
 548static int lstats_open(struct inode *inode, struct file *file)
 549{
 550	return single_open(file, lstats_show_proc, inode);
 551}
 552
 553static ssize_t lstats_write(struct file *file, const char __user *buf,
 554			    size_t count, loff_t *offs)
 555{
 556	struct task_struct *task = get_proc_task(file_inode(file));
 557
 558	if (!task)
 559		return -ESRCH;
 560	clear_all_latency_tracing(task);
 561	put_task_struct(task);
 562
 563	return count;
 564}
 565
 566static const struct file_operations proc_lstats_operations = {
 567	.open		= lstats_open,
 568	.read		= seq_read,
 569	.write		= lstats_write,
 570	.llseek		= seq_lseek,
 571	.release	= single_release,
 572};
 573
 574#endif
 575
 576static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 577			  struct pid *pid, struct task_struct *task)
 578{
 579	unsigned long totalpages = totalram_pages + total_swap_pages;
 580	unsigned long points = 0;
 
 
 
 
 
 
 
 
 
 
 581
 582	read_lock(&tasklist_lock);
 583	if (pid_alive(task))
 584		points = oom_badness(task, NULL, NULL, totalpages) *
 585						1000 / totalpages;
 586	read_unlock(&tasklist_lock);
 587	seq_printf(m, "%lu\n", points);
 588
 589	return 0;
 590}
 591
 592struct limit_names {
 593	const char *name;
 594	const char *unit;
 595};
 596
 597static const struct limit_names lnames[RLIM_NLIMITS] = {
 598	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 599	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 600	[RLIMIT_DATA] = {"Max data size", "bytes"},
 601	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 602	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 603	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 604	[RLIMIT_NPROC] = {"Max processes", "processes"},
 605	[RLIMIT_NOFILE] = {"Max open files", "files"},
 606	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 607	[RLIMIT_AS] = {"Max address space", "bytes"},
 608	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 609	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 610	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 611	[RLIMIT_NICE] = {"Max nice priority", NULL},
 612	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 613	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 614};
 615
 616/* Display limits for a process */
 617static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 618			   struct pid *pid, struct task_struct *task)
 619{
 620	unsigned int i;
 621	unsigned long flags;
 622
 623	struct rlimit rlim[RLIM_NLIMITS];
 624
 625	if (!lock_task_sighand(task, &flags))
 626		return 0;
 627	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 628	unlock_task_sighand(task, &flags);
 629
 630	/*
 631	 * print the file header
 632	 */
 633       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 634		  "Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 635
 636	for (i = 0; i < RLIM_NLIMITS; i++) {
 637		if (rlim[i].rlim_cur == RLIM_INFINITY)
 638			seq_printf(m, "%-25s %-20s ",
 639				   lnames[i].name, "unlimited");
 640		else
 641			seq_printf(m, "%-25s %-20lu ",
 642				   lnames[i].name, rlim[i].rlim_cur);
 643
 644		if (rlim[i].rlim_max == RLIM_INFINITY)
 645			seq_printf(m, "%-20s ", "unlimited");
 646		else
 647			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 648
 649		if (lnames[i].unit)
 650			seq_printf(m, "%-10s\n", lnames[i].unit);
 651		else
 652			seq_putc(m, '\n');
 653	}
 654
 655	return 0;
 656}
 657
 658#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 659static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 660			    struct pid *pid, struct task_struct *task)
 661{
 662	long nr;
 663	unsigned long args[6], sp, pc;
 664	int res;
 665
 666	res = lock_trace(task);
 667	if (res)
 668		return res;
 669
 670	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 671		seq_puts(m, "running\n");
 672	else if (nr < 0)
 673		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 674	else
 675		seq_printf(m,
 676		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 677		       nr,
 678		       args[0], args[1], args[2], args[3], args[4], args[5],
 679		       sp, pc);
 680	unlock_trace(task);
 681
 682	return 0;
 683}
 684#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 685
 686/************************************************************************/
 687/*                       Here the fs part begins                        */
 688/************************************************************************/
 689
 690/* permission checks */
 691static int proc_fd_access_allowed(struct inode *inode)
 692{
 693	struct task_struct *task;
 694	int allowed = 0;
 695	/* Allow access to a task's file descriptors if it is us or we
 696	 * may use ptrace attach to the process and find out that
 697	 * information.
 698	 */
 699	task = get_proc_task(inode);
 700	if (task) {
 701		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 702		put_task_struct(task);
 703	}
 704	return allowed;
 705}
 706
 707int proc_setattr(struct dentry *dentry, struct iattr *attr)
 
 708{
 709	int error;
 710	struct inode *inode = d_inode(dentry);
 711
 712	if (attr->ia_valid & ATTR_MODE)
 713		return -EPERM;
 714
 715	error = inode_change_ok(inode, attr);
 716	if (error)
 717		return error;
 718
 719	setattr_copy(inode, attr);
 720	mark_inode_dirty(inode);
 721	return 0;
 722}
 723
 724/*
 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 726 * or euid/egid (for hide_pid_min=2)?
 727 */
 728static bool has_pid_permissions(struct pid_namespace *pid,
 729				 struct task_struct *task,
 730				 int hide_pid_min)
 731{
 732	if (pid->hide_pid < hide_pid_min)
 
 
 
 
 
 
 
 
 733		return true;
 734	if (in_group_p(pid->pid_gid))
 735		return true;
 736	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 737}
 738
 739
 740static int proc_pid_permission(struct inode *inode, int mask)
 
 741{
 742	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 743	struct task_struct *task;
 744	bool has_perms;
 745
 746	task = get_proc_task(inode);
 747	if (!task)
 748		return -ESRCH;
 749	has_perms = has_pid_permissions(pid, task, 1);
 750	put_task_struct(task);
 751
 752	if (!has_perms) {
 753		if (pid->hide_pid == 2) {
 754			/*
 755			 * Let's make getdents(), stat(), and open()
 756			 * consistent with each other.  If a process
 757			 * may not stat() a file, it shouldn't be seen
 758			 * in procfs at all.
 759			 */
 760			return -ENOENT;
 761		}
 762
 763		return -EPERM;
 764	}
 765	return generic_permission(inode, mask);
 766}
 767
 768
 769
 770static const struct inode_operations proc_def_inode_operations = {
 771	.setattr	= proc_setattr,
 772};
 773
 774static int proc_single_show(struct seq_file *m, void *v)
 775{
 776	struct inode *inode = m->private;
 777	struct pid_namespace *ns;
 778	struct pid *pid;
 779	struct task_struct *task;
 780	int ret;
 781
 782	ns = inode->i_sb->s_fs_info;
 783	pid = proc_pid(inode);
 784	task = get_pid_task(pid, PIDTYPE_PID);
 785	if (!task)
 786		return -ESRCH;
 787
 788	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 789
 790	put_task_struct(task);
 791	return ret;
 792}
 793
 794static int proc_single_open(struct inode *inode, struct file *filp)
 795{
 796	return single_open(filp, proc_single_show, inode);
 797}
 798
 799static const struct file_operations proc_single_file_operations = {
 800	.open		= proc_single_open,
 801	.read		= seq_read,
 802	.llseek		= seq_lseek,
 803	.release	= single_release,
 804};
 805
 806
 807struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 808{
 809	struct task_struct *task = get_proc_task(inode);
 810	struct mm_struct *mm = ERR_PTR(-ESRCH);
 811
 812	if (task) {
 813		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 814		put_task_struct(task);
 815
 816		if (!IS_ERR_OR_NULL(mm)) {
 817			/* ensure this mm_struct can't be freed */
 818			atomic_inc(&mm->mm_count);
 819			/* but do not pin its memory */
 820			mmput(mm);
 821		}
 822	}
 823
 824	return mm;
 825}
 826
 827static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 828{
 829	struct mm_struct *mm = proc_mem_open(inode, mode);
 830
 831	if (IS_ERR(mm))
 832		return PTR_ERR(mm);
 833
 834	file->private_data = mm;
 835	return 0;
 836}
 837
 838static int mem_open(struct inode *inode, struct file *file)
 839{
 840	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 841
 842	/* OK to pass negative loff_t, we can catch out-of-range */
 843	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 844
 845	return ret;
 846}
 847
 848static ssize_t mem_rw(struct file *file, char __user *buf,
 849			size_t count, loff_t *ppos, int write)
 850{
 851	struct mm_struct *mm = file->private_data;
 852	unsigned long addr = *ppos;
 853	ssize_t copied;
 854	char *page;
 
 855
 856	if (!mm)
 857		return 0;
 858
 859	page = (char *)__get_free_page(GFP_TEMPORARY);
 860	if (!page)
 861		return -ENOMEM;
 862
 863	copied = 0;
 864	if (!atomic_inc_not_zero(&mm->mm_users))
 865		goto free;
 866
 
