Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	/*
  69	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70	 * are scanned.
  71	 */
  72	nodemask_t	*nodemask;
  73
  74	/*
  75	 * The memory cgroup that hit its limit and as a result is the
  76	 * primary target of this reclaim invocation.
  77	 */
  78	struct mem_cgroup *target_mem_cgroup;
  79
  80	/*
  81	 * Scan pressure balancing between anon and file LRUs
  82	 */
  83	unsigned long	anon_cost;
  84	unsigned long	file_cost;
  85
  86	/* Can active pages be deactivated as part of reclaim? */
  87#define DEACTIVATE_ANON 1
  88#define DEACTIVATE_FILE 2
  89	unsigned int may_deactivate:2;
  90	unsigned int force_deactivate:1;
  91	unsigned int skipped_deactivate:1;
  92
  93	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  94	unsigned int may_writepage:1;
  95
  96	/* Can mapped pages be reclaimed? */
  97	unsigned int may_unmap:1;
  98
  99	/* Can pages be swapped as part of reclaim? */
 100	unsigned int may_swap:1;
 101
 102	/*
 103	 * Cgroup memory below memory.low is protected as long as we
 104	 * don't threaten to OOM. If any cgroup is reclaimed at
 105	 * reduced force or passed over entirely due to its memory.low
 106	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 107	 * result, then go back for one more cycle that reclaims the protected
 108	 * memory (memcg_low_reclaim) to avert OOM.
 109	 */
 110	unsigned int memcg_low_reclaim:1;
 111	unsigned int memcg_low_skipped:1;
 112
 113	unsigned int hibernation_mode:1;
 114
 115	/* One of the zones is ready for compaction */
 116	unsigned int compaction_ready:1;
 117
 118	/* There is easily reclaimable cold cache in the current node */
 119	unsigned int cache_trim_mode:1;
 120
 121	/* The file pages on the current node are dangerously low */
 122	unsigned int file_is_tiny:1;
 123
 124	/* Allocation order */
 125	s8 order;
 126
 127	/* Scan (total_size >> priority) pages at once */
 128	s8 priority;
 129
 130	/* The highest zone to isolate pages for reclaim from */
 131	s8 reclaim_idx;
 132
 133	/* This context's GFP mask */
 134	gfp_t gfp_mask;
 135
 136	/* Incremented by the number of inactive pages that were scanned */
 137	unsigned long nr_scanned;
 138
 139	/* Number of pages freed so far during a call to shrink_zones() */
 140	unsigned long nr_reclaimed;
 
 
 
 
 141
 142	struct {
 143		unsigned int dirty;
 144		unsigned int unqueued_dirty;
 145		unsigned int congested;
 146		unsigned int writeback;
 147		unsigned int immediate;
 148		unsigned int file_taken;
 149		unsigned int taken;
 150	} nr;
 151
 152	/* for recording the reclaimed slab by now */
 153	struct reclaim_state reclaim_state;
 154};
 
 
 
 
 
 
 
 
 
 
 155
 156#ifdef ARCH_HAS_PREFETCHW
 157#define prefetchw_prev_lru_page(_page, _base, _field)			\
 158	do {								\
 159		if ((_page)->lru.prev != _base) {			\
 160			struct page *prev;				\
 161									\
 162			prev = lru_to_page(&(_page->lru));		\
 163			prefetchw(&prev->_field);			\
 164		}							\
 165	} while (0)
 166#else
 167#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 168#endif
 169
 170/*
 171 * From 0 .. 200.  Higher means more swappy.
 172 */
 173int vm_swappiness = 60;
 174
 175static void set_task_reclaim_state(struct task_struct *task,
 176				   struct reclaim_state *rs)
 177{
 178	/* Check for an overwrite */
 179	WARN_ON_ONCE(rs && task->reclaim_state);
 180
 181	/* Check for the nulling of an already-nulled member */
 182	WARN_ON_ONCE(!rs && !task->reclaim_state);
 183
 184	task->reclaim_state = rs;
 185}
 186
 187static LIST_HEAD(shrinker_list);
 188static DECLARE_RWSEM(shrinker_rwsem);
 189
 190#ifdef CONFIG_MEMCG
 191static int shrinker_nr_max;
 192
 193/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
 194static inline int shrinker_map_size(int nr_items)
 195{
 196	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
 197}
 198
 199static inline int shrinker_defer_size(int nr_items)
 200{
 201	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
 202}
 203
 204static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
 205						     int nid)
 206{
 207	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
 208					 lockdep_is_held(&shrinker_rwsem));
 209}
 210
 211static int expand_one_shrinker_info(struct mem_cgroup *memcg,
 212				    int map_size, int defer_size,
 213				    int old_map_size, int old_defer_size)
 214{
 215	struct shrinker_info *new, *old;
 216	struct mem_cgroup_per_node *pn;
 217	int nid;
 218	int size = map_size + defer_size;
 219
 220	for_each_node(nid) {
 221		pn = memcg->nodeinfo[nid];
 222		old = shrinker_info_protected(memcg, nid);
 223		/* Not yet online memcg */
 224		if (!old)
 225			return 0;
 226
 227		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 228		if (!new)
 229			return -ENOMEM;
 230
 231		new->nr_deferred = (atomic_long_t *)(new + 1);
 232		new->map = (void *)new->nr_deferred + defer_size;
 233
 234		/* map: set all old bits, clear all new bits */
 235		memset(new->map, (int)0xff, old_map_size);
 236		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
 237		/* nr_deferred: copy old values, clear all new values */
 238		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
 239		memset((void *)new->nr_deferred + old_defer_size, 0,
 240		       defer_size - old_defer_size);
 241
 242		rcu_assign_pointer(pn->shrinker_info, new);
 243		kvfree_rcu(old, rcu);
 244	}
 245
 246	return 0;
 247}
 248
 249void free_shrinker_info(struct mem_cgroup *memcg)
 250{
 251	struct mem_cgroup_per_node *pn;
 252	struct shrinker_info *info;
 253	int nid;
 254
 255	for_each_node(nid) {
 256		pn = memcg->nodeinfo[nid];
 257		info = rcu_dereference_protected(pn->shrinker_info, true);
 258		kvfree(info);
 259		rcu_assign_pointer(pn->shrinker_info, NULL);
 260	}
 261}
 262
 263int alloc_shrinker_info(struct mem_cgroup *memcg)
 264{
 265	struct shrinker_info *info;
 266	int nid, size, ret = 0;
 267	int map_size, defer_size = 0;
 268
 269	down_write(&shrinker_rwsem);
 270	map_size = shrinker_map_size(shrinker_nr_max);
 271	defer_size = shrinker_defer_size(shrinker_nr_max);
 272	size = map_size + defer_size;
 273	for_each_node(nid) {
 274		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
 275		if (!info) {
 276			free_shrinker_info(memcg);
 277			ret = -ENOMEM;
 278			break;
 279		}
 280		info->nr_deferred = (atomic_long_t *)(info + 1);
 281		info->map = (void *)info->nr_deferred + defer_size;
 282		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
 283	}
 284	up_write(&shrinker_rwsem);
 285
 286	return ret;
 287}
 288
 289static inline bool need_expand(int nr_max)
 290{
 291	return round_up(nr_max, BITS_PER_LONG) >
 292	       round_up(shrinker_nr_max, BITS_PER_LONG);
 293}
 294
 295static int expand_shrinker_info(int new_id)
 296{
 297	int ret = 0;
 298	int new_nr_max = new_id + 1;
 299	int map_size, defer_size = 0;
 300	int old_map_size, old_defer_size = 0;
 301	struct mem_cgroup *memcg;
 302
 303	if (!need_expand(new_nr_max))
 304		goto out;
 305
 306	if (!root_mem_cgroup)
 307		goto out;
 308
 309	lockdep_assert_held(&shrinker_rwsem);
 310
 311	map_size = shrinker_map_size(new_nr_max);
 312	defer_size = shrinker_defer_size(new_nr_max);
 313	old_map_size = shrinker_map_size(shrinker_nr_max);
 314	old_defer_size = shrinker_defer_size(shrinker_nr_max);
 315
 316	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 317	do {
 318		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
 319					       old_map_size, old_defer_size);
 320		if (ret) {
 321			mem_cgroup_iter_break(NULL, memcg);
 322			goto out;
 323		}
 324	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 325out:
 326	if (!ret)
 327		shrinker_nr_max = new_nr_max;
 328
 329	return ret;
 330}
 331
 332void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 333{
 334	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 335		struct shrinker_info *info;
 336
 337		rcu_read_lock();
 338		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
 339		/* Pairs with smp mb in shrink_slab() */
 340		smp_mb__before_atomic();
 341		set_bit(shrinker_id, info->map);
 342		rcu_read_unlock();
 343	}
 344}
 345
 346static DEFINE_IDR(shrinker_idr);
 347
 348static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 349{
 350	int id, ret = -ENOMEM;
 351
 352	if (mem_cgroup_disabled())
 353		return -ENOSYS;
 354
 355	down_write(&shrinker_rwsem);
 356	/* This may call shrinker, so it must use down_read_trylock() */
 357	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
 358	if (id < 0)
 359		goto unlock;
 360
 361	if (id >= shrinker_nr_max) {
 362		if (expand_shrinker_info(id)) {
 363			idr_remove(&shrinker_idr, id);
 364			goto unlock;
 365		}
 366	}
 367	shrinker->id = id;
 368	ret = 0;
 369unlock:
 370	up_write(&shrinker_rwsem);
 371	return ret;
 372}
 373
 374static void unregister_memcg_shrinker(struct shrinker *shrinker)
 375{
 376	int id = shrinker->id;
 377
 378	BUG_ON(id < 0);
 379
 380	lockdep_assert_held(&shrinker_rwsem);
 381
 382	idr_remove(&shrinker_idr, id);
 383}
 384
 385static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 386				   struct mem_cgroup *memcg)
 387{
 388	struct shrinker_info *info;
 389
 390	info = shrinker_info_protected(memcg, nid);
 391	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
 392}
 393
 394static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 395				  struct mem_cgroup *memcg)
 396{
 397	struct shrinker_info *info;
 398
 399	info = shrinker_info_protected(memcg, nid);
 400	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
 401}
 402
 403void reparent_shrinker_deferred(struct mem_cgroup *memcg)
 404{
 405	int i, nid;
 406	long nr;
 407	struct mem_cgroup *parent;
 408	struct shrinker_info *child_info, *parent_info;
 409
 410	parent = parent_mem_cgroup(memcg);
 411	if (!parent)
 412		parent = root_mem_cgroup;
 413
 414	/* Prevent from concurrent shrinker_info expand */
 415	down_read(&shrinker_rwsem);
 416	for_each_node(nid) {
 417		child_info = shrinker_info_protected(memcg, nid);
 418		parent_info = shrinker_info_protected(parent, nid);
 419		for (i = 0; i < shrinker_nr_max; i++) {
 420			nr = atomic_long_read(&child_info->nr_deferred[i]);
 421			atomic_long_add(nr, &parent_info->nr_deferred[i]);
 422		}
 423	}
 424	up_read(&shrinker_rwsem);
 425}
 426
 427static bool cgroup_reclaim(struct scan_control *sc)
 428{
 429	return sc->target_mem_cgroup;
 430}
 431
 432/**
 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 434 * @sc: scan_control in question
 435 *
 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 437 * completely broken with the legacy memcg and direct stalling in
 438 * shrink_page_list() is used for throttling instead, which lacks all the
 439 * niceties such as fairness, adaptive pausing, bandwidth proportional
 440 * allocation and configurability.
 441 *
 442 * This function tests whether the vmscan currently in progress can assume
 443 * that the normal dirty throttling mechanism is operational.
 444 */
 445static bool writeback_throttling_sane(struct scan_control *sc)
 446{
 447	if (!cgroup_reclaim(sc))
 448		return true;
 449#ifdef CONFIG_CGROUP_WRITEBACK
 450	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 451		return true;
 452#endif
 453	return false;
 454}
 455#else
 456static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 457{
 458	return -ENOSYS;
 459}
 460
 461static void unregister_memcg_shrinker(struct shrinker *shrinker)
 462{
 463}
 464
 465static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 466				   struct mem_cgroup *memcg)
 467{
 468	return 0;
 469}
 470
 471static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 472				  struct mem_cgroup *memcg)
 473{
 474	return 0;
 475}
 476
 477static bool cgroup_reclaim(struct scan_control *sc)
 478{
 479	return false;
 480}
 481
 482static bool writeback_throttling_sane(struct scan_control *sc)
 483{
 484	return true;
 485}
 486#endif
 487
 488static long xchg_nr_deferred(struct shrinker *shrinker,
 489			     struct shrink_control *sc)
 490{
 491	int nid = sc->nid;
 492
 493	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 494		nid = 0;
 495
 496	if (sc->memcg &&
 497	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 498		return xchg_nr_deferred_memcg(nid, shrinker,
 499					      sc->memcg);
 500
 501	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 502}
 503
 504
 505static long add_nr_deferred(long nr, struct shrinker *shrinker,
 506			    struct shrink_control *sc)
 507{
 508	int nid = sc->nid;
 509
 510	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 511		nid = 0;
 512
 513	if (sc->memcg &&
 514	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 515		return add_nr_deferred_memcg(nr, nid, shrinker,
 516					     sc->memcg);
 517
 518	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
 519}
 520
 521/*
 522 * This misses isolated pages which are not accounted for to save counters.
 523 * As the data only determines if reclaim or compaction continues, it is
 524 * not expected that isolated pages will be a dominating factor.
 525 */
 526unsigned long zone_reclaimable_pages(struct zone *zone)
 527{
 528	unsigned long nr;
 529
 530	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 531		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 532	if (get_nr_swap_pages() > 0)
 533		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 534			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 535
 536	return nr;
 537}
 538
 539/**
 540 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 541 * @lruvec: lru vector
 542 * @lru: lru to use
 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 544 */
 545static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 546				     int zone_idx)
 547{
 548	unsigned long size = 0;
 549	int zid;
 550
 551	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 552		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 553
 554		if (!managed_zone(zone))
 555			continue;
 
 
 556
 557		if (!mem_cgroup_disabled())
 558			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 559		else
 560			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 561	}
 562	return size;
 563}
 564
 565/*
 566 * Add a shrinker callback to be called from the vm.
 567 */
 568int prealloc_shrinker(struct shrinker *shrinker)
 569{
 570	unsigned int size;
 571	int err;
 572
 573	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 574		err = prealloc_memcg_shrinker(shrinker);
 575		if (err != -ENOSYS)
 576			return err;
 577
 578		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
 579	}
 580
 581	size = sizeof(*shrinker->nr_deferred);
 582	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 583		size *= nr_node_ids;
 584
 585	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 586	if (!shrinker->nr_deferred)
 587		return -ENOMEM;
 588
 589	return 0;
 590}
 591
 592void free_prealloced_shrinker(struct shrinker *shrinker)
 593{
 594	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 595		down_write(&shrinker_rwsem);
 596		unregister_memcg_shrinker(shrinker);
 597		up_write(&shrinker_rwsem);
 598		return;
 599	}
 600
 601	kfree(shrinker->nr_deferred);
 602	shrinker->nr_deferred = NULL;
 603}
 604
 605void register_shrinker_prepared(struct shrinker *shrinker)
 606{
 607	down_write(&shrinker_rwsem);
 608	list_add_tail(&shrinker->list, &shrinker_list);
 609	shrinker->flags |= SHRINKER_REGISTERED;
 610	up_write(&shrinker_rwsem);
 611}
 612
 613int register_shrinker(struct shrinker *shrinker)
 614{
 615	int err = prealloc_shrinker(shrinker);
 616
 617	if (err)
 618		return err;
 619	register_shrinker_prepared(shrinker);
 620	return 0;
 621}
 622EXPORT_SYMBOL(register_shrinker);
 623
 624/*
 625 * Remove one
 626 */
 627void unregister_shrinker(struct shrinker *shrinker)
 628{
 629	if (!(shrinker->flags & SHRINKER_REGISTERED))
 630		return;
 631
 632	down_write(&shrinker_rwsem);
 633	list_del(&shrinker->list);
 634	shrinker->flags &= ~SHRINKER_REGISTERED;
 635	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 636		unregister_memcg_shrinker(shrinker);
 637	up_write(&shrinker_rwsem);
 638
 639	kfree(shrinker->nr_deferred);
 640	shrinker->nr_deferred = NULL;
 641}
 642EXPORT_SYMBOL(unregister_shrinker);
 643
 644#define SHRINK_BATCH 128
 645
 646static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 647				    struct shrinker *shrinker, int priority)
 
 648{
 649	unsigned long freed = 0;
 650	unsigned long long delta;
 651	long total_scan;
 652	long freeable;
 653	long nr;
 654	long new_nr;
 
 655	long batch_size = shrinker->batch ? shrinker->batch
 656					  : SHRINK_BATCH;
 657	long scanned = 0, next_deferred;
 658
 659	freeable = shrinker->count_objects(shrinker, shrinkctl);
 660	if (freeable == 0 || freeable == SHRINK_EMPTY)
 661		return freeable;
 662
 663	/*
 664	 * copy the current shrinker scan count into a local variable
 665	 * and zero it so that other concurrent shrinker invocations
 666	 * don't also do this scanning work.
 667	 */
 668	nr = xchg_nr_deferred(shrinker, shrinkctl);
 669
 670	if (shrinker->seeks) {
 671		delta = freeable >> priority;
 672		delta *= 4;
 673		do_div(delta, shrinker->seeks);
 674	} else {
 675		/*
 676		 * These objects don't require any IO to create. Trim
 677		 * them aggressively under memory pressure to keep
 678		 * them from causing refetches in the IO caches.
 679		 */
 680		delta = freeable / 2;
 681	}
 682
 683	total_scan = nr >> priority;
 684	total_scan += delta;
 685	total_scan = min(total_scan, (2 * freeable));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 688				   freeable, delta, total_scan, priority);
 
 689
 690	/*
 691	 * Normally, we should not scan less than batch_size objects in one
 692	 * pass to avoid too frequent shrinker calls, but if the slab has less
 693	 * than batch_size objects in total and we are really tight on memory,
 694	 * we will try to reclaim all available objects, otherwise we can end
 695	 * up failing allocations although there are plenty of reclaimable
 696	 * objects spread over several slabs with usage less than the
 697	 * batch_size.
 698	 *
 699	 * We detect the "tight on memory" situations by looking at the total
 700	 * number of objects we want to scan (total_scan). If it is greater
 701	 * than the total number of objects on slab (freeable), we must be
 702	 * scanning at high prio and therefore should try to reclaim as much as
 703	 * possible.
 704	 */
 705	while (total_scan >= batch_size ||
 706	       total_scan >= freeable) {
 707		unsigned long ret;
 708		unsigned long nr_to_scan = min(batch_size, total_scan);
 709
 710		shrinkctl->nr_to_scan = nr_to_scan;
 711		shrinkctl->nr_scanned = nr_to_scan;
 712		ret = shrinker->scan_objects(shrinker, shrinkctl);
 713		if (ret == SHRINK_STOP)
 714			break;
 715		freed += ret;
 716
 717		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 718		total_scan -= shrinkctl->nr_scanned;
 719		scanned += shrinkctl->nr_scanned;
 720
 721		cond_resched();
 722	}
 723
 724	/*
 725	 * The deferred work is increased by any new work (delta) that wasn't
 726	 * done, decreased by old deferred work that was done now.
 727	 *
 728	 * And it is capped to two times of the freeable items.
 729	 */
 730	next_deferred = max_t(long, (nr + delta - scanned), 0);
 731	next_deferred = min(next_deferred, (2 * freeable));
 732
 733	/*
 734	 * move the unused scan count back into the shrinker in a
 735	 * manner that handles concurrent updates.
 
 736	 */
 737	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
 738
 739	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
 740	return freed;
 741}
 742
 743#ifdef CONFIG_MEMCG
 744static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 745			struct mem_cgroup *memcg, int priority)
 746{
 747	struct shrinker_info *info;
 748	unsigned long ret, freed = 0;
 749	int i;
 750
 751	if (!mem_cgroup_online(memcg))
 752		return 0;
 753
 754	if (!down_read_trylock(&shrinker_rwsem))
 755		return 0;
 756
 757	info = shrinker_info_protected(memcg, nid);
 758	if (unlikely(!info))
 759		goto unlock;
 760
 761	for_each_set_bit(i, info->map, shrinker_nr_max) {
 762		struct shrink_control sc = {
 763			.gfp_mask = gfp_mask,
 764			.nid = nid,
 765			.memcg = memcg,
 766		};
 767		struct shrinker *shrinker;
 768
 769		shrinker = idr_find(&shrinker_idr, i);
 770		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
 771			if (!shrinker)
 772				clear_bit(i, info->map);
 773			continue;
 774		}
 775
 776		/* Call non-slab shrinkers even though kmem is disabled */
 777		if (!memcg_kmem_enabled() &&
 778		    !(shrinker->flags & SHRINKER_NONSLAB))
 779			continue;
 780
 781		ret = do_shrink_slab(&sc, shrinker, priority);
 782		if (ret == SHRINK_EMPTY) {
 783			clear_bit(i, info->map);
 784			/*
 785			 * After the shrinker reported that it had no objects to
 786			 * free, but before we cleared the corresponding bit in
 787			 * the memcg shrinker map, a new object might have been
 788			 * added. To make sure, we have the bit set in this
 789			 * case, we invoke the shrinker one more time and reset
 790			 * the bit if it reports that it is not empty anymore.
 791			 * The memory barrier here pairs with the barrier in
 792			 * set_shrinker_bit():
 793			 *
 794			 * list_lru_add()     shrink_slab_memcg()
 795			 *   list_add_tail()    clear_bit()
 796			 *   <MB>               <MB>
 797			 *   set_bit()          do_shrink_slab()
 798			 */
 799			smp_mb__after_atomic();
 800			ret = do_shrink_slab(&sc, shrinker, priority);
 801			if (ret == SHRINK_EMPTY)
 802				ret = 0;
 803			else
 804				set_shrinker_bit(memcg, nid, i);
 805		}
 806		freed += ret;
 807
 808		if (rwsem_is_contended(&shrinker_rwsem)) {
 809			freed = freed ? : 1;
 810			break;
 811		}
 812	}
 813unlock:
 814	up_read(&shrinker_rwsem);
 815	return freed;
 816}
 817#else /* CONFIG_MEMCG */
 818static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 819			struct mem_cgroup *memcg, int priority)
 820{
 821	return 0;
 822}
 823#endif /* CONFIG_MEMCG */
 824
 825/**
 826 * shrink_slab - shrink slab caches
 827 * @gfp_mask: allocation context
 828 * @nid: node whose slab caches to target
 829 * @memcg: memory cgroup whose slab caches to target
 830 * @priority: the reclaim priority
 831 *
 832 * Call the shrink functions to age shrinkable caches.
 
 
 
 833 *
 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 835 * unaware shrinkers will receive a node id of 0 instead.
 836 *
 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 838 * are called only if it is the root cgroup.
 839 *
 840 * @priority is sc->priority, we take the number of objects and >> by priority
 841 * in order to get the scan target.
 
 842 *
 843 * Returns the number of reclaimed slab objects.
 844 */
 845static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 846				 struct mem_cgroup *memcg,
 847				 int priority)
 848{
 849	unsigned long ret, freed = 0;
 850	struct shrinker *shrinker;
 
 851
 852	/*
 853	 * The root memcg might be allocated even though memcg is disabled
 854	 * via "cgroup_disable=memory" boot parameter.  This could make
 855	 * mem_cgroup_is_root() return false, then just run memcg slab
 856	 * shrink, but skip global shrink.  This may result in premature
 857	 * oom.
 858	 */
 859	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 860		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 861
 862	if (!down_read_trylock(&shrinker_rwsem))
 
 
 
 
 
 
 
 863		goto out;
 
 864
 865	list_for_each_entry(shrinker, &shrinker_list, list) {
 866		struct shrink_control sc = {
 867			.gfp_mask = gfp_mask,
 868			.nid = nid,
 869			.memcg = memcg,
 870		};
 
 
 
 
 
 
 871
 872		ret = do_shrink_slab(&sc, shrinker, priority);
 873		if (ret == SHRINK_EMPTY)
 874			ret = 0;
 875		freed += ret;
 876		/*
 877		 * Bail out if someone want to register a new shrinker to
 878		 * prevent the registration from being stalled for long periods
 879		 * by parallel ongoing shrinking.
 880		 */
 881		if (rwsem_is_contended(&shrinker_rwsem)) {
 882			freed = freed ? : 1;
 883			break;
 884		}
 885	}
 886
 887	up_read(&shrinker_rwsem);
 888out:
 889	cond_resched();
 890	return freed;
 891}
 892
 893void drop_slab_node(int nid)
 894{
 895	unsigned long freed;
 896
 897	do {
 898		struct mem_cgroup *memcg = NULL;
 899
 900		if (fatal_signal_pending(current))
 901			return;
 902
 903		freed = 0;
 904		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 905		do {
 906			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 907		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 908	} while (freed > 10);
 909}
 910
 911void drop_slab(void)
 912{
 913	int nid;
 914
 915	for_each_online_node(nid)
 916		drop_slab_node(nid);
 917}
 918
 919static inline int is_page_cache_freeable(struct page *page)
 920{
 921	/*
 922	 * A freeable page cache page is referenced only by the caller
 923	 * that isolated the page, the page cache and optional buffer
 924	 * heads at page->private.
 925	 */
 926	int page_cache_pins = thp_nr_pages(page);
 927	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 928}
 929
 930static int may_write_to_inode(struct inode *inode)
 
 931{
 932	if (current->flags & PF_SWAPWRITE)
 933		return 1;
 934	if (!inode_write_congested(inode))
 935		return 1;
 936	if (inode_to_bdi(inode) == current->backing_dev_info)
 937		return 1;
 938	return 0;
 939}
 940
 941/*
 942 * We detected a synchronous write error writing a page out.  Probably
 943 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 944 * fsync(), msync() or close().
 945 *
 946 * The tricky part is that after writepage we cannot touch the mapping: nothing
 947 * prevents it from being freed up.  But we have a ref on the page and once
 948 * that page is locked, the mapping is pinned.
 949 *
 950 * We're allowed to run sleeping lock_page() here because we know the caller has
 951 * __GFP_FS.
 952 */
 953static void handle_write_error(struct address_space *mapping,
 954				struct page *page, int error)
 955{
 956	lock_page(page);
 957	if (page_mapping(page) == mapping)
 958		mapping_set_error(mapping, error);
 959	unlock_page(page);
 960}
 961
 962/* possible outcome of pageout() */
 963typedef enum {
 964	/* failed to write page out, page is locked */
 965	PAGE_KEEP,
 966	/* move page to the active list, page is locked */
 967	PAGE_ACTIVATE,
 968	/* page has been sent to the disk successfully, page is unlocked */
 969	PAGE_SUCCESS,
 970	/* page is clean and locked */
 971	PAGE_CLEAN,
 972} pageout_t;
 973
 974/*
 975 * pageout is called by shrink_page_list() for each dirty page.
 976 * Calls ->writepage().
 977 */
 978static pageout_t pageout(struct page *page, struct address_space *mapping)
 
 979{
 980	/*
 981	 * If the page is dirty, only perform writeback if that write
 982	 * will be non-blocking.  To prevent this allocation from being
 983	 * stalled by pagecache activity.  But note that there may be
 984	 * stalls if we need to run get_block().  We could test
 985	 * PagePrivate for that.
 986	 *
 987	 * If this process is currently in __generic_file_write_iter() against
 988	 * this page's queue, we can perform writeback even if that
 989	 * will block.
 990	 *
 991	 * If the page is swapcache, write it back even if that would
 992	 * block, for some throttling. This happens by accident, because
 993	 * swap_backing_dev_info is bust: it doesn't reflect the
 994	 * congestion state of the swapdevs.  Easy to fix, if needed.
 995	 */
 996	if (!is_page_cache_freeable(page))
 997		return PAGE_KEEP;
 998	if (!mapping) {
 999		/*
1000		 * Some data journaling orphaned pages can have
1001		 * page->mapping == NULL while being dirty with clean buffers.
1002		 */
1003		if (page_has_private(page)) {
1004			if (try_to_free_buffers(page)) {
1005				ClearPageDirty(page);
1006				pr_info("%s: orphaned page\n", __func__);
1007				return PAGE_CLEAN;
1008			}
1009		}
1010		return PAGE_KEEP;
1011	}
1012	if (mapping->a_ops->writepage == NULL)
1013		return PAGE_ACTIVATE;
1014	if (!may_write_to_inode(mapping->host))
1015		return PAGE_KEEP;
1016
1017	if (clear_page_dirty_for_io(page)) {
1018		int res;
1019		struct writeback_control wbc = {
1020			.sync_mode = WB_SYNC_NONE,
1021			.nr_to_write = SWAP_CLUSTER_MAX,
1022			.range_start = 0,
1023			.range_end = LLONG_MAX,
1024			.for_reclaim = 1,
1025		};
1026
1027		SetPageReclaim(page);
1028		res = mapping->a_ops->writepage(page, &wbc);
1029		if (res < 0)
1030			handle_write_error(mapping, page, res);
1031		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032			ClearPageReclaim(page);
1033			return PAGE_ACTIVATE;
1034		}
1035
1036		if (!PageWriteback(page)) {
1037			/* synchronous write or broken a_ops? */
1038			ClearPageReclaim(page);
1039		}
1040		trace_mm_vmscan_writepage(page);
1041		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042		return PAGE_SUCCESS;
1043	}
1044
1045	return PAGE_CLEAN;
1046}
1047
1048/*
1049 * Same as remove_mapping, but if the page is removed from the mapping, it
1050 * gets returned with a refcount of 0.
1051 */
1052static int __remove_mapping(struct address_space *mapping, struct page *page,
1053			    bool reclaimed, struct mem_cgroup *target_memcg)
1054{
1055	unsigned long flags;
1056	int refcount;
1057	void *shadow = NULL;
1058
1059	BUG_ON(!PageLocked(page));
1060	BUG_ON(mapping != page_mapping(page));
1061
1062	xa_lock_irqsave(&mapping->i_pages, flags);
1063	/*
1064	 * The non racy check for a busy page.
1065	 *
1066	 * Must be careful with the order of the tests. When someone has
1067	 * a ref to the page, it may be possible that they dirty it then
1068	 * drop the reference. So if PageDirty is tested before page_count
1069	 * here, then the following race may occur:
1070	 *
1071	 * get_user_pages(&page);
1072	 * [user mapping goes away]
1073	 * write_to(page);
1074	 *				!PageDirty(page)    [good]
1075	 * SetPageDirty(page);
1076	 * put_page(page);
1077	 *				!page_count(page)   [good, discard it]
1078	 *
1079	 * [oops, our write_to data is lost]
1080	 *
1081	 * Reversing the order of the tests ensures such a situation cannot
1082	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1083	 * load is not satisfied before that of page->_refcount.
1084	 *
1085	 * Note that if SetPageDirty is always performed via set_page_dirty,
1086	 * and thus under the i_pages lock, then this ordering is not required.
1087	 */
1088	refcount = 1 + compound_nr(page);
1089	if (!page_ref_freeze(page, refcount))
1090		goto cannot_free;
1091	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1092	if (unlikely(PageDirty(page))) {
1093		page_ref_unfreeze(page, refcount);
1094		goto cannot_free;
1095	}
1096
1097	if (PageSwapCache(page)) {
1098		swp_entry_t swap = { .val = page_private(page) };
1099		mem_cgroup_swapout(page, swap);
1100		if (reclaimed && !mapping_exiting(mapping))
1101			shadow = workingset_eviction(page, target_memcg);
1102		__delete_from_swap_cache(page, swap, shadow);
1103		xa_unlock_irqrestore(&mapping->i_pages, flags);
1104		put_swap_page(page, swap);
1105	} else {
1106		void (*freepage)(struct page *);
 
1107
1108		freepage = mapping->a_ops->freepage;
1109		/*
1110		 * Remember a shadow entry for reclaimed file cache in
1111		 * order to detect refaults, thus thrashing, later on.
1112		 *
1113		 * But don't store shadows in an address space that is
1114		 * already exiting.  This is not just an optimization,
1115		 * inode reclaim needs to empty out the radix tree or
1116		 * the nodes are lost.  Don't plant shadows behind its
1117		 * back.
1118		 *
1119		 * We also don't store shadows for DAX mappings because the
1120		 * only page cache pages found in these are zero pages
1121		 * covering holes, and because we don't want to mix DAX
1122		 * exceptional entries and shadow exceptional entries in the
1123		 * same address_space.
1124		 */
1125		if (reclaimed && page_is_file_lru(page) &&
1126		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1127			shadow = workingset_eviction(page, target_memcg);
1128		__delete_from_page_cache(page, shadow);
1129		xa_unlock_irqrestore(&mapping->i_pages, flags);
 
