Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
 
 
 
 
 
 
  68	/*
  69	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70	 * are scanned.
  71	 */
  72	nodemask_t	*nodemask;
  73
  74	/*
  75	 * The memory cgroup that hit its limit and as a result is the
  76	 * primary target of this reclaim invocation.
  77	 */
  78	struct mem_cgroup *target_mem_cgroup;
  79
  80	/*
  81	 * Scan pressure balancing between anon and file LRUs
  82	 */
  83	unsigned long	anon_cost;
  84	unsigned long	file_cost;
  85
  86	/* Can active pages be deactivated as part of reclaim? */
  87#define DEACTIVATE_ANON 1
  88#define DEACTIVATE_FILE 2
  89	unsigned int may_deactivate:2;
  90	unsigned int force_deactivate:1;
  91	unsigned int skipped_deactivate:1;
  92
  93	/* Writepage batching in laptop mode; RECLAIM_WRITE */
  94	unsigned int may_writepage:1;
  95
  96	/* Can mapped pages be reclaimed? */
  97	unsigned int may_unmap:1;
  98
  99	/* Can pages be swapped as part of reclaim? */
 100	unsigned int may_swap:1;
 101
 102	/*
 103	 * Cgroup memory below memory.low is protected as long as we
 104	 * don't threaten to OOM. If any cgroup is reclaimed at
 105	 * reduced force or passed over entirely due to its memory.low
 106	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 107	 * result, then go back for one more cycle that reclaims the protected
 108	 * memory (memcg_low_reclaim) to avert OOM.
 109	 */
 110	unsigned int memcg_low_reclaim:1;
 111	unsigned int memcg_low_skipped:1;
 112
 113	unsigned int hibernation_mode:1;
 114
 115	/* One of the zones is ready for compaction */
 116	unsigned int compaction_ready:1;
 117
 118	/* There is easily reclaimable cold cache in the current node */
 119	unsigned int cache_trim_mode:1;
 120
 121	/* The file pages on the current node are dangerously low */
 122	unsigned int file_is_tiny:1;
 123
 124	/* Allocation order */
 125	s8 order;
 126
 127	/* Scan (total_size >> priority) pages at once */
 128	s8 priority;
 129
 130	/* The highest zone to isolate pages for reclaim from */
 131	s8 reclaim_idx;
 132
 133	/* This context's GFP mask */
 134	gfp_t gfp_mask;
 135
 136	/* Incremented by the number of inactive pages that were scanned */
 137	unsigned long nr_scanned;
 138
 139	/* Number of pages freed so far during a call to shrink_zones() */
 140	unsigned long nr_reclaimed;
 141
 142	struct {
 143		unsigned int dirty;
 144		unsigned int unqueued_dirty;
 145		unsigned int congested;
 146		unsigned int writeback;
 147		unsigned int immediate;
 148		unsigned int file_taken;
 149		unsigned int taken;
 150	} nr;
 151
 152	/* for recording the reclaimed slab by now */
 153	struct reclaim_state reclaim_state;
 154};
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156#ifdef ARCH_HAS_PREFETCHW
 157#define prefetchw_prev_lru_page(_page, _base, _field)			\
 158	do {								\
 159		if ((_page)->lru.prev != _base) {			\
 160			struct page *prev;				\
 161									\
 162			prev = lru_to_page(&(_page->lru));		\
 163			prefetchw(&prev->_field);			\
 164		}							\
 165	} while (0)
 166#else
 167#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 168#endif
 169
 170/*
 171 * From 0 .. 200.  Higher means more swappy.
 172 */
 173int vm_swappiness = 60;
 174
 175static void set_task_reclaim_state(struct task_struct *task,
 176				   struct reclaim_state *rs)
 177{
 178	/* Check for an overwrite */
 179	WARN_ON_ONCE(rs && task->reclaim_state);
 180
 181	/* Check for the nulling of an already-nulled member */
 182	WARN_ON_ONCE(!rs && !task->reclaim_state);
 183
 184	task->reclaim_state = rs;
 185}
 186
 187static LIST_HEAD(shrinker_list);
 188static DECLARE_RWSEM(shrinker_rwsem);
 189
 190#ifdef CONFIG_MEMCG
 191static int shrinker_nr_max;
 192
 193/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
 194static inline int shrinker_map_size(int nr_items)
 195{
 196	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
 197}
 198
 199static inline int shrinker_defer_size(int nr_items)
 200{
 201	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
 202}
 203
 204static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
 205						     int nid)
 206{
 207	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
 208					 lockdep_is_held(&shrinker_rwsem));
 209}
 210
 211static int expand_one_shrinker_info(struct mem_cgroup *memcg,
 212				    int map_size, int defer_size,
 213				    int old_map_size, int old_defer_size)
 214{
 215	struct shrinker_info *new, *old;
 216	struct mem_cgroup_per_node *pn;
 217	int nid;
 218	int size = map_size + defer_size;
 219
 220	for_each_node(nid) {
 221		pn = memcg->nodeinfo[nid];
 222		old = shrinker_info_protected(memcg, nid);
 223		/* Not yet online memcg */
 224		if (!old)
 225			return 0;
 226
 227		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 228		if (!new)
 229			return -ENOMEM;
 230
 231		new->nr_deferred = (atomic_long_t *)(new + 1);
 232		new->map = (void *)new->nr_deferred + defer_size;
 233
 234		/* map: set all old bits, clear all new bits */
 235		memset(new->map, (int)0xff, old_map_size);
 236		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
 237		/* nr_deferred: copy old values, clear all new values */
 238		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
 239		memset((void *)new->nr_deferred + old_defer_size, 0,
 240		       defer_size - old_defer_size);
 241
 242		rcu_assign_pointer(pn->shrinker_info, new);
 243		kvfree_rcu(old, rcu);
 244	}
 245
 246	return 0;
 247}
 248
 249void free_shrinker_info(struct mem_cgroup *memcg)
 250{
 251	struct mem_cgroup_per_node *pn;
 252	struct shrinker_info *info;
 253	int nid;
 254
 255	for_each_node(nid) {
 256		pn = memcg->nodeinfo[nid];
 257		info = rcu_dereference_protected(pn->shrinker_info, true);
 258		kvfree(info);
 259		rcu_assign_pointer(pn->shrinker_info, NULL);
 260	}
 261}
 262
 263int alloc_shrinker_info(struct mem_cgroup *memcg)
 264{
 265	struct shrinker_info *info;
 266	int nid, size, ret = 0;
 267	int map_size, defer_size = 0;
 268
 269	down_write(&shrinker_rwsem);
 270	map_size = shrinker_map_size(shrinker_nr_max);
 271	defer_size = shrinker_defer_size(shrinker_nr_max);
 272	size = map_size + defer_size;
 273	for_each_node(nid) {
 274		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
 275		if (!info) {
 276			free_shrinker_info(memcg);
 277			ret = -ENOMEM;
 278			break;
 279		}
 280		info->nr_deferred = (atomic_long_t *)(info + 1);
 281		info->map = (void *)info->nr_deferred + defer_size;
 282		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
 283	}
 284	up_write(&shrinker_rwsem);
 285
 286	return ret;
 287}
 288
 289static inline bool need_expand(int nr_max)
 290{
 291	return round_up(nr_max, BITS_PER_LONG) >
 292	       round_up(shrinker_nr_max, BITS_PER_LONG);
 293}
 294
 295static int expand_shrinker_info(int new_id)
 296{
 297	int ret = 0;
 298	int new_nr_max = new_id + 1;
 299	int map_size, defer_size = 0;
 300	int old_map_size, old_defer_size = 0;
 301	struct mem_cgroup *memcg;
 302
 303	if (!need_expand(new_nr_max))
 304		goto out;
 305
 306	if (!root_mem_cgroup)
 307		goto out;
 308
 309	lockdep_assert_held(&shrinker_rwsem);
 310
 311	map_size = shrinker_map_size(new_nr_max);
 312	defer_size = shrinker_defer_size(new_nr_max);
 313	old_map_size = shrinker_map_size(shrinker_nr_max);
 314	old_defer_size = shrinker_defer_size(shrinker_nr_max);
 315
 316	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 317	do {
 318		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
 319					       old_map_size, old_defer_size);
 320		if (ret) {
 321			mem_cgroup_iter_break(NULL, memcg);
 322			goto out;
 323		}
 324	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 325out:
 326	if (!ret)
 327		shrinker_nr_max = new_nr_max;
 328
 329	return ret;
 330}
 331
 332void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 333{
 334	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 335		struct shrinker_info *info;
 336
 337		rcu_read_lock();
 338		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
 339		/* Pairs with smp mb in shrink_slab() */
 340		smp_mb__before_atomic();
 341		set_bit(shrinker_id, info->map);
 342		rcu_read_unlock();
 343	}
 344}
 345
 346static DEFINE_IDR(shrinker_idr);
 347
 348static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 349{
 350	int id, ret = -ENOMEM;
 351
 352	if (mem_cgroup_disabled())
 353		return -ENOSYS;
 354
 355	down_write(&shrinker_rwsem);
 356	/* This may call shrinker, so it must use down_read_trylock() */
 357	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
 358	if (id < 0)
 359		goto unlock;
 360
 361	if (id >= shrinker_nr_max) {
 362		if (expand_shrinker_info(id)) {
 363			idr_remove(&shrinker_idr, id);
 364			goto unlock;
 365		}
 366	}
 367	shrinker->id = id;
 368	ret = 0;
 369unlock:
 370	up_write(&shrinker_rwsem);
 371	return ret;
 372}
 373
 374static void unregister_memcg_shrinker(struct shrinker *shrinker)
 375{
 376	int id = shrinker->id;
 377
 378	BUG_ON(id < 0);
 379
 380	lockdep_assert_held(&shrinker_rwsem);
 381
 382	idr_remove(&shrinker_idr, id);
 383}
 384
 385static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 386				   struct mem_cgroup *memcg)
 387{
 388	struct shrinker_info *info;
 389
 390	info = shrinker_info_protected(memcg, nid);
 391	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
 392}
 393
 394static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 395				  struct mem_cgroup *memcg)
 396{
 397	struct shrinker_info *info;
 398
 399	info = shrinker_info_protected(memcg, nid);
 400	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
 401}
 402
 403void reparent_shrinker_deferred(struct mem_cgroup *memcg)
 404{
 405	int i, nid;
 406	long nr;
 407	struct mem_cgroup *parent;
 408	struct shrinker_info *child_info, *parent_info;
 409
 410	parent = parent_mem_cgroup(memcg);
 411	if (!parent)
 412		parent = root_mem_cgroup;
 413
 414	/* Prevent from concurrent shrinker_info expand */
 415	down_read(&shrinker_rwsem);
 416	for_each_node(nid) {
 417		child_info = shrinker_info_protected(memcg, nid);
 418		parent_info = shrinker_info_protected(parent, nid);
 419		for (i = 0; i < shrinker_nr_max; i++) {
 420			nr = atomic_long_read(&child_info->nr_deferred[i]);
 421			atomic_long_add(nr, &parent_info->nr_deferred[i]);
 422		}
 423	}
 424	up_read(&shrinker_rwsem);
 425}
 426
 427static bool cgroup_reclaim(struct scan_control *sc)
 428{
 429	return sc->target_mem_cgroup;
 430}
 431
 432/**
 433 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 434 * @sc: scan_control in question
 435 *
 436 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 437 * completely broken with the legacy memcg and direct stalling in
 438 * shrink_page_list() is used for throttling instead, which lacks all the
 439 * niceties such as fairness, adaptive pausing, bandwidth proportional
 440 * allocation and configurability.
 441 *
 442 * This function tests whether the vmscan currently in progress can assume
 443 * that the normal dirty throttling mechanism is operational.
 444 */
 445static bool writeback_throttling_sane(struct scan_control *sc)
 446{
 447	if (!cgroup_reclaim(sc))
 
 
 448		return true;
 449#ifdef CONFIG_CGROUP_WRITEBACK
 450	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 451		return true;
 452#endif
 453	return false;
 454}
 455#else
 456static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 457{
 458	return -ENOSYS;
 459}
 460
 461static void unregister_memcg_shrinker(struct shrinker *shrinker)
 462{
 
 463}
 464
 465static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
 466				   struct mem_cgroup *memcg)
 467{
 468	return 0;
 469}
 470
 471static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
 472				  struct mem_cgroup *memcg)
 473{
 474	return 0;
 475}
 476
 477static bool cgroup_reclaim(struct scan_control *sc)
 478{
 479	return false;
 480}
 481
 482static bool writeback_throttling_sane(struct scan_control *sc)
 483{
 484	return true;
 485}
 486#endif
 487
 488static long xchg_nr_deferred(struct shrinker *shrinker,
 489			     struct shrink_control *sc)
 490{
 491	int nid = sc->nid;
 492
 493	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 494		nid = 0;
 495
 496	if (sc->memcg &&
 497	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 498		return xchg_nr_deferred_memcg(nid, shrinker,
 499					      sc->memcg);
 500
 501	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 502}
 503
 504
 505static long add_nr_deferred(long nr, struct shrinker *shrinker,
 506			    struct shrink_control *sc)
 507{
 508	int nid = sc->nid;
 509
 510	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 511		nid = 0;
 512
 513	if (sc->memcg &&
 514	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
 515		return add_nr_deferred_memcg(nr, nid, shrinker,
 516					     sc->memcg);
 517
 518	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
 519}
 520
 521/*
 522 * This misses isolated pages which are not accounted for to save counters.
 523 * As the data only determines if reclaim or compaction continues, it is
 524 * not expected that isolated pages will be a dominating factor.
 525 */
 526unsigned long zone_reclaimable_pages(struct zone *zone)
 527{
 528	unsigned long nr;
 529
 530	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 531		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 532	if (get_nr_swap_pages() > 0)
 533		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 534			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 535
 536	return nr;
 537}
 538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539/**
 540 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 541 * @lruvec: lru vector
 542 * @lru: lru to use
 543 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 544 */
 545static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 546				     int zone_idx)
 547{
 548	unsigned long size = 0;
 549	int zid;
 550
 551	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
 
 
 
 
 
 552		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 
 553
 554		if (!managed_zone(zone))
 555			continue;
 556
 557		if (!mem_cgroup_disabled())
 558			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 559		else
 560			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 
 
 561	}
 562	return size;
 
 
 563}
 564
 565/*
 566 * Add a shrinker callback to be called from the vm.
 567 */
 568int prealloc_shrinker(struct shrinker *shrinker)
 569{
 570	unsigned int size;
 571	int err;
 572
 573	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 574		err = prealloc_memcg_shrinker(shrinker);
 575		if (err != -ENOSYS)
 576			return err;
 577
 578		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
 579	}
 580
 581	size = sizeof(*shrinker->nr_deferred);
 582	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 583		size *= nr_node_ids;
 584
 585	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 586	if (!shrinker->nr_deferred)
 587		return -ENOMEM;
 588
 589	return 0;
 590}
 591
 592void free_prealloced_shrinker(struct shrinker *shrinker)
 593{
 594	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 595		down_write(&shrinker_rwsem);
 596		unregister_memcg_shrinker(shrinker);
 597		up_write(&shrinker_rwsem);
 598		return;
 599	}
 600
 601	kfree(shrinker->nr_deferred);
 602	shrinker->nr_deferred = NULL;
 603}
 604
 605void register_shrinker_prepared(struct shrinker *shrinker)
 606{
 607	down_write(&shrinker_rwsem);
 608	list_add_tail(&shrinker->list, &shrinker_list);
 609	shrinker->flags |= SHRINKER_REGISTERED;
 610	up_write(&shrinker_rwsem);
 611}
 612
 613int register_shrinker(struct shrinker *shrinker)
 614{
 615	int err = prealloc_shrinker(shrinker);
 616
 617	if (err)
 618		return err;
 619	register_shrinker_prepared(shrinker);
 620	return 0;
 621}
 622EXPORT_SYMBOL(register_shrinker);
 623
 624/*
 625 * Remove one
 626 */
 627void unregister_shrinker(struct shrinker *shrinker)
 628{
 629	if (!(shrinker->flags & SHRINKER_REGISTERED))
 630		return;
 631
 632	down_write(&shrinker_rwsem);
 633	list_del(&shrinker->list);
 634	shrinker->flags &= ~SHRINKER_REGISTERED;
 635	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 636		unregister_memcg_shrinker(shrinker);
 637	up_write(&shrinker_rwsem);
 638
 639	kfree(shrinker->nr_deferred);
 640	shrinker->nr_deferred = NULL;
 641}
 642EXPORT_SYMBOL(unregister_shrinker);
 643
 644#define SHRINK_BATCH 128
 645
 646static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 647				    struct shrinker *shrinker, int priority)
 
 
 648{
 649	unsigned long freed = 0;
 650	unsigned long long delta;
 651	long total_scan;
 652	long freeable;
 653	long nr;
 654	long new_nr;
 
 655	long batch_size = shrinker->batch ? shrinker->batch
 656					  : SHRINK_BATCH;
 657	long scanned = 0, next_deferred;
 658
 659	freeable = shrinker->count_objects(shrinker, shrinkctl);
 660	if (freeable == 0 || freeable == SHRINK_EMPTY)
 661		return freeable;
 662
 663	/*
 664	 * copy the current shrinker scan count into a local variable
 665	 * and zero it so that other concurrent shrinker invocations
 666	 * don't also do this scanning work.
 667	 */
 668	nr = xchg_nr_deferred(shrinker, shrinkctl);
 669
 670	if (shrinker->seeks) {
 671		delta = freeable >> priority;
 672		delta *= 4;
 673		do_div(delta, shrinker->seeks);
 674	} else {
 675		/*
 676		 * These objects don't require any IO to create. Trim
 677		 * them aggressively under memory pressure to keep
 678		 * them from causing refetches in the IO caches.
 679		 */
 680		delta = freeable / 2;
 681	}
 682
 683	total_scan = nr >> priority;
 684	total_scan += delta;
 685	total_scan = min(total_scan, (2 * freeable));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 688				   freeable, delta, total_scan, priority);
 
 689
 690	/*
 691	 * Normally, we should not scan less than batch_size objects in one
 692	 * pass to avoid too frequent shrinker calls, but if the slab has less
 693	 * than batch_size objects in total and we are really tight on memory,
 694	 * we will try to reclaim all available objects, otherwise we can end
 695	 * up failing allocations although there are plenty of reclaimable
 696	 * objects spread over several slabs with usage less than the
 697	 * batch_size.
 698	 *
 699	 * We detect the "tight on memory" situations by looking at the total
 700	 * number of objects we want to scan (total_scan). If it is greater
 701	 * than the total number of objects on slab (freeable), we must be
 702	 * scanning at high prio and therefore should try to reclaim as much as
 703	 * possible.
 704	 */
 705	while (total_scan >= batch_size ||
 706	       total_scan >= freeable) {
 707		unsigned long ret;
 708		unsigned long nr_to_scan = min(batch_size, total_scan);
 709
 710		shrinkctl->nr_to_scan = nr_to_scan;
 711		shrinkctl->nr_scanned = nr_to_scan;
 712		ret = shrinker->scan_objects(shrinker, shrinkctl);
 713		if (ret == SHRINK_STOP)
 714			break;
 715		freed += ret;
 716
 717		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 718		total_scan -= shrinkctl->nr_scanned;
 719		scanned += shrinkctl->nr_scanned;
 720
 721		cond_resched();
 722	}
 723
 724	/*
 725	 * The deferred work is increased by any new work (delta) that wasn't
 726	 * done, decreased by old deferred work that was done now.
 727	 *
 728	 * And it is capped to two times of the freeable items.
 729	 */
 730	next_deferred = max_t(long, (nr + delta - scanned), 0);
 731	next_deferred = min(next_deferred, (2 * freeable));
 732
 733	/*
 734	 * move the unused scan count back into the shrinker in a
 735	 * manner that handles concurrent updates.
 