 
 867	while (count > 0) {
 868		int this_len = min_t(int, count, PAGE_SIZE);
 869
 870		if (write && copy_from_user(page, buf, this_len)) {
 871			copied = -EFAULT;
 872			break;
 873		}
 874
 875		this_len = access_remote_vm(mm, addr, page, this_len, write);
 876		if (!this_len) {
 877			if (!copied)
 878				copied = -EIO;
 879			break;
 880		}
 881
 882		if (!write && copy_to_user(buf, page, this_len)) {
 883			copied = -EFAULT;
 884			break;
 885		}
 886
 887		buf += this_len;
 888		addr += this_len;
 889		copied += this_len;
 890		count -= this_len;
 891	}
 892	*ppos = addr;
 893
 894	mmput(mm);
 895free:
 896	free_page((unsigned long) page);
 897	return copied;
 898}
 899
 900static ssize_t mem_read(struct file *file, char __user *buf,
 901			size_t count, loff_t *ppos)
 902{
 903	return mem_rw(file, buf, count, ppos, 0);
 904}
 905
 906static ssize_t mem_write(struct file *file, const char __user *buf,
 907			 size_t count, loff_t *ppos)
 908{
 909	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 910}
 911
 912loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 913{
 914	switch (orig) {
 915	case 0:
 916		file->f_pos = offset;
 917		break;
 918	case 1:
 919		file->f_pos += offset;
 920		break;
 921	default:
 922		return -EINVAL;
 923	}
 924	force_successful_syscall_return();
 925	return file->f_pos;
 926}
 927
 928static int mem_release(struct inode *inode, struct file *file)
 929{
 930	struct mm_struct *mm = file->private_data;
 931	if (mm)
 932		mmdrop(mm);
 933	return 0;
 934}
 935
 936static const struct file_operations proc_mem_operations = {
 937	.llseek		= mem_lseek,
 938	.read		= mem_read,
 939	.write		= mem_write,
 940	.open		= mem_open,
 941	.release	= mem_release,
 942};
 943
 944static int environ_open(struct inode *inode, struct file *file)
 945{
 946	return __mem_open(inode, file, PTRACE_MODE_READ);
 947}
 948
 949static ssize_t environ_read(struct file *file, char __user *buf,
 950			size_t count, loff_t *ppos)
 951{
 952	char *page;
 953	unsigned long src = *ppos;
 954	int ret = 0;
 955	struct mm_struct *mm = file->private_data;
 956	unsigned long env_start, env_end;
 957
 958	/* Ensure the process spawned far enough to have an environment. */
 959	if (!mm || !mm->env_end)
 960		return 0;
 961
 962	page = (char *)__get_free_page(GFP_TEMPORARY);
 963	if (!page)
 964		return -ENOMEM;
 965
 966	ret = 0;
 967	if (!atomic_inc_not_zero(&mm->mm_users))
 968		goto free;
 969
 970	down_read(&mm->mmap_sem);
 971	env_start = mm->env_start;
 972	env_end = mm->env_end;
 973	up_read(&mm->mmap_sem);
 974
 975	while (count > 0) {
 976		size_t this_len, max_len;
 977		int retval;
 978
 979		if (src >= (env_end - env_start))
 980			break;
 981
 982		this_len = env_end - (env_start + src);
 983
 984		max_len = min_t(size_t, PAGE_SIZE, count);
 985		this_len = min(max_len, this_len);
 986
 987		retval = access_remote_vm(mm, (env_start + src),
 988			page, this_len, 0);
 989
 990		if (retval <= 0) {
 991			ret = retval;
 992			break;
 993		}
 994
 995		if (copy_to_user(buf, page, retval)) {
 996			ret = -EFAULT;
 997			break;
 998		}
 999
1000		ret += retval;
1001		src += retval;
1002		buf += retval;
1003		count -= retval;
1004	}
1005	*ppos = src;
1006	mmput(mm);
1007
1008free:
1009	free_page((unsigned long) page);
1010	return ret;
1011}
1012
1013static const struct file_operations proc_environ_operations = {
1014	.open		= environ_open,
1015	.read		= environ_read,
1016	.llseek		= generic_file_llseek,
1017	.release	= mem_release,
1018};
1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021			    loff_t *ppos)
1022{
1023	struct task_struct *task = get_proc_task(file_inode(file));
1024	char buffer[PROC_NUMBUF];
1025	int oom_adj = OOM_ADJUST_MIN;
1026	size_t len;
1027	unsigned long flags;
1028
1029	if (!task)
1030		return -ESRCH;
1031	if (lock_task_sighand(task, &flags)) {
1032		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033			oom_adj = OOM_ADJUST_MAX;
1034		else
1035			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036				  OOM_SCORE_ADJ_MAX;
1037		unlock_task_sighand(task, &flags);
1038	}
1039	put_task_struct(task);
 
 
1040	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1041	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042}
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044/*
1045 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1046 * kernels.  The effective policy is defined by oom_score_adj, which has a
1047 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1048 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1049 * Processes that become oom disabled via oom_adj will still be oom disabled
1050 * with this implementation.
1051 *
1052 * oom_adj cannot be removed since existing userspace binaries use it.
1053 */
1054static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1055			     size_t count, loff_t *ppos)
1056{
1057	struct task_struct *task;
1058	char buffer[PROC_NUMBUF];
1059	int oom_adj;
1060	unsigned long flags;
1061	int err;
1062
1063	memset(buffer, 0, sizeof(buffer));
1064	if (count > sizeof(buffer) - 1)
1065		count = sizeof(buffer) - 1;
1066	if (copy_from_user(buffer, buf, count)) {
1067		err = -EFAULT;
1068		goto out;
1069	}
1070
1071	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1072	if (err)
1073		goto out;
1074	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1075	     oom_adj != OOM_DISABLE) {
1076		err = -EINVAL;
1077		goto out;
1078	}
1079
1080	task = get_proc_task(file_inode(file));
1081	if (!task) {
1082		err = -ESRCH;
1083		goto out;
1084	}
1085
1086	task_lock(task);
1087	if (!task->mm) {
1088		err = -EINVAL;
1089		goto err_task_lock;
1090	}
1091
1092	if (!lock_task_sighand(task, &flags)) {
1093		err = -ESRCH;
1094		goto err_task_lock;
1095	}
1096
1097	/*
1098	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1099	 * value is always attainable.
1100	 */
1101	if (oom_adj == OOM_ADJUST_MAX)
1102		oom_adj = OOM_SCORE_ADJ_MAX;
1103	else
1104		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1105
1106	if (oom_adj < task->signal->oom_score_adj &&
1107	    !capable(CAP_SYS_RESOURCE)) {
1108		err = -EACCES;
1109		goto err_sighand;
1110	}
1111
1112	/*
1113	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1114	 * /proc/pid/oom_score_adj instead.
1115	 */
1116	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1117		  current->comm, task_pid_nr(current), task_pid_nr(task),
1118		  task_pid_nr(task));
1119
1120	task->signal->oom_score_adj = oom_adj;
1121	trace_oom_score_adj_update(task);
1122err_sighand:
1123	unlock_task_sighand(task, &flags);
1124err_task_lock:
1125	task_unlock(task);
1126	put_task_struct(task);
1127out:
1128	return err < 0 ? err : count;
1129}
1130
1131static const struct file_operations proc_oom_adj_operations = {
1132	.read		= oom_adj_read,
1133	.write		= oom_adj_write,
1134	.llseek		= generic_file_llseek,
1135};
1136
1137static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1138					size_t count, loff_t *ppos)
1139{
1140	struct task_struct *task = get_proc_task(file_inode(file));
1141	char buffer[PROC_NUMBUF];
1142	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1143	unsigned long flags;
1144	size_t len;
1145
1146	if (!task)
1147		return -ESRCH;
1148	if (lock_task_sighand(task, &flags)) {
1149		oom_score_adj = task->signal->oom_score_adj;
1150		unlock_task_sighand(task, &flags);
1151	}
1152	put_task_struct(task);
1153	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1154	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1155}
1156
1157static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1158					size_t count, loff_t *ppos)
1159{
1160	struct task_struct *task;
1161	char buffer[PROC_NUMBUF];
1162	unsigned long flags;
1163	int oom_score_adj;
1164	int err;
1165
1166	memset(buffer, 0, sizeof(buffer));
1167	if (count > sizeof(buffer) - 1)
1168		count = sizeof(buffer) - 1;
1169	if (copy_from_user(buffer, buf, count)) {
1170		err = -EFAULT;
1171		goto out;
1172	}
1173
1174	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1175	if (err)
1176		goto out;
1177	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1178			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1179		err = -EINVAL;
1180		goto out;
1181	}
1182
1183	task = get_proc_task(file_inode(file));
1184	if (!task) {
1185		err = -ESRCH;
1186		goto out;
1187	}
1188
1189	task_lock(task);
1190	if (!task->mm) {
1191		err = -EINVAL;
1192		goto err_task_lock;
1193	}
1194
1195	if (!lock_task_sighand(task, &flags)) {
1196		err = -ESRCH;
1197		goto err_task_lock;
1198	}
1199
1200	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1201			!capable(CAP_SYS_RESOURCE)) {
1202		err = -EACCES;
1203		goto err_sighand;
1204	}
1205
1206	task->signal->oom_score_adj = (short)oom_score_adj;
1207	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1208		task->signal->oom_score_adj_min = (short)oom_score_adj;
1209	trace_oom_score_adj_update(task);
1210
1211err_sighand:
1212	unlock_task_sighand(task, &flags);
1213err_task_lock:
1214	task_unlock(task);
1215	put_task_struct(task);
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDITSYSCALL
1227#define TMPBUFLEN 21
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
1252
 
 
 
 
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366#endif
1367
1368
1369#ifdef CONFIG_SCHED_DEBUG
1370/*
1371 * Print out various scheduling related per-task fields:
1372 */
1373static int sched_show(struct seq_file *m, void *v)
1374{
1375	struct inode *inode = m->private;
 
