Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	/*
  69	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70	 * are scanned.
  71	 */
  72	nodemask_t	*nodemask;
  73
  74	/*
  75	 * The memory cgroup that hit its limit and as a result is the
  76	 * primary target of this reclaim invocation.
  77	 */
  78	struct mem_cgroup *target_mem_cgroup;
  79
  80	/*
  81	 * Scan pressure balancing between anon and file LRUs
  82	 */
  83	unsigned long	anon_cost;
  84	unsigned long	file_cost;
  85
  86	/* Can active pages be deactivated as part of reclaim? */
  87#define DEACTIVATE_ANON 1
  88#define DEACTIVATE_FILE 2
  89	unsigned int may_deactivate:2;
  90	unsigned int force_deactivate:1;
  91	unsigned int skipped_deactivate:1;
  92
  93	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  94	unsigned int may_writepage:1;
  95
  96	/* Can mapped pages be reclaimed? */
  97	unsigned int may_unmap:1;
  98
  99	/* Can pages be swapped as part of reclaim? */
 100	unsigned int may_swap:1;
 101
 102	/*
 103	 * Cgroup memory below memory.low is protected as long as we
 104	 * don't threaten to OOM. If any cgroup is reclaimed at
 105	 * reduced force or passed over entirely due to its memory.low
 106	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 107	 * result, then go back for one more cycle that reclaims the protected
 108	 * memory (memcg_low_reclaim) to avert OOM.
 109	 */
 110	unsigned int memcg_low_reclaim:1;
 111	unsigned int memcg_low_skipped:1;
 112
 113	unsigned int hibernation_mode:1;
 114
 115	/* One of the zones is ready for compaction */
 116	unsigned int compaction_ready:1;
 117
 118	/* There is easily reclaimable cold cache in the current node */
 119	unsigned int cache_trim_mode:1;
 120
 121	/* The file pages on the current node are dangerously low */
 122	unsigned int file_is_tiny:1;
 123
 124	/* Allocation order */
 125	s8 order;
 126
 127	/* Scan (total_size >> priority) pages at once */
 128	s8 priority;
 129
 130	/* The highest zone to isolate pages for reclaim from */
 131	s8 reclaim_idx;
 132
 133	/* This context's GFP mask */
 134	gfp_t gfp_mask;
 135
 136	/* Incremented by the number of inactive pages that were scanned */
 137	unsigned long nr_scanned;
 138
 139	/* Number of pages freed so far during a call to shrink_zones() */
 140	unsigned long nr_reclaimed;
 
 
 
 
 141
 142	struct {
 143		unsigned int dirty;
 144		unsigned int unqueued_dirty;
 145		unsigned int congested;
 146		unsigned int writeback;
 147		unsigned int immediate;
 148		unsigned int file_taken;
 149		unsigned int taken;
 150	} nr;
 151
 152	/* for recording the reclaimed slab by now */
 153	struct reclaim_state reclaim_state;
 154};
 
 
 
 
 
 
 
 
 
 
 155
 156#ifdef ARCH_HAS_PREFETCHW
 157#define prefetchw_prev_lru_page(_page, _base, _field)			\
 158	do {								\
 159		if ((_page)->lru.prev != _base) {			\
 160			struct page *prev;				\
 161									\
 162			prev = lru_to_page(&(_page->lru));		\
 163			prefetchw(&prev->_field);			\
 164		}							\
 165	} while (0)
 166#else
 167#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 168#endif
 169
 170/*
 171 * From 0 .. 200.  Higher means more swappy.
 172 */
 173int vm_swappiness = 60;
 174
 175static void set_task_reclaim_state(struct task_struct *task,
 176				   struct reclaim_state *rs)
 177{
 178	/* Check for an overwrite */
 179	WARN_ON_ONCE(rs && task->reclaim_state);
 180
 181	/* Check for the nulling of an already-nulled member */
 182	WARN_ON_ONCE(!rs && !task->reclaim_state);
 183
 184	task->reclaim_state = rs;
 185}
 186
 187static LIST_HEAD(shrinker_list);
 188static DECLARE_RWSEM(shrinker_rwsem);
 189
 190#ifdef CONFIG_MEMCG
 191static int shrinker_nr_max;
 192
 193/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
 194static inline int shrinker_map_size(int nr_items)
 195{
 196	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
 197}
 198
 199static inline int shrinker_defer_size(int nr_items)
 200{
 201	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
 202}
 203
 204static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
 205						     int nid)
 206{
 207	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
 208					 lockdep_is_held(&shrinker_rwsem));
 209}
 210
 211static int expand_one_shrinker_info(struct mem_cgroup *memcg,
 212				    int map_size, int defer_size,
 213				    int old_map_size, int old_defer_size)
 214{
 215	struct shrinker_info *new, *old;
 216	struct mem_cgroup_per_node *pn;
 217	int nid;
 218	int size = map_size + defer_size;
 219
 220	for_each_node(nid) {
 221		pn = memcg->nodeinfo[nid];
 222		old = shrinker_info_protected(memcg, nid);
 223		/* Not yet online memcg */
 224		if (!old)
 225			return 0;
 226
 227		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 228		if (!new)
 229			return -ENOMEM;
 230
 231		new->nr_deferred = (atomic_long_t *)(new + 1);
 232		new->map = (void *)new->nr_deferred + defer_size;
 233
 234		/* map: set all old bits, clear all new bits */
 235		memset(new->map, (int)0xff, old_map_size);
 236		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
 237		/* nr_deferred: copy old values, clear all new values */
 238		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
 239		memset((void *)new->nr_deferred + old_defer_size, 0,
 240		       defer_size - old_defer_size);
 241
 242		rcu_assign_pointer(pn->shrinker_info, new);
 243		kvfree_rcu(old, rcu);
 244	}
 245
 246	return 0;
 247}
 248
 249void free_shrinker_info(struct mem_cgroup *memcg)
 250{
 251	struct mem_cgroup_per_node *pn;
 252	struct shrinker_info *info;
 253	int nid;
 254
 255	for_each_node(nid) {
 256		pn = memcg->nodeinfo[nid];
 257		info = rcu_dereference_protected(pn->shrinker_info, true);
 258		kvfree(info);
 259		rcu_assign_pointer(pn->shrinker_info, NULL);
 260	}
 261}
 262
 263int alloc_shrinker_info(struct mem_cgroup *memcg)
 264{
 265	struct shrinker_info *info;
 266	int nid, size, ret = 0;
 267	int map_size, defer_size = 0;
 268
 269	down_write(&shrinker_rwsem);
 270	map_size = shrinker_map_size(shrinker_nr_max);
 271	defer_size = shrinker_defer_size(shrinker_nr_max);
 272	size = map_size + defer_size;
 273	for_each_node(nid) {
 274		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
 275		if (!info) {
 276			free_shrinker_info(memcg);
 277			ret = -ENOMEM;
 278			break;
 279		}
 280		info->nr_deferred = (atomic_long_t *)(info + 1);
 281		info->map = (void *)info->nr_deferred + defer_size;
 282		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
 283	}
 284	up_write(&shrinker_rwsem);
 285
 286	return ret;
 287}
 288
 289static inline bool need_expand(int nr_max)
 290{
 291	return round_up(nr_max, BITS_PER_LONG) >
 292	       round_up(shrinker_nr_max, BITS_PER_LONG);
 293}
 294
 295static int expand_shrinker_info(int new_id)
 296{
 297	int ret = 0;
 298	int new_nr_max = new_id + 1;
 299	int map_size, defer_size = 0;
 300	int old_map_size, old_defer_size = 0;
 301	struct mem_cgroup *memcg;
 302
 303	if (!need_expand(new_nr_max))
 304		goto out;
 305
 306	if (!root_mem_cgroup)
 307		goto out;
 308
 309	lockdep_assert_held(&shrinker_rwsem);
 310
 311	map_size = shrinker_map_size(new_nr_max);
 312	defer_size = shrinker_defer_size(new_nr_max);
 313	old_map_size = shrinker_map_size(shrinker_nr_max);
 314	old_defer_size = shrinker_defer_size(shrinker_nr_max);
 315
 316	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 317	do {
 318		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
 319					       old_map_size, old_defer_size);
 320		if (ret) {
 321			mem_cgroup_iter_break(NULL, memcg);
 322			goto out;
 323		}
 324	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 325out:
 326	if (!ret)
 327		shrinker_nr_max = new_nr_max;
 328
 329	return ret;
 330}
 331
 332void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 333{
 334	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 335		struct shrinker_info *info;
 336
 337		rcu_read_lock();
 338		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
 339		/* Pairs with smp mb in shrink_slab() */
 340		smp_mb__before_atomic();
 341		set_bit(shrinker_id, info->map);
 342		rcu_read_unlock();
 343	}
 344}
 345
 346static DEFINE_IDR(shrinker_idr);
 347
 348static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 349{
 350	int id, ret = -ENOMEM;
 351
 352	if (mem_cgroup_disabled())
 353		return -ENOSYS;
 354
 355	down_write(&shrinker_rwsem);
 356	/* This may call shrinker, so it must use down_read_trylock() */
 357	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
 358	if (id < 0)
 359		goto unlock;
 360
 361	if (id >= shrinker_nr_max) {
 362		if (expand_shrinker_info(id)) {
 363			idr_remove(&shrinker_idr, id);
 364			goto unlock;
 365		}
 366	}
 367	shrinker->id = id;
 368	ret = 0;
 369unlock:
 370	up_write(&shrinker_rwsem);
 371	return ret;
 372}
 373
 374static void unregister_memcg_shrinker(struct shrinker *shrinker)
 375{
 376	int id = shrinker->id;
 377
 378	BUG_ON(id < 0);
 379
 380	lockdep_assert_held(&shrinker_rwsem);
 381
 382	idr_remove(&shrinker_idr, id);
 383}
 384
 385static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 386				   struct mem_cgroup *memcg)
 387{
 388	struct shrinker_info *info;
 389
 390	info = shrinker_info_protected(memcg, nid);
 391	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
 392}
 393
 394static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 395				  struct mem_cgroup *memcg)
 396{
 397	struct shrinker_info *info;
 398
 399	info = shrinker_info_protected(memcg, nid);
 400	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
 401}
 402
 403void reparent_shrinker_deferred(struct mem_cgroup *memcg)
 404{
 405	int i, nid;
 406	long nr;
 407	struct mem_cgroup *parent;
 408	struct shrinker_info *child_info, *parent_info;
 409
 410	parent = parent_mem_cgroup(memcg);
 411	if (!parent)
 412		parent = root_mem_cgroup;
 413
 414	/* Prevent from concurrent shrinker_info expand */
 415	down_read(&shrinker_rwsem);
 416	for_each_node(nid) {
 417		child_info = shrinker_info_protected(memcg, nid);
 418		parent_info = shrinker_info_protected(parent, nid);
 419		for (i = 0; i < shrinker_nr_max; i++) {
 420			nr = atomic_long_read(&child_info->nr_deferred[i]);
 421			atomic_long_add(nr, &parent_info->nr_deferred[i]);
 422		}
 423	}
 424	up_read(&shrinker_rwsem);
 425}
 426
 427static bool cgroup_reclaim(struct scan_control *sc)
 428{
 429	return sc->target_mem_cgroup;
 430}
 431
 432/**
 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 434 * @sc: scan_control in question
 435 *
 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 437 * completely broken with the legacy memcg and direct stalling in
 438 * shrink_page_list() is used for throttling instead, which lacks all the
 439 * niceties such as fairness, adaptive pausing, bandwidth proportional
 440 * allocation and configurability.
 441 *
 442 * This function tests whether the vmscan currently in progress can assume
 443 * that the normal dirty throttling mechanism is operational.
 444 */
 445static bool writeback_throttling_sane(struct scan_control *sc)
 446{
 447	if (!cgroup_reclaim(sc))
 448		return true;
 449#ifdef CONFIG_CGROUP_WRITEBACK
 450	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 451		return true;
 452#endif
 453	return false;
 454}
 455#else
 456static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 457{
 458	return -ENOSYS;
 459}
 460
 461static void unregister_memcg_shrinker(struct shrinker *shrinker)
 462{
 463}
 464
 465static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 466				   struct mem_cgroup *memcg)
 467{
 468	return 0;
 469}
 470
 471static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 472				  struct mem_cgroup *memcg)
 473{
 474	return 0;
 475}
 476
 477static bool cgroup_reclaim(struct scan_control *sc)
 478{
 479	return false;
 480}
 481
 482static bool writeback_throttling_sane(struct scan_control *sc)
 483{
 484	return true;
 485}
 486#endif
 487
 488static long xchg_nr_deferred(struct shrinker *shrinker,
 489			     struct shrink_control *sc)
 490{
 491	int nid = sc->nid;
 492
 493	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 494		nid = 0;
 495
 496	if (sc->memcg &&
 497	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 498		return xchg_nr_deferred_memcg(nid, shrinker,
 499					      sc->memcg);
 500
 501	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 502}
 503
 504
 505static long add_nr_deferred(long nr, struct shrinker *shrinker,
 506			    struct shrink_control *sc)
 507{
 508	int nid = sc->nid;
 509
 510	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 511		nid = 0;
 512
 513	if (sc->memcg &&
 514	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 515		return add_nr_deferred_memcg(nr, nid, shrinker,
 516					     sc->memcg);
 517
 518	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
 519}
 520
 521/*
 522 * This misses isolated pages which are not accounted for to save counters.
 523 * As the data only determines if reclaim or compaction continues, it is
 524 * not expected that isolated pages will be a dominating factor.
 525 */
 526unsigned long zone_reclaimable_pages(struct zone *zone)
 527{
 528	unsigned long nr;
 529
 530	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 531		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 532	if (get_nr_swap_pages() > 0)
 533		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 534			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 535
 536	return nr;
 537}
 538
 539/**
 540 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 541 * @lruvec: lru vector
 542 * @lru: lru to use
 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 544 */
 545static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 546				     int zone_idx)
 547{
 548	unsigned long size = 0;
 549	int zid;
 550
 551	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 552		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 553
 554		if (!managed_zone(zone))
 555			continue;
 556
 557		if (!mem_cgroup_disabled())
 558			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 559		else
 560			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 561	}
 562	return size;
 563}
 564
 565/*
 566 * Add a shrinker callback to be called from the vm.
 567 */
 568int prealloc_shrinker(struct shrinker *shrinker)
 569{
 570	unsigned int size;
 571	int err;
 572
 573	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 574		err = prealloc_memcg_shrinker(shrinker);
 575		if (err != -ENOSYS)
 576			return err;
 577
 578		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
 579	}
 580
 581	size = sizeof(*shrinker->nr_deferred);
 582	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 583		size *= nr_node_ids;
 584
 585	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 586	if (!shrinker->nr_deferred)
 587		return -ENOMEM;
 588
 589	return 0;
 590}
 591
 592void free_prealloced_shrinker(struct shrinker *shrinker)
 593{
 594	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 595		down_write(&shrinker_rwsem);
 596		unregister_memcg_shrinker(shrinker);
 597		up_write(&shrinker_rwsem);
 598		return;
 599	}
 600
 601	kfree(shrinker->nr_deferred);
 602	shrinker->nr_deferred = NULL;
 603}
 604
 605void register_shrinker_prepared(struct shrinker *shrinker)
 606{
 
 607	down_write(&shrinker_rwsem);
 608	list_add_tail(&shrinker->list, &shrinker_list);
 609	shrinker->flags |= SHRINKER_REGISTERED;
 610	up_write(&shrinker_rwsem);
 611}
 612
 613int register_shrinker(struct shrinker *shrinker)
 614{
 615	int err = prealloc_shrinker(shrinker);
 616
 617	if (err)
 618		return err;
 619	register_shrinker_prepared(shrinker);
 620	return 0;
 621}
 622EXPORT_SYMBOL(register_shrinker);
 623
 624/*
 625 * Remove one
 626 */
 627void unregister_shrinker(struct shrinker *shrinker)
 628{
 629	if (!(shrinker->flags & SHRINKER_REGISTERED))
 630		return;
 631
 632	down_write(&shrinker_rwsem);
 633	list_del(&shrinker->list);
 634	shrinker->flags &= ~SHRINKER_REGISTERED;
 635	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 636		unregister_memcg_shrinker(shrinker);
 637	up_write(&shrinker_rwsem);
 638
 639	kfree(shrinker->nr_deferred);
 640	shrinker->nr_deferred = NULL;
 641}
 642EXPORT_SYMBOL(unregister_shrinker);
 643
 644#define SHRINK_BATCH 128
 645
 646static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 647				    struct shrinker *shrinker, int priority)
 648{
 649	unsigned long freed = 0;
 650	unsigned long long delta;
 651	long total_scan;
 652	long freeable;
 653	long nr;
 654	long new_nr;
 655	long batch_size = shrinker->batch ? shrinker->batch
 656					  : SHRINK_BATCH;
 657	long scanned = 0, next_deferred;
 658
 659	freeable = shrinker->count_objects(shrinker, shrinkctl);
 660	if (freeable == 0 || freeable == SHRINK_EMPTY)
 661		return freeable;
 662
 663	/*
 664	 * copy the current shrinker scan count into a local variable
 665	 * and zero it so that other concurrent shrinker invocations
 666	 * don't also do this scanning work.
 667	 */
 668	nr = xchg_nr_deferred(shrinker, shrinkctl);
 669
 670	if (shrinker->seeks) {
 671		delta = freeable >> priority;
 672		delta *= 4;
 673		do_div(delta, shrinker->seeks);
 674	} else {
 675		/*
 676		 * These objects don't require any IO to create. Trim
 677		 * them aggressively under memory pressure to keep
 678		 * them from causing refetches in the IO caches.
 679		 */
 680		delta = freeable / 2;
 681	}
 682
 683	total_scan = nr >> priority;
 684	total_scan += delta;
 685	total_scan = min(total_scan, (2 * freeable));
 686
 687	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 688				   freeable, delta, total_scan, priority);
 689
 690	/*
 691	 * Normally, we should not scan less than batch_size objects in one
 692	 * pass to avoid too frequent shrinker calls, but if the slab has less
 693	 * than batch_size objects in total and we are really tight on memory,
 694	 * we will try to reclaim all available objects, otherwise we can end
 695	 * up failing allocations although there are plenty of reclaimable
 696	 * objects spread over several slabs with usage less than the
 697	 * batch_size.
 698	 *
 699	 * We detect the "tight on memory" situations by looking at the total
 700	 * number of objects we want to scan (total_scan). If it is greater
 701	 * than the total number of objects on slab (freeable), we must be
 702	 * scanning at high prio and therefore should try to reclaim as much as
 703	 * possible.
 704	 */
 705	while (total_scan >= batch_size ||
 706	       total_scan >= freeable) {
 707		unsigned long ret;
 708		unsigned long nr_to_scan = min(batch_size, total_scan);
 709
 710		shrinkctl->nr_to_scan = nr_to_scan;
 711		shrinkctl->nr_scanned = nr_to_scan;
 712		ret = shrinker->scan_objects(shrinker, shrinkctl);
 713		if (ret == SHRINK_STOP)
 714			break;
 715		freed += ret;
 716
 717		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 718		total_scan -= shrinkctl->nr_scanned;
 719		scanned += shrinkctl->nr_scanned;
 720
 721		cond_resched();
 722	}
 723
 724	/*
 725	 * The deferred work is increased by any new work (delta) that wasn't
 726	 * done, decreased by old deferred work that was done now.
 727	 *
 728	 * And it is capped to two times of the freeable items.
 729	 */
 730	next_deferred = max_t(long, (nr + delta - scanned), 0);
 731	next_deferred = min(next_deferred, (2 * freeable));
 732
 733	/*
 734	 * move the unused scan count back into the shrinker in a
 735	 * manner that handles concurrent updates.
 736	 */
 737	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
 738
 739	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
 740	return freed;
 741}
 742
 743#ifdef CONFIG_MEMCG
 744static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 745			struct mem_cgroup *memcg, int priority)
 746{
 747	struct shrinker_info *info;
 748	unsigned long ret, freed = 0;
 749	int i;
 750
 751	if (!mem_cgroup_online(memcg))
 752		return 0;
 753
 754	if (!down_read_trylock(&shrinker_rwsem))
 755		return 0;
 756
 757	info = shrinker_info_protected(memcg, nid);
 758	if (unlikely(!info))
 759		goto unlock;
 760
 761	for_each_set_bit(i, info->map, shrinker_nr_max) {
 762		struct shrink_control sc = {
 763			.gfp_mask = gfp_mask,
 764			.nid = nid,
 765			.memcg = memcg,
 766		};
 767		struct shrinker *shrinker;
 768
 769		shrinker = idr_find(&shrinker_idr, i);
 770		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
 771			if (!shrinker)
 772				clear_bit(i, info->map);
 773			continue;
 774		}
 775
 776		/* Call non-slab shrinkers even though kmem is disabled */
 777		if (!memcg_kmem_enabled() &&
 778		    !(shrinker->flags & SHRINKER_NONSLAB))
 779			continue;
 780
 781		ret = do_shrink_slab(&sc, shrinker, priority);
 782		if (ret == SHRINK_EMPTY) {
 783			clear_bit(i, info->map);
 784			/*
 785			 * After the shrinker reported that it had no objects to
 786			 * free, but before we cleared the corresponding bit in
 787			 * the memcg shrinker map, a new object might have been
 788			 * added. To make sure, we have the bit set in this
 789			 * case, we invoke the shrinker one more time and reset
 790			 * the bit if it reports that it is not empty anymore.
 791			 * The memory barrier here pairs with the barrier in
 792			 * set_shrinker_bit():
 793			 *
 794			 * list_lru_add()     shrink_slab_memcg()
 795			 *   list_add_tail()    clear_bit()
 796			 *   <MB>               <MB>
 797			 *   set_bit()          do_shrink_slab()
 798			 */
 799			smp_mb__after_atomic();
 800			ret = do_shrink_slab(&sc, shrinker, priority);
 801			if (ret == SHRINK_EMPTY)
 802				ret = 0;
 803			else
 804				set_shrinker_bit(memcg, nid, i);
 805		}
 806		freed += ret;
 807
 808		if (rwsem_is_contended(&shrinker_rwsem)) {
 809			freed = freed ? : 1;
 810			break;
 811		}
 812	}
 813unlock:
 814	up_read(&shrinker_rwsem);
 815	return freed;
 816}
 817#else /* CONFIG_MEMCG */
 818static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 819			struct mem_cgroup *memcg, int priority)
 820{
 821	return 0;
 822}
 823#endif /* CONFIG_MEMCG */
 824
 825/**
 826 * shrink_slab - shrink slab caches
 827 * @gfp_mask: allocation context
 828 * @nid: node whose slab caches to target
 829 * @memcg: memory cgroup whose slab caches to target
 830 * @priority: the reclaim priority
 831 *
 832 * Call the shrink functions to age shrinkable caches.
 
 
 
 833 *
 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 835 * unaware shrinkers will receive a node id of 0 instead.
 836 *
 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 838 * are called only if it is the root cgroup.
 839 *
 840 * @priority is sc->priority, we take the number of objects and >> by priority
 841 * in order to get the scan target.
 
 842 *
 843 * Returns the number of reclaimed slab objects.
 844 */
 845static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 846				 struct mem_cgroup *memcg,
 847				 int priority)
 848{
 849	unsigned long ret, freed = 0;
 850	struct shrinker *shrinker;
 
 851
 852	/*
 853	 * The root memcg might be allocated even though memcg is disabled
 854	 * via "cgroup_disable=memory" boot parameter.  This could make
 855	 * mem_cgroup_is_root() return false, then just run memcg slab
 856	 * shrink, but skip global shrink.  This may result in premature
 857	 * oom.
 858	 */
 859	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 860		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 861
 862	if (!down_read_trylock(&shrinker_rwsem))
 
 
 863		goto out;
 
 864
 865	list_for_each_entry(shrinker, &shrinker_list, list) {
 866		struct shrink_control sc = {
 867			.gfp_mask = gfp_mask,
 868			.nid = nid,
 869			.memcg = memcg,
 870		};
 
 
 
 
 
 
 
 871
 872		ret = do_shrink_slab(&sc, shrinker, priority);
 873		if (ret == SHRINK_EMPTY)
 874			ret = 0;
 875		freed += ret;
 876		/*
 877		 * Bail out if someone want to register a new shrinker to
 878		 * prevent the registration from being stalled for long periods
 879		 * by parallel ongoing shrinking.
 880		 */
 881		if (rwsem_is_contended(&shrinker_rwsem)) {
 882			freed = freed ? : 1;
 883			break;
 
 
 
 
 
 
 
 
 
 884		}
 885	}
 886
 887	up_read(&shrinker_rwsem);
 888out:
 889	cond_resched();
 890	return freed;
 891}
 
 
 
 
 
 
 
 
 
 892
 893void drop_slab_node(int nid)
 894{
 895	unsigned long freed;
 
 
 
 
 896
 897	do {
 898		struct mem_cgroup *memcg = NULL;
 
 899
 900		if (fatal_signal_pending(current))
 901			return;
 902
 903		freed = 0;
 904		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 905		do {
 906			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 907		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 908	} while (freed > 10);
 909}
 
 
 910
 911void drop_slab(void)
 912{
 913	int nid;
 914
 915	for_each_online_node(nid)
 916		drop_slab_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917}
 918
 919static inline int is_page_cache_freeable(struct page *page)
 920{
 921	/*
 922	 * A freeable page cache page is referenced only by the caller
 923	 * that isolated the page, the page cache and optional buffer
 924	 * heads at page->private.
 925	 */
 926	int page_cache_pins = thp_nr_pages(page);
 927	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 928}
 929
 930static int may_write_to_inode(struct inode *inode)
 
 931{
 932	if (current->flags & PF_SWAPWRITE)
 933		return 1;
 934	if (!inode_write_congested(inode))
 935		return 1;
 936	if (inode_to_bdi(inode) == current->backing_dev_info)
 937		return 1;
 938	return 0;
 939}
 940
 941/*
 942 * We detected a synchronous write error writing a page out.  Probably
 943 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 944 * fsync(), msync() or close().
 945 *
 946 * The tricky part is that after writepage we cannot touch the mapping: nothing
 947 * prevents it from being freed up.  But we have a ref on the page and once
 948 * that page is locked, the mapping is pinned.
 949 *
 950 * We're allowed to run sleeping lock_page() here because we know the caller has
 951 * __GFP_FS.
 952 */
 953static void handle_write_error(struct address_space *mapping,
 954				struct page *page, int error)
 955{
 956	lock_page(page);
 957	if (page_mapping(page) == mapping)
 958		mapping_set_error(mapping, error);
 959	unlock_page(page);
 960}
 961
 962/* possible outcome of pageout() */
 963typedef enum {
 964	/* failed to write page out, page is locked */
 965	PAGE_KEEP,
 966	/* move page to the active list, page is locked */
 967	PAGE_ACTIVATE,
 968	/* page has been sent to the disk successfully, page is unlocked */
 969	PAGE_SUCCESS,
 970	/* page is clean and locked */
 971	PAGE_CLEAN,
 972} pageout_t;
 973
 974/*
 975 * pageout is called by shrink_page_list() for each dirty page.
 976 * Calls ->writepage().
 977 */
 978static pageout_t pageout(struct page *page, struct address_space *mapping)
 