1130
1131		if (freepage != NULL)
1132			freepage(page);
1133	}
1134
1135	return 1;
1136
1137cannot_free:
1138	xa_unlock_irqrestore(&mapping->i_pages, flags);
1139	return 0;
1140}
1141
1142/*
1143 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1144 * someone else has a ref on the page, abort and return 0.  If it was
1145 * successfully detached, return 1.  Assumes the caller has a single ref on
1146 * this page.
1147 */
1148int remove_mapping(struct address_space *mapping, struct page *page)
1149{
1150	if (__remove_mapping(mapping, page, false, NULL)) {
1151		/*
1152		 * Unfreezing the refcount with 1 rather than 2 effectively
1153		 * drops the pagecache ref for us without requiring another
1154		 * atomic operation.
1155		 */
1156		page_ref_unfreeze(page, 1);
1157		return 1;
1158	}
1159	return 0;
1160}
1161
1162/**
1163 * putback_lru_page - put previously isolated page onto appropriate LRU list
1164 * @page: page to be put back to appropriate lru list
1165 *
1166 * Add previously isolated @page to appropriate LRU list.
1167 * Page may still be unevictable for other reasons.
1168 *
1169 * lru_lock must not be held, interrupts must be enabled.
1170 */
1171void putback_lru_page(struct page *page)
1172{
1173	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174	put_page(page);		/* drop ref from isolate */
1175}
1176
1177enum page_references {
1178	PAGEREF_RECLAIM,
1179	PAGEREF_RECLAIM_CLEAN,
1180	PAGEREF_KEEP,
1181	PAGEREF_ACTIVATE,
1182};
1183
1184static enum page_references page_check_references(struct page *page,
1185						  struct scan_control *sc)
1186{
1187	int referenced_ptes, referenced_page;
1188	unsigned long vm_flags;
1189
1190	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1191					  &vm_flags);
1192	referenced_page = TestClearPageReferenced(page);
1193
1194	/*
1195	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1196	 * move the page to the unevictable list.
1197	 */
1198	if (vm_flags & VM_LOCKED)
1199		return PAGEREF_RECLAIM;
1200
1201	if (referenced_ptes) {
 
 
1202		/*
1203		 * All mapped pages start out with page table
1204		 * references from the instantiating fault, so we need
1205		 * to look twice if a mapped file page is used more
1206		 * than once.
1207		 *
1208		 * Mark it and spare it for another trip around the
1209		 * inactive list.  Another page table reference will
1210		 * lead to its activation.
1211		 *
1212		 * Note: the mark is set for activated pages as well
1213		 * so that recently deactivated but used pages are
1214		 * quickly recovered.
1215		 */
1216		SetPageReferenced(page);
1217
1218		if (referenced_page || referenced_ptes > 1)
1219			return PAGEREF_ACTIVATE;
1220
1221		/*
1222		 * Activate file-backed executable pages after first usage.
1223		 */
1224		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1225			return PAGEREF_ACTIVATE;
1226
1227		return PAGEREF_KEEP;
1228	}
1229
1230	/* Reclaim if clean, defer dirty pages to writeback */
1231	if (referenced_page && !PageSwapBacked(page))
1232		return PAGEREF_RECLAIM_CLEAN;
1233
1234	return PAGEREF_RECLAIM;
1235}
1236
1237/* Check if a page is dirty or under writeback */
1238static void page_check_dirty_writeback(struct page *page,
1239				       bool *dirty, bool *writeback)
1240{
1241	struct address_space *mapping;
1242
1243	/*
1244	 * Anonymous pages are not handled by flushers and must be written
1245	 * from reclaim context. Do not stall reclaim based on them
1246	 */
1247	if (!page_is_file_lru(page) ||
1248	    (PageAnon(page) && !PageSwapBacked(page))) {
1249		*dirty = false;
1250		*writeback = false;
1251		return;
1252	}
1253
1254	/* By default assume that the page flags are accurate */
1255	*dirty = PageDirty(page);
1256	*writeback = PageWriteback(page);
1257
1258	/* Verify dirty/writeback state if the filesystem supports it */
1259	if (!page_has_private(page))
1260		return;
1261
1262	mapping = page_mapping(page);
1263	if (mapping && mapping->a_ops->is_dirty_writeback)
1264		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1265}
1266
1267/*
1268 * shrink_page_list() returns the number of reclaimed pages
1269 */
1270static unsigned int shrink_page_list(struct list_head *page_list,
1271				     struct pglist_data *pgdat,
1272				     struct scan_control *sc,
1273				     struct reclaim_stat *stat,
1274				     bool ignore_references)
 
 
 
 
 
1275{
1276	LIST_HEAD(ret_pages);
1277	LIST_HEAD(free_pages);
1278	unsigned int nr_reclaimed = 0;
1279	unsigned int pgactivate = 0;
 
 
 
 
 
1280
1281	memset(stat, 0, sizeof(*stat));
1282	cond_resched();
1283
 
1284	while (!list_empty(page_list)) {
1285		struct address_space *mapping;
1286		struct page *page;
1287		enum page_references references = PAGEREF_RECLAIM;
1288		bool dirty, writeback, may_enter_fs;
1289		unsigned int nr_pages;
1290
1291		cond_resched();
1292
1293		page = lru_to_page(page_list);
1294		list_del(&page->lru);
1295
1296		if (!trylock_page(page))
1297			goto keep;
1298
1299		VM_BUG_ON_PAGE(PageActive(page), page);
 
1300
1301		nr_pages = compound_nr(page);
1302
1303		/* Account the number of base pages even though THP */
1304		sc->nr_scanned += nr_pages;
1305
1306		if (unlikely(!page_evictable(page)))
1307			goto activate_locked;
1308
1309		if (!sc->may_unmap && page_mapped(page))
1310			goto keep_locked;
1311
 
 
 
 
1312		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1313			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1314
1315		/*
1316		 * The number of dirty pages determines if a node is marked
1317		 * reclaim_congested which affects wait_iff_congested. kswapd
1318		 * will stall and start writing pages if the tail of the LRU
1319		 * is all dirty unqueued pages.
1320		 */
1321		page_check_dirty_writeback(page, &dirty, &writeback);
1322		if (dirty || writeback)
1323			stat->nr_dirty++;
1324
1325		if (dirty && !writeback)
1326			stat->nr_unqueued_dirty++;
1327
1328		/*
1329		 * Treat this page as congested if the underlying BDI is or if
1330		 * pages are cycling through the LRU so quickly that the
1331		 * pages marked for immediate reclaim are making it to the
1332		 * end of the LRU a second time.
1333		 */
1334		mapping = page_mapping(page);
1335		if (((dirty || writeback) && mapping &&
1336		     inode_write_congested(mapping->host)) ||
1337		    (writeback && PageReclaim(page)))
1338			stat->nr_congested++;
1339
1340		/*
1341		 * If a page at the tail of the LRU is under writeback, there
1342		 * are three cases to consider.
1343		 *
1344		 * 1) If reclaim is encountering an excessive number of pages
1345		 *    under writeback and this page is both under writeback and
1346		 *    PageReclaim then it indicates that pages are being queued
1347		 *    for IO but are being recycled through the LRU before the
1348		 *    IO can complete. Waiting on the page itself risks an
1349		 *    indefinite stall if it is impossible to writeback the
1350		 *    page due to IO error or disconnected storage so instead
1351		 *    note that the LRU is being scanned too quickly and the
1352		 *    caller can stall after page list has been processed.
1353		 *
1354		 * 2) Global or new memcg reclaim encounters a page that is
1355		 *    not marked for immediate reclaim, or the caller does not
1356		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1357		 *    not to fs). In this case mark the page for immediate
1358		 *    reclaim and continue scanning.
1359		 *
1360		 *    Require may_enter_fs because we would wait on fs, which
1361		 *    may not have submitted IO yet. And the loop driver might
1362		 *    enter reclaim, and deadlock if it waits on a page for
1363		 *    which it is needed to do the write (loop masks off
1364		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1365		 *    would probably show more reasons.
1366		 *
1367		 * 3) Legacy memcg encounters a page that is already marked
 
 
 
 
 
 
1368		 *    PageReclaim. memcg does not have any dirty pages
1369		 *    throttling so we could easily OOM just because too many
1370		 *    pages are in writeback and there is nothing else to
1371		 *    reclaim. Wait for the writeback to complete.
1372		 *
1373		 * In cases 1) and 2) we activate the pages to get them out of
1374		 * the way while we continue scanning for clean pages on the
1375		 * inactive list and refilling from the active list. The
1376		 * observation here is that waiting for disk writes is more
1377		 * expensive than potentially causing reloads down the line.
1378		 * Since they're marked for immediate reclaim, they won't put
1379		 * memory pressure on the cache working set any longer than it
1380		 * takes to write them to disk.
1381		 */
1382		if (PageWriteback(page)) {
1383			/* Case 1 above */
1384			if (current_is_kswapd() &&
1385			    PageReclaim(page) &&
1386			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1387				stat->nr_immediate++;
1388				goto activate_locked;
1389
1390			/* Case 2 above */
1391			} else if (writeback_throttling_sane(sc) ||
1392			    !PageReclaim(page) || !may_enter_fs) {
1393				/*
1394				 * This is slightly racy - end_page_writeback()
1395				 * might have just cleared PageReclaim, then
1396				 * setting PageReclaim here end up interpreted
1397				 * as PageReadahead - but that does not matter
1398				 * enough to care.  What we do want is for this
1399				 * page to have PageReclaim set next time memcg
1400				 * reclaim reaches the tests above, so it will
1401				 * then wait_on_page_writeback() to avoid OOM;
1402				 * and it's also appropriate in global reclaim.
1403				 */
1404				SetPageReclaim(page);
1405				stat->nr_writeback++;
1406				goto activate_locked;
 
1407
1408			/* Case 3 above */
1409			} else {
1410				unlock_page(page);
1411				wait_on_page_writeback(page);
1412				/* then go back and try same page again */
1413				list_add_tail(&page->lru, page_list);
1414				continue;
1415			}
1416		}
1417
1418		if (!ignore_references)
1419			references = page_check_references(page, sc);
1420
1421		switch (references) {
1422		case PAGEREF_ACTIVATE:
1423			goto activate_locked;
1424		case PAGEREF_KEEP:
1425			stat->nr_ref_keep += nr_pages;
1426			goto keep_locked;
1427		case PAGEREF_RECLAIM:
1428		case PAGEREF_RECLAIM_CLEAN:
1429			; /* try to reclaim the page below */
1430		}
1431
1432		/*
1433		 * Anonymous process memory has backing store?
1434		 * Try to allocate it some swap space here.
1435		 * Lazyfree page could be freed directly
1436		 */
1437		if (PageAnon(page) && PageSwapBacked(page)) {
1438			if (!PageSwapCache(page)) {
1439				if (!(sc->gfp_mask & __GFP_IO))
1440					goto keep_locked;
1441				if (page_maybe_dma_pinned(page))
1442					goto keep_locked;
1443				if (PageTransHuge(page)) {
1444					/* cannot split THP, skip it */
1445					if (!can_split_huge_page(page, NULL))
1446						goto activate_locked;
1447					/*
1448					 * Split pages without a PMD map right
1449					 * away. Chances are some or all of the
1450					 * tail pages can be freed without IO.
1451					 */
1452					if (!compound_mapcount(page) &&
1453					    split_huge_page_to_list(page,
1454								    page_list))
1455						goto activate_locked;
1456				}
1457				if (!add_to_swap(page)) {
1458					if (!PageTransHuge(page))
1459						goto activate_locked_split;
1460					/* Fallback to swap normal pages */
1461					if (split_huge_page_to_list(page,
1462								    page_list))
1463						goto activate_locked;
1464#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465					count_vm_event(THP_SWPOUT_FALLBACK);
1466#endif
1467					if (!add_to_swap(page))
1468						goto activate_locked_split;
1469				}
1470
1471				may_enter_fs = true;
1472
1473				/* Adding to swap updated mapping */
1474				mapping = page_mapping(page);
1475			}
1476		} else if (unlikely(PageTransHuge(page))) {
1477			/* Split file THP */
1478			if (split_huge_page_to_list(page, page_list))
1479				goto keep_locked;
1480		}
 
 
1481
1482		/*
1483		 * THP may get split above, need minus tail pages and update
1484		 * nr_pages to avoid accounting tail pages twice.
1485		 *
1486		 * The tail pages that are added into swap cache successfully
1487		 * reach here.
1488		 */
1489		if ((nr_pages > 1) && !PageTransHuge(page)) {
1490			sc->nr_scanned -= (nr_pages - 1);
1491			nr_pages = 1;
1492		}
1493
1494		/*
1495		 * The page is mapped into the page tables of one or more
1496		 * processes. Try to unmap it here.
1497		 */
1498		if (page_mapped(page)) {
1499			enum ttu_flags flags = TTU_BATCH_FLUSH;
1500			bool was_swapbacked = PageSwapBacked(page);
1501
1502			if (unlikely(PageTransHuge(page)))
1503				flags |= TTU_SPLIT_HUGE_PMD;
1504
1505			try_to_unmap(page, flags);
1506			if (page_mapped(page)) {
1507				stat->nr_unmap_fail += nr_pages;
1508				if (!was_swapbacked && PageSwapBacked(page))
1509					stat->nr_lazyfree_fail += nr_pages;
1510				goto activate_locked;
 
 
 
 
 
 
1511			}
1512		}
1513
1514		if (PageDirty(page)) {
1515			/*
1516			 * Only kswapd can writeback filesystem pages
1517			 * to avoid risk of stack overflow. But avoid
1518			 * injecting inefficient single-page IO into
1519			 * flusher writeback as much as possible: only
1520			 * write pages when we've encountered many
1521			 * dirty pages, and when we've already scanned
1522			 * the rest of the LRU for clean pages and see
1523			 * the same dirty pages again (PageReclaim).
1524			 */
1525			if (page_is_file_lru(page) &&
1526			    (!current_is_kswapd() || !PageReclaim(page) ||
1527			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1528				/*
1529				 * Immediately reclaim when written back.
1530				 * Similar in principal to deactivate_page()
1531				 * except we already have the page isolated
1532				 * and know it's dirty
1533				 */
1534				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1535				SetPageReclaim(page);
1536
1537				goto activate_locked;
1538			}
1539
1540			if (references == PAGEREF_RECLAIM_CLEAN)
1541				goto keep_locked;
1542			if (!may_enter_fs)
1543				goto keep_locked;
1544			if (!sc->may_writepage)
1545				goto keep_locked;
1546
1547			/*
1548			 * Page is dirty. Flush the TLB if a writable entry
1549			 * potentially exists to avoid CPU writes after IO
1550			 * starts and then write it out here.
1551			 */
1552			try_to_unmap_flush_dirty();
1553			switch (pageout(page, mapping)) {
1554			case PAGE_KEEP:
1555				goto keep_locked;
1556			case PAGE_ACTIVATE:
1557				goto activate_locked;
1558			case PAGE_SUCCESS:
1559				stat->nr_pageout += thp_nr_pages(page);
1560
1561				if (PageWriteback(page))
1562					goto keep;
1563				if (PageDirty(page))
1564					goto keep;
1565
1566				/*
1567				 * A synchronous write - probably a ramdisk.  Go
1568				 * ahead and try to reclaim the page.
1569				 */
1570				if (!trylock_page(page))
1571					goto keep;
1572				if (PageDirty(page) || PageWriteback(page))
1573					goto keep_locked;
1574				mapping = page_mapping(page);
1575				fallthrough;
1576			case PAGE_CLEAN:
1577				; /* try to free the page below */
1578			}
1579		}
1580
1581		/*
1582		 * If the page has buffers, try to free the buffer mappings
1583		 * associated with this page. If we succeed we try to free
1584		 * the page as well.
1585		 *
1586		 * We do this even if the page is PageDirty().
1587		 * try_to_release_page() does not perform I/O, but it is
1588		 * possible for a page to have PageDirty set, but it is actually
1589		 * clean (all its buffers are clean).  This happens if the
1590		 * buffers were written out directly, with submit_bh(). ext3
1591		 * will do this, as well as the blockdev mapping.
1592		 * try_to_release_page() will discover that cleanness and will
1593		 * drop the buffers and mark the page clean - it can be freed.
1594		 *
1595		 * Rarely, pages can have buffers and no ->mapping.  These are
1596		 * the pages which were not successfully invalidated in
1597		 * truncate_cleanup_page().  We try to drop those buffers here
1598		 * and if that worked, and the page is no longer mapped into
1599		 * process address space (page_count == 1) it can be freed.
1600		 * Otherwise, leave the page on the LRU so it is swappable.
1601		 */
1602		if (page_has_private(page)) {
1603			if (!try_to_release_page(page, sc->gfp_mask))
1604				goto activate_locked;
1605			if (!mapping && page_count(page) == 1) {
1606				unlock_page(page);
1607				if (put_page_testzero(page))
1608					goto free_it;
1609				else {
1610					/*
1611					 * rare race with speculative reference.
1612					 * the speculative reference will free
1613					 * this page shortly, so we may
1614					 * increment nr_reclaimed here (and
1615					 * leave it off the LRU).
1616					 */
1617					nr_reclaimed++;
1618					continue;
1619				}
1620			}
1621		}
1622
1623		if (PageAnon(page) && !PageSwapBacked(page)) {
1624			/* follow __remove_mapping for reference */
1625			if (!page_ref_freeze(page, 1))
1626				goto keep_locked;
1627			if (PageDirty(page)) {
1628				page_ref_unfreeze(page, 1);
1629				goto keep_locked;
1630			}
1631
1632			count_vm_event(PGLAZYFREED);
1633			count_memcg_page_event(page, PGLAZYFREED);
1634		} else if (!mapping || !__remove_mapping(mapping, page, true,
1635							 sc->target_mem_cgroup))
1636			goto keep_locked;
1637
1638		unlock_page(page);
1639free_it:
1640		/*
1641		 * THP may get swapped out in a whole, need account
1642		 * all base pages.
 
 
 
1643		 */
1644		nr_reclaimed += nr_pages;
 
 
1645
1646		/*
1647		 * Is there need to periodically free_page_list? It would
1648		 * appear not as the counts should be low
1649		 */
1650		if (unlikely(PageTransHuge(page)))
1651			destroy_compound_page(page);
1652		else
1653			list_add(&page->lru, &free_pages);
 
 
 
 
1654		continue;
1655
1656activate_locked_split:
1657		/*
1658		 * The tail pages that are failed to add into swap cache
1659		 * reach here.  Fixup nr_scanned and nr_pages.
1660		 */
1661		if (nr_pages > 1) {
1662			sc->nr_scanned -= (nr_pages - 1);
1663			nr_pages = 1;
1664		}
1665activate_locked:
1666		/* Not a candidate for swapping, so reclaim swap space. */
1667		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1668						PageMlocked(page)))
1669			try_to_free_swap(page);
1670		VM_BUG_ON_PAGE(PageActive(page), page);
1671		if (!PageMlocked(page)) {
1672			int type = page_is_file_lru(page);
1673			SetPageActive(page);
1674			stat->nr_activate[type] += nr_pages;
1675			count_memcg_page_event(page, PGACTIVATE);
1676		}
1677keep_locked:
1678		unlock_page(page);
1679keep:
1680		list_add(&page->lru, &ret_pages);
1681		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1682	}
1683
1684	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1685
1686	mem_cgroup_uncharge_list(&free_pages);
1687	try_to_unmap_flush();
1688	free_unref_page_list(&free_pages);
1689
1690	list_splice(&ret_pages, page_list);
1691	count_vm_events(PGACTIVATE, pgactivate);
1692
 
 
 
 
 
1693	return nr_reclaimed;
1694}
1695
1696unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1697					    struct list_head *page_list)
1698{
1699	struct scan_control sc = {
1700		.gfp_mask = GFP_KERNEL,
1701		.priority = DEF_PRIORITY,
1702		.may_unmap = 1,
1703	};
1704	struct reclaim_stat stat;
1705	unsigned int nr_reclaimed;
1706	struct page *page, *next;
1707	LIST_HEAD(clean_pages);
1708	unsigned int noreclaim_flag;
1709
1710	list_for_each_entry_safe(page, next, page_list, lru) {
1711		if (!PageHuge(page) && page_is_file_lru(page) &&
1712		    !PageDirty(page) && !__PageMovable(page) &&
1713		    !PageUnevictable(page)) {
1714			ClearPageActive(page);
1715			list_move(&page->lru, &clean_pages);
1716		}
1717	}
1718
1719	/*
1720	 * We should be safe here since we are only dealing with file pages and
1721	 * we are not kswapd and therefore cannot write dirty file pages. But
1722	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1723	 * change in the future.
1724	 */
1725	noreclaim_flag = memalloc_noreclaim_save();
1726	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1727					&stat, true);
1728	memalloc_noreclaim_restore(noreclaim_flag);
1729
1730	list_splice(&clean_pages, page_list);
1731	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1732			    -(long)nr_reclaimed);
1733	/*
1734	 * Since lazyfree pages are isolated from file LRU from the beginning,
1735	 * they will rotate back to anonymous LRU in the end if it failed to
1736	 * discard so isolated count will be mismatched.
1737	 * Compensate the isolated count for both LRU lists.
1738	 */
1739	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1740			    stat.nr_lazyfree_fail);
1741	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1742			    -(long)stat.nr_lazyfree_fail);
1743	return nr_reclaimed;
1744}
1745
1746/*
1747 * Attempt to remove the specified page from its LRU.  Only take this page
1748 * if it is of the appropriate PageActive status.  Pages which are being
1749 * freed elsewhere are also ignored.
1750 *
1751 * page:	page to consider
1752 * mode:	one of the LRU isolation modes defined above
1753 *
1754 * returns true on success, false on failure.
1755 */
1756bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1757{
 
 
1758	/* Only take pages on the LRU. */
1759	if (!PageLRU(page))
1760		return false;
1761
1762	/* Compaction should not handle unevictable pages but CMA can do so */
1763	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1764		return false;
 
 
1765
1766	/*
1767	 * To minimise LRU disruption, the caller can indicate that it only
1768	 * wants to isolate pages it will be able to operate on without
1769	 * blocking - clean pages for the most part.
1770	 *
 
 
 
1771	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1772	 * that it is possible to migrate without blocking
1773	 */
1774	if (mode & ISOLATE_ASYNC_MIGRATE) {
1775		/* All the caller can do on PageWriteback is block */
1776		if (PageWriteback(page))
1777			return false;
1778
1779		if (PageDirty(page)) {
1780			struct address_space *mapping;
1781			bool migrate_dirty;
 
 
 
1782
1783			/*
1784			 * Only pages without mappings or that have a
1785			 * ->migratepage callback are possible to migrate
1786			 * without blocking. However, we can be racing with
1787			 * truncation so it's necessary to lock the page
1788			 * to stabilise the mapping as truncation holds
1789			 * the page lock until after the page is removed
1790			 * from the page cache.
1791			 */
1792			if (!trylock_page(page))
1793				return false;
1794
1795			mapping = page_mapping(page);
1796			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1797			unlock_page(page);
1798			if (!migrate_dirty)
1799				return false;
1800		}
1801	}
1802
1803	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1804		return false;
1805
1806	return true;
1807}
1808
1809/*
1810 * Update LRU sizes after isolating pages. The LRU size updates must
1811 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1812 */
1813static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1814			enum lru_list lru, unsigned long *nr_zone_taken)
1815{
1816	int zid;
1817
1818	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1819		if (!nr_zone_taken[zid])
1820			continue;
1821
1822		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
 
 
 
 
1823	}
1824
 
1825}
1826
1827/*
1828 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1829 *
1830 * lruvec->lru_lock is heavily contended.  Some of the functions that
1831 * shrink the lists perform better by taking out a batch of pages
1832 * and working on them outside the LRU lock.
1833 *
1834 * For pagecache intensive workloads, this function is the hottest
1835 * spot in the kernel (apart from copy_*_user functions).
1836 *
1837 * Lru_lock must be held before calling this function.
1838 *
1839 * @nr_to_scan:	The number of eligible pages to look through on the list.
1840 * @lruvec:	The LRU vector to pull pages from.
1841 * @dst:	The temp list to put pages on to.
1842 * @nr_scanned:	The number of pages that were scanned.
1843 * @sc:		The scan_control struct for this reclaim session
 
1844 * @lru:	LRU list id for isolating
1845 *
1846 * returns how many pages were moved onto *@dst.
1847 */
1848static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1849		struct lruvec *lruvec, struct list_head *dst,
1850		unsigned long *nr_scanned, struct scan_control *sc,
1851		enum lru_list lru)
1852{
1853	struct list_head *src = &lruvec->lists[lru];
1854	unsigned long nr_taken = 0;
1855	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1856	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1857	unsigned long skipped = 0;
1858	unsigned long scan, total_scan, nr_pages;
1859	LIST_HEAD(pages_skipped);
1860	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1861
1862	total_scan = 0;
1863	scan = 0;
1864	while (scan < nr_to_scan && !list_empty(src)) {
1865		struct page *page;
 
1866
1867		page = lru_to_page(src);
1868		prefetchw_prev_lru_page(page, src, flags);
1869
1870		nr_pages = compound_nr(page);
1871		total_scan += nr_pages;
1872
1873		if (page_zonenum(page) > sc->reclaim_idx) {
1874			list_move(&page->lru, &pages_skipped);
1875			nr_skipped[page_zonenum(page)] += nr_pages;
1876			continue;
1877		}
 
 
1878
1879		/*
1880		 * Do not count skipped pages because that makes the function
1881		 * return with no isolated pages if the LRU mostly contains
1882		 * ineligible pages.  This causes the VM to not reclaim any
1883		 * pages, triggering a premature OOM.
1884		 *
1885		 * Account all tail pages of THP.  This would not cause
1886		 * premature OOM since __isolate_lru_page() returns -EBUSY
1887		 * only when the page is being freed somewhere else.
1888		 */
1889		scan += nr_pages;
1890		if (!__isolate_lru_page_prepare(page, mode)) {
1891			/* It is being freed elsewhere */
1892			list_move(&page->lru, src);
1893			continue;
1894		}
1895		/*
1896		 * Be careful not to clear PageLRU until after we're
1897		 * sure the page is not being freed elsewhere -- the
1898		 * page release code relies on it.
1899		 */
1900		if (unlikely(!get_page_unless_zero(page))) {
1901			list_move(&page->lru, src);
1902			continue;
1903		}
1904
1905		if (!TestClearPageLRU(page)) {
1906			/* Another thread is already isolating this page */
1907			put_page(page);
1908			list_move(&page->lru, src);
1909			continue;
1910		}
1911
1912		nr_taken += nr_pages;
1913		nr_zone_taken[page_zonenum(page)] += nr_pages;
1914		list_move(&page->lru, dst);
1915	}
1916
1917	/*
1918	 * Splice any skipped pages to the start of the LRU list. Note that
1919	 * this disrupts the LRU order when reclaiming for lower zones but
1920	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1921	 * scanning would soon rescan the same pages to skip and put the
1922	 * system at risk of premature OOM.
1923	 */
1924	if (!list_empty(&pages_skipped)) {
1925		int zid;
1926
1927		list_splice(&pages_skipped, src);
1928		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1929			if (!nr_skipped[zid])
1930				continue;
1931
1932			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1933			skipped += nr_skipped[zid];
1934		}
1935	}
1936	*nr_scanned = total_scan;
1937	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1938				    total_scan, skipped, nr_taken, mode, lru);
1939	update_lru_sizes(lruvec, lru, nr_zone_taken);
1940	return nr_taken;
1941}
1942
1943/**
1944 * isolate_lru_page - tries to isolate a page from its LRU list
1945 * @page: page to isolate from its LRU list
1946 *
1947 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1948 * vmstat statistic corresponding to whatever LRU list the page was on.
1949 *
1950 * Returns 0 if the page was removed from an LRU list.
1951 * Returns -EBUSY if the page was not on an LRU list.
1952 *
1953 * The returned page will have PageLRU() cleared.  If it was found on
1954 * the active list, it will have PageActive set.  If it was found on
1955 * the unevictable list, it will have the PageUnevictable bit set. That flag
1956 * may need to be cleared by the caller before letting the page go.
1957 *
1958 * The vmstat statistic corresponding to the list on which the page was
1959 * found will be decremented.
1960 *
1961 * Restrictions:
1962 *
1963 * (1) Must be called with an elevated refcount on the page. This is a
1964 *     fundamental difference from isolate_lru_pages (which is called
1965 *     without a stable reference).
1966 * (2) the lru_lock must not be held.
1967 * (3) interrupts must be enabled.
1968 */
1969int isolate_lru_page(struct page *page)
1970{
1971	int ret = -EBUSY;
1972
1973	VM_BUG_ON_PAGE(!page_count(page), page);
1974	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1975
1976	if (TestClearPageLRU(page)) {
 
1977		struct lruvec *lruvec;
1978
1979		get_page(page);
1980		lruvec = lock_page_lruvec_irq(page);
1981		del_page_from_lru_list(page, lruvec);
1982		unlock_page_lruvec_irq(lruvec);
1983		ret = 0;
 
 
 
 
 
1984	}
1985
1986	return ret;
1987}
1988
1989/*
1990 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1991 * then get rescheduled. When there are massive number of tasks doing page
1992 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1993 * the LRU list will go small and be scanned faster than necessary, leading to
1994 * unnecessary swapping, thrashing and OOM.
1995 */
1996static int too_many_isolated(struct pglist_data *pgdat, int file,
1997		struct scan_control *sc)
1998{
1999	unsigned long inactive, isolated;
2000
2001	if (current_is_kswapd())
2002		return 0;
2003
2004	if (!writeback_throttling_sane(sc))
2005		return 0;
2006
2007	if (file) {
2008		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2009		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2010	} else {
2011		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2012		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2013	}
2014
2015	/*
2016	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2017	 * won't get blocked by normal direct-reclaimers, forming a circular
2018	 * deadlock.
2019	 */
2020	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2021		inactive >>= 3;
2022
2023	return isolated > inactive;
2024}
2025
2026/*
2027 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2028 * On return, @list is reused as a list of pages to be freed by the caller.
2029 *
2030 * Returns the number of pages moved to the given lruvec.
2031 */
2032static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2033				      struct list_head *list)
2034{
2035	int nr_pages, nr_moved = 0;
 
2036	LIST_HEAD(pages_to_free);
2037	struct page *page;
2038
2039	while (!list_empty(list)) {
2040		page = lru_to_page(list);
 
 
 
 
 
2041		VM_BUG_ON_PAGE(PageLRU(page), page);
2042		list_del(&page->lru);
2043		if (unlikely(!page_evictable(page))) {
2044			spin_unlock_irq(&lruvec->lru_lock);
2045			putback_lru_page(page);
2046			spin_lock_irq(&lruvec->lru_lock);
2047			continue;
2048		}
2049
2050		/*
2051		 * The SetPageLRU needs to be kept here for list integrity.
2052		 * Otherwise:
2053		 *   #0 move_pages_to_lru             #1 release_pages
2054		 *   if !put_page_testzero
2055		 *				      if (put_page_testzero())
2056		 *				        !PageLRU //skip lru_lock
2057		 *     SetPageLRU()
2058		 *     list_add(&page->lru,)
2059		 *                                        list_add(&page->lru,)
2060		 */
2061		SetPageLRU(page);
 
 
2062
2063		if (unlikely(put_page_testzero(page))) {
2064			__clear_page_lru_flags(page);
 
 
 
 
 
 
 