1376	struct task_struct *p;
1377
1378	p = get_proc_task(inode);
1379	if (!p)
1380		return -ESRCH;
1381	proc_sched_show_task(p, m);
1382
1383	put_task_struct(p);
1384
1385	return 0;
1386}
1387
1388static ssize_t
1389sched_write(struct file *file, const char __user *buf,
1390	    size_t count, loff_t *offset)
1391{
1392	struct inode *inode = file_inode(file);
1393	struct task_struct *p;
1394
1395	p = get_proc_task(inode);
1396	if (!p)
1397		return -ESRCH;
1398	proc_sched_set_task(p);
1399
1400	put_task_struct(p);
1401
1402	return count;
1403}
1404
1405static int sched_open(struct inode *inode, struct file *filp)
1406{
1407	return single_open(filp, sched_show, inode);
1408}
1409
1410static const struct file_operations proc_pid_sched_operations = {
1411	.open		= sched_open,
1412	.read		= seq_read,
1413	.write		= sched_write,
1414	.llseek		= seq_lseek,
1415	.release	= single_release,
1416};
1417
1418#endif
1419
1420#ifdef CONFIG_SCHED_AUTOGROUP
1421/*
1422 * Print out autogroup related information:
1423 */
1424static int sched_autogroup_show(struct seq_file *m, void *v)
1425{
1426	struct inode *inode = m->private;
1427	struct task_struct *p;
1428
1429	p = get_proc_task(inode);
1430	if (!p)
1431		return -ESRCH;
1432	proc_sched_autogroup_show_task(p, m);
1433
1434	put_task_struct(p);
1435
1436	return 0;
1437}
1438
1439static ssize_t
1440sched_autogroup_write(struct file *file, const char __user *buf,
1441	    size_t count, loff_t *offset)
1442{
1443	struct inode *inode = file_inode(file);
1444	struct task_struct *p;
1445	char buffer[PROC_NUMBUF];
1446	int nice;
1447	int err;
1448
1449	memset(buffer, 0, sizeof(buffer));
1450	if (count > sizeof(buffer) - 1)
1451		count = sizeof(buffer) - 1;
1452	if (copy_from_user(buffer, buf, count))
1453		return -EFAULT;
1454
1455	err = kstrtoint(strstrip(buffer), 0, &nice);
1456	if (err < 0)
1457		return err;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462
1463	err = proc_sched_autogroup_set_nice(p, nice);
1464	if (err)
1465		count = err;
1466
1467	put_task_struct(p);
1468
1469	return count;
1470}
1471
1472static int sched_autogroup_open(struct inode *inode, struct file *filp)
1473{
1474	int ret;
1475
1476	ret = single_open(filp, sched_autogroup_show, NULL);
1477	if (!ret) {
1478		struct seq_file *m = filp->private_data;
1479
1480		m->private = inode;
1481	}
1482	return ret;
1483}
1484
1485static const struct file_operations proc_pid_sched_autogroup_operations = {
1486	.open		= sched_autogroup_open,
1487	.read		= seq_read,
1488	.write		= sched_autogroup_write,
1489	.llseek		= seq_lseek,
1490	.release	= single_release,
1491};
1492
1493#endif /* CONFIG_SCHED_AUTOGROUP */
1494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495static ssize_t comm_write(struct file *file, const char __user *buf,
1496				size_t count, loff_t *offset)
1497{
1498	struct inode *inode = file_inode(file);
1499	struct task_struct *p;
1500	char buffer[TASK_COMM_LEN];
1501	const size_t maxlen = sizeof(buffer) - 1;
1502
1503	memset(buffer, 0, sizeof(buffer));
1504	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1505		return -EFAULT;
1506
1507	p = get_proc_task(inode);
1508	if (!p)
1509		return -ESRCH;
1510
1511	if (same_thread_group(current, p))
1512		set_task_comm(p, buffer);
1513	else
1514		count = -EINVAL;
1515
1516	put_task_struct(p);
1517
1518	return count;
1519}
1520
1521static int comm_show(struct seq_file *m, void *v)
1522{
1523	struct inode *inode = m->private;
1524	struct task_struct *p;
1525
1526	p = get_proc_task(inode);
1527	if (!p)
1528		return -ESRCH;
1529
1530	task_lock(p);
1531	seq_printf(m, "%s\n", p->comm);
1532	task_unlock(p);
1533
1534	put_task_struct(p);
1535
1536	return 0;
1537}
1538
1539static int comm_open(struct inode *inode, struct file *filp)
1540{
1541	return single_open(filp, comm_show, inode);
1542}
1543
1544static const struct file_operations proc_pid_set_comm_operations = {
1545	.open		= comm_open,
1546	.read		= seq_read,
1547	.write		= comm_write,
1548	.llseek		= seq_lseek,
1549	.release	= single_release,
1550};
1551
1552static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1553{
1554	struct task_struct *task;
1555	struct mm_struct *mm;
1556	struct file *exe_file;
1557
1558	task = get_proc_task(d_inode(dentry));
1559	if (!task)
1560		return -ENOENT;
1561	mm = get_task_mm(task);
1562	put_task_struct(task);
1563	if (!mm)
1564		return -ENOENT;
1565	exe_file = get_mm_exe_file(mm);
1566	mmput(mm);
1567	if (exe_file) {
1568		*exe_path = exe_file->f_path;
1569		path_get(&exe_file->f_path);
1570		fput(exe_file);
1571		return 0;
1572	} else
1573		return -ENOENT;
1574}
1575
1576static const char *proc_pid_get_link(struct dentry *dentry,
1577				     struct inode *inode,
1578				     struct delayed_call *done)
1579{
1580	struct path path;
1581	int error = -EACCES;
1582
1583	if (!dentry)
1584		return ERR_PTR(-ECHILD);
1585
1586	/* Are we allowed to snoop on the tasks file descriptors? */
1587	if (!proc_fd_access_allowed(inode))
1588		goto out;
1589
1590	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1591	if (error)
1592		goto out;
1593
1594	nd_jump_link(&path);
1595	return NULL;
1596out:
1597	return ERR_PTR(error);
1598}
1599
1600static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1601{
1602	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1603	char *pathname;
1604	int len;
1605
1606	if (!tmp)
1607		return -ENOMEM;
1608
1609	pathname = d_path(path, tmp, PAGE_SIZE);
1610	len = PTR_ERR(pathname);
1611	if (IS_ERR(pathname))
1612		goto out;
1613	len = tmp + PAGE_SIZE - 1 - pathname;
1614
1615	if (len > buflen)
1616		len = buflen;
1617	if (copy_to_user(buffer, pathname, len))
1618		len = -EFAULT;
1619 out:
1620	free_page((unsigned long)tmp);
1621	return len;
1622}
1623
1624static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1625{
1626	int error = -EACCES;
1627	struct inode *inode = d_inode(dentry);
1628	struct path path;
1629
1630	/* Are we allowed to snoop on the tasks file descriptors? */
1631	if (!proc_fd_access_allowed(inode))
1632		goto out;
1633
1634	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1635	if (error)
1636		goto out;
1637
1638	error = do_proc_readlink(&path, buffer, buflen);
1639	path_put(&path);
1640out:
1641	return error;
1642}
1643
1644const struct inode_operations proc_pid_link_inode_operations = {
1645	.readlink	= proc_pid_readlink,
1646	.get_link	= proc_pid_get_link,
1647	.setattr	= proc_setattr,
1648};
1649
1650
1651/* building an inode */
1652
1653struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654{
1655	struct inode * inode;
1656	struct proc_inode *ei;
1657	const struct cred *cred;
1658
1659	/* We need a new inode */
1660
1661	inode = new_inode(sb);
1662	if (!inode)
1663		goto out;
1664
1665	/* Common stuff */
1666	ei = PROC_I(inode);
 
1667	inode->i_ino = get_next_ino();
1668	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1669	inode->i_op = &proc_def_inode_operations;
1670
1671	/*
1672	 * grab the reference to task.
1673	 */
1674	ei->pid = get_task_pid(task, PIDTYPE_PID);
1675	if (!ei->pid)
1676		goto out_unlock;
1677
1678	if (task_dumpable(task)) {
1679		rcu_read_lock();
1680		cred = __task_cred(task);
1681		inode->i_uid = cred->euid;
1682		inode->i_gid = cred->egid;
1683		rcu_read_unlock();
1684	}
 
 
1685	security_task_to_inode(task, inode);
1686
1687out:
1688	return inode;
1689
1690out_unlock:
1691	iput(inode);
1692	return NULL;
1693}
1694
1695int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
1696{
1697	struct inode *inode = d_inode(dentry);
 
1698	struct task_struct *task;
1699	const struct cred *cred;
1700	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1701
1702	generic_fillattr(inode, stat);
1703
1704	rcu_read_lock();
1705	stat->uid = GLOBAL_ROOT_UID;
1706	stat->gid = GLOBAL_ROOT_GID;
 
1707	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1708	if (task) {
1709		if (!has_pid_permissions(pid, task, 2)) {
1710			rcu_read_unlock();
1711			/*
1712			 * This doesn't prevent learning whether PID exists,
1713			 * it only makes getattr() consistent with readdir().
1714			 */
1715			return -ENOENT;
1716		}
1717		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1718		    task_dumpable(task)) {
1719			cred = __task_cred(task);
1720			stat->uid = cred->euid;
1721			stat->gid = cred->egid;
1722		}
1723	}
1724	rcu_read_unlock();
1725	return 0;
1726}
1727
1728/* dentry stuff */
1729
1730/*
1731 *	Exceptional case: normally we are not allowed to unhash a busy
1732 * directory. In this case, however, we can do it - no aliasing problems
1733 * due to the way we treat inodes.
1734 *
 
 
 
 
 
 
 