 979{
 980	/*
 981	 * If the page is dirty, only perform writeback if that write
 982	 * will be non-blocking.  To prevent this allocation from being
 983	 * stalled by pagecache activity.  But note that there may be
 984	 * stalls if we need to run get_block().  We could test
 985	 * PagePrivate for that.
 986	 *
 987	 * If this process is currently in __generic_file_write_iter() against
 988	 * this page's queue, we can perform writeback even if that
 989	 * will block.
 990	 *
 991	 * If the page is swapcache, write it back even if that would
 992	 * block, for some throttling. This happens by accident, because
 993	 * swap_backing_dev_info is bust: it doesn't reflect the
 994	 * congestion state of the swapdevs.  Easy to fix, if needed.
 995	 */
 996	if (!is_page_cache_freeable(page))
 997		return PAGE_KEEP;
 998	if (!mapping) {
 999		/*
1000		 * Some data journaling orphaned pages can have
1001		 * page->mapping == NULL while being dirty with clean buffers.
1002		 */
1003		if (page_has_private(page)) {
1004			if (try_to_free_buffers(page)) {
1005				ClearPageDirty(page);
1006				pr_info("%s: orphaned page\n", __func__);
1007				return PAGE_CLEAN;
1008			}
1009		}
1010		return PAGE_KEEP;
1011	}
1012	if (mapping->a_ops->writepage == NULL)
1013		return PAGE_ACTIVATE;
1014	if (!may_write_to_inode(mapping->host))
1015		return PAGE_KEEP;
1016
1017	if (clear_page_dirty_for_io(page)) {
1018		int res;
1019		struct writeback_control wbc = {
1020			.sync_mode = WB_SYNC_NONE,
1021			.nr_to_write = SWAP_CLUSTER_MAX,
1022			.range_start = 0,
1023			.range_end = LLONG_MAX,
1024			.for_reclaim = 1,
1025		};
1026
1027		SetPageReclaim(page);
1028		res = mapping->a_ops->writepage(page, &wbc);
1029		if (res < 0)
1030			handle_write_error(mapping, page, res);
1031		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032			ClearPageReclaim(page);
1033			return PAGE_ACTIVATE;
1034		}
1035
1036		if (!PageWriteback(page)) {
1037			/* synchronous write or broken a_ops? */
1038			ClearPageReclaim(page);
1039		}
1040		trace_mm_vmscan_writepage(page);
1041		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042		return PAGE_SUCCESS;
1043	}
1044
1045	return PAGE_CLEAN;
1046}
1047
1048/*
1049 * Same as remove_mapping, but if the page is removed from the mapping, it
1050 * gets returned with a refcount of 0.
1051 */
1052static int __remove_mapping(struct address_space *mapping, struct page *page,
1053			    bool reclaimed, struct mem_cgroup *target_memcg)
1054{
1055	unsigned long flags;
1056	int refcount;
1057	void *shadow = NULL;
1058
1059	BUG_ON(!PageLocked(page));
1060	BUG_ON(mapping != page_mapping(page));
1061
1062	xa_lock_irqsave(&mapping->i_pages, flags);
1063	/*
1064	 * The non racy check for a busy page.
1065	 *
1066	 * Must be careful with the order of the tests. When someone has
1067	 * a ref to the page, it may be possible that they dirty it then
1068	 * drop the reference. So if PageDirty is tested before page_count
1069	 * here, then the following race may occur:
1070	 *
1071	 * get_user_pages(&page);
1072	 * [user mapping goes away]
1073	 * write_to(page);
1074	 *				!PageDirty(page)    [good]
1075	 * SetPageDirty(page);
1076	 * put_page(page);
1077	 *				!page_count(page)   [good, discard it]
1078	 *
1079	 * [oops, our write_to data is lost]
1080	 *
1081	 * Reversing the order of the tests ensures such a situation cannot
1082	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1083	 * load is not satisfied before that of page->_refcount.
1084	 *
1085	 * Note that if SetPageDirty is always performed via set_page_dirty,
1086	 * and thus under the i_pages lock, then this ordering is not required.
1087	 */
1088	refcount = 1 + compound_nr(page);
1089	if (!page_ref_freeze(page, refcount))
1090		goto cannot_free;
1091	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1092	if (unlikely(PageDirty(page))) {
1093		page_ref_unfreeze(page, refcount);
1094		goto cannot_free;
1095	}
1096
1097	if (PageSwapCache(page)) {
1098		swp_entry_t swap = { .val = page_private(page) };
1099		mem_cgroup_swapout(page, swap);
1100		if (reclaimed && !mapping_exiting(mapping))
1101			shadow = workingset_eviction(page, target_memcg);
1102		__delete_from_swap_cache(page, swap, shadow);
1103		xa_unlock_irqrestore(&mapping->i_pages, flags);
1104		put_swap_page(page, swap);
1105	} else {
1106		void (*freepage)(struct page *);
1107
1108		freepage = mapping->a_ops->freepage;
1109		/*
1110		 * Remember a shadow entry for reclaimed file cache in
1111		 * order to detect refaults, thus thrashing, later on.
1112		 *
1113		 * But don't store shadows in an address space that is
1114		 * already exiting.  This is not just an optimization,
1115		 * inode reclaim needs to empty out the radix tree or
1116		 * the nodes are lost.  Don't plant shadows behind its
1117		 * back.
1118		 *
1119		 * We also don't store shadows for DAX mappings because the
1120		 * only page cache pages found in these are zero pages
1121		 * covering holes, and because we don't want to mix DAX
1122		 * exceptional entries and shadow exceptional entries in the
1123		 * same address_space.
1124		 */
1125		if (reclaimed && page_is_file_lru(page) &&
1126		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1127			shadow = workingset_eviction(page, target_memcg);
1128		__delete_from_page_cache(page, shadow);
1129		xa_unlock_irqrestore(&mapping->i_pages, flags);
1130
1131		if (freepage != NULL)
1132			freepage(page);
1133	}
1134
1135	return 1;
1136
1137cannot_free:
1138	xa_unlock_irqrestore(&mapping->i_pages, flags);
1139	return 0;
1140}
1141
1142/*
1143 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1144 * someone else has a ref on the page, abort and return 0.  If it was
1145 * successfully detached, return 1.  Assumes the caller has a single ref on
1146 * this page.
1147 */
1148int remove_mapping(struct address_space *mapping, struct page *page)
1149{
1150	if (__remove_mapping(mapping, page, false, NULL)) {
1151		/*
1152		 * Unfreezing the refcount with 1 rather than 2 effectively
1153		 * drops the pagecache ref for us without requiring another
1154		 * atomic operation.
1155		 */
1156		page_ref_unfreeze(page, 1);
1157		return 1;
1158	}
1159	return 0;
1160}
1161
1162/**
1163 * putback_lru_page - put previously isolated page onto appropriate LRU list
1164 * @page: page to be put back to appropriate lru list
1165 *
1166 * Add previously isolated @page to appropriate LRU list.
1167 * Page may still be unevictable for other reasons.
1168 *
1169 * lru_lock must not be held, interrupts must be enabled.
1170 */
1171void putback_lru_page(struct page *page)
1172{
1173	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174	put_page(page);		/* drop ref from isolate */
1175}
1176
1177enum page_references {
1178	PAGEREF_RECLAIM,
1179	PAGEREF_RECLAIM_CLEAN,
1180	PAGEREF_KEEP,
1181	PAGEREF_ACTIVATE,
1182};
1183
1184static enum page_references page_check_references(struct page *page,
1185						  struct scan_control *sc)
1186{
1187	int referenced_ptes, referenced_page;
1188	unsigned long vm_flags;
1189
1190	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1191					  &vm_flags);
1192	referenced_page = TestClearPageReferenced(page);
1193
1194	/*
1195	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1196	 * move the page to the unevictable list.
1197	 */
1198	if (vm_flags & VM_LOCKED)
1199		return PAGEREF_RECLAIM;
1200
1201	if (referenced_ptes) {
 
 
1202		/*
1203		 * All mapped pages start out with page table
1204		 * references from the instantiating fault, so we need
1205		 * to look twice if a mapped file page is used more
1206		 * than once.
1207		 *
1208		 * Mark it and spare it for another trip around the
1209		 * inactive list.  Another page table reference will
1210		 * lead to its activation.
1211		 *
1212		 * Note: the mark is set for activated pages as well
1213		 * so that recently deactivated but used pages are
1214		 * quickly recovered.
1215		 */
1216		SetPageReferenced(page);
1217
1218		if (referenced_page || referenced_ptes > 1)
1219			return PAGEREF_ACTIVATE;
1220
1221		/*
1222		 * Activate file-backed executable pages after first usage.
1223		 */
1224		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1225			return PAGEREF_ACTIVATE;
1226
1227		return PAGEREF_KEEP;
1228	}
1229
1230	/* Reclaim if clean, defer dirty pages to writeback */
1231	if (referenced_page && !PageSwapBacked(page))
1232		return PAGEREF_RECLAIM_CLEAN;
1233
1234	return PAGEREF_RECLAIM;
1235}
1236
1237/* Check if a page is dirty or under writeback */
1238static void page_check_dirty_writeback(struct page *page,
1239				       bool *dirty, bool *writeback)
1240{
1241	struct address_space *mapping;
1242
1243	/*
1244	 * Anonymous pages are not handled by flushers and must be written
1245	 * from reclaim context. Do not stall reclaim based on them
1246	 */
1247	if (!page_is_file_lru(page) ||
1248	    (PageAnon(page) && !PageSwapBacked(page))) {
1249		*dirty = false;
1250		*writeback = false;
1251		return;
1252	}
1253
1254	/* By default assume that the page flags are accurate */
1255	*dirty = PageDirty(page);
1256	*writeback = PageWriteback(page);
1257
1258	/* Verify dirty/writeback state if the filesystem supports it */
1259	if (!page_has_private(page))
1260		return;
1261
1262	mapping = page_mapping(page);
1263	if (mapping && mapping->a_ops->is_dirty_writeback)
1264		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1265}
1266
1267/*
1268 * shrink_page_list() returns the number of reclaimed pages
1269 */
1270static unsigned int shrink_page_list(struct list_head *page_list,
1271				     struct pglist_data *pgdat,
1272				     struct scan_control *sc,
1273				     struct reclaim_stat *stat,
1274				     bool ignore_references)
1275{
1276	LIST_HEAD(ret_pages);
1277	LIST_HEAD(free_pages);
1278	unsigned int nr_reclaimed = 0;
1279	unsigned int pgactivate = 0;
 
 
 
1280
1281	memset(stat, 0, sizeof(*stat));
1282	cond_resched();
1283
1284	while (!list_empty(page_list)) {
 
1285		struct address_space *mapping;
1286		struct page *page;
1287		enum page_references references = PAGEREF_RECLAIM;
1288		bool dirty, writeback, may_enter_fs;
1289		unsigned int nr_pages;
1290
1291		cond_resched();
1292
1293		page = lru_to_page(page_list);
1294		list_del(&page->lru);
1295
1296		if (!trylock_page(page))
1297			goto keep;
1298
1299		VM_BUG_ON_PAGE(PageActive(page), page);
 
1300
1301		nr_pages = compound_nr(page);
1302
1303		/* Account the number of base pages even though THP */
1304		sc->nr_scanned += nr_pages;
1305
1306		if (unlikely(!page_evictable(page)))
1307			goto activate_locked;
1308
1309		if (!sc->may_unmap && page_mapped(page))
1310			goto keep_locked;
1311
 
 
 
 
1312		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1313			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1314
1315		/*
1316		 * The number of dirty pages determines if a node is marked
1317		 * reclaim_congested which affects wait_iff_congested. kswapd
1318		 * will stall and start writing pages if the tail of the LRU
1319		 * is all dirty unqueued pages.
1320		 */
1321		page_check_dirty_writeback(page, &dirty, &writeback);
1322		if (dirty || writeback)
1323			stat->nr_dirty++;
1324
1325		if (dirty && !writeback)
1326			stat->nr_unqueued_dirty++;
1327
1328		/*
1329		 * Treat this page as congested if the underlying BDI is or if
1330		 * pages are cycling through the LRU so quickly that the
1331		 * pages marked for immediate reclaim are making it to the
1332		 * end of the LRU a second time.
1333		 */
1334		mapping = page_mapping(page);
1335		if (((dirty || writeback) && mapping &&
1336		     inode_write_congested(mapping->host)) ||
1337		    (writeback && PageReclaim(page)))
1338			stat->nr_congested++;
1339
1340		/*
1341		 * If a page at the tail of the LRU is under writeback, there
1342		 * are three cases to consider.
1343		 *
1344		 * 1) If reclaim is encountering an excessive number of pages
1345		 *    under writeback and this page is both under writeback and
1346		 *    PageReclaim then it indicates that pages are being queued
1347		 *    for IO but are being recycled through the LRU before the
1348		 *    IO can complete. Waiting on the page itself risks an
1349		 *    indefinite stall if it is impossible to writeback the
1350		 *    page due to IO error or disconnected storage so instead
1351		 *    note that the LRU is being scanned too quickly and the
1352		 *    caller can stall after page list has been processed.
1353		 *
1354		 * 2) Global or new memcg reclaim encounters a page that is
1355		 *    not marked for immediate reclaim, or the caller does not
1356		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1357		 *    not to fs). In this case mark the page for immediate
1358		 *    reclaim and continue scanning.
1359		 *
1360		 *    Require may_enter_fs because we would wait on fs, which
1361		 *    may not have submitted IO yet. And the loop driver might
1362		 *    enter reclaim, and deadlock if it waits on a page for
1363		 *    which it is needed to do the write (loop masks off
1364		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1365		 *    would probably show more reasons.
1366		 *
1367		 * 3) Legacy memcg encounters a page that is already marked
1368		 *    PageReclaim. memcg does not have any dirty pages
1369		 *    throttling so we could easily OOM just because too many
1370		 *    pages are in writeback and there is nothing else to
1371		 *    reclaim. Wait for the writeback to complete.
1372		 *
1373		 * In cases 1) and 2) we activate the pages to get them out of
1374		 * the way while we continue scanning for clean pages on the
1375		 * inactive list and refilling from the active list. The
1376		 * observation here is that waiting for disk writes is more
1377		 * expensive than potentially causing reloads down the line.
1378		 * Since they're marked for immediate reclaim, they won't put
1379		 * memory pressure on the cache working set any longer than it
1380		 * takes to write them to disk.
1381		 */
1382		if (PageWriteback(page)) {
1383			/* Case 1 above */
1384			if (current_is_kswapd() &&
1385			    PageReclaim(page) &&
1386			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1387				stat->nr_immediate++;
1388				goto activate_locked;
1389
1390			/* Case 2 above */
1391			} else if (writeback_throttling_sane(sc) ||
1392			    !PageReclaim(page) || !may_enter_fs) {
 
 
 
 
 
 
 
 
 
1393				/*
1394				 * This is slightly racy - end_page_writeback()
1395				 * might have just cleared PageReclaim, then
1396				 * setting PageReclaim here end up interpreted
1397				 * as PageReadahead - but that does not matter
1398				 * enough to care.  What we do want is for this
1399				 * page to have PageReclaim set next time memcg
1400				 * reclaim reaches the tests above, so it will
1401				 * then wait_on_page_writeback() to avoid OOM;
1402				 * and it's also appropriate in global reclaim.
1403				 */
1404				SetPageReclaim(page);
1405				stat->nr_writeback++;
1406				goto activate_locked;
1407
1408			/* Case 3 above */
1409			} else {
1410				unlock_page(page);
1411				wait_on_page_writeback(page);
1412				/* then go back and try same page again */
1413				list_add_tail(&page->lru, page_list);
1414				continue;
1415			}
 
1416		}
1417
1418		if (!ignore_references)
1419			references = page_check_references(page, sc);
1420
1421		switch (references) {
1422		case PAGEREF_ACTIVATE:
1423			goto activate_locked;
1424		case PAGEREF_KEEP:
1425			stat->nr_ref_keep += nr_pages;
1426			goto keep_locked;
1427		case PAGEREF_RECLAIM:
1428		case PAGEREF_RECLAIM_CLEAN:
1429			; /* try to reclaim the page below */
1430		}
1431
1432		/*
1433		 * Anonymous process memory has backing store?
1434		 * Try to allocate it some swap space here.
1435		 * Lazyfree page could be freed directly
1436		 */
1437		if (PageAnon(page) && PageSwapBacked(page)) {
1438			if (!PageSwapCache(page)) {
1439				if (!(sc->gfp_mask & __GFP_IO))
1440					goto keep_locked;
1441				if (page_maybe_dma_pinned(page))
1442					goto keep_locked;
1443				if (PageTransHuge(page)) {
1444					/* cannot split THP, skip it */
1445					if (!can_split_huge_page(page, NULL))
1446						goto activate_locked;
1447					/*
1448					 * Split pages without a PMD map right
1449					 * away. Chances are some or all of the
1450					 * tail pages can be freed without IO.
1451					 */
1452					if (!compound_mapcount(page) &&
1453					    split_huge_page_to_list(page,
1454								    page_list))
1455						goto activate_locked;
1456				}
1457				if (!add_to_swap(page)) {
1458					if (!PageTransHuge(page))
1459						goto activate_locked_split;
1460					/* Fallback to swap normal pages */
1461					if (split_huge_page_to_list(page,
1462								    page_list))
1463						goto activate_locked;
1464#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465					count_vm_event(THP_SWPOUT_FALLBACK);
1466#endif
1467					if (!add_to_swap(page))
1468						goto activate_locked_split;
1469				}
1470
1471				may_enter_fs = true;
1472
1473				/* Adding to swap updated mapping */
1474				mapping = page_mapping(page);
1475			}
1476		} else if (unlikely(PageTransHuge(page))) {
1477			/* Split file THP */
1478			if (split_huge_page_to_list(page, page_list))
1479				goto keep_locked;
 
 
 
1480		}
1481
1482		/*
1483		 * THP may get split above, need minus tail pages and update
1484		 * nr_pages to avoid accounting tail pages twice.
1485		 *
1486		 * The tail pages that are added into swap cache successfully
1487		 * reach here.
1488		 */
1489		if ((nr_pages > 1) && !PageTransHuge(page)) {
1490			sc->nr_scanned -= (nr_pages - 1);
1491			nr_pages = 1;
1492		}
1493
1494		/*
1495		 * The page is mapped into the page tables of one or more
1496		 * processes. Try to unmap it here.
1497		 */
1498		if (page_mapped(page)) {
1499			enum ttu_flags flags = TTU_BATCH_FLUSH;
1500			bool was_swapbacked = PageSwapBacked(page);
1501
1502			if (unlikely(PageTransHuge(page)))
1503				flags |= TTU_SPLIT_HUGE_PMD;
1504
1505			try_to_unmap(page, flags);
1506			if (page_mapped(page)) {
1507				stat->nr_unmap_fail += nr_pages;
1508				if (!was_swapbacked && PageSwapBacked(page))
1509					stat->nr_lazyfree_fail += nr_pages;
1510				goto activate_locked;
 
 
 
 
 
 
1511			}
1512		}
1513
1514		if (PageDirty(page)) {
 
 
1515			/*
1516			 * Only kswapd can writeback filesystem pages
1517			 * to avoid risk of stack overflow. But avoid
1518			 * injecting inefficient single-page IO into
1519			 * flusher writeback as much as possible: only
1520			 * write pages when we've encountered many
1521			 * dirty pages, and when we've already scanned
1522			 * the rest of the LRU for clean pages and see
1523			 * the same dirty pages again (PageReclaim).
1524			 */
1525			if (page_is_file_lru(page) &&
1526			    (!current_is_kswapd() || !PageReclaim(page) ||
1527			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1528				/*
1529				 * Immediately reclaim when written back.
1530				 * Similar in principal to deactivate_page()
1531				 * except we already have the page isolated
1532				 * and know it's dirty
1533				 */
1534				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1535				SetPageReclaim(page);
1536
1537				goto activate_locked;
1538			}
1539
1540			if (references == PAGEREF_RECLAIM_CLEAN)
1541				goto keep_locked;
1542			if (!may_enter_fs)
1543				goto keep_locked;
1544			if (!sc->may_writepage)
1545				goto keep_locked;
1546
1547			/*
1548			 * Page is dirty. Flush the TLB if a writable entry
1549			 * potentially exists to avoid CPU writes after IO
1550			 * starts and then write it out here.
1551			 */
1552			try_to_unmap_flush_dirty();
1553			switch (pageout(page, mapping)) {
1554			case PAGE_KEEP:
 
1555				goto keep_locked;
1556			case PAGE_ACTIVATE:
1557				goto activate_locked;
1558			case PAGE_SUCCESS:
1559				stat->nr_pageout += thp_nr_pages(page);
1560
1561				if (PageWriteback(page))
1562					goto keep;
1563				if (PageDirty(page))
1564					goto keep;
1565
1566				/*
1567				 * A synchronous write - probably a ramdisk.  Go
1568				 * ahead and try to reclaim the page.
1569				 */
1570				if (!trylock_page(page))
1571					goto keep;
1572				if (PageDirty(page) || PageWriteback(page))
1573					goto keep_locked;
1574				mapping = page_mapping(page);
1575				fallthrough;
1576			case PAGE_CLEAN:
1577				; /* try to free the page below */
1578			}
1579		}
1580
1581		/*
1582		 * If the page has buffers, try to free the buffer mappings
1583		 * associated with this page. If we succeed we try to free
1584		 * the page as well.
1585		 *
1586		 * We do this even if the page is PageDirty().
1587		 * try_to_release_page() does not perform I/O, but it is
1588		 * possible for a page to have PageDirty set, but it is actually
1589		 * clean (all its buffers are clean).  This happens if the
1590		 * buffers were written out directly, with submit_bh(). ext3
1591		 * will do this, as well as the blockdev mapping.
1592		 * try_to_release_page() will discover that cleanness and will
1593		 * drop the buffers and mark the page clean - it can be freed.
1594		 *
1595		 * Rarely, pages can have buffers and no ->mapping.  These are
1596		 * the pages which were not successfully invalidated in
1597		 * truncate_cleanup_page().  We try to drop those buffers here
1598		 * and if that worked, and the page is no longer mapped into
1599		 * process address space (page_count == 1) it can be freed.
1600		 * Otherwise, leave the page on the LRU so it is swappable.
1601		 */
1602		if (page_has_private(page)) {
1603			if (!try_to_release_page(page, sc->gfp_mask))
1604				goto activate_locked;
1605			if (!mapping && page_count(page) == 1) {
1606				unlock_page(page);
1607				if (put_page_testzero(page))
1608					goto free_it;
1609				else {
1610					/*
1611					 * rare race with speculative reference.
1612					 * the speculative reference will free
1613					 * this page shortly, so we may
1614					 * increment nr_reclaimed here (and
1615					 * leave it off the LRU).
1616					 */
1617					nr_reclaimed++;
1618					continue;
1619				}
1620			}
1621		}
1622
1623		if (PageAnon(page) && !PageSwapBacked(page)) {
1624			/* follow __remove_mapping for reference */
1625			if (!page_ref_freeze(page, 1))
1626				goto keep_locked;
1627			if (PageDirty(page)) {
1628				page_ref_unfreeze(page, 1);
1629				goto keep_locked;
1630			}
1631
1632			count_vm_event(PGLAZYFREED);
1633			count_memcg_page_event(page, PGLAZYFREED);
1634		} else if (!mapping || !__remove_mapping(mapping, page, true,
1635							 sc->target_mem_cgroup))
1636			goto keep_locked;
1637
1638		unlock_page(page);
1639free_it:
1640		/*
1641		 * THP may get swapped out in a whole, need account
1642		 * all base pages.
 
 
 
1643		 */
1644		nr_reclaimed += nr_pages;
 
 
1645
1646		/*
1647		 * Is there need to periodically free_page_list? It would
1648		 * appear not as the counts should be low
1649		 */
1650		if (unlikely(PageTransHuge(page)))
1651			destroy_compound_page(page);
1652		else
1653			list_add(&page->lru, &free_pages);
 
 
 
 
1654		continue;
1655
1656activate_locked_split:
1657		/*
1658		 * The tail pages that are failed to add into swap cache
1659		 * reach here.  Fixup nr_scanned and nr_pages.
1660		 */
1661		if (nr_pages > 1) {
1662			sc->nr_scanned -= (nr_pages - 1);
1663			nr_pages = 1;
1664		}
1665activate_locked:
1666		/* Not a candidate for swapping, so reclaim swap space. */
1667		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1668						PageMlocked(page)))
1669			try_to_free_swap(page);
1670		VM_BUG_ON_PAGE(PageActive(page), page);
1671		if (!PageMlocked(page)) {
1672			int type = page_is_file_lru(page);
1673			SetPageActive(page);
1674			stat->nr_activate[type] += nr_pages;
1675			count_memcg_page_event(page, PGACTIVATE);
1676		}
1677keep_locked:
1678		unlock_page(page);
1679keep:
1680		list_add(&page->lru, &ret_pages);
1681		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1682	}
1683
1684	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
 
 
 
 
 
 
 
1685
1686	mem_cgroup_uncharge_list(&free_pages);
1687	try_to_unmap_flush();
1688	free_unref_page_list(&free_pages);
1689
1690	list_splice(&ret_pages, page_list);
1691	count_vm_events(PGACTIVATE, pgactivate);
1692
1693	return nr_reclaimed;
1694}
1695
1696unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1697					    struct list_head *page_list)
1698{
1699	struct scan_control sc = {
1700		.gfp_mask = GFP_KERNEL,
1701		.priority = DEF_PRIORITY,
1702		.may_unmap = 1,
1703	};
1704	struct reclaim_stat stat;
1705	unsigned int nr_reclaimed;
1706	struct page *page, *next;
1707	LIST_HEAD(clean_pages);
1708	unsigned int noreclaim_flag;
1709
1710	list_for_each_entry_safe(page, next, page_list, lru) {
1711		if (!PageHuge(page) && page_is_file_lru(page) &&
1712		    !PageDirty(page) && !__PageMovable(page) &&
1713		    !PageUnevictable(page)) {
1714			ClearPageActive(page);
1715			list_move(&page->lru, &clean_pages);
1716		}
1717	}
1718
1719	/*
1720	 * We should be safe here since we are only dealing with file pages and
1721	 * we are not kswapd and therefore cannot write dirty file pages. But
1722	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1723	 * change in the future.
1724	 */
1725	noreclaim_flag = memalloc_noreclaim_save();
1726	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1727					&stat, true);
1728	memalloc_noreclaim_restore(noreclaim_flag);
1729
1730	list_splice(&clean_pages, page_list);
1731	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1732			    -(long)nr_reclaimed);
1733	/*
1734	 * Since lazyfree pages are isolated from file LRU from the beginning,
1735	 * they will rotate back to anonymous LRU in the end if it failed to
1736	 * discard so isolated count will be mismatched.
1737	 * Compensate the isolated count for both LRU lists.
1738	 */
1739	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1740			    stat.nr_lazyfree_fail);
1741	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1742			    -(long)stat.nr_lazyfree_fail);
1743	return nr_reclaimed;
1744}
1745
1746/*
1747 * Attempt to remove the specified page from its LRU.  Only take this page
1748 * if it is of the appropriate PageActive status.  Pages which are being
1749 * freed elsewhere are also ignored.
1750 *
1751 * page:	page to consider
1752 * mode:	one of the LRU isolation modes defined above
1753 *
1754 * returns true on success, false on failure.
1755 */
1756bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1757{
 
 
1758	/* Only take pages on the LRU. */
1759	if (!PageLRU(page))
1760		return false;
1761
1762	/* Compaction should not handle unevictable pages but CMA can do so */
1763	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1764		return false;
 
 
1765
1766	/*
1767	 * To minimise LRU disruption, the caller can indicate that it only
1768	 * wants to isolate pages it will be able to operate on without
1769	 * blocking - clean pages for the most part.
1770	 *
 
 
 
1771	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1772	 * that it is possible to migrate without blocking
1773	 */
1774	if (mode & ISOLATE_ASYNC_MIGRATE) {
1775		/* All the caller can do on PageWriteback is block */
1776		if (PageWriteback(page))
1777			return false;
1778
1779		if (PageDirty(page)) {
1780			struct address_space *mapping;
1781			bool migrate_dirty;
 
 
 
1782
1783			/*
1784			 * Only pages without mappings or that have a
1785			 * ->migratepage callback are possible to migrate
1786			 * without blocking. However, we can be racing with
1787			 * truncation so it's necessary to lock the page
1788			 * to stabilise the mapping as truncation holds
1789			 * the page lock until after the page is removed
1790			 * from the page cache.
1791			 */
1792			if (!trylock_page(page))
1793				return false;
1794
1795			mapping = page_mapping(page);
1796			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1797			unlock_page(page);
1798			if (!migrate_dirty)
1799				return false;
1800		}
1801	}
1802
1803	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1804		return false;
1805
1806	return true;
1807}
1808
1809/*
1810 * Update LRU sizes after isolating pages. The LRU size updates must
1811 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1812 */
1813static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1814			enum lru_list lru, unsigned long *nr_zone_taken)
1815{
1816	int zid;
1817
1818	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1819		if (!nr_zone_taken[zid])
1820			continue;
1821
1822		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1823	}
1824
 
1825}
1826
1827/*
1828 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1829 *
1830 * lruvec->lru_lock is heavily contended.  Some of the functions that
1831 * shrink the lists perform better by taking out a batch of pages
1832 * and working on them outside the LRU lock.
1833 *
1834 * For pagecache intensive workloads, this function is the hottest
1835 * spot in the kernel (apart from copy_*_user functions).
1836 *
1837 * Lru_lock must be held before calling this function.
1838 *
1839 * @nr_to_scan:	The number of eligible pages to look through on the list.
1840 * @lruvec:	The LRU vector to pull pages from.
1841 * @dst:	The temp list to put pages on to.
1842 * @nr_scanned:	The number of pages that were scanned.
1843 * @sc:		The scan_control struct for this reclaim session
 
1844 * @lru:	LRU list id for isolating
1845 *
1846 * returns how many pages were moved onto *@dst.
1847 */
1848static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1849		struct lruvec *lruvec, struct list_head *dst,
1850		unsigned long *nr_scanned, struct scan_control *sc,
1851		enum lru_list lru)
1852{
1853	struct list_head *src = &lruvec->lists[lru];
1854	unsigned long nr_taken = 0;
1855	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1856	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1857	unsigned long skipped = 0;
1858	unsigned long scan, total_scan, nr_pages;
1859	LIST_HEAD(pages_skipped);
1860	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1861
1862	total_scan = 0;
1863	scan = 0;
1864	while (scan < nr_to_scan && !list_empty(src)) {
1865		struct page *page;
 
1866
1867		page = lru_to_page(src);
1868		prefetchw_prev_lru_page(page, src, flags);
1869
1870		nr_pages = compound_nr(page);
1871		total_scan += nr_pages;
1872
1873		if (page_zonenum(page) > sc->reclaim_idx) {
1874			list_move(&page->lru, &pages_skipped);
1875			nr_skipped[page_zonenum(page)] += nr_pages;
1876			continue;
1877		}
 
 
1878
1879		/*
1880		 * Do not count skipped pages because that makes the function
1881		 * return with no isolated pages if the LRU mostly contains
1882		 * ineligible pages.  This causes the VM to not reclaim any
1883		 * pages, triggering a premature OOM.
1884		 *
1885		 * Account all tail pages of THP.  This would not cause
1886		 * premature OOM since __isolate_lru_page() returns -EBUSY
1887		 * only when the page is being freed somewhere else.
1888		 */
1889		scan += nr_pages;
1890		if (!__isolate_lru_page_prepare(page, mode)) {
1891			/* It is being freed elsewhere */
1892			list_move(&page->lru, src);
1893			continue;
1894		}
1895		/*
1896		 * Be careful not to clear PageLRU until after we're
1897		 * sure the page is not being freed elsewhere -- the
1898		 * page release code relies on it.
1899		 */
1900		if (unlikely(!get_page_unless_zero(page))) {
1901			list_move(&page->lru, src);
1902			continue;
1903		}
1904
1905		if (!TestClearPageLRU(page)) {
1906			/* Another thread is already isolating this page */
1907			put_page(page);
1908			list_move(&page->lru, src);
1909			continue;
1910		}
1911
1912		nr_taken += nr_pages;
1913		nr_zone_taken[page_zonenum(page)] += nr_pages;
1914		list_move(&page->lru, dst);
1915	}
1916
1917	/*
1918	 * Splice any skipped pages to the start of the LRU list. Note that
1919	 * this disrupts the LRU order when reclaiming for lower zones but
1920	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1921	 * scanning would soon rescan the same pages to skip and put the
1922	 * system at risk of premature OOM.
1923	 */
1924	if (!list_empty(&pages_skipped)) {
1925		int zid;
1926
1927		list_splice(&pages_skipped, src);
1928		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1929			if (!nr_skipped[zid])
1930				continue;
1931
1932			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1933			skipped += nr_skipped[zid];
1934		}
1935	}
1936	*nr_scanned = total_scan;
1937	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1938				    total_scan, skipped, nr_taken, mode, lru);
1939	update_lru_sizes(lruvec, lru, nr_zone_taken);
1940	return nr_taken;
1941}
1942
1943/**
1944 * isolate_lru_page - tries to isolate a page from its LRU list
1945 * @page: page to isolate from its LRU list
1946 *
1947 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1948 * vmstat statistic corresponding to whatever LRU list the page was on.
1949 *
1950 * Returns 0 if the page was removed from an LRU list.
1951 * Returns -EBUSY if the page was not on an LRU list.
1952 *
1953 * The returned page will have PageLRU() cleared.  If it was found on
1954 * the active list, it will have PageActive set.  If it was found on
1955 * the unevictable list, it will have the PageUnevictable bit set. That flag
1956 * may need to be cleared by the caller before letting the page go.
1957 *
1958 * The vmstat statistic corresponding to the list on which the page was
1959 * found will be decremented.
1960 *
1961 * Restrictions:
1962 *
1963 * (1) Must be called with an elevated refcount on the page. This is a
1964 *     fundamental difference from isolate_lru_pages (which is called
1965 *     without a stable reference).
1966 * (2) the lru_lock must not be held.
1967 * (3) interrupts must be enabled.
1968 */
1969int isolate_lru_page(struct page *page)
1970{
1971	int ret = -EBUSY;
1972
1973	VM_BUG_ON_PAGE(!page_count(page), page);
1974	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1975
1976	if (TestClearPageLRU(page)) {
 
1977		struct lruvec *lruvec;
1978
1979		get_page(page);
1980		lruvec = lock_page_lruvec_irq(page);
1981		del_page_from_lru_list(page, lruvec);
1982		unlock_page_lruvec_irq(lruvec);
1983		ret = 0;
 
 
 
 
 