2065
2066			if (unlikely(PageCompound(page))) {
2067				spin_unlock_irq(&lruvec->lru_lock);
2068				destroy_compound_page(page);
2069				spin_lock_irq(&lruvec->lru_lock);
2070			} else
2071				list_add(&page->lru, &pages_to_free);
2072
2073			continue;
2074		}
2075
2076		/*
2077		 * All pages were isolated from the same lruvec (and isolation
2078		 * inhibits memcg migration).
2079		 */
2080		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2081		add_page_to_lru_list(page, lruvec);
2082		nr_pages = thp_nr_pages(page);
2083		nr_moved += nr_pages;
2084		if (PageActive(page))
2085			workingset_age_nonresident(lruvec, nr_pages);
2086	}
2087
2088	/*
2089	 * To save our caller's stack, now use input list for pages to free.
2090	 */
2091	list_splice(&pages_to_free, list);
2092
2093	return nr_moved;
2094}
2095
2096/*
2097 * If a kernel thread (such as nfsd for loop-back mounts) services
2098 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2099 * In that case we should only throttle if the backing device it is
2100 * writing to is congested.  In other cases it is safe to throttle.
2101 */
2102static int current_may_throttle(void)
2103{
2104	return !(current->flags & PF_LOCAL_THROTTLE) ||
2105		current->backing_dev_info == NULL ||
2106		bdi_write_congested(current->backing_dev_info);
2107}
2108
2109/*
2110 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2111 * of reclaimed pages
2112 */
2113static unsigned long
2114shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2115		     struct scan_control *sc, enum lru_list lru)
2116{
2117	LIST_HEAD(page_list);
2118	unsigned long nr_scanned;
2119	unsigned int nr_reclaimed = 0;
2120	unsigned long nr_taken;
2121	struct reclaim_stat stat;
2122	bool file = is_file_lru(lru);
2123	enum vm_event_item item;
2124	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125	bool stalled = false;
2126
2127	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2128		if (stalled)
2129			return 0;
2130
2131		/* wait a bit for the reclaimer. */
2132		msleep(100);
2133		stalled = true;
2134
2135		/* We are about to die and free our memory. Return now. */
2136		if (fatal_signal_pending(current))
2137			return SWAP_CLUSTER_MAX;
2138	}
2139
2140	lru_add_drain();
2141
2142	spin_lock_irq(&lruvec->lru_lock);
 
 
 
 
 
2143
2144	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2145				     &nr_scanned, sc, lru);
2146
2147	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2148	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2149	if (!cgroup_reclaim(sc))
2150		__count_vm_events(item, nr_scanned);
2151	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2152	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2153
2154	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
 
2155
2156	if (nr_taken == 0)
2157		return 0;
2158
2159	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160
2161	spin_lock_irq(&lruvec->lru_lock);
2162	move_pages_to_lru(lruvec, &page_list);
 
 
 
 
 
 
 
 
 
2163
2164	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2165	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2166	if (!cgroup_reclaim(sc))
2167		__count_vm_events(item, nr_reclaimed);
2168	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2169	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2170	spin_unlock_irq(&lruvec->lru_lock);
2171
2172	lru_note_cost(lruvec, file, stat.nr_pageout);
2173	mem_cgroup_uncharge_list(&page_list);
2174	free_unref_page_list(&page_list);
2175
2176	/*
2177	 * If dirty pages are scanned that are not queued for IO, it
2178	 * implies that flushers are not doing their job. This can
2179	 * happen when memory pressure pushes dirty pages to the end of
2180	 * the LRU before the dirty limits are breached and the dirty
2181	 * data has expired. It can also happen when the proportion of
2182	 * dirty pages grows not through writes but through memory
2183	 * pressure reclaiming all the clean cache. And in some cases,
2184	 * the flushers simply cannot keep up with the allocation
2185	 * rate. Nudge the flusher threads in case they are asleep.
2186	 */
2187	if (stat.nr_unqueued_dirty == nr_taken)
2188		wakeup_flusher_threads(WB_REASON_VMSCAN);
2189
2190	sc->nr.dirty += stat.nr_dirty;
2191	sc->nr.congested += stat.nr_congested;
2192	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2193	sc->nr.writeback += stat.nr_writeback;
2194	sc->nr.immediate += stat.nr_immediate;
2195	sc->nr.taken += nr_taken;
2196	if (file)
2197		sc->nr.file_taken += nr_taken;
2198
2199	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2200			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201	return nr_reclaimed;
2202}
2203
2204/*
2205 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2206 *
2207 * We move them the other way if the page is referenced by one or more
2208 * processes.
2209 *
2210 * If the pages are mostly unmapped, the processing is fast and it is
2211 * appropriate to hold lru_lock across the whole operation.  But if
2212 * the pages are mapped, the processing is slow (page_referenced()), so
2213 * we should drop lru_lock around each page.  It's impossible to balance
2214 * this, so instead we remove the pages from the LRU while processing them.
2215 * It is safe to rely on PG_active against the non-LRU pages in here because
2216 * nobody will play with that bit on a non-LRU page.
2217 *
2218 * The downside is that we have to touch page->_refcount against each page.
2219 * But we had to alter page->flags anyway.
2220 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221static void shrink_active_list(unsigned long nr_to_scan,
2222			       struct lruvec *lruvec,
2223			       struct scan_control *sc,
2224			       enum lru_list lru)
2225{
2226	unsigned long nr_taken;
2227	unsigned long nr_scanned;
2228	unsigned long vm_flags;
2229	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2230	LIST_HEAD(l_active);
2231	LIST_HEAD(l_inactive);
2232	struct page *page;
2233	unsigned nr_deactivate, nr_activate;
2234	unsigned nr_rotated = 0;
 
2235	int file = is_file_lru(lru);
2236	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237
2238	lru_add_drain();
2239
2240	spin_lock_irq(&lruvec->lru_lock);
 
 
 
2241
2242	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2243				     &nr_scanned, sc, lru);
2244
2245	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2246
2247	if (!cgroup_reclaim(sc))
2248		__count_vm_events(PGREFILL, nr_scanned);
2249	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2250
2251	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
2252
2253	while (!list_empty(&l_hold)) {
2254		cond_resched();
2255		page = lru_to_page(&l_hold);
2256		list_del(&page->lru);
2257
2258		if (unlikely(!page_evictable(page))) {
2259			putback_lru_page(page);
2260			continue;
2261		}
2262
2263		if (unlikely(buffer_heads_over_limit)) {
2264			if (page_has_private(page) && trylock_page(page)) {
2265				if (page_has_private(page))
2266					try_to_release_page(page, 0);
2267				unlock_page(page);
2268			}
2269		}
2270
2271		if (page_referenced(page, 0, sc->target_mem_cgroup,
2272				    &vm_flags)) {
 
2273			/*
2274			 * Identify referenced, file-backed active pages and
2275			 * give them one more trip around the active list. So
2276			 * that executable code get better chances to stay in
2277			 * memory under moderate memory pressure.  Anon pages
2278			 * are not likely to be evicted by use-once streaming
2279			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2280			 * so we ignore them here.
2281			 */
2282			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2283				nr_rotated += thp_nr_pages(page);
2284				list_add(&page->lru, &l_active);
2285				continue;
2286			}
2287		}
2288
2289		ClearPageActive(page);	/* we are de-activating */
2290		SetPageWorkingset(page);
2291		list_add(&page->lru, &l_inactive);
2292	}
2293
2294	/*
2295	 * Move pages back to the lru list.
2296	 */
2297	spin_lock_irq(&lruvec->lru_lock);
2298
2299	nr_activate = move_pages_to_lru(lruvec, &l_active);
2300	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2301	/* Keep all free pages in l_active list */
2302	list_splice(&l_inactive, &l_active);
2303
2304	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2305	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2306
2307	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2308	spin_unlock_irq(&lruvec->lru_lock);
 
 
2309
2310	mem_cgroup_uncharge_list(&l_active);
2311	free_unref_page_list(&l_active);
2312	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2313			nr_deactivate, nr_rotated, sc->priority, file);
2314}
2315
2316unsigned long reclaim_pages(struct list_head *page_list)
 
2317{
2318	int nid = NUMA_NO_NODE;
2319	unsigned int nr_reclaimed = 0;
2320	LIST_HEAD(node_page_list);
2321	struct reclaim_stat dummy_stat;
2322	struct page *page;
2323	unsigned int noreclaim_flag;
2324	struct scan_control sc = {
2325		.gfp_mask = GFP_KERNEL,
2326		.priority = DEF_PRIORITY,
2327		.may_writepage = 1,
2328		.may_unmap = 1,
2329		.may_swap = 1,
2330	};
2331
2332	noreclaim_flag = memalloc_noreclaim_save();
 
2333
2334	while (!list_empty(page_list)) {
2335		page = lru_to_page(page_list);
2336		if (nid == NUMA_NO_NODE) {
2337			nid = page_to_nid(page);
2338			INIT_LIST_HEAD(&node_page_list);
2339		}
2340
2341		if (nid == page_to_nid(page)) {
2342			ClearPageActive(page);
2343			list_move(&page->lru, &node_page_list);
2344			continue;
2345		}
2346
2347		nr_reclaimed += shrink_page_list(&node_page_list,
2348						NODE_DATA(nid),
2349						&sc, &dummy_stat, false);
2350		while (!list_empty(&node_page_list)) {
2351			page = lru_to_page(&node_page_list);
2352			list_del(&page->lru);
2353			putback_lru_page(page);
2354		}
 
 
 
 
 
 
 
2355
2356		nid = NUMA_NO_NODE;
2357	}
2358
2359	if (!list_empty(&node_page_list)) {
2360		nr_reclaimed += shrink_page_list(&node_page_list,
2361						NODE_DATA(nid),
2362						&sc, &dummy_stat, false);
2363		while (!list_empty(&node_page_list)) {
2364			page = lru_to_page(&node_page_list);
2365			list_del(&page->lru);
2366			putback_lru_page(page);
2367		}
2368	}
2369
2370	memalloc_noreclaim_restore(noreclaim_flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371
2372	return nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
2373}
2374
2375static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2376				 struct lruvec *lruvec, struct scan_control *sc)
2377{
2378	if (is_active_lru(lru)) {
2379		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2380			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2381		else
2382			sc->skipped_deactivate = 1;
2383		return 0;
2384	}
2385
2386	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2387}
2388
2389/*
2390 * The inactive anon list should be small enough that the VM never has
2391 * to do too much work.
2392 *
2393 * The inactive file list should be small enough to leave most memory
2394 * to the established workingset on the scan-resistant active list,
2395 * but large enough to avoid thrashing the aggregate readahead window.
2396 *
2397 * Both inactive lists should also be large enough that each inactive
2398 * page has a chance to be referenced again before it is reclaimed.
2399 *
2400 * If that fails and refaulting is observed, the inactive list grows.
2401 *
2402 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2403 * on this LRU, maintained by the pageout code. An inactive_ratio
2404 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2405 *
2406 * total     target    max
2407 * memory    ratio     inactive
2408 * -------------------------------------
2409 *   10MB       1         5MB
2410 *  100MB       1        50MB
2411 *    1GB       3       250MB
2412 *   10GB      10       0.9GB
2413 *  100GB      31         3GB
2414 *    1TB     101        10GB
2415 *   10TB     320        32GB
2416 */
2417static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2418{
2419	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2420	unsigned long inactive, active;
2421	unsigned long inactive_ratio;
2422	unsigned long gb;
2423
2424	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2425	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2426
2427	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2428	if (gb)
2429		inactive_ratio = int_sqrt(10 * gb);
2430	else
2431		inactive_ratio = 1;
2432
2433	return inactive * inactive_ratio < active;
2434}
2435
2436enum scan_balance {
2437	SCAN_EQUAL,
2438	SCAN_FRACT,
2439	SCAN_ANON,
2440	SCAN_FILE,
2441};
2442
2443/*
2444 * Determine how aggressively the anon and file LRU lists should be
2445 * scanned.  The relative value of each set of LRU lists is determined
2446 * by looking at the fraction of the pages scanned we did rotate back
2447 * onto the active list instead of evict.
2448 *
2449 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2450 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2451 */
2452static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2453			   unsigned long *nr)
2454{
2455	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2456	unsigned long anon_cost, file_cost, total_cost;
2457	int swappiness = mem_cgroup_swappiness(memcg);
2458	u64 fraction[ANON_AND_FILE];
2459	u64 denominator = 0;	/* gcc */
 
 
2460	enum scan_balance scan_balance;
 
 
2461	unsigned long ap, fp;
2462	enum lru_list lru;
2463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464	/* If we have no swap space, do not bother scanning anon pages. */
2465	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2466		scan_balance = SCAN_FILE;
2467		goto out;
2468	}
2469
2470	/*
2471	 * Global reclaim will swap to prevent OOM even with no
2472	 * swappiness, but memcg users want to use this knob to
2473	 * disable swapping for individual groups completely when
2474	 * using the memory controller's swap limit feature would be
2475	 * too expensive.
2476	 */
2477	if (cgroup_reclaim(sc) && !swappiness) {
2478		scan_balance = SCAN_FILE;
2479		goto out;
2480	}
2481
2482	/*
2483	 * Do not apply any pressure balancing cleverness when the
2484	 * system is close to OOM, scan both anon and file equally
2485	 * (unless the swappiness setting disagrees with swapping).
2486	 */
2487	if (!sc->priority && swappiness) {
2488		scan_balance = SCAN_EQUAL;
2489		goto out;
2490	}
2491
 
 
 
 
 
2492	/*
2493	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2494	 */
2495	if (sc->file_is_tiny) {
2496		scan_balance = SCAN_ANON;
2497		goto out;
 
 
 
 
2498	}
2499
2500	/*
2501	 * If there is enough inactive page cache, we do not reclaim
2502	 * anything from the anonymous working right now.
2503	 */
2504	if (sc->cache_trim_mode) {
2505		scan_balance = SCAN_FILE;
2506		goto out;
2507	}
2508
2509	scan_balance = SCAN_FRACT;
 
2510	/*
2511	 * Calculate the pressure balance between anon and file pages.
2512	 *
2513	 * The amount of pressure we put on each LRU is inversely
2514	 * proportional to the cost of reclaiming each list, as
2515	 * determined by the share of pages that are refaulting, times
2516	 * the relative IO cost of bringing back a swapped out
2517	 * anonymous page vs reloading a filesystem page (swappiness).
 
 
 
2518	 *
2519	 * Although we limit that influence to ensure no list gets
2520	 * left behind completely: at least a third of the pressure is
2521	 * applied, before swappiness.
2522	 *
2523	 * With swappiness at 100, anon and file have equal IO cost.
2524	 */
2525	total_cost = sc->anon_cost + sc->file_cost;
2526	anon_cost = total_cost + sc->anon_cost;
2527	file_cost = total_cost + sc->file_cost;
2528	total_cost = anon_cost + file_cost;
 
2529
2530	ap = swappiness * (total_cost + 1);
2531	ap /= anon_cost + 1;
 
 
 
 
 
 
 
 
 
 
2532
2533	fp = (200 - swappiness) * (total_cost + 1);
2534	fp /= file_cost + 1;
 
2535
2536	fraction[0] = ap;
2537	fraction[1] = fp;
2538	denominator = ap + fp;
2539out:
2540	for_each_evictable_lru(lru) {
2541		int file = is_file_lru(lru);
2542		unsigned long lruvec_size;
2543		unsigned long low, min;
2544		unsigned long scan;
2545
2546		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548				      &min, &low);
2549
2550		if (min || low) {
2551			/*
2552			 * Scale a cgroup's reclaim pressure by proportioning
2553			 * its current usage to its memory.low or memory.min
2554			 * setting.
2555			 *
2556			 * This is important, as otherwise scanning aggression
2557			 * becomes extremely binary -- from nothing as we
2558			 * approach the memory protection threshold, to totally
2559			 * nominal as we exceed it.  This results in requiring
2560			 * setting extremely liberal protection thresholds. It
2561			 * also means we simply get no protection at all if we
2562			 * set it too low, which is not ideal.
2563			 *
2564			 * If there is any protection in place, we reduce scan
2565			 * pressure by how much of the total memory used is
2566			 * within protection thresholds.
2567			 *
2568			 * There is one special case: in the first reclaim pass,
2569			 * we skip over all groups that are within their low
2570			 * protection. If that fails to reclaim enough pages to
2571			 * satisfy the reclaim goal, we come back and override
2572			 * the best-effort low protection. However, we still
2573			 * ideally want to honor how well-behaved groups are in
2574			 * that case instead of simply punishing them all
2575			 * equally. As such, we reclaim them based on how much
2576			 * memory they are using, reducing the scan pressure
2577			 * again by how much of the total memory used is under
2578			 * hard protection.
2579			 */
2580			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581			unsigned long protection;
2582
2583			/* memory.low scaling, make sure we retry before OOM */
2584			if (!sc->memcg_low_reclaim && low > min) {
2585				protection = low;
2586				sc->memcg_low_skipped = 1;
2587			} else {
2588				protection = min;
2589			}
2590
2591			/* Avoid TOCTOU with earlier protection check */
2592			cgroup_size = max(cgroup_size, protection);
2593
2594			scan = lruvec_size - lruvec_size * protection /
2595				(cgroup_size + 1);
2596
2597			/*
2598			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599			 * reclaim moving forwards, avoiding decrementing
2600			 * sc->priority further than desirable.
2601			 */
2602			scan = max(scan, SWAP_CLUSTER_MAX);
2603		} else {
2604			scan = lruvec_size;
2605		}
2606
2607		scan >>= sc->priority;
2608
2609		/*
2610		 * If the cgroup's already been deleted, make sure to
2611		 * scrape out the remaining cache.
2612		 */
2613		if (!scan && !mem_cgroup_online(memcg))
2614			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615
2616		switch (scan_balance) {
2617		case SCAN_EQUAL:
2618			/* Scan lists relative to size */
2619			break;
2620		case SCAN_FRACT:
2621			/*
2622			 * Scan types proportional to swappiness and
2623			 * their relative recent reclaim efficiency.
2624			 * Make sure we don't miss the last page on
2625			 * the offlined memory cgroups because of a
2626			 * round-off error.
2627			 */
2628			scan = mem_cgroup_online(memcg) ?
2629			       div64_u64(scan * fraction[file], denominator) :
2630			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631						  denominator);
2632			break;
2633		case SCAN_FILE:
2634		case SCAN_ANON:
2635			/* Scan one type exclusively */
2636			if ((scan_balance == SCAN_FILE) != file)
2637				scan = 0;
2638			break;
2639		default:
2640			/* Look ma, no brain */
2641			BUG();
2642		}
2643
2644		nr[lru] = scan;
2645	}
2646}
2647
 
 
 
2648static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2649{
2650	unsigned long nr[NR_LRU_LISTS];
2651	unsigned long targets[NR_LRU_LISTS];
2652	unsigned long nr_to_scan;
2653	enum lru_list lru;
2654	unsigned long nr_reclaimed = 0;
2655	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2656	struct blk_plug plug;
2657	bool scan_adjusted;
2658
2659	get_scan_count(lruvec, sc, nr);
2660
2661	/* Record the original scan target for proportional adjustments later */
2662	memcpy(targets, nr, sizeof(nr));
2663
2664	/*
2665	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2666	 * event that can occur when there is little memory pressure e.g.
2667	 * multiple streaming readers/writers. Hence, we do not abort scanning
2668	 * when the requested number of pages are reclaimed when scanning at
2669	 * DEF_PRIORITY on the assumption that the fact we are direct
2670	 * reclaiming implies that kswapd is not keeping up and it is best to
2671	 * do a batch of work at once. For memcg reclaim one check is made to
2672	 * abort proportional reclaim if either the file or anon lru has already
2673	 * dropped to zero at the first pass.
2674	 */
2675	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2676			 sc->priority == DEF_PRIORITY);
2677
2678	blk_start_plug(&plug);
2679	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2680					nr[LRU_INACTIVE_FILE]) {
2681		unsigned long nr_anon, nr_file, percentage;
2682		unsigned long nr_scanned;
2683
2684		for_each_evictable_lru(lru) {
2685			if (nr[lru]) {
2686				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2687				nr[lru] -= nr_to_scan;
2688
2689				nr_reclaimed += shrink_list(lru, nr_to_scan,
2690							    lruvec, sc);
2691			}
2692		}
2693
2694		cond_resched();
2695
2696		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2697			continue;
2698
2699		/*
 
 
 
 
 
 
 
 
 
2700		 * For kswapd and memcg, reclaim at least the number of pages
2701		 * requested. Ensure that the anon and file LRUs are scanned
2702		 * proportionally what was requested by get_scan_count(). We
2703		 * stop reclaiming one LRU and reduce the amount scanning
2704		 * proportional to the original scan target.
2705		 */
2706		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2707		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2708
2709		/*
2710		 * It's just vindictive to attack the larger once the smaller
2711		 * has gone to zero.  And given the way we stop scanning the
2712		 * smaller below, this makes sure that we only make one nudge
2713		 * towards proportionality once we've got nr_to_reclaim.
2714		 */
2715		if (!nr_file || !nr_anon)
2716			break;
2717
2718		if (nr_file > nr_anon) {
2719			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2720						targets[LRU_ACTIVE_ANON] + 1;
2721			lru = LRU_BASE;
2722			percentage = nr_anon * 100 / scan_target;
2723		} else {
2724			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2725						targets[LRU_ACTIVE_FILE] + 1;
2726			lru = LRU_FILE;
2727			percentage = nr_file * 100 / scan_target;
2728		}
2729
2730		/* Stop scanning the smaller of the LRU */
2731		nr[lru] = 0;
2732		nr[lru + LRU_ACTIVE] = 0;
2733
2734		/*
2735		 * Recalculate the other LRU scan count based on its original
2736		 * scan target and the percentage scanning already complete
2737		 */
2738		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2739		nr_scanned = targets[lru] - nr[lru];
2740		nr[lru] = targets[lru] * (100 - percentage) / 100;
2741		nr[lru] -= min(nr[lru], nr_scanned);
2742
2743		lru += LRU_ACTIVE;
2744		nr_scanned = targets[lru] - nr[lru];
2745		nr[lru] = targets[lru] * (100 - percentage) / 100;
2746		nr[lru] -= min(nr[lru], nr_scanned);
2747
2748		scan_adjusted = true;
2749	}
2750	blk_finish_plug(&plug);
2751	sc->nr_reclaimed += nr_reclaimed;
2752
2753	/*
2754	 * Even if we did not try to evict anon pages at all, we want to
2755	 * rebalance the anon lru active/inactive ratio.
2756	 */
2757	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2758		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2759				   sc, LRU_ACTIVE_ANON);
 
 
2760}
2761
2762/* Use reclaim/compaction for costly allocs or under memory pressure */
2763static bool in_reclaim_compaction(struct scan_control *sc)
2764{
2765	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2766			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2767			 sc->priority < DEF_PRIORITY - 2))
2768		return true;
2769
2770	return false;
2771}
2772
2773/*
2774 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2775 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2776 * true if more pages should be reclaimed such that when the page allocator
2777 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2778 * It will give up earlier than that if there is difficulty reclaiming pages.
2779 */
2780static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2781					unsigned long nr_reclaimed,
 
2782					struct scan_control *sc)
2783{
2784	unsigned long pages_for_compaction;
2785	unsigned long inactive_lru_pages;
2786	int z;
2787
2788	/* If not in reclaim/compaction mode, stop */
2789	if (!in_reclaim_compaction(sc))
2790		return false;
2791
2792	/*
2793	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2794	 * number of pages that were scanned. This will return to the caller
2795	 * with the risk reclaim/compaction and the resulting allocation attempt
2796	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2797	 * allocations through requiring that the full LRU list has been scanned
2798	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2799	 * scan, but that approximation was wrong, and there were corner cases
2800	 * where always a non-zero amount of pages were scanned.
2801	 */
2802	if (!nr_reclaimed)
2803		return false;
2804
2805	/* If compaction would go ahead or the allocation would succeed, stop */
2806	for (z = 0; z <= sc->reclaim_idx; z++) {
2807		struct zone *zone = &pgdat->node_zones[z];
2808		if (!managed_zone(zone))
2809			continue;
2810
2811		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2812		case COMPACT_SUCCESS:
2813		case COMPACT_CONTINUE:
2814			return false;
2815		default:
2816			/* check next zone */
2817			;
2818		}
2819	}
2820
2821	/*
2822	 * If we have not reclaimed enough pages for compaction and the
2823	 * inactive lists are large enough, continue reclaiming
2824	 */
2825	pages_for_compaction = compact_gap(sc->order);
2826	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2827	if (get_nr_swap_pages() > 0)
2828		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
 
 
 
2829
2830	return inactive_lru_pages > pages_for_compaction;
 
 
 
 
 
 
 
2831}
2832
2833static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2834{
2835	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2836	struct mem_cgroup *memcg;
2837
2838	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2839	do {
2840		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2841		unsigned long reclaimed;
2842		unsigned long scanned;
 
 
 
2843
2844		/*
2845		 * This loop can become CPU-bound when target memcgs
2846		 * aren't eligible for reclaim - either because they
2847		 * don't have any reclaimable pages, or because their
2848		 * memory is explicitly protected. Avoid soft lockups.
2849		 */
2850		cond_resched();
2851
2852		mem_cgroup_calculate_protection(target_memcg, memcg);
 
 
2853
2854		if (mem_cgroup_below_min(memcg)) {
2855			/*
2856			 * Hard protection.
2857			 * If there is no reclaimable memory, OOM.
2858			 */
2859			continue;
2860		} else if (mem_cgroup_below_low(memcg)) {
2861			/*
2862			 * Soft protection.
2863			 * Respect the protection only as long as
2864			 * there is an unprotected supply
2865			 * of reclaimable memory from other cgroups.
 
 
 
 
2866			 */
2867			if (!sc->memcg_low_reclaim) {
2868				sc->memcg_low_skipped = 1;
2869				continue;
 
2870			}
2871			memcg_memory_event(memcg, MEMCG_LOW);
2872		}
2873
2874		reclaimed = sc->nr_reclaimed;
2875		scanned = sc->nr_scanned;
 
2876
2877		shrink_lruvec(lruvec, sc);
2878
2879		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2880			    sc->priority);
2881
2882		/* Record the group's reclaim efficiency */
2883		vmpressure(sc->gfp_mask, memcg, false,
2884			   sc->nr_scanned - scanned,
2885			   sc->nr_reclaimed - reclaimed);
2886
2887	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2888}
2889
2890static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
2891{
2892	struct reclaim_state *reclaim_state = current->reclaim_state;
2893	unsigned long nr_reclaimed, nr_scanned;
2894	struct lruvec *target_lruvec;
2895	bool reclaimable = false;
2896	unsigned long file;
2897
2898	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899
2900again:
2901	memset(&sc->nr, 0, sizeof(sc->nr));
2902
2903	nr_reclaimed = sc->nr_reclaimed;
2904	nr_scanned = sc->nr_scanned;
2905
2906	/*
2907	 * Determine the scan balance between anon and file LRUs.
2908	 */
2909	spin_lock_irq(&target_lruvec->lru_lock);
2910	sc->anon_cost = target_lruvec->anon_cost;
2911	sc->file_cost = target_lruvec->file_cost;
2912	spin_unlock_irq(&target_lruvec->lru_lock);
2913
2914	/*
2915	 * Target desirable inactive:active list ratios for the anon
2916	 * and file LRU lists.
2917	 */
2918	if (!sc->force_deactivate) {
2919		unsigned long refaults;
2920
2921		refaults = lruvec_page_state(target_lruvec,
2922				WORKINGSET_ACTIVATE_ANON);
2923		if (refaults != target_lruvec->refaults[0] ||
2924			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2925			sc->may_deactivate |= DEACTIVATE_ANON;
2926		else
2927			sc->may_deactivate &= ~DEACTIVATE_ANON;
2928
2929		/*
2930		 * When refaults are being observed, it means a new
2931		 * workingset is being established. Deactivate to get
2932		 * rid of any stale active pages quickly.
2933		 */
2934		refaults = lruvec_page_state(target_lruvec,
2935				WORKINGSET_ACTIVATE_FILE);
2936		if (refaults != target_lruvec->refaults[1] ||
2937		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938			sc->may_deactivate |= DEACTIVATE_FILE;
2939		else
2940			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941	} else
2942		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943
2944	/*
2945	 * If we have plenty of inactive file pages that aren't
2946	 * thrashing, try to reclaim those first before touching
2947	 * anonymous pages.
2948	 */
2949	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951		sc->cache_trim_mode = 1;
2952	else
2953		sc->cache_trim_mode = 0;
2954
2955	/*
2956	 * Prevent the reclaimer from falling into the cache trap: as
2957	 * cache pages start out inactive, every cache fault will tip
2958	 * the scan balance towards the file LRU.  And as the file LRU
2959	 * shrinks, so does the window for rotation from references.
2960	 * This means we have a runaway feedback loop where a tiny
2961	 * thrashing file LRU becomes infinitely more attractive than
2962	 * anon pages.  Try to detect this based on file LRU size.
2963	 */
2964	if (!cgroup_reclaim(sc)) {
2965		unsigned long total_high_wmark = 0;
2966		unsigned long free, anon;
2967		int z;
2968
2969		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972
2973		for (z = 0; z < MAX_NR_ZONES; z++) {
2974			struct zone *zone = &pgdat->node_zones[z];
2975			if (!managed_zone(zone))
2976				continue;
2977
2978			total_high_wmark += high_wmark_pages(zone);
2979		}
2980
2981		/*
2982		 * Consider anon: if that's low too, this isn't a
2983		 * runaway file reclaim problem, but rather just
2984		 * extreme pressure. Reclaim as per usual then.
2985		 */
2986		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2987
2988		sc->file_is_tiny =
2989			file + free <= total_high_wmark &&
2990			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2991			anon >> sc->priority;
2992	}
2993
2994	shrink_node_memcgs(pgdat, sc);
2995
2996	if (reclaim_state) {
2997		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2998		reclaim_state->reclaimed_slab = 0;
2999	}
3000
3001	/* Record the subtree's reclaim efficiency */
3002	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3003		   sc->nr_scanned - nr_scanned,
3004		   sc->nr_reclaimed - nr_reclaimed);
3005
3006	if (sc->nr_reclaimed - nr_reclaimed)
3007		reclaimable = true;
3008
3009	if (current_is_kswapd()) {
3010		/*
3011		 * If reclaim is isolating dirty pages under writeback,
3012		 * it implies that the long-lived page allocation rate
3013		 * is exceeding the page laundering rate. Either the
3014		 * global limits are not being effective at throttling
3015		 * processes due to the page distribution throughout
3016		 * zones or there is heavy usage of a slow backing
3017		 * device. The only option is to throttle from reclaim
3018		 * context which is not ideal as there is no guarantee
3019		 * the dirtying process is throttled in the same way
3020		 * balance_dirty_pages() manages.
3021		 *
3022		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3023		 * count the number of pages under pages flagged for
3024		 * immediate reclaim and stall if any are encountered
3025		 * in the nr_immediate check below.
3026		 */
3027		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3028			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3029
3030		/* Allow kswapd to start writing pages during reclaim.*/
3031		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3032			set_bit(PGDAT_DIRTY, &pgdat->flags);
3033
3034		/*
3035		 * If kswapd scans pages marked for immediate
3036		 * reclaim and under writeback (nr_immediate), it
3037		 * implies that pages are cycling through the LRU
3038		 * faster than they are written so also forcibly stall.
3039		 */
3040		if (sc->nr.immediate)
3041			congestion_wait(BLK_RW_ASYNC, HZ/10);
3042	}
3043
3044	/*
3045	 * Tag a node/memcg as congested if all the dirty pages
3046	 * scanned were backed by a congested BDI and
3047	 * wait_iff_congested will stall.
3048	 *
3049	 * Legacy memcg will stall in page writeback so avoid forcibly
3050	 * stalling in wait_iff_congested().
3051	 */
3052	if ((current_is_kswapd() ||
3053	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3054	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3055		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3056
3057	/*
3058	 * Stall direct reclaim for IO completions if underlying BDIs
3059	 * and node is congested. Allow kswapd to continue until it
3060	 * starts encountering unqueued dirty pages or cycling through
3061	 * the LRU too quickly.
3062	 */
3063	if (!current_is_kswapd() && current_may_throttle() &&
3064	    !sc->hibernation_mode &&
3065	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3066		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3067
3068	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3069				    sc))
3070		goto again;
3071
3072	/*
3073	 * Kswapd gives up on balancing particular nodes after too
3074	 * many failures to reclaim anything from them and goes to
3075	 * sleep. On reclaim progress, reset the failure counter. A
3076	 * successful direct reclaim run will revive a dormant kswapd.
3077	 */
3078	if (reclaimable)
3079		pgdat->kswapd_failures = 0;
3080}
3081
3082/*
3083 * Returns true if compaction should go ahead for a costly-order request, or
3084 * the allocation would already succeed without compaction. Return false if we
3085 * should reclaim first.
3086 */
3087static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3088{
3089	unsigned long watermark;
3090	enum compact_result suitable;
3091
3092	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3093	if (suitable == COMPACT_SUCCESS)
3094		/* Allocation should succeed already. Don't reclaim. */
3095		return true;
3096	if (suitable == COMPACT_SKIPPED)
3097		/* Compaction cannot yet proceed. Do reclaim. */
3098		return false;
3099
3100	/*
3101	 * Compaction is already possible, but it takes time to run and there
3102	 * are potentially other callers using the pages just freed. So proceed
3103	 * with reclaim to make a buffer of free pages available to give
3104	 * compaction a reasonable chance of completing and allocating the page.
3105	 * Note that we won't actually reclaim the whole buffer in one attempt
3106	 * as the target watermark in should_continue_reclaim() is lower. But if
3107	 * we are already above the high+gap watermark, don't reclaim at all.
3108	 */
3109	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3110
3111	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3112}
3113
3114/*
3115 * This is the direct reclaim path, for page-allocating processes.  We only
3116 * try to reclaim pages from zones which will satisfy the caller's allocation
3117 * request.
3118 *
 
 
 
 
 
 
 
 
3119 * If a zone is deemed to be full of pinned pages then just give it a light
3120 * scan then give up on it.
 