1735 * Rewrite the inode's ownerships here because the owning task may have
1736 * performed a setuid(), etc.
1737 *
1738 * Before the /proc/pid/status file was created the only way to read
1739 * the effective uid of a /process was to stat /proc/pid.  Reading
1740 * /proc/pid/status is slow enough that procps and other packages
1741 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1742 * made this apply to all per process world readable and executable
1743 * directories.
1744 */
1745int pid_revalidate(struct dentry *dentry, unsigned int flags)
1746{
1747	struct inode *inode;
1748	struct task_struct *task;
1749	const struct cred *cred;
1750
1751	if (flags & LOOKUP_RCU)
1752		return -ECHILD;
1753
1754	inode = d_inode(dentry);
1755	task = get_proc_task(inode);
1756
1757	if (task) {
1758		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1759		    task_dumpable(task)) {
1760			rcu_read_lock();
1761			cred = __task_cred(task);
1762			inode->i_uid = cred->euid;
1763			inode->i_gid = cred->egid;
1764			rcu_read_unlock();
1765		} else {
1766			inode->i_uid = GLOBAL_ROOT_UID;
1767			inode->i_gid = GLOBAL_ROOT_GID;
1768		}
1769		inode->i_mode &= ~(S_ISUID | S_ISGID);
1770		security_task_to_inode(task, inode);
1771		put_task_struct(task);
1772		return 1;
1773	}
1774	return 0;
1775}
1776
1777static inline bool proc_inode_is_dead(struct inode *inode)
1778{
1779	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1780}
1781
1782int pid_delete_dentry(const struct dentry *dentry)
1783{
1784	/* Is the task we represent dead?
1785	 * If so, then don't put the dentry on the lru list,
1786	 * kill it immediately.
1787	 */
1788	return proc_inode_is_dead(d_inode(dentry));
1789}
1790
1791const struct dentry_operations pid_dentry_operations =
1792{
1793	.d_revalidate	= pid_revalidate,
1794	.d_delete	= pid_delete_dentry,
1795};
1796
1797/* Lookups */
1798
1799/*
1800 * Fill a directory entry.
1801 *
1802 * If possible create the dcache entry and derive our inode number and
1803 * file type from dcache entry.
1804 *
1805 * Since all of the proc inode numbers are dynamically generated, the inode
1806 * numbers do not exist until the inode is cache.  This means creating the
1807 * the dcache entry in readdir is necessary to keep the inode numbers
1808 * reported by readdir in sync with the inode numbers reported
1809 * by stat.
1810 */
1811bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1812	const char *name, int len,
1813	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1814{
1815	struct dentry *child, *dir = file->f_path.dentry;
1816	struct qstr qname = QSTR_INIT(name, len);
1817	struct inode *inode;
1818	unsigned type;
1819	ino_t ino;
1820
1821	child = d_hash_and_lookup(dir, &qname);
1822	if (!child) {
1823		child = d_alloc(dir, &qname);
1824		if (!child)
1825			goto end_instantiate;
1826		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1827			dput(child);
1828			goto end_instantiate;
 
 
 
 
 
 
 
 
 
 
1829		}
1830	}
1831	inode = d_inode(child);
1832	ino = inode->i_ino;
1833	type = inode->i_mode >> 12;
1834	dput(child);
 
1835	return dir_emit(ctx, name, len, ino, type);
1836
1837end_instantiate:
1838	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1839}
1840
1841/*
1842 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1843 * which represent vma start and end addresses.
1844 */
1845static int dname_to_vma_addr(struct dentry *dentry,
1846			     unsigned long *start, unsigned long *end)
1847{
1848	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
1849		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	return 0;
1852}
1853
1854static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	unsigned long vm_start, vm_end;
1857	bool exact_vma_exists = false;
1858	struct mm_struct *mm = NULL;
1859	struct task_struct *task;
1860	const struct cred *cred;
1861	struct inode *inode;
1862	int status = 0;
1863
1864	if (flags & LOOKUP_RCU)
1865		return -ECHILD;
1866
1867	inode = d_inode(dentry);
1868	task = get_proc_task(inode);
1869	if (!task)
1870		goto out_notask;
1871
1872	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1873	if (IS_ERR_OR_NULL(mm))
1874		goto out;
1875
1876	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1877		down_read(&mm->mmap_sem);
1878		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1879		up_read(&mm->mmap_sem);
 
 
 
1880	}
1881
1882	mmput(mm);
1883
1884	if (exact_vma_exists) {
1885		if (task_dumpable(task)) {
1886			rcu_read_lock();
1887			cred = __task_cred(task);
1888			inode->i_uid = cred->euid;
1889			inode->i_gid = cred->egid;
1890			rcu_read_unlock();
1891		} else {
1892			inode->i_uid = GLOBAL_ROOT_UID;
1893			inode->i_gid = GLOBAL_ROOT_GID;
1894		}
1895		security_task_to_inode(task, inode);
1896		status = 1;
1897	}
1898
1899out:
1900	put_task_struct(task);
1901
1902out_notask:
1903	return status;
1904}
1905
1906static const struct dentry_operations tid_map_files_dentry_operations = {
1907	.d_revalidate	= map_files_d_revalidate,
1908	.d_delete	= pid_delete_dentry,
1909};
1910
1911static int map_files_get_link(struct dentry *dentry, struct path *path)
1912{
1913	unsigned long vm_start, vm_end;
1914	struct vm_area_struct *vma;
1915	struct task_struct *task;
1916	struct mm_struct *mm;
1917	int rc;
1918
1919	rc = -ENOENT;
1920	task = get_proc_task(d_inode(dentry));
1921	if (!task)
1922		goto out;
1923
1924	mm = get_task_mm(task);
1925	put_task_struct(task);
1926	if (!mm)
1927		goto out;
1928
1929	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1930	if (rc)
1931		goto out_mmput;
1932
 
 
 
 
1933	rc = -ENOENT;
1934	down_read(&mm->mmap_sem);
1935	vma = find_exact_vma(mm, vm_start, vm_end);
1936	if (vma && vma->vm_file) {
1937		*path = vma->vm_file->f_path;
1938		path_get(path);
1939		rc = 0;
1940	}
1941	up_read(&mm->mmap_sem);
1942
1943out_mmput:
1944	mmput(mm);
1945out:
1946	return rc;
1947}
1948
1949struct map_files_info {
 
 
1950	fmode_t		mode;
1951	unsigned long	len;
1952	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1953};
1954
1955/*
1956 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1957 * symlinks may be used to bypass permissions on ancestor directories in the
1958 * path to the file in question.
1959 */
1960static const char *
1961proc_map_files_get_link(struct dentry *dentry,
1962			struct inode *inode,
1963		        struct delayed_call *done)
1964{
1965	if (!capable(CAP_SYS_ADMIN))
1966		return ERR_PTR(-EPERM);
1967
1968	return proc_pid_get_link(dentry, inode, done);
1969}
1970
1971/*
1972 * Identical to proc_pid_link_inode_operations except for get_link()
1973 */
1974static const struct inode_operations proc_map_files_link_inode_operations = {
1975	.readlink	= proc_pid_readlink,
1976	.get_link	= proc_map_files_get_link,
1977	.setattr	= proc_setattr,
1978};
1979
1980static int
1981proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1982			   struct task_struct *task, const void *ptr)
1983{
1984	fmode_t mode = (fmode_t)(unsigned long)ptr;
1985	struct proc_inode *ei;
1986	struct inode *inode;
1987
1988	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
1989	if (!inode)
1990		return -ENOENT;
1991
1992	ei = PROC_I(inode);
1993	ei->op.proc_get_link = map_files_get_link;
1994
1995	inode->i_op = &proc_map_files_link_inode_operations;
1996	inode->i_size = 64;
1997	inode->i_mode = S_IFLNK;
1998
1999	if (mode & FMODE_READ)
2000		inode->i_mode |= S_IRUSR;
2001	if (mode & FMODE_WRITE)
2002		inode->i_mode |= S_IWUSR;
2003
2004	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2005	d_add(dentry, inode);
2006
2007	return 0;
2008}
2009
2010static struct dentry *proc_map_files_lookup(struct inode *dir,
2011		struct dentry *dentry, unsigned int flags)
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	int result;
2017	struct mm_struct *mm;
2018
2019	result = -ENOENT;
2020	task = get_proc_task(dir);
2021	if (!task)
2022		goto out;
2023
2024	result = -EACCES;
2025	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2026		goto out_put_task;
2027
2028	result = -ENOENT;
2029	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2030		goto out_put_task;
2031
2032	mm = get_task_mm(task);
2033	if (!mm)
2034		goto out_put_task;
2035
2036	down_read(&mm->mmap_sem);
 
 
 
 
2037	vma = find_exact_vma(mm, vm_start, vm_end);
2038	if (!vma)
2039		goto out_no_vma;
2040
2041	if (vma->vm_file)
2042		result = proc_map_files_instantiate(dir, dentry, task,
2043				(void *)(unsigned long)vma->vm_file->f_mode);
2044
2045out_no_vma:
2046	up_read(&mm->mmap_sem);
 
2047	mmput(mm);
2048out_put_task:
2049	put_task_struct(task);
2050out:
2051	return ERR_PTR(result);
2052}
2053
2054static const struct inode_operations proc_map_files_inode_operations = {
2055	.lookup		= proc_map_files_lookup,
2056	.permission	= proc_fd_permission,
2057	.setattr	= proc_setattr,
2058};
2059
2060static int
2061proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2062{
2063	struct vm_area_struct *vma;
2064	struct task_struct *task;
2065	struct mm_struct *mm;
2066	unsigned long nr_files, pos, i;
2067	struct flex_array *fa = NULL;
2068	struct map_files_info info;
2069	struct map_files_info *p;
2070	int ret;
2071
 
 
2072	ret = -ENOENT;
2073	task = get_proc_task(file_inode(file));
2074	if (!task)
2075		goto out;
2076
2077	ret = -EACCES;
2078	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2079		goto out_put_task;
2080
2081	ret = 0;
2082	if (!dir_emit_dots(file, ctx))
2083		goto out_put_task;
2084
2085	mm = get_task_mm(task);
2086	if (!mm)
2087		goto out_put_task;
2088	down_read(&mm->mmap_sem);
 
 
 
 
 
2089
2090	nr_files = 0;
2091
2092	/*
2093	 * We need two passes here:
2094	 *
2095	 *  1) Collect vmas of mapped files with mmap_sem taken
2096	 *  2) Release mmap_sem and instantiate entries
2097	 *
2098	 * otherwise we get lockdep complained, since filldir()
2099	 * routine might require mmap_sem taken in might_fault().
2100	 */
2101
2102	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2103		if (vma->vm_file && ++pos > ctx->pos)
2104			nr_files++;
2105	}
 