1984	}
1985
1986	return ret;
1987}
1988
1989/*
1990 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1991 * then get rescheduled. When there are massive number of tasks doing page
1992 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1993 * the LRU list will go small and be scanned faster than necessary, leading to
1994 * unnecessary swapping, thrashing and OOM.
1995 */
1996static int too_many_isolated(struct pglist_data *pgdat, int file,
1997		struct scan_control *sc)
1998{
1999	unsigned long inactive, isolated;
2000
2001	if (current_is_kswapd())
2002		return 0;
2003
2004	if (!writeback_throttling_sane(sc))
2005		return 0;
2006
2007	if (file) {
2008		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2009		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2010	} else {
2011		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2012		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2013	}
2014
2015	/*
2016	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2017	 * won't get blocked by normal direct-reclaimers, forming a circular
2018	 * deadlock.
2019	 */
2020	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2021		inactive >>= 3;
2022
2023	return isolated > inactive;
2024}
2025
2026/*
2027 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2028 * On return, @list is reused as a list of pages to be freed by the caller.
2029 *
2030 * Returns the number of pages moved to the given lruvec.
2031 */
2032static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2033				      struct list_head *list)
2034{
2035	int nr_pages, nr_moved = 0;
 
2036	LIST_HEAD(pages_to_free);
2037	struct page *page;
2038
2039	while (!list_empty(list)) {
2040		page = lru_to_page(list);
2041		VM_BUG_ON_PAGE(PageLRU(page), page);
 
 
 
 
 
2042		list_del(&page->lru);
2043		if (unlikely(!page_evictable(page))) {
2044			spin_unlock_irq(&lruvec->lru_lock);
2045			putback_lru_page(page);
2046			spin_lock_irq(&lruvec->lru_lock);
2047			continue;
2048		}
2049
2050		/*
2051		 * The SetPageLRU needs to be kept here for list integrity.
2052		 * Otherwise:
2053		 *   #0 move_pages_to_lru             #1 release_pages
2054		 *   if !put_page_testzero
2055		 *				      if (put_page_testzero())
2056		 *				        !PageLRU //skip lru_lock
2057		 *     SetPageLRU()
2058		 *     list_add(&page->lru,)
2059		 *                                        list_add(&page->lru,)
2060		 */
2061		SetPageLRU(page);
 
 
2062
2063		if (unlikely(put_page_testzero(page))) {
2064			__clear_page_lru_flags(page);
 
 
 
 
 
 
 
2065
2066			if (unlikely(PageCompound(page))) {
2067				spin_unlock_irq(&lruvec->lru_lock);
2068				destroy_compound_page(page);
2069				spin_lock_irq(&lruvec->lru_lock);
2070			} else
2071				list_add(&page->lru, &pages_to_free);
2072
2073			continue;
2074		}
2075
2076		/*
2077		 * All pages were isolated from the same lruvec (and isolation
2078		 * inhibits memcg migration).
2079		 */
2080		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2081		add_page_to_lru_list(page, lruvec);
2082		nr_pages = thp_nr_pages(page);
2083		nr_moved += nr_pages;
2084		if (PageActive(page))
2085			workingset_age_nonresident(lruvec, nr_pages);
2086	}
2087
2088	/*
2089	 * To save our caller's stack, now use input list for pages to free.
2090	 */
2091	list_splice(&pages_to_free, list);
2092
2093	return nr_moved;
2094}
2095
2096/*
2097 * If a kernel thread (such as nfsd for loop-back mounts) services
2098 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2099 * In that case we should only throttle if the backing device it is
2100 * writing to is congested.  In other cases it is safe to throttle.
2101 */
2102static int current_may_throttle(void)
2103{
2104	return !(current->flags & PF_LOCAL_THROTTLE) ||
2105		current->backing_dev_info == NULL ||
2106		bdi_write_congested(current->backing_dev_info);
2107}
2108
2109/*
2110 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2111 * of reclaimed pages
2112 */
2113static unsigned long
2114shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2115		     struct scan_control *sc, enum lru_list lru)
2116{
2117	LIST_HEAD(page_list);
2118	unsigned long nr_scanned;
2119	unsigned int nr_reclaimed = 0;
2120	unsigned long nr_taken;
2121	struct reclaim_stat stat;
2122	bool file = is_file_lru(lru);
2123	enum vm_event_item item;
2124	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125	bool stalled = false;
2126
2127	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2128		if (stalled)
2129			return 0;
2130
2131		/* wait a bit for the reclaimer. */
2132		msleep(100);
2133		stalled = true;
2134
2135		/* We are about to die and free our memory. Return now. */
2136		if (fatal_signal_pending(current))
2137			return SWAP_CLUSTER_MAX;
2138	}
2139
2140	lru_add_drain();
2141
2142	spin_lock_irq(&lruvec->lru_lock);
 
 
 
 
 
2143
2144	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2145				     &nr_scanned, sc, lru);
2146
2147	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2148	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2149	if (!cgroup_reclaim(sc))
2150		__count_vm_events(item, nr_scanned);
2151	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2152	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2153
2154	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
 
2155
2156	if (nr_taken == 0)
2157		return 0;
2158
2159	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
 
2160
2161	spin_lock_irq(&lruvec->lru_lock);
2162	move_pages_to_lru(lruvec, &page_list);
2163
2164	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2165	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2166	if (!cgroup_reclaim(sc))
2167		__count_vm_events(item, nr_reclaimed);
2168	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2169	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2170	spin_unlock_irq(&lruvec->lru_lock);
2171
2172	lru_note_cost(lruvec, file, stat.nr_pageout);
2173	mem_cgroup_uncharge_list(&page_list);
2174	free_unref_page_list(&page_list);
2175
2176	/*
2177	 * If dirty pages are scanned that are not queued for IO, it
2178	 * implies that flushers are not doing their job. This can
2179	 * happen when memory pressure pushes dirty pages to the end of
2180	 * the LRU before the dirty limits are breached and the dirty
2181	 * data has expired. It can also happen when the proportion of
2182	 * dirty pages grows not through writes but through memory
2183	 * pressure reclaiming all the clean cache. And in some cases,
2184	 * the flushers simply cannot keep up with the allocation
2185	 * rate. Nudge the flusher threads in case they are asleep.
2186	 */
2187	if (stat.nr_unqueued_dirty == nr_taken)
2188		wakeup_flusher_threads(WB_REASON_VMSCAN);
2189
2190	sc->nr.dirty += stat.nr_dirty;
2191	sc->nr.congested += stat.nr_congested;
2192	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2193	sc->nr.writeback += stat.nr_writeback;
2194	sc->nr.immediate += stat.nr_immediate;
2195	sc->nr.taken += nr_taken;
2196	if (file)
2197		sc->nr.file_taken += nr_taken;
2198
2199	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2200			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201	return nr_reclaimed;
2202}
2203
2204/*
2205 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2206 *
2207 * We move them the other way if the page is referenced by one or more
2208 * processes.
2209 *
2210 * If the pages are mostly unmapped, the processing is fast and it is
2211 * appropriate to hold lru_lock across the whole operation.  But if
2212 * the pages are mapped, the processing is slow (page_referenced()), so
2213 * we should drop lru_lock around each page.  It's impossible to balance
2214 * this, so instead we remove the pages from the LRU while processing them.
2215 * It is safe to rely on PG_active against the non-LRU pages in here because
2216 * nobody will play with that bit on a non-LRU page.
2217 *
2218 * The downside is that we have to touch page->_refcount against each page.
2219 * But we had to alter page->flags anyway.
2220 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221static void shrink_active_list(unsigned long nr_to_scan,
2222			       struct lruvec *lruvec,
2223			       struct scan_control *sc,
2224			       enum lru_list lru)
2225{
2226	unsigned long nr_taken;
2227	unsigned long nr_scanned;
2228	unsigned long vm_flags;
2229	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2230	LIST_HEAD(l_active);
2231	LIST_HEAD(l_inactive);
2232	struct page *page;
2233	unsigned nr_deactivate, nr_activate;
2234	unsigned nr_rotated = 0;
 
2235	int file = is_file_lru(lru);
2236	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237
2238	lru_add_drain();
2239
2240	spin_lock_irq(&lruvec->lru_lock);
2241
2242	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2243				     &nr_scanned, sc, lru);
2244
2245	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2246
2247	if (!cgroup_reclaim(sc))
2248		__count_vm_events(PGREFILL, nr_scanned);
2249	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2250
2251	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
2252
2253	while (!list_empty(&l_hold)) {
2254		cond_resched();
2255		page = lru_to_page(&l_hold);
2256		list_del(&page->lru);
2257
2258		if (unlikely(!page_evictable(page))) {
2259			putback_lru_page(page);
2260			continue;
2261		}
2262
2263		if (unlikely(buffer_heads_over_limit)) {
2264			if (page_has_private(page) && trylock_page(page)) {
2265				if (page_has_private(page))
2266					try_to_release_page(page, 0);
2267				unlock_page(page);
2268			}
2269		}
2270
2271		if (page_referenced(page, 0, sc->target_mem_cgroup,
2272				    &vm_flags)) {
 
2273			/*
2274			 * Identify referenced, file-backed active pages and
2275			 * give them one more trip around the active list. So
2276			 * that executable code get better chances to stay in
2277			 * memory under moderate memory pressure.  Anon pages
2278			 * are not likely to be evicted by use-once streaming
2279			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2280			 * so we ignore them here.
2281			 */
2282			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2283				nr_rotated += thp_nr_pages(page);
2284				list_add(&page->lru, &l_active);
2285				continue;
2286			}
2287		}
2288
2289		ClearPageActive(page);	/* we are de-activating */
2290		SetPageWorkingset(page);
2291		list_add(&page->lru, &l_inactive);
2292	}
2293
2294	/*
2295	 * Move pages back to the lru list.
2296	 */
2297	spin_lock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
 
2298
2299	nr_activate = move_pages_to_lru(lruvec, &l_active);
2300	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2301	/* Keep all free pages in l_active list */
2302	list_splice(&l_inactive, &l_active);
2303
2304	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2305	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
 
 
 
 
 
2306
2307	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2308	spin_unlock_irq(&lruvec->lru_lock);
2309
2310	mem_cgroup_uncharge_list(&l_active);
2311	free_unref_page_list(&l_active);
2312	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2313			nr_deactivate, nr_rotated, sc->priority, file);
2314}
2315
2316unsigned long reclaim_pages(struct list_head *page_list)
 
 
 
 
 
 
 
2317{
2318	int nid = NUMA_NO_NODE;
2319	unsigned int nr_reclaimed = 0;
2320	LIST_HEAD(node_page_list);
2321	struct reclaim_stat dummy_stat;
2322	struct page *page;
2323	unsigned int noreclaim_flag;
2324	struct scan_control sc = {
2325		.gfp_mask = GFP_KERNEL,
2326		.priority = DEF_PRIORITY,
2327		.may_writepage = 1,
2328		.may_unmap = 1,
2329		.may_swap = 1,
2330	};
2331
2332	noreclaim_flag = memalloc_noreclaim_save();
 
2333
2334	while (!list_empty(page_list)) {
2335		page = lru_to_page(page_list);
2336		if (nid == NUMA_NO_NODE) {
2337			nid = page_to_nid(page);
2338			INIT_LIST_HEAD(&node_page_list);
2339		}
 
 
2340
2341		if (nid == page_to_nid(page)) {
2342			ClearPageActive(page);
2343			list_move(&page->lru, &node_page_list);
2344			continue;
2345		}
2346
2347		nr_reclaimed += shrink_page_list(&node_page_list,
2348						NODE_DATA(nid),
2349						&sc, &dummy_stat, false);
2350		while (!list_empty(&node_page_list)) {
2351			page = lru_to_page(&node_page_list);
2352			list_del(&page->lru);
2353			putback_lru_page(page);
2354		}
2355
2356		nid = NUMA_NO_NODE;
2357	}
2358
2359	if (!list_empty(&node_page_list)) {
2360		nr_reclaimed += shrink_page_list(&node_page_list,
2361						NODE_DATA(nid),
2362						&sc, &dummy_stat, false);
2363		while (!list_empty(&node_page_list)) {
2364			page = lru_to_page(&node_page_list);
2365			list_del(&page->lru);
2366			putback_lru_page(page);
2367		}
2368	}
 
 
 
 
 
 
 
 
2369
2370	memalloc_noreclaim_restore(noreclaim_flag);
 
2371
2372	return nr_reclaimed;
 
 
 
 
 
2373}
2374
2375static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2376				 struct lruvec *lruvec, struct scan_control *sc)
2377{
2378	if (is_active_lru(lru)) {
2379		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2380			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2381		else
2382			sc->skipped_deactivate = 1;
2383		return 0;
2384	}
2385
2386	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2387}
2388
2389/*
2390 * The inactive anon list should be small enough that the VM never has
2391 * to do too much work.
2392 *
2393 * The inactive file list should be small enough to leave most memory
2394 * to the established workingset on the scan-resistant active list,
2395 * but large enough to avoid thrashing the aggregate readahead window.
2396 *
2397 * Both inactive lists should also be large enough that each inactive
2398 * page has a chance to be referenced again before it is reclaimed.
2399 *
2400 * If that fails and refaulting is observed, the inactive list grows.
2401 *
2402 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2403 * on this LRU, maintained by the pageout code. An inactive_ratio
2404 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2405 *
2406 * total     target    max
2407 * memory    ratio     inactive
2408 * -------------------------------------
2409 *   10MB       1         5MB
2410 *  100MB       1        50MB
2411 *    1GB       3       250MB
2412 *   10GB      10       0.9GB
2413 *  100GB      31         3GB
2414 *    1TB     101        10GB
2415 *   10TB     320        32GB
2416 */
2417static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2418{
2419	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2420	unsigned long inactive, active;
2421	unsigned long inactive_ratio;
2422	unsigned long gb;
2423
2424	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2425	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2426
2427	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2428	if (gb)
2429		inactive_ratio = int_sqrt(10 * gb);
2430	else
2431		inactive_ratio = 1;
2432
2433	return inactive * inactive_ratio < active;
2434}
2435
2436enum scan_balance {
2437	SCAN_EQUAL,
2438	SCAN_FRACT,
2439	SCAN_ANON,
2440	SCAN_FILE,
2441};
2442
2443/*
2444 * Determine how aggressively the anon and file LRU lists should be
2445 * scanned.  The relative value of each set of LRU lists is determined
2446 * by looking at the fraction of the pages scanned we did rotate back
2447 * onto the active list instead of evict.
2448 *
2449 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2450 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2451 */
2452static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2453			   unsigned long *nr)
2454{
2455	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2456	unsigned long anon_cost, file_cost, total_cost;
2457	int swappiness = mem_cgroup_swappiness(memcg);
2458	u64 fraction[ANON_AND_FILE];
2459	u64 denominator = 0;	/* gcc */
2460	enum scan_balance scan_balance;
2461	unsigned long ap, fp;
 
 
2462	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463
2464	/* If we have no swap space, do not bother scanning anon pages. */
2465	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2466		scan_balance = SCAN_FILE;
 
 
 
2467		goto out;
2468	}
2469
2470	/*
2471	 * Global reclaim will swap to prevent OOM even with no
2472	 * swappiness, but memcg users want to use this knob to
2473	 * disable swapping for individual groups completely when
2474	 * using the memory controller's swap limit feature would be
2475	 * too expensive.
2476	 */
2477	if (cgroup_reclaim(sc) && !swappiness) {
2478		scan_balance = SCAN_FILE;
2479		goto out;
 
 
 
 
 
2480	}
2481
2482	/*
2483	 * Do not apply any pressure balancing cleverness when the
2484	 * system is close to OOM, scan both anon and file equally
2485	 * (unless the swappiness setting disagrees with swapping).
2486	 */
2487	if (!sc->priority && swappiness) {
2488		scan_balance = SCAN_EQUAL;
2489		goto out;
2490	}
2491
2492	/*
2493	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
 
 
2494	 */
2495	if (sc->file_is_tiny) {
2496		scan_balance = SCAN_ANON;
2497		goto out;
 
2498	}
2499
2500	/*
2501	 * If there is enough inactive page cache, we do not reclaim
2502	 * anything from the anonymous working right now.
2503	 */
2504	if (sc->cache_trim_mode) {
2505		scan_balance = SCAN_FILE;
2506		goto out;
2507	}
2508
2509	scan_balance = SCAN_FRACT;
2510	/*
2511	 * Calculate the pressure balance between anon and file pages.
2512	 *
2513	 * The amount of pressure we put on each LRU is inversely
2514	 * proportional to the cost of reclaiming each list, as
2515	 * determined by the share of pages that are refaulting, times
2516	 * the relative IO cost of bringing back a swapped out
2517	 * anonymous page vs reloading a filesystem page (swappiness).
2518	 *
2519	 * Although we limit that influence to ensure no list gets
2520	 * left behind completely: at least a third of the pressure is
2521	 * applied, before swappiness.
2522	 *
2523	 * With swappiness at 100, anon and file have equal IO cost.
2524	 */
2525	total_cost = sc->anon_cost + sc->file_cost;
2526	anon_cost = total_cost + sc->anon_cost;
2527	file_cost = total_cost + sc->file_cost;
2528	total_cost = anon_cost + file_cost;
2529
2530	ap = swappiness * (total_cost + 1);
2531	ap /= anon_cost + 1;
2532
2533	fp = (200 - swappiness) * (total_cost + 1);
2534	fp /= file_cost + 1;
 
2535
2536	fraction[0] = ap;
2537	fraction[1] = fp;
2538	denominator = ap + fp;
2539out:
2540	for_each_evictable_lru(lru) {
2541		int file = is_file_lru(lru);
2542		unsigned long lruvec_size;
2543		unsigned long low, min;
2544		unsigned long scan;
2545
2546		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548				      &min, &low);
2549
2550		if (min || low) {
2551			/*
2552			 * Scale a cgroup's reclaim pressure by proportioning
2553			 * its current usage to its memory.low or memory.min
2554			 * setting.
2555			 *
2556			 * This is important, as otherwise scanning aggression
2557			 * becomes extremely binary -- from nothing as we
2558			 * approach the memory protection threshold, to totally
2559			 * nominal as we exceed it.  This results in requiring
2560			 * setting extremely liberal protection thresholds. It
2561			 * also means we simply get no protection at all if we
2562			 * set it too low, which is not ideal.
2563			 *
2564			 * If there is any protection in place, we reduce scan
2565			 * pressure by how much of the total memory used is
2566			 * within protection thresholds.
2567			 *
2568			 * There is one special case: in the first reclaim pass,
2569			 * we skip over all groups that are within their low
2570			 * protection. If that fails to reclaim enough pages to
2571			 * satisfy the reclaim goal, we come back and override
2572			 * the best-effort low protection. However, we still
2573			 * ideally want to honor how well-behaved groups are in
2574			 * that case instead of simply punishing them all
2575			 * equally. As such, we reclaim them based on how much
2576			 * memory they are using, reducing the scan pressure
2577			 * again by how much of the total memory used is under
2578			 * hard protection.
2579			 */
2580			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581			unsigned long protection;
2582
2583			/* memory.low scaling, make sure we retry before OOM */
2584			if (!sc->memcg_low_reclaim && low > min) {
2585				protection = low;
2586				sc->memcg_low_skipped = 1;
2587			} else {
2588				protection = min;
2589			}
2590
2591			/* Avoid TOCTOU with earlier protection check */
2592			cgroup_size = max(cgroup_size, protection);
2593
2594			scan = lruvec_size - lruvec_size * protection /
2595				(cgroup_size + 1);
2596
2597			/*
2598			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599			 * reclaim moving forwards, avoiding decrementing
2600			 * sc->priority further than desirable.
2601			 */
2602			scan = max(scan, SWAP_CLUSTER_MAX);
2603		} else {
2604			scan = lruvec_size;
2605		}
2606
2607		scan >>= sc->priority;
2608
2609		/*
2610		 * If the cgroup's already been deleted, make sure to
2611		 * scrape out the remaining cache.
2612		 */
2613		if (!scan && !mem_cgroup_online(memcg))
2614			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615
2616		switch (scan_balance) {
2617		case SCAN_EQUAL:
2618			/* Scan lists relative to size */
2619			break;
2620		case SCAN_FRACT:
2621			/*
2622			 * Scan types proportional to swappiness and
2623			 * their relative recent reclaim efficiency.
2624			 * Make sure we don't miss the last page on
2625			 * the offlined memory cgroups because of a
2626			 * round-off error.
2627			 */
2628			scan = mem_cgroup_online(memcg) ?
2629			       div64_u64(scan * fraction[file], denominator) :
2630			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631						  denominator);
2632			break;
2633		case SCAN_FILE:
2634		case SCAN_ANON:
2635			/* Scan one type exclusively */
2636			if ((scan_balance == SCAN_FILE) != file)
2637				scan = 0;
2638			break;
2639		default:
2640			/* Look ma, no brain */
2641			BUG();
2642		}
2643
2644		nr[lru] = scan;
2645	}
2646}
2647
2648static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2649{
2650	unsigned long nr[NR_LRU_LISTS];
2651	unsigned long targets[NR_LRU_LISTS];
2652	unsigned long nr_to_scan;
2653	enum lru_list lru;
2654	unsigned long nr_reclaimed = 0;
2655	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2656	struct blk_plug plug;
2657	bool scan_adjusted;
2658
2659	get_scan_count(lruvec, sc, nr);
2660
2661	/* Record the original scan target for proportional adjustments later */
2662	memcpy(targets, nr, sizeof(nr));
2663
2664	/*
2665	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2666	 * event that can occur when there is little memory pressure e.g.
2667	 * multiple streaming readers/writers. Hence, we do not abort scanning
2668	 * when the requested number of pages are reclaimed when scanning at
2669	 * DEF_PRIORITY on the assumption that the fact we are direct
2670	 * reclaiming implies that kswapd is not keeping up and it is best to
2671	 * do a batch of work at once. For memcg reclaim one check is made to
2672	 * abort proportional reclaim if either the file or anon lru has already
2673	 * dropped to zero at the first pass.
2674	 */
2675	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2676			 sc->priority == DEF_PRIORITY);
2677
2678	blk_start_plug(&plug);
2679	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2680					nr[LRU_INACTIVE_FILE]) {
2681		unsigned long nr_anon, nr_file, percentage;
2682		unsigned long nr_scanned;
2683
2684		for_each_evictable_lru(lru) {
2685			if (nr[lru]) {
2686				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2687				nr[lru] -= nr_to_scan;
2688
2689				nr_reclaimed += shrink_list(lru, nr_to_scan,
2690							    lruvec, sc);
2691			}
2692		}
2693
2694		cond_resched();
2695
2696		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2697			continue;
2698
2699		/*
2700		 * For kswapd and memcg, reclaim at least the number of pages
2701		 * requested. Ensure that the anon and file LRUs are scanned
2702		 * proportionally what was requested by get_scan_count(). We
2703		 * stop reclaiming one LRU and reduce the amount scanning
2704		 * proportional to the original scan target.
2705		 */
2706		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2707		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2708
2709		/*
2710		 * It's just vindictive to attack the larger once the smaller
2711		 * has gone to zero.  And given the way we stop scanning the
2712		 * smaller below, this makes sure that we only make one nudge
2713		 * towards proportionality once we've got nr_to_reclaim.
2714		 */
2715		if (!nr_file || !nr_anon)
2716			break;
2717
2718		if (nr_file > nr_anon) {
2719			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2720						targets[LRU_ACTIVE_ANON] + 1;
2721			lru = LRU_BASE;
2722			percentage = nr_anon * 100 / scan_target;
2723		} else {
2724			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2725						targets[LRU_ACTIVE_FILE] + 1;
2726			lru = LRU_FILE;
2727			percentage = nr_file * 100 / scan_target;
2728		}
2729
2730		/* Stop scanning the smaller of the LRU */
2731		nr[lru] = 0;
2732		nr[lru + LRU_ACTIVE] = 0;
2733
2734		/*
2735		 * Recalculate the other LRU scan count based on its original
2736		 * scan target and the percentage scanning already complete
2737		 */
2738		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2739		nr_scanned = targets[lru] - nr[lru];
2740		nr[lru] = targets[lru] * (100 - percentage) / 100;
2741		nr[lru] -= min(nr[lru], nr_scanned);
2742
2743		lru += LRU_ACTIVE;
2744		nr_scanned = targets[lru] - nr[lru];
2745		nr[lru] = targets[lru] * (100 - percentage) / 100;
2746		nr[lru] -= min(nr[lru], nr_scanned);
2747
2748		scan_adjusted = true;
2749	}
2750	blk_finish_plug(&plug);
2751	sc->nr_reclaimed += nr_reclaimed;
2752
2753	/*
2754	 * Even if we did not try to evict anon pages at all, we want to
2755	 * rebalance the anon lru active/inactive ratio.
2756	 */
2757	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2758		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2759				   sc, LRU_ACTIVE_ANON);
2760}
2761
2762/* Use reclaim/compaction for costly allocs or under memory pressure */
2763static bool in_reclaim_compaction(struct scan_control *sc)
2764{
2765	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2766			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2767			 sc->priority < DEF_PRIORITY - 2))
2768		return true;
2769
2770	return false;
2771}
2772
2773/*
2774 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2775 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2776 * true if more pages should be reclaimed such that when the page allocator
2777 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2778 * It will give up earlier than that if there is difficulty reclaiming pages.
2779 */
2780static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2781					unsigned long nr_reclaimed,
 
2782					struct scan_control *sc)
2783{
2784	unsigned long pages_for_compaction;
2785	unsigned long inactive_lru_pages;
2786	int z;
2787
2788	/* If not in reclaim/compaction mode, stop */
2789	if (!in_reclaim_compaction(sc))
2790		return false;
2791
2792	/*
2793	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2794	 * number of pages that were scanned. This will return to the caller
2795	 * with the risk reclaim/compaction and the resulting allocation attempt
2796	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2797	 * allocations through requiring that the full LRU list has been scanned
2798	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2799	 * scan, but that approximation was wrong, and there were corner cases
2800	 * where always a non-zero amount of pages were scanned.
2801	 */
2802	if (!nr_reclaimed)
2803		return false;
2804
2805	/* If compaction would go ahead or the allocation would succeed, stop */
2806	for (z = 0; z <= sc->reclaim_idx; z++) {
2807		struct zone *zone = &pgdat->node_zones[z];
2808		if (!managed_zone(zone))
2809			continue;
2810
2811		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2812		case COMPACT_SUCCESS:
2813		case COMPACT_CONTINUE:
2814			return false;
2815		default:
2816			/* check next zone */
2817			;
2818		}
2819	}
2820
2821	/*
2822	 * If we have not reclaimed enough pages for compaction and the
2823	 * inactive lists are large enough, continue reclaiming
2824	 */
2825	pages_for_compaction = compact_gap(sc->order);
2826	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2827	if (get_nr_swap_pages() > 0)
2828		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2829
2830	return inactive_lru_pages > pages_for_compaction;
2831}
2832
2833static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2834{
2835	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2836	struct mem_cgroup *memcg;
2837
2838	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2839	do {
2840		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2841		unsigned long reclaimed;
2842		unsigned long scanned;
2843
2844		/*
2845		 * This loop can become CPU-bound when target memcgs
2846		 * aren't eligible for reclaim - either because they
2847		 * don't have any reclaimable pages, or because their
2848		 * memory is explicitly protected. Avoid soft lockups.
2849		 */
2850		cond_resched();
2851
2852		mem_cgroup_calculate_protection(target_memcg, memcg);
2853
2854		if (mem_cgroup_below_min(memcg)) {
2855			/*
2856			 * Hard protection.
2857			 * If there is no reclaimable memory, OOM.
2858			 */
2859			continue;
2860		} else if (mem_cgroup_below_low(memcg)) {
2861			/*
2862			 * Soft protection.
2863			 * Respect the protection only as long as
2864			 * there is an unprotected supply
2865			 * of reclaimable memory from other cgroups.
2866			 */
2867			if (!sc->memcg_low_reclaim) {
2868				sc->memcg_low_skipped = 1;
2869				continue;
2870			}
2871			memcg_memory_event(memcg, MEMCG_LOW);
2872		}
2873
2874		reclaimed = sc->nr_reclaimed;
2875		scanned = sc->nr_scanned;
2876
2877		shrink_lruvec(lruvec, sc);
2878
2879		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2880			    sc->priority);
2881
2882		/* Record the group's reclaim efficiency */
2883		vmpressure(sc->gfp_mask, memcg, false,
2884			   sc->nr_scanned - scanned,
2885			   sc->nr_reclaimed - reclaimed);
2886
2887	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
 
 
 
 
 
 
 
2888}
2889
2890static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
2891{
2892	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2893	unsigned long nr_reclaimed, nr_scanned;
2894	struct lruvec *target_lruvec;
2895	bool reclaimable = false;
2896	unsigned long file;
2897
2898	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899
2900again:
2901	memset(&sc->nr, 0, sizeof(sc->nr));
2902
2903	nr_reclaimed = sc->nr_reclaimed;
 
2904	nr_scanned = sc->nr_scanned;
 
2905
2906	/*
2907	 * Determine the scan balance between anon and file LRUs.
2908	 */
2909	spin_lock_irq(&target_lruvec->lru_lock);
2910	sc->anon_cost = target_lruvec->anon_cost;
2911	sc->file_cost = target_lruvec->file_cost;
2912	spin_unlock_irq(&target_lruvec->lru_lock);
2913
2914	/*
2915	 * Target desirable inactive:active list ratios for the anon
2916	 * and file LRU lists.
2917	 */
2918	if (!sc->force_deactivate) {
2919		unsigned long refaults;
2920
2921		refaults = lruvec_page_state(target_lruvec,
2922				WORKINGSET_ACTIVATE_ANON);
2923		if (refaults != target_lruvec->refaults[0] ||
2924			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2925			sc->may_deactivate |= DEACTIVATE_ANON;
2926		else
2927			sc->may_deactivate &= ~DEACTIVATE_ANON;
2928
 
 
 
 
2929		/*
2930		 * When refaults are being observed, it means a new
2931		 * workingset is being established. Deactivate to get
2932		 * rid of any stale active pages quickly.
 