 
 
 
 
3121 */
3122static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3123{
3124	struct zoneref *z;
3125	struct zone *zone;
3126	unsigned long nr_soft_reclaimed;
3127	unsigned long nr_soft_scanned;
 
 
 
3128	gfp_t orig_mask;
3129	pg_data_t *last_pgdat = NULL;
 
 
 
3130
3131	/*
3132	 * If the number of buffer_heads in the machine exceeds the maximum
3133	 * allowed level, force direct reclaim to scan the highmem zone as
3134	 * highmem pages could be pinning lowmem pages storing buffer_heads
3135	 */
3136	orig_mask = sc->gfp_mask;
3137	if (buffer_heads_over_limit) {
3138		sc->gfp_mask |= __GFP_HIGHMEM;
3139		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3140	}
3141
3142	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3143					sc->reclaim_idx, sc->nodemask) {
 
 
3144		/*
3145		 * Take care memory controller reclaiming has small influence
3146		 * to global LRU.
3147		 */
3148		if (!cgroup_reclaim(sc)) {
3149			if (!cpuset_zone_allowed(zone,
3150						 GFP_KERNEL | __GFP_HARDWALL))
3151				continue;
3152
3153			/*
3154			 * If we already have plenty of memory free for
3155			 * compaction in this zone, don't free any more.
3156			 * Even though compaction is invoked for any
3157			 * non-zero order, only frequent costly order
3158			 * reclamation is disruptive enough to become a
3159			 * noticeable problem, like transparent huge
3160			 * page allocations.
3161			 */
3162			if (IS_ENABLED(CONFIG_COMPACTION) &&
3163			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3164			    compaction_ready(zone, sc)) {
3165				sc->compaction_ready = true;
3166				continue;
3167			}
3168
3169			/*
3170			 * Shrink each node in the zonelist once. If the
3171			 * zonelist is ordered by zone (not the default) then a
3172			 * node may be shrunk multiple times but in that case
3173			 * the user prefers lower zones being preserved.
3174			 */
3175			if (zone->zone_pgdat == last_pgdat)
3176				continue;
3177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178			/*
3179			 * This steals pages from memory cgroups over softlimit
3180			 * and returns the number of reclaimed pages and
3181			 * scanned pages. This works for global memory pressure
3182			 * and balancing, not for a memcg's limit.
3183			 */
3184			nr_soft_scanned = 0;
3185			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3186						sc->order, sc->gfp_mask,
3187						&nr_soft_scanned);
3188			sc->nr_reclaimed += nr_soft_reclaimed;
3189			sc->nr_scanned += nr_soft_scanned;
3190			/* need some check for avoid more shrink_zone() */
3191		}
3192
3193		/* See comment about same check for global reclaim above */
3194		if (zone->zone_pgdat == last_pgdat)
3195			continue;
3196		last_pgdat = zone->zone_pgdat;
3197		shrink_node(zone->zone_pgdat, sc);
 
 
 
 
 
 
 
 
 
 
3198	}
3199
3200	/*
3201	 * Restore to original mask to avoid the impact on the caller if we
3202	 * promoted it to __GFP_HIGHMEM.
3203	 */
3204	sc->gfp_mask = orig_mask;
 
 
3205}
3206
3207static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
 
 
3208{
3209	struct lruvec *target_lruvec;
3210	unsigned long refaults;
3211
3212	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3213	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3214	target_lruvec->refaults[0] = refaults;
3215	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3216	target_lruvec->refaults[1] = refaults;
 
 
 
 
 
 
3217}
3218
3219/*
3220 * This is the main entry point to direct page reclaim.
3221 *
3222 * If a full scan of the inactive list fails to free enough memory then we
3223 * are "out of memory" and something needs to be killed.
3224 *
3225 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3226 * high - the zone may be full of dirty or under-writeback pages, which this
3227 * caller can't do much about.  We kick the writeback threads and take explicit
3228 * naps in the hope that some of these pages can be written.  But if the
3229 * allocating task holds filesystem locks which prevent writeout this might not
3230 * work, and the allocation attempt will fail.
3231 *
3232 * returns:	0, if no pages reclaimed
3233 * 		else, the number of pages reclaimed
3234 */
3235static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3236					  struct scan_control *sc)
3237{
3238	int initial_priority = sc->priority;
3239	pg_data_t *last_pgdat;
3240	struct zoneref *z;
3241	struct zone *zone;
3242retry:
3243	delayacct_freepages_start();
3244
3245	if (!cgroup_reclaim(sc))
3246		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3247
3248	do {
3249		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3250				sc->priority);
3251		sc->nr_scanned = 0;
3252		shrink_zones(zonelist, sc);
3253
 
3254		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3255			break;
3256
3257		if (sc->compaction_ready)
3258			break;
3259
3260		/*
3261		 * If we're getting trouble reclaiming, start doing
3262		 * writepage even in laptop mode.
3263		 */
3264		if (sc->priority < DEF_PRIORITY - 2)
3265			sc->may_writepage = 1;
3266	} while (--sc->priority >= 0);
3267
3268	last_pgdat = NULL;
3269	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3270					sc->nodemask) {
3271		if (zone->zone_pgdat == last_pgdat)
3272			continue;
3273		last_pgdat = zone->zone_pgdat;
3274
3275		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3276
3277		if (cgroup_reclaim(sc)) {
3278			struct lruvec *lruvec;
3279
3280			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3281						   zone->zone_pgdat);
3282			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
 
 
 
 
3283		}
3284	}
3285
 
3286	delayacct_freepages_end();
3287
3288	if (sc->nr_reclaimed)
3289		return sc->nr_reclaimed;
3290
 
 
 
 
 
 
 
 
3291	/* Aborted reclaim to try compaction? don't OOM, then */
3292	if (sc->compaction_ready)
3293		return 1;
3294
3295	/*
3296	 * We make inactive:active ratio decisions based on the node's
3297	 * composition of memory, but a restrictive reclaim_idx or a
3298	 * memory.low cgroup setting can exempt large amounts of
3299	 * memory from reclaim. Neither of which are very common, so
3300	 * instead of doing costly eligibility calculations of the
3301	 * entire cgroup subtree up front, we assume the estimates are
3302	 * good, and retry with forcible deactivation if that fails.
3303	 */
3304	if (sc->skipped_deactivate) {
3305		sc->priority = initial_priority;
3306		sc->force_deactivate = 1;
3307		sc->skipped_deactivate = 0;
3308		goto retry;
3309	}
3310
3311	/* Untapped cgroup reserves?  Don't OOM, retry. */
3312	if (sc->memcg_low_skipped) {
3313		sc->priority = initial_priority;
3314		sc->force_deactivate = 0;
3315		sc->memcg_low_reclaim = 1;
3316		sc->memcg_low_skipped = 0;
3317		goto retry;
3318	}
3319
3320	return 0;
3321}
3322
3323static bool allow_direct_reclaim(pg_data_t *pgdat)
3324{
3325	struct zone *zone;
3326	unsigned long pfmemalloc_reserve = 0;
3327	unsigned long free_pages = 0;
3328	int i;
3329	bool wmark_ok;
3330
3331	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3332		return true;
3333
3334	for (i = 0; i <= ZONE_NORMAL; i++) {
3335		zone = &pgdat->node_zones[i];
3336		if (!managed_zone(zone))
3337			continue;
3338
3339		if (!zone_reclaimable_pages(zone))
3340			continue;
3341
3342		pfmemalloc_reserve += min_wmark_pages(zone);
3343		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3344	}
3345
3346	/* If there are no reserves (unexpected config) then do not throttle */
3347	if (!pfmemalloc_reserve)
3348		return true;
3349
3350	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3351
3352	/* kswapd must be awake if processes are being throttled */
3353	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3354		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3355			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3356
3357		wake_up_interruptible(&pgdat->kswapd_wait);
3358	}
3359
3360	return wmark_ok;
3361}
3362
3363/*
3364 * Throttle direct reclaimers if backing storage is backed by the network
3365 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3366 * depleted. kswapd will continue to make progress and wake the processes
3367 * when the low watermark is reached.
3368 *
3369 * Returns true if a fatal signal was delivered during throttling. If this
3370 * happens, the page allocator should not consider triggering the OOM killer.
3371 */
3372static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3373					nodemask_t *nodemask)
3374{
3375	struct zoneref *z;
3376	struct zone *zone;
3377	pg_data_t *pgdat = NULL;
 
3378
3379	/*
3380	 * Kernel threads should not be throttled as they may be indirectly
3381	 * responsible for cleaning pages necessary for reclaim to make forward
3382	 * progress. kjournald for example may enter direct reclaim while
3383	 * committing a transaction where throttling it could forcing other
3384	 * processes to block on log_wait_commit().
3385	 */
3386	if (current->flags & PF_KTHREAD)
3387		goto out;
3388
3389	/*
3390	 * If a fatal signal is pending, this process should not throttle.
3391	 * It should return quickly so it can exit and free its memory
3392	 */
3393	if (fatal_signal_pending(current))
3394		goto out;
3395
3396	/*
3397	 * Check if the pfmemalloc reserves are ok by finding the first node
3398	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3399	 * GFP_KERNEL will be required for allocating network buffers when
3400	 * swapping over the network so ZONE_HIGHMEM is unusable.
3401	 *
3402	 * Throttling is based on the first usable node and throttled processes
3403	 * wait on a queue until kswapd makes progress and wakes them. There
3404	 * is an affinity then between processes waking up and where reclaim
3405	 * progress has been made assuming the process wakes on the same node.
3406	 * More importantly, processes running on remote nodes will not compete
3407	 * for remote pfmemalloc reserves and processes on different nodes
3408	 * should make reasonable progress.
3409	 */
3410	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3411					gfp_zone(gfp_mask), nodemask) {
3412		if (zone_idx(zone) > ZONE_NORMAL)
3413			continue;
3414
3415		/* Throttle based on the first usable node */
3416		pgdat = zone->zone_pgdat;
3417		if (allow_direct_reclaim(pgdat))
3418			goto out;
3419		break;
3420	}
3421
3422	/* If no zone was usable by the allocation flags then do not throttle */
3423	if (!pgdat)
3424		goto out;
3425
3426	/* Account for the throttling */
3427	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3428
3429	/*
3430	 * If the caller cannot enter the filesystem, it's possible that it
3431	 * is due to the caller holding an FS lock or performing a journal
3432	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3433	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3434	 * blocked waiting on the same lock. Instead, throttle for up to a
3435	 * second before continuing.
3436	 */
3437	if (!(gfp_mask & __GFP_FS)) {
3438		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3439			allow_direct_reclaim(pgdat), HZ);
3440
3441		goto check_pending;
3442	}
3443
3444	/* Throttle until kswapd wakes the process */
3445	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3446		allow_direct_reclaim(pgdat));
3447
3448check_pending:
3449	if (fatal_signal_pending(current))
3450		return true;
3451
3452out:
3453	return false;
3454}
3455
3456unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3457				gfp_t gfp_mask, nodemask_t *nodemask)
3458{
3459	unsigned long nr_reclaimed;
3460	struct scan_control sc = {
3461		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3462		.gfp_mask = current_gfp_context(gfp_mask),
3463		.reclaim_idx = gfp_zone(gfp_mask),
3464		.order = order,
3465		.nodemask = nodemask,
3466		.priority = DEF_PRIORITY,
3467		.may_writepage = !laptop_mode,
 
3468		.may_unmap = 1,
3469		.may_swap = 1,
 
 
 
 
3470	};
3471
3472	/*
3473	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3474	 * Confirm they are large enough for max values.
3475	 */
3476	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3477	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3478	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3479
3480	/*
3481	 * Do not enter reclaim if fatal signal was delivered while throttled.
3482	 * 1 is returned so that the page allocator does not OOM kill at this
3483	 * point.
3484	 */
3485	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3486		return 1;
3487
3488	set_task_reclaim_state(current, &sc.reclaim_state);
3489	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
 
3490
3491	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3492
3493	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3494	set_task_reclaim_state(current, NULL);
3495
3496	return nr_reclaimed;
3497}
3498
3499#ifdef CONFIG_MEMCG
3500
3501/* Only used by soft limit reclaim. Do not reuse for anything else. */
3502unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3503						gfp_t gfp_mask, bool noswap,
3504						pg_data_t *pgdat,
3505						unsigned long *nr_scanned)
3506{
3507	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3508	struct scan_control sc = {
 
3509		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3510		.target_mem_cgroup = memcg,
3511		.may_writepage = !laptop_mode,
3512		.may_unmap = 1,
3513		.reclaim_idx = MAX_NR_ZONES - 1,
3514		.may_swap = !noswap,
 
 
 
3515	};
3516
3517	WARN_ON_ONCE(!current->reclaim_state);
3518
3519	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3520			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3521
3522	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
3523						      sc.gfp_mask);
3524
3525	/*
3526	 * NOTE: Although we can get the priority field, using it
3527	 * here is not a good idea, since it limits the pages we can scan.
3528	 * if we don't reclaim here, the shrink_node from balance_pgdat
3529	 * will pick up pages from other mem cgroup's as well. We hack
3530	 * the priority and make it zero.
3531	 */
3532	shrink_lruvec(lruvec, &sc);
3533
3534	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3535
3536	*nr_scanned = sc.nr_scanned;
3537
3538	return sc.nr_reclaimed;
3539}
3540
3541unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3542					   unsigned long nr_pages,
3543					   gfp_t gfp_mask,
3544					   bool may_swap)
3545{
 
3546	unsigned long nr_reclaimed;
3547	unsigned int noreclaim_flag;
3548	struct scan_control sc = {
3549		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3550		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3551				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3552		.reclaim_idx = MAX_NR_ZONES - 1,
3553		.target_mem_cgroup = memcg,
3554		.priority = DEF_PRIORITY,
3555		.may_writepage = !laptop_mode,
3556		.may_unmap = 1,
3557		.may_swap = may_swap,
 
 
 
 
 
 
 
3558	};
 
3559	/*
3560	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3561	 * equal pressure on all the nodes. This is based on the assumption that
3562	 * the reclaim does not bail out early.
3563	 */
3564	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
3565
3566	set_task_reclaim_state(current, &sc.reclaim_state);
3567	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3568	noreclaim_flag = memalloc_noreclaim_save();
3569
3570	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3571
3572	memalloc_noreclaim_restore(noreclaim_flag);
3573	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3574	set_task_reclaim_state(current, NULL);
3575
3576	return nr_reclaimed;
3577}
3578#endif
3579
3580static void age_active_anon(struct pglist_data *pgdat,
3581				struct scan_control *sc)
3582{
3583	struct mem_cgroup *memcg;
3584	struct lruvec *lruvec;
3585
3586	if (!total_swap_pages)
3587		return;
3588
3589	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3590	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3591		return;
3592
3593	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3594	do {
3595		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3596		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3597				   sc, LRU_ACTIVE_ANON);
 
 
 
3598		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3599	} while (memcg);
3600}
3601
3602static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
 
3603{
3604	int i;
3605	struct zone *zone;
3606
3607	/*
3608	 * Check for watermark boosts top-down as the higher zones
3609	 * are more likely to be boosted. Both watermarks and boosts
3610	 * should not be checked at the same time as reclaim would
3611	 * start prematurely when there is no boosting and a lower
3612	 * zone is balanced.
3613	 */
3614	for (i = highest_zoneidx; i >= 0; i--) {
3615		zone = pgdat->node_zones + i;
3616		if (!managed_zone(zone))
3617			continue;
3618
3619		if (zone->watermark_boost)
3620			return true;
3621	}
3622
3623	return false;
3624}
3625
3626/*
3627 * Returns true if there is an eligible zone balanced for the request order
3628 * and highest_zoneidx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3629 */
3630static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3631{
 
 
3632	int i;
3633	unsigned long mark = -1;
3634	struct zone *zone;
3635
3636	/*
3637	 * Check watermarks bottom-up as lower zones are more likely to
3638	 * meet watermarks.
3639	 */
3640	for (i = 0; i <= highest_zoneidx; i++) {
3641		zone = pgdat->node_zones + i;
3642
3643		if (!managed_zone(zone))
3644			continue;
3645
3646		mark = high_wmark_pages(zone);
3647		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3648			return true;
3649	}
3650
3651	/*
3652	 * If a node has no populated zone within highest_zoneidx, it does not
3653	 * need balancing by definition. This can happen if a zone-restricted
3654	 * allocation tries to wake a remote kswapd.
3655	 */
3656	if (mark == -1)
3657		return true;
3658
3659	return false;
3660}
 
3661
3662/* Clear pgdat state for congested, dirty or under writeback. */
3663static void clear_pgdat_congested(pg_data_t *pgdat)
3664{
3665	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
 
3666
3667	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3668	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3669	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
 
3670}
3671
3672/*
3673 * Prepare kswapd for sleeping. This verifies that there are no processes
3674 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3675 *
3676 * Returns true if kswapd is ready to sleep
3677 */
3678static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3679				int highest_zoneidx)
3680{
 
 
 
 
3681	/*
3682	 * The throttled processes are normally woken up in balance_pgdat() as
3683	 * soon as allow_direct_reclaim() is true. But there is a potential
3684	 * race between when kswapd checks the watermarks and a process gets
3685	 * throttled. There is also a potential race if processes get
3686	 * throttled, kswapd wakes, a large process exits thereby balancing the
3687	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3688	 * the wake up checks. If kswapd is going to sleep, no process should
3689	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3690	 * the wake up is premature, processes will wake kswapd and get
3691	 * throttled again. The difference from wake ups in balance_pgdat() is
3692	 * that here we are under prepare_to_wait().
3693	 */
3694	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3695		wake_up_all(&pgdat->pfmemalloc_wait);
3696
3697	/* Hopeless node, leave it to direct reclaim */
3698	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3699		return true;
3700
3701	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3702		clear_pgdat_congested(pgdat);
3703		return true;
3704	}
3705
3706	return false;
3707}
3708
3709/*
3710 * kswapd shrinks a node of pages that are at or below the highest usable
3711 * zone that is currently unbalanced.
3712 *
3713 * Returns true if kswapd scanned at least the requested number of pages to
3714 * reclaim or if the lack of progress was due to pages under writeback.
3715 * This is used to determine if the scanning priority needs to be raised.
3716 */
3717static bool kswapd_shrink_node(pg_data_t *pgdat,
3718			       struct scan_control *sc)
 
 
 
3719{
3720	struct zone *zone;
3721	int z;
 
 
 
 
 
3722
3723	/* Reclaim a number of pages proportional to the number of zones */
3724	sc->nr_to_reclaim = 0;
3725	for (z = 0; z <= sc->reclaim_idx; z++) {
3726		zone = pgdat->node_zones + z;
3727		if (!managed_zone(zone))
3728			continue;
3729
3730		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3731	}
 
 
 
 
 
 
 
 
3732
3733	/*
3734	 * Historically care was taken to put equal pressure on all zones but
3735	 * now pressure is applied based on node LRU order.
 
 
3736	 */
3737	shrink_node(pgdat, sc);
 
 
3738
3739	/*
3740	 * Fragmentation may mean that the system cannot be rebalanced for
3741	 * high-order allocations. If twice the allocation size has been
3742	 * reclaimed then recheck watermarks only at order-0 to prevent
3743	 * excessive reclaim. Assume that a process requested a high-order
3744	 * can direct reclaim/compact.
3745	 */
3746	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3747		sc->order = 0;
 
 
3748
3749	return sc->nr_scanned >= sc->nr_to_reclaim;
3750}
 
3751
3752/* Page allocator PCP high watermark is lowered if reclaim is active. */
3753static inline void
3754update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3755{
3756	int i;
3757	struct zone *zone;
3758
3759	for (i = 0; i <= highest_zoneidx; i++) {
3760		zone = pgdat->node_zones + i;
3761
3762		if (!managed_zone(zone))
3763			continue;
3764
3765		if (active)
3766			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3767		else
3768			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
 
 
 
 
 
 
3769	}
3770}
3771
3772static inline void
3773set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3774{
3775	update_reclaim_active(pgdat, highest_zoneidx, true);
3776}
3777
3778static inline void
3779clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3780{
3781	update_reclaim_active(pgdat, highest_zoneidx, false);
3782}
3783
3784/*
3785 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3786 * that are eligible for use by the caller until at least one zone is
3787 * balanced.
 
3788 *
3789 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
3790 *
3791 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3792 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3793 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3794 * or lower is eligible for reclaim until at least one usable zone is
3795 * balanced.
 
3796 */
3797static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
 
3798{
3799	int i;
 
3800	unsigned long nr_soft_reclaimed;
3801	unsigned long nr_soft_scanned;
3802	unsigned long pflags;
3803	unsigned long nr_boost_reclaim;
3804	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3805	bool boosted;
3806	struct zone *zone;
3807	struct scan_control sc = {
3808		.gfp_mask = GFP_KERNEL,
3809		.order = order,
3810		.may_unmap = 1,
 
 
 
 
3811	};
3812
3813	set_task_reclaim_state(current, &sc.reclaim_state);
3814	psi_memstall_enter(&pflags);
3815	__fs_reclaim_acquire();
3816
3817	count_vm_event(PAGEOUTRUN);
3818
3819	/*
3820	 * Account for the reclaim boost. Note that the zone boost is left in
3821	 * place so that parallel allocations that are near the watermark will
3822	 * stall or direct reclaim until kswapd is finished.
3823	 */
3824	nr_boost_reclaim = 0;
3825	for (i = 0; i <= highest_zoneidx; i++) {
3826		zone = pgdat->node_zones + i;
3827		if (!managed_zone(zone))
3828			continue;
3829
3830		nr_boost_reclaim += zone->watermark_boost;
3831		zone_boosts[i] = zone->watermark_boost;
3832	}
3833	boosted = nr_boost_reclaim;
3834
3835restart:
3836	set_reclaim_active(pgdat, highest_zoneidx);
3837	sc.priority = DEF_PRIORITY;
3838	do {
3839		unsigned long nr_reclaimed = sc.nr_reclaimed;
 
3840		bool raise_priority = true;
3841		bool balanced;
3842		bool ret;
3843
3844		sc.reclaim_idx = highest_zoneidx;
3845
3846		/*
3847		 * If the number of buffer_heads exceeds the maximum allowed
3848		 * then consider reclaiming from all zones. This has a dual
3849		 * purpose -- on 64-bit systems it is expected that
3850		 * buffer_heads are stripped during active rotation. On 32-bit
3851		 * systems, highmem pages can pin lowmem memory and shrinking
3852		 * buffers can relieve lowmem pressure. Reclaim may still not
3853		 * go ahead if all eligible zones for the original allocation
3854		 * request are balanced to avoid excessive reclaim from kswapd.
3855		 */
3856		if (buffer_heads_over_limit) {
3857			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3858				zone = pgdat->node_zones + i;
3859				if (!managed_zone(zone))
3860					continue;
3861
3862				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863				break;
3864			}
3865		}
3866
3867		/*
3868		 * If the pgdat is imbalanced then ignore boosting and preserve
3869		 * the watermarks for a later time and restart. Note that the
3870		 * zone watermarks will be still reset at the end of balancing
3871		 * on the grounds that the normal reclaim should be enough to
3872		 * re-evaluate if boosting is required when kswapd next wakes.
3873		 */
3874		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3875		if (!balanced && nr_boost_reclaim) {
3876			nr_boost_reclaim = 0;
3877			goto restart;
3878		}
3879
3880		/*
3881		 * If boosting is not active then only reclaim if there are no
3882		 * eligible zones. Note that sc.reclaim_idx is not used as
3883		 * buffer_heads_over_limit may have adjusted it.
3884		 */
3885		if (!nr_boost_reclaim && balanced)
3886			goto out;
3887
3888		/* Limit the priority of boosting to avoid reclaim writeback */
3889		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3890			raise_priority = false;
3891
3892		/*
3893		 * Do not writeback or swap pages for boosted reclaim. The
3894		 * intent is to relieve pressure not issue sub-optimal IO
3895		 * from reclaim context. If no pages are reclaimed, the
3896		 * reclaim will be aborted.
3897		 */
3898		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3899		sc.may_swap = !nr_boost_reclaim;
3900
3901		/*
3902		 * Do some background aging of the anon list, to give
3903		 * pages a chance to be referenced before reclaiming. All
3904		 * pages are rotated regardless of classzone as this is
3905		 * about consistent aging.
3906		 */
3907		age_active_anon(pgdat, &sc);
 
 
 
 
 
 
3908
3909		/*
3910		 * If we're getting trouble reclaiming, start doing writepage
3911		 * even in laptop mode.
3912		 */
3913		if (sc.priority < DEF_PRIORITY - 2)
3914			sc.may_writepage = 1;
3915
3916		/* Call soft limit reclaim before calling shrink_node. */
3917		sc.nr_scanned = 0;
3918		nr_soft_scanned = 0;
3919		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3920						sc.gfp_mask, &nr_soft_scanned);
3921		sc.nr_reclaimed += nr_soft_reclaimed;
3922
3923		/*
3924		 * There should be no need to raise the scanning priority if
3925		 * enough pages are already being scanned that that high
3926		 * watermark would be met at 100% efficiency.
 
 
 
 
3927		 */
3928		if (kswapd_shrink_node(pgdat, &sc))
3929			raise_priority = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3930
3931		/*
3932		 * If the low watermark is met there is no need for processes
3933		 * to be throttled on pfmemalloc_wait as they should not be
3934		 * able to safely make forward progress. Wake them
3935		 */
3936		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3937				allow_direct_reclaim(pgdat))
3938			wake_up_all(&pgdat->pfmemalloc_wait);
 
 
 
 
 
 
 
 
 
 
 
3939
3940		/* Check if kswapd should be suspending */
3941		__fs_reclaim_release();
3942		ret = try_to_freeze();
3943		__fs_reclaim_acquire();
3944		if (ret || kthread_should_stop())
3945			break;
3946
3947		/*
3948		 * Raise priority if scanning rate is too low or there was no
3949		 * progress in reclaiming pages
3950		 */
3951		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3952		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3953
3954		/*
3955		 * If reclaim made no progress for a boost, stop reclaim as
3956		 * IO cannot be queued and it could be an infinite loop in
3957		 * extreme circumstances.
3958		 */
3959		if (nr_boost_reclaim && !nr_reclaimed)
3960			break;
3961
3962		if (raise_priority || !nr_reclaimed)
3963			sc.priority--;
3964	} while (sc.priority >= 1);
3965
3966	if (!sc.nr_reclaimed)
3967		pgdat->kswapd_failures++;
3968
3969out:
3970	clear_reclaim_active(pgdat, highest_zoneidx);
3971
3972	/* If reclaim was boosted, account for the reclaim done in this pass */
3973	if (boosted) {
3974		unsigned long flags;
3975
3976		for (i = 0; i <= highest_zoneidx; i++) {
3977			if (!zone_boosts[i])
3978				continue;
3979
3980			/* Increments are under the zone lock */
3981			zone = pgdat->node_zones + i;
3982			spin_lock_irqsave(&zone->lock, flags);
3983			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3984			spin_unlock_irqrestore(&zone->lock, flags);
3985		}
3986
3987		/*
3988		 * As there is now likely space, wakeup kcompact to defragment
3989		 * pageblocks.
3990		 */
3991		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3992	}
3993
3994	snapshot_refaults(NULL, pgdat);
3995	__fs_reclaim_release();
3996	psi_memstall_leave(&pflags);
3997	set_task_reclaim_state(current, NULL);
3998
3999	/*
4000	 * Return the order kswapd stopped reclaiming at as
4001	 * prepare_kswapd_sleep() takes it into account. If another caller
4002	 * entered the allocator slow path while kswapd was awake, order will
4003	 * remain at the higher level.
4004	 */
4005	return sc.order;
 
4006}
4007
4008/*
4009 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4010 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4011 * not a valid index then either kswapd runs for first time or kswapd couldn't
4012 * sleep after previous reclaim attempt (node is still unbalanced). In that
4013 * case return the zone index of the previous kswapd reclaim cycle.
4014 */
4015static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4016					   enum zone_type prev_highest_zoneidx)
4017{
4018	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4019
4020	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4021}
4022
4023static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4024				unsigned int highest_zoneidx)
4025{
4026	long remaining = 0;
4027	DEFINE_WAIT(wait);
4028
4029	if (freezing(current) || kthread_should_stop())
4030		return;
4031
4032	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4033
4034	/*
4035	 * Try to sleep for a short interval. Note that kcompactd will only be
4036	 * woken if it is possible to sleep for a short interval. This is
4037	 * deliberate on the assumption that if reclaim cannot keep an
4038	 * eligible zone balanced that it's also unlikely that compaction will
4039	 * succeed.
4040	 */
4041	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4042		/*
4043		 * Compaction records what page blocks it recently failed to
4044		 * isolate pages from and skips them in the future scanning.
4045		 * When kswapd is going to sleep, it is reasonable to assume
4046		 * that pages and compaction may succeed so reset the cache.
4047		 */
4048		reset_isolation_suitable(pgdat);
4049
4050		/*
4051		 * We have freed the memory, now we should compact it to make
4052		 * allocation of the requested order possible.
4053		 */
4054		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4055
4056		remaining = schedule_timeout(HZ/10);
4057
4058		/*
4059		 * If woken prematurely then reset kswapd_highest_zoneidx and
4060		 * order. The values will either be from a wakeup request or
4061		 * the previous request that slept prematurely.
4062		 */
4063		if (remaining) {
4064			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4065					kswapd_highest_zoneidx(pgdat,
4066							highest_zoneidx));
4067
4068			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4069				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4070		}
4071
4072		finish_wait(&pgdat->kswapd_wait, &wait);
4073		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4074	}
4075
4076	/*
4077	 * After a short sleep, check if it was a premature sleep. If not, then
4078	 * go fully to sleep until explicitly woken up.
4079	 */
4080	if (!remaining &&
4081	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4082		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4083
4084		/*
4085		 * vmstat counters are not perfectly accurate and the estimated
4086		 * value for counters such as NR_FREE_PAGES can deviate from the
4087		 * true value by nr_online_cpus * threshold. To avoid the zone
4088		 * watermarks being breached while under pressure, we reduce the
4089		 * per-cpu vmstat threshold while kswapd is awake and restore
4090		 * them before going back to sleep.
4091		 */
4092		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4093
 
 
 
 
 
 
 
 
4094		if (!kthread_should_stop())
4095			schedule();
4096
4097		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4098	} else {
4099		if (remaining)
4100			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4101		else
4102			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4103	}
4104	finish_wait(&pgdat->kswapd_wait, &wait);
4105}
4106
4107/*
4108 * The background pageout daemon, started as a kernel thread
4109 * from the init process.
4110 *
4111 * This basically trickles out pages so that we have _some_
4112 * free memory available even if there is no other activity
4113 * that frees anything up. This is needed for things like routing
4114 * etc, where we otherwise might have all activity going on in
4115 * asynchronous contexts that cannot page things out.
4116 *
4117 * If there are applications that are active memory-allocators
4118 * (most normal use), this basically shouldn't matter.
4119 */
4120static int kswapd(void *p)
4121{
4122	unsigned int alloc_order, reclaim_order;
4123	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4124	pg_data_t *pgdat = (pg_data_t *)p;
 
 
4125	struct task_struct *tsk = current;
 
 
 
 
4126	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4127
 
 
4128	if (!cpumask_empty(cpumask))
4129		set_cpus_allowed_ptr(tsk, cpumask);
 