2106
2107	if (nr_files) {
2108		fa = flex_array_alloc(sizeof(info), nr_files,
2109					GFP_KERNEL);
2110		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2111						GFP_KERNEL)) {
2112			ret = -ENOMEM;
2113			if (fa)
2114				flex_array_free(fa);
2115			up_read(&mm->mmap_sem);
2116			mmput(mm);
2117			goto out_put_task;
2118		}
2119		for (i = 0, vma = mm->mmap, pos = 2; vma;
2120				vma = vma->vm_next) {
2121			if (!vma->vm_file)
2122				continue;
2123			if (++pos <= ctx->pos)
2124				continue;
2125
2126			info.mode = vma->vm_file->f_mode;
2127			info.len = snprintf(info.name,
2128					sizeof(info.name), "%lx-%lx",
2129					vma->vm_start, vma->vm_end);
2130			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2131				BUG();
2132		}
2133	}
2134	up_read(&mm->mmap_sem);
 
2135
2136	for (i = 0; i < nr_files; i++) {
2137		p = flex_array_get(fa, i);
 
 
 
 
2138		if (!proc_fill_cache(file, ctx,
2139				      p->name, p->len,
2140				      proc_map_files_instantiate,
2141				      task,
2142				      (void *)(unsigned long)p->mode))
2143			break;
2144		ctx->pos++;
2145	}
2146	if (fa)
2147		flex_array_free(fa);
2148	mmput(mm);
2149
2150out_put_task:
2151	put_task_struct(task);
2152out:
 
2153	return ret;
2154}
2155
2156static const struct file_operations proc_map_files_operations = {
2157	.read		= generic_read_dir,
2158	.iterate	= proc_map_files_readdir,
2159	.llseek		= default_llseek,
2160};
2161
2162#ifdef CONFIG_CHECKPOINT_RESTORE
2163struct timers_private {
2164	struct pid *pid;
2165	struct task_struct *task;
2166	struct sighand_struct *sighand;
2167	struct pid_namespace *ns;
2168	unsigned long flags;
2169};
2170
2171static void *timers_start(struct seq_file *m, loff_t *pos)
2172{
2173	struct timers_private *tp = m->private;
2174
2175	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2176	if (!tp->task)
2177		return ERR_PTR(-ESRCH);
2178
2179	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2180	if (!tp->sighand)
2181		return ERR_PTR(-ESRCH);
2182
2183	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2184}
2185
2186static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2187{
2188	struct timers_private *tp = m->private;
2189	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2190}
2191
2192static void timers_stop(struct seq_file *m, void *v)
2193{
2194	struct timers_private *tp = m->private;
2195
2196	if (tp->sighand) {
2197		unlock_task_sighand(tp->task, &tp->flags);
2198		tp->sighand = NULL;
2199	}
2200
2201	if (tp->task) {
2202		put_task_struct(tp->task);
2203		tp->task = NULL;
2204	}
2205}
2206
2207static int show_timer(struct seq_file *m, void *v)
2208{
2209	struct k_itimer *timer;
2210	struct timers_private *tp = m->private;
2211	int notify;
2212	static const char * const nstr[] = {
2213		[SIGEV_SIGNAL] = "signal",
2214		[SIGEV_NONE] = "none",
2215		[SIGEV_THREAD] = "thread",
2216	};
2217
2218	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2219	notify = timer->it_sigev_notify;
2220
2221	seq_printf(m, "ID: %d\n", timer->it_id);
2222	seq_printf(m, "signal: %d/%p\n",
2223		   timer->sigq->info.si_signo,
2224		   timer->sigq->info.si_value.sival_ptr);
2225	seq_printf(m, "notify: %s/%s.%d\n",
2226		   nstr[notify & ~SIGEV_THREAD_ID],
2227		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2228		   pid_nr_ns(timer->it_pid, tp->ns));
2229	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2230
2231	return 0;
2232}
2233
2234static const struct seq_operations proc_timers_seq_ops = {
2235	.start	= timers_start,
2236	.next	= timers_next,
2237	.stop	= timers_stop,
2238	.show	= show_timer,
2239};
2240
2241static int proc_timers_open(struct inode *inode, struct file *file)
2242{
2243	struct timers_private *tp;
2244
2245	tp = __seq_open_private(file, &proc_timers_seq_ops,
2246			sizeof(struct timers_private));
2247	if (!tp)
2248		return -ENOMEM;
2249
2250	tp->pid = proc_pid(inode);
2251	tp->ns = inode->i_sb->s_fs_info;
2252	return 0;
2253}
2254
2255static const struct file_operations proc_timers_operations = {
2256	.open		= proc_timers_open,
2257	.read		= seq_read,
2258	.llseek		= seq_lseek,
2259	.release	= seq_release_private,
2260};
2261#endif
2262
2263static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2264					size_t count, loff_t *offset)
2265{
2266	struct inode *inode = file_inode(file);
2267	struct task_struct *p;
2268	u64 slack_ns;
2269	int err;
2270
2271	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2272	if (err < 0)
2273		return err;
2274
2275	p = get_proc_task(inode);
2276	if (!p)
2277		return -ESRCH;
2278
2279	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2280		task_lock(p);
2281		if (slack_ns == 0)
2282			p->timer_slack_ns = p->default_timer_slack_ns;
2283		else
2284			p->timer_slack_ns = slack_ns;
2285		task_unlock(p);
2286	} else
2287		count = -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
2288
 
2289	put_task_struct(p);
2290
2291	return count;
2292}
2293
2294static int timerslack_ns_show(struct seq_file *m, void *v)
2295{
2296	struct inode *inode = m->private;
2297	struct task_struct *p;
2298	int err =  0;
2299
2300	p = get_proc_task(inode);
2301	if (!p)
2302		return -ESRCH;
2303
2304	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2305		task_lock(p);
2306		seq_printf(m, "%llu\n", p->timer_slack_ns);
2307		task_unlock(p);
2308	} else
2309		err = -EPERM;
 
 
 
 
 
 
 
 
 
 
 
2310
 
2311	put_task_struct(p);
2312
2313	return err;
2314}
2315
2316static int timerslack_ns_open(struct inode *inode, struct file *filp)
2317{
2318	return single_open(filp, timerslack_ns_show, inode);
2319}
2320
2321static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2322	.open		= timerslack_ns_open,
2323	.read		= seq_read,
2324	.write		= timerslack_ns_write,
2325	.llseek		= seq_lseek,
2326	.release	= single_release,
2327};
2328
2329static int proc_pident_instantiate(struct inode *dir,
2330	struct dentry *dentry, struct task_struct *task, const void *ptr)
2331{
2332	const struct pid_entry *p = ptr;
2333	struct inode *inode;
2334	struct proc_inode *ei;
2335
2336	inode = proc_pid_make_inode(dir->i_sb, task);
2337	if (!inode)
2338		goto out;
2339
2340	ei = PROC_I(inode);
2341	inode->i_mode = p->mode;
2342	if (S_ISDIR(inode->i_mode))
2343		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2344	if (p->iop)
2345		inode->i_op = p->iop;
2346	if (p->fop)
2347		inode->i_fop = p->fop;
2348	ei->op = p->op;
 
2349	d_set_d_op(dentry, &pid_dentry_operations);
2350	d_add(dentry, inode);
2351	/* Close the race of the process dying before we return the dentry */
2352	if (pid_revalidate(dentry, 0))
2353		return 0;
2354out:
2355	return -ENOENT;
2356}
2357
2358static struct dentry *proc_pident_lookup(struct inode *dir, 
2359					 struct dentry *dentry,
2360					 const struct pid_entry *ents,
2361					 unsigned int nents)
2362{
2363	int error;
2364	struct task_struct *task = get_proc_task(dir);
2365	const struct pid_entry *p, *last;
2366
2367	error = -ENOENT;
2368
2369	if (!task)
2370		goto out_no_task;
2371
2372	/*
2373	 * Yes, it does not scale. And it should not. Don't add
2374	 * new entries into /proc/<tgid>/ without very good reasons.
2375	 */
2376	last = &ents[nents - 1];
2377	for (p = ents; p <= last; p++) {
2378		if (p->len != dentry->d_name.len)
2379			continue;
2380		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2381			break;
 
2382	}
2383	if (p > last)
2384		goto out;
2385
2386	error = proc_pident_instantiate(dir, dentry, task, p);
2387out:
2388	put_task_struct(task);
2389out_no_task:
2390	return ERR_PTR(error);
2391}
2392
2393static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2394		const struct pid_entry *ents, unsigned int nents)
2395{
2396	struct task_struct *task = get_proc_task(file_inode(file));
2397	const struct pid_entry *p;
2398
2399	if (!task)
2400		return -ENOENT;
2401
2402	if (!dir_emit_dots(file, ctx))
2403		goto out;
2404
2405	if (ctx->pos >= nents + 2)
2406		goto out;
2407
2408	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2409		if (!proc_fill_cache(file, ctx, p->name, p->len,
2410				proc_pident_instantiate, task, p))
2411			break;
2412		ctx->pos++;
2413	}
2414out:
2415	put_task_struct(task);
2416	return 0;
2417}
2418
2419#ifdef CONFIG_SECURITY
 
 
 
 
 
 
 
2420static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2421				  size_t count, loff_t *ppos)
2422{
2423	struct inode * inode = file_inode(file);
2424	char *p = NULL;
2425	ssize_t length;
2426	struct task_struct *task = get_proc_task(inode);
2427
2428	if (!task)
2429		return -ESRCH;
2430
2431	length = security_getprocattr(task,
2432				      (char*)file->f_path.dentry->d_name.name,
2433				      &p);
2434	put_task_struct(task);
2435	if (length > 0)
2436		length = simple_read_from_buffer(buf, count, ppos, p, length);
2437	kfree(p);
2438	return length;
2439}
2440
2441static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2442				   size_t count, loff_t *ppos)
2443{
2444	struct inode * inode = file_inode(file);
 