 
 
2933		 */
2934		refaults = lruvec_page_state(target_lruvec,
2935				WORKINGSET_ACTIVATE_FILE);
2936		if (refaults != target_lruvec->refaults[1] ||
2937		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938			sc->may_deactivate |= DEACTIVATE_FILE;
2939		else
2940			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941	} else
2942		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943
2944	/*
2945	 * If we have plenty of inactive file pages that aren't
2946	 * thrashing, try to reclaim those first before touching
2947	 * anonymous pages.
2948	 */
2949	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951		sc->cache_trim_mode = 1;
2952	else
2953		sc->cache_trim_mode = 0;
2954
2955	/*
2956	 * Prevent the reclaimer from falling into the cache trap: as
2957	 * cache pages start out inactive, every cache fault will tip
2958	 * the scan balance towards the file LRU.  And as the file LRU
2959	 * shrinks, so does the window for rotation from references.
2960	 * This means we have a runaway feedback loop where a tiny
2961	 * thrashing file LRU becomes infinitely more attractive than
2962	 * anon pages.  Try to detect this based on file LRU size.
2963	 */
2964	if (!cgroup_reclaim(sc)) {
2965		unsigned long total_high_wmark = 0;
2966		unsigned long free, anon;
2967		int z;
2968
2969		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972
2973		for (z = 0; z < MAX_NR_ZONES; z++) {
2974			struct zone *zone = &pgdat->node_zones[z];
2975			if (!managed_zone(zone))
2976				continue;
2977
2978			total_high_wmark += high_wmark_pages(zone);
2979		}
2980
2981		/*
2982		 * Consider anon: if that's low too, this isn't a
2983		 * runaway file reclaim problem, but rather just
2984		 * extreme pressure. Reclaim as per usual then.
2985		 */
2986		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2987
2988		sc->file_is_tiny =
2989			file + free <= total_high_wmark &&
2990			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2991			anon >> sc->priority;
2992	}
2993
2994	shrink_node_memcgs(pgdat, sc);
 
2995
2996	if (reclaim_state) {
2997		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2998		reclaim_state->reclaimed_slab = 0;
2999	}
 
 
 
 
3000
3001	/* Record the subtree's reclaim efficiency */
3002	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3003		   sc->nr_scanned - nr_scanned,
3004		   sc->nr_reclaimed - nr_reclaimed);
3005
3006	if (sc->nr_reclaimed - nr_reclaimed)
3007		reclaimable = true;
3008
3009	if (current_is_kswapd()) {
3010		/*
3011		 * If reclaim is isolating dirty pages under writeback,
3012		 * it implies that the long-lived page allocation rate
3013		 * is exceeding the page laundering rate. Either the
3014		 * global limits are not being effective at throttling
3015		 * processes due to the page distribution throughout
3016		 * zones or there is heavy usage of a slow backing
3017		 * device. The only option is to throttle from reclaim
3018		 * context which is not ideal as there is no guarantee
3019		 * the dirtying process is throttled in the same way
3020		 * balance_dirty_pages() manages.
3021		 *
3022		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3023		 * count the number of pages under pages flagged for
3024		 * immediate reclaim and stall if any are encountered
3025		 * in the nr_immediate check below.
3026		 */
3027		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3028			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3029
3030		/* Allow kswapd to start writing pages during reclaim.*/
3031		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3032			set_bit(PGDAT_DIRTY, &pgdat->flags);
3033
3034		/*
3035		 * If kswapd scans pages marked for immediate
3036		 * reclaim and under writeback (nr_immediate), it
3037		 * implies that pages are cycling through the LRU
3038		 * faster than they are written so also forcibly stall.
3039		 */
3040		if (sc->nr.immediate)
3041			congestion_wait(BLK_RW_ASYNC, HZ/10);
3042	}
3043
3044	/*
3045	 * Tag a node/memcg as congested if all the dirty pages
3046	 * scanned were backed by a congested BDI and
3047	 * wait_iff_congested will stall.
3048	 *
3049	 * Legacy memcg will stall in page writeback so avoid forcibly
3050	 * stalling in wait_iff_congested().
3051	 */
3052	if ((current_is_kswapd() ||
3053	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3054	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3055		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3056
3057	/*
3058	 * Stall direct reclaim for IO completions if underlying BDIs
3059	 * and node is congested. Allow kswapd to continue until it
3060	 * starts encountering unqueued dirty pages or cycling through
3061	 * the LRU too quickly.
3062	 */
3063	if (!current_is_kswapd() && current_may_throttle() &&
3064	    !sc->hibernation_mode &&
3065	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3066		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3067
3068	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3069				    sc))
3070		goto again;
3071
3072	/*
3073	 * Kswapd gives up on balancing particular nodes after too
3074	 * many failures to reclaim anything from them and goes to
3075	 * sleep. On reclaim progress, reset the failure counter. A
3076	 * successful direct reclaim run will revive a dormant kswapd.
3077	 */
3078	if (reclaimable)
3079		pgdat->kswapd_failures = 0;
3080}
3081
3082/*
3083 * Returns true if compaction should go ahead for a costly-order request, or
3084 * the allocation would already succeed without compaction. Return false if we
3085 * should reclaim first.
3086 */
3087static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3088{
3089	unsigned long watermark;
3090	enum compact_result suitable;
3091
3092	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3093	if (suitable == COMPACT_SUCCESS)
3094		/* Allocation should succeed already. Don't reclaim. */
3095		return true;
3096	if (suitable == COMPACT_SKIPPED)
3097		/* Compaction cannot yet proceed. Do reclaim. */
3098		return false;
3099
3100	/*
3101	 * Compaction is already possible, but it takes time to run and there
3102	 * are potentially other callers using the pages just freed. So proceed
3103	 * with reclaim to make a buffer of free pages available to give
3104	 * compaction a reasonable chance of completing and allocating the page.
3105	 * Note that we won't actually reclaim the whole buffer in one attempt
3106	 * as the target watermark in should_continue_reclaim() is lower. But if
3107	 * we are already above the high+gap watermark, don't reclaim at all.
 
 
 
 
 
 
 
3108	 */
3109	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
 
3110
3111	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
 
 
 
 
3112}
3113
3114/*
3115 * This is the direct reclaim path, for page-allocating processes.  We only
3116 * try to reclaim pages from zones which will satisfy the caller's allocation
3117 * request.
3118 *
 
 
 
 
 
 
 
 
3119 * If a zone is deemed to be full of pinned pages then just give it a light
3120 * scan then give up on it.
 
 
 
 
 
3121 */
3122static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3123{
3124	struct zoneref *z;
3125	struct zone *zone;
3126	unsigned long nr_soft_reclaimed;
3127	unsigned long nr_soft_scanned;
3128	gfp_t orig_mask;
3129	pg_data_t *last_pgdat = NULL;
3130
3131	/*
3132	 * If the number of buffer_heads in the machine exceeds the maximum
3133	 * allowed level, force direct reclaim to scan the highmem zone as
3134	 * highmem pages could be pinning lowmem pages storing buffer_heads
3135	 */
3136	orig_mask = sc->gfp_mask;
3137	if (buffer_heads_over_limit) {
3138		sc->gfp_mask |= __GFP_HIGHMEM;
3139		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3140	}
3141
3142	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3143					sc->reclaim_idx, sc->nodemask) {
 
 
3144		/*
3145		 * Take care memory controller reclaiming has small influence
3146		 * to global LRU.
3147		 */
3148		if (!cgroup_reclaim(sc)) {
3149			if (!cpuset_zone_allowed(zone,
3150						 GFP_KERNEL | __GFP_HARDWALL))
3151				continue;
3152
3153			/*
3154			 * If we already have plenty of memory free for
3155			 * compaction in this zone, don't free any more.
3156			 * Even though compaction is invoked for any
3157			 * non-zero order, only frequent costly order
3158			 * reclamation is disruptive enough to become a
3159			 * noticeable problem, like transparent huge
3160			 * page allocations.
3161			 */
3162			if (IS_ENABLED(CONFIG_COMPACTION) &&
3163			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3164			    compaction_ready(zone, sc)) {
3165				sc->compaction_ready = true;
3166				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167			}
3168
3169			/*
3170			 * Shrink each node in the zonelist once. If the
3171			 * zonelist is ordered by zone (not the default) then a
3172			 * node may be shrunk multiple times but in that case
3173			 * the user prefers lower zones being preserved.
3174			 */
3175			if (zone->zone_pgdat == last_pgdat)
3176				continue;
3177
3178			/*
3179			 * This steals pages from memory cgroups over softlimit
3180			 * and returns the number of reclaimed pages and
3181			 * scanned pages. This works for global memory pressure
3182			 * and balancing, not for a memcg's limit.
3183			 */
3184			nr_soft_scanned = 0;
3185			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3186						sc->order, sc->gfp_mask,
3187						&nr_soft_scanned);
3188			sc->nr_reclaimed += nr_soft_reclaimed;
3189			sc->nr_scanned += nr_soft_scanned;
3190			/* need some check for avoid more shrink_zone() */
3191		}
3192
3193		/* See comment about same check for global reclaim above */
3194		if (zone->zone_pgdat == last_pgdat)
3195			continue;
3196		last_pgdat = zone->zone_pgdat;
3197		shrink_node(zone->zone_pgdat, sc);
3198	}
3199
3200	/*
3201	 * Restore to original mask to avoid the impact on the caller if we
3202	 * promoted it to __GFP_HIGHMEM.
3203	 */
3204	sc->gfp_mask = orig_mask;
3205}
3206
3207static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
 
 
 
 
 
 
 
3208{
3209	struct lruvec *target_lruvec;
3210	unsigned long refaults;
3211
3212	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3213	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3214	target_lruvec->refaults[0] = refaults;
3215	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3216	target_lruvec->refaults[1] = refaults;
 
 
 
 
 
 
3217}
3218
3219/*
3220 * This is the main entry point to direct page reclaim.
3221 *
3222 * If a full scan of the inactive list fails to free enough memory then we
3223 * are "out of memory" and something needs to be killed.
3224 *
3225 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3226 * high - the zone may be full of dirty or under-writeback pages, which this
3227 * caller can't do much about.  We kick the writeback threads and take explicit
3228 * naps in the hope that some of these pages can be written.  But if the
3229 * allocating task holds filesystem locks which prevent writeout this might not
3230 * work, and the allocation attempt will fail.
3231 *
3232 * returns:	0, if no pages reclaimed
3233 * 		else, the number of pages reclaimed
3234 */
3235static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3236					  struct scan_control *sc)
 
3237{
3238	int initial_priority = sc->priority;
3239	pg_data_t *last_pgdat;
3240	struct zoneref *z;
3241	struct zone *zone;
3242retry:
 
 
3243	delayacct_freepages_start();
3244
3245	if (!cgroup_reclaim(sc))
3246		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3247
3248	do {
3249		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3250				sc->priority);
3251		sc->nr_scanned = 0;
3252		shrink_zones(zonelist, sc);
3253
3254		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3255			break;
3256
3257		if (sc->compaction_ready)
3258			break;
3259
3260		/*
3261		 * If we're getting trouble reclaiming, start doing
3262		 * writepage even in laptop mode.
3263		 */
3264		if (sc->priority < DEF_PRIORITY - 2)
3265			sc->may_writepage = 1;
3266	} while (--sc->priority >= 0);
 
 
 
3267
3268	last_pgdat = NULL;
3269	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3270					sc->nodemask) {
3271		if (zone->zone_pgdat == last_pgdat)
3272			continue;
3273		last_pgdat = zone->zone_pgdat;
3274
3275		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
 
 
 
 
 
 
 
 
3276
3277		if (cgroup_reclaim(sc)) {
3278			struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
3279
3280			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3281						   zone->zone_pgdat);
3282			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
 
 
 
 
 
 
3283		}
3284	}
3285
 
3286	delayacct_freepages_end();
3287
3288	if (sc->nr_reclaimed)
3289		return sc->nr_reclaimed;
3290
3291	/* Aborted reclaim to try compaction? don't OOM, then */
3292	if (sc->compaction_ready)
3293		return 1;
3294
3295	/*
3296	 * We make inactive:active ratio decisions based on the node's
3297	 * composition of memory, but a restrictive reclaim_idx or a
3298	 * memory.low cgroup setting can exempt large amounts of
3299	 * memory from reclaim. Neither of which are very common, so
3300	 * instead of doing costly eligibility calculations of the
3301	 * entire cgroup subtree up front, we assume the estimates are
3302	 * good, and retry with forcible deactivation if that fails.
3303	 */
3304	if (sc->skipped_deactivate) {
3305		sc->priority = initial_priority;
3306		sc->force_deactivate = 1;
3307		sc->skipped_deactivate = 0;
3308		goto retry;
3309	}
3310
3311	/* Untapped cgroup reserves?  Don't OOM, retry. */
3312	if (sc->memcg_low_skipped) {
3313		sc->priority = initial_priority;
3314		sc->force_deactivate = 0;
3315		sc->memcg_low_reclaim = 1;
3316		sc->memcg_low_skipped = 0;
3317		goto retry;
3318	}
3319
3320	return 0;
3321}
3322
3323static bool allow_direct_reclaim(pg_data_t *pgdat)
3324{
3325	struct zone *zone;
3326	unsigned long pfmemalloc_reserve = 0;
3327	unsigned long free_pages = 0;
3328	int i;
3329	bool wmark_ok;
3330
3331	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3332		return true;
3333
3334	for (i = 0; i <= ZONE_NORMAL; i++) {
3335		zone = &pgdat->node_zones[i];
3336		if (!managed_zone(zone))
3337			continue;
3338
3339		if (!zone_reclaimable_pages(zone))
3340			continue;
3341
3342		pfmemalloc_reserve += min_wmark_pages(zone);
3343		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3344	}
3345
3346	/* If there are no reserves (unexpected config) then do not throttle */
3347	if (!pfmemalloc_reserve)
3348		return true;
3349
3350	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3351
3352	/* kswapd must be awake if processes are being throttled */
3353	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3354		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3355			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3356
3357		wake_up_interruptible(&pgdat->kswapd_wait);
3358	}
3359
3360	return wmark_ok;
3361}
3362
3363/*
3364 * Throttle direct reclaimers if backing storage is backed by the network
3365 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3366 * depleted. kswapd will continue to make progress and wake the processes
3367 * when the low watermark is reached.
3368 *
3369 * Returns true if a fatal signal was delivered during throttling. If this
3370 * happens, the page allocator should not consider triggering the OOM killer.
3371 */
3372static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3373					nodemask_t *nodemask)
3374{
3375	struct zoneref *z;
3376	struct zone *zone;
3377	pg_data_t *pgdat = NULL;
3378
3379	/*
3380	 * Kernel threads should not be throttled as they may be indirectly
3381	 * responsible for cleaning pages necessary for reclaim to make forward
3382	 * progress. kjournald for example may enter direct reclaim while
3383	 * committing a transaction where throttling it could forcing other
3384	 * processes to block on log_wait_commit().
3385	 */
3386	if (current->flags & PF_KTHREAD)
3387		goto out;
3388
3389	/*
3390	 * If a fatal signal is pending, this process should not throttle.
3391	 * It should return quickly so it can exit and free its memory
3392	 */
3393	if (fatal_signal_pending(current))
3394		goto out;
3395
3396	/*
3397	 * Check if the pfmemalloc reserves are ok by finding the first node
3398	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3399	 * GFP_KERNEL will be required for allocating network buffers when
3400	 * swapping over the network so ZONE_HIGHMEM is unusable.
3401	 *
3402	 * Throttling is based on the first usable node and throttled processes
3403	 * wait on a queue until kswapd makes progress and wakes them. There
3404	 * is an affinity then between processes waking up and where reclaim
3405	 * progress has been made assuming the process wakes on the same node.
3406	 * More importantly, processes running on remote nodes will not compete
3407	 * for remote pfmemalloc reserves and processes on different nodes
3408	 * should make reasonable progress.
3409	 */
3410	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3411					gfp_zone(gfp_mask), nodemask) {
3412		if (zone_idx(zone) > ZONE_NORMAL)
3413			continue;
3414
3415		/* Throttle based on the first usable node */
3416		pgdat = zone->zone_pgdat;
3417		if (allow_direct_reclaim(pgdat))
3418			goto out;
3419		break;
3420	}
3421
3422	/* If no zone was usable by the allocation flags then do not throttle */
3423	if (!pgdat)
3424		goto out;
3425
3426	/* Account for the throttling */
3427	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3428
3429	/*
3430	 * If the caller cannot enter the filesystem, it's possible that it
3431	 * is due to the caller holding an FS lock or performing a journal
3432	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3433	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3434	 * blocked waiting on the same lock. Instead, throttle for up to a
3435	 * second before continuing.
3436	 */
3437	if (!(gfp_mask & __GFP_FS)) {
3438		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3439			allow_direct_reclaim(pgdat), HZ);
3440
3441		goto check_pending;
3442	}
3443
3444	/* Throttle until kswapd wakes the process */
3445	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3446		allow_direct_reclaim(pgdat));
3447
3448check_pending:
3449	if (fatal_signal_pending(current))
3450		return true;
3451
3452out:
3453	return false;
3454}
3455
3456unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3457				gfp_t gfp_mask, nodemask_t *nodemask)
3458{
3459	unsigned long nr_reclaimed;
3460	struct scan_control sc = {
3461		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3462		.gfp_mask = current_gfp_context(gfp_mask),
3463		.reclaim_idx = gfp_zone(gfp_mask),
3464		.order = order,
3465		.nodemask = nodemask,
3466		.priority = DEF_PRIORITY,
3467		.may_writepage = !laptop_mode,
 
3468		.may_unmap = 1,
3469		.may_swap = 1,
 
 
 
 
 
 
 
3470	};
3471
3472	/*
3473	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3474	 * Confirm they are large enough for max values.
3475	 */
3476	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3477	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3478	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3479
3480	/*
3481	 * Do not enter reclaim if fatal signal was delivered while throttled.
3482	 * 1 is returned so that the page allocator does not OOM kill at this
3483	 * point.
3484	 */
3485	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3486		return 1;
3487
3488	set_task_reclaim_state(current, &sc.reclaim_state);
3489	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3490
3491	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3492
3493	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3494	set_task_reclaim_state(current, NULL);
3495
3496	return nr_reclaimed;
3497}
3498
3499#ifdef CONFIG_MEMCG
3500
3501/* Only used by soft limit reclaim. Do not reuse for anything else. */
3502unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3503						gfp_t gfp_mask, bool noswap,
3504						pg_data_t *pgdat,
3505						unsigned long *nr_scanned)
3506{
3507	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3508	struct scan_control sc = {
 
3509		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3510		.target_mem_cgroup = memcg,
3511		.may_writepage = !laptop_mode,
3512		.may_unmap = 1,
3513		.reclaim_idx = MAX_NR_ZONES - 1,
3514		.may_swap = !noswap,
 
 
 
3515	};
3516
3517	WARN_ON_ONCE(!current->reclaim_state);
3518
3519	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3520			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3521
3522	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
3523						      sc.gfp_mask);
3524
3525	/*
3526	 * NOTE: Although we can get the priority field, using it
3527	 * here is not a good idea, since it limits the pages we can scan.
3528	 * if we don't reclaim here, the shrink_node from balance_pgdat
3529	 * will pick up pages from other mem cgroup's as well. We hack
3530	 * the priority and make it zero.
3531	 */
3532	shrink_lruvec(lruvec, &sc);
3533
3534	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3535
3536	*nr_scanned = sc.nr_scanned;
3537
3538	return sc.nr_reclaimed;
3539}
3540
3541unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3542					   unsigned long nr_pages,
3543					   gfp_t gfp_mask,
3544					   bool may_swap)
3545{
 
3546	unsigned long nr_reclaimed;
3547	unsigned int noreclaim_flag;
3548	struct scan_control sc = {
3549		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3550		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3551				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3552		.reclaim_idx = MAX_NR_ZONES - 1,
3553		.target_mem_cgroup = memcg,
3554		.priority = DEF_PRIORITY,
3555		.may_writepage = !laptop_mode,
3556		.may_unmap = 1,
3557		.may_swap = may_swap,
 
 
 
 
 
 
 
 
 
 
3558	};
 
3559	/*
3560	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3561	 * equal pressure on all the nodes. This is based on the assumption that
3562	 * the reclaim does not bail out early.
3563	 */
3564	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
3565
3566	set_task_reclaim_state(current, &sc.reclaim_state);
3567	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3568	noreclaim_flag = memalloc_noreclaim_save();
3569
3570	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3571
3572	memalloc_noreclaim_restore(noreclaim_flag);
3573	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3574	set_task_reclaim_state(current, NULL);
3575
3576	return nr_reclaimed;
3577}
3578#endif
3579
3580static void age_active_anon(struct pglist_data *pgdat,
3581				struct scan_control *sc)
3582{
3583	struct mem_cgroup *memcg;
3584	struct lruvec *lruvec;
3585
3586	if (!total_swap_pages)
3587		return;
3588
3589	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3590	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3591		return;
3592
3593	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3594	do {
3595		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3596		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3597				   sc, LRU_ACTIVE_ANON);
3598		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3599	} while (memcg);
3600}
3601
3602static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3603{
3604	int i;
3605	struct zone *zone;
3606
3607	/*
3608	 * Check for watermark boosts top-down as the higher zones
3609	 * are more likely to be boosted. Both watermarks and boosts
3610	 * should not be checked at the same time as reclaim would
3611	 * start prematurely when there is no boosting and a lower
3612	 * zone is balanced.
3613	 */
3614	for (i = highest_zoneidx; i >= 0; i--) {
3615		zone = pgdat->node_zones + i;
3616		if (!managed_zone(zone))
3617			continue;
3618
3619		if (zone->watermark_boost)
3620			return true;
3621	}
3622
3623	return false;
 
3624}
3625
3626/*
3627 * Returns true if there is an eligible zone balanced for the request order
3628 * and highest_zoneidx
 
 
 
 
 
 
 
 
 
 
 
 
3629 */
3630static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
 
3631{
 
3632	int i;
3633	unsigned long mark = -1;
3634	struct zone *zone;
3635
3636	/*
3637	 * Check watermarks bottom-up as lower zones are more likely to
3638	 * meet watermarks.
3639	 */
3640	for (i = 0; i <= highest_zoneidx; i++) {
3641		zone = pgdat->node_zones + i;
3642
3643		if (!managed_zone(zone))
3644			continue;
3645
3646		mark = high_wmark_pages(zone);
3647		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3648			return true;
3649	}
3650
3651	/*
3652	 * If a node has no populated zone within highest_zoneidx, it does not
3653	 * need balancing by definition. This can happen if a zone-restricted
3654	 * allocation tries to wake a remote kswapd.
3655	 */
3656	if (mark == -1)
3657		return true;
3658
3659	return false;
 
3660}
3661
3662/* Clear pgdat state for congested, dirty or under writeback. */
3663static void clear_pgdat_congested(pg_data_t *pgdat)
3664{
3665	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3666
3667	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3668	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3669	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3670}
3671
3672/*
3673 * Prepare kswapd for sleeping. This verifies that there are no processes
3674 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3675 *
3676 * Returns true if kswapd is ready to sleep
3677 */
3678static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3679				int highest_zoneidx)
3680{
3681	/*
3682	 * The throttled processes are normally woken up in balance_pgdat() as
3683	 * soon as allow_direct_reclaim() is true. But there is a potential
3684	 * race between when kswapd checks the watermarks and a process gets
3685	 * throttled. There is also a potential race if processes get
3686	 * throttled, kswapd wakes, a large process exits thereby balancing the
3687	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3688	 * the wake up checks. If kswapd is going to sleep, no process should
3689	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3690	 * the wake up is premature, processes will wake kswapd and get
3691	 * throttled again. The difference from wake ups in balance_pgdat() is
3692	 * that here we are under prepare_to_wait().
3693	 */
3694	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3695		wake_up_all(&pgdat->pfmemalloc_wait);
3696
3697	/* Hopeless node, leave it to direct reclaim */
3698	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3699		return true;
3700
3701	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3702		clear_pgdat_congested(pgdat);
3703		return true;
3704	}
3705
3706	return false;
3707}
3708
3709/*
3710 * kswapd shrinks a node of pages that are at or below the highest usable
3711 * zone that is currently unbalanced.
3712 *
3713 * Returns true if kswapd scanned at least the requested number of pages to
3714 * reclaim or if the lack of progress was due to pages under writeback.
3715 * This is used to determine if the scanning priority needs to be raised.
3716 */
3717static bool kswapd_shrink_node(pg_data_t *pgdat,
3718			       struct scan_control *sc)
3719{
3720	struct zone *zone;
3721	int z;
3722
3723	/* Reclaim a number of pages proportional to the number of zones */
3724	sc->nr_to_reclaim = 0;
3725	for (z = 0; z <= sc->reclaim_idx; z++) {
3726		zone = pgdat->node_zones + z;
3727		if (!managed_zone(zone))
3728			continue;
3729
3730		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3731	}
3732
3733	/*
3734	 * Historically care was taken to put equal pressure on all zones but
3735	 * now pressure is applied based on node LRU order.
3736	 */
3737	shrink_node(pgdat, sc);
3738
3739	/*
3740	 * Fragmentation may mean that the system cannot be rebalanced for
3741	 * high-order allocations. If twice the allocation size has been
3742	 * reclaimed then recheck watermarks only at order-0 to prevent
3743	 * excessive reclaim. Assume that a process requested a high-order
3744	 * can direct reclaim/compact.
3745	 */
3746	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3747		sc->order = 0;
3748
3749	return sc->nr_scanned >= sc->nr_to_reclaim;
3750}
3751
3752/* Page allocator PCP high watermark is lowered if reclaim is active. */
3753static inline void
3754update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3755{
3756	int i;
3757	struct zone *zone;
3758
3759	for (i = 0; i <= highest_zoneidx; i++) {
3760		zone = pgdat->node_zones + i;
3761
3762		if (!managed_zone(zone))
3763			continue;
 
3764
3765		if (active)
3766			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
 
3767		else
3768			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3769	}
3770}
3771
3772static inline void
3773set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3774{
3775	update_reclaim_active(pgdat, highest_zoneidx, true);
3776}
3777
3778static inline void
3779clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3780{
3781	update_reclaim_active(pgdat, highest_zoneidx, false);
 
 
 
 
 
3782}
3783
3784/*
3785 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3786 * that are eligible for use by the caller until at least one zone is
3787 * balanced.
3788 *
3789 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
 
 
3790 *
3791 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3792 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3793 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3794 * or lower is eligible for reclaim until at least one usable zone is
3795 * balanced.
 
3796 */
3797static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
 
3798{
 
 
3799	int i;
 
 
 
3800	unsigned long nr_soft_reclaimed;
3801	unsigned long nr_soft_scanned;
3802	unsigned long pflags;
3803	unsigned long nr_boost_reclaim;
3804	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3805	bool boosted;
3806	struct zone *zone;
3807	struct scan_control sc = {
3808		.gfp_mask = GFP_KERNEL,
3809		.order = order,
3810		.may_unmap = 1,
 
 
 
 
 
 
 
 
3811	};
3812
3813	set_task_reclaim_state(current, &sc.reclaim_state);
3814	psi_memstall_enter(&pflags);
3815	__fs_reclaim_acquire();
3816
 
 
 
3817	count_vm_event(PAGEOUTRUN);
3818
3819	/*
3820	 * Account for the reclaim boost. Note that the zone boost is left in
3821	 * place so that parallel allocations that are near the watermark will
3822	 * stall or direct reclaim until kswapd is finished.
3823	 */
3824	nr_boost_reclaim = 0;
3825	for (i = 0; i <= highest_zoneidx; i++) {
3826		zone = pgdat->node_zones + i;
3827		if (!managed_zone(zone))
3828			continue;
3829
3830		nr_boost_reclaim += zone->watermark_boost;
3831		zone_boosts[i] = zone->watermark_boost;
3832	}
3833	boosted = nr_boost_reclaim;
3834
3835restart:
3836	set_reclaim_active(pgdat, highest_zoneidx);
3837	sc.priority = DEF_PRIORITY;
3838	do {
3839		unsigned long nr_reclaimed = sc.nr_reclaimed;
3840		bool raise_priority = true;
3841		bool balanced;
3842		bool ret;
3843
3844		sc.reclaim_idx = highest_zoneidx;
 
3845
3846		/*
3847		 * If the number of buffer_heads exceeds the maximum allowed
3848		 * then consider reclaiming from all zones. This has a dual
3849		 * purpose -- on 64-bit systems it is expected that
3850		 * buffer_heads are stripped during active rotation. On 32-bit
3851		 * systems, highmem pages can pin lowmem memory and shrinking
3852		 * buffers can relieve lowmem pressure. Reclaim may still not
3853		 * go ahead if all eligible zones for the original allocation
3854		 * request are balanced to avoid excessive reclaim from kswapd.
3855		 */
3856		if (buffer_heads_over_limit) {
3857			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3858				zone = pgdat->node_zones + i;
3859				if (!managed_zone(zone))
3860					continue;
3861
3862				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863				break;
3864			}
 
 
 
 
 
 
 
 
 
3865		}
 
 
3866
3867		/*
3868		 * If the pgdat is imbalanced then ignore boosting and preserve
3869		 * the watermarks for a later time and restart. Note that the
3870		 * zone watermarks will be still reset at the end of balancing
3871		 * on the grounds that the normal reclaim should be enough to
3872		 * re-evaluate if boosting is required when kswapd next wakes.
3873		 */
3874		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3875		if (!balanced && nr_boost_reclaim) {
3876			nr_boost_reclaim = 0;
3877			goto restart;
3878		}
3879
3880		/*
3881		 * If boosting is not active then only reclaim if there are no
3882		 * eligible zones. Note that sc.reclaim_idx is not used as
3883		 * buffer_heads_over_limit may have adjusted it.
3884		 */
3885		if (!nr_boost_reclaim && balanced)
3886			goto out;
 
 
 
 
 
 
3887
3888		/* Limit the priority of boosting to avoid reclaim writeback */
3889		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3890			raise_priority = false;
3891
3892		/*
3893		 * Do not writeback or swap pages for boosted reclaim. The
3894		 * intent is to relieve pressure not issue sub-optimal IO
3895		 * from reclaim context. If no pages are reclaimed, the
3896		 * reclaim will be aborted.
3897		 */
3898		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3899		sc.may_swap = !nr_boost_reclaim;
3900
3901		/*
3902		 * Do some background aging of the anon list, to give
3903		 * pages a chance to be referenced before reclaiming. All
3904		 * pages are rotated regardless of classzone as this is
3905		 * about consistent aging.
3906		 */
3907		age_active_anon(pgdat, &sc);
3908
3909		/*
3910		 * If we're getting trouble reclaiming, start doing writepage
3911		 * even in laptop mode.
3912		 */
3913		if (sc.priority < DEF_PRIORITY - 2)
3914			sc.may_writepage = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3915
3916		/* Call soft limit reclaim before calling shrink_node. */
3917		sc.nr_scanned = 0;
3918		nr_soft_scanned = 0;
3919		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3920						sc.gfp_mask, &nr_soft_scanned);
3921		sc.nr_reclaimed += nr_soft_reclaimed;
3922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3923		/*
3924		 * There should be no need to raise the scanning priority if
3925		 * enough pages are already being scanned that that high
3926		 * watermark would be met at 100% efficiency.
3927		 */
3928		if (kswapd_shrink_node(pgdat, &sc))
3929			raise_priority = false;
 
 
 
 
3930
3931		/*
3932		 * If the low watermark is met there is no need for processes
3933		 * to be throttled on pfmemalloc_wait as they should not be
3934		 * able to safely make forward progress. Wake them
 
3935		 */
3936		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3937				allow_direct_reclaim(pgdat))
3938			wake_up_all(&pgdat->pfmemalloc_wait);
3939
3940		/* Check if kswapd should be suspending */
3941		__fs_reclaim_release();
3942		ret = try_to_freeze();
3943		__fs_reclaim_acquire();
3944		if (ret || kthread_should_stop())
3945			break;
 
 
3946
3947		/*
3948		 * Raise priority if scanning rate is too low or there was no
3949		 * progress in reclaiming pages
3950		 */
3951		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3952		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
 
 
 
3953
3954		/*
3955		 * If reclaim made no progress for a boost, stop reclaim as
3956		 * IO cannot be queued and it could be an infinite loop in
3957		 * extreme circumstances.
 