 736	 */
 737	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
 738
 739	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
 740	return freed;
 741}
 742
 743#ifdef CONFIG_MEMCG
 744static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 745			struct mem_cgroup *memcg, int priority)
 746{
 747	struct shrinker_info *info;
 748	unsigned long ret, freed = 0;
 749	int i;
 750
 751	if (!mem_cgroup_online(memcg))
 752		return 0;
 753
 754	if (!down_read_trylock(&shrinker_rwsem))
 755		return 0;
 756
 757	info = shrinker_info_protected(memcg, nid);
 758	if (unlikely(!info))
 759		goto unlock;
 760
 761	for_each_set_bit(i, info->map, shrinker_nr_max) {
 762		struct shrink_control sc = {
 763			.gfp_mask = gfp_mask,
 764			.nid = nid,
 765			.memcg = memcg,
 766		};
 767		struct shrinker *shrinker;
 768
 769		shrinker = idr_find(&shrinker_idr, i);
 770		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
 771			if (!shrinker)
 772				clear_bit(i, info->map);
 773			continue;
 774		}
 775
 776		/* Call non-slab shrinkers even though kmem is disabled */
 777		if (!memcg_kmem_enabled() &&
 778		    !(shrinker->flags & SHRINKER_NONSLAB))
 779			continue;
 780
 781		ret = do_shrink_slab(&sc, shrinker, priority);
 782		if (ret == SHRINK_EMPTY) {
 783			clear_bit(i, info->map);
 784			/*
 785			 * After the shrinker reported that it had no objects to
 786			 * free, but before we cleared the corresponding bit in
 787			 * the memcg shrinker map, a new object might have been
 788			 * added. To make sure, we have the bit set in this
 789			 * case, we invoke the shrinker one more time and reset
 790			 * the bit if it reports that it is not empty anymore.
 791			 * The memory barrier here pairs with the barrier in
 792			 * set_shrinker_bit():
 793			 *
 794			 * list_lru_add()     shrink_slab_memcg()
 795			 *   list_add_tail()    clear_bit()
 796			 *   <MB>               <MB>
 797			 *   set_bit()          do_shrink_slab()
 798			 */
 799			smp_mb__after_atomic();
 800			ret = do_shrink_slab(&sc, shrinker, priority);
 801			if (ret == SHRINK_EMPTY)
 802				ret = 0;
 803			else
 804				set_shrinker_bit(memcg, nid, i);
 805		}
 806		freed += ret;
 807
 808		if (rwsem_is_contended(&shrinker_rwsem)) {
 809			freed = freed ? : 1;
 810			break;
 811		}
 812	}
 813unlock:
 814	up_read(&shrinker_rwsem);
 815	return freed;
 816}
 817#else /* CONFIG_MEMCG */
 818static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 819			struct mem_cgroup *memcg, int priority)
 820{
 821	return 0;
 822}
 823#endif /* CONFIG_MEMCG */
 824
 825/**
 826 * shrink_slab - shrink slab caches
 827 * @gfp_mask: allocation context
 828 * @nid: node whose slab caches to target
 829 * @memcg: memory cgroup whose slab caches to target
 830 * @priority: the reclaim priority
 
 831 *
 832 * Call the shrink functions to age shrinkable caches.
 833 *
 834 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 835 * unaware shrinkers will receive a node id of 0 instead.
 836 *
 837 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 838 * are called only if it is the root cgroup.
 839 *
 840 * @priority is sc->priority, we take the number of objects and >> by priority
 841 * in order to get the scan target.
 
 
 
 
 
 
 
 842 *
 843 * Returns the number of reclaimed slab objects.
 844 */
 845static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 846				 struct mem_cgroup *memcg,
 847				 int priority)
 
 848{
 849	unsigned long ret, freed = 0;
 850	struct shrinker *shrinker;
 
 851
 852	/*
 853	 * The root memcg might be allocated even though memcg is disabled
 854	 * via "cgroup_disable=memory" boot parameter.  This could make
 855	 * mem_cgroup_is_root() return false, then just run memcg slab
 856	 * shrink, but skip global shrink.  This may result in premature
 857	 * oom.
 858	 */
 859	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 860		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 861
 862	if (!down_read_trylock(&shrinker_rwsem))
 
 
 
 
 
 
 
 
 
 
 863		goto out;
 
 864
 865	list_for_each_entry(shrinker, &shrinker_list, list) {
 866		struct shrink_control sc = {
 867			.gfp_mask = gfp_mask,
 868			.nid = nid,
 869			.memcg = memcg,
 870		};
 871
 872		ret = do_shrink_slab(&sc, shrinker, priority);
 873		if (ret == SHRINK_EMPTY)
 874			ret = 0;
 875		freed += ret;
 876		/*
 877		 * Bail out if someone want to register a new shrinker to
 878		 * prevent the registration from being stalled for long periods
 879		 * by parallel ongoing shrinking.
 880		 */
 881		if (rwsem_is_contended(&shrinker_rwsem)) {
 882			freed = freed ? : 1;
 883			break;
 884		}
 
 
 
 
 885	}
 886
 887	up_read(&shrinker_rwsem);
 888out:
 889	cond_resched();
 890	return freed;
 891}
 892
 893void drop_slab_node(int nid)
 894{
 895	unsigned long freed;
 896
 897	do {
 898		struct mem_cgroup *memcg = NULL;
 899
 900		if (fatal_signal_pending(current))
 901			return;
 902
 903		freed = 0;
 904		memcg = mem_cgroup_iter(NULL, NULL, NULL);
 905		do {
 906			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 
 907		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 908	} while (freed > 10);
 909}
 910
 911void drop_slab(void)
 912{
 913	int nid;
 914
 915	for_each_online_node(nid)
 916		drop_slab_node(nid);
 917}
 918
 919static inline int is_page_cache_freeable(struct page *page)
 920{
 921	/*
 922	 * A freeable page cache page is referenced only by the caller
 923	 * that isolated the page, the page cache and optional buffer
 924	 * heads at page->private.
 925	 */
 926	int page_cache_pins = thp_nr_pages(page);
 927	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 928}
 929
 930static int may_write_to_inode(struct inode *inode)
 931{
 932	if (current->flags & PF_SWAPWRITE)
 933		return 1;
 934	if (!inode_write_congested(inode))
 935		return 1;
 936	if (inode_to_bdi(inode) == current->backing_dev_info)
 937		return 1;
 938	return 0;
 939}
 940
 941/*
 942 * We detected a synchronous write error writing a page out.  Probably
 943 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 944 * fsync(), msync() or close().
 945 *
 946 * The tricky part is that after writepage we cannot touch the mapping: nothing
 947 * prevents it from being freed up.  But we have a ref on the page and once
 948 * that page is locked, the mapping is pinned.
 949 *
 950 * We're allowed to run sleeping lock_page() here because we know the caller has
 951 * __GFP_FS.
 952 */
 953static void handle_write_error(struct address_space *mapping,
 954				struct page *page, int error)
 955{
 956	lock_page(page);
 957	if (page_mapping(page) == mapping)
 958		mapping_set_error(mapping, error);
 959	unlock_page(page);
 960}
 961
 962/* possible outcome of pageout() */
 963typedef enum {
 964	/* failed to write page out, page is locked */
 965	PAGE_KEEP,
 966	/* move page to the active list, page is locked */
 967	PAGE_ACTIVATE,
 968	/* page has been sent to the disk successfully, page is unlocked */
 969	PAGE_SUCCESS,
 970	/* page is clean and locked */
 971	PAGE_CLEAN,
 972} pageout_t;
 973
 974/*
 975 * pageout is called by shrink_page_list() for each dirty page.
 976 * Calls ->writepage().
 977 */
 978static pageout_t pageout(struct page *page, struct address_space *mapping)
 
 979{
 980	/*
 981	 * If the page is dirty, only perform writeback if that write
 982	 * will be non-blocking.  To prevent this allocation from being
 983	 * stalled by pagecache activity.  But note that there may be
 984	 * stalls if we need to run get_block().  We could test
 985	 * PagePrivate for that.
 986	 *
 987	 * If this process is currently in __generic_file_write_iter() against
 988	 * this page's queue, we can perform writeback even if that
 989	 * will block.
 990	 *
 991	 * If the page is swapcache, write it back even if that would
 992	 * block, for some throttling. This happens by accident, because
 993	 * swap_backing_dev_info is bust: it doesn't reflect the
 994	 * congestion state of the swapdevs.  Easy to fix, if needed.
 995	 */
 996	if (!is_page_cache_freeable(page))
 997		return PAGE_KEEP;
 998	if (!mapping) {
 999		/*
1000		 * Some data journaling orphaned pages can have
1001		 * page->mapping == NULL while being dirty with clean buffers.
1002		 */
1003		if (page_has_private(page)) {
1004			if (try_to_free_buffers(page)) {
1005				ClearPageDirty(page);
1006				pr_info("%s: orphaned page\n", __func__);
1007				return PAGE_CLEAN;
1008			}
1009		}
1010		return PAGE_KEEP;
1011	}
1012	if (mapping->a_ops->writepage == NULL)
1013		return PAGE_ACTIVATE;
1014	if (!may_write_to_inode(mapping->host))
1015		return PAGE_KEEP;
1016
1017	if (clear_page_dirty_for_io(page)) {
1018		int res;
1019		struct writeback_control wbc = {
1020			.sync_mode = WB_SYNC_NONE,
1021			.nr_to_write = SWAP_CLUSTER_MAX,
1022			.range_start = 0,
1023			.range_end = LLONG_MAX,
1024			.for_reclaim = 1,
1025		};
1026
1027		SetPageReclaim(page);
1028		res = mapping->a_ops->writepage(page, &wbc);
1029		if (res < 0)
1030			handle_write_error(mapping, page, res);
1031		if (res == AOP_WRITEPAGE_ACTIVATE) {
1032			ClearPageReclaim(page);
1033			return PAGE_ACTIVATE;
1034		}
1035
1036		if (!PageWriteback(page)) {
1037			/* synchronous write or broken a_ops? */
1038			ClearPageReclaim(page);
1039		}
1040		trace_mm_vmscan_writepage(page);
1041		inc_node_page_state(page, NR_VMSCAN_WRITE);
1042		return PAGE_SUCCESS;
1043	}
1044
1045	return PAGE_CLEAN;
1046}
1047
1048/*
1049 * Same as remove_mapping, but if the page is removed from the mapping, it
1050 * gets returned with a refcount of 0.
1051 */
1052static int __remove_mapping(struct address_space *mapping, struct page *page,
1053			    bool reclaimed, struct mem_cgroup *target_memcg)
1054{
1055	unsigned long flags;
1056	int refcount;
1057	void *shadow = NULL;
1058
1059	BUG_ON(!PageLocked(page));
1060	BUG_ON(mapping != page_mapping(page));
1061
1062	xa_lock_irqsave(&mapping->i_pages, flags);
1063	/*
1064	 * The non racy check for a busy page.
1065	 *
1066	 * Must be careful with the order of the tests. When someone has
1067	 * a ref to the page, it may be possible that they dirty it then
1068	 * drop the reference. So if PageDirty is tested before page_count
1069	 * here, then the following race may occur:
1070	 *
1071	 * get_user_pages(&page);
1072	 * [user mapping goes away]
1073	 * write_to(page);
1074	 *				!PageDirty(page)    [good]
1075	 * SetPageDirty(page);
1076	 * put_page(page);
1077	 *				!page_count(page)   [good, discard it]
1078	 *
1079	 * [oops, our write_to data is lost]
1080	 *
1081	 * Reversing the order of the tests ensures such a situation cannot
1082	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1083	 * load is not satisfied before that of page->_refcount.
1084	 *
1085	 * Note that if SetPageDirty is always performed via set_page_dirty,
1086	 * and thus under the i_pages lock, then this ordering is not required.
1087	 */
1088	refcount = 1 + compound_nr(page);
1089	if (!page_ref_freeze(page, refcount))
1090		goto cannot_free;
1091	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1092	if (unlikely(PageDirty(page))) {
1093		page_ref_unfreeze(page, refcount);
1094		goto cannot_free;
1095	}
1096
1097	if (PageSwapCache(page)) {
1098		swp_entry_t swap = { .val = page_private(page) };
1099		mem_cgroup_swapout(page, swap);
1100		if (reclaimed && !mapping_exiting(mapping))
1101			shadow = workingset_eviction(page, target_memcg);
1102		__delete_from_swap_cache(page, swap, shadow);
1103		xa_unlock_irqrestore(&mapping->i_pages, flags);
1104		put_swap_page(page, swap);
1105	} else {
1106		void (*freepage)(struct page *);
 
1107
1108		freepage = mapping->a_ops->freepage;
1109		/*
1110		 * Remember a shadow entry for reclaimed file cache in
1111		 * order to detect refaults, thus thrashing, later on.
1112		 *
1113		 * But don't store shadows in an address space that is
1114		 * already exiting.  This is not just an optimization,
1115		 * inode reclaim needs to empty out the radix tree or
1116		 * the nodes are lost.  Don't plant shadows behind its
1117		 * back.
1118		 *
1119		 * We also don't store shadows for DAX mappings because the
1120		 * only page cache pages found in these are zero pages
1121		 * covering holes, and because we don't want to mix DAX
1122		 * exceptional entries and shadow exceptional entries in the
1123		 * same address_space.
1124		 */
1125		if (reclaimed && page_is_file_lru(page) &&
1126		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1127			shadow = workingset_eviction(page, target_memcg);
1128		__delete_from_page_cache(page, shadow);
1129		xa_unlock_irqrestore(&mapping->i_pages, flags);
1130
1131		if (freepage != NULL)
1132			freepage(page);
1133	}
1134
1135	return 1;
1136
1137cannot_free:
1138	xa_unlock_irqrestore(&mapping->i_pages, flags);
1139	return 0;
1140}
1141
1142/*
1143 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1144 * someone else has a ref on the page, abort and return 0.  If it was
1145 * successfully detached, return 1.  Assumes the caller has a single ref on
1146 * this page.
1147 */
1148int remove_mapping(struct address_space *mapping, struct page *page)
1149{
1150	if (__remove_mapping(mapping, page, false, NULL)) {
1151		/*
1152		 * Unfreezing the refcount with 1 rather than 2 effectively
1153		 * drops the pagecache ref for us without requiring another
1154		 * atomic operation.
1155		 */
1156		page_ref_unfreeze(page, 1);
1157		return 1;
1158	}
1159	return 0;
1160}
1161
1162/**
1163 * putback_lru_page - put previously isolated page onto appropriate LRU list
1164 * @page: page to be put back to appropriate lru list
1165 *
1166 * Add previously isolated @page to appropriate LRU list.
1167 * Page may still be unevictable for other reasons.
1168 *
1169 * lru_lock must not be held, interrupts must be enabled.
1170 */
1171void putback_lru_page(struct page *page)
1172{
1173	lru_cache_add(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174	put_page(page);		/* drop ref from isolate */
1175}
1176
1177enum page_references {
1178	PAGEREF_RECLAIM,
1179	PAGEREF_RECLAIM_CLEAN,
1180	PAGEREF_KEEP,
1181	PAGEREF_ACTIVATE,
1182};
1183
1184static enum page_references page_check_references(struct page *page,
1185						  struct scan_control *sc)
1186{
1187	int referenced_ptes, referenced_page;
1188	unsigned long vm_flags;
1189
1190	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1191					  &vm_flags);
1192	referenced_page = TestClearPageReferenced(page);
1193
1194	/*
1195	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1196	 * move the page to the unevictable list.
1197	 */
1198	if (vm_flags & VM_LOCKED)
1199		return PAGEREF_RECLAIM;
1200
1201	if (referenced_ptes) {
 
 
1202		/*
1203		 * All mapped pages start out with page table
1204		 * references from the instantiating fault, so we need
1205		 * to look twice if a mapped file page is used more
1206		 * than once.
1207		 *
1208		 * Mark it and spare it for another trip around the
1209		 * inactive list.  Another page table reference will
1210		 * lead to its activation.
1211		 *
1212		 * Note: the mark is set for activated pages as well
1213		 * so that recently deactivated but used pages are
1214		 * quickly recovered.
1215		 */
1216		SetPageReferenced(page);
1217
1218		if (referenced_page || referenced_ptes > 1)
1219			return PAGEREF_ACTIVATE;
1220
1221		/*
1222		 * Activate file-backed executable pages after first usage.
1223		 */
1224		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1225			return PAGEREF_ACTIVATE;
1226
1227		return PAGEREF_KEEP;
1228	}
1229
1230	/* Reclaim if clean, defer dirty pages to writeback */
1231	if (referenced_page && !PageSwapBacked(page))
1232		return PAGEREF_RECLAIM_CLEAN;
1233
1234	return PAGEREF_RECLAIM;
1235}
1236
1237/* Check if a page is dirty or under writeback */
1238static void page_check_dirty_writeback(struct page *page,
1239				       bool *dirty, bool *writeback)
1240{
1241	struct address_space *mapping;
1242
1243	/*
1244	 * Anonymous pages are not handled by flushers and must be written
1245	 * from reclaim context. Do not stall reclaim based on them
1246	 */
1247	if (!page_is_file_lru(page) ||
1248	    (PageAnon(page) && !PageSwapBacked(page))) {
1249		*dirty = false;
1250		*writeback = false;
1251		return;
1252	}
1253
1254	/* By default assume that the page flags are accurate */
1255	*dirty = PageDirty(page);
1256	*writeback = PageWriteback(page);
1257
1258	/* Verify dirty/writeback state if the filesystem supports it */
1259	if (!page_has_private(page))
1260		return;
1261
1262	mapping = page_mapping(page);
1263	if (mapping && mapping->a_ops->is_dirty_writeback)
1264		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1265}
1266
1267/*
1268 * shrink_page_list() returns the number of reclaimed pages
1269 */
1270static unsigned int shrink_page_list(struct list_head *page_list,
1271				     struct pglist_data *pgdat,
1272				     struct scan_control *sc,
1273				     struct reclaim_stat *stat,
1274				     bool ignore_references)
 
 
 
 
 
1275{
1276	LIST_HEAD(ret_pages);
1277	LIST_HEAD(free_pages);
1278	unsigned int nr_reclaimed = 0;
1279	unsigned int pgactivate = 0;
 
 
 
 
 