2445	void *page;
2446	ssize_t length;
2447	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448
2449	length = -ESRCH;
2450	if (!task)
2451		goto out_no_task;
2452	if (count > PAGE_SIZE)
2453		count = PAGE_SIZE;
2454
2455	/* No partial writes. */
2456	length = -EINVAL;
2457	if (*ppos != 0)
2458		goto out;
2459
2460	page = memdup_user(buf, count);
2461	if (IS_ERR(page)) {
2462		length = PTR_ERR(page);
2463		goto out;
2464	}
2465
2466	/* Guard against adverse ptrace interaction */
2467	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2468	if (length < 0)
2469		goto out_free;
2470
2471	length = security_setprocattr(task,
2472				      (char*)file->f_path.dentry->d_name.name,
2473				      page, count);
2474	mutex_unlock(&task->signal->cred_guard_mutex);
2475out_free:
2476	kfree(page);
2477out:
2478	put_task_struct(task);
2479out_no_task:
2480	return length;
2481}
2482
2483static const struct file_operations proc_pid_attr_operations = {
 
2484	.read		= proc_pid_attr_read,
2485	.write		= proc_pid_attr_write,
2486	.llseek		= generic_file_llseek,
 
2487};
2488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489static const struct pid_entry attr_dir_stuff[] = {
2490	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2491	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2492	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2493	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2494	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2495	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
 
 
 
 
2496};
2497
2498static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2499{
2500	return proc_pident_readdir(file, ctx, 
2501				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2502}
2503
2504static const struct file_operations proc_attr_dir_operations = {
2505	.read		= generic_read_dir,
2506	.iterate	= proc_attr_dir_readdir,
2507	.llseek		= default_llseek,
2508};
2509
2510static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2511				struct dentry *dentry, unsigned int flags)
2512{
2513	return proc_pident_lookup(dir, dentry,
2514				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2515}
2516
2517static const struct inode_operations proc_attr_dir_inode_operations = {
2518	.lookup		= proc_attr_dir_lookup,
2519	.getattr	= pid_getattr,
2520	.setattr	= proc_setattr,
2521};
2522
2523#endif
2524
2525#ifdef CONFIG_ELF_CORE
2526static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2527					 size_t count, loff_t *ppos)
2528{
2529	struct task_struct *task = get_proc_task(file_inode(file));
2530	struct mm_struct *mm;
2531	char buffer[PROC_NUMBUF];
2532	size_t len;
2533	int ret;
2534
2535	if (!task)
2536		return -ESRCH;
2537
2538	ret = 0;
2539	mm = get_task_mm(task);
2540	if (mm) {
2541		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2542			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2543				MMF_DUMP_FILTER_SHIFT));
2544		mmput(mm);
2545		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2546	}
2547
2548	put_task_struct(task);
2549
2550	return ret;
2551}
2552
2553static ssize_t proc_coredump_filter_write(struct file *file,
2554					  const char __user *buf,
2555					  size_t count,
2556					  loff_t *ppos)
2557{
2558	struct task_struct *task;
2559	struct mm_struct *mm;
2560	unsigned int val;
2561	int ret;
2562	int i;
2563	unsigned long mask;
2564
2565	ret = kstrtouint_from_user(buf, count, 0, &val);
2566	if (ret < 0)
2567		return ret;
2568
2569	ret = -ESRCH;
2570	task = get_proc_task(file_inode(file));
2571	if (!task)
2572		goto out_no_task;
2573
2574	mm = get_task_mm(task);
2575	if (!mm)
2576		goto out_no_mm;
2577	ret = 0;
2578
2579	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2580		if (val & mask)
2581			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2582		else
2583			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2584	}
2585
2586	mmput(mm);
2587 out_no_mm:
2588	put_task_struct(task);
2589 out_no_task:
2590	if (ret < 0)
2591		return ret;
2592	return count;
2593}
2594
2595static const struct file_operations proc_coredump_filter_operations = {
2596	.read		= proc_coredump_filter_read,
2597	.write		= proc_coredump_filter_write,
2598	.llseek		= generic_file_llseek,
2599};
2600#endif
2601
2602#ifdef CONFIG_TASK_IO_ACCOUNTING
2603static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2604{
2605	struct task_io_accounting acct = task->ioac;
2606	unsigned long flags;
2607	int result;
2608
2609	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2610	if (result)
2611		return result;
2612
2613	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2614		result = -EACCES;
2615		goto out_unlock;
2616	}
2617
2618	if (whole && lock_task_sighand(task, &flags)) {
2619		struct task_struct *t = task;
2620
2621		task_io_accounting_add(&acct, &task->signal->ioac);
2622		while_each_thread(task, t)
2623			task_io_accounting_add(&acct, &t->ioac);
2624
2625		unlock_task_sighand(task, &flags);
2626	}
2627	seq_printf(m,
2628		   "rchar: %llu\n"
2629		   "wchar: %llu\n"
2630		   "syscr: %llu\n"
2631		   "syscw: %llu\n"
2632		   "read_bytes: %llu\n"
2633		   "write_bytes: %llu\n"
2634		   "cancelled_write_bytes: %llu\n",
2635		   (unsigned long long)acct.rchar,
2636		   (unsigned long long)acct.wchar,
2637		   (unsigned long long)acct.syscr,
2638		   (unsigned long long)acct.syscw,
2639		   (unsigned long long)acct.read_bytes,
2640		   (unsigned long long)acct.write_bytes,
2641		   (unsigned long long)acct.cancelled_write_bytes);
2642	result = 0;
2643
2644out_unlock:
2645	mutex_unlock(&task->signal->cred_guard_mutex);
2646	return result;
2647}
2648
2649static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2650				  struct pid *pid, struct task_struct *task)
2651{
2652	return do_io_accounting(task, m, 0);
2653}
2654
2655static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2656				   struct pid *pid, struct task_struct *task)
2657{
2658	return do_io_accounting(task, m, 1);
2659}
2660#endif /* CONFIG_TASK_IO_ACCOUNTING */
2661
2662#ifdef CONFIG_USER_NS
2663static int proc_id_map_open(struct inode *inode, struct file *file,
2664	const struct seq_operations *seq_ops)
2665{
2666	struct user_namespace *ns = NULL;
2667	struct task_struct *task;
2668	struct seq_file *seq;
2669	int ret = -EINVAL;
2670
2671	task = get_proc_task(inode);
2672	if (task) {
2673		rcu_read_lock();
2674		ns = get_user_ns(task_cred_xxx(task, user_ns));
2675		rcu_read_unlock();
2676		put_task_struct(task);
2677	}
2678	if (!ns)
2679		goto err;
2680
2681	ret = seq_open(file, seq_ops);
2682	if (ret)
2683		goto err_put_ns;
2684
2685	seq = file->private_data;
2686	seq->private = ns;
2687
2688	return 0;
2689err_put_ns:
2690	put_user_ns(ns);
2691err:
2692	return ret;
2693}
2694
2695static int proc_id_map_release(struct inode *inode, struct file *file)
2696{
2697	struct seq_file *seq = file->private_data;
2698	struct user_namespace *ns = seq->private;
2699	put_user_ns(ns);
2700	return seq_release(inode, file);
2701}
2702
2703static int proc_uid_map_open(struct inode *inode, struct file *file)
2704{
2705	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2706}
2707
2708static int proc_gid_map_open(struct inode *inode, struct file *file)
2709{
2710	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2711}
2712
2713static int proc_projid_map_open(struct inode *inode, struct file *file)
2714{
2715	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2716}
2717
2718static const struct file_operations proc_uid_map_operations = {
2719	.open		= proc_uid_map_open,
2720	.write		= proc_uid_map_write,
2721	.read		= seq_read,
2722	.llseek		= seq_lseek,
2723	.release	= proc_id_map_release,
2724};
2725
2726static const struct file_operations proc_gid_map_operations = {
2727	.open		= proc_gid_map_open,
2728	.write		= proc_gid_map_write,
2729	.read		= seq_read,
2730	.llseek		= seq_lseek,
2731	.release	= proc_id_map_release,
2732};
2733
2734static const struct file_operations proc_projid_map_operations = {
2735	.open		= proc_projid_map_open,
2736	.write		= proc_projid_map_write,
2737	.read		= seq_read,
2738	.llseek		= seq_lseek,
2739	.release	= proc_id_map_release,
2740};
2741
2742static int proc_setgroups_open(struct inode *inode, struct file *file)
2743{
2744	struct user_namespace *ns = NULL;
2745	struct task_struct *task;
2746	int ret;
2747
2748	ret = -ESRCH;
2749	task = get_proc_task(inode);
2750	if (task) {
2751		rcu_read_lock();
2752		ns = get_user_ns(task_cred_xxx(task, user_ns));
2753		rcu_read_unlock();
2754		put_task_struct(task);
2755	}
2756	if (!ns)
2757		goto err;
2758
2759	if (file->f_mode & FMODE_WRITE) {
2760		ret = -EACCES;
2761		if (!ns_capable(ns, CAP_SYS_ADMIN))
2762			goto err_put_ns;
2763	}
2764
2765	ret = single_open(file, &proc_setgroups_show, ns);
2766	if (ret)
2767		goto err_put_ns;
2768
2769	return 0;
2770err_put_ns:
2771	put_user_ns(ns);
2772err:
2773	return ret;
2774}
2775
2776static int proc_setgroups_release(struct inode *inode, struct file *file)
2777{
2778	struct seq_file *seq = file->private_data;
2779	struct user_namespace *ns = seq->private;
2780	int ret = single_release(inode, file);
2781	put_user_ns(ns);
2782	return ret;
2783}
2784
2785static const struct file_operations proc_setgroups_operations = {
2786	.open		= proc_setgroups_open,
2787	.write		= proc_setgroups_write,
2788	.read		= seq_read,
2789	.llseek		= seq_lseek,
2790	.release	= proc_setgroups_release,
2791};
2792#endif /* CONFIG_USER_NS */
2793
2794static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2795				struct pid *pid, struct task_struct *task)
2796{
2797	int err = lock_trace(task);
2798	if (!err) {
2799		seq_printf(m, "%08x\n", task->personality);
2800		unlock_trace(task);
2801	}
2802	return err;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805/*
2806 * Thread groups
2807 */
2808static const struct file_operations proc_task_operations;
2809static const struct inode_operations proc_task_inode_operations;
2810
2811static const struct pid_entry tgid_base_stuff[] = {
2812	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2813	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2814	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2815	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2816	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2817#ifdef CONFIG_NET
2818	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2819#endif
2820	REG("environ",    S_IRUSR, proc_environ_operations),
2821	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2822	ONE("status",     S_IRUGO, proc_pid_status),
2823	ONE("personality", S_IRUSR, proc_pid_personality),
2824	ONE("limits",	  S_IRUGO, proc_pid_limits),
2825#ifdef CONFIG_SCHED_DEBUG
2826	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2827#endif
2828#ifdef CONFIG_SCHED_AUTOGROUP
2829	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2830#endif
 