 
 
 
 
 
 
 
 
3958		 */
3959		if (nr_boost_reclaim && !nr_reclaimed)
3960			break;
3961
3962		if (raise_priority || !nr_reclaimed)
3963			sc.priority--;
3964	} while (sc.priority >= 1);
3965
3966	if (!sc.nr_reclaimed)
3967		pgdat->kswapd_failures++;
 
 
 
 
 
 
 
 
3968
3969out:
3970	clear_reclaim_active(pgdat, highest_zoneidx);
3971
3972	/* If reclaim was boosted, account for the reclaim done in this pass */
3973	if (boosted) {
3974		unsigned long flags;
3975
3976		for (i = 0; i <= highest_zoneidx; i++) {
3977			if (!zone_boosts[i])
3978				continue;
3979
3980			/* Increments are under the zone lock */
3981			zone = pgdat->node_zones + i;
3982			spin_lock_irqsave(&zone->lock, flags);
3983			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3984			spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3985		}
3986
3987		/*
3988		 * As there is now likely space, wakeup kcompact to defragment
3989		 * pageblocks.
3990		 */
3991		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3992	}
3993
3994	snapshot_refaults(NULL, pgdat);
3995	__fs_reclaim_release();
3996	psi_memstall_leave(&pflags);
3997	set_task_reclaim_state(current, NULL);
3998
3999	/*
4000	 * Return the order kswapd stopped reclaiming at as
4001	 * prepare_kswapd_sleep() takes it into account. If another caller
4002	 * entered the allocator slow path while kswapd was awake, order will
4003	 * remain at the higher level.
4004	 */
4005	return sc.order;
 
4006}
4007
4008/*
4009 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4010 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4011 * not a valid index then either kswapd runs for first time or kswapd couldn't
4012 * sleep after previous reclaim attempt (node is still unbalanced). In that
4013 * case return the zone index of the previous kswapd reclaim cycle.
4014 */
4015static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4016					   enum zone_type prev_highest_zoneidx)
4017{
4018	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4019
4020	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4021}
4022
4023static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4024				unsigned int highest_zoneidx)
4025{
4026	long remaining = 0;
4027	DEFINE_WAIT(wait);
4028
4029	if (freezing(current) || kthread_should_stop())
4030		return;
4031
4032	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4033
4034	/*
4035	 * Try to sleep for a short interval. Note that kcompactd will only be
4036	 * woken if it is possible to sleep for a short interval. This is
4037	 * deliberate on the assumption that if reclaim cannot keep an
4038	 * eligible zone balanced that it's also unlikely that compaction will
4039	 * succeed.
4040	 */
4041	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4042		/*
4043		 * Compaction records what page blocks it recently failed to
4044		 * isolate pages from and skips them in the future scanning.
4045		 * When kswapd is going to sleep, it is reasonable to assume
4046		 * that pages and compaction may succeed so reset the cache.
4047		 */
4048		reset_isolation_suitable(pgdat);
4049
4050		/*
4051		 * We have freed the memory, now we should compact it to make
4052		 * allocation of the requested order possible.
4053		 */
4054		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4055
4056		remaining = schedule_timeout(HZ/10);
4057
4058		/*
4059		 * If woken prematurely then reset kswapd_highest_zoneidx and
4060		 * order. The values will either be from a wakeup request or
4061		 * the previous request that slept prematurely.
4062		 */
4063		if (remaining) {
4064			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4065					kswapd_highest_zoneidx(pgdat,
4066							highest_zoneidx));
4067
4068			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4069				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4070		}
4071
4072		finish_wait(&pgdat->kswapd_wait, &wait);
4073		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4074	}
4075
4076	/*
4077	 * After a short sleep, check if it was a premature sleep. If not, then
4078	 * go fully to sleep until explicitly woken up.
4079	 */
4080	if (!remaining &&
4081	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4082		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4083
4084		/*
4085		 * vmstat counters are not perfectly accurate and the estimated
4086		 * value for counters such as NR_FREE_PAGES can deviate from the
4087		 * true value by nr_online_cpus * threshold. To avoid the zone
4088		 * watermarks being breached while under pressure, we reduce the
4089		 * per-cpu vmstat threshold while kswapd is awake and restore
4090		 * them before going back to sleep.
4091		 */
4092		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4093
4094		if (!kthread_should_stop())
4095			schedule();
4096
4097		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4098	} else {
4099		if (remaining)
4100			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4101		else
4102			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4103	}
4104	finish_wait(&pgdat->kswapd_wait, &wait);
4105}
4106
4107/*
4108 * The background pageout daemon, started as a kernel thread
4109 * from the init process.
4110 *
4111 * This basically trickles out pages so that we have _some_
4112 * free memory available even if there is no other activity
4113 * that frees anything up. This is needed for things like routing
4114 * etc, where we otherwise might have all activity going on in
4115 * asynchronous contexts that cannot page things out.
4116 *
4117 * If there are applications that are active memory-allocators
4118 * (most normal use), this basically shouldn't matter.
4119 */
4120static int kswapd(void *p)
4121{
4122	unsigned int alloc_order, reclaim_order;
4123	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4124	pg_data_t *pgdat = (pg_data_t *)p;
 
 
4125	struct task_struct *tsk = current;
 
 
 
 
4126	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4127
 
 
4128	if (!cpumask_empty(cpumask))
4129		set_cpus_allowed_ptr(tsk, cpumask);
 
4130
4131	/*
4132	 * Tell the memory management that we're a "memory allocator",
4133	 * and that if we need more memory we should get access to it
4134	 * regardless (see "__alloc_pages()"). "kswapd" should
4135	 * never get caught in the normal page freeing logic.
4136	 *
4137	 * (Kswapd normally doesn't need memory anyway, but sometimes
4138	 * you need a small amount of memory in order to be able to
4139	 * page out something else, and this flag essentially protects
4140	 * us from recursively trying to free more memory as we're
4141	 * trying to free the first piece of memory in the first place).
4142	 */
4143	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4144	set_freezable();
4145
4146	WRITE_ONCE(pgdat->kswapd_order, 0);
4147	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
4148	for ( ; ; ) {
4149		bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
4150
4151		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4152		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4153							highest_zoneidx);
4154
4155kswapd_try_sleep:
4156		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4157					highest_zoneidx);
4158
4159		/* Read the new order and highest_zoneidx */
4160		alloc_order = READ_ONCE(pgdat->kswapd_order);
4161		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4162							highest_zoneidx);
4163		WRITE_ONCE(pgdat->kswapd_order, 0);
4164		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
 
4165
4166		ret = try_to_freeze();
4167		if (kthread_should_stop())
4168			break;
4169
4170		/*
4171		 * We can speed up thawing tasks if we don't call balance_pgdat
4172		 * after returning from the refrigerator
4173		 */
4174		if (ret)
4175			continue;
4176
4177		/*
4178		 * Reclaim begins at the requested order but if a high-order
4179		 * reclaim fails then kswapd falls back to reclaiming for
4180		 * order-0. If that happens, kswapd will consider sleeping
4181		 * for the order it finished reclaiming at (reclaim_order)
4182		 * but kcompactd is woken to compact for the original
4183		 * request (alloc_order).
4184		 */
4185		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4186						alloc_order);
4187		reclaim_order = balance_pgdat(pgdat, alloc_order,
4188						highest_zoneidx);
4189		if (reclaim_order < alloc_order)
4190			goto kswapd_try_sleep;
4191	}
4192
4193	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4194
4195	return 0;
4196}
4197
4198/*
4199 * A zone is low on free memory or too fragmented for high-order memory.  If
4200 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4201 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4202 * has failed or is not needed, still wake up kcompactd if only compaction is
4203 * needed.
4204 */
4205void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4206		   enum zone_type highest_zoneidx)
4207{
4208	pg_data_t *pgdat;
4209	enum zone_type curr_idx;
4210
4211	if (!managed_zone(zone))
4212		return;
4213
4214	if (!cpuset_zone_allowed(zone, gfp_flags))
4215		return;
4216
4217	pgdat = zone->zone_pgdat;
4218	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4219
4220	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4221		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4222
4223	if (READ_ONCE(pgdat->kswapd_order) < order)
4224		WRITE_ONCE(pgdat->kswapd_order, order);
4225
4226	if (!waitqueue_active(&pgdat->kswapd_wait))
4227		return;
4228
4229	/* Hopeless node, leave it to direct reclaim if possible */
4230	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4231	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4232	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4233		/*
4234		 * There may be plenty of free memory available, but it's too
4235		 * fragmented for high-order allocations.  Wake up kcompactd
4236		 * and rely on compaction_suitable() to determine if it's
4237		 * needed.  If it fails, it will defer subsequent attempts to
4238		 * ratelimit its work.
4239		 */
4240		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4241			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4242		return;
4243	}
4244
4245	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4246				      gfp_flags);
4247	wake_up_interruptible(&pgdat->kswapd_wait);
4248}
4249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250#ifdef CONFIG_HIBERNATION
4251/*
4252 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4253 * freed pages.
4254 *
4255 * Rather than trying to age LRUs the aim is to preserve the overall
4256 * LRU order by reclaiming preferentially
4257 * inactive > active > active referenced > active mapped
4258 */
4259unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4260{
 
4261	struct scan_control sc = {
4262		.nr_to_reclaim = nr_to_reclaim,
4263		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4264		.reclaim_idx = MAX_NR_ZONES - 1,
4265		.priority = DEF_PRIORITY,
4266		.may_writepage = 1,
4267		.may_unmap = 1,
4268		.may_swap = 1,
 
 
 
4269		.hibernation_mode = 1,
 
 
 
 
 
4270	};
4271	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4272	unsigned long nr_reclaimed;
4273	unsigned int noreclaim_flag;
4274
4275	fs_reclaim_acquire(sc.gfp_mask);
4276	noreclaim_flag = memalloc_noreclaim_save();
4277	set_task_reclaim_state(current, &sc.reclaim_state);
4278
4279	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4280
4281	set_task_reclaim_state(current, NULL);
4282	memalloc_noreclaim_restore(noreclaim_flag);
4283	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
 
 
4284
4285	return nr_reclaimed;
4286}
4287#endif /* CONFIG_HIBERNATION */
4288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289/*
4290 * This kswapd start function will be called by init and node-hot-add.
4291 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4292 */
4293int kswapd_run(int nid)
4294{
4295	pg_data_t *pgdat = NODE_DATA(nid);
4296	int ret = 0;
4297
4298	if (pgdat->kswapd)
4299		return 0;
4300
4301	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4302	if (IS_ERR(pgdat->kswapd)) {
4303		/* failure at boot is fatal */
4304		BUG_ON(system_state < SYSTEM_RUNNING);
4305		pr_err("Failed to start kswapd on node %d\n", nid);
4306		ret = PTR_ERR(pgdat->kswapd);
4307		pgdat->kswapd = NULL;
4308	}
4309	return ret;
4310}
4311
4312/*
4313 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4314 * hold mem_hotplug_begin/end().
4315 */
4316void kswapd_stop(int nid)
4317{
4318	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4319
4320	if (kswapd) {
4321		kthread_stop(kswapd);
4322		NODE_DATA(nid)->kswapd = NULL;
4323	}
4324}
4325
4326static int __init kswapd_init(void)
4327{
4328	int nid;
4329
4330	swap_setup();
4331	for_each_node_state(nid, N_MEMORY)
4332 		kswapd_run(nid);
 
4333	return 0;
4334}
4335
4336module_init(kswapd_init)
4337
4338#ifdef CONFIG_NUMA
4339/*
4340 * Node reclaim mode
4341 *
4342 * If non-zero call node_reclaim when the number of free pages falls below
4343 * the watermarks.
4344 */
4345int node_reclaim_mode __read_mostly;
 
 
 
 
 
4346
4347/*
4348 * Priority for NODE_RECLAIM. This determines the fraction of pages
4349 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4350 * a zone.
4351 */
4352#define NODE_RECLAIM_PRIORITY 4
4353
4354/*
4355 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4356 * occur.
4357 */
4358int sysctl_min_unmapped_ratio = 1;
4359
4360/*
4361 * If the number of slab pages in a zone grows beyond this percentage then
4362 * slab reclaim needs to occur.
4363 */
4364int sysctl_min_slab_ratio = 5;
4365
4366static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4367{
4368	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4369	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4370		node_page_state(pgdat, NR_ACTIVE_FILE);
4371
4372	/*
4373	 * It's possible for there to be more file mapped pages than
4374	 * accounted for by the pages on the file LRU lists because
4375	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4376	 */
4377	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4378}
4379
4380/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4381static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4382{
4383	unsigned long nr_pagecache_reclaimable;
4384	unsigned long delta = 0;
4385
4386	/*
4387	 * If RECLAIM_UNMAP is set, then all file pages are considered
4388	 * potentially reclaimable. Otherwise, we have to worry about
4389	 * pages like swapcache and node_unmapped_file_pages() provides
4390	 * a better estimate
4391	 */
4392	if (node_reclaim_mode & RECLAIM_UNMAP)
4393		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4394	else
4395		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4396
4397	/* If we can't clean pages, remove dirty pages from consideration */
4398	if (!(node_reclaim_mode & RECLAIM_WRITE))
4399		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4400
4401	/* Watch for any possible underflows due to delta */
4402	if (unlikely(delta > nr_pagecache_reclaimable))
4403		delta = nr_pagecache_reclaimable;
4404
4405	return nr_pagecache_reclaimable - delta;
4406}
4407
4408/*
4409 * Try to free up some pages from this node through reclaim.
4410 */
4411static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4412{
4413	/* Minimum pages needed in order to stay on node */
4414	const unsigned long nr_pages = 1 << order;
4415	struct task_struct *p = current;
4416	unsigned int noreclaim_flag;
4417	struct scan_control sc = {
4418		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4419		.gfp_mask = current_gfp_context(gfp_mask),
4420		.order = order,
4421		.priority = NODE_RECLAIM_PRIORITY,
4422		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4423		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4424		.may_swap = 1,
4425		.reclaim_idx = gfp_zone(gfp_mask),
 
 
 
 
4426	};
4427	unsigned long pflags;
4428
4429	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4430					   sc.gfp_mask);
4431
4432	cond_resched();
4433	psi_memstall_enter(&pflags);
4434	fs_reclaim_acquire(sc.gfp_mask);
4435	/*
4436	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4437	 * and we also need to be able to write out pages for RECLAIM_WRITE
4438	 * and RECLAIM_UNMAP.
4439	 */
4440	noreclaim_flag = memalloc_noreclaim_save();
4441	p->flags |= PF_SWAPWRITE;
4442	set_task_reclaim_state(p, &sc.reclaim_state);
 
4443
4444	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4445		/*
4446		 * Free memory by calling shrink node with increasing
4447		 * priorities until we have enough memory freed.
4448		 */
4449		do {
4450			shrink_node(pgdat, &sc);
4451		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4452	}
4453
4454	set_task_reclaim_state(p, NULL);
4455	current->flags &= ~PF_SWAPWRITE;
4456	memalloc_noreclaim_restore(noreclaim_flag);
4457	fs_reclaim_release(sc.gfp_mask);
4458	psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
4459
4460	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 
 
 
 
 
4461
 
 
 
 
 
 
 
 
 
 
 
 
4462	return sc.nr_reclaimed >= nr_pages;
4463}
4464
4465int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4466{
 
4467	int ret;
4468
4469	/*
4470	 * Node reclaim reclaims unmapped file backed pages and
4471	 * slab pages if we are over the defined limits.
4472	 *
4473	 * A small portion of unmapped file backed pages is needed for
4474	 * file I/O otherwise pages read by file I/O will be immediately
4475	 * thrown out if the node is overallocated. So we do not reclaim
4476	 * if less than a specified percentage of the node is used by
4477	 * unmapped file backed pages.
4478	 */
4479	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4480	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4481	    pgdat->min_slab_pages)
4482		return NODE_RECLAIM_FULL;
 
 
4483
4484	/*
4485	 * Do not scan if the allocation should not be delayed.
4486	 */
4487	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4488		return NODE_RECLAIM_NOSCAN;
4489
4490	/*
4491	 * Only run node reclaim on the local node or on nodes that do not
4492	 * have associated processors. This will favor the local processor
4493	 * over remote processors and spread off node memory allocations
4494	 * as wide as possible.
4495	 */
4496	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4497		return NODE_RECLAIM_NOSCAN;
 
4498
4499	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4500		return NODE_RECLAIM_NOSCAN;
4501
4502	ret = __node_reclaim(pgdat, gfp_mask, order);
4503	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4504
4505	if (!ret)
4506		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4507
4508	return ret;
4509}
4510#endif
4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512/**
4513 * check_move_unevictable_pages - check pages for evictability and move to
4514 * appropriate zone lru list
4515 * @pvec: pagevec with lru pages to check
 
 
4516 *
4517 * Checks pages for evictability, if an evictable page is in the unevictable
4518 * lru list, moves it to the appropriate evictable lru list. This function
4519 * should be only used for lru pages.
4520 */
4521void check_move_unevictable_pages(struct pagevec *pvec)
4522{
4523	struct lruvec *lruvec = NULL;
 
4524	int pgscanned = 0;
4525	int pgrescued = 0;
4526	int i;
4527
4528	for (i = 0; i < pvec->nr; i++) {
4529		struct page *page = pvec->pages[i];
4530		int nr_pages;
4531
4532		if (PageTransTail(page))
4533			continue;
4534
4535		nr_pages = thp_nr_pages(page);
4536		pgscanned += nr_pages;
 
 
 
 
 
 
 
4537
4538		/* block memcg migration during page moving between lru */
4539		if (!TestClearPageLRU(page))
4540			continue;
4541
4542		lruvec = relock_page_lruvec_irq(page, lruvec);
4543		if (page_evictable(page) && PageUnevictable(page)) {
4544			del_page_from_lru_list(page, lruvec);
 
4545			ClearPageUnevictable(page);
4546			add_page_to_lru_list(page, lruvec);
4547			pgrescued += nr_pages;
 
4548		}
4549		SetPageLRU(page);
4550	}
4551
4552	if (lruvec) {
4553		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4554		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4555		unlock_page_lruvec_irq(lruvec);
4556	} else if (pgscanned) {
4557		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4558	}
4559}
4560EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.5.6
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/backing-dev.h>
  30#include <linux/rmap.h>
  31#include <linux/topology.h>
  32#include <linux/cpu.h>
  33#include <linux/cpuset.h>
  34#include <linux/compaction.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43#include <linux/oom.h>
 
  44#include <linux/prefetch.h>
 
 
 
  45
  46#include <asm/tlbflush.h>
  47#include <asm/div64.h>
  48
  49#include <linux/swapops.h>
 
  50
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/vmscan.h>
  55
  56struct scan_control {
  57	/* Incremented by the number of inactive pages that were scanned */
  58	unsigned long nr_scanned;
  59
  60	/* Number of pages freed so far during a call to shrink_zones() */
  61	unsigned long nr_reclaimed;
 
 
 
  62
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
 
 
 
  65
  66	unsigned long hibernation_mode;
 
 
 
 
  67
  68	/* This context's GFP mask */
  69	gfp_t gfp_mask;
 
 
 
 
  70
  71	int may_writepage;
 
  72
  73	/* Can mapped pages be reclaimed? */
  74	int may_unmap;
  75
  76	/* Can pages be swapped as part of reclaim? */
  77	int may_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79	int order;
 
 
 
 
 
 
 
 
 
 
  80
  81	/* Scan (total_size >> priority) pages at once */
  82	int priority;
  83
  84	/*
  85	 * The memory cgroup that hit its limit and as a result is the
  86	 * primary target of this reclaim invocation.
  87	 */
  88	struct mem_cgroup *target_mem_cgroup;
 
 
 
  89
  90	/*
  91	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  92	 * are scanned.
  93	 */
  94	nodemask_t	*nodemask;
  95};
  96
  97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 
 
 
 
 
 
 
 
  98
  99#ifdef ARCH_HAS_PREFETCH
 100#define prefetch_prev_lru_page(_page, _base, _field)			\
 101	do {								\
 102		if ((_page)->lru.prev != _base) {			\
 103			struct page *prev;				\
 104									\
 105			prev = lru_to_page(&(_page->lru));		\
 106			prefetch(&prev->_field);			\
 107		}							\
 108	} while (0)
 109#else
 110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 111#endif
 112
 113#ifdef ARCH_HAS_PREFETCHW
 114#define prefetchw_prev_lru_page(_page, _base, _field)			\
 115	do {								\
 116		if ((_page)->lru.prev != _base) {			\
 117			struct page *prev;				\
 118									\
 119			prev = lru_to_page(&(_page->lru));		\
 120			prefetchw(&prev->_field);			\
 121		}							\
 122	} while (0)
 123#else
 124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 125#endif
 126
 127/*
 128 * From 0 .. 100.  Higher means more swappy.
 129 */
 130int vm_swappiness = 60;
 131long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 
 
 
 
 
 
 
 132
 133static LIST_HEAD(shrinker_list);
 134static DECLARE_RWSEM(shrinker_rwsem);
 135
 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 137static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138{
 139	return !sc->target_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140}
 141#else
 142static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143{
 144	return true;
 145}
 146#endif
 147
 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149{
 150	if (!mem_cgroup_disabled())
 151		return mem_cgroup_get_lru_size(lruvec, lru);
 
 
 
 
 
 
 152
 153	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 
 
 
 
 
 154}
 155
 156/*
 157 * Add a shrinker callback to be called from the vm
 158 */
 159void register_shrinker(struct shrinker *shrinker)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160{
 161	atomic_long_set(&shrinker->nr_in_batch, 0);
 162	down_write(&shrinker_rwsem);
 163	list_add_tail(&shrinker->list, &shrinker_list);
 
 164	up_write(&shrinker_rwsem);
 165}
 
 
 
 
 
 
 
 
 
 
 166EXPORT_SYMBOL(register_shrinker);
 167
 168/*
 169 * Remove one
 170 */
 171void unregister_shrinker(struct shrinker *shrinker)
 172{
 
 
 
 173	down_write(&shrinker_rwsem);
 174	list_del(&shrinker->list);
 
 
 
 175	up_write(&shrinker_rwsem);
 
 
 
 176}
 177EXPORT_SYMBOL(unregister_shrinker);
 178
 179static inline int do_shrinker_shrink(struct shrinker *shrinker,
 180				     struct shrink_control *sc,
 181				     unsigned long nr_to_scan)
 
 182{
 183	sc->nr_to_scan = nr_to_scan;
 184	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187#define SHRINK_BATCH 128
 188/*
 189 * Call the shrink functions to age shrinkable caches
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 *
 191 * Here we assume it costs one seek to replace a lru page and that it also
 192 * takes a seek to recreate a cache object.  With this in mind we age equal
 193 * percentages of the lru and ageable caches.  This should balance the seeks
 194 * generated by these structures.
 195 *
 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
 197 * slab to avoid swapping.
 198 *
 199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 
 200 *
 201 * `lru_pages' represents the number of on-LRU pages in all the zones which
 202 * are eligible for the caller's allocation attempt.  It is used for balancing
 203 * slab reclaim versus page reclaim.
 204 *
 205 * Returns the number of slab objects which we shrunk.
 206 */
 207unsigned long shrink_slab(struct shrink_control *shrink,
 208			  unsigned long nr_pages_scanned,
 209			  unsigned long lru_pages)
 210{
 
 211	struct shrinker *shrinker;
 212	unsigned long ret = 0;
 213
 214	if (nr_pages_scanned == 0)
 215		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 216
 217	if (!down_read_trylock(&shrinker_rwsem)) {
 218		/* Assume we'll be able to shrink next time */
 219		ret = 1;
 220		goto out;
 221	}
 222
 223	list_for_each_entry(shrinker, &shrinker_list, list) {
 224		unsigned long long delta;
 225		long total_scan;
 226		long max_pass;
 227		int shrink_ret = 0;
 228		long nr;
 229		long new_nr;
 230		long batch_size = shrinker->batch ? shrinker->batch
 231						  : SHRINK_BATCH;
 232
 233		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 234		if (max_pass <= 0)
 235			continue;
 236
 
 
 
 
 237		/*
 238		 * copy the current shrinker scan count into a local variable
 239		 * and zero it so that other concurrent shrinker invocations
 240		 * don't also do this scanning work.
 241		 */
 242		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
 243
 244		total_scan = nr;
 245		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 246		delta *= max_pass;
 247		do_div(delta, lru_pages + 1);
 248		total_scan += delta;
 249		if (total_scan < 0) {
 250			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 251			       "delete nr=%ld\n",
 252			       shrinker->shrink, total_scan);
 253			total_scan = max_pass;
 254		}
 
 255
 256		/*
 257		 * We need to avoid excessive windup on filesystem shrinkers
 258		 * due to large numbers of GFP_NOFS allocations causing the
 259		 * shrinkers to return -1 all the time. This results in a large
 260		 * nr being built up so when a shrink that can do some work
 261		 * comes along it empties the entire cache due to nr >>>
 262		 * max_pass.  This is bad for sustaining a working set in
 263		 * memory.
 264		 *
 265		 * Hence only allow the shrinker to scan the entire cache when
 266		 * a large delta change is calculated directly.
 267		 */
 268		if (delta < max_pass / 4)
 269			total_scan = min(total_scan, max_pass / 2);
 270
 271		/*
 272		 * Avoid risking looping forever due to too large nr value:
 273		 * never try to free more than twice the estimate number of
 274		 * freeable entries.
 275		 */
 276		if (total_scan > max_pass * 2)
 277			total_scan = max_pass * 2;
 278
 279		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 280					nr_pages_scanned, lru_pages,
 281					max_pass, delta, total_scan);
 282
 283		while (total_scan >= batch_size) {
 284			int nr_before;
 285
 286			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 287			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 288							batch_size);
 289			if (shrink_ret == -1)
 290				break;
 291			if (shrink_ret < nr_before)
 292				ret += nr_before - shrink_ret;
 293			count_vm_events(SLABS_SCANNED, batch_size);
 294			total_scan -= batch_size;
 295
 296			cond_resched();
 297		}
 
 298
 299		/*
 300		 * move the unused scan count back into the shrinker in a
 301		 * manner that handles concurrent updates. If we exhausted the
 302		 * scan, there is no need to do an update.
 303		 */
 304		if (total_scan > 0)
 305			new_nr = atomic_long_add_return(total_scan,
 306					&shrinker->nr_in_batch);
 307		else
 308			new_nr = atomic_long_read(&shrinker->nr_in_batch);
 309
 310		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 311	}
 312	up_read(&shrinker_rwsem);
 313out:
 314	cond_resched();
 315	return ret;
 316}
 317
 318static inline int is_page_cache_freeable(struct page *page)
 319{
 320	/*
 321	 * A freeable page cache page is referenced only by the caller
 322	 * that isolated the page, the page cache radix tree and
 323	 * optional buffer heads at page->private.
 324	 */
 325	return page_count(page) - page_has_private(page) == 2;
 
 326}
 327
 328static int may_write_to_queue(struct backing_dev_info *bdi,
 329			      struct scan_control *sc)
 330{
 331	if (current->flags & PF_SWAPWRITE)
 332		return 1;
 333	if (!bdi_write_congested(bdi))
 334		return 1;
 335	if (bdi == current->backing_dev_info)
 336		return 1;
 337	return 0;
 338}
 339
 340/*
 341 * We detected a synchronous write error writing a page out.  Probably
 342 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 343 * fsync(), msync() or close().
 344 *
 345 * The tricky part is that after writepage we cannot touch the mapping: nothing
 346 * prevents it from being freed up.  But we have a ref on the page and once
 347 * that page is locked, the mapping is pinned.
 348 *
 349 * We're allowed to run sleeping lock_page() here because we know the caller has
 350 * __GFP_FS.
 351 */
 352static void handle_write_error(struct address_space *mapping,
 353				struct page *page, int error)
 354{
 355	lock_page(page);
 356	if (page_mapping(page) == mapping)
 357		mapping_set_error(mapping, error);
 358	unlock_page(page);
 359}
 360
 361/* possible outcome of pageout() */
 362typedef enum {
 363	/* failed to write page out, page is locked */
 364	PAGE_KEEP,
 365	/* move page to the active list, page is locked */
 366	PAGE_ACTIVATE,
 367	/* page has been sent to the disk successfully, page is unlocked */
 368	PAGE_SUCCESS,
 369	/* page is clean and locked */
 370	PAGE_CLEAN,
 371} pageout_t;
 372
 373/*
 374 * pageout is called by shrink_page_list() for each dirty page.
 375 * Calls ->writepage().
 376 */
 377static pageout_t pageout(struct page *page, struct address_space *mapping,
 378			 struct scan_control *sc)
 379{
 380	/*
 381	 * If the page is dirty, only perform writeback if that write
 382	 * will be non-blocking.  To prevent this allocation from being
 383	 * stalled by pagecache activity.  But note that there may be
 384	 * stalls if we need to run get_block().  We could test
 385	 * PagePrivate for that.
 386	 *
 387	 * If this process is currently in __generic_file_aio_write() against
 388	 * this page's queue, we can perform writeback even if that
 389	 * will block.
 390	 *
 391	 * If the page is swapcache, write it back even if that would
 392	 * block, for some throttling. This happens by accident, because
 393	 * swap_backing_dev_info is bust: it doesn't reflect the
 394	 * congestion state of the swapdevs.  Easy to fix, if needed.
 395	 */
 396	if (!is_page_cache_freeable(page))
 397		return PAGE_KEEP;
 398	if (!mapping) {
 399		/*
 400		 * Some data journaling orphaned pages can have
 401		 * page->mapping == NULL while being dirty with clean buffers.
 402		 */
 403		if (page_has_private(page)) {
 404			if (try_to_free_buffers(page)) {
 405				ClearPageDirty(page);
 406				printk("%s: orphaned page\n", __func__);
 407				return PAGE_CLEAN;
 408			}
 409		}
 410		return PAGE_KEEP;
 411	}
 412	if (mapping->a_ops->writepage == NULL)
 413		return PAGE_ACTIVATE;
 414	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 415		return PAGE_KEEP;
 416
 417	if (clear_page_dirty_for_io(page)) {
 418		int res;
 419		struct writeback_control wbc = {
 420			.sync_mode = WB_SYNC_NONE,
 421			.nr_to_write = SWAP_CLUSTER_MAX,
 422			.range_start = 0,
 423			.range_end = LLONG_MAX,
 424			.for_reclaim = 1,
 425		};
 426
 427		SetPageReclaim(page);
 428		res = mapping->a_ops->writepage(page, &wbc);
 429		if (res < 0)
 430			handle_write_error(mapping, page, res);
 431		if (res == AOP_WRITEPAGE_ACTIVATE) {
 432			ClearPageReclaim(page);
 433			return PAGE_ACTIVATE;
 434		}
 435
 436		if (!PageWriteback(page)) {
 437			/* synchronous write or broken a_ops? */
 438			ClearPageReclaim(page);
 439		}
 440		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 441		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 442		return PAGE_SUCCESS;
 443	}
 444
 445	return PAGE_CLEAN;
 446}
 447
 448/*
 449 * Same as remove_mapping, but if the page is removed from the mapping, it
 450 * gets returned with a refcount of 0.
 451 */
 452static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 453{
 