1280
1281	memset(stat, 0, sizeof(*stat));
1282	cond_resched();
1283
1284	while (!list_empty(page_list)) {
1285		struct address_space *mapping;
1286		struct page *page;
1287		enum page_references references = PAGEREF_RECLAIM;
1288		bool dirty, writeback, may_enter_fs;
1289		unsigned int nr_pages;
 
 
1290
1291		cond_resched();
1292
1293		page = lru_to_page(page_list);
1294		list_del(&page->lru);
1295
1296		if (!trylock_page(page))
1297			goto keep;
1298
1299		VM_BUG_ON_PAGE(PageActive(page), page);
1300
1301		nr_pages = compound_nr(page);
1302
1303		/* Account the number of base pages even though THP */
1304		sc->nr_scanned += nr_pages;
1305
1306		if (unlikely(!page_evictable(page)))
1307			goto activate_locked;
1308
1309		if (!sc->may_unmap && page_mapped(page))
1310			goto keep_locked;
1311
 
 
 
 
1312		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1313			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1314
1315		/*
1316		 * The number of dirty pages determines if a node is marked
1317		 * reclaim_congested which affects wait_iff_congested. kswapd
1318		 * will stall and start writing pages if the tail of the LRU
1319		 * is all dirty unqueued pages.
1320		 */
1321		page_check_dirty_writeback(page, &dirty, &writeback);
1322		if (dirty || writeback)
1323			stat->nr_dirty++;
1324
1325		if (dirty && !writeback)
1326			stat->nr_unqueued_dirty++;
1327
1328		/*
1329		 * Treat this page as congested if the underlying BDI is or if
1330		 * pages are cycling through the LRU so quickly that the
1331		 * pages marked for immediate reclaim are making it to the
1332		 * end of the LRU a second time.
1333		 */
1334		mapping = page_mapping(page);
1335		if (((dirty || writeback) && mapping &&
1336		     inode_write_congested(mapping->host)) ||
1337		    (writeback && PageReclaim(page)))
1338			stat->nr_congested++;
1339
1340		/*
1341		 * If a page at the tail of the LRU is under writeback, there
1342		 * are three cases to consider.
1343		 *
1344		 * 1) If reclaim is encountering an excessive number of pages
1345		 *    under writeback and this page is both under writeback and
1346		 *    PageReclaim then it indicates that pages are being queued
1347		 *    for IO but are being recycled through the LRU before the
1348		 *    IO can complete. Waiting on the page itself risks an
1349		 *    indefinite stall if it is impossible to writeback the
1350		 *    page due to IO error or disconnected storage so instead
1351		 *    note that the LRU is being scanned too quickly and the
1352		 *    caller can stall after page list has been processed.
1353		 *
1354		 * 2) Global or new memcg reclaim encounters a page that is
1355		 *    not marked for immediate reclaim, or the caller does not
1356		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1357		 *    not to fs). In this case mark the page for immediate
1358		 *    reclaim and continue scanning.
1359		 *
1360		 *    Require may_enter_fs because we would wait on fs, which
1361		 *    may not have submitted IO yet. And the loop driver might
1362		 *    enter reclaim, and deadlock if it waits on a page for
1363		 *    which it is needed to do the write (loop masks off
1364		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1365		 *    would probably show more reasons.
1366		 *
1367		 * 3) Legacy memcg encounters a page that is already marked
1368		 *    PageReclaim. memcg does not have any dirty pages
1369		 *    throttling so we could easily OOM just because too many
1370		 *    pages are in writeback and there is nothing else to
1371		 *    reclaim. Wait for the writeback to complete.
1372		 *
1373		 * In cases 1) and 2) we activate the pages to get them out of
1374		 * the way while we continue scanning for clean pages on the
1375		 * inactive list and refilling from the active list. The
1376		 * observation here is that waiting for disk writes is more
1377		 * expensive than potentially causing reloads down the line.
1378		 * Since they're marked for immediate reclaim, they won't put
1379		 * memory pressure on the cache working set any longer than it
1380		 * takes to write them to disk.
1381		 */
1382		if (PageWriteback(page)) {
1383			/* Case 1 above */
1384			if (current_is_kswapd() &&
1385			    PageReclaim(page) &&
1386			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1387				stat->nr_immediate++;
1388				goto activate_locked;
1389
1390			/* Case 2 above */
1391			} else if (writeback_throttling_sane(sc) ||
1392			    !PageReclaim(page) || !may_enter_fs) {
1393				/*
1394				 * This is slightly racy - end_page_writeback()
1395				 * might have just cleared PageReclaim, then
1396				 * setting PageReclaim here end up interpreted
1397				 * as PageReadahead - but that does not matter
1398				 * enough to care.  What we do want is for this
1399				 * page to have PageReclaim set next time memcg
1400				 * reclaim reaches the tests above, so it will
1401				 * then wait_on_page_writeback() to avoid OOM;
1402				 * and it's also appropriate in global reclaim.
1403				 */
1404				SetPageReclaim(page);
1405				stat->nr_writeback++;
1406				goto activate_locked;
1407
1408			/* Case 3 above */
1409			} else {
1410				unlock_page(page);
1411				wait_on_page_writeback(page);
1412				/* then go back and try same page again */
1413				list_add_tail(&page->lru, page_list);
1414				continue;
1415			}
1416		}
1417
1418		if (!ignore_references)
1419			references = page_check_references(page, sc);
1420
1421		switch (references) {
1422		case PAGEREF_ACTIVATE:
1423			goto activate_locked;
1424		case PAGEREF_KEEP:
1425			stat->nr_ref_keep += nr_pages;
1426			goto keep_locked;
1427		case PAGEREF_RECLAIM:
1428		case PAGEREF_RECLAIM_CLEAN:
1429			; /* try to reclaim the page below */
1430		}
1431
1432		/*
1433		 * Anonymous process memory has backing store?
1434		 * Try to allocate it some swap space here.
1435		 * Lazyfree page could be freed directly
1436		 */
1437		if (PageAnon(page) && PageSwapBacked(page)) {
1438			if (!PageSwapCache(page)) {
1439				if (!(sc->gfp_mask & __GFP_IO))
1440					goto keep_locked;
1441				if (page_maybe_dma_pinned(page))
1442					goto keep_locked;
1443				if (PageTransHuge(page)) {
1444					/* cannot split THP, skip it */
1445					if (!can_split_huge_page(page, NULL))
1446						goto activate_locked;
1447					/*
1448					 * Split pages without a PMD map right
1449					 * away. Chances are some or all of the
1450					 * tail pages can be freed without IO.
1451					 */
1452					if (!compound_mapcount(page) &&
1453					    split_huge_page_to_list(page,
1454								    page_list))
1455						goto activate_locked;
1456				}
1457				if (!add_to_swap(page)) {
1458					if (!PageTransHuge(page))
1459						goto activate_locked_split;
1460					/* Fallback to swap normal pages */
1461					if (split_huge_page_to_list(page,
1462								    page_list))
1463						goto activate_locked;
1464#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1465					count_vm_event(THP_SWPOUT_FALLBACK);
1466#endif
1467					if (!add_to_swap(page))
1468						goto activate_locked_split;
1469				}
1470
1471				may_enter_fs = true;
1472
1473				/* Adding to swap updated mapping */
1474				mapping = page_mapping(page);
1475			}
1476		} else if (unlikely(PageTransHuge(page))) {
1477			/* Split file THP */
1478			if (split_huge_page_to_list(page, page_list))
1479				goto keep_locked;
1480		}
1481
1482		/*
1483		 * THP may get split above, need minus tail pages and update
1484		 * nr_pages to avoid accounting tail pages twice.
1485		 *
1486		 * The tail pages that are added into swap cache successfully
1487		 * reach here.
1488		 */
1489		if ((nr_pages > 1) && !PageTransHuge(page)) {
1490			sc->nr_scanned -= (nr_pages - 1);
1491			nr_pages = 1;
1492		}
1493
1494		/*
1495		 * The page is mapped into the page tables of one or more
1496		 * processes. Try to unmap it here.
1497		 */
1498		if (page_mapped(page)) {
1499			enum ttu_flags flags = TTU_BATCH_FLUSH;
1500			bool was_swapbacked = PageSwapBacked(page);
1501
1502			if (unlikely(PageTransHuge(page)))
1503				flags |= TTU_SPLIT_HUGE_PMD;
1504
1505			try_to_unmap(page, flags);
1506			if (page_mapped(page)) {
1507				stat->nr_unmap_fail += nr_pages;
1508				if (!was_swapbacked && PageSwapBacked(page))
1509					stat->nr_lazyfree_fail += nr_pages;
1510				goto activate_locked;
 
 
 
 
 
 
 
 
1511			}
1512		}
1513
1514		if (PageDirty(page)) {
1515			/*
1516			 * Only kswapd can writeback filesystem pages
1517			 * to avoid risk of stack overflow. But avoid
1518			 * injecting inefficient single-page IO into
1519			 * flusher writeback as much as possible: only
1520			 * write pages when we've encountered many
1521			 * dirty pages, and when we've already scanned
1522			 * the rest of the LRU for clean pages and see
1523			 * the same dirty pages again (PageReclaim).
1524			 */
1525			if (page_is_file_lru(page) &&
1526			    (!current_is_kswapd() || !PageReclaim(page) ||
1527			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1528				/*
1529				 * Immediately reclaim when written back.
1530				 * Similar in principal to deactivate_page()
1531				 * except we already have the page isolated
1532				 * and know it's dirty
1533				 */
1534				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1535				SetPageReclaim(page);
1536
1537				goto activate_locked;
1538			}
1539
1540			if (references == PAGEREF_RECLAIM_CLEAN)
1541				goto keep_locked;
1542			if (!may_enter_fs)
1543				goto keep_locked;
1544			if (!sc->may_writepage)
1545				goto keep_locked;
1546
1547			/*
1548			 * Page is dirty. Flush the TLB if a writable entry
1549			 * potentially exists to avoid CPU writes after IO
1550			 * starts and then write it out here.
1551			 */
1552			try_to_unmap_flush_dirty();
1553			switch (pageout(page, mapping)) {
1554			case PAGE_KEEP:
1555				goto keep_locked;
1556			case PAGE_ACTIVATE:
1557				goto activate_locked;
1558			case PAGE_SUCCESS:
1559				stat->nr_pageout += thp_nr_pages(page);
1560
1561				if (PageWriteback(page))
1562					goto keep;
1563				if (PageDirty(page))
1564					goto keep;
1565
1566				/*
1567				 * A synchronous write - probably a ramdisk.  Go
1568				 * ahead and try to reclaim the page.
1569				 */
1570				if (!trylock_page(page))
1571					goto keep;
1572				if (PageDirty(page) || PageWriteback(page))
1573					goto keep_locked;
1574				mapping = page_mapping(page);
1575				fallthrough;
1576			case PAGE_CLEAN:
1577				; /* try to free the page below */
1578			}
1579		}
1580
1581		/*
1582		 * If the page has buffers, try to free the buffer mappings
1583		 * associated with this page. If we succeed we try to free
1584		 * the page as well.
1585		 *
1586		 * We do this even if the page is PageDirty().
1587		 * try_to_release_page() does not perform I/O, but it is
1588		 * possible for a page to have PageDirty set, but it is actually
1589		 * clean (all its buffers are clean).  This happens if the
1590		 * buffers were written out directly, with submit_bh(). ext3
1591		 * will do this, as well as the blockdev mapping.
1592		 * try_to_release_page() will discover that cleanness and will
1593		 * drop the buffers and mark the page clean - it can be freed.
1594		 *
1595		 * Rarely, pages can have buffers and no ->mapping.  These are
1596		 * the pages which were not successfully invalidated in
1597		 * truncate_cleanup_page().  We try to drop those buffers here
1598		 * and if that worked, and the page is no longer mapped into
1599		 * process address space (page_count == 1) it can be freed.
1600		 * Otherwise, leave the page on the LRU so it is swappable.
1601		 */
1602		if (page_has_private(page)) {
1603			if (!try_to_release_page(page, sc->gfp_mask))
1604				goto activate_locked;
1605			if (!mapping && page_count(page) == 1) {
1606				unlock_page(page);
1607				if (put_page_testzero(page))
1608					goto free_it;
1609				else {
1610					/*
1611					 * rare race with speculative reference.
1612					 * the speculative reference will free
1613					 * this page shortly, so we may
1614					 * increment nr_reclaimed here (and
1615					 * leave it off the LRU).
1616					 */
1617					nr_reclaimed++;
1618					continue;
1619				}
1620			}
1621		}
1622
1623		if (PageAnon(page) && !PageSwapBacked(page)) {
1624			/* follow __remove_mapping for reference */
1625			if (!page_ref_freeze(page, 1))
1626				goto keep_locked;
1627			if (PageDirty(page)) {
1628				page_ref_unfreeze(page, 1);
1629				goto keep_locked;
1630			}
1631
1632			count_vm_event(PGLAZYFREED);
1633			count_memcg_page_event(page, PGLAZYFREED);
1634		} else if (!mapping || !__remove_mapping(mapping, page, true,
1635							 sc->target_mem_cgroup))
1636			goto keep_locked;
1637
1638		unlock_page(page);
1639free_it:
1640		/*
1641		 * THP may get swapped out in a whole, need account
1642		 * all base pages.
 
 
 
1643		 */
1644		nr_reclaimed += nr_pages;
 
 
 
 
 
1645
1646		/*
1647		 * Is there need to periodically free_page_list? It would
1648		 * appear not as the counts should be low
1649		 */
1650		if (unlikely(PageTransHuge(page)))
1651			destroy_compound_page(page);
1652		else
1653			list_add(&page->lru, &free_pages);
 
 
 
 
1654		continue;
1655
1656activate_locked_split:
1657		/*
1658		 * The tail pages that are failed to add into swap cache
1659		 * reach here.  Fixup nr_scanned and nr_pages.
1660		 */
1661		if (nr_pages > 1) {
1662			sc->nr_scanned -= (nr_pages - 1);
1663			nr_pages = 1;
1664		}
1665activate_locked:
1666		/* Not a candidate for swapping, so reclaim swap space. */
1667		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1668						PageMlocked(page)))
1669			try_to_free_swap(page);
1670		VM_BUG_ON_PAGE(PageActive(page), page);
1671		if (!PageMlocked(page)) {
1672			int type = page_is_file_lru(page);
1673			SetPageActive(page);
1674			stat->nr_activate[type] += nr_pages;
1675			count_memcg_page_event(page, PGACTIVATE);
1676		}
1677keep_locked:
1678		unlock_page(page);
1679keep:
1680		list_add(&page->lru, &ret_pages);
1681		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1682	}
1683
1684	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1685
1686	mem_cgroup_uncharge_list(&free_pages);
1687	try_to_unmap_flush();
1688	free_unref_page_list(&free_pages);
1689
1690	list_splice(&ret_pages, page_list);
1691	count_vm_events(PGACTIVATE, pgactivate);
1692
 
 
 
 
 
1693	return nr_reclaimed;
1694}
1695
1696unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1697					    struct list_head *page_list)
1698{
1699	struct scan_control sc = {
1700		.gfp_mask = GFP_KERNEL,
1701		.priority = DEF_PRIORITY,
1702		.may_unmap = 1,
1703	};
1704	struct reclaim_stat stat;
1705	unsigned int nr_reclaimed;
1706	struct page *page, *next;
1707	LIST_HEAD(clean_pages);
1708	unsigned int noreclaim_flag;
1709
1710	list_for_each_entry_safe(page, next, page_list, lru) {
1711		if (!PageHuge(page) && page_is_file_lru(page) &&
1712		    !PageDirty(page) && !__PageMovable(page) &&
1713		    !PageUnevictable(page)) {
1714			ClearPageActive(page);
1715			list_move(&page->lru, &clean_pages);
1716		}
1717	}
1718
1719	/*
1720	 * We should be safe here since we are only dealing with file pages and
1721	 * we are not kswapd and therefore cannot write dirty file pages. But
1722	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1723	 * change in the future.
1724	 */
1725	noreclaim_flag = memalloc_noreclaim_save();
1726	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1727					&stat, true);
1728	memalloc_noreclaim_restore(noreclaim_flag);
1729
1730	list_splice(&clean_pages, page_list);
1731	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1732			    -(long)nr_reclaimed);
1733	/*
1734	 * Since lazyfree pages are isolated from file LRU from the beginning,
1735	 * they will rotate back to anonymous LRU in the end if it failed to
1736	 * discard so isolated count will be mismatched.
1737	 * Compensate the isolated count for both LRU lists.
1738	 */
1739	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1740			    stat.nr_lazyfree_fail);
1741	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1742			    -(long)stat.nr_lazyfree_fail);
1743	return nr_reclaimed;
1744}
1745
1746/*
1747 * Attempt to remove the specified page from its LRU.  Only take this page
1748 * if it is of the appropriate PageActive status.  Pages which are being
1749 * freed elsewhere are also ignored.
1750 *
1751 * page:	page to consider
1752 * mode:	one of the LRU isolation modes defined above
1753 *
1754 * returns true on success, false on failure.
1755 */
1756bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1757{
 
 
1758	/* Only take pages on the LRU. */
1759	if (!PageLRU(page))
1760		return false;
1761
1762	/* Compaction should not handle unevictable pages but CMA can do so */
1763	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1764		return false;
 
 
1765
1766	/*
1767	 * To minimise LRU disruption, the caller can indicate that it only
1768	 * wants to isolate pages it will be able to operate on without
1769	 * blocking - clean pages for the most part.
1770	 *
 
 
 
1771	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1772	 * that it is possible to migrate without blocking
1773	 */
1774	if (mode & ISOLATE_ASYNC_MIGRATE) {
1775		/* All the caller can do on PageWriteback is block */
1776		if (PageWriteback(page))
1777			return false;
1778
1779		if (PageDirty(page)) {
1780			struct address_space *mapping;
1781			bool migrate_dirty;
 
 
 
1782
1783			/*
1784			 * Only pages without mappings or that have a
1785			 * ->migratepage callback are possible to migrate
1786			 * without blocking. However, we can be racing with
1787			 * truncation so it's necessary to lock the page
1788			 * to stabilise the mapping as truncation holds
1789			 * the page lock until after the page is removed
1790			 * from the page cache.
1791			 */
1792			if (!trylock_page(page))
1793				return false;
1794
1795			mapping = page_mapping(page);
1796			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1797			unlock_page(page);
1798			if (!migrate_dirty)
1799				return false;
1800		}
1801	}
1802
1803	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1804		return false;
1805
1806	return true;
 
 
 
 
 
 
 
 
 
 
1807}
1808
 
1809/*
1810 * Update LRU sizes after isolating pages. The LRU size updates must
1811 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1812 */
1813static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1814			enum lru_list lru, unsigned long *nr_zone_taken)
1815{
1816	int zid;
1817
1818	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1819		if (!nr_zone_taken[zid])
1820			continue;
1821
1822		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
1823	}
1824
1825}
1826
1827/*
1828 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1829 *
1830 * lruvec->lru_lock is heavily contended.  Some of the functions that
1831 * shrink the lists perform better by taking out a batch of pages
1832 * and working on them outside the LRU lock.
1833 *
1834 * For pagecache intensive workloads, this function is the hottest
1835 * spot in the kernel (apart from copy_*_user functions).
1836 *
1837 * Lru_lock must be held before calling this function.
1838 *
1839 * @nr_to_scan:	The number of eligible pages to look through on the list.
1840 * @lruvec:	The LRU vector to pull pages from.
1841 * @dst:	The temp list to put pages on to.
1842 * @nr_scanned:	The number of pages that were scanned.
1843 * @sc:		The scan_control struct for this reclaim session
 