4130
4131	/*
4132	 * Tell the memory management that we're a "memory allocator",
4133	 * and that if we need more memory we should get access to it
4134	 * regardless (see "__alloc_pages()"). "kswapd" should
4135	 * never get caught in the normal page freeing logic.
4136	 *
4137	 * (Kswapd normally doesn't need memory anyway, but sometimes
4138	 * you need a small amount of memory in order to be able to
4139	 * page out something else, and this flag essentially protects
4140	 * us from recursively trying to free more memory as we're
4141	 * trying to free the first piece of memory in the first place).
4142	 */
4143	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4144	set_freezable();
4145
4146	WRITE_ONCE(pgdat->kswapd_order, 0);
4147	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
4148	for ( ; ; ) {
4149		bool ret;
4150
4151		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4152		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4153							highest_zoneidx);
4154
4155kswapd_try_sleep:
4156		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4157					highest_zoneidx);
4158
4159		/* Read the new order and highest_zoneidx */
4160		alloc_order = READ_ONCE(pgdat->kswapd_order);
4161		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4162							highest_zoneidx);
4163		WRITE_ONCE(pgdat->kswapd_order, 0);
4164		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4165
4166		ret = try_to_freeze();
4167		if (kthread_should_stop())
4168			break;
4169
4170		/*
4171		 * We can speed up thawing tasks if we don't call balance_pgdat
4172		 * after returning from the refrigerator
4173		 */
4174		if (ret)
4175			continue;
4176
4177		/*
4178		 * Reclaim begins at the requested order but if a high-order
4179		 * reclaim fails then kswapd falls back to reclaiming for
4180		 * order-0. If that happens, kswapd will consider sleeping
4181		 * for the order it finished reclaiming at (reclaim_order)
4182		 * but kcompactd is woken to compact for the original
4183		 * request (alloc_order).
4184		 */
4185		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4186						alloc_order);
4187		reclaim_order = balance_pgdat(pgdat, alloc_order,
4188						highest_zoneidx);
4189		if (reclaim_order < alloc_order)
4190			goto kswapd_try_sleep;
4191	}
4192
4193	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4194
4195	return 0;
4196}
4197
4198/*
4199 * A zone is low on free memory or too fragmented for high-order memory.  If
4200 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4201 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4202 * has failed or is not needed, still wake up kcompactd if only compaction is
4203 * needed.
4204 */
4205void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4206		   enum zone_type highest_zoneidx)
4207{
4208	pg_data_t *pgdat;
4209	enum zone_type curr_idx;
4210
4211	if (!managed_zone(zone))
4212		return;
4213
4214	if (!cpuset_zone_allowed(zone, gfp_flags))
4215		return;
4216
4217	pgdat = zone->zone_pgdat;
4218	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4219
4220	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4221		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4222
4223	if (READ_ONCE(pgdat->kswapd_order) < order)
4224		WRITE_ONCE(pgdat->kswapd_order, order);
4225
4226	if (!waitqueue_active(&pgdat->kswapd_wait))
4227		return;
4228
4229	/* Hopeless node, leave it to direct reclaim if possible */
4230	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4231	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4232	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4233		/*
4234		 * There may be plenty of free memory available, but it's too
4235		 * fragmented for high-order allocations.  Wake up kcompactd
4236		 * and rely on compaction_suitable() to determine if it's
4237		 * needed.  If it fails, it will defer subsequent attempts to
4238		 * ratelimit its work.
4239		 */
4240		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4241			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4242		return;
4243	}
4244
4245	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4246				      gfp_flags);
4247	wake_up_interruptible(&pgdat->kswapd_wait);
4248}
4249
4250#ifdef CONFIG_HIBERNATION
4251/*
4252 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4253 * freed pages.
4254 *
4255 * Rather than trying to age LRUs the aim is to preserve the overall
4256 * LRU order by reclaiming preferentially
4257 * inactive > active > active referenced > active mapped
4258 */
4259unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4260{
 
4261	struct scan_control sc = {
4262		.nr_to_reclaim = nr_to_reclaim,
4263		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4264		.reclaim_idx = MAX_NR_ZONES - 1,
4265		.priority = DEF_PRIORITY,
4266		.may_writepage = 1,
4267		.may_unmap = 1,
4268		.may_swap = 1,
 
 
 
4269		.hibernation_mode = 1,
 
 
4270	};
4271	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4272	unsigned long nr_reclaimed;
4273	unsigned int noreclaim_flag;
4274
4275	fs_reclaim_acquire(sc.gfp_mask);
4276	noreclaim_flag = memalloc_noreclaim_save();
4277	set_task_reclaim_state(current, &sc.reclaim_state);
 
4278
4279	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4280
4281	set_task_reclaim_state(current, NULL);
4282	memalloc_noreclaim_restore(noreclaim_flag);
4283	fs_reclaim_release(sc.gfp_mask);
4284
4285	return nr_reclaimed;
4286}
4287#endif /* CONFIG_HIBERNATION */
4288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289/*
4290 * This kswapd start function will be called by init and node-hot-add.
4291 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4292 */
4293int kswapd_run(int nid)
4294{
4295	pg_data_t *pgdat = NODE_DATA(nid);
4296	int ret = 0;
4297
4298	if (pgdat->kswapd)
4299		return 0;
4300
4301	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4302	if (IS_ERR(pgdat->kswapd)) {
4303		/* failure at boot is fatal */
4304		BUG_ON(system_state < SYSTEM_RUNNING);
4305		pr_err("Failed to start kswapd on node %d\n", nid);
4306		ret = PTR_ERR(pgdat->kswapd);
4307		pgdat->kswapd = NULL;
4308	}
4309	return ret;
4310}
4311
4312/*
4313 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4314 * hold mem_hotplug_begin/end().
4315 */
4316void kswapd_stop(int nid)
4317{
4318	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4319
4320	if (kswapd) {
4321		kthread_stop(kswapd);
4322		NODE_DATA(nid)->kswapd = NULL;
4323	}
4324}
4325
4326static int __init kswapd_init(void)
4327{
4328	int nid;
4329
4330	swap_setup();
4331	for_each_node_state(nid, N_MEMORY)
4332 		kswapd_run(nid);
 
4333	return 0;
4334}
4335
4336module_init(kswapd_init)
4337
4338#ifdef CONFIG_NUMA
4339/*
4340 * Node reclaim mode
4341 *
4342 * If non-zero call node_reclaim when the number of free pages falls below
4343 * the watermarks.
4344 */
4345int node_reclaim_mode __read_mostly;
 
 
 
 
 
4346
4347/*
4348 * Priority for NODE_RECLAIM. This determines the fraction of pages
4349 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4350 * a zone.
4351 */
4352#define NODE_RECLAIM_PRIORITY 4
4353
4354/*
4355 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4356 * occur.
4357 */
4358int sysctl_min_unmapped_ratio = 1;
4359
4360/*
4361 * If the number of slab pages in a zone grows beyond this percentage then
4362 * slab reclaim needs to occur.
4363 */
4364int sysctl_min_slab_ratio = 5;
4365
4366static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4367{
4368	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4369	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4370		node_page_state(pgdat, NR_ACTIVE_FILE);
4371
4372	/*
4373	 * It's possible for there to be more file mapped pages than
4374	 * accounted for by the pages on the file LRU lists because
4375	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4376	 */
4377	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4378}
4379
4380/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4381static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4382{
4383	unsigned long nr_pagecache_reclaimable;
4384	unsigned long delta = 0;
4385
4386	/*
4387	 * If RECLAIM_UNMAP is set, then all file pages are considered
4388	 * potentially reclaimable. Otherwise, we have to worry about
4389	 * pages like swapcache and node_unmapped_file_pages() provides
4390	 * a better estimate
4391	 */
4392	if (node_reclaim_mode & RECLAIM_UNMAP)
4393		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4394	else
4395		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4396
4397	/* If we can't clean pages, remove dirty pages from consideration */
4398	if (!(node_reclaim_mode & RECLAIM_WRITE))
4399		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4400
4401	/* Watch for any possible underflows due to delta */
4402	if (unlikely(delta > nr_pagecache_reclaimable))
4403		delta = nr_pagecache_reclaimable;
4404
4405	return nr_pagecache_reclaimable - delta;
4406}
4407
4408/*
4409 * Try to free up some pages from this node through reclaim.
4410 */
4411static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4412{
4413	/* Minimum pages needed in order to stay on node */
4414	const unsigned long nr_pages = 1 << order;
4415	struct task_struct *p = current;
4416	unsigned int noreclaim_flag;
4417	struct scan_control sc = {
 
 
 
4418		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4419		.gfp_mask = current_gfp_context(gfp_mask),
4420		.order = order,
4421		.priority = NODE_RECLAIM_PRIORITY,
4422		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4423		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4424		.may_swap = 1,
4425		.reclaim_idx = gfp_zone(gfp_mask),
4426	};
4427	unsigned long pflags;
4428
4429	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4430					   sc.gfp_mask);
4431
4432	cond_resched();
4433	psi_memstall_enter(&pflags);
4434	fs_reclaim_acquire(sc.gfp_mask);
4435	/*
4436	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4437	 * and we also need to be able to write out pages for RECLAIM_WRITE
4438	 * and RECLAIM_UNMAP.
4439	 */
4440	noreclaim_flag = memalloc_noreclaim_save();
4441	p->flags |= PF_SWAPWRITE;
4442	set_task_reclaim_state(p, &sc.reclaim_state);
 
4443
4444	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4445		/*
4446		 * Free memory by calling shrink node with increasing
4447		 * priorities until we have enough memory freed.
4448		 */
4449		do {
4450			shrink_node(pgdat, &sc);
4451		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4452	}
4453
4454	set_task_reclaim_state(p, NULL);
4455	current->flags &= ~PF_SWAPWRITE;
4456	memalloc_noreclaim_restore(noreclaim_flag);
4457	fs_reclaim_release(sc.gfp_mask);
4458	psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
 
 
 
 
4459
4460	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 
 
 
 
 
4461
 
 
 
 
 
 
 
 
 
 
 
 
4462	return sc.nr_reclaimed >= nr_pages;
4463}
4464
4465int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4466{
 
4467	int ret;
4468
4469	/*
4470	 * Node reclaim reclaims unmapped file backed pages and
4471	 * slab pages if we are over the defined limits.
4472	 *
4473	 * A small portion of unmapped file backed pages is needed for
4474	 * file I/O otherwise pages read by file I/O will be immediately
4475	 * thrown out if the node is overallocated. So we do not reclaim
4476	 * if less than a specified percentage of the node is used by
4477	 * unmapped file backed pages.
4478	 */
4479	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4480	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4481	    pgdat->min_slab_pages)
4482		return NODE_RECLAIM_FULL;
 
 
4483
4484	/*
4485	 * Do not scan if the allocation should not be delayed.
4486	 */
4487	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4488		return NODE_RECLAIM_NOSCAN;
4489
4490	/*
4491	 * Only run node reclaim on the local node or on nodes that do not
4492	 * have associated processors. This will favor the local processor
4493	 * over remote processors and spread off node memory allocations
4494	 * as wide as possible.
4495	 */
4496	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4497		return NODE_RECLAIM_NOSCAN;
 
4498
4499	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4500		return NODE_RECLAIM_NOSCAN;
4501
4502	ret = __node_reclaim(pgdat, gfp_mask, order);
4503	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4504
4505	if (!ret)
4506		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4507
4508	return ret;
4509}
4510#endif
4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512/**
4513 * check_move_unevictable_pages - check pages for evictability and move to
4514 * appropriate zone lru list
4515 * @pvec: pagevec with lru pages to check
4516 *
4517 * Checks pages for evictability, if an evictable page is in the unevictable
4518 * lru list, moves it to the appropriate evictable lru list. This function
4519 * should be only used for lru pages.
4520 */
4521void check_move_unevictable_pages(struct pagevec *pvec)
4522{
4523	struct lruvec *lruvec = NULL;
 
4524	int pgscanned = 0;
4525	int pgrescued = 0;
4526	int i;
4527
4528	for (i = 0; i < pvec->nr; i++) {
4529		struct page *page = pvec->pages[i];
4530		int nr_pages;
4531
4532		if (PageTransTail(page))
4533			continue;
4534
4535		nr_pages = thp_nr_pages(page);
4536		pgscanned += nr_pages;
 
 
 
 
 
 
 
4537
4538		/* block memcg migration during page moving between lru */
4539		if (!TestClearPageLRU(page))
4540			continue;
4541
4542		lruvec = relock_page_lruvec_irq(page, lruvec);
4543		if (page_evictable(page) && PageUnevictable(page)) {
4544			del_page_from_lru_list(page, lruvec);
 
4545			ClearPageUnevictable(page);
4546			add_page_to_lru_list(page, lruvec);
4547			pgrescued += nr_pages;
 
4548		}
4549		SetPageLRU(page);
4550	}
4551
4552	if (lruvec) {
4553		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4554		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4555		unlock_page_lruvec_irq(lruvec);
4556	} else if (pgscanned) {
4557		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4558	}
4559}
4560EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmpressure.h>
  23#include <linux/vmstat.h>
  24#include <linux/file.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/buffer_head.h>	/* for try_to_release_page(),
  28					buffer_heads_over_limit */
  29#include <linux/mm_inline.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
 
  45#include <linux/prefetch.h>
 
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
  51#include <linux/balloon_compaction.h>
  52
  53#include "internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/vmscan.h>
  57
  58struct scan_control {
  59	/* Incremented by the number of inactive pages that were scanned */
  60	unsigned long nr_scanned;
  61
  62	/* Number of pages freed so far during a call to shrink_zones() */
  63	unsigned long nr_reclaimed;
 
 
 
  64
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
 
 
 
  67
  68	unsigned long hibernation_mode;
 
 
 
 
  69
  70	/* This context's GFP mask */
  71	gfp_t gfp_mask;
 
 
 
 
  72
  73	int may_writepage;
 
  74
  75	/* Can mapped pages be reclaimed? */
  76	int may_unmap;
  77
  78	/* Can pages be swapped as part of reclaim? */
  79	int may_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81	int order;
 
 
 
 
 
 
 
 
 
 
  82
  83	/* Scan (total_size >> priority) pages at once */
  84	int priority;
  85
  86	/*
  87	 * The memory cgroup that hit its limit and as a result is the
  88	 * primary target of this reclaim invocation.
  89	 */
  90	struct mem_cgroup *target_mem_cgroup;
 
 
 
  91
  92	/*
  93	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  94	 * are scanned.
  95	 */
  96	nodemask_t	*nodemask;
  97};
  98
  99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 
 
 
 
 
 
 
 
 100
 101#ifdef ARCH_HAS_PREFETCH
 102#define prefetch_prev_lru_page(_page, _base, _field)			\
 103	do {								\
 104		if ((_page)->lru.prev != _base) {			\
 105			struct page *prev;				\
 106									\
 107			prev = lru_to_page(&(_page->lru));		\
 108			prefetch(&prev->_field);			\
 109		}							\
 110	} while (0)
 111#else
 112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 113#endif
 114
 115#ifdef ARCH_HAS_PREFETCHW
 116#define prefetchw_prev_lru_page(_page, _base, _field)			\
 117	do {								\
 118		if ((_page)->lru.prev != _base) {			\
 119			struct page *prev;				\
 120									\
 121			prev = lru_to_page(&(_page->lru));		\
 122			prefetchw(&prev->_field);			\
 123		}							\
 124	} while (0)
 125#else
 126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 127#endif
 128
 129/*
 130 * From 0 .. 100.  Higher means more swappy.
 131 */
 132int vm_swappiness = 60;
 133unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 
 
 
 
 
 
 
 134
 135static LIST_HEAD(shrinker_list);
 136static DECLARE_RWSEM(shrinker_rwsem);
 137
 138#ifdef CONFIG_MEMCG
 139static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140{
 141	return !sc->target_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142}
 143#else
 144static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145{
 146	return true;
 147}
 148#endif
 149
 150static unsigned long zone_reclaimable_pages(struct zone *zone)
 
 151{
 152	int nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
 155	     zone_page_state(zone, NR_INACTIVE_FILE);
 
 
 
 
 
 
 
 
 
 156
 
 
 157	if (get_nr_swap_pages() > 0)
 158		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
 159		      zone_page_state(zone, NR_INACTIVE_ANON);
 160
 161	return nr;
 162}
 163
 164bool zone_reclaimable(struct zone *zone)
 
 
 
 
 
 
 
 165{
 166	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 167}
 
 
 
 168
 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 170{
 171	if (!mem_cgroup_disabled())
 172		return mem_cgroup_get_lru_size(lruvec, lru);
 173
 174	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 
 
 
 
 
 175}
 176
 177/*
 178 * Add a shrinker callback to be called from the vm.
 179 */
 180int register_shrinker(struct shrinker *shrinker)
 181{
 182	size_t size = sizeof(*shrinker->nr_deferred);
 
 183
 184	/*
 185	 * If we only have one possible node in the system anyway, save
 186	 * ourselves the trouble and disable NUMA aware behavior. This way we
 187	 * will save memory and some small loop time later.
 188	 */
 189	if (nr_node_ids == 1)
 190		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
 191
 
 192	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 193		size *= nr_node_ids;
 194
 195	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 196	if (!shrinker->nr_deferred)
 197		return -ENOMEM;
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199	down_write(&shrinker_rwsem);
 200	list_add_tail(&shrinker->list, &shrinker_list);
 
 201	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 
 
 202	return 0;
 203}
 204EXPORT_SYMBOL(register_shrinker);
 205
 206/*
 207 * Remove one
 208 */
 209void unregister_shrinker(struct shrinker *shrinker)
 210{
 
 
 
 211	down_write(&shrinker_rwsem);
 212	list_del(&shrinker->list);
 
 
 
 213	up_write(&shrinker_rwsem);
 
 214	kfree(shrinker->nr_deferred);
 
 215}
 216EXPORT_SYMBOL(unregister_shrinker);
 217
 218#define SHRINK_BATCH 128
 219
 220static unsigned long
 221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
 222		 unsigned long nr_pages_scanned, unsigned long lru_pages)
 223{
 224	unsigned long freed = 0;
 225	unsigned long long delta;
 226	long total_scan;
 227	long freeable;
 228	long nr;
 229	long new_nr;
 230	int nid = shrinkctl->nid;
 231	long batch_size = shrinker->batch ? shrinker->batch
 232					  : SHRINK_BATCH;
 
 233
 234	freeable = shrinker->count_objects(shrinker, shrinkctl);
 235	if (freeable == 0)
 236		return 0;
 237
 238	/*
 239	 * copy the current shrinker scan count into a local variable
 240	 * and zero it so that other concurrent shrinker invocations
 241	 * don't also do this scanning work.
 242	 */
 243	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 244
 245	total_scan = nr;
 246	delta = (4 * nr_pages_scanned) / shrinker->seeks;
 247	delta *= freeable;
 248	do_div(delta, lru_pages + 1);
 249	total_scan += delta;
 250	if (total_scan < 0) {
 251		printk(KERN_ERR
 252		"shrink_slab: %pF negative objects to delete nr=%ld\n",
 253		       shrinker->scan_objects, total_scan);
 254		total_scan = freeable;
 
 255	}
 256
 257	/*
 258	 * We need to avoid excessive windup on filesystem shrinkers
 259	 * due to large numbers of GFP_NOFS allocations causing the
 260	 * shrinkers to return -1 all the time. This results in a large
 261	 * nr being built up so when a shrink that can do some work
 262	 * comes along it empties the entire cache due to nr >>>
 263	 * freeable. This is bad for sustaining a working set in
 264	 * memory.
 265	 *
 266	 * Hence only allow the shrinker to scan the entire cache when
 267	 * a large delta change is calculated directly.
 268	 */
 269	if (delta < freeable / 4)
 270		total_scan = min(total_scan, freeable / 2);
 271
 272	/*
 273	 * Avoid risking looping forever due to too large nr value:
 274	 * never try to free more than twice the estimate number of
 275	 * freeable entries.
 276	 */
 277	if (total_scan > freeable * 2)
 278		total_scan = freeable * 2;
 279
 280	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 281				nr_pages_scanned, lru_pages,
 282				freeable, delta, total_scan);
 283
 284	/*
 285	 * Normally, we should not scan less than batch_size objects in one
 286	 * pass to avoid too frequent shrinker calls, but if the slab has less
 287	 * than batch_size objects in total and we are really tight on memory,
 288	 * we will try to reclaim all available objects, otherwise we can end
 289	 * up failing allocations although there are plenty of reclaimable
 290	 * objects spread over several slabs with usage less than the
 291	 * batch_size.
 292	 *
 293	 * We detect the "tight on memory" situations by looking at the total
 294	 * number of objects we want to scan (total_scan). If it is greater
 295	 * than the total number of objects on slab (freeable), we must be
 296	 * scanning at high prio and therefore should try to reclaim as much as
 297	 * possible.
 298	 */
 299	while (total_scan >= batch_size ||
 300	       total_scan >= freeable) {
 301		unsigned long ret;
 302		unsigned long nr_to_scan = min(batch_size, total_scan);
 303
 304		shrinkctl->nr_to_scan = nr_to_scan;
 
 305		ret = shrinker->scan_objects(shrinker, shrinkctl);
 306		if (ret == SHRINK_STOP)
 307			break;
 308		freed += ret;
 309
 310		count_vm_events(SLABS_SCANNED, nr_to_scan);
 311		total_scan -= nr_to_scan;
 
 312
 313		cond_resched();
 314	}
 315
 316	/*
 
 
 
 
 
 
 
 
 
 317	 * move the unused scan count back into the shrinker in a
 318	 * manner that handles concurrent updates. If we exhausted the
 319	 * scan, there is no need to do an update.
 320	 */
 321	if (total_scan > 0)
 322		new_nr = atomic_long_add_return(total_scan,
 323						&shrinker->nr_deferred[nid]);
 324	else
 325		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
 
 
 
 
 
 
 328	return freed;
 329}
 
 
 
 
 
 
 
 330
 331/*
 332 * Call the shrink functions to age shrinkable caches
 
 
 
 
 333 *
 334 * Here we assume it costs one seek to replace a lru page and that it also
 335 * takes a seek to recreate a cache object.  With this in mind we age equal
 336 * percentages of the lru and ageable caches.  This should balance the seeks
 337 * generated by these structures.
 338 *
 339 * If the vm encountered mapped pages on the LRU it increase the pressure on
 340 * slab to avoid swapping.
 341 *
 342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 
 343 *
 344 * `lru_pages' represents the number of on-LRU pages in all the zones which
 345 * are eligible for the caller's allocation attempt.  It is used for balancing
 346 * slab reclaim versus page reclaim.
 347 *
 348 * Returns the number of slab objects which we shrunk.
 349 */
 350unsigned long shrink_slab(struct shrink_control *shrinkctl,
 351			  unsigned long nr_pages_scanned,
 352			  unsigned long lru_pages)
 353{
 
 354	struct shrinker *shrinker;
 355	unsigned long freed = 0;
 356
 357	if (nr_pages_scanned == 0)
 358		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 359
 360	if (!down_read_trylock(&shrinker_rwsem)) {
 361		/*
 362		 * If we would return 0, our callers would understand that we
 363		 * have nothing else to shrink and give up trying. By returning
 364		 * 1 we keep it going and assume we'll be able to shrink next
 365		 * time.
 366		 */
 367		freed = 1;
 368		goto out;
 369	}
 370
 371	list_for_each_entry(shrinker, &shrinker_list, list) {
 372		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
 373			shrinkctl->nid = 0;
 374			freed += shrink_slab_node(shrinkctl, shrinker,
 375					nr_pages_scanned, lru_pages);
 376			continue;
 377		}
 378
 379		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
 380			if (node_online(shrinkctl->nid))
 381				freed += shrink_slab_node(shrinkctl, shrinker,
 382						nr_pages_scanned, lru_pages);
 383
 
 
 
 
 
 
 
 
 
 
 
 
 384		}
 385	}
 
 386	up_read(&shrinker_rwsem);
 387out:
 388	cond_resched();
 389	return freed;
 390}
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392static inline int is_page_cache_freeable(struct page *page)
 393{
 394	/*
 395	 * A freeable page cache page is referenced only by the caller
 396	 * that isolated the page, the page cache radix tree and
 397	 * optional buffer heads at page->private.
 398	 */
 399	return page_count(page) - page_has_private(page) == 2;
 
 400}
 401
 402static int may_write_to_queue(struct backing_dev_info *bdi,
 403			      struct scan_control *sc)
 404{
 405	if (current->flags & PF_SWAPWRITE)
 406		return 1;
 407	if (!bdi_write_congested(bdi))
 408		return 1;
 409	if (bdi == current->backing_dev_info)
 410		return 1;
 411	return 0;
 412}
 413
 414/*
 415 * We detected a synchronous write error writing a page out.  Probably
 416 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 417 * fsync(), msync() or close().
 418 *
 419 * The tricky part is that after writepage we cannot touch the mapping: nothing
 420 * prevents it from being freed up.  But we have a ref on the page and once
 421 * that page is locked, the mapping is pinned.
 422 *
 423 * We're allowed to run sleeping lock_page() here because we know the caller has
 424 * __GFP_FS.
 425 */
 426static void handle_write_error(struct address_space *mapping,
 427				struct page *page, int error)
 428{
 429	lock_page(page);
 430	if (page_mapping(page) == mapping)
 431		mapping_set_error(mapping, error);
 432	unlock_page(page);
 433}
 434
 435/* possible outcome of pageout() */
 436typedef enum {
 437	/* failed to write page out, page is locked */
 438	PAGE_KEEP,
 439	/* move page to the active list, page is locked */
 440	PAGE_ACTIVATE,
 441	/* page has been sent to the disk successfully, page is unlocked */
 442	PAGE_SUCCESS,
 443	/* page is clean and locked */
 444	PAGE_CLEAN,
 445} pageout_t;
 446
 447/*
 448 * pageout is called by shrink_page_list() for each dirty page.
 449 * Calls ->writepage().
 450 */
 451static pageout_t pageout(struct page *page, struct address_space *mapping,
 452			 struct scan_control *sc)
 453{
 454	/*
 455	 * If the page is dirty, only perform writeback if that write
 456	 * will be non-blocking.  To prevent this allocation from being
 457	 * stalled by pagecache activity.  But note that there may be
 458	 * stalls if we need to run get_block().  We could test
 459	 * PagePrivate for that.
 460	 *
 461	 * If this process is currently in __generic_file_aio_write() against
 462	 * this page's queue, we can perform writeback even if that
 463	 * will block.
 464	 *
 465	 * If the page is swapcache, write it back even if that would
 466	 * block, for some throttling. This happens by accident, because
 467	 * swap_backing_dev_info is bust: it doesn't reflect the
 468	 * congestion state of the swapdevs.  Easy to fix, if needed.
 469	 */
 470	if (!is_page_cache_freeable(page))
 471		return PAGE_KEEP;
 472	if (!mapping) {
 473		/*
 474		 * Some data journaling orphaned pages can have
 475		 * page->mapping == NULL while being dirty with clean buffers.
 476		 */
 477		if (page_has_private(page)) {
 478			if (try_to_free_buffers(page)) {
 479				ClearPageDirty(page);
 480				printk("%s: orphaned page\n", __func__);
 481				return PAGE_CLEAN;
 482			}
 483		}
 484		return PAGE_KEEP;
 485	}
 486	if (mapping->a_ops->writepage == NULL)
 487		return PAGE_ACTIVATE;
 488	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 489		return PAGE_KEEP;
 490
 491	if (clear_page_dirty_for_io(page)) {
 492		int res;
 493		struct writeback_control wbc = {
 494			.sync_mode = WB_SYNC_NONE,
 495			.nr_to_write = SWAP_CLUSTER_MAX,
 496			.range_start = 0,
 497			.range_end = LLONG_MAX,
 498			.for_reclaim = 1,
 499		};
 500
 501		SetPageReclaim(page);
 502		res = mapping->a_ops->writepage(page, &wbc);
 503		if (res < 0)
 504			handle_write_error(mapping, page, res);
 505		if (res == AOP_WRITEPAGE_ACTIVATE) {
 506			ClearPageReclaim(page);
 507			return PAGE_ACTIVATE;
 508		}
 509
 510		if (!PageWriteback(page)) {
 511			/* synchronous write or broken a_ops? */
 512			ClearPageReclaim(page);
 513		}
 514		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 515		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 516		return PAGE_SUCCESS;
 517	}
 518
 519	return PAGE_CLEAN;
 520}
 521
 522/*
 523 * Same as remove_mapping, but if the page is removed from the mapping, it
 524 * gets returned with a refcount of 0.
 525 */
 526static int __remove_mapping(struct address_space *mapping, struct page *page,
 527			    bool reclaimed)
 528{
 
 
 
 
 529	BUG_ON(!PageLocked(page));
 530	BUG_ON(mapping != page_mapping(page));
 531
 532	spin_lock_irq(&mapping->tree_lock);
 533	/*
 534	 * The non racy check for a busy page.
 535	 *
 536	 * Must be careful with the order of the tests. When someone has
 537	 * a ref to the page, it may be possible that they dirty it then
 538	 * drop the reference. So if PageDirty is tested before page_count
 539	 * here, then the following race may occur:
 540	 *
 541	 * get_user_pages(&page);
 542	 * [user mapping goes away]
 543	 * write_to(page);
 544	 *				!PageDirty(page)    [good]
 545	 * SetPageDirty(page);
 546	 * put_page(page);
 547	 *				!page_count(page)   [good, discard it]
 548	 *
 549	 * [oops, our write_to data is lost]
 550	 *
 551	 * Reversing the order of the tests ensures such a situation cannot
 552	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 553	 * load is not satisfied before that of page->_count.
 554	 *
 555	 * Note that if SetPageDirty is always performed via set_page_dirty,
 556	 * and thus under tree_lock, then this ordering is not required.
 557	 */
 558	if (!page_freeze_refs(page, 2))
 
 559		goto cannot_free;
 560	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 561	if (unlikely(PageDirty(page))) {
 562		page_unfreeze_refs(page, 2);
 563		goto cannot_free;
 564	}
 565
 566	if (PageSwapCache(page)) {
 567		swp_entry_t swap = { .val = page_private(page) };
 568		__delete_from_swap_cache(page);
 569		spin_unlock_irq(&mapping->tree_lock);
 570		swapcache_free(swap, page);
 
 
 
 571	} else {
 572		void (*freepage)(struct page *);
 573		void *shadow = NULL;
 574
 575		freepage = mapping->a_ops->freepage;
 576		/*
 577		 * Remember a shadow entry for reclaimed file cache in
 578		 * order to detect refaults, thus thrashing, later on.
 579		 *
 580		 * But don't store shadows in an address space that is
 581		 * already exiting.  This is not just an optizimation,
 582		 * inode reclaim needs to empty out the radix tree or
 583		 * the nodes are lost.  Don't plant shadows behind its
 584		 * back.
 585		 */
 586		if (reclaimed && page_is_file_cache(page) &&
 587		    !mapping_exiting(mapping))
 588			shadow = workingset_eviction(mapping, page);
 
 
 
 
 