 
 
 
 454	BUG_ON(!PageLocked(page));
 455	BUG_ON(mapping != page_mapping(page));
 456
 457	spin_lock_irq(&mapping->tree_lock);
 458	/*
 459	 * The non racy check for a busy page.
 460	 *
 461	 * Must be careful with the order of the tests. When someone has
 462	 * a ref to the page, it may be possible that they dirty it then
 463	 * drop the reference. So if PageDirty is tested before page_count
 464	 * here, then the following race may occur:
 465	 *
 466	 * get_user_pages(&page);
 467	 * [user mapping goes away]
 468	 * write_to(page);
 469	 *				!PageDirty(page)    [good]
 470	 * SetPageDirty(page);
 471	 * put_page(page);
 472	 *				!page_count(page)   [good, discard it]
 473	 *
 474	 * [oops, our write_to data is lost]
 475	 *
 476	 * Reversing the order of the tests ensures such a situation cannot
 477	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 478	 * load is not satisfied before that of page->_count.
 479	 *
 480	 * Note that if SetPageDirty is always performed via set_page_dirty,
 481	 * and thus under tree_lock, then this ordering is not required.
 482	 */
 483	if (!page_freeze_refs(page, 2))
 
 484		goto cannot_free;
 485	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 486	if (unlikely(PageDirty(page))) {
 487		page_unfreeze_refs(page, 2);
 488		goto cannot_free;
 489	}
 490
 491	if (PageSwapCache(page)) {
 492		swp_entry_t swap = { .val = page_private(page) };
 493		__delete_from_swap_cache(page);
 494		spin_unlock_irq(&mapping->tree_lock);
 495		swapcache_free(swap, page);
 
 
 
 496	} else {
 497		void (*freepage)(struct page *);
 498
 499		freepage = mapping->a_ops->freepage;
 500
 501		__delete_from_page_cache(page);
 502		spin_unlock_irq(&mapping->tree_lock);
 503		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		if (freepage != NULL)
 506			freepage(page);
 507	}
 508
 509	return 1;
 510
 511cannot_free:
 512	spin_unlock_irq(&mapping->tree_lock);
 513	return 0;
 514}
 515
 516/*
 517 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 518 * someone else has a ref on the page, abort and return 0.  If it was
 519 * successfully detached, return 1.  Assumes the caller has a single ref on
 520 * this page.
 521 */
 522int remove_mapping(struct address_space *mapping, struct page *page)
 523{
 524	if (__remove_mapping(mapping, page)) {
 525		/*
 526		 * Unfreezing the refcount with 1 rather than 2 effectively
 527		 * drops the pagecache ref for us without requiring another
 528		 * atomic operation.
 529		 */
 530		page_unfreeze_refs(page, 1);
 531		return 1;
 532	}
 533	return 0;
 534}
 535
 536/**
 537 * putback_lru_page - put previously isolated page onto appropriate LRU list
 538 * @page: page to be put back to appropriate lru list
 539 *
 540 * Add previously isolated @page to appropriate LRU list.
 541 * Page may still be unevictable for other reasons.
 542 *
 543 * lru_lock must not be held, interrupts must be enabled.
 544 */
 545void putback_lru_page(struct page *page)
 546{
 547	int lru;
 548	int active = !!TestClearPageActive(page);
 549	int was_unevictable = PageUnevictable(page);
 550
 551	VM_BUG_ON(PageLRU(page));
 552
 553redo:
 554	ClearPageUnevictable(page);
 555
 556	if (page_evictable(page, NULL)) {
 557		/*
 558		 * For evictable pages, we can use the cache.
 559		 * In event of a race, worst case is we end up with an
 560		 * unevictable page on [in]active list.
 561		 * We know how to handle that.
 562		 */
 563		lru = active + page_lru_base_type(page);
 564		lru_cache_add_lru(page, lru);
 565	} else {
 566		/*
 567		 * Put unevictable pages directly on zone's unevictable
 568		 * list.
 569		 */
 570		lru = LRU_UNEVICTABLE;
 571		add_page_to_unevictable_list(page);
 572		/*
 573		 * When racing with an mlock or AS_UNEVICTABLE clearing
 574		 * (page is unlocked) make sure that if the other thread
 575		 * does not observe our setting of PG_lru and fails
 576		 * isolation/check_move_unevictable_pages,
 577		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 578		 * the page back to the evictable list.
 579		 *
 580		 * The other side is TestClearPageMlocked() or shmem_lock().
 581		 */
 582		smp_mb();
 583	}
 584
 585	/*
 586	 * page's status can change while we move it among lru. If an evictable
 587	 * page is on unevictable list, it never be freed. To avoid that,
 588	 * check after we added it to the list, again.
 589	 */
 590	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 591		if (!isolate_lru_page(page)) {
 592			put_page(page);
 593			goto redo;
 594		}
 595		/* This means someone else dropped this page from LRU
 596		 * So, it will be freed or putback to LRU again. There is
 597		 * nothing to do here.
 598		 */
 599	}
 600
 601	if (was_unevictable && lru != LRU_UNEVICTABLE)
 602		count_vm_event(UNEVICTABLE_PGRESCUED);
 603	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 604		count_vm_event(UNEVICTABLE_PGCULLED);
 605
 606	put_page(page);		/* drop ref from isolate */
 607}
 608
 609enum page_references {
 610	PAGEREF_RECLAIM,
 611	PAGEREF_RECLAIM_CLEAN,
 612	PAGEREF_KEEP,
 613	PAGEREF_ACTIVATE,
 614};
 615
 616static enum page_references page_check_references(struct page *page,
 617						  struct scan_control *sc)
 618{
 619	int referenced_ptes, referenced_page;
 620	unsigned long vm_flags;
 621
 622	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 623					  &vm_flags);
 624	referenced_page = TestClearPageReferenced(page);
 625
 626	/*
 627	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 628	 * move the page to the unevictable list.
 629	 */
 630	if (vm_flags & VM_LOCKED)
 631		return PAGEREF_RECLAIM;
 632
 633	if (referenced_ptes) {
 634		if (PageSwapBacked(page))
 635			return PAGEREF_ACTIVATE;
 636		/*
 637		 * All mapped pages start out with page table
 638		 * references from the instantiating fault, so we need
 639		 * to look twice if a mapped file page is used more
 640		 * than once.
 641		 *
 642		 * Mark it and spare it for another trip around the
 643		 * inactive list.  Another page table reference will
 644		 * lead to its activation.
 645		 *
 646		 * Note: the mark is set for activated pages as well
 647		 * so that recently deactivated but used pages are
 648		 * quickly recovered.
 649		 */
 650		SetPageReferenced(page);
 651
 652		if (referenced_page || referenced_ptes > 1)
 653			return PAGEREF_ACTIVATE;
 654
 655		/*
 656		 * Activate file-backed executable pages after first usage.
 657		 */
 658		if (vm_flags & VM_EXEC)
 659			return PAGEREF_ACTIVATE;
 660
 661		return PAGEREF_KEEP;
 662	}
 663
 664	/* Reclaim if clean, defer dirty pages to writeback */
 665	if (referenced_page && !PageSwapBacked(page))
 666		return PAGEREF_RECLAIM_CLEAN;
 667
 668	return PAGEREF_RECLAIM;
 669}
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/*
 672 * shrink_page_list() returns the number of reclaimed pages
 673 */
 674static unsigned long shrink_page_list(struct list_head *page_list,
 675				      struct zone *zone,
 676				      struct scan_control *sc,
 677				      unsigned long *ret_nr_dirty,
 678				      unsigned long *ret_nr_writeback)
 679{
 680	LIST_HEAD(ret_pages);
 681	LIST_HEAD(free_pages);
 682	int pgactivate = 0;
 683	unsigned long nr_dirty = 0;
 684	unsigned long nr_congested = 0;
 685	unsigned long nr_reclaimed = 0;
 686	unsigned long nr_writeback = 0;
 687
 
 688	cond_resched();
 689
 690	while (!list_empty(page_list)) {
 691		enum page_references references;
 692		struct address_space *mapping;
 693		struct page *page;
 694		int may_enter_fs;
 
 
 695
 696		cond_resched();
 697
 698		page = lru_to_page(page_list);
 699		list_del(&page->lru);
 700
 701		if (!trylock_page(page))
 702			goto keep;
 703
 704		VM_BUG_ON(PageActive(page));
 705		VM_BUG_ON(page_zone(page) != zone);
 706
 707		sc->nr_scanned++;
 708
 709		if (unlikely(!page_evictable(page, NULL)))
 710			goto cull_mlocked;
 
 
 
 711
 712		if (!sc->may_unmap && page_mapped(page))
 713			goto keep_locked;
 714
 715		/* Double the slab pressure for mapped and swapcache pages */
 716		if (page_mapped(page) || PageSwapCache(page))
 717			sc->nr_scanned++;
 718
 719		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 720			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722		if (PageWriteback(page)) {
 723			/*
 724			 * memcg doesn't have any dirty pages throttling so we
 725			 * could easily OOM just because too many pages are in
 726			 * writeback and there is nothing else to reclaim.
 727			 *
 728			 * Check __GFP_IO, certainly because a loop driver
 729			 * thread might enter reclaim, and deadlock if it waits
 730			 * on a page for which it is needed to do the write
 731			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
 732			 * but more thought would probably show more reasons.
 733			 *
 734			 * Don't require __GFP_FS, since we're not going into
 735			 * the FS, just waiting on its writeback completion.
 736			 * Worryingly, ext4 gfs2 and xfs allocate pages with
 737			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
 738			 * testing may_enter_fs here is liable to OOM on them.
 739			 */
 740			if (global_reclaim(sc) ||
 741			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 742				/*
 743				 * This is slightly racy - end_page_writeback()
 744				 * might have just cleared PageReclaim, then
 745				 * setting PageReclaim here end up interpreted
 746				 * as PageReadahead - but that does not matter
 747				 * enough to care.  What we do want is for this
 748				 * page to have PageReclaim set next time memcg
 749				 * reclaim reaches the tests above, so it will
 750				 * then wait_on_page_writeback() to avoid OOM;
 751				 * and it's also appropriate in global reclaim.
 752				 */
 753				SetPageReclaim(page);
 754				nr_writeback++;
 755				goto keep_locked;
 
 
 
 
 
 
 
 
 756			}
 757			wait_on_page_writeback(page);
 758		}
 759
 760		references = page_check_references(page, sc);
 
 
 761		switch (references) {
 762		case PAGEREF_ACTIVATE:
 763			goto activate_locked;
 764		case PAGEREF_KEEP:
 
 765			goto keep_locked;
 766		case PAGEREF_RECLAIM:
 767		case PAGEREF_RECLAIM_CLEAN:
 768			; /* try to reclaim the page below */
 769		}
 770
 771		/*
 772		 * Anonymous process memory has backing store?
 773		 * Try to allocate it some swap space here.
 
 774		 */
 775		if (PageAnon(page) && !PageSwapCache(page)) {
 776			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777				goto keep_locked;
 778			if (!add_to_swap(page))
 779				goto activate_locked;
 780			may_enter_fs = 1;
 781		}
 782
 783		mapping = page_mapping(page);
 
 
 
 
 
 
 
 
 
 
 784
 785		/*
 786		 * The page is mapped into the page tables of one or more
 787		 * processes. Try to unmap it here.
 788		 */
 789		if (page_mapped(page) && mapping) {
 790			switch (try_to_unmap(page, TTU_UNMAP)) {
 791			case SWAP_FAIL:
 
 
 
 
 
 
 
 
 
 792				goto activate_locked;
 793			case SWAP_AGAIN:
 794				goto keep_locked;
 795			case SWAP_MLOCK:
 796				goto cull_mlocked;
 797			case SWAP_SUCCESS:
 798				; /* try to free the page below */
 799			}
 800		}
 801
 802		if (PageDirty(page)) {
 803			nr_dirty++;
 804
 805			/*
 806			 * Only kswapd can writeback filesystem pages to
 807			 * avoid risk of stack overflow but do not writeback
 808			 * unless under significant pressure.
 
 
 
 
 
 809			 */
 810			if (page_is_file_cache(page) &&
 811					(!current_is_kswapd() ||
 812					 sc->priority >= DEF_PRIORITY - 2)) {
 813				/*
 814				 * Immediately reclaim when written back.
 815				 * Similar in principal to deactivate_page()
 816				 * except we already have the page isolated
 817				 * and know it's dirty
 818				 */
 819				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
 820				SetPageReclaim(page);
 821
 822				goto keep_locked;
 823			}
 824
 825			if (references == PAGEREF_RECLAIM_CLEAN)
 826				goto keep_locked;
 827			if (!may_enter_fs)
 828				goto keep_locked;
 829			if (!sc->may_writepage)
 830				goto keep_locked;
 831
 832			/* Page is dirty, try to write it out here */
 833			switch (pageout(page, mapping, sc)) {
 
 
 
 
 
 834			case PAGE_KEEP:
 835				nr_congested++;
 836				goto keep_locked;
 837			case PAGE_ACTIVATE:
 838				goto activate_locked;
 839			case PAGE_SUCCESS:
 
 
 840				if (PageWriteback(page))
 841					goto keep;
 842				if (PageDirty(page))
 843					goto keep;
 844
 845				/*
 846				 * A synchronous write - probably a ramdisk.  Go
 847				 * ahead and try to reclaim the page.
 848				 */
 849				if (!trylock_page(page))
 850					goto keep;
 851				if (PageDirty(page) || PageWriteback(page))
 852					goto keep_locked;
 853				mapping = page_mapping(page);
 
 854			case PAGE_CLEAN:
 855				; /* try to free the page below */
 856			}
 857		}
 858
 859		/*
 860		 * If the page has buffers, try to free the buffer mappings
 861		 * associated with this page. If we succeed we try to free
 862		 * the page as well.
 863		 *
 864		 * We do this even if the page is PageDirty().
 865		 * try_to_release_page() does not perform I/O, but it is
 866		 * possible for a page to have PageDirty set, but it is actually
 867		 * clean (all its buffers are clean).  This happens if the
 868		 * buffers were written out directly, with submit_bh(). ext3
 869		 * will do this, as well as the blockdev mapping.
 870		 * try_to_release_page() will discover that cleanness and will
 871		 * drop the buffers and mark the page clean - it can be freed.
 872		 *
 873		 * Rarely, pages can have buffers and no ->mapping.  These are
 874		 * the pages which were not successfully invalidated in
 875		 * truncate_complete_page().  We try to drop those buffers here
 876		 * and if that worked, and the page is no longer mapped into
 877		 * process address space (page_count == 1) it can be freed.
 878		 * Otherwise, leave the page on the LRU so it is swappable.
 879		 */
 880		if (page_has_private(page)) {
 881			if (!try_to_release_page(page, sc->gfp_mask))
 882				goto activate_locked;
 883			if (!mapping && page_count(page) == 1) {
 884				unlock_page(page);
 885				if (put_page_testzero(page))
 886					goto free_it;
 887				else {
 888					/*
 889					 * rare race with speculative reference.
 890					 * the speculative reference will free
 891					 * this page shortly, so we may
 892					 * increment nr_reclaimed here (and
 893					 * leave it off the LRU).
 894					 */
 895					nr_reclaimed++;
 896					continue;
 897				}
 898			}
 899		}
 900
 901		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 
 902			goto keep_locked;
 903
 
 
 904		/*
 905		 * At this point, we have no other references and there is
 906		 * no way to pick any more up (removed from LRU, removed
 907		 * from pagecache). Can use non-atomic bitops now (and
 908		 * we obviously don't have to worry about waking up a process
 909		 * waiting on the page lock, because there are no references.
 910		 */
 911		__clear_page_locked(page);
 912free_it:
 913		nr_reclaimed++;
 914
 915		/*
 916		 * Is there need to periodically free_page_list? It would
 917		 * appear not as the counts should be low
 918		 */
 919		list_add(&page->lru, &free_pages);
 920		continue;
 921
 922cull_mlocked:
 923		if (PageSwapCache(page))
 924			try_to_free_swap(page);
 925		unlock_page(page);
 926		putback_lru_page(page);
 927		continue;
 928
 
 
 
 
 
 
 
 
 
 929activate_locked:
 930		/* Not a candidate for swapping, so reclaim swap space. */
 931		if (PageSwapCache(page) && vm_swap_full())
 
 932			try_to_free_swap(page);
 933		VM_BUG_ON(PageActive(page));
 934		SetPageActive(page);
 935		pgactivate++;
 
 
 
 
 936keep_locked:
 937		unlock_page(page);
 938keep:
 939		list_add(&page->lru, &ret_pages);
 940		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 941	}
 942
 943	/*
 944	 * Tag a zone as congested if all the dirty pages encountered were
 945	 * backed by a congested BDI. In this case, reclaimers should just
 946	 * back off and wait for congestion to clear because further reclaim
 947	 * will encounter the same problem
 948	 */
 949	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
 950		zone_set_flag(zone, ZONE_CONGESTED);
 951
 952	free_hot_cold_page_list(&free_pages, 1);
 
 
 953
 954	list_splice(&ret_pages, page_list);
 955	count_vm_events(PGACTIVATE, pgactivate);
 956	*ret_nr_dirty += nr_dirty;
 957	*ret_nr_writeback += nr_writeback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958	return nr_reclaimed;
 959}
 960
 961/*
 962 * Attempt to remove the specified page from its LRU.  Only take this page
 963 * if it is of the appropriate PageActive status.  Pages which are being
 964 * freed elsewhere are also ignored.
 965 *
 966 * page:	page to consider
 967 * mode:	one of the LRU isolation modes defined above
 968 *
 969 * returns 0 on success, -ve errno on failure.
 970 */
 971int __isolate_lru_page(struct page *page, isolate_mode_t mode)
 972{
 973	int ret = -EINVAL;
 974
 975	/* Only take pages on the LRU. */
 976	if (!PageLRU(page))
 977		return ret;
 978
 979	/* Do not give back unevictable pages for compaction */
 980	if (PageUnevictable(page))
 981		return ret;
 982
 983	ret = -EBUSY;
 984
 985	/*
 986	 * To minimise LRU disruption, the caller can indicate that it only
 987	 * wants to isolate pages it will be able to operate on without
 988	 * blocking - clean pages for the most part.
 989	 *
 990	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
 991	 * is used by reclaim when it is cannot write to backing storage
 992	 *
 993	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
 994	 * that it is possible to migrate without blocking
 995	 */
 996	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
 997		/* All the caller can do on PageWriteback is block */
 998		if (PageWriteback(page))
 999			return ret;
1000
1001		if (PageDirty(page)) {
1002			struct address_space *mapping;
1003
1004			/* ISOLATE_CLEAN means only clean pages */
1005			if (mode & ISOLATE_CLEAN)
1006				return ret;
1007
1008			/*
1009			 * Only pages without mappings or that have a
1010			 * ->migratepage callback are possible to migrate
1011			 * without blocking
 
 
 
 
1012			 */
 
 
 
1013			mapping = page_mapping(page);
1014			if (mapping && !mapping->a_ops->migratepage)
1015				return ret;
 
 
1016		}
1017	}
1018
1019	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1020		return ret;
1021
1022	if (likely(get_page_unless_zero(page))) {
1023		/*
1024		 * Be careful not to clear PageLRU until after we're
1025		 * sure the page is not being freed elsewhere -- the
1026		 * page release code relies on it.
1027		 */
1028		ClearPageLRU(page);
1029		ret = 0;
 
 
 
 
 
 
 
 
 
1030	}
1031
1032	return ret;
1033}
1034
1035/*
1036 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
1037 * shrink the lists perform better by taking out a batch of pages
1038 * and working on them outside the LRU lock.
1039 *
1040 * For pagecache intensive workloads, this function is the hottest
1041 * spot in the kernel (apart from copy_*_user functions).
1042 *
1043 * Appropriate locks must be held before calling this function.
1044 *
1045 * @nr_to_scan:	The number of pages to look through on the list.
1046 * @lruvec:	The LRU vector to pull pages from.
1047 * @dst:	The temp list to put pages on to.
1048 * @nr_scanned:	The number of pages that were scanned.
1049 * @sc:		The scan_control struct for this reclaim session
1050 * @mode:	One of the LRU isolation modes
1051 * @lru:	LRU list id for isolating
1052 *
1053 * returns how many pages were moved onto *@dst.
1054 */
1055static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056		struct lruvec *lruvec, struct list_head *dst,
1057		unsigned long *nr_scanned, struct scan_control *sc,
1058		isolate_mode_t mode, enum lru_list lru)
1059{
1060	struct list_head *src = &lruvec->lists[lru];
1061	unsigned long nr_taken = 0;
1062	unsigned long scan;
1063
1064	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
 
 
 
1065		struct page *page;
1066		int nr_pages;
1067
1068		page = lru_to_page(src);
1069		prefetchw_prev_lru_page(page, src, flags);
1070
1071		VM_BUG_ON(!PageLRU(page));
 
1072
1073		switch (__isolate_lru_page(page, mode)) {
1074		case 0:
1075			nr_pages = hpage_nr_pages(page);
1076			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1077			list_move(&page->lru, dst);
1078			nr_taken += nr_pages;
1079			break;
1080
1081		case -EBUSY:
1082			/* else it is being freed elsewhere */
 
 
 
 
 
 
 
 
 
 
 
1083			list_move(&page->lru, src);
1084			continue;
 
 
 
 
 
 
 
 
 
 
1085
1086		default:
1087			BUG();
 
 
 
1088		}
 
 
 
 
1089	}
1090
1091	*nr_scanned = scan;
1092	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	return nr_taken;
1095}
1096
1097/**
1098 * isolate_lru_page - tries to isolate a page from its LRU list
1099 * @page: page to isolate from its LRU list
1100 *
1101 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102 * vmstat statistic corresponding to whatever LRU list the page was on.
1103 *
1104 * Returns 0 if the page was removed from an LRU list.
1105 * Returns -EBUSY if the page was not on an LRU list.
1106 *
1107 * The returned page will have PageLRU() cleared.  If it was found on
1108 * the active list, it will have PageActive set.  If it was found on
1109 * the unevictable list, it will have the PageUnevictable bit set. That flag
1110 * may need to be cleared by the caller before letting the page go.
1111 *
1112 * The vmstat statistic corresponding to the list on which the page was
1113 * found will be decremented.
1114 *
1115 * Restrictions:
 
1116 * (1) Must be called with an elevated refcount on the page. This is a
1117 *     fundamentnal difference from isolate_lru_pages (which is called
1118 *     without a stable reference).
1119 * (2) the lru_lock must not be held.
1120 * (3) interrupts must be enabled.
1121 */
1122int isolate_lru_page(struct page *page)
1123{
1124	int ret = -EBUSY;
1125
1126	VM_BUG_ON(!page_count(page));
 
1127
1128	if (PageLRU(page)) {
1129		struct zone *zone = page_zone(page);
1130		struct lruvec *lruvec;
1131
1132		spin_lock_irq(&zone->lru_lock);
1133		lruvec = mem_cgroup_page_lruvec(page, zone);
1134		if (PageLRU(page)) {
1135			int lru = page_lru(page);
1136			get_page(page);
1137			ClearPageLRU(page);
1138			del_page_from_lru_list(page, lruvec, lru);
1139			ret = 0;
1140		}
1141		spin_unlock_irq(&zone->lru_lock);
1142	}
 
1143	return ret;
1144}
1145
1146/*
1147 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1148 */
1149static int too_many_isolated(struct zone *zone, int file,
1150		struct scan_control *sc)
1151{
1152	unsigned long inactive, isolated;
1153
1154	if (current_is_kswapd())
1155		return 0;
1156
1157	if (!global_reclaim(sc))
1158		return 0;
1159
1160	if (file) {
1161		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1163	} else {
1164		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1166	}
1167
 
 
 
 
 
 
 
 
1168	return isolated > inactive;
1169}
1170
1171static noinline_for_stack void
1172putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
 
1173{
1174	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175	struct zone *zone = lruvec_zone(lruvec);
1176	LIST_HEAD(pages_to_free);
 
1177
1178	/*
1179	 * Put back any unfreeable pages.
1180	 */
1181	while (!list_empty(page_list)) {
1182		struct page *page = lru_to_page(page_list);
1183		int lru;
1184
1185		VM_BUG_ON(PageLRU(page));
1186		list_del(&page->lru);
1187		if (unlikely(!page_evictable(page, NULL))) {
1188			spin_unlock_irq(&zone->lru_lock);
1189			putback_lru_page(page);
1190			spin_lock_irq(&zone->lru_lock);
1191			continue;
1192		}
1193
1194		lruvec = mem_cgroup_page_lruvec(page, zone);
1195
 
 
 
 
 
 
 
 
 
1196		SetPageLRU(page);
1197		lru = page_lru(page);
1198		add_page_to_lru_list(page, lruvec, lru);
1199
1200		if (is_active_lru(lru)) {
1201			int file = is_file_lru(lru);
1202			int numpages = hpage_nr_pages(page);
1203			reclaim_stat->recent_rotated[file] += numpages;
1204		}
1205		if (put_page_testzero(page)) {
1206			__ClearPageLRU(page);
1207			__ClearPageActive(page);
1208			del_page_from_lru_list(page, lruvec, lru);
1209
1210			if (unlikely(PageCompound(page))) {
1211				spin_unlock_irq(&zone->lru_lock);
1212				(*get_compound_page_dtor(page))(page);
1213				spin_lock_irq(&zone->lru_lock);
1214			} else
1215				list_add(&page->lru, &pages_to_free);
 
 
1216		}
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	/*
1220	 * To save our caller's stack, now use input list for pages to free.
1221	 */
1222	list_splice(&pages_to_free, page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223}
1224
1225/*
1226 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1227 * of reclaimed pages
1228 */
1229static noinline_for_stack unsigned long
1230shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231		     struct scan_control *sc, enum lru_list lru)
1232{
1233	LIST_HEAD(page_list);
1234	unsigned long nr_scanned;
1235	unsigned long nr_reclaimed = 0;
1236	unsigned long nr_taken;
1237	unsigned long nr_dirty = 0;
1238	unsigned long nr_writeback = 0;
1239	isolate_mode_t isolate_mode = 0;
1240	int file = is_file_lru(lru);
1241	struct zone *zone = lruvec_zone(lruvec);
1242	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1243
1244	while (unlikely(too_many_isolated(zone, file, sc))) {
1245		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
 
1246
1247		/* We are about to die and free our memory. Return now. */
1248		if (fatal_signal_pending(current))
1249			return SWAP_CLUSTER_MAX;
1250	}
1251
1252	lru_add_drain();
1253
1254	if (!sc->may_unmap)
1255		isolate_mode |= ISOLATE_UNMAPPED;
1256	if (!sc->may_writepage)
1257		isolate_mode |= ISOLATE_CLEAN;
1258
1259	spin_lock_irq(&zone->lru_lock);
1260
1261	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262				     &nr_scanned, sc, isolate_mode, lru);
1263
1264	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 
 
 
 
1266
1267	if (global_reclaim(sc)) {
1268		zone->pages_scanned += nr_scanned;
1269		if (current_is_kswapd())
1270			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1271		else
1272			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1273	}
1274	spin_unlock_irq(&zone->lru_lock);
1275
1276	if (nr_taken == 0)
1277		return 0;
1278
1279	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280						&nr_dirty, &nr_writeback);
1281
1282	spin_lock_irq(&zone->lru_lock);
 
1283
1284	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
 
 
 
 
 
 
1285
1286	if (global_reclaim(sc)) {
1287		if (current_is_kswapd())
1288			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1289					       nr_reclaimed);
1290		else
1291			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1292					       nr_reclaimed);
1293	}
1294
1295	putback_inactive_pages(lruvec, &page_list);
1296
1297	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
 
1298
1299	spin_unlock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
1300
1301	free_hot_cold_page_list(&page_list, 1);
1302
1303	/*
1304	 * If reclaim is isolating dirty pages under writeback, it implies
1305	 * that the long-lived page allocation rate is exceeding the page
1306	 * laundering rate. Either the global limits are not being effective
1307	 * at throttling processes due to the page distribution throughout
1308	 * zones or there is heavy usage of a slow backing device. The
1309	 * only option is to throttle from reclaim context which is not ideal
1310	 * as there is no guarantee the dirtying process is throttled in the
1311	 * same way balance_dirty_pages() manages.
1312	 *
1313	 * This scales the number of dirty pages that must be under writeback
1314	 * before throttling depending on priority. It is a simple backoff
1315	 * function that has the most effect in the range DEF_PRIORITY to
1316	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317	 * in trouble and reclaim is considered to be in trouble.
1318	 *
1319	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1320	 * DEF_PRIORITY-1  50% must be PageWriteback
1321	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1322	 * ...
1323	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324	 *                     isolated page is PageWriteback
1325	 */
1326	if (nr_writeback && nr_writeback >=
1327			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1328		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1329
1330	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1331		zone_idx(zone),
1332		nr_scanned, nr_reclaimed,
1333		sc->priority,
1334		trace_shrink_flags(file));
1335	return nr_reclaimed;
1336}
1337
1338/*
1339 * This moves pages from the active list to the inactive list.
1340 *
1341 * We move them the other way if the page is referenced by one or more
1342 * processes, from rmap.
1343 *
1344 * If the pages are mostly unmapped, the processing is fast and it is
1345 * appropriate to hold zone->lru_lock across the whole operation.  But if
1346 * the pages are mapped, the processing is slow (page_referenced()) so we
1347 * should drop zone->lru_lock around each page.  It's impossible to balance
1348 * this, so instead we remove the pages from the LRU while processing them.
1349 * It is safe to rely on PG_active against the non-LRU pages in here because
1350 * nobody will play with that bit on a non-LRU page.
1351 *
1352 * The downside is that we have to touch page->_count against each page.
1353 * But we had to alter page->flags anyway.
1354 */
1355
1356static void move_active_pages_to_lru(struct lruvec *lruvec,
1357				     struct list_head *list,
1358				     struct list_head *pages_to_free,
1359				     enum lru_list lru)
1360{
1361	struct zone *zone = lruvec_zone(lruvec);
1362	unsigned long pgmoved = 0;
1363	struct page *page;
1364	int nr_pages;
1365
1366	while (!list_empty(list)) {
1367		page = lru_to_page(list);
1368		lruvec = mem_cgroup_page_lruvec(page, zone);
1369
1370		VM_BUG_ON(PageLRU(page));
1371		SetPageLRU(page);
1372
1373		nr_pages = hpage_nr_pages(page);
1374		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375		list_move(&page->lru, &lruvec->lists[lru]);
1376		pgmoved += nr_pages;
1377
1378		if (put_page_testzero(page)) {
1379			__ClearPageLRU(page);
1380			__ClearPageActive(page);
1381			del_page_from_lru_list(page, lruvec, lru);
1382
1383			if (unlikely(PageCompound(page))) {
1384				spin_unlock_irq(&zone->lru_lock);
1385				(*get_compound_page_dtor(page))(page);
1386				spin_lock_irq(&zone->lru_lock);
1387			} else
1388				list_add(&page->lru, pages_to_free);
1389		}
1390	}
1391	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392	if (!is_active_lru(lru))
1393		__count_vm_events(PGDEACTIVATE, pgmoved);
1394}
1395
1396static void shrink_active_list(unsigned long nr_to_scan,
1397			       struct lruvec *lruvec,
1398			       struct scan_control *sc,
1399			       enum lru_list lru)
1400{
1401	unsigned long nr_taken;
1402	unsigned long nr_scanned;
1403	unsigned long vm_flags;
1404	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1405	LIST_HEAD(l_active);
1406	LIST_HEAD(l_inactive);
1407	struct page *page;
1408	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409	unsigned long nr_rotated = 0;
1410	isolate_mode_t isolate_mode = 0;
1411	int file = is_file_lru(lru);
1412	struct zone *zone = lruvec_zone(lruvec);
1413
1414	lru_add_drain();
1415
1416	if (!sc->may_unmap)
1417		isolate_mode |= ISOLATE_UNMAPPED;
1418	if (!sc->may_writepage)
1419		isolate_mode |= ISOLATE_CLEAN;
1420
1421	spin_lock_irq(&zone->lru_lock);
1422
1423	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424				     &nr_scanned, sc, isolate_mode, lru);
1425	if (global_reclaim(sc))
1426		zone->pages_scanned += nr_scanned;
1427
1428	reclaim_stat->recent_scanned[file] += nr_taken;
1429
1430	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433	spin_unlock_irq(&zone->lru_lock);
1434
1435	while (!list_empty(&l_hold)) {
1436		cond_resched();
1437		page = lru_to_page(&l_hold);
1438		list_del(&page->lru);
1439
1440		if (unlikely(!page_evictable(page, NULL))) {
1441			putback_lru_page(page);
1442			continue;
1443		}
1444
1445		if (unlikely(buffer_heads_over_limit)) {
1446			if (page_has_private(page) && trylock_page(page)) {
1447				if (page_has_private(page))
1448					try_to_release_page(page, 0);
1449				unlock_page(page);
1450			}
1451		}
1452
1453		if (page_referenced(page, 0, sc->target_mem_cgroup,
1454				    &vm_flags)) {
1455			nr_rotated += hpage_nr_pages(page);
1456			/*
1457			 * Identify referenced, file-backed active pages and
1458			 * give them one more trip around the active list. So
1459			 * that executable code get better chances to stay in
1460			 * memory under moderate memory pressure.  Anon pages
1461			 * are not likely to be evicted by use-once streaming
1462			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1463			 * so we ignore them here.
1464			 */
1465			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 
1466				list_add(&page->lru, &l_active);
1467				continue;
1468			}
1469		}
1470
1471		ClearPageActive(page);	/* we are de-activating */
 