1844 * @lru:	LRU list id for isolating
1845 *
1846 * returns how many pages were moved onto *@dst.
1847 */
1848static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1849		struct lruvec *lruvec, struct list_head *dst,
1850		unsigned long *nr_scanned, struct scan_control *sc,
1851		enum lru_list lru)
1852{
1853	struct list_head *src = &lruvec->lists[lru];
1854	unsigned long nr_taken = 0;
1855	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1856	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1857	unsigned long skipped = 0;
1858	unsigned long scan, total_scan, nr_pages;
1859	LIST_HEAD(pages_skipped);
1860	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1861
1862	total_scan = 0;
1863	scan = 0;
1864	while (scan < nr_to_scan && !list_empty(src)) {
1865		struct page *page;
1866
1867		page = lru_to_page(src);
1868		prefetchw_prev_lru_page(page, src, flags);
1869
1870		nr_pages = compound_nr(page);
1871		total_scan += nr_pages;
1872
1873		if (page_zonenum(page) > sc->reclaim_idx) {
1874			list_move(&page->lru, &pages_skipped);
1875			nr_skipped[page_zonenum(page)] += nr_pages;
1876			continue;
1877		}
1878
1879		/*
1880		 * Do not count skipped pages because that makes the function
1881		 * return with no isolated pages if the LRU mostly contains
1882		 * ineligible pages.  This causes the VM to not reclaim any
1883		 * pages, triggering a premature OOM.
1884		 *
1885		 * Account all tail pages of THP.  This would not cause
1886		 * premature OOM since __isolate_lru_page() returns -EBUSY
1887		 * only when the page is being freed somewhere else.
1888		 */
1889		scan += nr_pages;
1890		if (!__isolate_lru_page_prepare(page, mode)) {
1891			/* It is being freed elsewhere */
1892			list_move(&page->lru, src);
1893			continue;
1894		}
1895		/*
1896		 * Be careful not to clear PageLRU until after we're
1897		 * sure the page is not being freed elsewhere -- the
1898		 * page release code relies on it.
1899		 */
1900		if (unlikely(!get_page_unless_zero(page))) {
1901			list_move(&page->lru, src);
1902			continue;
1903		}
1904
1905		if (!TestClearPageLRU(page)) {
1906			/* Another thread is already isolating this page */
1907			put_page(page);
 
 
 
 
 
 
 
1908			list_move(&page->lru, src);
1909			continue;
1910		}
1911
1912		nr_taken += nr_pages;
1913		nr_zone_taken[page_zonenum(page)] += nr_pages;
1914		list_move(&page->lru, dst);
1915	}
1916
1917	/*
1918	 * Splice any skipped pages to the start of the LRU list. Note that
1919	 * this disrupts the LRU order when reclaiming for lower zones but
1920	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1921	 * scanning would soon rescan the same pages to skip and put the
1922	 * system at risk of premature OOM.
1923	 */
1924	if (!list_empty(&pages_skipped)) {
1925		int zid;
 
1926
1927		list_splice(&pages_skipped, src);
1928		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1929			if (!nr_skipped[zid])
1930				continue;
1931
1932			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1933			skipped += nr_skipped[zid];
1934		}
 
 
 
 
 
 
 
 
 
1935	}
1936	*nr_scanned = total_scan;
1937	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1938				    total_scan, skipped, nr_taken, mode, lru);
1939	update_lru_sizes(lruvec, lru, nr_zone_taken);
1940	return nr_taken;
1941}
1942
1943/**
1944 * isolate_lru_page - tries to isolate a page from its LRU list
1945 * @page: page to isolate from its LRU list
1946 *
1947 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1948 * vmstat statistic corresponding to whatever LRU list the page was on.
1949 *
1950 * Returns 0 if the page was removed from an LRU list.
1951 * Returns -EBUSY if the page was not on an LRU list.
1952 *
1953 * The returned page will have PageLRU() cleared.  If it was found on
1954 * the active list, it will have PageActive set.  If it was found on
1955 * the unevictable list, it will have the PageUnevictable bit set. That flag
1956 * may need to be cleared by the caller before letting the page go.
1957 *
1958 * The vmstat statistic corresponding to the list on which the page was
1959 * found will be decremented.
1960 *
1961 * Restrictions:
1962 *
1963 * (1) Must be called with an elevated refcount on the page. This is a
1964 *     fundamental difference from isolate_lru_pages (which is called
1965 *     without a stable reference).
1966 * (2) the lru_lock must not be held.
1967 * (3) interrupts must be enabled.
1968 */
1969int isolate_lru_page(struct page *page)
1970{
1971	int ret = -EBUSY;
1972
1973	VM_BUG_ON_PAGE(!page_count(page), page);
1974	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1975
1976	if (TestClearPageLRU(page)) {
 
1977		struct lruvec *lruvec;
1978
1979		get_page(page);
1980		lruvec = lock_page_lruvec_irq(page);
1981		del_page_from_lru_list(page, lruvec);
1982		unlock_page_lruvec_irq(lruvec);
1983		ret = 0;
 
 
 
 
 
1984	}
1985
1986	return ret;
1987}
1988
1989/*
1990 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1991 * then get rescheduled. When there are massive number of tasks doing page
1992 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1993 * the LRU list will go small and be scanned faster than necessary, leading to
1994 * unnecessary swapping, thrashing and OOM.
1995 */
1996static int too_many_isolated(struct pglist_data *pgdat, int file,
1997		struct scan_control *sc)
1998{
1999	unsigned long inactive, isolated;
2000
2001	if (current_is_kswapd())
2002		return 0;
2003
2004	if (!writeback_throttling_sane(sc))
2005		return 0;
2006
2007	if (file) {
2008		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2009		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2010	} else {
2011		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2012		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2013	}
2014
2015	/*
2016	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2017	 * won't get blocked by normal direct-reclaimers, forming a circular
2018	 * deadlock.
2019	 */
2020	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2021		inactive >>= 3;
2022
2023	return isolated > inactive;
2024}
2025
2026/*
2027 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2028 * On return, @list is reused as a list of pages to be freed by the caller.
2029 *
2030 * Returns the number of pages moved to the given lruvec.
2031 */
2032static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2033				      struct list_head *list)
2034{
2035	int nr_pages, nr_moved = 0;
 
2036	LIST_HEAD(pages_to_free);
2037	struct page *page;
2038
2039	while (!list_empty(list)) {
2040		page = lru_to_page(list);
 
 
 
 
 
2041		VM_BUG_ON_PAGE(PageLRU(page), page);
2042		list_del(&page->lru);
2043		if (unlikely(!page_evictable(page))) {
2044			spin_unlock_irq(&lruvec->lru_lock);
2045			putback_lru_page(page);
2046			spin_lock_irq(&lruvec->lru_lock);
2047			continue;
2048		}
2049
2050		/*
2051		 * The SetPageLRU needs to be kept here for list integrity.
2052		 * Otherwise:
2053		 *   #0 move_pages_to_lru             #1 release_pages
2054		 *   if !put_page_testzero
2055		 *				      if (put_page_testzero())
2056		 *				        !PageLRU //skip lru_lock
2057		 *     SetPageLRU()
2058		 *     list_add(&page->lru,)
2059		 *                                        list_add(&page->lru,)
2060		 */
2061		SetPageLRU(page);
 
 
2062
2063		if (unlikely(put_page_testzero(page))) {
2064			__clear_page_lru_flags(page);
 
 
 
 
 
 
 
2065
2066			if (unlikely(PageCompound(page))) {
2067				spin_unlock_irq(&lruvec->lru_lock);
2068				destroy_compound_page(page);
2069				spin_lock_irq(&lruvec->lru_lock);
 
2070			} else
2071				list_add(&page->lru, &pages_to_free);
2072
2073			continue;
2074		}
2075
2076		/*
2077		 * All pages were isolated from the same lruvec (and isolation
2078		 * inhibits memcg migration).
2079		 */
2080		VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2081		add_page_to_lru_list(page, lruvec);
2082		nr_pages = thp_nr_pages(page);
2083		nr_moved += nr_pages;
2084		if (PageActive(page))
2085			workingset_age_nonresident(lruvec, nr_pages);
2086	}
2087
2088	/*
2089	 * To save our caller's stack, now use input list for pages to free.
2090	 */
2091	list_splice(&pages_to_free, list);
2092
2093	return nr_moved;
2094}
2095
2096/*
2097 * If a kernel thread (such as nfsd for loop-back mounts) services
2098 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2099 * In that case we should only throttle if the backing device it is
2100 * writing to is congested.  In other cases it is safe to throttle.
2101 */
2102static int current_may_throttle(void)
2103{
2104	return !(current->flags & PF_LOCAL_THROTTLE) ||
2105		current->backing_dev_info == NULL ||
2106		bdi_write_congested(current->backing_dev_info);
2107}
2108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109/*
2110 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2111 * of reclaimed pages
2112 */
2113static unsigned long
2114shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2115		     struct scan_control *sc, enum lru_list lru)
2116{
2117	LIST_HEAD(page_list);
2118	unsigned long nr_scanned;
2119	unsigned int nr_reclaimed = 0;
2120	unsigned long nr_taken;
2121	struct reclaim_stat stat;
2122	bool file = is_file_lru(lru);
2123	enum vm_event_item item;
 
 
 
 
2124	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125	bool stalled = false;
2126
2127	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2128		if (stalled)
2129			return 0;
2130
2131		/* wait a bit for the reclaimer. */
2132		msleep(100);
2133		stalled = true;
2134
2135		/* We are about to die and free our memory. Return now. */
2136		if (fatal_signal_pending(current))
2137			return SWAP_CLUSTER_MAX;
2138	}
2139
2140	lru_add_drain();
2141
2142	spin_lock_irq(&lruvec->lru_lock);
 
 
 
 
 
2143
2144	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2145				     &nr_scanned, sc, lru);
2146
2147	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2148	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2149	if (!cgroup_reclaim(sc))
2150		__count_vm_events(item, nr_scanned);
2151	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2152	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2153
2154	spin_unlock_irq(&lruvec->lru_lock);
 
 
 
 
 
 
 
2155
2156	if (nr_taken == 0)
2157		return 0;
2158
2159	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
 
 
 
 
 
 
 
 
 
 
 
 
2160
2161	spin_lock_irq(&lruvec->lru_lock);
2162	move_pages_to_lru(lruvec, &page_list);
2163
2164	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2165	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2166	if (!cgroup_reclaim(sc))
2167		__count_vm_events(item, nr_reclaimed);
2168	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2169	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2170	spin_unlock_irq(&lruvec->lru_lock);
2171
2172	lru_note_cost(lruvec, file, stat.nr_pageout);
 
2173	mem_cgroup_uncharge_list(&page_list);
2174	free_unref_page_list(&page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175
2176	/*
2177	 * If dirty pages are scanned that are not queued for IO, it
2178	 * implies that flushers are not doing their job. This can
2179	 * happen when memory pressure pushes dirty pages to the end of
2180	 * the LRU before the dirty limits are breached and the dirty
2181	 * data has expired. It can also happen when the proportion of
2182	 * dirty pages grows not through writes but through memory
2183	 * pressure reclaiming all the clean cache. And in some cases,
2184	 * the flushers simply cannot keep up with the allocation
2185	 * rate. Nudge the flusher threads in case they are asleep.
2186	 */
2187	if (stat.nr_unqueued_dirty == nr_taken)
2188		wakeup_flusher_threads(WB_REASON_VMSCAN);
2189
2190	sc->nr.dirty += stat.nr_dirty;
2191	sc->nr.congested += stat.nr_congested;
2192	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2193	sc->nr.writeback += stat.nr_writeback;
2194	sc->nr.immediate += stat.nr_immediate;
2195	sc->nr.taken += nr_taken;
2196	if (file)
2197		sc->nr.file_taken += nr_taken;
2198
2199	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2200			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
 
2201	return nr_reclaimed;
2202}
2203
2204/*
2205 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2206 *
2207 * We move them the other way if the page is referenced by one or more
2208 * processes.
2209 *
2210 * If the pages are mostly unmapped, the processing is fast and it is
2211 * appropriate to hold lru_lock across the whole operation.  But if
2212 * the pages are mapped, the processing is slow (page_referenced()), so
2213 * we should drop lru_lock around each page.  It's impossible to balance
2214 * this, so instead we remove the pages from the LRU while processing them.
2215 * It is safe to rely on PG_active against the non-LRU pages in here because
2216 * nobody will play with that bit on a non-LRU page.
2217 *
2218 * The downside is that we have to touch page->_refcount against each page.
2219 * But we had to alter page->flags anyway.
2220 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221static void shrink_active_list(unsigned long nr_to_scan,
2222			       struct lruvec *lruvec,
2223			       struct scan_control *sc,
2224			       enum lru_list lru)
2225{
2226	unsigned long nr_taken;
2227	unsigned long nr_scanned;
2228	unsigned long vm_flags;
2229	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2230	LIST_HEAD(l_active);
2231	LIST_HEAD(l_inactive);
2232	struct page *page;
2233	unsigned nr_deactivate, nr_activate;
2234	unsigned nr_rotated = 0;
 
2235	int file = is_file_lru(lru);
2236	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2237
2238	lru_add_drain();
2239
2240	spin_lock_irq(&lruvec->lru_lock);
 
 
 
 
 
2241
2242	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2243				     &nr_scanned, sc, lru);
2244
2245	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
 
2246
2247	if (!cgroup_reclaim(sc))
2248		__count_vm_events(PGREFILL, nr_scanned);
2249	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2250
2251	spin_unlock_irq(&lruvec->lru_lock);
2252
2253	while (!list_empty(&l_hold)) {
2254		cond_resched();
2255		page = lru_to_page(&l_hold);
2256		list_del(&page->lru);
2257
2258		if (unlikely(!page_evictable(page))) {
2259			putback_lru_page(page);
2260			continue;
2261		}
2262
2263		if (unlikely(buffer_heads_over_limit)) {
2264			if (page_has_private(page) && trylock_page(page)) {
2265				if (page_has_private(page))
2266					try_to_release_page(page, 0);
2267				unlock_page(page);
2268			}
2269		}
2270
2271		if (page_referenced(page, 0, sc->target_mem_cgroup,
2272				    &vm_flags)) {
 
2273			/*
2274			 * Identify referenced, file-backed active pages and
2275			 * give them one more trip around the active list. So
2276			 * that executable code get better chances to stay in
2277			 * memory under moderate memory pressure.  Anon pages
2278			 * are not likely to be evicted by use-once streaming
2279			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2280			 * so we ignore them here.
2281			 */
2282			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2283				nr_rotated += thp_nr_pages(page);
2284				list_add(&page->lru, &l_active);
2285				continue;
2286			}
2287		}
2288
2289		ClearPageActive(page);	/* we are de-activating */
2290		SetPageWorkingset(page);
2291		list_add(&page->lru, &l_inactive);
2292	}
2293
2294	/*
2295	 * Move pages back to the lru list.
2296	 */
2297	spin_lock_irq(&lruvec->lru_lock);
2298
2299	nr_activate = move_pages_to_lru(lruvec, &l_active);
2300	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2301	/* Keep all free pages in l_active list */
2302	list_splice(&l_inactive, &l_active);
2303
2304	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2305	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2306
 
 
2307	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2308	spin_unlock_irq(&lruvec->lru_lock);
2309
2310	mem_cgroup_uncharge_list(&l_active);
2311	free_unref_page_list(&l_active);
2312	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2313			nr_deactivate, nr_rotated, sc->priority, file);
2314}
2315
2316unsigned long reclaim_pages(struct list_head *page_list)
2317{
2318	int nid = NUMA_NO_NODE;
2319	unsigned int nr_reclaimed = 0;
2320	LIST_HEAD(node_page_list);
2321	struct reclaim_stat dummy_stat;
2322	struct page *page;
2323	unsigned int noreclaim_flag;
2324	struct scan_control sc = {
2325		.gfp_mask = GFP_KERNEL,
2326		.priority = DEF_PRIORITY,
2327		.may_writepage = 1,
2328		.may_unmap = 1,
2329		.may_swap = 1,
2330	};
2331
2332	noreclaim_flag = memalloc_noreclaim_save();
2333
2334	while (!list_empty(page_list)) {
2335		page = lru_to_page(page_list);
2336		if (nid == NUMA_NO_NODE) {
2337			nid = page_to_nid(page);
2338			INIT_LIST_HEAD(&node_page_list);
2339		}
2340
2341		if (nid == page_to_nid(page)) {
2342			ClearPageActive(page);
2343			list_move(&page->lru, &node_page_list);
2344			continue;
2345		}
2346
2347		nr_reclaimed += shrink_page_list(&node_page_list,
2348						NODE_DATA(nid),
2349						&sc, &dummy_stat, false);
2350		while (!list_empty(&node_page_list)) {
2351			page = lru_to_page(&node_page_list);
2352			list_del(&page->lru);
2353			putback_lru_page(page);
2354		}
2355
2356		nid = NUMA_NO_NODE;
2357	}
2358
2359	if (!list_empty(&node_page_list)) {
2360		nr_reclaimed += shrink_page_list(&node_page_list,
2361						NODE_DATA(nid),
2362						&sc, &dummy_stat, false);
2363		while (!list_empty(&node_page_list)) {
2364			page = lru_to_page(&node_page_list);
2365			list_del(&page->lru);
2366			putback_lru_page(page);
2367		}
2368	}
2369
2370	memalloc_noreclaim_restore(noreclaim_flag);
2371
2372	return nr_reclaimed;
2373}
2374
2375static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2376				 struct lruvec *lruvec, struct scan_control *sc)
2377{
2378	if (is_active_lru(lru)) {
2379		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2380			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2381		else
2382			sc->skipped_deactivate = 1;
2383		return 0;
2384	}
2385
2386	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
 
2387}
2388
2389/*
2390 * The inactive anon list should be small enough that the VM never has
2391 * to do too much work.
2392 *
2393 * The inactive file list should be small enough to leave most memory
2394 * to the established workingset on the scan-resistant active list,
2395 * but large enough to avoid thrashing the aggregate readahead window.
2396 *
2397 * Both inactive lists should also be large enough that each inactive
2398 * page has a chance to be referenced again before it is reclaimed.
2399 *
2400 * If that fails and refaulting is observed, the inactive list grows.
2401 *
2402 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2403 * on this LRU, maintained by the pageout code. An inactive_ratio
2404 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2405 *
2406 * total     target    max
2407 * memory    ratio     inactive
2408 * -------------------------------------
2409 *   10MB       1         5MB
2410 *  100MB       1        50MB
2411 *    1GB       3       250MB
2412 *   10GB      10       0.9GB
2413 *  100GB      31         3GB
2414 *    1TB     101        10GB
2415 *   10TB     320        32GB
2416 */
2417static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
 
2418{
2419	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2420	unsigned long inactive, active;
2421	unsigned long inactive_ratio;
 
 
 
2422	unsigned long gb;
2423
2424	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2425	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
 
 
 
 
 
 
 
2426
2427	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2428	if (gb)
2429		inactive_ratio = int_sqrt(10 * gb);
2430	else
2431		inactive_ratio = 1;
2432
2433	return inactive * inactive_ratio < active;
2434}
2435
 
 
 
 
 
 
 
 
 
 
 
 
2436enum scan_balance {
2437	SCAN_EQUAL,
2438	SCAN_FRACT,
2439	SCAN_ANON,
2440	SCAN_FILE,
2441};
2442
2443/*
2444 * Determine how aggressively the anon and file LRU lists should be
2445 * scanned.  The relative value of each set of LRU lists is determined
2446 * by looking at the fraction of the pages scanned we did rotate back
2447 * onto the active list instead of evict.
2448 *
2449 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2450 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2451 */
2452static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2453			   unsigned long *nr)
 
2454{
2455	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2456	unsigned long anon_cost, file_cost, total_cost;
2457	int swappiness = mem_cgroup_swappiness(memcg);
2458	u64 fraction[ANON_AND_FILE];
 
2459	u64 denominator = 0;	/* gcc */
 
 
2460	enum scan_balance scan_balance;
 
 
2461	unsigned long ap, fp;
2462	enum lru_list lru;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463
2464	/* If we have no swap space, do not bother scanning anon pages. */
2465	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2466		scan_balance = SCAN_FILE;
2467		goto out;
2468	}
2469
2470	/*
2471	 * Global reclaim will swap to prevent OOM even with no
2472	 * swappiness, but memcg users want to use this knob to
2473	 * disable swapping for individual groups completely when
2474	 * using the memory controller's swap limit feature would be
2475	 * too expensive.
2476	 */
2477	if (cgroup_reclaim(sc) && !swappiness) {
2478		scan_balance = SCAN_FILE;
2479		goto out;
2480	}
2481
2482	/*
2483	 * Do not apply any pressure balancing cleverness when the
2484	 * system is close to OOM, scan both anon and file equally
2485	 * (unless the swappiness setting disagrees with swapping).
2486	 */
2487	if (!sc->priority && swappiness) {
2488		scan_balance = SCAN_EQUAL;
2489		goto out;
2490	}
2491
2492	/*
2493	 * If the system is almost out of file pages, force-scan anon.
 