 
 
2831	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2832#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2833	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2834#endif
2835	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2836	ONE("stat",       S_IRUGO, proc_tgid_stat),
2837	ONE("statm",      S_IRUGO, proc_pid_statm),
2838	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2839#ifdef CONFIG_NUMA
2840	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2841#endif
2842	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2843	LNK("cwd",        proc_cwd_link),
2844	LNK("root",       proc_root_link),
2845	LNK("exe",        proc_exe_link),
2846	REG("mounts",     S_IRUGO, proc_mounts_operations),
2847	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2848	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2849#ifdef CONFIG_PROC_PAGE_MONITOR
2850	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2851	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
 
2852	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2853#endif
2854#ifdef CONFIG_SECURITY
2855	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2856#endif
2857#ifdef CONFIG_KALLSYMS
2858	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2859#endif
2860#ifdef CONFIG_STACKTRACE
2861	ONE("stack",      S_IRUSR, proc_pid_stack),
2862#endif
2863#ifdef CONFIG_SCHED_INFO
2864	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2865#endif
2866#ifdef CONFIG_LATENCYTOP
2867	REG("latency",  S_IRUGO, proc_lstats_operations),
2868#endif
2869#ifdef CONFIG_PROC_PID_CPUSET
2870	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2871#endif
2872#ifdef CONFIG_CGROUPS
2873	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2874#endif
 
 
 
2875	ONE("oom_score",  S_IRUGO, proc_oom_score),
2876	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2877	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2878#ifdef CONFIG_AUDITSYSCALL
2879	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2880	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2881#endif
2882#ifdef CONFIG_FAULT_INJECTION
2883	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
2884#endif
2885#ifdef CONFIG_ELF_CORE
2886	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2887#endif
2888#ifdef CONFIG_TASK_IO_ACCOUNTING
2889	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2890#endif
2891#ifdef CONFIG_HARDWALL
2892	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2893#endif
2894#ifdef CONFIG_USER_NS
2895	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2896	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2897	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2898	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2899#endif
2900#ifdef CONFIG_CHECKPOINT_RESTORE
2901	REG("timers",	  S_IRUGO, proc_timers_operations),
2902#endif
2903	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
 
 
 
 
 
 
 
 
 
 
 
 
2904};
2905
2906static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2907{
2908	return proc_pident_readdir(file, ctx,
2909				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2910}
2911
2912static const struct file_operations proc_tgid_base_operations = {
2913	.read		= generic_read_dir,
2914	.iterate	= proc_tgid_base_readdir,
2915	.llseek		= default_llseek,
2916};
2917
 
 
 
 
 
 
 
 
2918static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2919{
2920	return proc_pident_lookup(dir, dentry,
2921				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
2922}
2923
2924static const struct inode_operations proc_tgid_base_inode_operations = {
2925	.lookup		= proc_tgid_base_lookup,
2926	.getattr	= pid_getattr,
2927	.setattr	= proc_setattr,
2928	.permission	= proc_pid_permission,
2929};
2930
2931static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2932{
2933	struct dentry *dentry, *leader, *dir;
2934	char buf[PROC_NUMBUF];
2935	struct qstr name;
2936
2937	name.name = buf;
2938	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2939	/* no ->d_hash() rejects on procfs */
2940	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2941	if (dentry) {
2942		d_invalidate(dentry);
2943		dput(dentry);
2944	}
2945
2946	if (pid == tgid)
2947		return;
2948
2949	name.name = buf;
2950	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2951	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2952	if (!leader)
2953		goto out;
2954
2955	name.name = "task";
2956	name.len = strlen(name.name);
2957	dir = d_hash_and_lookup(leader, &name);
2958	if (!dir)
2959		goto out_put_leader;
2960
2961	name.name = buf;
2962	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2963	dentry = d_hash_and_lookup(dir, &name);
2964	if (dentry) {
2965		d_invalidate(dentry);
2966		dput(dentry);
2967	}
2968
2969	dput(dir);
2970out_put_leader:
2971	dput(leader);
2972out:
2973	return;
2974}
2975
2976/**
2977 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2978 * @task: task that should be flushed.
2979 *
2980 * When flushing dentries from proc, one needs to flush them from global
2981 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2982 * in. This call is supposed to do all of this job.
2983 *
2984 * Looks in the dcache for
2985 * /proc/@pid
2986 * /proc/@tgid/task/@pid
2987 * if either directory is present flushes it and all of it'ts children
2988 * from the dcache.
2989 *
2990 * It is safe and reasonable to cache /proc entries for a task until
2991 * that task exits.  After that they just clog up the dcache with
2992 * useless entries, possibly causing useful dcache entries to be
2993 * flushed instead.  This routine is proved to flush those useless
2994 * dcache entries at process exit time.
2995 *
2996 * NOTE: This routine is just an optimization so it does not guarantee
2997 *       that no dcache entries will exist at process exit time it
2998 *       just makes it very unlikely that any will persist.
2999 */
3000
3001void proc_flush_task(struct task_struct *task)
3002{
3003	int i;
3004	struct pid *pid, *tgid;
3005	struct upid *upid;
3006
3007	pid = task_pid(task);
3008	tgid = task_tgid(task);
3009
3010	for (i = 0; i <= pid->level; i++) {
3011		upid = &pid->numbers[i];
3012		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3013					tgid->numbers[i].nr);
3014	}
3015}
3016
3017static int proc_pid_instantiate(struct inode *dir,
3018				   struct dentry * dentry,
3019				   struct task_struct *task, const void *ptr)
3020{
3021	struct inode *inode;
3022
3023	inode = proc_pid_make_inode(dir->i_sb, task);
3024	if (!inode)
3025		goto out;
3026
3027	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3028	inode->i_op = &proc_tgid_base_inode_operations;
3029	inode->i_fop = &proc_tgid_base_operations;
3030	inode->i_flags|=S_IMMUTABLE;
3031
3032	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3033						  ARRAY_SIZE(tgid_base_stuff)));
3034
3035	d_set_d_op(dentry, &pid_dentry_operations);
3036
3037	d_add(dentry, inode);
3038	/* Close the race of the process dying before we return the dentry */
3039	if (pid_revalidate(dentry, 0))
3040		return 0;
3041out:
3042	return -ENOENT;
3043}
3044
3045struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3046{
3047	int result = -ENOENT;
3048	struct task_struct *task;
3049	unsigned tgid;
 
3050	struct pid_namespace *ns;
 
3051
3052	tgid = name_to_int(&dentry->d_name);
3053	if (tgid == ~0U)
3054		goto out;
3055
3056	ns = dentry->d_sb->s_fs_info;
 
3057	rcu_read_lock();
3058	task = find_task_by_pid_ns(tgid, ns);
3059	if (task)
3060		get_task_struct(task);
3061	rcu_read_unlock();
3062	if (!task)
3063		goto out;
3064
3065	result = proc_pid_instantiate(dir, dentry, task, NULL);
 
 
 
 
 
 
 
3066	put_task_struct(task);
3067out:
3068	return ERR_PTR(result);
3069}
3070
3071/*
3072 * Find the first task with tgid >= tgid
3073 *
3074 */
3075struct tgid_iter {
3076	unsigned int tgid;
3077	struct task_struct *task;
3078};
3079static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3080{
3081	struct pid *pid;
3082
3083	if (iter.task)
3084		put_task_struct(iter.task);
3085	rcu_read_lock();
3086retry:
3087	iter.task = NULL;
3088	pid = find_ge_pid(iter.tgid, ns);
3089	if (pid) {
3090		iter.tgid = pid_nr_ns(pid, ns);
3091		iter.task = pid_task(pid, PIDTYPE_PID);
3092		/* What we to know is if the pid we have find is the
3093		 * pid of a thread_group_leader.  Testing for task
3094		 * being a thread_group_leader is the obvious thing
3095		 * todo but there is a window when it fails, due to
3096		 * the pid transfer logic in de_thread.
3097		 *
3098		 * So we perform the straight forward test of seeing
3099		 * if the pid we have found is the pid of a thread
3100		 * group leader, and don't worry if the task we have
3101		 * found doesn't happen to be a thread group leader.
3102		 * As we don't care in the case of readdir.
3103		 */
3104		if (!iter.task || !has_group_leader_pid(iter.task)) {
3105			iter.tgid += 1;
3106			goto retry;
3107		}
3108		get_task_struct(iter.task);
3109	}
3110	rcu_read_unlock();
3111	return iter;
3112}
3113
3114#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3115
3116/* for the /proc/ directory itself, after non-process stuff has been done */
3117int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3118{
3119	struct tgid_iter iter;
3120	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
 
3121	loff_t pos = ctx->pos;
3122
3123	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3124		return 0;
3125
3126	if (pos == TGID_OFFSET - 2) {
3127		struct inode *inode = d_inode(ns->proc_self);
3128		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3129			return 0;
3130		ctx->pos = pos = pos + 1;
3131	}
3132	if (pos == TGID_OFFSET - 1) {
3133		struct inode *inode = d_inode(ns->proc_thread_self);
3134		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3135			return 0;
3136		ctx->pos = pos = pos + 1;
3137	}
3138	iter.tgid = pos - TGID_OFFSET;
3139	iter.task = NULL;
3140	for (iter = next_tgid(ns, iter);
3141	     iter.task;
3142	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3143		char name[PROC_NUMBUF];
3144		int len;
3145		if (!has_pid_permissions(ns, iter.task, 2))
 