1472		list_add(&page->lru, &l_inactive);
1473	}
1474
1475	/*
1476	 * Move pages back to the lru list.
1477	 */
1478	spin_lock_irq(&zone->lru_lock);
1479	/*
1480	 * Count referenced pages from currently used mappings as rotated,
1481	 * even though only some of them are actually re-activated.  This
1482	 * helps balance scan pressure between file and anonymous pages in
1483	 * get_scan_ratio.
1484	 */
1485	reclaim_stat->recent_rotated[file] += nr_rotated;
1486
1487	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490	spin_unlock_irq(&zone->lru_lock);
1491
1492	free_hot_cold_page_list(&l_hold, 1);
1493}
1494
1495#ifdef CONFIG_SWAP
1496static int inactive_anon_is_low_global(struct zone *zone)
1497{
1498	unsigned long active, inactive;
1499
1500	active = zone_page_state(zone, NR_ACTIVE_ANON);
1501	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1502
1503	if (inactive * zone->inactive_ratio < active)
1504		return 1;
1505
1506	return 0;
1507}
1508
1509/**
1510 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511 * @lruvec: LRU vector to check
1512 *
1513 * Returns true if the zone does not have enough inactive anon pages,
1514 * meaning some active anon pages need to be deactivated.
1515 */
1516static int inactive_anon_is_low(struct lruvec *lruvec)
1517{
1518	/*
1519	 * If we don't have swap space, anonymous page deactivation
1520	 * is pointless.
1521	 */
1522	if (!total_swap_pages)
1523		return 0;
 
 
 
 
 
 
 
1524
1525	if (!mem_cgroup_disabled())
1526		return mem_cgroup_inactive_anon_is_low(lruvec);
1527
1528	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1529}
1530#else
1531static inline int inactive_anon_is_low(struct lruvec *lruvec)
1532{
1533	return 0;
1534}
1535#endif
1536
1537static int inactive_file_is_low_global(struct zone *zone)
1538{
1539	unsigned long active, inactive;
 
 
1540
1541	active = zone_page_state(zone, NR_ACTIVE_FILE);
1542	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
 
 
 
 
 
 
1543
1544	return (active > inactive);
1545}
1546
1547/**
1548 * inactive_file_is_low - check if file pages need to be deactivated
1549 * @lruvec: LRU vector to check
1550 *
1551 * When the system is doing streaming IO, memory pressure here
1552 * ensures that active file pages get deactivated, until more
1553 * than half of the file pages are on the inactive list.
1554 *
1555 * Once we get to that situation, protect the system's working
1556 * set from being evicted by disabling active file page aging.
1557 *
1558 * This uses a different ratio than the anonymous pages, because
1559 * the page cache uses a use-once replacement algorithm.
1560 */
1561static int inactive_file_is_low(struct lruvec *lruvec)
1562{
1563	if (!mem_cgroup_disabled())
1564		return mem_cgroup_inactive_file_is_low(lruvec);
1565
1566	return inactive_file_is_low_global(lruvec_zone(lruvec));
1567}
1568
1569static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1570{
1571	if (is_file_lru(lru))
1572		return inactive_file_is_low(lruvec);
1573	else
1574		return inactive_anon_is_low(lruvec);
1575}
1576
1577static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578				 struct lruvec *lruvec, struct scan_control *sc)
1579{
1580	if (is_active_lru(lru)) {
1581		if (inactive_list_is_low(lruvec, lru))
1582			shrink_active_list(nr_to_scan, lruvec, sc, lru);
 
 
1583		return 0;
1584	}
1585
1586	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1587}
1588
1589static int vmscan_swappiness(struct scan_control *sc)
1590{
1591	if (global_reclaim(sc))
1592		return vm_swappiness;
1593	return mem_cgroup_swappiness(sc->target_mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594}
1595
 
 
 
 
 
 
 
1596/*
1597 * Determine how aggressively the anon and file LRU lists should be
1598 * scanned.  The relative value of each set of LRU lists is determined
1599 * by looking at the fraction of the pages scanned we did rotate back
1600 * onto the active list instead of evict.
1601 *
1602 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1603 */
1604static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1605			   unsigned long *nr)
1606{
1607	unsigned long anon, file, free;
1608	unsigned long anon_prio, file_prio;
 
 
 
 
1609	unsigned long ap, fp;
1610	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1611	u64 fraction[2], denominator;
1612	enum lru_list lru;
1613	int noswap = 0;
1614	bool force_scan = false;
1615	struct zone *zone = lruvec_zone(lruvec);
1616
1617	/*
1618	 * If the zone or memcg is small, nr[l] can be 0.  This
1619	 * results in no scanning on this priority and a potential
1620	 * priority drop.  Global direct reclaim can go to the next
1621	 * zone and tends to have no problems. Global kswapd is for
1622	 * zone balancing and it needs to scan a minimum amount. When
1623	 * reclaiming for a memcg, a priority drop can cause high
1624	 * latencies, so it's better to scan a minimum amount there as
1625	 * well.
1626	 */
1627	if (current_is_kswapd() && zone->all_unreclaimable)
1628		force_scan = true;
1629	if (!global_reclaim(sc))
1630		force_scan = true;
1631
1632	/* If we have no swap space, do not bother scanning anon pages. */
1633	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1634		noswap = 1;
1635		fraction[0] = 0;
1636		fraction[1] = 1;
1637		denominator = 1;
1638		goto out;
1639	}
1640
1641	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1642		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1643	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1644		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1645
1646	if (global_reclaim(sc)) {
1647		free  = zone_page_state(zone, NR_FREE_PAGES);
1648		/* If we have very few page cache pages,
1649		   force-scan anon pages. */
1650		if (unlikely(file + free <= high_wmark_pages(zone))) {
1651			fraction[0] = 1;
1652			fraction[1] = 0;
1653			denominator = 1;
1654			goto out;
1655		}
1656	}
1657
1658	/*
1659	 * With swappiness at 100, anonymous and file have the same priority.
1660	 * This scanning priority is essentially the inverse of IO cost.
 
1661	 */
1662	anon_prio = vmscan_swappiness(sc);
1663	file_prio = 200 - anon_prio;
 
 
1664
1665	/*
1666	 * OK, so we have swap space and a fair amount of page cache
1667	 * pages.  We use the recently rotated / recently scanned
1668	 * ratios to determine how valuable each cache is.
1669	 *
1670	 * Because workloads change over time (and to avoid overflow)
1671	 * we keep these statistics as a floating average, which ends
1672	 * up weighing recent references more than old ones.
1673	 *
1674	 * anon in [0], file in [1]
1675	 */
1676	spin_lock_irq(&zone->lru_lock);
1677	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1678		reclaim_stat->recent_scanned[0] /= 2;
1679		reclaim_stat->recent_rotated[0] /= 2;
1680	}
1681
1682	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1683		reclaim_stat->recent_scanned[1] /= 2;
1684		reclaim_stat->recent_rotated[1] /= 2;
 
 
 
 
1685	}
1686
 
1687	/*
1688	 * The amount of pressure on anon vs file pages is inversely
1689	 * proportional to the fraction of recently scanned pages on
1690	 * each list that were recently referenced and in active use.
 
 
 
 
 
 
 
 
 
 
1691	 */
1692	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1693	ap /= reclaim_stat->recent_rotated[0] + 1;
 
 
 
 
 
1694
1695	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1696	fp /= reclaim_stat->recent_rotated[1] + 1;
1697	spin_unlock_irq(&zone->lru_lock);
1698
1699	fraction[0] = ap;
1700	fraction[1] = fp;
1701	denominator = ap + fp + 1;
1702out:
1703	for_each_evictable_lru(lru) {
1704		int file = is_file_lru(lru);
 
 
1705		unsigned long scan;
1706
1707		scan = get_lru_size(lruvec, lru);
1708		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1709			scan >>= sc->priority;
1710			if (!scan && force_scan)
1711				scan = SWAP_CLUSTER_MAX;
1712			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713		}
 
1714		nr[lru] = scan;
1715	}
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/* Use reclaim/compaction for costly allocs or under memory pressure */
1719static bool in_reclaim_compaction(struct scan_control *sc)
1720{
1721	if (COMPACTION_BUILD && sc->order &&
1722			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1723			 sc->priority < DEF_PRIORITY - 2))
1724		return true;
1725
1726	return false;
1727}
1728
1729/*
1730 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1731 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1732 * true if more pages should be reclaimed such that when the page allocator
1733 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1734 * It will give up earlier than that if there is difficulty reclaiming pages.
1735 */
1736static inline bool should_continue_reclaim(struct lruvec *lruvec,
1737					unsigned long nr_reclaimed,
1738					unsigned long nr_scanned,
1739					struct scan_control *sc)
1740{
1741	unsigned long pages_for_compaction;
1742	unsigned long inactive_lru_pages;
 
1743
1744	/* If not in reclaim/compaction mode, stop */
1745	if (!in_reclaim_compaction(sc))
1746		return false;
1747
1748	/* Consider stopping depending on scan and reclaim activity */
1749	if (sc->gfp_mask & __GFP_REPEAT) {
1750		/*
1751		 * For __GFP_REPEAT allocations, stop reclaiming if the
1752		 * full LRU list has been scanned and we are still failing
1753		 * to reclaim pages. This full LRU scan is potentially
1754		 * expensive but a __GFP_REPEAT caller really wants to succeed
1755		 */
1756		if (!nr_reclaimed && !nr_scanned)
1757			return false;
1758	} else {
1759		/*
1760		 * For non-__GFP_REPEAT allocations which can presumably
1761		 * fail without consequence, stop if we failed to reclaim
1762		 * any pages from the last SWAP_CLUSTER_MAX number of
1763		 * pages that were scanned. This will return to the
1764		 * caller faster at the risk reclaim/compaction and
1765		 * the resulting allocation attempt fails
1766		 */
1767		if (!nr_reclaimed)
 
 
1768			return false;
 
 
 
 
1769	}
1770
1771	/*
1772	 * If we have not reclaimed enough pages for compaction and the
1773	 * inactive lists are large enough, continue reclaiming
1774	 */
1775	pages_for_compaction = (2UL << sc->order);
1776	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1777	if (nr_swap_pages > 0)
1778		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1779	if (sc->nr_reclaimed < pages_for_compaction &&
1780			inactive_lru_pages > pages_for_compaction)
1781		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783	/* If compaction would go ahead or the allocation would succeed, stop */
1784	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1785	case COMPACT_PARTIAL:
1786	case COMPACT_CONTINUE:
1787		return false;
1788	default:
1789		return true;
1790	}
1791}
1792
1793/*
1794 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1795 */
1796static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1797{
1798	unsigned long nr[NR_LRU_LISTS];
1799	unsigned long nr_to_scan;
1800	enum lru_list lru;
1801	unsigned long nr_reclaimed, nr_scanned;
1802	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1803	struct blk_plug plug;
 
 
 
 
 
 
1804
1805restart:
1806	nr_reclaimed = 0;
1807	nr_scanned = sc->nr_scanned;
1808	get_scan_count(lruvec, sc, nr);
1809
1810	blk_start_plug(&plug);
1811	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1812					nr[LRU_INACTIVE_FILE]) {
1813		for_each_evictable_lru(lru) {
1814			if (nr[lru]) {
1815				nr_to_scan = min_t(unsigned long,
1816						   nr[lru], SWAP_CLUSTER_MAX);
1817				nr[lru] -= nr_to_scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819				nr_reclaimed += shrink_list(lru, nr_to_scan,
1820							    lruvec, sc);
1821			}
1822		}
1823		/*
1824		 * On large memory systems, scan >> priority can become
1825		 * really large. This is fine for the starting priority;
1826		 * we want to put equal scanning pressure on each zone.
1827		 * However, if the VM has a harder time of freeing pages,
1828		 * with multiple processes reclaiming pages, the total
1829		 * freeing target can get unreasonably large.
1830		 */
1831		if (nr_reclaimed >= nr_to_reclaim &&
1832		    sc->priority < DEF_PRIORITY)
1833			break;
1834	}
1835	blk_finish_plug(&plug);
1836	sc->nr_reclaimed += nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837
1838	/*
1839	 * Even if we did not try to evict anon pages at all, we want to
1840	 * rebalance the anon lru active/inactive ratio.
 
 
 
 
 
1841	 */
1842	if (inactive_anon_is_low(lruvec))
1843		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1844				   sc, LRU_ACTIVE_ANON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846	/* reclaim/compaction might need reclaim to continue */
1847	if (should_continue_reclaim(lruvec, nr_reclaimed,
1848				    sc->nr_scanned - nr_scanned, sc))
1849		goto restart;
 
1850
1851	throttle_vm_writeout(sc->gfp_mask);
1852}
1853
1854static void shrink_zone(struct zone *zone, struct scan_control *sc)
1855{
1856	struct mem_cgroup *root = sc->target_mem_cgroup;
1857	struct mem_cgroup_reclaim_cookie reclaim = {
1858		.zone = zone,
1859		.priority = sc->priority,
1860	};
1861	struct mem_cgroup *memcg;
1862
1863	memcg = mem_cgroup_iter(root, NULL, &reclaim);
1864	do {
1865		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
1866
1867		shrink_lruvec(lruvec, sc);
 
1868
 
1869		/*
1870		 * Limit reclaim has historically picked one memcg and
1871		 * scanned it with decreasing priority levels until
1872		 * nr_to_reclaim had been reclaimed.  This priority
1873		 * cycle is thus over after a single memcg.
 
 
 
 
 
 
1874		 *
1875		 * Direct reclaim and kswapd, on the other hand, have
1876		 * to scan all memory cgroups to fulfill the overall
1877		 * scan target for the zone.
 
1878		 */
1879		if (!global_reclaim(sc)) {
1880			mem_cgroup_iter_break(root, memcg);
1881			break;
1882		}
1883		memcg = mem_cgroup_iter(root, memcg, &reclaim);
1884	} while (memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885}
1886
1887/* Returns true if compaction should go ahead for a high-order request */
 
 
 
 
1888static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1889{
1890	unsigned long balance_gap, watermark;
1891	bool watermark_ok;
1892
1893	/* Do not consider compaction for orders reclaim is meant to satisfy */
1894	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
 
 
 
 
1895		return false;
1896
1897	/*
1898	 * Compaction takes time to run and there are potentially other
1899	 * callers using the pages just freed. Continue reclaiming until
1900	 * there is a buffer of free pages available to give compaction
1901	 * a reasonable chance of completing and allocating the page
1902	 */
1903	balance_gap = min(low_wmark_pages(zone),
1904		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1905			KSWAPD_ZONE_BALANCE_GAP_RATIO);
1906	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1907	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1908
1909	/*
1910	 * If compaction is deferred, reclaim up to a point where
1911	 * compaction will have a chance of success when re-enabled
1912	 */
1913	if (compaction_deferred(zone, sc->order))
1914		return watermark_ok;
1915
1916	/* If compaction is not ready to start, keep reclaiming */
1917	if (!compaction_suitable(zone, sc->order))
1918		return false;
1919
1920	return watermark_ok;
1921}
1922
1923/*
1924 * This is the direct reclaim path, for page-allocating processes.  We only
1925 * try to reclaim pages from zones which will satisfy the caller's allocation
1926 * request.
1927 *
1928 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1929 * Because:
1930 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1931 *    allocation or
1932 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1933 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1934 *    zone defense algorithm.
1935 *
1936 * If a zone is deemed to be full of pinned pages then just give it a light
1937 * scan then give up on it.
1938 *
1939 * This function returns true if a zone is being reclaimed for a costly
1940 * high-order allocation and compaction is ready to begin. This indicates to
1941 * the caller that it should consider retrying the allocation instead of
1942 * further reclaim.
1943 */
1944static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1945{
1946	struct zoneref *z;
1947	struct zone *zone;
1948	unsigned long nr_soft_reclaimed;
1949	unsigned long nr_soft_scanned;
1950	bool aborted_reclaim = false;
 
1951
1952	/*
1953	 * If the number of buffer_heads in the machine exceeds the maximum
1954	 * allowed level, force direct reclaim to scan the highmem zone as
1955	 * highmem pages could be pinning lowmem pages storing buffer_heads
1956	 */
1957	if (buffer_heads_over_limit)
 
1958		sc->gfp_mask |= __GFP_HIGHMEM;
 
 
1959
1960	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1961					gfp_zone(sc->gfp_mask), sc->nodemask) {
1962		if (!populated_zone(zone))
1963			continue;
1964		/*
1965		 * Take care memory controller reclaiming has small influence
1966		 * to global LRU.
1967		 */
1968		if (global_reclaim(sc)) {
1969			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970				continue;
1971			if (zone->all_unreclaimable &&
1972					sc->priority != DEF_PRIORITY)
1973				continue;	/* Let kswapd poll it */
1974			if (COMPACTION_BUILD) {
1975				/*
1976				 * If we already have plenty of memory free for
1977				 * compaction in this zone, don't free any more.
1978				 * Even though compaction is invoked for any
1979				 * non-zero order, only frequent costly order
1980				 * reclamation is disruptive enough to become a
1981				 * noticeable problem, like transparent huge
1982				 * page allocations.
1983				 */
1984				if (compaction_ready(zone, sc)) {
1985					aborted_reclaim = true;
1986					continue;
1987				}
1988			}
 
 
 
 
 
 
 
 
 
 
1989			/*
1990			 * This steals pages from memory cgroups over softlimit
1991			 * and returns the number of reclaimed pages and
1992			 * scanned pages. This works for global memory pressure
1993			 * and balancing, not for a memcg's limit.
1994			 */
1995			nr_soft_scanned = 0;
1996			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1997						sc->order, sc->gfp_mask,
1998						&nr_soft_scanned);
1999			sc->nr_reclaimed += nr_soft_reclaimed;
2000			sc->nr_scanned += nr_soft_scanned;
2001			/* need some check for avoid more shrink_zone() */
2002		}
2003
2004		shrink_zone(zone, sc);
 
 
 
 
2005	}
2006
2007	return aborted_reclaim;
 
 
 
 
2008}
2009
2010static bool zone_reclaimable(struct zone *zone)
2011{
2012	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2013}
2014
2015/* All zones in zonelist are unreclaimable? */
2016static bool all_unreclaimable(struct zonelist *zonelist,
2017		struct scan_control *sc)
2018{
2019	struct zoneref *z;
2020	struct zone *zone;
2021
2022	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2023			gfp_zone(sc->gfp_mask), sc->nodemask) {
2024		if (!populated_zone(zone))
2025			continue;
2026		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027			continue;
2028		if (!zone->all_unreclaimable)
2029			return false;
2030	}
2031
2032	return true;
2033}
2034
2035/*
2036 * This is the main entry point to direct page reclaim.
2037 *
2038 * If a full scan of the inactive list fails to free enough memory then we
2039 * are "out of memory" and something needs to be killed.
2040 *
2041 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2042 * high - the zone may be full of dirty or under-writeback pages, which this
2043 * caller can't do much about.  We kick the writeback threads and take explicit
2044 * naps in the hope that some of these pages can be written.  But if the
2045 * allocating task holds filesystem locks which prevent writeout this might not
2046 * work, and the allocation attempt will fail.
2047 *
2048 * returns:	0, if no pages reclaimed
2049 * 		else, the number of pages reclaimed
2050 */
2051static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2052					struct scan_control *sc,
2053					struct shrink_control *shrink)
2054{
2055	unsigned long total_scanned = 0;
2056	struct reclaim_state *reclaim_state = current->reclaim_state;
2057	struct zoneref *z;
2058	struct zone *zone;
2059	unsigned long writeback_threshold;
2060	bool aborted_reclaim;
2061
2062	delayacct_freepages_start();
2063
2064	if (global_reclaim(sc))
2065		count_vm_event(ALLOCSTALL);
2066
2067	do {
 
 
2068		sc->nr_scanned = 0;
2069		aborted_reclaim = shrink_zones(zonelist, sc);
 
 
 
 
 
 
2070
2071		/*
2072		 * Don't shrink slabs when reclaiming memory from
2073		 * over limit cgroups
2074		 */
2075		if (global_reclaim(sc)) {
2076			unsigned long lru_pages = 0;
2077			for_each_zone_zonelist(zone, z, zonelist,
2078					gfp_zone(sc->gfp_mask)) {
2079				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2080					continue;
2081
2082				lru_pages += zone_reclaimable_pages(zone);
2083			}
 
 
 
 
2084
2085			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2086			if (reclaim_state) {
2087				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2088				reclaim_state->reclaimed_slab = 0;
2089			}
2090		}
2091		total_scanned += sc->nr_scanned;
2092		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2093			goto out;
2094
2095		/*
2096		 * Try to write back as many pages as we just scanned.  This
2097		 * tends to cause slow streaming writers to write data to the
2098		 * disk smoothly, at the dirtying rate, which is nice.   But
2099		 * that's undesirable in laptop mode, where we *want* lumpy
2100		 * writeout.  So in laptop mode, write out the whole world.
2101		 */
2102		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2103		if (total_scanned > writeback_threshold) {
2104			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2105						WB_REASON_TRY_TO_FREE_PAGES);
2106			sc->may_writepage = 1;
2107		}
2108
2109		/* Take a nap, wait for some writeback to complete */
2110		if (!sc->hibernation_mode && sc->nr_scanned &&
2111		    sc->priority < DEF_PRIORITY - 2) {
2112			struct zone *preferred_zone;
2113
2114			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2115						&cpuset_current_mems_allowed,
2116						&preferred_zone);
2117			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2118		}
2119	} while (--sc->priority >= 0);
2120
2121out:
2122	delayacct_freepages_end();
2123
2124	if (sc->nr_reclaimed)
2125		return sc->nr_reclaimed;
2126
 
 
 
 
2127	/*
2128	 * As hibernation is going on, kswapd is freezed so that it can't mark
2129	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2130	 * check.
 
 
 
 
2131	 */
2132	if (oom_killer_disabled)
2133		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134
2135	/* Aborted reclaim to try compaction? don't OOM, then */
2136	if (aborted_reclaim)
2137		return 1;
2138
2139	/* top priority shrink_zones still had more to do? don't OOM, then */
2140	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2141		return 1;
2142
2143	return 0;
 
2144}
2145
2146unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2147				gfp_t gfp_mask, nodemask_t *nodemask)
2148{
2149	unsigned long nr_reclaimed;
2150	struct scan_control sc = {
2151		.gfp_mask = gfp_mask,
 
 
 
 
 
2152		.may_writepage = !laptop_mode,
2153		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2154		.may_unmap = 1,
2155		.may_swap = 1,
2156		.order = order,
2157		.priority = DEF_PRIORITY,
2158		.target_mem_cgroup = NULL,
2159		.nodemask = nodemask,
2160	};
2161	struct shrink_control shrink = {
2162		.gfp_mask = sc.gfp_mask,
2163	};
2164
2165	trace_mm_vmscan_direct_reclaim_begin(order,
2166				sc.may_writepage,
2167				gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168
2169	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2170
2171	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2172
2173	return nr_reclaimed;
2174}
2175
2176#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2177
2178unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
 
2179						gfp_t gfp_mask, bool noswap,
2180						struct zone *zone,
2181						unsigned long *nr_scanned)
2182{
 
2183	struct scan_control sc = {
2184		.nr_scanned = 0,
2185		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2186		.may_writepage = !laptop_mode,
2187		.may_unmap = 1,
 
2188		.may_swap = !noswap,
2189		.order = 0,
2190		.priority = 0,
2191		.target_mem_cgroup = memcg,
2192	};
2193	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
2194
2195	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2196			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2197
2198	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2199						      sc.may_writepage,
2200						      sc.gfp_mask);
2201
2202	/*
2203	 * NOTE: Although we can get the priority field, using it
2204	 * here is not a good idea, since it limits the pages we can scan.
2205	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2206	 * will pick up pages from other mem cgroup's as well. We hack
2207	 * the priority and make it zero.
2208	 */
2209	shrink_lruvec(lruvec, &sc);
2210
2211	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2212
2213	*nr_scanned = sc.nr_scanned;
 
2214	return sc.nr_reclaimed;
2215}
2216
2217unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 
2218					   gfp_t gfp_mask,
2219					   bool noswap)
2220{
2221	struct zonelist *zonelist;
2222	unsigned long nr_reclaimed;
2223	int nid;
2224	struct scan_control sc = {
 
 
 
 
 
 
2225		.may_writepage = !laptop_mode,
2226		.may_unmap = 1,
2227		.may_swap = !noswap,
2228		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2229		.order = 0,
2230		.priority = DEF_PRIORITY,
2231		.target_mem_cgroup = memcg,
2232		.nodemask = NULL, /* we don't care the placement */
2233		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2234				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
2239
2240	/*
2241	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2242	 * take care of from where we get pages. So the node where we start the
2243	 * scan does not need to be the current node.
2244	 */
2245	nid = mem_cgroup_select_victim_node(memcg);
2246
2247	zonelist = NODE_DATA(nid)->node_zonelists;
2248
2249	trace_mm_vmscan_memcg_reclaim_begin(0,
2250					    sc.may_writepage,
2251					    sc.gfp_mask);
2252
2253	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2254
 
2255	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2256
2257	return nr_reclaimed;
2258}
2259#endif
2260
2261static void age_active_anon(struct zone *zone, struct scan_control *sc)
 
2262{
2263	struct mem_cgroup *memcg;
 
2264
2265	if (!total_swap_pages)
2266		return;
2267
 
 
 
 
2268	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2269	do {
2270		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
 
 
 
 
 
 
 
 
 
2271
2272		if (inactive_anon_is_low(lruvec))
2273			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2274					   sc, LRU_ACTIVE_ANON);
 
 
 
 
 
 
 
 
 
 
 
 
2275
2276		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2277	} while (memcg);
2278}
2279
2280/*
2281 * pgdat_balanced is used when checking if a node is balanced for high-order
2282 * allocations. Only zones that meet watermarks and are in a zone allowed
2283 * by the callers classzone_idx are added to balanced_pages. The total of
2284 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2285 * for the node to be considered balanced. Forcing all zones to be balanced
2286 * for high orders can cause excessive reclaim when there are imbalanced zones.
2287 * The choice of 25% is due to
2288 *   o a 16M DMA zone that is balanced will not balance a zone on any
2289 *     reasonable sized machine
2290 *   o On all other machines, the top zone must be at least a reasonable
2291 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2292 *     would need to be at least 256M for it to be balance a whole node.
2293 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2294 *     to balance a node on its own. These seemed like reasonable ratios.
2295 */
2296static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2297						int classzone_idx)
2298{
2299	unsigned long present_pages = 0;
2300	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	for (i = 0; i <= classzone_idx; i++)
2303		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
2304
2305	/* A special case here: if zone has no page, we think it's balanced */
2306	return balanced_pages >= (present_pages >> 2);
2307}
2308
2309/* is kswapd sleeping prematurely? */
2310static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2311					int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2312{
2313	int i;
2314	unsigned long balanced = 0;
2315	bool all_zones_ok = true;
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2318	if (remaining)
2319		return true;
2320
2321	/* Check the watermark levels */
2322	for (i = 0; i <= classzone_idx; i++) {
2323		struct zone *zone = pgdat->node_zones + i;
 
2324
2325		if (!populated_zone(zone))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326			continue;
2327
2328		/*
2329		 * balance_pgdat() skips over all_unreclaimable after
2330		 * DEF_PRIORITY. Effectively, it considers them balanced so
2331		 * they must be considered balanced here as well if kswapd
2332		 * is to sleep
2333		 */
2334		if (zone->all_unreclaimable) {
2335			balanced += zone->present_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336			continue;
2337		}
2338
2339		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2340							i, 0))
2341			all_zones_ok = false;
2342		else
2343			balanced += zone->present_pages;
2344	}
 
 
 
 
 
 
 
2345
2346	/*
2347	 * For high-order requests, the balanced zones must contain at least
2348	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2349	 * must be balanced
2350	 */
2351	if (order)
2352		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2353	else
2354		return !all_zones_ok;
2355}
2356
2357/*
2358 * For kswapd, balance_pgdat() will work across all this node's zones until
2359 * they are all at high_wmark_pages(zone).
 