 
 
 
 
 
2494	 */
2495	if (sc->file_is_tiny) {
2496		scan_balance = SCAN_ANON;
2497		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	}
2499
2500	/*
2501	 * If there is enough inactive page cache, we do not reclaim
2502	 * anything from the anonymous working right now.
 
 
 
 
 
2503	 */
2504	if (sc->cache_trim_mode) {
 
2505		scan_balance = SCAN_FILE;
2506		goto out;
2507	}
2508
2509	scan_balance = SCAN_FRACT;
 
2510	/*
2511	 * Calculate the pressure balance between anon and file pages.
2512	 *
2513	 * The amount of pressure we put on each LRU is inversely
2514	 * proportional to the cost of reclaiming each list, as
2515	 * determined by the share of pages that are refaulting, times
2516	 * the relative IO cost of bringing back a swapped out
2517	 * anonymous page vs reloading a filesystem page (swappiness).
 
 
 
2518	 *
2519	 * Although we limit that influence to ensure no list gets
2520	 * left behind completely: at least a third of the pressure is
2521	 * applied, before swappiness.
2522	 *
2523	 * With swappiness at 100, anon and file have equal IO cost.
2524	 */
2525	total_cost = sc->anon_cost + sc->file_cost;
2526	anon_cost = total_cost + sc->anon_cost;
2527	file_cost = total_cost + sc->file_cost;
2528	total_cost = anon_cost + file_cost;
2529
2530	ap = swappiness * (total_cost + 1);
2531	ap /= anon_cost + 1;
 
 
2532
2533	fp = (200 - swappiness) * (total_cost + 1);
2534	fp /= file_cost + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535
2536	fraction[0] = ap;
2537	fraction[1] = fp;
2538	denominator = ap + fp;
2539out:
2540	for_each_evictable_lru(lru) {
2541		int file = is_file_lru(lru);
2542		unsigned long lruvec_size;
2543		unsigned long low, min;
2544		unsigned long scan;
2545
2546		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2547		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2548				      &min, &low);
2549
2550		if (min || low) {
2551			/*
2552			 * Scale a cgroup's reclaim pressure by proportioning
2553			 * its current usage to its memory.low or memory.min
2554			 * setting.
2555			 *
2556			 * This is important, as otherwise scanning aggression
2557			 * becomes extremely binary -- from nothing as we
2558			 * approach the memory protection threshold, to totally
2559			 * nominal as we exceed it.  This results in requiring
2560			 * setting extremely liberal protection thresholds. It
2561			 * also means we simply get no protection at all if we
2562			 * set it too low, which is not ideal.
2563			 *
2564			 * If there is any protection in place, we reduce scan
2565			 * pressure by how much of the total memory used is
2566			 * within protection thresholds.
2567			 *
2568			 * There is one special case: in the first reclaim pass,
2569			 * we skip over all groups that are within their low
2570			 * protection. If that fails to reclaim enough pages to
2571			 * satisfy the reclaim goal, we come back and override
2572			 * the best-effort low protection. However, we still
2573			 * ideally want to honor how well-behaved groups are in
2574			 * that case instead of simply punishing them all
2575			 * equally. As such, we reclaim them based on how much
2576			 * memory they are using, reducing the scan pressure
2577			 * again by how much of the total memory used is under
2578			 * hard protection.
2579			 */
2580			unsigned long cgroup_size = mem_cgroup_size(memcg);
2581			unsigned long protection;
2582
2583			/* memory.low scaling, make sure we retry before OOM */
2584			if (!sc->memcg_low_reclaim && low > min) {
2585				protection = low;
2586				sc->memcg_low_skipped = 1;
2587			} else {
2588				protection = min;
2589			}
2590
2591			/* Avoid TOCTOU with earlier protection check */
2592			cgroup_size = max(cgroup_size, protection);
2593
2594			scan = lruvec_size - lruvec_size * protection /
2595				(cgroup_size + 1);
2596
2597			/*
2598			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2599			 * reclaim moving forwards, avoiding decrementing
2600			 * sc->priority further than desirable.
2601			 */
2602			scan = max(scan, SWAP_CLUSTER_MAX);
2603		} else {
2604			scan = lruvec_size;
2605		}
2606
2607		scan >>= sc->priority;
2608
2609		/*
2610		 * If the cgroup's already been deleted, make sure to
2611		 * scrape out the remaining cache.
2612		 */
2613		if (!scan && !mem_cgroup_online(memcg))
2614			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2615
2616		switch (scan_balance) {
2617		case SCAN_EQUAL:
2618			/* Scan lists relative to size */
2619			break;
2620		case SCAN_FRACT:
2621			/*
2622			 * Scan types proportional to swappiness and
2623			 * their relative recent reclaim efficiency.
2624			 * Make sure we don't miss the last page on
2625			 * the offlined memory cgroups because of a
2626			 * round-off error.
2627			 */
2628			scan = mem_cgroup_online(memcg) ?
2629			       div64_u64(scan * fraction[file], denominator) :
2630			       DIV64_U64_ROUND_UP(scan * fraction[file],
2631						  denominator);
2632			break;
2633		case SCAN_FILE:
2634		case SCAN_ANON:
2635			/* Scan one type exclusively */
2636			if ((scan_balance == SCAN_FILE) != file)
2637				scan = 0;
2638			break;
2639		default:
2640			/* Look ma, no brain */
2641			BUG();
2642		}
2643
2644		nr[lru] = scan;
2645	}
2646}
2647
2648static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 
 
 
 
2649{
 
2650	unsigned long nr[NR_LRU_LISTS];
2651	unsigned long targets[NR_LRU_LISTS];
2652	unsigned long nr_to_scan;
2653	enum lru_list lru;
2654	unsigned long nr_reclaimed = 0;
2655	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2656	struct blk_plug plug;
2657	bool scan_adjusted;
2658
2659	get_scan_count(lruvec, sc, nr);
2660
2661	/* Record the original scan target for proportional adjustments later */
2662	memcpy(targets, nr, sizeof(nr));
2663
2664	/*
2665	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2666	 * event that can occur when there is little memory pressure e.g.
2667	 * multiple streaming readers/writers. Hence, we do not abort scanning
2668	 * when the requested number of pages are reclaimed when scanning at
2669	 * DEF_PRIORITY on the assumption that the fact we are direct
2670	 * reclaiming implies that kswapd is not keeping up and it is best to
2671	 * do a batch of work at once. For memcg reclaim one check is made to
2672	 * abort proportional reclaim if either the file or anon lru has already
2673	 * dropped to zero at the first pass.
2674	 */
2675	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2676			 sc->priority == DEF_PRIORITY);
2677
2678	blk_start_plug(&plug);
2679	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2680					nr[LRU_INACTIVE_FILE]) {
2681		unsigned long nr_anon, nr_file, percentage;
2682		unsigned long nr_scanned;
2683
2684		for_each_evictable_lru(lru) {
2685			if (nr[lru]) {
2686				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2687				nr[lru] -= nr_to_scan;
2688
2689				nr_reclaimed += shrink_list(lru, nr_to_scan,
2690							    lruvec, sc);
2691			}
2692		}
2693
2694		cond_resched();
2695
2696		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2697			continue;
2698
2699		/*
2700		 * For kswapd and memcg, reclaim at least the number of pages
2701		 * requested. Ensure that the anon and file LRUs are scanned
2702		 * proportionally what was requested by get_scan_count(). We
2703		 * stop reclaiming one LRU and reduce the amount scanning
2704		 * proportional to the original scan target.
2705		 */
2706		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2707		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2708
2709		/*
2710		 * It's just vindictive to attack the larger once the smaller
2711		 * has gone to zero.  And given the way we stop scanning the
2712		 * smaller below, this makes sure that we only make one nudge
2713		 * towards proportionality once we've got nr_to_reclaim.
2714		 */
2715		if (!nr_file || !nr_anon)
2716			break;
2717
2718		if (nr_file > nr_anon) {
2719			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2720						targets[LRU_ACTIVE_ANON] + 1;
2721			lru = LRU_BASE;
2722			percentage = nr_anon * 100 / scan_target;
2723		} else {
2724			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2725						targets[LRU_ACTIVE_FILE] + 1;
2726			lru = LRU_FILE;
2727			percentage = nr_file * 100 / scan_target;
2728		}
2729
2730		/* Stop scanning the smaller of the LRU */
2731		nr[lru] = 0;
2732		nr[lru + LRU_ACTIVE] = 0;
2733
2734		/*
2735		 * Recalculate the other LRU scan count based on its original
2736		 * scan target and the percentage scanning already complete
2737		 */
2738		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2739		nr_scanned = targets[lru] - nr[lru];
2740		nr[lru] = targets[lru] * (100 - percentage) / 100;
2741		nr[lru] -= min(nr[lru], nr_scanned);
2742
2743		lru += LRU_ACTIVE;
2744		nr_scanned = targets[lru] - nr[lru];
2745		nr[lru] = targets[lru] * (100 - percentage) / 100;
2746		nr[lru] -= min(nr[lru], nr_scanned);
2747
2748		scan_adjusted = true;
2749	}
2750	blk_finish_plug(&plug);
2751	sc->nr_reclaimed += nr_reclaimed;
2752
2753	/*
2754	 * Even if we did not try to evict anon pages at all, we want to
2755	 * rebalance the anon lru active/inactive ratio.
2756	 */
2757	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2758		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2759				   sc, LRU_ACTIVE_ANON);
2760}
2761
2762/* Use reclaim/compaction for costly allocs or under memory pressure */
2763static bool in_reclaim_compaction(struct scan_control *sc)
2764{
2765	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2766			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2767			 sc->priority < DEF_PRIORITY - 2))
2768		return true;
2769
2770	return false;
2771}
2772
2773/*
2774 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2775 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2776 * true if more pages should be reclaimed such that when the page allocator
2777 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2778 * It will give up earlier than that if there is difficulty reclaiming pages.
2779 */
2780static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2781					unsigned long nr_reclaimed,
 
2782					struct scan_control *sc)
2783{
2784	unsigned long pages_for_compaction;
2785	unsigned long inactive_lru_pages;
2786	int z;
2787
2788	/* If not in reclaim/compaction mode, stop */
2789	if (!in_reclaim_compaction(sc))
2790		return false;
2791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792	/*
2793	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2794	 * number of pages that were scanned. This will return to the caller
2795	 * with the risk reclaim/compaction and the resulting allocation attempt
2796	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2797	 * allocations through requiring that the full LRU list has been scanned
2798	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2799	 * scan, but that approximation was wrong, and there were corner cases
2800	 * where always a non-zero amount of pages were scanned.
2801	 */
2802	if (!nr_reclaimed)
2803		return false;
 
 
 
 
 
2804
2805	/* If compaction would go ahead or the allocation would succeed, stop */
2806	for (z = 0; z <= sc->reclaim_idx; z++) {
2807		struct zone *zone = &pgdat->node_zones[z];
2808		if (!managed_zone(zone))
2809			continue;
2810
2811		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2812		case COMPACT_SUCCESS:
2813		case COMPACT_CONTINUE:
2814			return false;
2815		default:
2816			/* check next zone */
2817			;
2818		}
2819	}
2820
2821	/*
2822	 * If we have not reclaimed enough pages for compaction and the
2823	 * inactive lists are large enough, continue reclaiming
2824	 */
2825	pages_for_compaction = compact_gap(sc->order);
2826	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2827	if (get_nr_swap_pages() > 0)
2828		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2829
2830	return inactive_lru_pages > pages_for_compaction;
2831}
2832
2833static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2834{
2835	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2836	struct mem_cgroup *memcg;
2837
2838	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2839	do {
2840		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2841		unsigned long reclaimed;
2842		unsigned long scanned;
2843
2844		/*
2845		 * This loop can become CPU-bound when target memcgs
2846		 * aren't eligible for reclaim - either because they
2847		 * don't have any reclaimable pages, or because their
2848		 * memory is explicitly protected. Avoid soft lockups.
2849		 */
2850		cond_resched();
2851
2852		mem_cgroup_calculate_protection(target_memcg, memcg);
2853
2854		if (mem_cgroup_below_min(memcg)) {
2855			/*
2856			 * Hard protection.
2857			 * If there is no reclaimable memory, OOM.
2858			 */
2859			continue;
2860		} else if (mem_cgroup_below_low(memcg)) {
2861			/*
2862			 * Soft protection.
2863			 * Respect the protection only as long as
2864			 * there is an unprotected supply
2865			 * of reclaimable memory from other cgroups.
2866			 */
2867			if (!sc->memcg_low_reclaim) {
2868				sc->memcg_low_skipped = 1;
2869				continue;
2870			}
2871			memcg_memory_event(memcg, MEMCG_LOW);
2872		}
2873
2874		reclaimed = sc->nr_reclaimed;
2875		scanned = sc->nr_scanned;
2876
2877		shrink_lruvec(lruvec, sc);
2878
2879		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2880			    sc->priority);
2881
2882		/* Record the group's reclaim efficiency */
2883		vmpressure(sc->gfp_mask, memcg, false,
2884			   sc->nr_scanned - scanned,
2885			   sc->nr_reclaimed - reclaimed);
2886
2887	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2888}
2889
2890static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2891{
2892	struct reclaim_state *reclaim_state = current->reclaim_state;
2893	unsigned long nr_reclaimed, nr_scanned;
2894	struct lruvec *target_lruvec;
2895	bool reclaimable = false;
2896	unsigned long file;
2897
2898	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2899
2900again:
2901	memset(&sc->nr, 0, sizeof(sc->nr));
2902
2903	nr_reclaimed = sc->nr_reclaimed;
2904	nr_scanned = sc->nr_scanned;
2905
2906	/*
2907	 * Determine the scan balance between anon and file LRUs.
2908	 */
2909	spin_lock_irq(&target_lruvec->lru_lock);
2910	sc->anon_cost = target_lruvec->anon_cost;
2911	sc->file_cost = target_lruvec->file_cost;
2912	spin_unlock_irq(&target_lruvec->lru_lock);
2913
2914	/*
2915	 * Target desirable inactive:active list ratios for the anon
2916	 * and file LRU lists.
2917	 */
2918	if (!sc->force_deactivate) {
2919		unsigned long refaults;
2920
2921		refaults = lruvec_page_state(target_lruvec,
2922				WORKINGSET_ACTIVATE_ANON);
2923		if (refaults != target_lruvec->refaults[0] ||
2924			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2925			sc->may_deactivate |= DEACTIVATE_ANON;
2926		else
2927			sc->may_deactivate &= ~DEACTIVATE_ANON;
2928
2929		/*
2930		 * When refaults are being observed, it means a new
2931		 * workingset is being established. Deactivate to get
2932		 * rid of any stale active pages quickly.
2933		 */
2934		refaults = lruvec_page_state(target_lruvec,
2935				WORKINGSET_ACTIVATE_FILE);
2936		if (refaults != target_lruvec->refaults[1] ||
2937		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2938			sc->may_deactivate |= DEACTIVATE_FILE;
2939		else
2940			sc->may_deactivate &= ~DEACTIVATE_FILE;
2941	} else
2942		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2943
2944	/*
2945	 * If we have plenty of inactive file pages that aren't
2946	 * thrashing, try to reclaim those first before touching
2947	 * anonymous pages.
2948	 */
2949	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2950	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2951		sc->cache_trim_mode = 1;
2952	else
2953		sc->cache_trim_mode = 0;
2954
2955	/*
2956	 * Prevent the reclaimer from falling into the cache trap: as
2957	 * cache pages start out inactive, every cache fault will tip
2958	 * the scan balance towards the file LRU.  And as the file LRU
2959	 * shrinks, so does the window for rotation from references.
2960	 * This means we have a runaway feedback loop where a tiny
2961	 * thrashing file LRU becomes infinitely more attractive than
2962	 * anon pages.  Try to detect this based on file LRU size.
2963	 */
2964	if (!cgroup_reclaim(sc)) {
2965		unsigned long total_high_wmark = 0;
2966		unsigned long free, anon;
2967		int z;
2968
2969		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2970		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2971			   node_page_state(pgdat, NR_INACTIVE_FILE);
2972
2973		for (z = 0; z < MAX_NR_ZONES; z++) {
2974			struct zone *zone = &pgdat->node_zones[z];
2975			if (!managed_zone(zone))
2976				continue;
2977
2978			total_high_wmark += high_wmark_pages(zone);
2979		}
2980
2981		/*
2982		 * Consider anon: if that's low too, this isn't a
2983		 * runaway file reclaim problem, but rather just
2984		 * extreme pressure. Reclaim as per usual then.
2985		 */
2986		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2987
2988		sc->file_is_tiny =
2989			file + free <= total_high_wmark &&
2990			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2991			anon >> sc->priority;
2992	}
2993
2994	shrink_node_memcgs(pgdat, sc);
 