 
 589		__delete_from_page_cache(page, shadow);
 590		spin_unlock_irq(&mapping->tree_lock);
 591		mem_cgroup_uncharge_cache_page(page);
 592
 593		if (freepage != NULL)
 594			freepage(page);
 595	}
 596
 597	return 1;
 598
 599cannot_free:
 600	spin_unlock_irq(&mapping->tree_lock);
 601	return 0;
 602}
 603
 604/*
 605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 606 * someone else has a ref on the page, abort and return 0.  If it was
 607 * successfully detached, return 1.  Assumes the caller has a single ref on
 608 * this page.
 609 */
 610int remove_mapping(struct address_space *mapping, struct page *page)
 611{
 612	if (__remove_mapping(mapping, page, false)) {
 613		/*
 614		 * Unfreezing the refcount with 1 rather than 2 effectively
 615		 * drops the pagecache ref for us without requiring another
 616		 * atomic operation.
 617		 */
 618		page_unfreeze_refs(page, 1);
 619		return 1;
 620	}
 621	return 0;
 622}
 623
 624/**
 625 * putback_lru_page - put previously isolated page onto appropriate LRU list
 626 * @page: page to be put back to appropriate lru list
 627 *
 628 * Add previously isolated @page to appropriate LRU list.
 629 * Page may still be unevictable for other reasons.
 630 *
 631 * lru_lock must not be held, interrupts must be enabled.
 632 */
 633void putback_lru_page(struct page *page)
 634{
 635	bool is_unevictable;
 636	int was_unevictable = PageUnevictable(page);
 637
 638	VM_BUG_ON_PAGE(PageLRU(page), page);
 639
 640redo:
 641	ClearPageUnevictable(page);
 642
 643	if (page_evictable(page)) {
 644		/*
 645		 * For evictable pages, we can use the cache.
 646		 * In event of a race, worst case is we end up with an
 647		 * unevictable page on [in]active list.
 648		 * We know how to handle that.
 649		 */
 650		is_unevictable = false;
 651		lru_cache_add(page);
 652	} else {
 653		/*
 654		 * Put unevictable pages directly on zone's unevictable
 655		 * list.
 656		 */
 657		is_unevictable = true;
 658		add_page_to_unevictable_list(page);
 659		/*
 660		 * When racing with an mlock or AS_UNEVICTABLE clearing
 661		 * (page is unlocked) make sure that if the other thread
 662		 * does not observe our setting of PG_lru and fails
 663		 * isolation/check_move_unevictable_pages,
 664		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 665		 * the page back to the evictable list.
 666		 *
 667		 * The other side is TestClearPageMlocked() or shmem_lock().
 668		 */
 669		smp_mb();
 670	}
 671
 672	/*
 673	 * page's status can change while we move it among lru. If an evictable
 674	 * page is on unevictable list, it never be freed. To avoid that,
 675	 * check after we added it to the list, again.
 676	 */
 677	if (is_unevictable && page_evictable(page)) {
 678		if (!isolate_lru_page(page)) {
 679			put_page(page);
 680			goto redo;
 681		}
 682		/* This means someone else dropped this page from LRU
 683		 * So, it will be freed or putback to LRU again. There is
 684		 * nothing to do here.
 685		 */
 686	}
 687
 688	if (was_unevictable && !is_unevictable)
 689		count_vm_event(UNEVICTABLE_PGRESCUED);
 690	else if (!was_unevictable && is_unevictable)
 691		count_vm_event(UNEVICTABLE_PGCULLED);
 692
 693	put_page(page);		/* drop ref from isolate */
 694}
 695
 696enum page_references {
 697	PAGEREF_RECLAIM,
 698	PAGEREF_RECLAIM_CLEAN,
 699	PAGEREF_KEEP,
 700	PAGEREF_ACTIVATE,
 701};
 702
 703static enum page_references page_check_references(struct page *page,
 704						  struct scan_control *sc)
 705{
 706	int referenced_ptes, referenced_page;
 707	unsigned long vm_flags;
 708
 709	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 710					  &vm_flags);
 711	referenced_page = TestClearPageReferenced(page);
 712
 713	/*
 714	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 715	 * move the page to the unevictable list.
 716	 */
 717	if (vm_flags & VM_LOCKED)
 718		return PAGEREF_RECLAIM;
 719
 720	if (referenced_ptes) {
 721		if (PageSwapBacked(page))
 722			return PAGEREF_ACTIVATE;
 723		/*
 724		 * All mapped pages start out with page table
 725		 * references from the instantiating fault, so we need
 726		 * to look twice if a mapped file page is used more
 727		 * than once.
 728		 *
 729		 * Mark it and spare it for another trip around the
 730		 * inactive list.  Another page table reference will
 731		 * lead to its activation.
 732		 *
 733		 * Note: the mark is set for activated pages as well
 734		 * so that recently deactivated but used pages are
 735		 * quickly recovered.
 736		 */
 737		SetPageReferenced(page);
 738
 739		if (referenced_page || referenced_ptes > 1)
 740			return PAGEREF_ACTIVATE;
 741
 742		/*
 743		 * Activate file-backed executable pages after first usage.
 744		 */
 745		if (vm_flags & VM_EXEC)
 746			return PAGEREF_ACTIVATE;
 747
 748		return PAGEREF_KEEP;
 749	}
 750
 751	/* Reclaim if clean, defer dirty pages to writeback */
 752	if (referenced_page && !PageSwapBacked(page))
 753		return PAGEREF_RECLAIM_CLEAN;
 754
 755	return PAGEREF_RECLAIM;
 756}
 757
 758/* Check if a page is dirty or under writeback */
 759static void page_check_dirty_writeback(struct page *page,
 760				       bool *dirty, bool *writeback)
 761{
 762	struct address_space *mapping;
 763
 764	/*
 765	 * Anonymous pages are not handled by flushers and must be written
 766	 * from reclaim context. Do not stall reclaim based on them
 767	 */
 768	if (!page_is_file_cache(page)) {
 
 769		*dirty = false;
 770		*writeback = false;
 771		return;
 772	}
 773
 774	/* By default assume that the page flags are accurate */
 775	*dirty = PageDirty(page);
 776	*writeback = PageWriteback(page);
 777
 778	/* Verify dirty/writeback state if the filesystem supports it */
 779	if (!page_has_private(page))
 780		return;
 781
 782	mapping = page_mapping(page);
 783	if (mapping && mapping->a_ops->is_dirty_writeback)
 784		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 785}
 786
 787/*
 788 * shrink_page_list() returns the number of reclaimed pages
 789 */
 790static unsigned long shrink_page_list(struct list_head *page_list,
 791				      struct zone *zone,
 792				      struct scan_control *sc,
 793				      enum ttu_flags ttu_flags,
 794				      unsigned long *ret_nr_dirty,
 795				      unsigned long *ret_nr_unqueued_dirty,
 796				      unsigned long *ret_nr_congested,
 797				      unsigned long *ret_nr_writeback,
 798				      unsigned long *ret_nr_immediate,
 799				      bool force_reclaim)
 800{
 801	LIST_HEAD(ret_pages);
 802	LIST_HEAD(free_pages);
 803	int pgactivate = 0;
 804	unsigned long nr_unqueued_dirty = 0;
 805	unsigned long nr_dirty = 0;
 806	unsigned long nr_congested = 0;
 807	unsigned long nr_reclaimed = 0;
 808	unsigned long nr_writeback = 0;
 809	unsigned long nr_immediate = 0;
 810
 
 811	cond_resched();
 812
 813	mem_cgroup_uncharge_start();
 814	while (!list_empty(page_list)) {
 815		struct address_space *mapping;
 816		struct page *page;
 817		int may_enter_fs;
 818		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 819		bool dirty, writeback;
 820
 821		cond_resched();
 822
 823		page = lru_to_page(page_list);
 824		list_del(&page->lru);
 825
 826		if (!trylock_page(page))
 827			goto keep;
 828
 829		VM_BUG_ON_PAGE(PageActive(page), page);
 830		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
 831
 832		sc->nr_scanned++;
 
 
 
 833
 834		if (unlikely(!page_evictable(page)))
 835			goto cull_mlocked;
 836
 837		if (!sc->may_unmap && page_mapped(page))
 838			goto keep_locked;
 839
 840		/* Double the slab pressure for mapped and swapcache pages */
 841		if (page_mapped(page) || PageSwapCache(page))
 842			sc->nr_scanned++;
 843
 844		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 845			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 846
 847		/*
 848		 * The number of dirty pages determines if a zone is marked
 849		 * reclaim_congested which affects wait_iff_congested. kswapd
 850		 * will stall and start writing pages if the tail of the LRU
 851		 * is all dirty unqueued pages.
 852		 */
 853		page_check_dirty_writeback(page, &dirty, &writeback);
 854		if (dirty || writeback)
 855			nr_dirty++;
 856
 857		if (dirty && !writeback)
 858			nr_unqueued_dirty++;
 859
 860		/*
 861		 * Treat this page as congested if the underlying BDI is or if
 862		 * pages are cycling through the LRU so quickly that the
 863		 * pages marked for immediate reclaim are making it to the
 864		 * end of the LRU a second time.
 865		 */
 866		mapping = page_mapping(page);
 867		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
 
 868		    (writeback && PageReclaim(page)))
 869			nr_congested++;
 870
 871		/*
 872		 * If a page at the tail of the LRU is under writeback, there
 873		 * are three cases to consider.
 874		 *
 875		 * 1) If reclaim is encountering an excessive number of pages
 876		 *    under writeback and this page is both under writeback and
 877		 *    PageReclaim then it indicates that pages are being queued
 878		 *    for IO but are being recycled through the LRU before the
 879		 *    IO can complete. Waiting on the page itself risks an
 880		 *    indefinite stall if it is impossible to writeback the
 881		 *    page due to IO error or disconnected storage so instead
 882		 *    note that the LRU is being scanned too quickly and the
 883		 *    caller can stall after page list has been processed.
 884		 *
 885		 * 2) Global reclaim encounters a page, memcg encounters a
 886		 *    page that is not marked for immediate reclaim or
 887		 *    the caller does not have __GFP_IO. In this case mark
 888		 *    the page for immediate reclaim and continue scanning.
 
 889		 *
 890		 *    __GFP_IO is checked  because a loop driver thread might
 
 891		 *    enter reclaim, and deadlock if it waits on a page for
 892		 *    which it is needed to do the write (loop masks off
 893		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 894		 *    would probably show more reasons.
 895		 *
 896		 *    Don't require __GFP_FS, since we're not going into the
 897		 *    FS, just waiting on its writeback completion. Worryingly,
 898		 *    ext4 gfs2 and xfs allocate pages with
 899		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
 900		 *    may_enter_fs here is liable to OOM on them.
 901		 *
 902		 * 3) memcg encounters a page that is not already marked
 903		 *    PageReclaim. memcg does not have any dirty pages
 904		 *    throttling so we could easily OOM just because too many
 905		 *    pages are in writeback and there is nothing else to
 906		 *    reclaim. Wait for the writeback to complete.
 
 
 
 
 
 
 
 
 
 907		 */
 908		if (PageWriteback(page)) {
 909			/* Case 1 above */
 910			if (current_is_kswapd() &&
 911			    PageReclaim(page) &&
 912			    zone_is_reclaim_writeback(zone)) {
 913				nr_immediate++;
 914				goto keep_locked;
 915
 916			/* Case 2 above */
 917			} else if (global_reclaim(sc) ||
 918			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 919				/*
 920				 * This is slightly racy - end_page_writeback()
 921				 * might have just cleared PageReclaim, then
 922				 * setting PageReclaim here end up interpreted
 923				 * as PageReadahead - but that does not matter
 924				 * enough to care.  What we do want is for this
 925				 * page to have PageReclaim set next time memcg
 926				 * reclaim reaches the tests above, so it will
 927				 * then wait_on_page_writeback() to avoid OOM;
 928				 * and it's also appropriate in global reclaim.
 929				 */
 930				SetPageReclaim(page);
 931				nr_writeback++;
 932
 933				goto keep_locked;
 934
 935			/* Case 3 above */
 936			} else {
 
 937				wait_on_page_writeback(page);
 
 
 
 938			}
 939		}
 940
 941		if (!force_reclaim)
 942			references = page_check_references(page, sc);
 943
 944		switch (references) {
 945		case PAGEREF_ACTIVATE:
 946			goto activate_locked;
 947		case PAGEREF_KEEP:
 
 948			goto keep_locked;
 949		case PAGEREF_RECLAIM:
 950		case PAGEREF_RECLAIM_CLEAN:
 951			; /* try to reclaim the page below */
 952		}
 953
 954		/*
 955		 * Anonymous process memory has backing store?
 956		 * Try to allocate it some swap space here.
 
 957		 */
 958		if (PageAnon(page) && !PageSwapCache(page)) {
 959			if (!(sc->gfp_mask & __GFP_IO))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960				goto keep_locked;
 961			if (!add_to_swap(page, page_list))
 962				goto activate_locked;
 963			may_enter_fs = 1;
 964
 965			/* Adding to swap updated mapping */
 966			mapping = page_mapping(page);
 
 
 
 
 
 
 
 
 967		}
 968
 969		/*
 970		 * The page is mapped into the page tables of one or more
 971		 * processes. Try to unmap it here.
 972		 */
 973		if (page_mapped(page) && mapping) {
 974			switch (try_to_unmap(page, ttu_flags)) {
 975			case SWAP_FAIL:
 
 
 
 
 
 
 
 
 
 976				goto activate_locked;
 977			case SWAP_AGAIN:
 978				goto keep_locked;
 979			case SWAP_MLOCK:
 980				goto cull_mlocked;
 981			case SWAP_SUCCESS:
 982				; /* try to free the page below */
 983			}
 984		}
 985
 986		if (PageDirty(page)) {
 987			/*
 988			 * Only kswapd can writeback filesystem pages to
 989			 * avoid risk of stack overflow but only writeback
 990			 * if many dirty pages have been encountered.
 
 
 
 
 
 991			 */
 992			if (page_is_file_cache(page) &&
 993					(!current_is_kswapd() ||
 994					 !zone_is_reclaim_dirty(zone))) {
 995				/*
 996				 * Immediately reclaim when written back.
 997				 * Similar in principal to deactivate_page()
 998				 * except we already have the page isolated
 999				 * and know it's dirty
1000				 */
1001				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002				SetPageReclaim(page);
1003
1004				goto keep_locked;
1005			}
1006
1007			if (references == PAGEREF_RECLAIM_CLEAN)
1008				goto keep_locked;
1009			if (!may_enter_fs)
1010				goto keep_locked;
1011			if (!sc->may_writepage)
1012				goto keep_locked;
1013
1014			/* Page is dirty, try to write it out here */
1015			switch (pageout(page, mapping, sc)) {
 
 
 
 
 
1016			case PAGE_KEEP:
1017				goto keep_locked;
1018			case PAGE_ACTIVATE:
1019				goto activate_locked;
1020			case PAGE_SUCCESS:
 
 
1021				if (PageWriteback(page))
1022					goto keep;
1023				if (PageDirty(page))
1024					goto keep;
1025
1026				/*
1027				 * A synchronous write - probably a ramdisk.  Go
1028				 * ahead and try to reclaim the page.
1029				 */
1030				if (!trylock_page(page))
1031					goto keep;
1032				if (PageDirty(page) || PageWriteback(page))
1033					goto keep_locked;
1034				mapping = page_mapping(page);
 
1035			case PAGE_CLEAN:
1036				; /* try to free the page below */
1037			}
1038		}
1039
1040		/*
1041		 * If the page has buffers, try to free the buffer mappings
1042		 * associated with this page. If we succeed we try to free
1043		 * the page as well.
1044		 *
1045		 * We do this even if the page is PageDirty().
1046		 * try_to_release_page() does not perform I/O, but it is
1047		 * possible for a page to have PageDirty set, but it is actually
1048		 * clean (all its buffers are clean).  This happens if the
1049		 * buffers were written out directly, with submit_bh(). ext3
1050		 * will do this, as well as the blockdev mapping.
1051		 * try_to_release_page() will discover that cleanness and will
1052		 * drop the buffers and mark the page clean - it can be freed.
1053		 *
1054		 * Rarely, pages can have buffers and no ->mapping.  These are
1055		 * the pages which were not successfully invalidated in
1056		 * truncate_complete_page().  We try to drop those buffers here
1057		 * and if that worked, and the page is no longer mapped into
1058		 * process address space (page_count == 1) it can be freed.
1059		 * Otherwise, leave the page on the LRU so it is swappable.
1060		 */
1061		if (page_has_private(page)) {
1062			if (!try_to_release_page(page, sc->gfp_mask))
1063				goto activate_locked;
1064			if (!mapping && page_count(page) == 1) {
1065				unlock_page(page);
1066				if (put_page_testzero(page))
1067					goto free_it;
1068				else {
1069					/*
1070					 * rare race with speculative reference.
1071					 * the speculative reference will free
1072					 * this page shortly, so we may
1073					 * increment nr_reclaimed here (and
1074					 * leave it off the LRU).
1075					 */
1076					nr_reclaimed++;
1077					continue;
1078				}
1079			}
1080		}
1081
1082		if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
 
 
 
 
 
 
 
 
1083			goto keep_locked;
1084
 
 
1085		/*
1086		 * At this point, we have no other references and there is
1087		 * no way to pick any more up (removed from LRU, removed
1088		 * from pagecache). Can use non-atomic bitops now (and
1089		 * we obviously don't have to worry about waking up a process
1090		 * waiting on the page lock, because there are no references.
1091		 */
1092		__clear_page_locked(page);
1093free_it:
1094		nr_reclaimed++;
1095
1096		/*
1097		 * Is there need to periodically free_page_list? It would
1098		 * appear not as the counts should be low
1099		 */
1100		list_add(&page->lru, &free_pages);
1101		continue;
1102
1103cull_mlocked:
1104		if (PageSwapCache(page))
1105			try_to_free_swap(page);
1106		unlock_page(page);
1107		putback_lru_page(page);
1108		continue;
1109
 
 
 
 
 
 
 
 
 
1110activate_locked:
1111		/* Not a candidate for swapping, so reclaim swap space. */
1112		if (PageSwapCache(page) && vm_swap_full())
 
1113			try_to_free_swap(page);
1114		VM_BUG_ON_PAGE(PageActive(page), page);
1115		SetPageActive(page);
1116		pgactivate++;
 
 
 
 
1117keep_locked:
1118		unlock_page(page);
1119keep:
1120		list_add(&page->lru, &ret_pages);
1121		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122	}
1123
1124	free_hot_cold_page_list(&free_pages, 1);
 
 
 
 
1125
1126	list_splice(&ret_pages, page_list);
1127	count_vm_events(PGACTIVATE, pgactivate);
1128	mem_cgroup_uncharge_end();
1129	*ret_nr_dirty += nr_dirty;
1130	*ret_nr_congested += nr_congested;
1131	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132	*ret_nr_writeback += nr_writeback;
1133	*ret_nr_immediate += nr_immediate;
1134	return nr_reclaimed;
1135}
1136
1137unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138					    struct list_head *page_list)
1139{
1140	struct scan_control sc = {
1141		.gfp_mask = GFP_KERNEL,
1142		.priority = DEF_PRIORITY,
1143		.may_unmap = 1,
1144	};
1145	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
 
1146	struct page *page, *next;
1147	LIST_HEAD(clean_pages);
 
1148
1149	list_for_each_entry_safe(page, next, page_list, lru) {
1150		if (page_is_file_cache(page) && !PageDirty(page) &&
1151		    !isolated_balloon_page(page)) {
 
1152			ClearPageActive(page);
1153			list_move(&page->lru, &clean_pages);
1154		}
1155	}
1156
1157	ret = shrink_page_list(&clean_pages, zone, &sc,
1158			TTU_UNMAP|TTU_IGNORE_ACCESS,
1159			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
 
 
 
 
 
 
 
 
1160	list_splice(&clean_pages, page_list);
1161	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162	return ret;
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165/*
1166 * Attempt to remove the specified page from its LRU.  Only take this page
1167 * if it is of the appropriate PageActive status.  Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page:	page to consider
1171 * mode:	one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
1175int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176{
1177	int ret = -EINVAL;
1178
1179	/* Only take pages on the LRU. */
1180	if (!PageLRU(page))
1181		return ret;
1182
1183	/* Compaction should not handle unevictable pages but CMA can do so */
1184	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185		return ret;
1186
1187	ret = -EBUSY;
1188
1189	/*
1190	 * To minimise LRU disruption, the caller can indicate that it only
1191	 * wants to isolate pages it will be able to operate on without
1192	 * blocking - clean pages for the most part.
1193	 *
1194	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195	 * is used by reclaim when it is cannot write to backing storage
1196	 *
1197	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198	 * that it is possible to migrate without blocking
1199	 */
1200	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201		/* All the caller can do on PageWriteback is block */
1202		if (PageWriteback(page))
1203			return ret;
1204
1205		if (PageDirty(page)) {
1206			struct address_space *mapping;
1207
1208			/* ISOLATE_CLEAN means only clean pages */
1209			if (mode & ISOLATE_CLEAN)
1210				return ret;
1211
1212			/*
1213			 * Only pages without mappings or that have a
1214			 * ->migratepage callback are possible to migrate
1215			 * without blocking
 
 
 
 
1216			 */
 
 
 
1217			mapping = page_mapping(page);
1218			if (mapping && !mapping->a_ops->migratepage)
1219				return ret;
 
 
1220		}
1221	}
1222
1223	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225
1226	if (likely(get_page_unless_zero(page))) {
1227		/*
1228		 * Be careful not to clear PageLRU until after we're
1229		 * sure the page is not being freed elsewhere -- the
1230		 * page release code relies on it.
1231		 */
1232		ClearPageLRU(page);
1233		ret = 0;
1234	}
1235
1236	return ret;
1237}
1238
1239/*
1240 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan:	The number of pages to look through on the list.
1250 * @lruvec:	The LRU vector to pull pages from.
1251 * @dst:	The temp list to put pages on to.
1252 * @nr_scanned:	The number of pages that were scanned.
1253 * @sc:		The scan_control struct for this reclaim session
1254 * @mode:	One of the LRU isolation modes
1255 * @lru:	LRU list id for isolating
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
1259static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260		struct lruvec *lruvec, struct list_head *dst,
1261		unsigned long *nr_scanned, struct scan_control *sc,
1262		isolate_mode_t mode, enum lru_list lru)
1263{
1264	struct list_head *src = &lruvec->lists[lru];
1265	unsigned long nr_taken = 0;
1266	unsigned long scan;
1267
1268	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
 
 
 
 
 
 
1269		struct page *page;
1270		int nr_pages;
1271
1272		page = lru_to_page(src);
1273		prefetchw_prev_lru_page(page, src, flags);
1274
1275		VM_BUG_ON_PAGE(!PageLRU(page), page);
 
1276
1277		switch (__isolate_lru_page(page, mode)) {
1278		case 0:
1279			nr_pages = hpage_nr_pages(page);
1280			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281			list_move(&page->lru, dst);
1282			nr_taken += nr_pages;
1283			break;
1284
1285		case -EBUSY:
1286			/* else it is being freed elsewhere */
 
 
 
 
 
 
 
 
 
 
 
1287			list_move(&page->lru, src);
1288			continue;
 
 
 
 
 
 
 
 
 
 
1289
1290		default:
1291			BUG();
 
 
 
1292		}
 
 
 
 
1293	}
1294
1295	*nr_scanned = scan;
1296	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298	return nr_taken;
1299}
1300
1301/**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared.  If it was found on
1312 * the active list, it will have PageActive set.  If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
 
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 *     fundamentnal difference from isolate_lru_pages (which is called
1322 *     without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326int isolate_lru_page(struct page *page)
1327{
1328	int ret = -EBUSY;
1329
1330	VM_BUG_ON_PAGE(!page_count(page), page);
 
1331
1332	if (PageLRU(page)) {
1333		struct zone *zone = page_zone(page);
1334		struct lruvec *lruvec;
1335
1336		spin_lock_irq(&zone->lru_lock);
1337		lruvec = mem_cgroup_page_lruvec(page, zone);
1338		if (PageLRU(page)) {
1339			int lru = page_lru(page);
1340			get_page(page);
1341			ClearPageLRU(page);
1342			del_page_from_lru_list(page, lruvec, lru);
1343			ret = 0;
1344		}
1345		spin_unlock_irq(&zone->lru_lock);
1346	}
 
1347	return ret;
1348}
1349
1350/*
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
1356 */
1357static int too_many_isolated(struct zone *zone, int file,
1358		struct scan_control *sc)
1359{
1360	unsigned long inactive, isolated;
1361
1362	if (current_is_kswapd())
1363		return 0;
1364
1365	if (!global_reclaim(sc))
1366		return 0;
1367
1368	if (file) {
1369		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371	} else {
1372		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374	}
1375
1376	/*
1377	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378	 * won't get blocked by normal direct-reclaimers, forming a circular
1379	 * deadlock.
1380	 */
1381	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382		inactive >>= 3;
1383
1384	return isolated > inactive;
1385}
1386
1387static noinline_for_stack void
1388putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
 
1389{
1390	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391	struct zone *zone = lruvec_zone(lruvec);
1392	LIST_HEAD(pages_to_free);
 
1393
1394	/*
1395	 * Put back any unfreeable pages.
1396	 */
1397	while (!list_empty(page_list)) {
1398		struct page *page = lru_to_page(page_list);
1399		int lru;
1400
1401		VM_BUG_ON_PAGE(PageLRU(page), page);
1402		list_del(&page->lru);
1403		if (unlikely(!page_evictable(page))) {
1404			spin_unlock_irq(&zone->lru_lock);
1405			putback_lru_page(page);
1406			spin_lock_irq(&zone->lru_lock);
1407			continue;
1408		}
1409
1410		lruvec = mem_cgroup_page_lruvec(page, zone);
1411
 
 
 
 
 
 
 
 
 
1412		SetPageLRU(page);
1413		lru = page_lru(page);
1414		add_page_to_lru_list(page, lruvec, lru);
1415
1416		if (is_active_lru(lru)) {
1417			int file = is_file_lru(lru);
1418			int numpages = hpage_nr_pages(page);
1419			reclaim_stat->recent_rotated[file] += numpages;
1420		}
1421		if (put_page_testzero(page)) {
1422			__ClearPageLRU(page);
1423			__ClearPageActive(page);
1424			del_page_from_lru_list(page, lruvec, lru);
1425
1426			if (unlikely(PageCompound(page))) {
1427				spin_unlock_irq(&zone->lru_lock);
1428				(*get_compound_page_dtor(page))(page);
1429				spin_lock_irq(&zone->lru_lock);
1430			} else
1431				list_add(&page->lru, &pages_to_free);
 
 
1432		}
 
 
 
 
 
 
 
 
 
 
 
1433	}
1434
1435	/*
1436	 * To save our caller's stack, now use input list for pages to free.
1437	 */
1438	list_splice(&pages_to_free, page_list);
 
 
1439}
1440
1441/*
1442 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 
 
 
 
 
 
 
 
 
 
 
 
 
1443 * of reclaimed pages
1444 */
1445static noinline_for_stack unsigned long
1446shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447		     struct scan_control *sc, enum lru_list lru)
1448{
1449	LIST_HEAD(page_list);
1450	unsigned long nr_scanned;
1451	unsigned long nr_reclaimed = 0;
1452	unsigned long nr_taken;
1453	unsigned long nr_dirty = 0;
1454	unsigned long nr_congested = 0;
1455	unsigned long nr_unqueued_dirty = 0;
1456	unsigned long nr_writeback = 0;
1457	unsigned long nr_immediate = 0;
1458	isolate_mode_t isolate_mode = 0;
1459	int file = is_file_lru(lru);
1460	struct zone *zone = lruvec_zone(lruvec);
1461	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462
1463	while (unlikely(too_many_isolated(zone, file, sc))) {
1464		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
1465
1466		/* We are about to die and free our memory. Return now. */
1467		if (fatal_signal_pending(current))
1468			return SWAP_CLUSTER_MAX;
1469	}
1470
1471	lru_add_drain();
1472
1473	if (!sc->may_unmap)
1474		isolate_mode |= ISOLATE_UNMAPPED;
1475	if (!sc->may_writepage)
1476		isolate_mode |= ISOLATE_CLEAN;
1477
1478	spin_lock_irq(&zone->lru_lock);
1479
1480	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481				     &nr_scanned, sc, isolate_mode, lru);
1482
1483	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
 
 
 
 
1485
1486	if (global_reclaim(sc)) {
1487		zone->pages_scanned += nr_scanned;
1488		if (current_is_kswapd())
1489			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490		else
1491			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492	}
1493	spin_unlock_irq(&zone->lru_lock);
1494
1495	if (nr_taken == 0)
1496		return 0;
1497
1498	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500				&nr_writeback, &nr_immediate,
1501				false);
1502
1503	spin_lock_irq(&zone->lru_lock);
1504
1505	reclaim_stat->recent_scanned[file] += nr_taken;
1506
1507	if (global_reclaim(sc)) {
1508		if (current_is_kswapd())
1509			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510					       nr_reclaimed);
1511		else
1512			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513					       nr_reclaimed);
1514	}
1515
1516	putback_inactive_pages(lruvec, &page_list);
1517
1518	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519
1520	spin_unlock_irq(&zone->lru_lock);
1521
1522	free_hot_cold_page_list(&page_list, 1);
1523
1524	/*
1525	 * If reclaim is isolating dirty pages under writeback, it implies
1526	 * that the long-lived page allocation rate is exceeding the page
1527	 * laundering rate. Either the global limits are not being effective
1528	 * at throttling processes due to the page distribution throughout
1529	 * zones or there is heavy usage of a slow backing device. The
1530	 * only option is to throttle from reclaim context which is not ideal
1531	 * as there is no guarantee the dirtying process is throttled in the
1532	 * same way balance_dirty_pages() manages.
1533	 *
1534	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535	 * of pages under pages flagged for immediate reclaim and stall if any
1536	 * are encountered in the nr_immediate check below.
1537	 */
1538	if (nr_writeback && nr_writeback == nr_taken)
1539		zone_set_flag(zone, ZONE_WRITEBACK);
1540
1541	/*
1542	 * memcg will stall in page writeback so only consider forcibly
1543	 * stalling for global reclaim
1544	 */
1545	if (global_reclaim(sc)) {
1546		/*
1547		 * Tag a zone as congested if all the dirty pages scanned were
1548		 * backed by a congested BDI and wait_iff_congested will stall.
1549		 */
1550		if (nr_dirty && nr_dirty == nr_congested)
1551			zone_set_flag(zone, ZONE_CONGESTED);
1552
1553		/*
1554		 * If dirty pages are scanned that are not queued for IO, it
1555		 * implies that flushers are not keeping up. In this case, flag
1556		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557		 * pages from reclaim context. It will forcibly stall in the
1558		 * next check.
1559		 */
1560		if (nr_unqueued_dirty == nr_taken)
1561			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563		/*
1564		 * In addition, if kswapd scans pages marked marked for
1565		 * immediate reclaim and under writeback (nr_immediate), it
1566		 * implies that pages are cycling through the LRU faster than
1567		 * they are written so also forcibly stall.
1568		 */
1569		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571	}
1572
1573	/*
1574	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575	 * is congested. Allow kswapd to continue until it starts encountering
1576	 * unqueued dirty pages or cycling through the LRU too quickly.
1577	 */
1578	if (!sc->hibernation_mode && !current_is_kswapd())
1579		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582		zone_idx(zone),
1583		nr_scanned, nr_reclaimed,
1584		sc->priority,
1585		trace_shrink_flags(file));
1586	return nr_reclaimed;
1587}
1588
1589/*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation.  But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page.  It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1606
1607static void move_active_pages_to_lru(struct lruvec *lruvec,
1608				     struct list_head *list,
1609				     struct list_head *pages_to_free,
1610				     enum lru_list lru)
1611{
1612	struct zone *zone = lruvec_zone(lruvec);
1613	unsigned long pgmoved = 0;
1614	struct page *page;
1615	int nr_pages;
1616
1617	while (!list_empty(list)) {
1618		page = lru_to_page(list);
1619		lruvec = mem_cgroup_page_lruvec(page, zone);
1620
1621		VM_BUG_ON_PAGE(PageLRU(page), page);
1622		SetPageLRU(page);
1623
1624		nr_pages = hpage_nr_pages(page);
1625		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626		list_move(&page->lru, &lruvec->lists[lru]);
1627		pgmoved += nr_pages;
1628
1629		if (put_page_testzero(page)) {
1630			__ClearPageLRU(page);
1631			__ClearPageActive(page);
1632			del_page_from_lru_list(page, lruvec, lru);
1633
1634			if (unlikely(PageCompound(page))) {
1635				spin_unlock_irq(&zone->lru_lock);
1636				(*get_compound_page_dtor(page))(page);
1637				spin_lock_irq(&zone->lru_lock);
1638			} else
1639				list_add(&page->lru, pages_to_free);
1640		}
1641	}
1642	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643	if (!is_active_lru(lru))
1644		__count_vm_events(PGDEACTIVATE, pgmoved);
1645}
1646
1647static void shrink_active_list(unsigned long nr_to_scan,
1648			       struct lruvec *lruvec,
1649			       struct scan_control *sc,
1650			       enum lru_list lru)
1651{
1652	unsigned long nr_taken;
1653	unsigned long nr_scanned;
1654	unsigned long vm_flags;
1655	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656	LIST_HEAD(l_active);
1657	LIST_HEAD(l_inactive);
1658	struct page *page;
1659	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660	unsigned long nr_rotated = 0;
1661	isolate_mode_t isolate_mode = 0;
1662	int file = is_file_lru(lru);
1663	struct zone *zone = lruvec_zone(lruvec);
1664
1665	lru_add_drain();
1666
1667	if (!sc->may_unmap)
1668		isolate_mode |= ISOLATE_UNMAPPED;
1669	if (!sc->may_writepage)
1670		isolate_mode |= ISOLATE_CLEAN;
1671
1672	spin_lock_irq(&zone->lru_lock);
 