2360 *
2361 * Returns the final order kswapd was reclaiming at
2362 *
2363 * There is special handling here for zones which are full of pinned pages.
2364 * This can happen if the pages are all mlocked, or if they are all used by
2365 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2366 * What we do is to detect the case where all pages in the zone have been
2367 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2368 * dead and from now on, only perform a short scan.  Basically we're polling
2369 * the zone for when the problem goes away.
2370 *
2371 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2372 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2373 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2374 * lower zones regardless of the number of free pages in the lower zones. This
2375 * interoperates with the page allocator fallback scheme to ensure that aging
2376 * of pages is balanced across the zones.
2377 */
2378static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2379							int *classzone_idx)
2380{
2381	int all_zones_ok;
2382	unsigned long balanced;
2383	int i;
2384	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2385	unsigned long total_scanned;
2386	struct reclaim_state *reclaim_state = current->reclaim_state;
2387	unsigned long nr_soft_reclaimed;
2388	unsigned long nr_soft_scanned;
 
 
 
 
 
2389	struct scan_control sc = {
2390		.gfp_mask = GFP_KERNEL,
 
2391		.may_unmap = 1,
2392		.may_swap = 1,
2393		/*
2394		 * kswapd doesn't want to be bailed out while reclaim. because
2395		 * we want to put equal scanning pressure on each zone.
2396		 */
2397		.nr_to_reclaim = ULONG_MAX,
2398		.order = order,
2399		.target_mem_cgroup = NULL,
2400	};
2401	struct shrink_control shrink = {
2402		.gfp_mask = sc.gfp_mask,
2403	};
2404loop_again:
2405	total_scanned = 0;
2406	sc.priority = DEF_PRIORITY;
2407	sc.nr_reclaimed = 0;
2408	sc.may_writepage = !laptop_mode;
2409	count_vm_event(PAGEOUTRUN);
2410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411	do {
2412		unsigned long lru_pages = 0;
2413		int has_under_min_watermark_zone = 0;
 
 
2414
2415		all_zones_ok = 1;
2416		balanced = 0;
2417
2418		/*
2419		 * Scan in the highmem->dma direction for the highest
2420		 * zone which needs scanning
 
 
 
 
 
 
2421		 */
2422		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2423			struct zone *zone = pgdat->node_zones + i;
 
 
 
2424
2425			if (!populated_zone(zone))
2426				continue;
2427
2428			if (zone->all_unreclaimable &&
2429			    sc.priority != DEF_PRIORITY)
2430				continue;
2431
2432			/*
2433			 * Do some background aging of the anon list, to give
2434			 * pages a chance to be referenced before reclaiming.
2435			 */
2436			age_active_anon(zone, &sc);
2437
2438			/*
2439			 * If the number of buffer_heads in the machine
2440			 * exceeds the maximum allowed level and this node
2441			 * has a highmem zone, force kswapd to reclaim from
2442			 * it to relieve lowmem pressure.
2443			 */
2444			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2445				end_zone = i;
2446				break;
2447			}
2448
2449			if (!zone_watermark_ok_safe(zone, order,
2450					high_wmark_pages(zone), 0, 0)) {
2451				end_zone = i;
2452				break;
2453			} else {
2454				/* If balanced, clear the congested flag */
2455				zone_clear_flag(zone, ZONE_CONGESTED);
2456			}
2457		}
2458		if (i < 0)
2459			goto out;
2460
2461		for (i = 0; i <= end_zone; i++) {
2462			struct zone *zone = pgdat->node_zones + i;
2463
2464			lru_pages += zone_reclaimable_pages(zone);
 
 
 
 
 
 
 
2465		}
2466
2467		/*
2468		 * Now scan the zone in the dma->highmem direction, stopping
2469		 * at the last zone which needs scanning.
2470		 *
2471		 * We do this because the page allocator works in the opposite
2472		 * direction.  This prevents the page allocator from allocating
2473		 * pages behind kswapd's direction of progress, which would
2474		 * cause too much scanning of the lower zones.
2475		 */
2476		for (i = 0; i <= end_zone; i++) {
2477			struct zone *zone = pgdat->node_zones + i;
2478			int nr_slab, testorder;
2479			unsigned long balance_gap;
2480
2481			if (!populated_zone(zone))
2482				continue;
 
2483
2484			if (zone->all_unreclaimable &&
2485			    sc.priority != DEF_PRIORITY)
2486				continue;
 
 
 
 
 
2487
2488			sc.nr_scanned = 0;
 
 
 
 
 
 
2489
2490			nr_soft_scanned = 0;
2491			/*
2492			 * Call soft limit reclaim before calling shrink_zone.
2493			 */
2494			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2495							order, sc.gfp_mask,
2496							&nr_soft_scanned);
2497			sc.nr_reclaimed += nr_soft_reclaimed;
2498			total_scanned += nr_soft_scanned;
2499
2500			/*
2501			 * We put equal pressure on every zone, unless
2502			 * one zone has way too many pages free
2503			 * already. The "too many pages" is defined
2504			 * as the high wmark plus a "gap" where the
2505			 * gap is either the low watermark or 1%
2506			 * of the zone, whichever is smaller.
2507			 */
2508			balance_gap = min(low_wmark_pages(zone),
2509				(zone->present_pages +
2510					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2511				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2512			/*
2513			 * Kswapd reclaims only single pages with compaction
2514			 * enabled. Trying too hard to reclaim until contiguous
2515			 * free pages have become available can hurt performance
2516			 * by evicting too much useful data from memory.
2517			 * Do not reclaim more than needed for compaction.
2518			 */
2519			testorder = order;
2520			if (COMPACTION_BUILD && order &&
2521					compaction_suitable(zone, order) !=
2522						COMPACT_SKIPPED)
2523				testorder = 0;
2524
2525			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2526				    !zone_watermark_ok_safe(zone, testorder,
2527					high_wmark_pages(zone) + balance_gap,
2528					end_zone, 0)) {
2529				shrink_zone(zone, &sc);
2530
2531				reclaim_state->reclaimed_slab = 0;
2532				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2533				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2534				total_scanned += sc.nr_scanned;
2535
2536				if (nr_slab == 0 && !zone_reclaimable(zone))
2537					zone->all_unreclaimable = 1;
2538			}
 
 
 
2539
2540			/*
2541			 * If we've done a decent amount of scanning and
2542			 * the reclaim ratio is low, start doing writepage
2543			 * even in laptop mode
2544			 */
2545			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2546			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2547				sc.may_writepage = 1;
2548
2549			if (zone->all_unreclaimable) {
2550				if (end_zone && end_zone == i)
2551					end_zone--;
2552				continue;
2553			}
2554
2555			if (!zone_watermark_ok_safe(zone, testorder,
2556					high_wmark_pages(zone), end_zone, 0)) {
2557				all_zones_ok = 0;
2558				/*
2559				 * We are still under min water mark.  This
2560				 * means that we have a GFP_ATOMIC allocation
2561				 * failure risk. Hurry up!
2562				 */
2563				if (!zone_watermark_ok_safe(zone, order,
2564					    min_wmark_pages(zone), end_zone, 0))
2565					has_under_min_watermark_zone = 1;
2566			} else {
2567				/*
2568				 * If a zone reaches its high watermark,
2569				 * consider it to be no longer congested. It's
2570				 * possible there are dirty pages backed by
2571				 * congested BDIs but as pressure is relieved,
2572				 * spectulatively avoid congestion waits
2573				 */
2574				zone_clear_flag(zone, ZONE_CONGESTED);
2575				if (i <= *classzone_idx)
2576					balanced += zone->present_pages;
2577			}
2578
2579		}
2580		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2581			break;		/* kswapd: all done */
2582		/*
2583		 * OK, kswapd is getting into trouble.  Take a nap, then take
2584		 * another pass across the zones.
 
2585		 */
2586		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2587			if (has_under_min_watermark_zone)
2588				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2589			else
2590				congestion_wait(BLK_RW_ASYNC, HZ/10);
2591		}
2592
2593		/*
2594		 * We do this so kswapd doesn't build up large priorities for
2595		 * example when it is freeing in parallel with allocators. It
2596		 * matches the direct reclaim path behaviour in terms of impact
2597		 * on zone->*_priority.
2598		 */
2599		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
 
 
 
 
 
 
 
 
2600			break;
2601	} while (--sc.priority >= 0);
2602out:
2603
2604	/*
2605	 * order-0: All zones must meet high watermark for a balanced node
2606	 * high-order: Balanced zones must make up at least 25% of the node
2607	 *             for the node to be balanced
2608	 */
2609	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2610		cond_resched();
2611
2612		try_to_freeze();
2613
2614		/*
2615		 * Fragmentation may mean that the system cannot be
2616		 * rebalanced for high-order allocations in all zones.
2617		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2618		 * it means the zones have been fully scanned and are still
2619		 * not balanced. For high-order allocations, there is
2620		 * little point trying all over again as kswapd may
2621		 * infinite loop.
2622		 *
2623		 * Instead, recheck all watermarks at order-0 as they
2624		 * are the most important. If watermarks are ok, kswapd will go
2625		 * back to sleep. High-order users can still perform direct
2626		 * reclaim if they wish.
2627		 */
2628		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2629			order = sc.order = 0;
2630
2631		goto loop_again;
2632	}
 
2633
2634	/*
2635	 * If kswapd was reclaiming at a higher order, it has the option of
2636	 * sleeping without all zones being balanced. Before it does, it must
2637	 * ensure that the watermarks for order-0 on *all* zones are met and
2638	 * that the congestion flags are cleared. The congestion flag must
2639	 * be cleared as kswapd is the only mechanism that clears the flag
2640	 * and it is potentially going to sleep here.
2641	 */
2642	if (order) {
2643		int zones_need_compaction = 1;
2644
2645		for (i = 0; i <= end_zone; i++) {
2646			struct zone *zone = pgdat->node_zones + i;
2647
2648			if (!populated_zone(zone))
2649				continue;
 
2650
2651			if (zone->all_unreclaimable &&
2652			    sc.priority != DEF_PRIORITY)
2653				continue;
2654
2655			/* Would compaction fail due to lack of free memory? */
2656			if (COMPACTION_BUILD &&
2657			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2658				goto loop_again;
2659
2660			/* Confirm the zone is balanced for order-0 */
2661			if (!zone_watermark_ok(zone, 0,
2662					high_wmark_pages(zone), 0, 0)) {
2663				order = sc.order = 0;
2664				goto loop_again;
2665			}
2666
2667			/* Check if the memory needs to be defragmented. */
2668			if (zone_watermark_ok(zone, order,
2669				    low_wmark_pages(zone), *classzone_idx, 0))
2670				zones_need_compaction = 0;
2671
2672			/* If balanced, clear the congested flag */
2673			zone_clear_flag(zone, ZONE_CONGESTED);
2674		}
2675
2676		if (zones_need_compaction)
2677			compact_pgdat(pgdat, order);
 
 
 
2678	}
2679
 
 
 
 
 
2680	/*
2681	 * Return the order we were reclaiming at so sleeping_prematurely()
2682	 * makes a decision on the order we were last reclaiming at. However,
2683	 * if another caller entered the allocator slow path while kswapd
2684	 * was awake, order will remain at the higher level
2685	 */
2686	*classzone_idx = end_zone;
2687	return order;
2688}
2689
2690static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691{
2692	long remaining = 0;
2693	DEFINE_WAIT(wait);
2694
2695	if (freezing(current) || kthread_should_stop())
2696		return;
2697
2698	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2699
2700	/* Try to sleep for a short interval */
2701	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703		finish_wait(&pgdat->kswapd_wait, &wait);
2704		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2705	}
2706
2707	/*
2708	 * After a short sleep, check if it was a premature sleep. If not, then
2709	 * go fully to sleep until explicitly woken up.
2710	 */
2711	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2712		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2713
2714		/*
2715		 * vmstat counters are not perfectly accurate and the estimated
2716		 * value for counters such as NR_FREE_PAGES can deviate from the
2717		 * true value by nr_online_cpus * threshold. To avoid the zone
2718		 * watermarks being breached while under pressure, we reduce the
2719		 * per-cpu vmstat threshold while kswapd is awake and restore
2720		 * them before going back to sleep.
2721		 */
2722		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2723
2724		if (!kthread_should_stop())
2725			schedule();
2726
2727		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2728	} else {
2729		if (remaining)
2730			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2731		else
2732			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2733	}
2734	finish_wait(&pgdat->kswapd_wait, &wait);
2735}
2736
2737/*
2738 * The background pageout daemon, started as a kernel thread
2739 * from the init process.
2740 *
2741 * This basically trickles out pages so that we have _some_
2742 * free memory available even if there is no other activity
2743 * that frees anything up. This is needed for things like routing
2744 * etc, where we otherwise might have all activity going on in
2745 * asynchronous contexts that cannot page things out.
2746 *
2747 * If there are applications that are active memory-allocators
2748 * (most normal use), this basically shouldn't matter.
2749 */
2750static int kswapd(void *p)
2751{
2752	unsigned long order, new_order;
2753	unsigned balanced_order;
2754	int classzone_idx, new_classzone_idx;
2755	int balanced_classzone_idx;
2756	pg_data_t *pgdat = (pg_data_t*)p;
2757	struct task_struct *tsk = current;
2758
2759	struct reclaim_state reclaim_state = {
2760		.reclaimed_slab = 0,
2761	};
2762	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2763
2764	lockdep_set_current_reclaim_state(GFP_KERNEL);
2765
2766	if (!cpumask_empty(cpumask))
2767		set_cpus_allowed_ptr(tsk, cpumask);
2768	current->reclaim_state = &reclaim_state;
2769
2770	/*
2771	 * Tell the memory management that we're a "memory allocator",
2772	 * and that if we need more memory we should get access to it
2773	 * regardless (see "__alloc_pages()"). "kswapd" should
2774	 * never get caught in the normal page freeing logic.
2775	 *
2776	 * (Kswapd normally doesn't need memory anyway, but sometimes
2777	 * you need a small amount of memory in order to be able to
2778	 * page out something else, and this flag essentially protects
2779	 * us from recursively trying to free more memory as we're
2780	 * trying to free the first piece of memory in the first place).
2781	 */
2782	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2783	set_freezable();
2784
2785	order = new_order = 0;
2786	balanced_order = 0;
2787	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2788	balanced_classzone_idx = classzone_idx;
2789	for ( ; ; ) {
2790		int ret;
2791
2792		/*
2793		 * If the last balance_pgdat was unsuccessful it's unlikely a
2794		 * new request of a similar or harder type will succeed soon
2795		 * so consider going to sleep on the basis we reclaimed at
2796		 */
2797		if (balanced_classzone_idx >= new_classzone_idx &&
2798					balanced_order == new_order) {
2799			new_order = pgdat->kswapd_max_order;
2800			new_classzone_idx = pgdat->classzone_idx;
2801			pgdat->kswapd_max_order =  0;
2802			pgdat->classzone_idx = pgdat->nr_zones - 1;
2803		}
2804
2805		if (order < new_order || classzone_idx > new_classzone_idx) {
2806			/*
2807			 * Don't sleep if someone wants a larger 'order'
2808			 * allocation or has tigher zone constraints
2809			 */
2810			order = new_order;
2811			classzone_idx = new_classzone_idx;
2812		} else {
2813			kswapd_try_to_sleep(pgdat, balanced_order,
2814						balanced_classzone_idx);
2815			order = pgdat->kswapd_max_order;
2816			classzone_idx = pgdat->classzone_idx;
2817			new_order = order;
2818			new_classzone_idx = classzone_idx;
2819			pgdat->kswapd_max_order = 0;
2820			pgdat->classzone_idx = pgdat->nr_zones - 1;
2821		}
2822
2823		ret = try_to_freeze();
2824		if (kthread_should_stop())
2825			break;
2826
2827		/*
2828		 * We can speed up thawing tasks if we don't call balance_pgdat
2829		 * after returning from the refrigerator
2830		 */
2831		if (!ret) {
2832			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2833			balanced_classzone_idx = classzone_idx;
2834			balanced_order = balance_pgdat(pgdat, order,
2835						&balanced_classzone_idx);
2836		}
 
 
 
 
 
 
 
 
 
 
 
2837	}
 
 
 
2838	return 0;
2839}
2840
2841/*
2842 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2843 */
2844void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2845{
2846	pg_data_t *pgdat;
 
2847
2848	if (!populated_zone(zone))
2849		return;
2850
2851	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2852		return;
 
2853	pgdat = zone->zone_pgdat;
2854	if (pgdat->kswapd_max_order < order) {
2855		pgdat->kswapd_max_order = order;
2856		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2857	}
 
 
 
 
2858	if (!waitqueue_active(&pgdat->kswapd_wait))
2859		return;
2860	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
2861		return;
 
2862
2863	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
2864	wake_up_interruptible(&pgdat->kswapd_wait);
2865}
2866
2867/*
2868 * The reclaimable count would be mostly accurate.
2869 * The less reclaimable pages may be
2870 * - mlocked pages, which will be moved to unevictable list when encountered
2871 * - mapped pages, which may require several travels to be reclaimed
2872 * - dirty pages, which is not "instantly" reclaimable
2873 */
2874unsigned long global_reclaimable_pages(void)
2875{
2876	int nr;
2877
2878	nr = global_page_state(NR_ACTIVE_FILE) +
2879	     global_page_state(NR_INACTIVE_FILE);
2880
2881	if (nr_swap_pages > 0)
2882		nr += global_page_state(NR_ACTIVE_ANON) +
2883		      global_page_state(NR_INACTIVE_ANON);
2884
2885	return nr;
2886}
2887
2888unsigned long zone_reclaimable_pages(struct zone *zone)
2889{
2890	int nr;
2891
2892	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2893	     zone_page_state(zone, NR_INACTIVE_FILE);
2894
2895	if (nr_swap_pages > 0)
2896		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2897		      zone_page_state(zone, NR_INACTIVE_ANON);
2898
2899	return nr;
2900}
2901
2902#ifdef CONFIG_HIBERNATION
2903/*
2904 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2905 * freed pages.
2906 *
2907 * Rather than trying to age LRUs the aim is to preserve the overall
2908 * LRU order by reclaiming preferentially
2909 * inactive > active > active referenced > active mapped
2910 */
2911unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2912{
2913	struct reclaim_state reclaim_state;
2914	struct scan_control sc = {
 
2915		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
2916		.may_swap = 1,
2917		.may_unmap = 1,
2918		.may_writepage = 1,
2919		.nr_to_reclaim = nr_to_reclaim,
2920		.hibernation_mode = 1,
2921		.order = 0,
2922		.priority = DEF_PRIORITY,
2923	};
2924	struct shrink_control shrink = {
2925		.gfp_mask = sc.gfp_mask,
2926	};
2927	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2928	struct task_struct *p = current;
2929	unsigned long nr_reclaimed;
 
 
 
 
 
 
 
2930
2931	p->flags |= PF_MEMALLOC;
2932	lockdep_set_current_reclaim_state(sc.gfp_mask);
2933	reclaim_state.reclaimed_slab = 0;
2934	p->reclaim_state = &reclaim_state;
2935
2936	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2937
2938	p->reclaim_state = NULL;
2939	lockdep_clear_current_reclaim_state();
2940	p->flags &= ~PF_MEMALLOC;
2941
2942	return nr_reclaimed;
2943}
2944#endif /* CONFIG_HIBERNATION */
2945
2946/* It's optimal to keep kswapds on the same CPUs as their memory, but
2947   not required for correctness.  So if the last cpu in a node goes
2948   away, we get changed to run anywhere: as the first one comes back,
2949   restore their cpu bindings. */
2950static int __devinit cpu_callback(struct notifier_block *nfb,
2951				  unsigned long action, void *hcpu)
2952{
2953	int nid;
2954
2955	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2956		for_each_node_state(nid, N_HIGH_MEMORY) {
2957			pg_data_t *pgdat = NODE_DATA(nid);
2958			const struct cpumask *mask;
2959
2960			mask = cpumask_of_node(pgdat->node_id);
2961
2962			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2963				/* One of our CPUs online: restore mask */
2964				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2965		}
2966	}
2967	return NOTIFY_OK;
2968}
2969
2970/*
2971 * This kswapd start function will be called by init and node-hot-add.
2972 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2973 */
2974int kswapd_run(int nid)
2975{
2976	pg_data_t *pgdat = NODE_DATA(nid);
2977	int ret = 0;
2978
2979	if (pgdat->kswapd)
2980		return 0;
2981
2982	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2983	if (IS_ERR(pgdat->kswapd)) {
2984		/* failure at boot is fatal */
2985		BUG_ON(system_state == SYSTEM_BOOTING);
2986		printk("Failed to start kswapd on node %d\n",nid);
2987		ret = -1;
 
2988	}
2989	return ret;
2990}
2991
2992/*
2993 * Called by memory hotplug when all memory in a node is offlined.  Caller must
2994 * hold lock_memory_hotplug().
2995 */
2996void kswapd_stop(int nid)
2997{
2998	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2999
3000	if (kswapd) {
3001		kthread_stop(kswapd);
3002		NODE_DATA(nid)->kswapd = NULL;
3003	}
3004}
3005
3006static int __init kswapd_init(void)
3007{
3008	int nid;
3009
3010	swap_setup();
3011	for_each_node_state(nid, N_HIGH_MEMORY)
3012 		kswapd_run(nid);
3013	hotcpu_notifier(cpu_callback, 0);
3014	return 0;
3015}
3016
3017module_init(kswapd_init)
3018
3019#ifdef CONFIG_NUMA
3020/*
3021 * Zone reclaim mode
3022 *
3023 * If non-zero call zone_reclaim when the number of free pages falls below
3024 * the watermarks.
3025 */
3026int zone_reclaim_mode __read_mostly;
3027
3028#define RECLAIM_OFF 0
3029#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3030#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3031#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3032
3033/*
3034 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3035 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3036 * a zone.
3037 */
3038#define ZONE_RECLAIM_PRIORITY 4
3039
3040/*
3041 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3042 * occur.
3043 */
3044int sysctl_min_unmapped_ratio = 1;
3045
3046/*
3047 * If the number of slab pages in a zone grows beyond this percentage then
3048 * slab reclaim needs to occur.
3049 */
3050int sysctl_min_slab_ratio = 5;
3051
3052static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3053{
3054	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3055	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3056		zone_page_state(zone, NR_ACTIVE_FILE);
3057
3058	/*
3059	 * It's possible for there to be more file mapped pages than
3060	 * accounted for by the pages on the file LRU lists because
3061	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3062	 */
3063	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3064}
3065
3066/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3067static long zone_pagecache_reclaimable(struct zone *zone)
3068{
3069	long nr_pagecache_reclaimable;
3070	long delta = 0;
3071
3072	/*
3073	 * If RECLAIM_SWAP is set, then all file pages are considered
3074	 * potentially reclaimable. Otherwise, we have to worry about
3075	 * pages like swapcache and zone_unmapped_file_pages() provides
3076	 * a better estimate
3077	 */
3078	if (zone_reclaim_mode & RECLAIM_SWAP)
3079		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3080	else
3081		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3082
3083	/* If we can't clean pages, remove dirty pages from consideration */
3084	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3085		delta += zone_page_state(zone, NR_FILE_DIRTY);
3086
3087	/* Watch for any possible underflows due to delta */
3088	if (unlikely(delta > nr_pagecache_reclaimable))
3089		delta = nr_pagecache_reclaimable;
3090
3091	return nr_pagecache_reclaimable - delta;
3092}
3093
3094/*
3095 * Try to free up some pages from this zone through reclaim.
3096 */
3097static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3098{
3099	/* Minimum pages needed in order to stay on node */
3100	const unsigned long nr_pages = 1 << order;
3101	struct task_struct *p = current;
3102	struct reclaim_state reclaim_state;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
 
 
 
 
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
3111		.priority = ZONE_RECLAIM_PRIORITY,
3112	};
3113	struct shrink_control shrink = {
3114		.gfp_mask = sc.gfp_mask,
3115	};
3116	unsigned long nr_slab_pages0, nr_slab_pages1;
3117
3118	cond_resched();
 
 
3119	/*
3120	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3121	 * and we also need to be able to write out pages for RECLAIM_WRITE
3122	 * and RECLAIM_SWAP.
3123	 */
3124	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3125	lockdep_set_current_reclaim_state(gfp_mask);
3126	reclaim_state.reclaimed_slab = 0;
3127	p->reclaim_state = &reclaim_state;
3128
3129	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3130		/*
3131		 * Free memory by calling shrink zone with increasing
3132		 * priorities until we have enough memory freed.
3133		 */
3134		do {
3135			shrink_zone(zone, &sc);
3136		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3137	}
3138
3139	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3140	if (nr_slab_pages0 > zone->min_slab_pages) {
3141		/*
3142		 * shrink_slab() does not currently allow us to determine how
3143		 * many pages were freed in this zone. So we take the current
3144		 * number of slab pages and shake the slab until it is reduced
3145		 * by the same nr_pages that we used for reclaiming unmapped
3146		 * pages.
3147		 *
3148		 * Note that shrink_slab will free memory on all zones and may
3149		 * take a long time.
3150		 */
3151		for (;;) {
3152			unsigned long lru_pages = zone_reclaimable_pages(zone);
3153
3154			/* No reclaimable slab or very low memory pressure */
3155			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3156				break;
3157
3158			/* Freed enough memory */
3159			nr_slab_pages1 = zone_page_state(zone,
3160							NR_SLAB_RECLAIMABLE);
3161			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3162				break;
3163		}
3164
3165		/*
3166		 * Update nr_reclaimed by the number of slab pages we
3167		 * reclaimed from this zone.
3168		 */
3169		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3170		if (nr_slab_pages1 < nr_slab_pages0)
3171			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3172	}
3173
3174	p->reclaim_state = NULL;
3175	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3176	lockdep_clear_current_reclaim_state();
3177	return sc.nr_reclaimed >= nr_pages;
3178}
3179
3180int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3181{
3182	int node_id;
3183	int ret;
3184
3185	/*
3186	 * Zone reclaim reclaims unmapped file backed pages and
3187	 * slab pages if we are over the defined limits.
3188	 *
3189	 * A small portion of unmapped file backed pages is needed for
3190	 * file I/O otherwise pages read by file I/O will be immediately
3191	 * thrown out if the zone is overallocated. So we do not reclaim
3192	 * if less than a specified percentage of the zone is used by
3193	 * unmapped file backed pages.
3194	 */
3195	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3196	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3197		return ZONE_RECLAIM_FULL;
3198
3199	if (zone->all_unreclaimable)
3200		return ZONE_RECLAIM_FULL;
3201
3202	/*
3203	 * Do not scan if the allocation should not be delayed.
3204	 */
3205	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3206		return ZONE_RECLAIM_NOSCAN;
3207
3208	/*
3209	 * Only run zone reclaim on the local zone or on zones that do not
3210	 * have associated processors. This will favor the local processor
3211	 * over remote processors and spread off node memory allocations
3212	 * as wide as possible.
3213	 */
3214	node_id = zone_to_nid(zone);
3215	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3216		return ZONE_RECLAIM_NOSCAN;
3217
3218	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3219		return ZONE_RECLAIM_NOSCAN;
3220
3221	ret = __zone_reclaim(zone, gfp_mask, order);
3222	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3223
3224	if (!ret)
3225		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3226
3227	return ret;
3228}
3229#endif
3230
3231/*
3232 * page_evictable - test whether a page is evictable
3233 * @page: the page to test
3234 * @vma: the VMA in which the page is or will be mapped, may be NULL
3235 *
3236 * Test whether page is evictable--i.e., should be placed on active/inactive
3237 * lists vs unevictable list.  The vma argument is !NULL when called from the
3238 * fault path to determine how to instantate a new page.
3239 *
3240 * Reasons page might not be evictable:
3241 * (1) page's mapping marked unevictable
3242 * (2) page is part of an mlocked VMA
3243 *
3244 */
3245int page_evictable(struct page *page, struct vm_area_struct *vma)
3246{
3247
3248	if (mapping_unevictable(page_mapping(page)))
3249		return 0;
3250
3251	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3252		return 0;
3253
3254	return 1;
3255}
3256
3257#ifdef CONFIG_SHMEM
3258/**
3259 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3260 * @pages:	array of pages to check
3261 * @nr_pages:	number of pages to check
3262 *
3263 * Checks pages for evictability and moves them to the appropriate lru list.
3264 *
3265 * This function is only used for SysV IPC SHM_UNLOCK.
 
 
3266 */
3267void check_move_unevictable_pages(struct page **pages, int nr_pages)
3268{
3269	struct lruvec *lruvec;
3270	struct zone *zone = NULL;
3271	int pgscanned = 0;
3272	int pgrescued = 0;
3273	int i;
3274
3275	for (i = 0; i < nr_pages; i++) {
3276		struct page *page = pages[i];
3277		struct zone *pagezone;
 
 
 
3278
3279		pgscanned++;
3280		pagezone = page_zone(page);
3281		if (pagezone != zone) {
3282			if (zone)
3283				spin_unlock_irq(&zone->lru_lock);
3284			zone = pagezone;
3285			spin_lock_irq(&zone->lru_lock);
3286		}
3287		lruvec = mem_cgroup_page_lruvec(page, zone);
3288
3289		if (!PageLRU(page) || !PageUnevictable(page))
 
3290			continue;
3291
3292		if (page_evictable(page, NULL)) {
3293			enum lru_list lru = page_lru_base_type(page);
3294
3295			VM_BUG_ON(PageActive(page));
3296			ClearPageUnevictable(page);
3297			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3298			add_page_to_lru_list(page, lruvec, lru);
3299			pgrescued++;
3300		}
 
3301	}
3302
3303	if (zone) {
3304		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3305		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3306		spin_unlock_irq(&zone->lru_lock);
 
 
3307	}
3308}
3309#endif /* CONFIG_SHMEM */
3310
3311static void warn_scan_unevictable_pages(void)
3312{
3313	printk_once(KERN_WARNING
3314		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3315		    "disabled for lack of a legitimate use case.  If you have "
3316		    "one, please send an email to linux-mm@kvack.org.\n",
3317		    current->comm);
3318}
3319
3320/*
3321 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3322 * all nodes' unevictable lists for evictable pages
3323 */
3324unsigned long scan_unevictable_pages;
3325
3326int scan_unevictable_handler(struct ctl_table *table, int write,
3327			   void __user *buffer,
3328			   size_t *length, loff_t *ppos)
3329{
3330	warn_scan_unevictable_pages();
3331	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3332	scan_unevictable_pages = 0;
3333	return 0;
3334}
3335
3336#ifdef CONFIG_NUMA
3337/*
3338 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3339 * a specified node's per zone unevictable lists for evictable pages.
3340 */
3341
3342static ssize_t read_scan_unevictable_node(struct device *dev,
3343					  struct device_attribute *attr,
3344					  char *buf)
3345{
3346	warn_scan_unevictable_pages();
3347	return sprintf(buf, "0\n");	/* always zero; should fit... */
3348}
3349
3350static ssize_t write_scan_unevictable_node(struct device *dev,
3351					   struct device_attribute *attr,
3352					const char *buf, size_t count)
3353{
3354	warn_scan_unevictable_pages();
3355	return 1;
3356}
3357
3358
3359static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3360			read_scan_unevictable_node,
3361			write_scan_unevictable_node);
3362
3363int scan_unevictable_register_node(struct node *node)
3364{
3365	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366}
3367
3368void scan_unevictable_unregister_node(struct node *node)
3369{
3370	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3371}
3372#endif