2995
2996	if (reclaim_state) {
2997		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2998		reclaim_state->reclaimed_slab = 0;
2999	}
3000
3001	/* Record the subtree's reclaim efficiency */
3002	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3003		   sc->nr_scanned - nr_scanned,
3004		   sc->nr_reclaimed - nr_reclaimed);
 
 
 
 
 
3005
3006	if (sc->nr_reclaimed - nr_reclaimed)
3007		reclaimable = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008
3009	if (current_is_kswapd()) {
3010		/*
3011		 * If reclaim is isolating dirty pages under writeback,
3012		 * it implies that the long-lived page allocation rate
3013		 * is exceeding the page laundering rate. Either the
3014		 * global limits are not being effective at throttling
3015		 * processes due to the page distribution throughout
3016		 * zones or there is heavy usage of a slow backing
3017		 * device. The only option is to throttle from reclaim
3018		 * context which is not ideal as there is no guarantee
3019		 * the dirtying process is throttled in the same way
3020		 * balance_dirty_pages() manages.
3021		 *
3022		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3023		 * count the number of pages under pages flagged for
3024		 * immediate reclaim and stall if any are encountered
3025		 * in the nr_immediate check below.
3026		 */
3027		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3028			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3029
3030		/* Allow kswapd to start writing pages during reclaim.*/
3031		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3032			set_bit(PGDAT_DIRTY, &pgdat->flags);
3033
3034		/*
3035		 * If kswapd scans pages marked for immediate
3036		 * reclaim and under writeback (nr_immediate), it
3037		 * implies that pages are cycling through the LRU
3038		 * faster than they are written so also forcibly stall.
3039		 */
3040		if (sc->nr.immediate)
3041			congestion_wait(BLK_RW_ASYNC, HZ/10);
3042	}
3043
3044	/*
3045	 * Tag a node/memcg as congested if all the dirty pages
3046	 * scanned were backed by a congested BDI and
3047	 * wait_iff_congested will stall.
3048	 *
3049	 * Legacy memcg will stall in page writeback so avoid forcibly
3050	 * stalling in wait_iff_congested().
3051	 */
3052	if ((current_is_kswapd() ||
3053	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3054	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3055		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3056
3057	/*
3058	 * Stall direct reclaim for IO completions if underlying BDIs
3059	 * and node is congested. Allow kswapd to continue until it
3060	 * starts encountering unqueued dirty pages or cycling through
3061	 * the LRU too quickly.
3062	 */
3063	if (!current_is_kswapd() && current_may_throttle() &&
3064	    !sc->hibernation_mode &&
3065	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3066		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
3067
3068	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3069				    sc))
3070		goto again;
3071
3072	/*
3073	 * Kswapd gives up on balancing particular nodes after too
3074	 * many failures to reclaim anything from them and goes to
3075	 * sleep. On reclaim progress, reset the failure counter. A
3076	 * successful direct reclaim run will revive a dormant kswapd.
3077	 */
3078	if (reclaimable)
3079		pgdat->kswapd_failures = 0;
3080}
3081
3082/*
3083 * Returns true if compaction should go ahead for a costly-order request, or
3084 * the allocation would already succeed without compaction. Return false if we
3085 * should reclaim first.
3086 */
3087static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3088{
3089	unsigned long watermark;
3090	enum compact_result suitable;
3091
3092	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3093	if (suitable == COMPACT_SUCCESS)
3094		/* Allocation should succeed already. Don't reclaim. */
3095		return true;
3096	if (suitable == COMPACT_SKIPPED)
3097		/* Compaction cannot yet proceed. Do reclaim. */
3098		return false;
3099
3100	/*
3101	 * Compaction is already possible, but it takes time to run and there
3102	 * are potentially other callers using the pages just freed. So proceed
3103	 * with reclaim to make a buffer of free pages available to give
3104	 * compaction a reasonable chance of completing and allocating the page.
3105	 * Note that we won't actually reclaim the whole buffer in one attempt
3106	 * as the target watermark in should_continue_reclaim() is lower. But if
3107	 * we are already above the high+gap watermark, don't reclaim at all.
3108	 */
3109	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3110
3111	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3112}
3113
3114/*
3115 * This is the direct reclaim path, for page-allocating processes.  We only
3116 * try to reclaim pages from zones which will satisfy the caller's allocation
3117 * request.
3118 *
3119 * If a zone is deemed to be full of pinned pages then just give it a light
3120 * scan then give up on it.
3121 */
3122static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3123{
3124	struct zoneref *z;
3125	struct zone *zone;
3126	unsigned long nr_soft_reclaimed;
3127	unsigned long nr_soft_scanned;
3128	gfp_t orig_mask;
3129	pg_data_t *last_pgdat = NULL;
3130
3131	/*
3132	 * If the number of buffer_heads in the machine exceeds the maximum
3133	 * allowed level, force direct reclaim to scan the highmem zone as
3134	 * highmem pages could be pinning lowmem pages storing buffer_heads
3135	 */
3136	orig_mask = sc->gfp_mask;
3137	if (buffer_heads_over_limit) {
3138		sc->gfp_mask |= __GFP_HIGHMEM;
3139		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3140	}
3141
3142	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3143					sc->reclaim_idx, sc->nodemask) {
3144		/*
3145		 * Take care memory controller reclaiming has small influence
3146		 * to global LRU.
3147		 */
3148		if (!cgroup_reclaim(sc)) {
3149			if (!cpuset_zone_allowed(zone,
3150						 GFP_KERNEL | __GFP_HARDWALL))
3151				continue;
3152
 
 
 
 
3153			/*
3154			 * If we already have plenty of memory free for
3155			 * compaction in this zone, don't free any more.
3156			 * Even though compaction is invoked for any
3157			 * non-zero order, only frequent costly order
3158			 * reclamation is disruptive enough to become a
3159			 * noticeable problem, like transparent huge
3160			 * page allocations.
3161			 */
3162			if (IS_ENABLED(CONFIG_COMPACTION) &&
3163			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3164			    compaction_ready(zone, sc)) {
3165				sc->compaction_ready = true;
3166				continue;
3167			}
3168
3169			/*
3170			 * Shrink each node in the zonelist once. If the
3171			 * zonelist is ordered by zone (not the default) then a
3172			 * node may be shrunk multiple times but in that case
3173			 * the user prefers lower zones being preserved.
3174			 */
3175			if (zone->zone_pgdat == last_pgdat)
3176				continue;
3177
3178			/*
3179			 * This steals pages from memory cgroups over softlimit
3180			 * and returns the number of reclaimed pages and
3181			 * scanned pages. This works for global memory pressure
3182			 * and balancing, not for a memcg's limit.
3183			 */
3184			nr_soft_scanned = 0;
3185			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3186						sc->order, sc->gfp_mask,
3187						&nr_soft_scanned);
3188			sc->nr_reclaimed += nr_soft_reclaimed;
3189			sc->nr_scanned += nr_soft_scanned;
3190			/* need some check for avoid more shrink_zone() */
3191		}
3192
3193		/* See comment about same check for global reclaim above */
3194		if (zone->zone_pgdat == last_pgdat)
3195			continue;
3196		last_pgdat = zone->zone_pgdat;
3197		shrink_node(zone->zone_pgdat, sc);
3198	}
3199
3200	/*
3201	 * Restore to original mask to avoid the impact on the caller if we
3202	 * promoted it to __GFP_HIGHMEM.
3203	 */
3204	sc->gfp_mask = orig_mask;
3205}
3206
3207static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3208{
3209	struct lruvec *target_lruvec;
3210	unsigned long refaults;
3211
3212	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3213	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3214	target_lruvec->refaults[0] = refaults;
3215	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3216	target_lruvec->refaults[1] = refaults;
3217}
3218
3219/*
3220 * This is the main entry point to direct page reclaim.
3221 *
3222 * If a full scan of the inactive list fails to free enough memory then we
3223 * are "out of memory" and something needs to be killed.
3224 *
3225 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3226 * high - the zone may be full of dirty or under-writeback pages, which this
3227 * caller can't do much about.  We kick the writeback threads and take explicit
3228 * naps in the hope that some of these pages can be written.  But if the
3229 * allocating task holds filesystem locks which prevent writeout this might not
3230 * work, and the allocation attempt will fail.
3231 *
3232 * returns:	0, if no pages reclaimed
3233 * 		else, the number of pages reclaimed
3234 */
3235static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3236					  struct scan_control *sc)
3237{
3238	int initial_priority = sc->priority;
3239	pg_data_t *last_pgdat;
3240	struct zoneref *z;
3241	struct zone *zone;
3242retry:
3243	delayacct_freepages_start();
3244
3245	if (!cgroup_reclaim(sc))
3246		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3247
3248	do {
3249		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3250				sc->priority);
3251		sc->nr_scanned = 0;
3252		shrink_zones(zonelist, sc);
3253
 
3254		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3255			break;
3256
3257		if (sc->compaction_ready)
3258			break;
3259
3260		/*
3261		 * If we're getting trouble reclaiming, start doing
3262		 * writepage even in laptop mode.
3263		 */
3264		if (sc->priority < DEF_PRIORITY - 2)
3265			sc->may_writepage = 1;
3266	} while (--sc->priority >= 0);
3267
3268	last_pgdat = NULL;
3269	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3270					sc->nodemask) {
3271		if (zone->zone_pgdat == last_pgdat)
3272			continue;
3273		last_pgdat = zone->zone_pgdat;
3274
3275		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3276
3277		if (cgroup_reclaim(sc)) {
3278			struct lruvec *lruvec;
3279
3280			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3281						   zone->zone_pgdat);
3282			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
 
 
 
 
 
 
3283		}
3284	}
3285
3286	delayacct_freepages_end();
3287
3288	if (sc->nr_reclaimed)
3289		return sc->nr_reclaimed;
3290
3291	/* Aborted reclaim to try compaction? don't OOM, then */
3292	if (sc->compaction_ready)
3293		return 1;
3294
3295	/*
3296	 * We make inactive:active ratio decisions based on the node's
3297	 * composition of memory, but a restrictive reclaim_idx or a
3298	 * memory.low cgroup setting can exempt large amounts of
3299	 * memory from reclaim. Neither of which are very common, so
3300	 * instead of doing costly eligibility calculations of the
3301	 * entire cgroup subtree up front, we assume the estimates are
3302	 * good, and retry with forcible deactivation if that fails.
3303	 */
3304	if (sc->skipped_deactivate) {
3305		sc->priority = initial_priority;
3306		sc->force_deactivate = 1;
3307		sc->skipped_deactivate = 0;
3308		goto retry;
3309	}
3310
3311	/* Untapped cgroup reserves?  Don't OOM, retry. */
3312	if (sc->memcg_low_skipped) {
3313		sc->priority = initial_priority;
3314		sc->force_deactivate = 0;
3315		sc->memcg_low_reclaim = 1;
3316		sc->memcg_low_skipped = 0;
3317		goto retry;
3318	}
3319
3320	return 0;
3321}
3322
3323static bool allow_direct_reclaim(pg_data_t *pgdat)
3324{
3325	struct zone *zone;
3326	unsigned long pfmemalloc_reserve = 0;
3327	unsigned long free_pages = 0;
3328	int i;
3329	bool wmark_ok;
3330
3331	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3332		return true;
3333
3334	for (i = 0; i <= ZONE_NORMAL; i++) {
3335		zone = &pgdat->node_zones[i];
3336		if (!managed_zone(zone))
3337			continue;
3338
3339		if (!zone_reclaimable_pages(zone))
3340			continue;
3341
3342		pfmemalloc_reserve += min_wmark_pages(zone);
3343		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3344	}
3345
3346	/* If there are no reserves (unexpected config) then do not throttle */
3347	if (!pfmemalloc_reserve)
3348		return true;
3349
3350	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3351
3352	/* kswapd must be awake if processes are being throttled */
3353	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3354		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3355			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3356
3357		wake_up_interruptible(&pgdat->kswapd_wait);
3358	}
3359
3360	return wmark_ok;
3361}
3362
3363/*
3364 * Throttle direct reclaimers if backing storage is backed by the network
3365 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3366 * depleted. kswapd will continue to make progress and wake the processes
3367 * when the low watermark is reached.
3368 *
3369 * Returns true if a fatal signal was delivered during throttling. If this
3370 * happens, the page allocator should not consider triggering the OOM killer.
3371 */
3372static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3373					nodemask_t *nodemask)
3374{
3375	struct zoneref *z;
3376	struct zone *zone;
3377	pg_data_t *pgdat = NULL;
3378
3379	/*
3380	 * Kernel threads should not be throttled as they may be indirectly
3381	 * responsible for cleaning pages necessary for reclaim to make forward
3382	 * progress. kjournald for example may enter direct reclaim while
3383	 * committing a transaction where throttling it could forcing other
3384	 * processes to block on log_wait_commit().
3385	 */
3386	if (current->flags & PF_KTHREAD)
3387		goto out;
3388
3389	/*
3390	 * If a fatal signal is pending, this process should not throttle.
3391	 * It should return quickly so it can exit and free its memory
3392	 */
3393	if (fatal_signal_pending(current))
3394		goto out;
3395
3396	/*
3397	 * Check if the pfmemalloc reserves are ok by finding the first node
3398	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3399	 * GFP_KERNEL will be required for allocating network buffers when
3400	 * swapping over the network so ZONE_HIGHMEM is unusable.
3401	 *
3402	 * Throttling is based on the first usable node and throttled processes
3403	 * wait on a queue until kswapd makes progress and wakes them. There
3404	 * is an affinity then between processes waking up and where reclaim
3405	 * progress has been made assuming the process wakes on the same node.
3406	 * More importantly, processes running on remote nodes will not compete
3407	 * for remote pfmemalloc reserves and processes on different nodes
3408	 * should make reasonable progress.
3409	 */
3410	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3411					gfp_zone(gfp_mask), nodemask) {
3412		if (zone_idx(zone) > ZONE_NORMAL)
3413			continue;
3414
3415		/* Throttle based on the first usable node */
3416		pgdat = zone->zone_pgdat;
3417		if (allow_direct_reclaim(pgdat))
3418			goto out;
3419		break;
3420	}
3421
3422	/* If no zone was usable by the allocation flags then do not throttle */
3423	if (!pgdat)
3424		goto out;
3425
3426	/* Account for the throttling */
3427	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3428
3429	/*
3430	 * If the caller cannot enter the filesystem, it's possible that it
3431	 * is due to the caller holding an FS lock or performing a journal
3432	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3433	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3434	 * blocked waiting on the same lock. Instead, throttle for up to a
3435	 * second before continuing.
3436	 */
3437	if (!(gfp_mask & __GFP_FS)) {
3438		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3439			allow_direct_reclaim(pgdat), HZ);
3440
3441		goto check_pending;
3442	}
3443
3444	/* Throttle until kswapd wakes the process */
3445	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3446		allow_direct_reclaim(pgdat));
3447
3448check_pending:
3449	if (fatal_signal_pending(current))
3450		return true;
3451
3452out:
3453	return false;
3454}
3455
3456unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3457				gfp_t gfp_mask, nodemask_t *nodemask)
3458{
3459	unsigned long nr_reclaimed;
3460	struct scan_control sc = {
3461		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3462		.gfp_mask = current_gfp_context(gfp_mask),
3463		.reclaim_idx = gfp_zone(gfp_mask),
3464		.order = order,
3465		.nodemask = nodemask,
3466		.priority = DEF_PRIORITY,
3467		.may_writepage = !laptop_mode,
3468		.may_unmap = 1,
3469		.may_swap = 1,
3470	};
3471
3472	/*
3473	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3474	 * Confirm they are large enough for max values.
3475	 */
3476	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3477	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3478	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3479
3480	/*
3481	 * Do not enter reclaim if fatal signal was delivered while throttled.
3482	 * 1 is returned so that the page allocator does not OOM kill at this
3483	 * point.
3484	 */
3485	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3486		return 1;
3487
3488	set_task_reclaim_state(current, &sc.reclaim_state);
3489	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
 
 
3490
3491	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3492
3493	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3494	set_task_reclaim_state(current, NULL);
3495
3496	return nr_reclaimed;
3497}
3498
3499#ifdef CONFIG_MEMCG
3500
3501/* Only used by soft limit reclaim. Do not reuse for anything else. */
3502unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3503						gfp_t gfp_mask, bool noswap,
3504						pg_data_t *pgdat,
3505						unsigned long *nr_scanned)
3506{
3507	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3508	struct scan_control sc = {
3509		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3510		.target_mem_cgroup = memcg,
3511		.may_writepage = !laptop_mode,
3512		.may_unmap = 1,
3513		.reclaim_idx = MAX_NR_ZONES - 1,
3514		.may_swap = !noswap,
3515	};
3516
3517	WARN_ON_ONCE(!current->reclaim_state);
3518
3519	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3520			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3521
3522	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3523						      sc.gfp_mask);
 
 
3524
3525	/*
3526	 * NOTE: Although we can get the priority field, using it
3527	 * here is not a good idea, since it limits the pages we can scan.
3528	 * if we don't reclaim here, the shrink_node from balance_pgdat
3529	 * will pick up pages from other mem cgroup's as well. We hack
3530	 * the priority and make it zero.
3531	 */
3532	shrink_lruvec(lruvec, &sc);
3533
3534	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3535
3536	*nr_scanned = sc.nr_scanned;
3537
3538	return sc.nr_reclaimed;
3539}
3540
3541unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3542					   unsigned long nr_pages,
3543					   gfp_t gfp_mask,
3544					   bool may_swap)
3545{
 
3546	unsigned long nr_reclaimed;
3547	unsigned int noreclaim_flag;
3548	struct scan_control sc = {
3549		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3550		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3551				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3552		.reclaim_idx = MAX_NR_ZONES - 1,
3553		.target_mem_cgroup = memcg,
3554		.priority = DEF_PRIORITY,
3555		.may_writepage = !laptop_mode,
3556		.may_unmap = 1,
3557		.may_swap = may_swap,
3558	};
 
3559	/*
3560	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3561	 * equal pressure on all the nodes. This is based on the assumption that
3562	 * the reclaim does not bail out early.
3563	 */
3564	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3565
3566	set_task_reclaim_state(current, &sc.reclaim_state);
3567	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3568	noreclaim_flag = memalloc_noreclaim_save();
3569
 
 
 
 
 