1673
1674	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675				     &nr_scanned, sc, isolate_mode, lru);
1676	if (global_reclaim(sc))
1677		zone->pages_scanned += nr_scanned;
1678
1679	reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1683	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684	spin_unlock_irq(&zone->lru_lock);
1685
1686	while (!list_empty(&l_hold)) {
1687		cond_resched();
1688		page = lru_to_page(&l_hold);
1689		list_del(&page->lru);
1690
1691		if (unlikely(!page_evictable(page))) {
1692			putback_lru_page(page);
1693			continue;
1694		}
1695
1696		if (unlikely(buffer_heads_over_limit)) {
1697			if (page_has_private(page) && trylock_page(page)) {
1698				if (page_has_private(page))
1699					try_to_release_page(page, 0);
1700				unlock_page(page);
1701			}
1702		}
1703
1704		if (page_referenced(page, 0, sc->target_mem_cgroup,
1705				    &vm_flags)) {
1706			nr_rotated += hpage_nr_pages(page);
1707			/*
1708			 * Identify referenced, file-backed active pages and
1709			 * give them one more trip around the active list. So
1710			 * that executable code get better chances to stay in
1711			 * memory under moderate memory pressure.  Anon pages
1712			 * are not likely to be evicted by use-once streaming
1713			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714			 * so we ignore them here.
1715			 */
1716			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 
1717				list_add(&page->lru, &l_active);
1718				continue;
1719			}
1720		}
1721
1722		ClearPageActive(page);	/* we are de-activating */
 
1723		list_add(&page->lru, &l_inactive);
1724	}
1725
1726	/*
1727	 * Move pages back to the lru list.
1728	 */
1729	spin_lock_irq(&zone->lru_lock);
1730	/*
1731	 * Count referenced pages from currently used mappings as rotated,
1732	 * even though only some of them are actually re-activated.  This
1733	 * helps balance scan pressure between file and anonymous pages in
1734	 * get_scan_ratio.
1735	 */
1736	reclaim_stat->recent_rotated[file] += nr_rotated;
 
1737
1738	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1740	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741	spin_unlock_irq(&zone->lru_lock);
1742
1743	free_hot_cold_page_list(&l_hold, 1);
 
 
 
1744}
1745
1746#ifdef CONFIG_SWAP
1747static int inactive_anon_is_low_global(struct zone *zone)
1748{
1749	unsigned long active, inactive;
 
 
 
 
 
 
 
 
 
 
 
 
1750
1751	active = zone_page_state(zone, NR_ACTIVE_ANON);
1752	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754	if (inactive * zone->inactive_ratio < active)
1755		return 1;
 
 
 
 
1756
1757	return 0;
1758}
 
 
 
1759
1760/**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762 * @lruvec: LRU vector to check
1763 *
1764 * Returns true if the zone does not have enough inactive anon pages,
1765 * meaning some active anon pages need to be deactivated.
1766 */
1767static int inactive_anon_is_low(struct lruvec *lruvec)
1768{
1769	/*
1770	 * If we don't have swap space, anonymous page deactivation
1771	 * is pointless.
1772	 */
1773	if (!total_swap_pages)
1774		return 0;
1775
1776	if (!mem_cgroup_disabled())
1777		return mem_cgroup_inactive_anon_is_low(lruvec);
1778
1779	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780}
1781#else
1782static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783{
1784	return 0;
1785}
1786#endif
 
 
1787
1788/**
1789 * inactive_file_is_low - check if file pages need to be deactivated
1790 * @lruvec: LRU vector to check
1791 *
1792 * When the system is doing streaming IO, memory pressure here
1793 * ensures that active file pages get deactivated, until more
1794 * than half of the file pages are on the inactive list.
1795 *
1796 * Once we get to that situation, protect the system's working
1797 * set from being evicted by disabling active file page aging.
1798 *
1799 * This uses a different ratio than the anonymous pages, because
1800 * the page cache uses a use-once replacement algorithm.
1801 */
1802static int inactive_file_is_low(struct lruvec *lruvec)
1803{
1804	unsigned long inactive;
1805	unsigned long active;
1806
1807	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809
1810	return active > inactive;
1811}
1812
1813static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814{
1815	if (is_file_lru(lru))
1816		return inactive_file_is_low(lruvec);
1817	else
1818		return inactive_anon_is_low(lruvec);
1819}
1820
1821static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822				 struct lruvec *lruvec, struct scan_control *sc)
1823{
1824	if (is_active_lru(lru)) {
1825		if (inactive_list_is_low(lruvec, lru))
1826			shrink_active_list(nr_to_scan, lruvec, sc, lru);
 
 
1827		return 0;
1828	}
1829
1830	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831}
1832
1833static int vmscan_swappiness(struct scan_control *sc)
1834{
1835	if (global_reclaim(sc))
1836		return vm_swappiness;
1837	return mem_cgroup_swappiness(sc->target_mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838}
1839
1840enum scan_balance {
1841	SCAN_EQUAL,
1842	SCAN_FRACT,
1843	SCAN_ANON,
1844	SCAN_FILE,
1845};
1846
1847/*
1848 * Determine how aggressively the anon and file LRU lists should be
1849 * scanned.  The relative value of each set of LRU lists is determined
1850 * by looking at the fraction of the pages scanned we did rotate back
1851 * onto the active list instead of evict.
1852 *
1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855 */
1856static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857			   unsigned long *nr)
1858{
1859	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860	u64 fraction[2];
 
 
1861	u64 denominator = 0;	/* gcc */
1862	struct zone *zone = lruvec_zone(lruvec);
1863	unsigned long anon_prio, file_prio;
1864	enum scan_balance scan_balance;
1865	unsigned long anon, file;
1866	bool force_scan = false;
1867	unsigned long ap, fp;
1868	enum lru_list lru;
1869
1870	/*
1871	 * If the zone or memcg is small, nr[l] can be 0.  This
1872	 * results in no scanning on this priority and a potential
1873	 * priority drop.  Global direct reclaim can go to the next
1874	 * zone and tends to have no problems. Global kswapd is for
1875	 * zone balancing and it needs to scan a minimum amount. When
1876	 * reclaiming for a memcg, a priority drop can cause high
1877	 * latencies, so it's better to scan a minimum amount there as
1878	 * well.
1879	 */
1880	if (current_is_kswapd() && !zone_reclaimable(zone))
1881		force_scan = true;
1882	if (!global_reclaim(sc))
1883		force_scan = true;
1884
1885	/* If we have no swap space, do not bother scanning anon pages. */
1886	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887		scan_balance = SCAN_FILE;
1888		goto out;
1889	}
1890
1891	/*
1892	 * Global reclaim will swap to prevent OOM even with no
1893	 * swappiness, but memcg users want to use this knob to
1894	 * disable swapping for individual groups completely when
1895	 * using the memory controller's swap limit feature would be
1896	 * too expensive.
1897	 */
1898	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899		scan_balance = SCAN_FILE;
1900		goto out;
1901	}
1902
1903	/*
1904	 * Do not apply any pressure balancing cleverness when the
1905	 * system is close to OOM, scan both anon and file equally
1906	 * (unless the swappiness setting disagrees with swapping).
1907	 */
1908	if (!sc->priority && vmscan_swappiness(sc)) {
1909		scan_balance = SCAN_EQUAL;
1910		goto out;
1911	}
1912
1913	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917
1918	/*
1919	 * Prevent the reclaimer from falling into the cache trap: as
1920	 * cache pages start out inactive, every cache fault will tip
1921	 * the scan balance towards the file LRU.  And as the file LRU
1922	 * shrinks, so does the window for rotation from references.
1923	 * This means we have a runaway feedback loop where a tiny
1924	 * thrashing file LRU becomes infinitely more attractive than
1925	 * anon pages.  Try to detect this based on file LRU size.
1926	 */
1927	if (global_reclaim(sc)) {
1928		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1929
1930		if (unlikely(file + free <= high_wmark_pages(zone))) {
1931			scan_balance = SCAN_ANON;
1932			goto out;
1933		}
1934	}
1935
1936	/*
1937	 * There is enough inactive page cache, do not reclaim
1938	 * anything from the anonymous working set right now.
1939	 */
1940	if (!inactive_file_is_low(lruvec)) {
1941		scan_balance = SCAN_FILE;
1942		goto out;
1943	}
1944
1945	scan_balance = SCAN_FRACT;
1946
1947	/*
1948	 * With swappiness at 100, anonymous and file have the same priority.
1949	 * This scanning priority is essentially the inverse of IO cost.
1950	 */
1951	anon_prio = vmscan_swappiness(sc);
1952	file_prio = 200 - anon_prio;
1953
1954	/*
1955	 * OK, so we have swap space and a fair amount of page cache
1956	 * pages.  We use the recently rotated / recently scanned
1957	 * ratios to determine how valuable each cache is.
1958	 *
1959	 * Because workloads change over time (and to avoid overflow)
1960	 * we keep these statistics as a floating average, which ends
1961	 * up weighing recent references more than old ones.
1962	 *
1963	 * anon in [0], file in [1]
1964	 */
1965	spin_lock_irq(&zone->lru_lock);
1966	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1967		reclaim_stat->recent_scanned[0] /= 2;
1968		reclaim_stat->recent_rotated[0] /= 2;
1969	}
1970
1971	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1972		reclaim_stat->recent_scanned[1] /= 2;
1973		reclaim_stat->recent_rotated[1] /= 2;
1974	}
1975
1976	/*
1977	 * The amount of pressure on anon vs file pages is inversely
1978	 * proportional to the fraction of recently scanned pages on
1979	 * each list that were recently referenced and in active use.
1980	 */
1981	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1982	ap /= reclaim_stat->recent_rotated[0] + 1;
1983
1984	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1985	fp /= reclaim_stat->recent_rotated[1] + 1;
1986	spin_unlock_irq(&zone->lru_lock);
1987
1988	fraction[0] = ap;
1989	fraction[1] = fp;
1990	denominator = ap + fp + 1;
1991out:
1992	for_each_evictable_lru(lru) {
1993		int file = is_file_lru(lru);
1994		unsigned long size;
 
1995		unsigned long scan;
1996
1997		size = get_lru_size(lruvec, lru);
1998		scan = size >> sc->priority;
 
1999
2000		if (!scan && force_scan)
2001			scan = min(size, SWAP_CLUSTER_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002
2003		switch (scan_balance) {
2004		case SCAN_EQUAL:
2005			/* Scan lists relative to size */
2006			break;
2007		case SCAN_FRACT:
2008			/*
2009			 * Scan types proportional to swappiness and
2010			 * their relative recent reclaim efficiency.
 
 
 
2011			 */
2012			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
2013			break;
2014		case SCAN_FILE:
2015		case SCAN_ANON:
2016			/* Scan one type exclusively */
2017			if ((scan_balance == SCAN_FILE) != file)
2018				scan = 0;
2019			break;
2020		default:
2021			/* Look ma, no brain */
2022			BUG();
2023		}
 
2024		nr[lru] = scan;
2025	}
2026}
2027
2028/*
2029 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030 */
2031static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2032{
2033	unsigned long nr[NR_LRU_LISTS];
2034	unsigned long targets[NR_LRU_LISTS];
2035	unsigned long nr_to_scan;
2036	enum lru_list lru;
2037	unsigned long nr_reclaimed = 0;
2038	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039	struct blk_plug plug;
2040	bool scan_adjusted = false;
2041
2042	get_scan_count(lruvec, sc, nr);
2043
2044	/* Record the original scan target for proportional adjustments later */
2045	memcpy(targets, nr, sizeof(nr));
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047	blk_start_plug(&plug);
2048	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2049					nr[LRU_INACTIVE_FILE]) {
2050		unsigned long nr_anon, nr_file, percentage;
2051		unsigned long nr_scanned;
2052
2053		for_each_evictable_lru(lru) {
2054			if (nr[lru]) {
2055				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2056				nr[lru] -= nr_to_scan;
2057
2058				nr_reclaimed += shrink_list(lru, nr_to_scan,
2059							    lruvec, sc);
2060			}
2061		}
2062
 
 
2063		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2064			continue;
2065
2066		/*
2067		 * For global direct reclaim, reclaim only the number of pages
2068		 * requested. Less care is taken to scan proportionally as it
2069		 * is more important to minimise direct reclaim stall latency
2070		 * than it is to properly age the LRU lists.
2071		 */
2072		if (global_reclaim(sc) && !current_is_kswapd())
2073			break;
2074
2075		/*
2076		 * For kswapd and memcg, reclaim at least the number of pages
2077		 * requested. Ensure that the anon and file LRUs shrink
2078		 * proportionally what was requested by get_scan_count(). We
2079		 * stop reclaiming one LRU and reduce the amount scanning
2080		 * proportional to the original scan target.
2081		 */
2082		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2083		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2084
 
 
 
 
 
 
 
 
 
2085		if (nr_file > nr_anon) {
2086			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2087						targets[LRU_ACTIVE_ANON] + 1;
2088			lru = LRU_BASE;
2089			percentage = nr_anon * 100 / scan_target;
2090		} else {
2091			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2092						targets[LRU_ACTIVE_FILE] + 1;
2093			lru = LRU_FILE;
2094			percentage = nr_file * 100 / scan_target;
2095		}
2096
2097		/* Stop scanning the smaller of the LRU */
2098		nr[lru] = 0;
2099		nr[lru + LRU_ACTIVE] = 0;
2100
2101		/*
2102		 * Recalculate the other LRU scan count based on its original
2103		 * scan target and the percentage scanning already complete
2104		 */
2105		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2106		nr_scanned = targets[lru] - nr[lru];
2107		nr[lru] = targets[lru] * (100 - percentage) / 100;
2108		nr[lru] -= min(nr[lru], nr_scanned);
2109
2110		lru += LRU_ACTIVE;
2111		nr_scanned = targets[lru] - nr[lru];
2112		nr[lru] = targets[lru] * (100 - percentage) / 100;
2113		nr[lru] -= min(nr[lru], nr_scanned);
2114
2115		scan_adjusted = true;
2116	}
2117	blk_finish_plug(&plug);
2118	sc->nr_reclaimed += nr_reclaimed;
2119
2120	/*
2121	 * Even if we did not try to evict anon pages at all, we want to
2122	 * rebalance the anon lru active/inactive ratio.
2123	 */
2124	if (inactive_anon_is_low(lruvec))
2125		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2126				   sc, LRU_ACTIVE_ANON);
2127
2128	throttle_vm_writeout(sc->gfp_mask);
2129}
2130
2131/* Use reclaim/compaction for costly allocs or under memory pressure */
2132static bool in_reclaim_compaction(struct scan_control *sc)
2133{
2134	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2135			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2136			 sc->priority < DEF_PRIORITY - 2))
2137		return true;
2138
2139	return false;
2140}
2141
2142/*
2143 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2144 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2145 * true if more pages should be reclaimed such that when the page allocator
2146 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2147 * It will give up earlier than that if there is difficulty reclaiming pages.
2148 */
2149static inline bool should_continue_reclaim(struct zone *zone,
2150					unsigned long nr_reclaimed,
2151					unsigned long nr_scanned,
2152					struct scan_control *sc)
2153{
2154	unsigned long pages_for_compaction;
2155	unsigned long inactive_lru_pages;
 
2156
2157	/* If not in reclaim/compaction mode, stop */
2158	if (!in_reclaim_compaction(sc))
2159		return false;
2160
2161	/* Consider stopping depending on scan and reclaim activity */
2162	if (sc->gfp_mask & __GFP_REPEAT) {
2163		/*
2164		 * For __GFP_REPEAT allocations, stop reclaiming if the
2165		 * full LRU list has been scanned and we are still failing
2166		 * to reclaim pages. This full LRU scan is potentially
2167		 * expensive but a __GFP_REPEAT caller really wants to succeed
2168		 */
2169		if (!nr_reclaimed && !nr_scanned)
2170			return false;
2171	} else {
2172		/*
2173		 * For non-__GFP_REPEAT allocations which can presumably
2174		 * fail without consequence, stop if we failed to reclaim
2175		 * any pages from the last SWAP_CLUSTER_MAX number of
2176		 * pages that were scanned. This will return to the
2177		 * caller faster at the risk reclaim/compaction and
2178		 * the resulting allocation attempt fails
2179		 */
2180		if (!nr_reclaimed)
 
 
2181			return false;
 
 
 
 
2182	}
2183
2184	/*
2185	 * If we have not reclaimed enough pages for compaction and the
2186	 * inactive lists are large enough, continue reclaiming
2187	 */
2188	pages_for_compaction = (2UL << sc->order);
2189	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2190	if (get_nr_swap_pages() > 0)
2191		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2192	if (sc->nr_reclaimed < pages_for_compaction &&
2193			inactive_lru_pages > pages_for_compaction)
2194		return true;
2195
2196	/* If compaction would go ahead or the allocation would succeed, stop */
2197	switch (compaction_suitable(zone, sc->order)) {
2198	case COMPACT_PARTIAL:
2199	case COMPACT_CONTINUE:
2200		return false;
2201	default:
2202		return true;
2203	}
2204}
2205
2206static void shrink_zone(struct zone *zone, struct scan_control *sc)
2207{
2208	unsigned long nr_reclaimed, nr_scanned;
 
2209
 
2210	do {
2211		struct mem_cgroup *root = sc->target_mem_cgroup;
2212		struct mem_cgroup_reclaim_cookie reclaim = {
2213			.zone = zone,
2214			.priority = sc->priority,
2215		};
2216		struct mem_cgroup *memcg;
2217
2218		nr_reclaimed = sc->nr_reclaimed;
2219		nr_scanned = sc->nr_scanned;
2220
2221		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2222		do {
2223			struct lruvec *lruvec;
 
2224
2225			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2226
2227			shrink_lruvec(lruvec, sc);
2228
 
 
 
 
 
 
 
2229			/*
2230			 * Direct reclaim and kswapd have to scan all memory
2231			 * cgroups to fulfill the overall scan target for the
2232			 * zone.
2233			 *
2234			 * Limit reclaim, on the other hand, only cares about
2235			 * nr_to_reclaim pages to be reclaimed and it will
2236			 * retry with decreasing priority if one round over the
2237			 * whole hierarchy is not sufficient.
2238			 */
2239			if (!global_reclaim(sc) &&
2240					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2241				mem_cgroup_iter_break(root, memcg);
2242				break;
2243			}
2244			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2245		} while (memcg);
2246
2247		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2248			   sc->nr_scanned - nr_scanned,
2249			   sc->nr_reclaimed - nr_reclaimed);
2250
2251	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2252					 sc->nr_scanned - nr_scanned, sc));
 
 
 
 
 
 
 
 
 
2253}
2254
2255/* Returns true if compaction should go ahead for a high-order request */
2256static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2257{
2258	unsigned long balance_gap, watermark;
2259	bool watermark_ok;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260
2261	/* Do not consider compaction for orders reclaim is meant to satisfy */
2262	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2263		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2264
2265	/*
2266	 * Compaction takes time to run and there are potentially other
2267	 * callers using the pages just freed. Continue reclaiming until
2268	 * there is a buffer of free pages available to give compaction
2269	 * a reasonable chance of completing and allocating the page
2270	 */
2271	balance_gap = min(low_wmark_pages(zone),
2272		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2273			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2274	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2275	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
 
2276
2277	/*
2278	 * If compaction is deferred, reclaim up to a point where
2279	 * compaction will have a chance of success when re-enabled
 
 
2280	 */
2281	if (compaction_deferred(zone, sc->order))
2282		return watermark_ok;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283
2284	/* If compaction is not ready to start, keep reclaiming */
2285	if (!compaction_suitable(zone, sc->order))
 
 
 
 
2286		return false;
2287
2288	return watermark_ok;
 
 
 
 
 
 
 
 
 
 
 
2289}
2290
2291/*
2292 * This is the direct reclaim path, for page-allocating processes.  We only
2293 * try to reclaim pages from zones which will satisfy the caller's allocation
2294 * request.
2295 *
2296 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2297 * Because:
2298 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2299 *    allocation or
2300 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2301 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2302 *    zone defense algorithm.
2303 *
2304 * If a zone is deemed to be full of pinned pages then just give it a light
2305 * scan then give up on it.
2306 *
2307 * This function returns true if a zone is being reclaimed for a costly
2308 * high-order allocation and compaction is ready to begin. This indicates to
2309 * the caller that it should consider retrying the allocation instead of
2310 * further reclaim.
2311 */
2312static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2313{
2314	struct zoneref *z;
2315	struct zone *zone;
2316	unsigned long nr_soft_reclaimed;
2317	unsigned long nr_soft_scanned;
2318	unsigned long lru_pages = 0;
2319	bool aborted_reclaim = false;
2320	struct reclaim_state *reclaim_state = current->reclaim_state;
2321	gfp_t orig_mask;
2322	struct shrink_control shrink = {
2323		.gfp_mask = sc->gfp_mask,
2324	};
2325	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2326
2327	/*
2328	 * If the number of buffer_heads in the machine exceeds the maximum
2329	 * allowed level, force direct reclaim to scan the highmem zone as
2330	 * highmem pages could be pinning lowmem pages storing buffer_heads
2331	 */
2332	orig_mask = sc->gfp_mask;
2333	if (buffer_heads_over_limit)
2334		sc->gfp_mask |= __GFP_HIGHMEM;
2335
2336	nodes_clear(shrink.nodes_to_scan);
2337
2338	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2339					gfp_zone(sc->gfp_mask), sc->nodemask) {
2340		if (!populated_zone(zone))
2341			continue;
2342		/*
2343		 * Take care memory controller reclaiming has small influence
2344		 * to global LRU.
2345		 */
2346		if (global_reclaim(sc)) {
2347			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348				continue;
 
2349
2350			lru_pages += zone_reclaimable_pages(zone);
2351			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
 
 
 
 
 
 
2352
2353			if (sc->priority != DEF_PRIORITY &&
2354			    !zone_reclaimable(zone))
2355				continue;	/* Let kswapd poll it */
2356			if (IS_ENABLED(CONFIG_COMPACTION)) {
2357				/*
2358				 * If we already have plenty of memory free for
2359				 * compaction in this zone, don't free any more.
2360				 * Even though compaction is invoked for any
2361				 * non-zero order, only frequent costly order
2362				 * reclamation is disruptive enough to become a
2363				 * noticeable problem, like transparent huge
2364				 * page allocations.
2365				 */
2366				if ((zonelist_zone_idx(z) <= requested_highidx)
2367				    && compaction_ready(zone, sc)) {
2368					aborted_reclaim = true;
2369					continue;
2370				}
2371			}
2372			/*
2373			 * This steals pages from memory cgroups over softlimit
2374			 * and returns the number of reclaimed pages and
2375			 * scanned pages. This works for global memory pressure
2376			 * and balancing, not for a memcg's limit.
2377			 */
2378			nr_soft_scanned = 0;
2379			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2380						sc->order, sc->gfp_mask,
2381						&nr_soft_scanned);
2382			sc->nr_reclaimed += nr_soft_reclaimed;
2383			sc->nr_scanned += nr_soft_scanned;
2384			/* need some check for avoid more shrink_zone() */
2385		}
2386
2387		shrink_zone(zone, sc);
2388	}
2389
2390	/*
2391	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2392	 * but do shrink slab at least once when aborting reclaim for
2393	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2394	 * pages.
2395	 */
2396	if (global_reclaim(sc)) {
2397		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2398		if (reclaim_state) {
2399			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2400			reclaim_state->reclaimed_slab = 0;
2401		}
2402	}
2403
2404	/*
2405	 * Restore to original mask to avoid the impact on the caller if we
2406	 * promoted it to __GFP_HIGHMEM.
2407	 */
2408	sc->gfp_mask = orig_mask;
2409
2410	return aborted_reclaim;
2411}
2412
2413/* All zones in zonelist are unreclaimable? */
2414static bool all_unreclaimable(struct zonelist *zonelist,
2415		struct scan_control *sc)
2416{
2417	struct zoneref *z;
2418	struct zone *zone;
2419
2420	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2421			gfp_zone(sc->gfp_mask), sc->nodemask) {
2422		if (!populated_zone(zone))
2423			continue;
2424		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2425			continue;
2426		if (zone_reclaimable(zone))
2427			return false;
2428	}
2429
2430	return true;
2431}
2432
2433/*
2434 * This is the main entry point to direct page reclaim.
2435 *
2436 * If a full scan of the inactive list fails to free enough memory then we
2437 * are "out of memory" and something needs to be killed.
2438 *
2439 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2440 * high - the zone may be full of dirty or under-writeback pages, which this
2441 * caller can't do much about.  We kick the writeback threads and take explicit
2442 * naps in the hope that some of these pages can be written.  But if the
2443 * allocating task holds filesystem locks which prevent writeout this might not
2444 * work, and the allocation attempt will fail.
2445 *
2446 * returns:	0, if no pages reclaimed
2447 * 		else, the number of pages reclaimed
2448 */
2449static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2450					  struct scan_control *sc)
2451{
2452	unsigned long total_scanned = 0;
2453	unsigned long writeback_threshold;
2454	bool aborted_reclaim;
2455
 
2456	delayacct_freepages_start();
2457
2458	if (global_reclaim(sc))
2459		count_vm_event(ALLOCSTALL);
2460
2461	do {
2462		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2463				sc->priority);
2464		sc->nr_scanned = 0;
2465		aborted_reclaim = shrink_zones(zonelist, sc);
2466
2467		total_scanned += sc->nr_scanned;
2468		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2469			goto out;
 
 
 
2470
2471		/*
2472		 * If we're getting trouble reclaiming, start doing
2473		 * writepage even in laptop mode.
2474		 */
2475		if (sc->priority < DEF_PRIORITY - 2)
2476			sc->may_writepage = 1;
 
 
 
 
 
 
 
 
2477
2478		/*
2479		 * Try to write back as many pages as we just scanned.  This
2480		 * tends to cause slow streaming writers to write data to the
2481		 * disk smoothly, at the dirtying rate, which is nice.   But
2482		 * that's undesirable in laptop mode, where we *want* lumpy
2483		 * writeout.  So in laptop mode, write out the whole world.
2484		 */
2485		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2486		if (total_scanned > writeback_threshold) {
2487			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2488						WB_REASON_TRY_TO_FREE_PAGES);
2489			sc->may_writepage = 1;
2490		}
2491	} while (--sc->priority >= 0 && !aborted_reclaim);
2492
2493out:
2494	delayacct_freepages_end();
2495
2496	if (sc->nr_reclaimed)
2497		return sc->nr_reclaimed;
2498
2499	/*
2500	 * As hibernation is going on, kswapd is freezed so that it can't mark
2501	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2502	 * check.
2503	 */
2504	if (oom_killer_disabled)
2505		return 0;
2506
2507	/* Aborted reclaim to try compaction? don't OOM, then */
2508	if (aborted_reclaim)
2509		return 1;
2510
2511	/* top priority shrink_zones still had more to do? don't OOM, then */
2512	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2513		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514
2515	return 0;
2516}
2517
2518static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2519{
2520	struct zone *zone;
2521	unsigned long pfmemalloc_reserve = 0;
2522	unsigned long free_pages = 0;
2523	int i;
2524	bool wmark_ok;
2525
 
 
 
2526	for (i = 0; i <= ZONE_NORMAL; i++) {
2527		zone = &pgdat->node_zones[i];
 
 
 
 
 
 
2528		pfmemalloc_reserve += min_wmark_pages(zone);
2529		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2530	}
2531
 
 
 
 
2532	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2533
2534	/* kswapd must be awake if processes are being throttled */
2535	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2536		pgdat->classzone_idx = min(pgdat->classzone_idx,
2537						(enum zone_type)ZONE_NORMAL);
 
2538		wake_up_interruptible(&pgdat->kswapd_wait);
2539	}
2540
2541	return wmark_ok;
2542}
2543
2544/*
2545 * Throttle direct reclaimers if backing storage is backed by the network
2546 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2547 * depleted. kswapd will continue to make progress and wake the processes
2548 * when the low watermark is reached.
2549 *
2550 * Returns true if a fatal signal was delivered during throttling. If this
2551 * happens, the page allocator should not consider triggering the OOM killer.
2552 */
2553static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2554					nodemask_t *nodemask)
2555{
 
2556	struct zone *zone;
2557	int high_zoneidx = gfp_zone(gfp_mask);
2558	pg_data_t *pgdat;
2559
2560	/*
2561	 * Kernel threads should not be throttled as they may be indirectly
2562	 * responsible for cleaning pages necessary for reclaim to make forward
2563	 * progress. kjournald for example may enter direct reclaim while
2564	 * committing a transaction where throttling it could forcing other
2565	 * processes to block on log_wait_commit().
2566	 */
2567	if (current->flags & PF_KTHREAD)
2568		goto out;
2569
2570	/*
2571	 * If a fatal signal is pending, this process should not throttle.
2572	 * It should return quickly so it can exit and free its memory
2573	 */
2574	if (fatal_signal_pending(current))
2575		goto out;
2576
2577	/* Check if the pfmemalloc reserves are ok */
2578	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2579	pgdat = zone->zone_pgdat;
2580	if (pfmemalloc_watermark_ok(pgdat))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2581		goto out;
2582
2583	/* Account for the throttling */
2584	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2585
2586	/*
2587	 * If the caller cannot enter the filesystem, it's possible that it
2588	 * is due to the caller holding an FS lock or performing a journal
2589	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2590	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2591	 * blocked waiting on the same lock. Instead, throttle for up to a
2592	 * second before continuing.
2593	 */
2594	if (!(gfp_mask & __GFP_FS)) {
2595		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2596			pfmemalloc_watermark_ok(pgdat), HZ);
2597
2598		goto check_pending;
2599	}
2600
2601	/* Throttle until kswapd wakes the process */
2602	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2603		pfmemalloc_watermark_ok(pgdat));
2604
2605check_pending:
2606	if (fatal_signal_pending(current))
2607		return true;
2608
2609out:
2610	return false;
2611}
2612
2613unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2614				gfp_t gfp_mask, nodemask_t *nodemask)
2615{
2616	unsigned long nr_reclaimed;
2617	struct scan_control sc = {
2618		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
 
 
 
 
 
2619		.may_writepage = !laptop_mode,
2620		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2621		.may_unmap = 1,
2622		.may_swap = 1,
2623		.order = order,
2624		.priority = DEF_PRIORITY,
2625		.target_mem_cgroup = NULL,
2626		.nodemask = nodemask,
2627	};
2628
2629	/*
 
 
 
 
 
 
 
 
2630	 * Do not enter reclaim if fatal signal was delivered while throttled.
2631	 * 1 is returned so that the page allocator does not OOM kill at this
2632	 * point.
2633	 */
2634	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2635		return 1;
2636
2637	trace_mm_vmscan_direct_reclaim_begin(order,
2638				sc.may_writepage,
2639				gfp_mask);
2640
2641	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2642
2643	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2644
2645	return nr_reclaimed;
2646}
2647
2648#ifdef CONFIG_MEMCG
2649
2650unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
 
2651						gfp_t gfp_mask, bool noswap,
2652						struct zone *zone,
2653						unsigned long *nr_scanned)
2654{
 
2655	struct scan_control sc = {
2656		.nr_scanned = 0,
2657		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2658		.may_writepage = !laptop_mode,
2659		.may_unmap = 1,
 
2660		.may_swap = !noswap,
2661		.order = 0,
2662		.priority = 0,
2663		.target_mem_cgroup = memcg,
2664	};
2665	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
2666
2667	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2669
2670	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2671						      sc.may_writepage,
2672						      sc.gfp_mask);
2673
2674	/*
2675	 * NOTE: Although we can get the priority field, using it
2676	 * here is not a good idea, since it limits the pages we can scan.
2677	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2678	 * will pick up pages from other mem cgroup's as well. We hack
2679	 * the priority and make it zero.
2680	 */
2681	shrink_lruvec(lruvec, &sc);
2682
2683	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2684
2685	*nr_scanned = sc.nr_scanned;
 
2686	return sc.nr_reclaimed;
2687}
2688
2689unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 
2690					   gfp_t gfp_mask,
2691					   bool noswap)
2692{
2693	struct zonelist *zonelist;
2694	unsigned long nr_reclaimed;
2695	int nid;
2696	struct scan_control sc = {
 
 
 
 
 
 
2697		.may_writepage = !laptop_mode,
2698		.may_unmap = 1,
2699		.may_swap = !noswap,
2700		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2701		.order = 0,
2702		.priority = DEF_PRIORITY,
2703		.target_mem_cgroup = memcg,
2704		.nodemask = NULL, /* we don't care the placement */
2705		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2706				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2707	};
2708
2709	/*
2710	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2711	 * take care of from where we get pages. So the node where we start the
2712	 * scan does not need to be the current node.
2713	 */
2714	nid = mem_cgroup_select_victim_node(memcg);
2715
2716	zonelist = NODE_DATA(nid)->node_zonelists;
2717
2718	trace_mm_vmscan_memcg_reclaim_begin(0,
2719					    sc.may_writepage,
2720					    sc.gfp_mask);
2721
2722	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2723
 
2724	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2725
2726	return nr_reclaimed;
2727}
2728#endif
2729
2730static void age_active_anon(struct zone *zone, struct scan_control *sc)
 
2731{
2732	struct mem_cgroup *memcg;
 
2733
2734	if (!total_swap_pages)
2735		return;
2736
 
 
 