 
3146			continue;
3147
3148		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3149		ctx->pos = iter.tgid + TGID_OFFSET;
3150		if (!proc_fill_cache(file, ctx, name, len,
3151				     proc_pid_instantiate, iter.task, NULL)) {
3152			put_task_struct(iter.task);
3153			return 0;
3154		}
3155	}
3156	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3157	return 0;
3158}
3159
3160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161 * Tasks
3162 */
3163static const struct pid_entry tid_base_stuff[] = {
3164	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3165	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3166	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3167#ifdef CONFIG_NET
3168	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3169#endif
3170	REG("environ",   S_IRUSR, proc_environ_operations),
3171	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3172	ONE("status",    S_IRUGO, proc_pid_status),
3173	ONE("personality", S_IRUSR, proc_pid_personality),
3174	ONE("limits",	 S_IRUGO, proc_pid_limits),
3175#ifdef CONFIG_SCHED_DEBUG
3176	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3177#endif
3178	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3179#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3180	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3181#endif
3182	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3183	ONE("stat",      S_IRUGO, proc_tid_stat),
3184	ONE("statm",     S_IRUGO, proc_pid_statm),
3185	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3186#ifdef CONFIG_PROC_CHILDREN
3187	REG("children",  S_IRUGO, proc_tid_children_operations),
3188#endif
3189#ifdef CONFIG_NUMA
3190	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3191#endif
3192	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3193	LNK("cwd",       proc_cwd_link),
3194	LNK("root",      proc_root_link),
3195	LNK("exe",       proc_exe_link),
3196	REG("mounts",    S_IRUGO, proc_mounts_operations),
3197	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3198#ifdef CONFIG_PROC_PAGE_MONITOR
3199	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3200	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
 
3201	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3202#endif
3203#ifdef CONFIG_SECURITY
3204	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3205#endif
3206#ifdef CONFIG_KALLSYMS
3207	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3208#endif
3209#ifdef CONFIG_STACKTRACE
3210	ONE("stack",      S_IRUSR, proc_pid_stack),
3211#endif
3212#ifdef CONFIG_SCHED_INFO
3213	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3214#endif
3215#ifdef CONFIG_LATENCYTOP
3216	REG("latency",  S_IRUGO, proc_lstats_operations),
3217#endif
3218#ifdef CONFIG_PROC_PID_CPUSET
3219	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3220#endif
3221#ifdef CONFIG_CGROUPS
3222	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3223#endif
 
 
 
3224	ONE("oom_score", S_IRUGO, proc_oom_score),
3225	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3226	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3227#ifdef CONFIG_AUDITSYSCALL
3228	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3229	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3230#endif
3231#ifdef CONFIG_FAULT_INJECTION
3232	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3233#endif
3234#ifdef CONFIG_TASK_IO_ACCOUNTING
3235	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3236#endif
3237#ifdef CONFIG_HARDWALL
3238	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3239#endif
3240#ifdef CONFIG_USER_NS
3241	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3242	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3243	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3244	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3245#endif
 
 
 
 
 
 
 
 
 
3246};
3247
3248static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3249{
3250	return proc_pident_readdir(file, ctx,
3251				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3252}
3253
3254static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3255{
3256	return proc_pident_lookup(dir, dentry,
3257				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3258}
3259
3260static const struct file_operations proc_tid_base_operations = {
3261	.read		= generic_read_dir,
3262	.iterate	= proc_tid_base_readdir,
3263	.llseek		= default_llseek,
3264};
3265
3266static const struct inode_operations proc_tid_base_inode_operations = {
3267	.lookup		= proc_tid_base_lookup,
3268	.getattr	= pid_getattr,
3269	.setattr	= proc_setattr,
3270};
3271
3272static int proc_task_instantiate(struct inode *dir,
3273	struct dentry *dentry, struct task_struct *task, const void *ptr)
3274{
3275	struct inode *inode;
3276	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
3277
3278	if (!inode)
3279		goto out;
3280	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3281	inode->i_op = &proc_tid_base_inode_operations;
3282	inode->i_fop = &proc_tid_base_operations;
3283	inode->i_flags|=S_IMMUTABLE;
3284
3285	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3286						  ARRAY_SIZE(tid_base_stuff)));
3287
3288	d_set_d_op(dentry, &pid_dentry_operations);
3289
3290	d_add(dentry, inode);
3291	/* Close the race of the process dying before we return the dentry */
3292	if (pid_revalidate(dentry, 0))
3293		return 0;
3294out:
3295	return -ENOENT;
3296}
3297
3298static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3299{
3300	int result = -ENOENT;
3301	struct task_struct *task;
3302	struct task_struct *leader = get_proc_task(dir);
3303	unsigned tid;
 
3304	struct pid_namespace *ns;
 
3305
3306	if (!leader)
3307		goto out_no_task;
3308
3309	tid = name_to_int(&dentry->d_name);
3310	if (tid == ~0U)
3311		goto out;
3312
3313	ns = dentry->d_sb->s_fs_info;
 
3314	rcu_read_lock();
3315	task = find_task_by_pid_ns(tid, ns);
3316	if (task)
3317		get_task_struct(task);
3318	rcu_read_unlock();
3319	if (!task)
3320		goto out;
3321	if (!same_thread_group(leader, task))
3322		goto out_drop_task;
3323
3324	result = proc_task_instantiate(dir, dentry, task, NULL);
3325out_drop_task:
3326	put_task_struct(task);
3327out:
3328	put_task_struct(leader);
3329out_no_task:
3330	return ERR_PTR(result);
3331}
3332
3333/*
3334 * Find the first tid of a thread group to return to user space.
3335 *
3336 * Usually this is just the thread group leader, but if the users
3337 * buffer was too small or there was a seek into the middle of the
3338 * directory we have more work todo.
3339 *
3340 * In the case of a short read we start with find_task_by_pid.
3341 *
3342 * In the case of a seek we start with the leader and walk nr
3343 * threads past it.
3344 */
3345static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3346					struct pid_namespace *ns)
3347{
3348	struct task_struct *pos, *task;
3349	unsigned long nr = f_pos;
3350
3351	if (nr != f_pos)	/* 32bit overflow? */
3352		return NULL;
3353
3354	rcu_read_lock();
3355	task = pid_task(pid, PIDTYPE_PID);
3356	if (!task)
3357		goto fail;
3358
3359	/* Attempt to start with the tid of a thread */
3360	if (tid && nr) {
3361		pos = find_task_by_pid_ns(tid, ns);
3362		if (pos && same_thread_group(pos, task))
3363			goto found;
3364	}
3365
3366	/* If nr exceeds the number of threads there is nothing todo */
3367	if (nr >= get_nr_threads(task))
3368		goto fail;
3369
3370	/* If we haven't found our starting place yet start
3371	 * with the leader and walk nr threads forward.
3372	 */
3373	pos = task = task->group_leader;
3374	do {
3375		if (!nr--)
3376			goto found;
3377	} while_each_thread(task, pos);
3378fail:
3379	pos = NULL;
3380	goto out;
3381found:
3382	get_task_struct(pos);
3383out:
3384	rcu_read_unlock();
3385	return pos;
3386}
3387
3388/*
3389 * Find the next thread in the thread list.
3390 * Return NULL if there is an error or no next thread.
3391 *
3392 * The reference to the input task_struct is released.
3393 */
3394static struct task_struct *next_tid(struct task_struct *start)
3395{
3396	struct task_struct *pos = NULL;
3397	rcu_read_lock();
3398	if (pid_alive(start)) {
3399		pos = next_thread(start);
3400		if (thread_group_leader(pos))
3401			pos = NULL;
3402		else
3403			get_task_struct(pos);
3404	}
3405	rcu_read_unlock();
3406	put_task_struct(start);
3407	return pos;
3408}
3409
3410/* for the /proc/TGID/task/ directories */
3411static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3412{
3413	struct inode *inode = file_inode(file);
3414	struct task_struct *task;
3415	struct pid_namespace *ns;
3416	int tid;
3417
3418	if (proc_inode_is_dead(inode))
3419		return -ENOENT;
3420
3421	if (!dir_emit_dots(file, ctx))
3422		return 0;
3423
3424	/* f_version caches the tgid value that the last readdir call couldn't
3425	 * return. lseek aka telldir automagically resets f_version to 0.
3426	 */
3427	ns = inode->i_sb->s_fs_info;
3428	tid = (int)file->f_version;
3429	file->f_version = 0;
3430	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3431	     task;
3432	     task = next_tid(task), ctx->pos++) {
3433		char name[PROC_NUMBUF];
3434		int len;
3435		tid = task_pid_nr_ns(task, ns);
3436		len = snprintf(name, sizeof(name), "%d", tid);
3437		if (!proc_fill_cache(file, ctx, name, len,
3438				proc_task_instantiate, task, NULL)) {
3439			/* returning this tgid failed, save it as the first
3440			 * pid for the next readir call */
3441			file->f_version = (u64)tid;
3442			put_task_struct(task);
3443			break;
3444		}
3445	}
3446
3447	return 0;
3448}
3449
3450static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
 
3451{
3452	struct inode *inode = d_inode(dentry);
3453	struct task_struct *p = get_proc_task(inode);
3454	generic_fillattr(inode, stat);
3455
3456	if (p) {
3457		stat->nlink += get_nr_threads(p);
3458		put_task_struct(p);
3459	}
3460
3461	return 0;
3462}
3463
3464static const struct inode_operations proc_task_inode_operations = {
3465	.lookup		= proc_task_lookup,
3466	.getattr	= proc_task_getattr,
3467	.setattr	= proc_setattr,
3468	.permission	= proc_pid_permission,
3469};
3470
3471static const struct file_operations proc_task_operations = {
3472	.read		= generic_read_dir,
3473	.iterate	= proc_task_readdir,
3474	.llseek		= default_llseek,
3475};