 
3570	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 
3571
3572	memalloc_noreclaim_restore(noreclaim_flag);
3573	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3574	set_task_reclaim_state(current, NULL);
3575
3576	return nr_reclaimed;
3577}
3578#endif
3579
3580static void age_active_anon(struct pglist_data *pgdat,
3581				struct scan_control *sc)
3582{
3583	struct mem_cgroup *memcg;
3584	struct lruvec *lruvec;
3585
3586	if (!total_swap_pages)
3587		return;
3588
3589	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3590	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3591		return;
3592
3593	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3594	do {
3595		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3596		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3597				   sc, LRU_ACTIVE_ANON);
3598		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3599	} while (memcg);
3600}
3601
3602static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3603{
3604	int i;
3605	struct zone *zone;
3606
3607	/*
3608	 * Check for watermark boosts top-down as the higher zones
3609	 * are more likely to be boosted. Both watermarks and boosts
3610	 * should not be checked at the same time as reclaim would
3611	 * start prematurely when there is no boosting and a lower
3612	 * zone is balanced.
3613	 */
3614	for (i = highest_zoneidx; i >= 0; i--) {
3615		zone = pgdat->node_zones + i;
3616		if (!managed_zone(zone))
3617			continue;
3618
3619		if (zone->watermark_boost)
3620			return true;
3621	}
3622
3623	return false;
3624}
3625
3626/*
3627 * Returns true if there is an eligible zone balanced for the request order
3628 * and highest_zoneidx
3629 */
3630static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3631{
3632	int i;
3633	unsigned long mark = -1;
3634	struct zone *zone;
3635
3636	/*
3637	 * Check watermarks bottom-up as lower zones are more likely to
3638	 * meet watermarks.
3639	 */
3640	for (i = 0; i <= highest_zoneidx; i++) {
3641		zone = pgdat->node_zones + i;
3642
3643		if (!managed_zone(zone))
3644			continue;
3645
3646		mark = high_wmark_pages(zone);
3647		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3648			return true;
3649	}
3650
3651	/*
3652	 * If a node has no populated zone within highest_zoneidx, it does not
3653	 * need balancing by definition. This can happen if a zone-restricted
3654	 * allocation tries to wake a remote kswapd.
3655	 */
3656	if (mark == -1)
3657		return true;
3658
3659	return false;
3660}
3661
3662/* Clear pgdat state for congested, dirty or under writeback. */
3663static void clear_pgdat_congested(pg_data_t *pgdat)
3664{
3665	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3666
3667	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3668	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3669	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3670}
3671
3672/*
3673 * Prepare kswapd for sleeping. This verifies that there are no processes
3674 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3675 *
3676 * Returns true if kswapd is ready to sleep
3677 */
3678static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3679				int highest_zoneidx)
3680{
 
 
3681	/*
3682	 * The throttled processes are normally woken up in balance_pgdat() as
3683	 * soon as allow_direct_reclaim() is true. But there is a potential
3684	 * race between when kswapd checks the watermarks and a process gets
3685	 * throttled. There is also a potential race if processes get
3686	 * throttled, kswapd wakes, a large process exits thereby balancing the
3687	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3688	 * the wake up checks. If kswapd is going to sleep, no process should
3689	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3690	 * the wake up is premature, processes will wake kswapd and get
3691	 * throttled again. The difference from wake ups in balance_pgdat() is
3692	 * that here we are under prepare_to_wait().
3693	 */
3694	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3695		wake_up_all(&pgdat->pfmemalloc_wait);
3696
3697	/* Hopeless node, leave it to direct reclaim */
3698	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3699		return true;
3700
3701	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3702		clear_pgdat_congested(pgdat);
3703		return true;
 
 
3704	}
3705
3706	return false;
3707}
3708
3709/*
3710 * kswapd shrinks a node of pages that are at or below the highest usable
3711 * zone that is currently unbalanced.
3712 *
3713 * Returns true if kswapd scanned at least the requested number of pages to
3714 * reclaim or if the lack of progress was due to pages under writeback.
3715 * This is used to determine if the scanning priority needs to be raised.
3716 */
3717static bool kswapd_shrink_node(pg_data_t *pgdat,
3718			       struct scan_control *sc)
3719{
3720	struct zone *zone;
3721	int z;
3722
3723	/* Reclaim a number of pages proportional to the number of zones */
3724	sc->nr_to_reclaim = 0;
3725	for (z = 0; z <= sc->reclaim_idx; z++) {
3726		zone = pgdat->node_zones + z;
3727		if (!managed_zone(zone))
3728			continue;
3729
3730		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3731	}
3732
3733	/*
3734	 * Historically care was taken to put equal pressure on all zones but
3735	 * now pressure is applied based on node LRU order.
3736	 */
3737	shrink_node(pgdat, sc);
3738
3739	/*
3740	 * Fragmentation may mean that the system cannot be rebalanced for
3741	 * high-order allocations. If twice the allocation size has been
3742	 * reclaimed then recheck watermarks only at order-0 to prevent
3743	 * excessive reclaim. Assume that a process requested a high-order
3744	 * can direct reclaim/compact.
3745	 */
3746	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3747		sc->order = 0;
3748
3749	return sc->nr_scanned >= sc->nr_to_reclaim;
3750}
3751
3752/* Page allocator PCP high watermark is lowered if reclaim is active. */
3753static inline void
3754update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3755{
3756	int i;
3757	struct zone *zone;
3758
3759	for (i = 0; i <= highest_zoneidx; i++) {
3760		zone = pgdat->node_zones + i;
3761
3762		if (!managed_zone(zone))
3763			continue;
3764
3765		if (active)
3766			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3767		else
3768			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3769	}
3770}
3771
3772static inline void
3773set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3774{
3775	update_reclaim_active(pgdat, highest_zoneidx, true);
3776}
3777
3778static inline void
3779clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3780{
3781	update_reclaim_active(pgdat, highest_zoneidx, false);
3782}
3783
3784/*
3785 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3786 * that are eligible for use by the caller until at least one zone is
3787 * balanced.
3788 *
3789 * Returns the order kswapd finished reclaiming at.
3790 *
3791 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3792 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3793 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3794 * or lower is eligible for reclaim until at least one usable zone is
3795 * balanced.
3796 */
3797static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3798{
3799	int i;
3800	unsigned long nr_soft_reclaimed;
3801	unsigned long nr_soft_scanned;
3802	unsigned long pflags;
3803	unsigned long nr_boost_reclaim;
3804	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3805	bool boosted;
3806	struct zone *zone;
3807	struct scan_control sc = {
3808		.gfp_mask = GFP_KERNEL,
3809		.order = order,
 
 
3810		.may_unmap = 1,
 
3811	};
3812
3813	set_task_reclaim_state(current, &sc.reclaim_state);
3814	psi_memstall_enter(&pflags);
3815	__fs_reclaim_acquire();
3816
3817	count_vm_event(PAGEOUTRUN);
3818
3819	/*
3820	 * Account for the reclaim boost. Note that the zone boost is left in
3821	 * place so that parallel allocations that are near the watermark will
3822	 * stall or direct reclaim until kswapd is finished.
3823	 */
3824	nr_boost_reclaim = 0;
3825	for (i = 0; i <= highest_zoneidx; i++) {
3826		zone = pgdat->node_zones + i;
3827		if (!managed_zone(zone))
3828			continue;
3829
3830		nr_boost_reclaim += zone->watermark_boost;
3831		zone_boosts[i] = zone->watermark_boost;
3832	}
3833	boosted = nr_boost_reclaim;
3834
3835restart:
3836	set_reclaim_active(pgdat, highest_zoneidx);
3837	sc.priority = DEF_PRIORITY;
3838	do {
3839		unsigned long nr_reclaimed = sc.nr_reclaimed;
3840		bool raise_priority = true;
3841		bool balanced;
3842		bool ret;
3843
3844		sc.reclaim_idx = highest_zoneidx;
 
3845
3846		/*
3847		 * If the number of buffer_heads exceeds the maximum allowed
3848		 * then consider reclaiming from all zones. This has a dual
3849		 * purpose -- on 64-bit systems it is expected that
3850		 * buffer_heads are stripped during active rotation. On 32-bit
3851		 * systems, highmem pages can pin lowmem memory and shrinking
3852		 * buffers can relieve lowmem pressure. Reclaim may still not
3853		 * go ahead if all eligible zones for the original allocation
3854		 * request are balanced to avoid excessive reclaim from kswapd.
3855		 */
3856		if (buffer_heads_over_limit) {
3857			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3858				zone = pgdat->node_zones + i;
3859				if (!managed_zone(zone))
3860					continue;
3861
3862				sc.reclaim_idx = i;
3863				break;
3864			}
3865		}
3866
3867		/*
3868		 * If the pgdat is imbalanced then ignore boosting and preserve
3869		 * the watermarks for a later time and restart. Note that the
3870		 * zone watermarks will be still reset at the end of balancing
3871		 * on the grounds that the normal reclaim should be enough to
3872		 * re-evaluate if boosting is required when kswapd next wakes.
3873		 */
3874		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3875		if (!balanced && nr_boost_reclaim) {
3876			nr_boost_reclaim = 0;
3877			goto restart;
3878		}
3879
3880		/*
3881		 * If boosting is not active then only reclaim if there are no
3882		 * eligible zones. Note that sc.reclaim_idx is not used as
3883		 * buffer_heads_over_limit may have adjusted it.
3884		 */
3885		if (!nr_boost_reclaim && balanced)
3886			goto out;
3887
3888		/* Limit the priority of boosting to avoid reclaim writeback */
3889		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3890			raise_priority = false;
3891
3892		/*
3893		 * Do not writeback or swap pages for boosted reclaim. The
3894		 * intent is to relieve pressure not issue sub-optimal IO
3895		 * from reclaim context. If no pages are reclaimed, the
3896		 * reclaim will be aborted.
3897		 */
3898		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3899		sc.may_swap = !nr_boost_reclaim;
3900
3901		/*
3902		 * Do some background aging of the anon list, to give
3903		 * pages a chance to be referenced before reclaiming. All
3904		 * pages are rotated regardless of classzone as this is
3905		 * about consistent aging.
3906		 */
3907		age_active_anon(pgdat, &sc);
3908
3909		/*
3910		 * If we're getting trouble reclaiming, start doing writepage
3911		 * even in laptop mode.
3912		 */
3913		if (sc.priority < DEF_PRIORITY - 2)
3914			sc.may_writepage = 1;
3915
3916		/* Call soft limit reclaim before calling shrink_node. */
3917		sc.nr_scanned = 0;
3918		nr_soft_scanned = 0;
3919		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3920						sc.gfp_mask, &nr_soft_scanned);
3921		sc.nr_reclaimed += nr_soft_reclaimed;
3922
3923		/*
3924		 * There should be no need to raise the scanning priority if
3925		 * enough pages are already being scanned that that high
3926		 * watermark would be met at 100% efficiency.
3927		 */
3928		if (kswapd_shrink_node(pgdat, &sc))
3929			raise_priority = false;
3930
3931		/*
3932		 * If the low watermark is met there is no need for processes
3933		 * to be throttled on pfmemalloc_wait as they should not be
3934		 * able to safely make forward progress. Wake them
3935		 */
3936		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3937				allow_direct_reclaim(pgdat))
3938			wake_up_all(&pgdat->pfmemalloc_wait);
3939
3940		/* Check if kswapd should be suspending */
3941		__fs_reclaim_release();
3942		ret = try_to_freeze();
3943		__fs_reclaim_acquire();
3944		if (ret || kthread_should_stop())
3945			break;
3946
3947		/*
3948		 * Raise priority if scanning rate is too low or there was no
3949		 * progress in reclaiming pages
3950		 */
3951		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3952		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3953
3954		/*
3955		 * If reclaim made no progress for a boost, stop reclaim as
3956		 * IO cannot be queued and it could be an infinite loop in
3957		 * extreme circumstances.
3958		 */
3959		if (nr_boost_reclaim && !nr_reclaimed)
3960			break;
3961
3962		if (raise_priority || !nr_reclaimed)
3963			sc.priority--;
3964	} while (sc.priority >= 1);
3965
3966	if (!sc.nr_reclaimed)
3967		pgdat->kswapd_failures++;
3968
3969out:
3970	clear_reclaim_active(pgdat, highest_zoneidx);
3971
3972	/* If reclaim was boosted, account for the reclaim done in this pass */
3973	if (boosted) {
3974		unsigned long flags;
3975
3976		for (i = 0; i <= highest_zoneidx; i++) {
3977			if (!zone_boosts[i])
3978				continue;
3979
3980			/* Increments are under the zone lock */
3981			zone = pgdat->node_zones + i;
3982			spin_lock_irqsave(&zone->lock, flags);
3983			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3984			spin_unlock_irqrestore(&zone->lock, flags);
3985		}
3986
3987		/*
3988		 * As there is now likely space, wakeup kcompact to defragment
3989		 * pageblocks.
3990		 */
3991		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3992	}
3993
3994	snapshot_refaults(NULL, pgdat);
3995	__fs_reclaim_release();
3996	psi_memstall_leave(&pflags);
3997	set_task_reclaim_state(current, NULL);
3998
3999	/*
4000	 * Return the order kswapd stopped reclaiming at as
4001	 * prepare_kswapd_sleep() takes it into account. If another caller
4002	 * entered the allocator slow path while kswapd was awake, order will
4003	 * remain at the higher level.
4004	 */
4005	return sc.order;
4006}
4007
4008/*
4009 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4010 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4011 * not a valid index then either kswapd runs for first time or kswapd couldn't
4012 * sleep after previous reclaim attempt (node is still unbalanced). In that
4013 * case return the zone index of the previous kswapd reclaim cycle.
4014 */
4015static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4016					   enum zone_type prev_highest_zoneidx)
4017{
4018	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4019
4020	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4021}
4022
4023static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4024				unsigned int highest_zoneidx)
4025{
4026	long remaining = 0;
4027	DEFINE_WAIT(wait);
4028
4029	if (freezing(current) || kthread_should_stop())
4030		return;
4031
4032	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4033
4034	/*
4035	 * Try to sleep for a short interval. Note that kcompactd will only be
4036	 * woken if it is possible to sleep for a short interval. This is
4037	 * deliberate on the assumption that if reclaim cannot keep an
4038	 * eligible zone balanced that it's also unlikely that compaction will
4039	 * succeed.
4040	 */
4041	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4042		/*
4043		 * Compaction records what page blocks it recently failed to
4044		 * isolate pages from and skips them in the future scanning.
4045		 * When kswapd is going to sleep, it is reasonable to assume
4046		 * that pages and compaction may succeed so reset the cache.
4047		 */
4048		reset_isolation_suitable(pgdat);
4049
4050		/*
4051		 * We have freed the memory, now we should compact it to make
4052		 * allocation of the requested order possible.
4053		 */
4054		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4055
4056		remaining = schedule_timeout(HZ/10);
4057
4058		/*
4059		 * If woken prematurely then reset kswapd_highest_zoneidx and
4060		 * order. The values will either be from a wakeup request or
4061		 * the previous request that slept prematurely.
4062		 */
4063		if (remaining) {
4064			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4065					kswapd_highest_zoneidx(pgdat,
4066							highest_zoneidx));
4067
4068			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4069				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4070		}
4071
4072		finish_wait(&pgdat->kswapd_wait, &wait);
4073		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4074	}
4075
4076	/*
4077	 * After a short sleep, check if it was a premature sleep. If not, then
4078	 * go fully to sleep until explicitly woken up.
4079	 */
4080	if (!remaining &&
4081	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4082		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4083
4084		/*
4085		 * vmstat counters are not perfectly accurate and the estimated
4086		 * value for counters such as NR_FREE_PAGES can deviate from the
4087		 * true value by nr_online_cpus * threshold. To avoid the zone
4088		 * watermarks being breached while under pressure, we reduce the
4089		 * per-cpu vmstat threshold while kswapd is awake and restore
4090		 * them before going back to sleep.
4091		 */
4092		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4093
4094		if (!kthread_should_stop())
4095			schedule();
4096
4097		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4098	} else {
4099		if (remaining)
4100			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4101		else
4102			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4103	}
4104	finish_wait(&pgdat->kswapd_wait, &wait);
4105}
4106
4107/*
4108 * The background pageout daemon, started as a kernel thread
4109 * from the init process.
4110 *
4111 * This basically trickles out pages so that we have _some_
4112 * free memory available even if there is no other activity
4113 * that frees anything up. This is needed for things like routing
4114 * etc, where we otherwise might have all activity going on in
4115 * asynchronous contexts that cannot page things out.
4116 *
4117 * If there are applications that are active memory-allocators
4118 * (most normal use), this basically shouldn't matter.
4119 */
4120static int kswapd(void *p)
4121{
4122	unsigned int alloc_order, reclaim_order;
4123	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4124	pg_data_t *pgdat = (pg_data_t *)p;
4125	struct task_struct *tsk = current;
 
 
 
 
4126	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4127
 
 
4128	if (!cpumask_empty(cpumask))
4129		set_cpus_allowed_ptr(tsk, cpumask);
 
4130
4131	/*
4132	 * Tell the memory management that we're a "memory allocator",
4133	 * and that if we need more memory we should get access to it
4134	 * regardless (see "__alloc_pages()"). "kswapd" should
4135	 * never get caught in the normal page freeing logic.
4136	 *
4137	 * (Kswapd normally doesn't need memory anyway, but sometimes
4138	 * you need a small amount of memory in order to be able to
4139	 * page out something else, and this flag essentially protects
4140	 * us from recursively trying to free more memory as we're
4141	 * trying to free the first piece of memory in the first place).
4142	 */
4143	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4144	set_freezable();
4145
4146	WRITE_ONCE(pgdat->kswapd_order, 0);
4147	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4148	for ( ; ; ) {
4149		bool ret;
4150
4151		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4152		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4153							highest_zoneidx);
4154
4155kswapd_try_sleep:
4156		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4157					highest_zoneidx);
4158
4159		/* Read the new order and highest_zoneidx */
4160		alloc_order = READ_ONCE(pgdat->kswapd_order);
4161		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4162							highest_zoneidx);
4163		WRITE_ONCE(pgdat->kswapd_order, 0);
4164		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4165
4166		ret = try_to_freeze();
4167		if (kthread_should_stop())
4168			break;
4169
4170		/*
4171		 * We can speed up thawing tasks if we don't call balance_pgdat
4172		 * after returning from the refrigerator
4173		 */
4174		if (ret)
4175			continue;
4176
4177		/*
4178		 * Reclaim begins at the requested order but if a high-order
4179		 * reclaim fails then kswapd falls back to reclaiming for
4180		 * order-0. If that happens, kswapd will consider sleeping
4181		 * for the order it finished reclaiming at (reclaim_order)
4182		 * but kcompactd is woken to compact for the original
4183		 * request (alloc_order).
4184		 */
4185		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4186						alloc_order);
4187		reclaim_order = balance_pgdat(pgdat, alloc_order,
4188						highest_zoneidx);
4189		if (reclaim_order < alloc_order)
4190			goto kswapd_try_sleep;
 
 
 