 
2737	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2738	do {
2739		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2740
2741		if (inactive_anon_is_low(lruvec))
2742			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2743					   sc, LRU_ACTIVE_ANON);
2744
2745		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2746	} while (memcg);
2747}
2748
2749static bool zone_balanced(struct zone *zone, int order,
2750			  unsigned long balance_gap, int classzone_idx)
2751{
2752	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2753				    balance_gap, classzone_idx, 0))
2754		return false;
 
 
 
 
 
 
 
 
 
 
 
2755
2756	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2757	    !compaction_suitable(zone, order))
2758		return false;
2759
2760	return true;
2761}
2762
2763/*
2764 * pgdat_balanced() is used when checking if a node is balanced.
2765 *
2766 * For order-0, all zones must be balanced!
2767 *
2768 * For high-order allocations only zones that meet watermarks and are in a
2769 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2770 * total of balanced pages must be at least 25% of the zones allowed by
2771 * classzone_idx for the node to be considered balanced. Forcing all zones to
2772 * be balanced for high orders can cause excessive reclaim when there are
2773 * imbalanced zones.
2774 * The choice of 25% is due to
2775 *   o a 16M DMA zone that is balanced will not balance a zone on any
2776 *     reasonable sized machine
2777 *   o On all other machines, the top zone must be at least a reasonable
2778 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2779 *     would need to be at least 256M for it to be balance a whole node.
2780 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2781 *     to balance a node on its own. These seemed like reasonable ratios.
2782 */
2783static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2784{
2785	unsigned long managed_pages = 0;
2786	unsigned long balanced_pages = 0;
2787	int i;
 
 
2788
2789	/* Check the watermark levels */
2790	for (i = 0; i <= classzone_idx; i++) {
2791		struct zone *zone = pgdat->node_zones + i;
 
 
 
2792
2793		if (!populated_zone(zone))
2794			continue;
2795
2796		managed_pages += zone->managed_pages;
 
 
 
2797
2798		/*
2799		 * A special case here:
2800		 *
2801		 * balance_pgdat() skips over all_unreclaimable after
2802		 * DEF_PRIORITY. Effectively, it considers them balanced so
2803		 * they must be considered balanced here as well!
2804		 */
2805		if (!zone_reclaimable(zone)) {
2806			balanced_pages += zone->managed_pages;
2807			continue;
2808		}
2809
2810		if (zone_balanced(zone, order, 0, i))
2811			balanced_pages += zone->managed_pages;
2812		else if (!order)
2813			return false;
2814	}
2815
2816	if (order)
2817		return balanced_pages >= (managed_pages >> 2);
2818	else
2819		return true;
2820}
2821
2822/*
2823 * Prepare kswapd for sleeping. This verifies that there are no processes
2824 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2825 *
2826 * Returns true if kswapd is ready to sleep
2827 */
2828static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2829					int classzone_idx)
2830{
2831	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2832	if (remaining)
2833		return false;
2834
2835	/*
2836	 * There is a potential race between when kswapd checks its watermarks
2837	 * and a process gets throttled. There is also a potential race if
2838	 * processes get throttled, kswapd wakes, a large process exits therby
2839	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2840	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2841	 * so wake them now if necessary. If necessary, processes will wake
2842	 * kswapd and get throttled again
 
 
 
 
2843	 */
2844	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2845		wake_up(&pgdat->pfmemalloc_wait);
2846		return false;
 
 
 
 
 
 
 
2847	}
2848
2849	return pgdat_balanced(pgdat, order, classzone_idx);
2850}
2851
2852/*
2853 * kswapd shrinks the zone by the number of pages required to reach
2854 * the high watermark.
2855 *
2856 * Returns true if kswapd scanned at least the requested number of pages to
2857 * reclaim or if the lack of progress was due to pages under writeback.
2858 * This is used to determine if the scanning priority needs to be raised.
2859 */
2860static bool kswapd_shrink_zone(struct zone *zone,
2861			       int classzone_idx,
2862			       struct scan_control *sc,
2863			       unsigned long lru_pages,
2864			       unsigned long *nr_attempted)
2865{
2866	int testorder = sc->order;
2867	unsigned long balance_gap;
2868	struct reclaim_state *reclaim_state = current->reclaim_state;
2869	struct shrink_control shrink = {
2870		.gfp_mask = sc->gfp_mask,
2871	};
2872	bool lowmem_pressure;
2873
2874	/* Reclaim above the high watermark. */
2875	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
 
 
 
 
2876
2877	/*
2878	 * Kswapd reclaims only single pages with compaction enabled. Trying
2879	 * too hard to reclaim until contiguous free pages have become
2880	 * available can hurt performance by evicting too much useful data
2881	 * from memory. Do not reclaim more than needed for compaction.
2882	 */
2883	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2884			compaction_suitable(zone, sc->order) !=
2885				COMPACT_SKIPPED)
2886		testorder = 0;
2887
2888	/*
2889	 * We put equal pressure on every zone, unless one zone has way too
2890	 * many pages free already. The "too many pages" is defined as the
2891	 * high wmark plus a "gap" where the gap is either the low
2892	 * watermark or 1% of the zone, whichever is smaller.
2893	 */
2894	balance_gap = min(low_wmark_pages(zone),
2895		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2896		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2897
2898	/*
2899	 * If there is no low memory pressure or the zone is balanced then no
2900	 * reclaim is necessary
 
 
 
2901	 */
2902	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2903	if (!lowmem_pressure && zone_balanced(zone, testorder,
2904						balance_gap, classzone_idx))
2905		return true;
2906
2907	shrink_zone(zone, sc);
2908	nodes_clear(shrink.nodes_to_scan);
2909	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2910
2911	reclaim_state->reclaimed_slab = 0;
2912	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2913	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
 
 
 
2914
2915	/* Account for the number of pages attempted to reclaim */
2916	*nr_attempted += sc->nr_to_reclaim;
2917
2918	zone_clear_flag(zone, ZONE_WRITEBACK);
 
2919
2920	/*
2921	 * If a zone reaches its high watermark, consider it to be no longer
2922	 * congested. It's possible there are dirty pages backed by congested
2923	 * BDIs but as pressure is relieved, speculatively avoid congestion
2924	 * waits.
2925	 */
2926	if (zone_reclaimable(zone) &&
2927	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2928		zone_clear_flag(zone, ZONE_CONGESTED);
2929		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2930	}
 
2931
2932	return sc->nr_scanned >= sc->nr_to_reclaim;
 
 
 
 
 
 
 
 
 
2933}
2934
2935/*
2936 * For kswapd, balance_pgdat() will work across all this node's zones until
2937 * they are all at high_wmark_pages(zone).
2938 *
2939 * Returns the final order kswapd was reclaiming at
2940 *
2941 * There is special handling here for zones which are full of pinned pages.
2942 * This can happen if the pages are all mlocked, or if they are all used by
2943 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2944 * What we do is to detect the case where all pages in the zone have been
2945 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2946 * dead and from now on, only perform a short scan.  Basically we're polling
2947 * the zone for when the problem goes away.
2948 *
2949 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2951 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2952 * lower zones regardless of the number of free pages in the lower zones. This
2953 * interoperates with the page allocator fallback scheme to ensure that aging
2954 * of pages is balanced across the zones.
2955 */
2956static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2957							int *classzone_idx)
2958{
2959	int i;
2960	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2961	unsigned long nr_soft_reclaimed;
2962	unsigned long nr_soft_scanned;
 
 
 
 
 
2963	struct scan_control sc = {
2964		.gfp_mask = GFP_KERNEL,
2965		.priority = DEF_PRIORITY,
2966		.may_unmap = 1,
2967		.may_swap = 1,
2968		.may_writepage = !laptop_mode,
2969		.order = order,
2970		.target_mem_cgroup = NULL,
2971	};
 
 
 
 
 
2972	count_vm_event(PAGEOUTRUN);
2973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974	do {
2975		unsigned long lru_pages = 0;
2976		unsigned long nr_attempted = 0;
2977		bool raise_priority = true;
2978		bool pgdat_needs_compaction = (order > 0);
 
2979
2980		sc.nr_reclaimed = 0;
2981
2982		/*
2983		 * Scan in the highmem->dma direction for the highest
2984		 * zone which needs scanning
2985		 */
2986		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2987			struct zone *zone = pgdat->node_zones + i;
2988
2989			if (!populated_zone(zone))
2990				continue;
 
 
 
 
 
 
2991
2992			if (sc.priority != DEF_PRIORITY &&
2993			    !zone_reclaimable(zone))
2994				continue;
2995
2996			/*
2997			 * Do some background aging of the anon list, to give
2998			 * pages a chance to be referenced before reclaiming.
2999			 */
3000			age_active_anon(zone, &sc);
3001
3002			/*
3003			 * If the number of buffer_heads in the machine
3004			 * exceeds the maximum allowed level and this node
3005			 * has a highmem zone, force kswapd to reclaim from
3006			 * it to relieve lowmem pressure.
3007			 */
3008			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3009				end_zone = i;
3010				break;
3011			}
 
3012
3013			if (!zone_balanced(zone, order, 0, 0)) {
3014				end_zone = i;
3015				break;
3016			} else {
3017				/*
3018				 * If balanced, clear the dirty and congested
3019				 * flags
3020				 */
3021				zone_clear_flag(zone, ZONE_CONGESTED);
3022				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3023			}
3024		}
3025
3026		if (i < 0)
 
 
 
 
 
3027			goto out;
3028
3029		for (i = 0; i <= end_zone; i++) {
3030			struct zone *zone = pgdat->node_zones + i;
 
3031
3032			if (!populated_zone(zone))
3033				continue;
 
 
 
 
 
 
3034
3035			lru_pages += zone_reclaimable_pages(zone);
3036
3037			/*
3038			 * If any zone is currently balanced then kswapd will
3039			 * not call compaction as it is expected that the
3040			 * necessary pages are already available.
3041			 */
3042			if (pgdat_needs_compaction &&
3043					zone_watermark_ok(zone, order,
3044						low_wmark_pages(zone),
3045						*classzone_idx, 0))
3046				pgdat_needs_compaction = false;
3047		}
3048
3049		/*
3050		 * If we're getting trouble reclaiming, start doing writepage
3051		 * even in laptop mode.
3052		 */
3053		if (sc.priority < DEF_PRIORITY - 2)
3054			sc.may_writepage = 1;
3055
 
 
 
 
 
 
 
3056		/*
3057		 * Now scan the zone in the dma->highmem direction, stopping
3058		 * at the last zone which needs scanning.
3059		 *
3060		 * We do this because the page allocator works in the opposite
3061		 * direction.  This prevents the page allocator from allocating
3062		 * pages behind kswapd's direction of progress, which would
3063		 * cause too much scanning of the lower zones.
3064		 */
3065		for (i = 0; i <= end_zone; i++) {
3066			struct zone *zone = pgdat->node_zones + i;
3067
3068			if (!populated_zone(zone))
3069				continue;
3070
3071			if (sc.priority != DEF_PRIORITY &&
3072			    !zone_reclaimable(zone))
3073				continue;
3074
3075			sc.nr_scanned = 0;
3076
3077			nr_soft_scanned = 0;
3078			/*
3079			 * Call soft limit reclaim before calling shrink_zone.
3080			 */
3081			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3082							order, sc.gfp_mask,
3083							&nr_soft_scanned);
3084			sc.nr_reclaimed += nr_soft_reclaimed;
3085
3086			/*
3087			 * There should be no need to raise the scanning
3088			 * priority if enough pages are already being scanned
3089			 * that that high watermark would be met at 100%
3090			 * efficiency.
3091			 */
3092			if (kswapd_shrink_zone(zone, end_zone, &sc,
3093					lru_pages, &nr_attempted))
3094				raise_priority = false;
3095		}
3096
3097		/*
3098		 * If the low watermark is met there is no need for processes
3099		 * to be throttled on pfmemalloc_wait as they should not be
3100		 * able to safely make forward progress. Wake them
3101		 */
3102		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3103				pfmemalloc_watermark_ok(pgdat))
3104			wake_up(&pgdat->pfmemalloc_wait);
3105
3106		/*
3107		 * Fragmentation may mean that the system cannot be rebalanced
3108		 * for high-order allocations in all zones. If twice the
3109		 * allocation size has been reclaimed and the zones are still
3110		 * not balanced then recheck the watermarks at order-0 to
3111		 * prevent kswapd reclaiming excessively. Assume that a
3112		 * process requested a high-order can direct reclaim/compact.
3113		 */
3114		if (order && sc.nr_reclaimed >= 2UL << order)
3115			order = sc.order = 0;
3116
3117		/* Check if kswapd should be suspending */
3118		if (try_to_freeze() || kthread_should_stop())
 
 
 
3119			break;
3120
3121		/*
3122		 * Compact if necessary and kswapd is reclaiming at least the
3123		 * high watermark number of pages as requsted
3124		 */
3125		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3126			compact_pgdat(pgdat, order);
3127
3128		/*
3129		 * Raise priority if scanning rate is too low or there was no
3130		 * progress in reclaiming pages
 
3131		 */
3132		if (raise_priority || !sc.nr_reclaimed)
 
 
 
3133			sc.priority--;
3134	} while (sc.priority >= 1 &&
3135		 !pgdat_balanced(pgdat, order, *classzone_idx));
 
 
3136
3137out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138	/*
3139	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3140	 * makes a decision on the order we were last reclaiming at. However,
3141	 * if another caller entered the allocator slow path while kswapd
3142	 * was awake, order will remain at the higher level
3143	 */
3144	*classzone_idx = end_zone;
3145	return order;
3146}
3147
3148static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149{
3150	long remaining = 0;
3151	DEFINE_WAIT(wait);
3152
3153	if (freezing(current) || kthread_should_stop())
3154		return;
3155
3156	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3157
3158	/* Try to sleep for a short interval */
3159	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161		finish_wait(&pgdat->kswapd_wait, &wait);
3162		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3163	}
3164
3165	/*
3166	 * After a short sleep, check if it was a premature sleep. If not, then
3167	 * go fully to sleep until explicitly woken up.
3168	 */
3169	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 
3170		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3171
3172		/*
3173		 * vmstat counters are not perfectly accurate and the estimated
3174		 * value for counters such as NR_FREE_PAGES can deviate from the
3175		 * true value by nr_online_cpus * threshold. To avoid the zone
3176		 * watermarks being breached while under pressure, we reduce the
3177		 * per-cpu vmstat threshold while kswapd is awake and restore
3178		 * them before going back to sleep.
3179		 */
3180		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3181
3182		/*
3183		 * Compaction records what page blocks it recently failed to
3184		 * isolate pages from and skips them in the future scanning.
3185		 * When kswapd is going to sleep, it is reasonable to assume
3186		 * that pages and compaction may succeed so reset the cache.
3187		 */
3188		reset_isolation_suitable(pgdat);
3189
3190		if (!kthread_should_stop())
3191			schedule();
3192
3193		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3194	} else {
3195		if (remaining)
3196			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3197		else
3198			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3199	}
3200	finish_wait(&pgdat->kswapd_wait, &wait);
3201}
3202
3203/*
3204 * The background pageout daemon, started as a kernel thread
3205 * from the init process.
3206 *
3207 * This basically trickles out pages so that we have _some_
3208 * free memory available even if there is no other activity
3209 * that frees anything up. This is needed for things like routing
3210 * etc, where we otherwise might have all activity going on in
3211 * asynchronous contexts that cannot page things out.
3212 *
3213 * If there are applications that are active memory-allocators
3214 * (most normal use), this basically shouldn't matter.
3215 */
3216static int kswapd(void *p)
3217{
3218	unsigned long order, new_order;
3219	unsigned balanced_order;
3220	int classzone_idx, new_classzone_idx;
3221	int balanced_classzone_idx;
3222	pg_data_t *pgdat = (pg_data_t*)p;
3223	struct task_struct *tsk = current;
3224
3225	struct reclaim_state reclaim_state = {
3226		.reclaimed_slab = 0,
3227	};
3228	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3229
3230	lockdep_set_current_reclaim_state(GFP_KERNEL);
3231
3232	if (!cpumask_empty(cpumask))
3233		set_cpus_allowed_ptr(tsk, cpumask);
3234	current->reclaim_state = &reclaim_state;
3235
3236	/*
3237	 * Tell the memory management that we're a "memory allocator",
3238	 * and that if we need more memory we should get access to it
3239	 * regardless (see "__alloc_pages()"). "kswapd" should
3240	 * never get caught in the normal page freeing logic.
3241	 *
3242	 * (Kswapd normally doesn't need memory anyway, but sometimes
3243	 * you need a small amount of memory in order to be able to
3244	 * page out something else, and this flag essentially protects
3245	 * us from recursively trying to free more memory as we're
3246	 * trying to free the first piece of memory in the first place).
3247	 */
3248	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3249	set_freezable();
3250
3251	order = new_order = 0;
3252	balanced_order = 0;
3253	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3254	balanced_classzone_idx = classzone_idx;
3255	for ( ; ; ) {
3256		bool ret;
3257
3258		/*
3259		 * If the last balance_pgdat was unsuccessful it's unlikely a
3260		 * new request of a similar or harder type will succeed soon
3261		 * so consider going to sleep on the basis we reclaimed at
3262		 */
3263		if (balanced_classzone_idx >= new_classzone_idx &&
3264					balanced_order == new_order) {
3265			new_order = pgdat->kswapd_max_order;
3266			new_classzone_idx = pgdat->classzone_idx;
3267			pgdat->kswapd_max_order =  0;
3268			pgdat->classzone_idx = pgdat->nr_zones - 1;
3269		}
3270
3271		if (order < new_order || classzone_idx > new_classzone_idx) {
3272			/*
3273			 * Don't sleep if someone wants a larger 'order'
3274			 * allocation or has tigher zone constraints
3275			 */
3276			order = new_order;
3277			classzone_idx = new_classzone_idx;
3278		} else {
3279			kswapd_try_to_sleep(pgdat, balanced_order,
3280						balanced_classzone_idx);
3281			order = pgdat->kswapd_max_order;
3282			classzone_idx = pgdat->classzone_idx;
3283			new_order = order;
3284			new_classzone_idx = classzone_idx;
3285			pgdat->kswapd_max_order = 0;
3286			pgdat->classzone_idx = pgdat->nr_zones - 1;
3287		}
3288
3289		ret = try_to_freeze();
3290		if (kthread_should_stop())
3291			break;
3292
3293		/*
3294		 * We can speed up thawing tasks if we don't call balance_pgdat
3295		 * after returning from the refrigerator
3296		 */
3297		if (!ret) {
3298			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3299			balanced_classzone_idx = classzone_idx;
3300			balanced_order = balance_pgdat(pgdat, order,
3301						&balanced_classzone_idx);
3302		}
 
 
 
 
 
 
 
 
 
 
 
3303	}
3304
3305	current->reclaim_state = NULL;
 
3306	return 0;
3307}
3308
3309/*
3310 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
3311 */
3312void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
3313{
3314	pg_data_t *pgdat;
 
3315
3316	if (!populated_zone(zone))
3317		return;
3318
3319	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3320		return;
 
3321	pgdat = zone->zone_pgdat;
3322	if (pgdat->kswapd_max_order < order) {
3323		pgdat->kswapd_max_order = order;
3324		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3325	}
 
 
 
 
3326	if (!waitqueue_active(&pgdat->kswapd_wait))
3327		return;
3328	if (zone_balanced(zone, order, 0, 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
3329		return;
 
3330
3331	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
3332	wake_up_interruptible(&pgdat->kswapd_wait);
3333}
3334
3335#ifdef CONFIG_HIBERNATION
3336/*
3337 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3338 * freed pages.
3339 *
3340 * Rather than trying to age LRUs the aim is to preserve the overall
3341 * LRU order by reclaiming preferentially
3342 * inactive > active > active referenced > active mapped
3343 */
3344unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3345{
3346	struct reclaim_state reclaim_state;
3347	struct scan_control sc = {
 
3348		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
 
3349		.may_swap = 1,
3350		.may_unmap = 1,
3351		.may_writepage = 1,
3352		.nr_to_reclaim = nr_to_reclaim,
3353		.hibernation_mode = 1,
3354		.order = 0,
3355		.priority = DEF_PRIORITY,
3356	};
3357	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358	struct task_struct *p = current;
3359	unsigned long nr_reclaimed;
 
3360
3361	p->flags |= PF_MEMALLOC;
3362	lockdep_set_current_reclaim_state(sc.gfp_mask);
3363	reclaim_state.reclaimed_slab = 0;
3364	p->reclaim_state = &reclaim_state;
3365
3366	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367
3368	p->reclaim_state = NULL;
3369	lockdep_clear_current_reclaim_state();
3370	p->flags &= ~PF_MEMALLOC;
3371
3372	return nr_reclaimed;
3373}
3374#endif /* CONFIG_HIBERNATION */
3375
3376/* It's optimal to keep kswapds on the same CPUs as their memory, but
3377   not required for correctness.  So if the last cpu in a node goes
3378   away, we get changed to run anywhere: as the first one comes back,
3379   restore their cpu bindings. */
3380static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3381			void *hcpu)
3382{
3383	int nid;
3384
3385	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3386		for_each_node_state(nid, N_MEMORY) {
3387			pg_data_t *pgdat = NODE_DATA(nid);
3388			const struct cpumask *mask;
3389
3390			mask = cpumask_of_node(pgdat->node_id);
3391
3392			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3393				/* One of our CPUs online: restore mask */
3394				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3395		}
3396	}
3397	return NOTIFY_OK;
3398}
3399
3400/*
3401 * This kswapd start function will be called by init and node-hot-add.
3402 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3403 */
3404int kswapd_run(int nid)
3405{
3406	pg_data_t *pgdat = NODE_DATA(nid);
3407	int ret = 0;
3408
3409	if (pgdat->kswapd)
3410		return 0;
3411
3412	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3413	if (IS_ERR(pgdat->kswapd)) {
3414		/* failure at boot is fatal */
3415		BUG_ON(system_state == SYSTEM_BOOTING);
3416		pr_err("Failed to start kswapd on node %d\n", nid);
3417		ret = PTR_ERR(pgdat->kswapd);
3418		pgdat->kswapd = NULL;
3419	}
3420	return ret;
3421}
3422
3423/*
3424 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3425 * hold lock_memory_hotplug().
3426 */
3427void kswapd_stop(int nid)
3428{
3429	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3430
3431	if (kswapd) {
3432		kthread_stop(kswapd);
3433		NODE_DATA(nid)->kswapd = NULL;
3434	}
3435}
3436
3437static int __init kswapd_init(void)
3438{
3439	int nid;
3440
3441	swap_setup();
3442	for_each_node_state(nid, N_MEMORY)
3443 		kswapd_run(nid);
3444	hotcpu_notifier(cpu_callback, 0);
3445	return 0;
3446}
3447
3448module_init(kswapd_init)
3449
3450#ifdef CONFIG_NUMA
3451/*
3452 * Zone reclaim mode
3453 *
3454 * If non-zero call zone_reclaim when the number of free pages falls below
3455 * the watermarks.
3456 */
3457int zone_reclaim_mode __read_mostly;
3458
3459#define RECLAIM_OFF 0
3460#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3461#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3462#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3463
3464/*
3465 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3466 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3467 * a zone.
3468 */
3469#define ZONE_RECLAIM_PRIORITY 4
3470
3471/*
3472 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3473 * occur.
3474 */
3475int sysctl_min_unmapped_ratio = 1;
3476
3477/*
3478 * If the number of slab pages in a zone grows beyond this percentage then
3479 * slab reclaim needs to occur.
3480 */
3481int sysctl_min_slab_ratio = 5;
3482
3483static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3484{
3485	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3486	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3487		zone_page_state(zone, NR_ACTIVE_FILE);
3488
3489	/*
3490	 * It's possible for there to be more file mapped pages than
3491	 * accounted for by the pages on the file LRU lists because
3492	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3493	 */
3494	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3495}
3496
3497/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3498static long zone_pagecache_reclaimable(struct zone *zone)
3499{
3500	long nr_pagecache_reclaimable;
3501	long delta = 0;
3502
3503	/*
3504	 * If RECLAIM_SWAP is set, then all file pages are considered
3505	 * potentially reclaimable. Otherwise, we have to worry about
3506	 * pages like swapcache and zone_unmapped_file_pages() provides
3507	 * a better estimate
3508	 */
3509	if (zone_reclaim_mode & RECLAIM_SWAP)
3510		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3511	else
3512		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3513
3514	/* If we can't clean pages, remove dirty pages from consideration */
3515	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3516		delta += zone_page_state(zone, NR_FILE_DIRTY);
3517
3518	/* Watch for any possible underflows due to delta */
3519	if (unlikely(delta > nr_pagecache_reclaimable))
3520		delta = nr_pagecache_reclaimable;
3521
3522	return nr_pagecache_reclaimable - delta;
3523}
3524
3525/*
3526 * Try to free up some pages from this zone through reclaim.
3527 */
3528static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3529{
3530	/* Minimum pages needed in order to stay on node */
3531	const unsigned long nr_pages = 1 << order;
3532	struct task_struct *p = current;
3533	struct reclaim_state reclaim_state;
3534	struct scan_control sc = {
3535		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3536		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3537		.may_swap = 1,
3538		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3540		.order = order,
3541		.priority = ZONE_RECLAIM_PRIORITY,
 
 
 
 
3542	};
3543	struct shrink_control shrink = {
3544		.gfp_mask = sc.gfp_mask,
3545	};
3546	unsigned long nr_slab_pages0, nr_slab_pages1;
3547
3548	cond_resched();
 
 
3549	/*
3550	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3551	 * and we also need to be able to write out pages for RECLAIM_WRITE
3552	 * and RECLAIM_SWAP.
3553	 */
3554	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3555	lockdep_set_current_reclaim_state(gfp_mask);
3556	reclaim_state.reclaimed_slab = 0;
3557	p->reclaim_state = &reclaim_state;
3558
3559	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3560		/*
3561		 * Free memory by calling shrink zone with increasing
3562		 * priorities until we have enough memory freed.
3563		 */
3564		do {
3565			shrink_zone(zone, &sc);
3566		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3567	}
3568
3569	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3570	if (nr_slab_pages0 > zone->min_slab_pages) {
3571		/*
3572		 * shrink_slab() does not currently allow us to determine how
3573		 * many pages were freed in this zone. So we take the current
3574		 * number of slab pages and shake the slab until it is reduced
3575		 * by the same nr_pages that we used for reclaiming unmapped
3576		 * pages.
3577		 */
3578		nodes_clear(shrink.nodes_to_scan);
3579		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3580		for (;;) {
3581			unsigned long lru_pages = zone_reclaimable_pages(zone);
3582
3583			/* No reclaimable slab or very low memory pressure */
3584			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3585				break;
3586
3587			/* Freed enough memory */
3588			nr_slab_pages1 = zone_page_state(zone,
3589							NR_SLAB_RECLAIMABLE);
3590			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3591				break;
3592		}
3593
3594		/*
3595		 * Update nr_reclaimed by the number of slab pages we
3596		 * reclaimed from this zone.
3597		 */
3598		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3599		if (nr_slab_pages1 < nr_slab_pages0)
3600			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3601	}
3602
3603	p->reclaim_state = NULL;
3604	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3605	lockdep_clear_current_reclaim_state();
3606	return sc.nr_reclaimed >= nr_pages;
3607}
3608
3609int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3610{
3611	int node_id;
3612	int ret;
3613
3614	/*
3615	 * Zone reclaim reclaims unmapped file backed pages and
3616	 * slab pages if we are over the defined limits.
3617	 *
3618	 * A small portion of unmapped file backed pages is needed for
3619	 * file I/O otherwise pages read by file I/O will be immediately
3620	 * thrown out if the zone is overallocated. So we do not reclaim
3621	 * if less than a specified percentage of the zone is used by
3622	 * unmapped file backed pages.
3623	 */
3624	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3625	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3626		return ZONE_RECLAIM_FULL;
3627
3628	if (!zone_reclaimable(zone))
3629		return ZONE_RECLAIM_FULL;
3630
3631	/*
3632	 * Do not scan if the allocation should not be delayed.
3633	 */
3634	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3635		return ZONE_RECLAIM_NOSCAN;
3636
3637	/*
3638	 * Only run zone reclaim on the local zone or on zones that do not
3639	 * have associated processors. This will favor the local processor
3640	 * over remote processors and spread off node memory allocations
3641	 * as wide as possible.
3642	 */
3643	node_id = zone_to_nid(zone);
3644	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3645		return ZONE_RECLAIM_NOSCAN;
3646
3647	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3648		return ZONE_RECLAIM_NOSCAN;
3649
3650	ret = __zone_reclaim(zone, gfp_mask, order);
3651	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3652
3653	if (!ret)
3654		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3655
3656	return ret;
3657}
3658#endif
3659
3660/*
3661 * page_evictable - test whether a page is evictable
3662 * @page: the page to test
3663 *
3664 * Test whether page is evictable--i.e., should be placed on active/inactive
3665 * lists vs unevictable list.
3666 *
3667 * Reasons page might not be evictable:
3668 * (1) page's mapping marked unevictable
3669 * (2) page is part of an mlocked VMA
3670 *
3671 */
3672int page_evictable(struct page *page)
3673{
3674	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3675}
3676
3677#ifdef CONFIG_SHMEM
3678/**
3679 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3680 * @pages:	array of pages to check
3681 * @nr_pages:	number of pages to check
3682 *
3683 * Checks pages for evictability and moves them to the appropriate lru list.
3684 *
3685 * This function is only used for SysV IPC SHM_UNLOCK.
3686 */
3687void check_move_unevictable_pages(struct page **pages, int nr_pages)
3688{
3689	struct lruvec *lruvec;
3690	struct zone *zone = NULL;
3691	int pgscanned = 0;
3692	int pgrescued = 0;
3693	int i;
3694
3695	for (i = 0; i < nr_pages; i++) {
3696		struct page *page = pages[i];
3697		struct zone *pagezone;
 
 
 
3698
3699		pgscanned++;
3700		pagezone = page_zone(page);
3701		if (pagezone != zone) {
3702			if (zone)
3703				spin_unlock_irq(&zone->lru_lock);
3704			zone = pagezone;
3705			spin_lock_irq(&zone->lru_lock);
3706		}
3707		lruvec = mem_cgroup_page_lruvec(page, zone);
3708
3709		if (!PageLRU(page) || !PageUnevictable(page))
 
3710			continue;
3711
3712		if (page_evictable(page)) {
3713			enum lru_list lru = page_lru_base_type(page);
3714
3715			VM_BUG_ON_PAGE(PageActive(page), page);
3716			ClearPageUnevictable(page);
3717			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3718			add_page_to_lru_list(page, lruvec, lru);
3719			pgrescued++;
3720		}
 
3721	}
3722
3723	if (zone) {
3724		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3725		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3726		spin_unlock_irq(&zone->lru_lock);
 
 
3727	}
3728}
3729#endif /* CONFIG_SHMEM */
3730
3731static void warn_scan_unevictable_pages(void)
3732{
3733	printk_once(KERN_WARNING
3734		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3735		    "disabled for lack of a legitimate use case.  If you have "
3736		    "one, please send an email to linux-mm@kvack.org.\n",
3737		    current->comm);
3738}
3739
3740/*
3741 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3742 * all nodes' unevictable lists for evictable pages
3743 */
3744unsigned long scan_unevictable_pages;
3745
3746int scan_unevictable_handler(struct ctl_table *table, int write,
3747			   void __user *buffer,
3748			   size_t *length, loff_t *ppos)
3749{
3750	warn_scan_unevictable_pages();
3751	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3752	scan_unevictable_pages = 0;
3753	return 0;
3754}
3755
3756#ifdef CONFIG_NUMA
3757/*
3758 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3759 * a specified node's per zone unevictable lists for evictable pages.
3760 */
3761
3762static ssize_t read_scan_unevictable_node(struct device *dev,
3763					  struct device_attribute *attr,
3764					  char *buf)
3765{
3766	warn_scan_unevictable_pages();
3767	return sprintf(buf, "0\n");	/* always zero; should fit... */
3768}
3769
3770static ssize_t write_scan_unevictable_node(struct device *dev,
3771					   struct device_attribute *attr,
3772					const char *buf, size_t count)
3773{
3774	warn_scan_unevictable_pages();
3775	return 1;
3776}
3777
3778
3779static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3780			read_scan_unevictable_node,
3781			write_scan_unevictable_node);
3782
3783int scan_unevictable_register_node(struct node *node)
3784{
3785	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3786}
3787
3788void scan_unevictable_unregister_node(struct node *node)
3789{
3790	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3791}
3792#endif