4191	}
4192
4193	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
 
 
4194
4195	return 0;
4196}
4197
4198/*
4199 * A zone is low on free memory or too fragmented for high-order memory.  If
4200 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4201 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4202 * has failed or is not needed, still wake up kcompactd if only compaction is
4203 * needed.
4204 */
4205void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4206		   enum zone_type highest_zoneidx)
4207{
4208	pg_data_t *pgdat;
4209	enum zone_type curr_idx;
4210
4211	if (!managed_zone(zone))
4212		return;
4213
4214	if (!cpuset_zone_allowed(zone, gfp_flags))
4215		return;
4216
4217	pgdat = zone->zone_pgdat;
4218	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4219
4220	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4221		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4222
4223	if (READ_ONCE(pgdat->kswapd_order) < order)
4224		WRITE_ONCE(pgdat->kswapd_order, order);
4225
4226	if (!waitqueue_active(&pgdat->kswapd_wait))
4227		return;
4228
4229	/* Hopeless node, leave it to direct reclaim if possible */
4230	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4231	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4232	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4233		/*
4234		 * There may be plenty of free memory available, but it's too
4235		 * fragmented for high-order allocations.  Wake up kcompactd
4236		 * and rely on compaction_suitable() to determine if it's
4237		 * needed.  If it fails, it will defer subsequent attempts to
4238		 * ratelimit its work.
4239		 */
4240		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4241			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4242		return;
4243	}
4244
4245	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4246				      gfp_flags);
4247	wake_up_interruptible(&pgdat->kswapd_wait);
4248}
4249
4250#ifdef CONFIG_HIBERNATION
4251/*
4252 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4253 * freed pages.
4254 *
4255 * Rather than trying to age LRUs the aim is to preserve the overall
4256 * LRU order by reclaiming preferentially
4257 * inactive > active > active referenced > active mapped
4258 */
4259unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4260{
 
4261	struct scan_control sc = {
4262		.nr_to_reclaim = nr_to_reclaim,
4263		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4264		.reclaim_idx = MAX_NR_ZONES - 1,
4265		.priority = DEF_PRIORITY,
4266		.may_writepage = 1,
4267		.may_unmap = 1,
4268		.may_swap = 1,
4269		.hibernation_mode = 1,
4270	};
4271	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
4272	unsigned long nr_reclaimed;
4273	unsigned int noreclaim_flag;
4274
4275	fs_reclaim_acquire(sc.gfp_mask);
4276	noreclaim_flag = memalloc_noreclaim_save();
4277	set_task_reclaim_state(current, &sc.reclaim_state);
 
4278
4279	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4280
4281	set_task_reclaim_state(current, NULL);
4282	memalloc_noreclaim_restore(noreclaim_flag);
4283	fs_reclaim_release(sc.gfp_mask);
4284
4285	return nr_reclaimed;
4286}
4287#endif /* CONFIG_HIBERNATION */
4288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4289/*
4290 * This kswapd start function will be called by init and node-hot-add.
4291 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4292 */
4293int kswapd_run(int nid)
4294{
4295	pg_data_t *pgdat = NODE_DATA(nid);
4296	int ret = 0;
4297
4298	if (pgdat->kswapd)
4299		return 0;
4300
4301	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4302	if (IS_ERR(pgdat->kswapd)) {
4303		/* failure at boot is fatal */
4304		BUG_ON(system_state < SYSTEM_RUNNING);
4305		pr_err("Failed to start kswapd on node %d\n", nid);
4306		ret = PTR_ERR(pgdat->kswapd);
4307		pgdat->kswapd = NULL;
4308	}
4309	return ret;
4310}
4311
4312/*
4313 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4314 * hold mem_hotplug_begin/end().
4315 */
4316void kswapd_stop(int nid)
4317{
4318	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4319
4320	if (kswapd) {
4321		kthread_stop(kswapd);
4322		NODE_DATA(nid)->kswapd = NULL;
4323	}
4324}
4325
4326static int __init kswapd_init(void)
4327{
4328	int nid;
4329
4330	swap_setup();
4331	for_each_node_state(nid, N_MEMORY)
4332 		kswapd_run(nid);
 
 
 
 
4333	return 0;
4334}
4335
4336module_init(kswapd_init)
4337
4338#ifdef CONFIG_NUMA
4339/*
4340 * Node reclaim mode
4341 *
4342 * If non-zero call node_reclaim when the number of free pages falls below
4343 * the watermarks.
4344 */
4345int node_reclaim_mode __read_mostly;
4346
 
 
 
 
 
4347/*
4348 * Priority for NODE_RECLAIM. This determines the fraction of pages
4349 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4350 * a zone.
4351 */
4352#define NODE_RECLAIM_PRIORITY 4
4353
4354/*
4355 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4356 * occur.
4357 */
4358int sysctl_min_unmapped_ratio = 1;
4359
4360/*
4361 * If the number of slab pages in a zone grows beyond this percentage then
4362 * slab reclaim needs to occur.
4363 */
4364int sysctl_min_slab_ratio = 5;
4365
4366static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4367{
4368	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4369	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4370		node_page_state(pgdat, NR_ACTIVE_FILE);
4371
4372	/*
4373	 * It's possible for there to be more file mapped pages than
4374	 * accounted for by the pages on the file LRU lists because
4375	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4376	 */
4377	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4378}
4379
4380/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4381static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4382{
4383	unsigned long nr_pagecache_reclaimable;
4384	unsigned long delta = 0;
4385
4386	/*
4387	 * If RECLAIM_UNMAP is set, then all file pages are considered
4388	 * potentially reclaimable. Otherwise, we have to worry about
4389	 * pages like swapcache and node_unmapped_file_pages() provides
4390	 * a better estimate
4391	 */
4392	if (node_reclaim_mode & RECLAIM_UNMAP)
4393		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4394	else
4395		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4396
4397	/* If we can't clean pages, remove dirty pages from consideration */
4398	if (!(node_reclaim_mode & RECLAIM_WRITE))
4399		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4400
4401	/* Watch for any possible underflows due to delta */
4402	if (unlikely(delta > nr_pagecache_reclaimable))
4403		delta = nr_pagecache_reclaimable;
4404
4405	return nr_pagecache_reclaimable - delta;
4406}
4407
4408/*
4409 * Try to free up some pages from this node through reclaim.
4410 */
4411static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4412{
4413	/* Minimum pages needed in order to stay on node */
4414	const unsigned long nr_pages = 1 << order;
4415	struct task_struct *p = current;
4416	unsigned int noreclaim_flag;
 
4417	struct scan_control sc = {
4418		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4419		.gfp_mask = current_gfp_context(gfp_mask),
4420		.order = order,
4421		.priority = NODE_RECLAIM_PRIORITY,
4422		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4423		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4424		.may_swap = 1,
4425		.reclaim_idx = gfp_zone(gfp_mask),
4426	};
4427	unsigned long pflags;
4428
4429	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4430					   sc.gfp_mask);
4431
4432	cond_resched();
4433	psi_memstall_enter(&pflags);
4434	fs_reclaim_acquire(sc.gfp_mask);
4435	/*
4436	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4437	 * and we also need to be able to write out pages for RECLAIM_WRITE
4438	 * and RECLAIM_UNMAP.
4439	 */
4440	noreclaim_flag = memalloc_noreclaim_save();
4441	p->flags |= PF_SWAPWRITE;
4442	set_task_reclaim_state(p, &sc.reclaim_state);
 
4443
4444	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4445		/*
4446		 * Free memory by calling shrink node with increasing
4447		 * priorities until we have enough memory freed.
4448		 */
4449		do {
4450			shrink_node(pgdat, &sc);
4451		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4452	}
4453
4454	set_task_reclaim_state(p, NULL);
4455	current->flags &= ~PF_SWAPWRITE;
4456	memalloc_noreclaim_restore(noreclaim_flag);
4457	fs_reclaim_release(sc.gfp_mask);
4458	psi_memstall_leave(&pflags);
4459
4460	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4461
4462	return sc.nr_reclaimed >= nr_pages;
4463}
4464
4465int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4466{
4467	int ret;
4468
4469	/*
4470	 * Node reclaim reclaims unmapped file backed pages and
4471	 * slab pages if we are over the defined limits.
4472	 *
4473	 * A small portion of unmapped file backed pages is needed for
4474	 * file I/O otherwise pages read by file I/O will be immediately
4475	 * thrown out if the node is overallocated. So we do not reclaim
4476	 * if less than a specified percentage of the node is used by
4477	 * unmapped file backed pages.
4478	 */
4479	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4480	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4481	    pgdat->min_slab_pages)
 
 
4482		return NODE_RECLAIM_FULL;
4483
4484	/*
4485	 * Do not scan if the allocation should not be delayed.
4486	 */
4487	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4488		return NODE_RECLAIM_NOSCAN;
4489
4490	/*
4491	 * Only run node reclaim on the local node or on nodes that do not
4492	 * have associated processors. This will favor the local processor
4493	 * over remote processors and spread off node memory allocations
4494	 * as wide as possible.
4495	 */
4496	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4497		return NODE_RECLAIM_NOSCAN;
4498
4499	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4500		return NODE_RECLAIM_NOSCAN;
4501
4502	ret = __node_reclaim(pgdat, gfp_mask, order);
4503	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4504
4505	if (!ret)
4506		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4507
4508	return ret;
4509}
4510#endif
4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512/**
4513 * check_move_unevictable_pages - check pages for evictability and move to
4514 * appropriate zone lru list
4515 * @pvec: pagevec with lru pages to check
4516 *
4517 * Checks pages for evictability, if an evictable page is in the unevictable
4518 * lru list, moves it to the appropriate evictable lru list. This function
4519 * should be only used for lru pages.
4520 */
4521void check_move_unevictable_pages(struct pagevec *pvec)
4522{
4523	struct lruvec *lruvec = NULL;
 
4524	int pgscanned = 0;
4525	int pgrescued = 0;
4526	int i;
4527
4528	for (i = 0; i < pvec->nr; i++) {
4529		struct page *page = pvec->pages[i];
4530		int nr_pages;
4531
4532		if (PageTransTail(page))
4533			continue;
4534
4535		nr_pages = thp_nr_pages(page);
4536		pgscanned += nr_pages;
 
 
 
 
 
 
4537
4538		/* block memcg migration during page moving between lru */
4539		if (!TestClearPageLRU(page))
4540			continue;
4541
4542		lruvec = relock_page_lruvec_irq(page, lruvec);
4543		if (page_evictable(page) && PageUnevictable(page)) {
4544			del_page_from_lru_list(page, lruvec);
 
4545			ClearPageUnevictable(page);
4546			add_page_to_lru_list(page, lruvec);
4547			pgrescued += nr_pages;
 
4548		}
4549		SetPageLRU(page);
4550	}
4551
4552	if (lruvec) {
4553		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4554		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4555		unlock_page_lruvec_irq(lruvec);
4556	} else if (pgscanned) {
4557		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4558	}
4559}
4560EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
v4.10.11
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/mm.h>
 
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
 
  47#include <linux/prefetch.h>
  48#include <linux/printk.h>
  49#include <linux/dax.h>
 
  50
  51#include <asm/tlbflush.h>
  52#include <asm/div64.h>
  53
  54#include <linux/swapops.h>
  55#include <linux/balloon_compaction.h>
  56
  57#include "internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/vmscan.h>
  61
  62struct scan_control {
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
  66	/* This context's GFP mask */
  67	gfp_t gfp_mask;
  68
  69	/* Allocation order */
  70	int order;
  71
  72	/*
  73	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  74	 * are scanned.
  75	 */
  76	nodemask_t	*nodemask;
  77
  78	/*
  79	 * The memory cgroup that hit its limit and as a result is the
  80	 * primary target of this reclaim invocation.
  81	 */
  82	struct mem_cgroup *target_mem_cgroup;
  83
  84	/* Scan (total_size >> priority) pages at once */
  85	int priority;
 
 
 
  86
  87	/* The highest zone to isolate pages for reclaim from */
  88	enum zone_type reclaim_idx;
 
 
 
 
  89
 
  90	unsigned int may_writepage:1;
  91
  92	/* Can mapped pages be reclaimed? */
  93	unsigned int may_unmap:1;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	unsigned int may_swap:1;
  97
  98	/* Can cgroups be reclaimed below their normal consumption range? */
  99	unsigned int may_thrash:1;
 
 
 
 
 
 
 
 
 100
 101	unsigned int hibernation_mode:1;
 102
 103	/* One of the zones is ready for compaction */
 104	unsigned int compaction_ready:1;
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106	/* Incremented by the number of inactive pages that were scanned */
 107	unsigned long nr_scanned;
 108
 109	/* Number of pages freed so far during a call to shrink_zones() */
 110	unsigned long nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 111};
 112
 113#ifdef ARCH_HAS_PREFETCH
 114#define prefetch_prev_lru_page(_page, _base, _field)			\
 115	do {								\
 116		if ((_page)->lru.prev != _base) {			\
 117			struct page *prev;				\
 118									\
 119			prev = lru_to_page(&(_page->lru));		\
 120			prefetch(&prev->_field);			\
 121		}							\
 122	} while (0)
 123#else
 124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 125#endif
 126
 127#ifdef ARCH_HAS_PREFETCHW
 128#define prefetchw_prev_lru_page(_page, _base, _field)			\
 129	do {								\
 130		if ((_page)->lru.prev != _base) {			\
 131			struct page *prev;				\
 132									\
 133			prev = lru_to_page(&(_page->lru));		\
 134			prefetchw(&prev->_field);			\
 135		}							\
 136	} while (0)
 137#else
 138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 139#endif
 140
 141/*
 142 * From 0 .. 100.  Higher means more swappy.
 143 */
 144int vm_swappiness = 60;
 145/*
 146 * The total number of pages which are beyond the high watermark within all
 147 * zones.
 148 */
 149unsigned long vm_total_pages;
 
 
 
 
 
 
 
 150
 151static LIST_HEAD(shrinker_list);
 152static DECLARE_RWSEM(shrinker_rwsem);
 153
 154#ifdef CONFIG_MEMCG
 155static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156{
 157	return !sc->target_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160/**
 161 * sane_reclaim - is the usual dirty throttling mechanism operational?
 162 * @sc: scan_control in question
 163 *
 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 165 * completely broken with the legacy memcg and direct stalling in
 166 * shrink_page_list() is used for throttling instead, which lacks all the
 167 * niceties such as fairness, adaptive pausing, bandwidth proportional
 168 * allocation and configurability.
 169 *
 170 * This function tests whether the vmscan currently in progress can assume
 171 * that the normal dirty throttling mechanism is operational.
 172 */
 173static bool sane_reclaim(struct scan_control *sc)
 174{
 175	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 176
 177	if (!memcg)
 178		return true;
 179#ifdef CONFIG_CGROUP_WRITEBACK
 180	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 181		return true;
 182#endif
 183	return false;
 184}
 185#else
 186static bool global_reclaim(struct scan_control *sc)
 
 
 
 
 
 187{
 188	return true;
 189}
 190
 191static bool sane_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192{
 193	return true;
 194}
 195#endif
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197/*
 198 * This misses isolated pages which are not accounted for to save counters.
 199 * As the data only determines if reclaim or compaction continues, it is
 200 * not expected that isolated pages will be a dominating factor.
 201 */
 202unsigned long zone_reclaimable_pages(struct zone *zone)
 203{
 204	unsigned long nr;
 205
 206	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 207		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 208	if (get_nr_swap_pages() > 0)
 209		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 210			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 211
 212	return nr;
 213}
 214
 215unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
 216{
 217	unsigned long nr;
 218
 219	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
 220	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
 221	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
 222
 223	if (get_nr_swap_pages() > 0)
 224		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
 225		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
 226		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
 227
 228	return nr;
 229}
 230
 231bool pgdat_reclaimable(struct pglist_data *pgdat)
 232{
 233	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
 234		pgdat_reclaimable_pages(pgdat) * 6;
 235}
 236
 237/**
 238 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 239 * @lruvec: lru vector
 240 * @lru: lru to use
 241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 242 */
 243unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 
 244{
 245	unsigned long lru_size;
 246	int zid;
 247
 248	if (!mem_cgroup_disabled())
 249		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 250	else
 251		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 252
 253	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 254		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 255		unsigned long size;
 256
 257		if (!managed_zone(zone))
 258			continue;
 259
 260		if (!mem_cgroup_disabled())
 261			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 262		else
 263			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 264				       NR_ZONE_LRU_BASE + lru);
 265		lru_size -= min(size, lru_size);
 266	}
 267
 268	return lru_size;
 269
 270}
 271
 272/*
 273 * Add a shrinker callback to be called from the vm.
 274 */
 275int register_shrinker(struct shrinker *shrinker)
 276{
 277	size_t size = sizeof(*shrinker->nr_deferred);
 
 278
 
 
 
 
 
 
 
 
 
 279	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 280		size *= nr_node_ids;
 281
 282	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 283	if (!shrinker->nr_deferred)
 284		return -ENOMEM;
 285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286	down_write(&shrinker_rwsem);
 287	list_add_tail(&shrinker->list, &shrinker_list);
 
 288	up_write(&shrinker_rwsem);
 
 
 
 
 
 
 
 
 
 289	return 0;
 290}
 291EXPORT_SYMBOL(register_shrinker);
 292
 293/*
 294 * Remove one
 295 */
 296void unregister_shrinker(struct shrinker *shrinker)
 297{
 
 
 
 298	down_write(&shrinker_rwsem);
 299	list_del(&shrinker->list);
 
 
 
 300	up_write(&shrinker_rwsem);
 
 301	kfree(shrinker->nr_deferred);
 
 302}
 303EXPORT_SYMBOL(unregister_shrinker);
 304
 305#define SHRINK_BATCH 128
 306
 307static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 308				    struct shrinker *shrinker,
 309				    unsigned long nr_scanned,
 310				    unsigned long nr_eligible)
 311{
 312	unsigned long freed = 0;
 313	unsigned long long delta;
 314	long total_scan;
 315	long freeable;
 316	long nr;
 317	long new_nr;
 318	int nid = shrinkctl->nid;
 319	long batch_size = shrinker->batch ? shrinker->batch
 320					  : SHRINK_BATCH;
 321	long scanned = 0, next_deferred;
 322
 323	freeable = shrinker->count_objects(shrinker, shrinkctl);
 324	if (freeable == 0)
 325		return 0;
 326
 327	/*
 328	 * copy the current shrinker scan count into a local variable
 329	 * and zero it so that other concurrent shrinker invocations
 330	 * don't also do this scanning work.
 331	 */
 332	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 333
 334	total_scan = nr;
 335	delta = (4 * nr_scanned) / shrinker->seeks;
 336	delta *= freeable;
 337	do_div(delta, nr_eligible + 1);
 
 
 
 
 
 
 
 
 
 
 338	total_scan += delta;
 339	if (total_scan < 0) {
 340		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 341		       shrinker->scan_objects, total_scan);
 342		total_scan = freeable;
 343		next_deferred = nr;
 344	} else
 345		next_deferred = total_scan;
 346
 347	/*
 348	 * We need to avoid excessive windup on filesystem shrinkers
 349	 * due to large numbers of GFP_NOFS allocations causing the
 350	 * shrinkers to return -1 all the time. This results in a large
 351	 * nr being built up so when a shrink that can do some work
 352	 * comes along it empties the entire cache due to nr >>>
 353	 * freeable. This is bad for sustaining a working set in
 354	 * memory.
 355	 *
 356	 * Hence only allow the shrinker to scan the entire cache when
 357	 * a large delta change is calculated directly.
 358	 */
 359	if (delta < freeable / 4)
 360		total_scan = min(total_scan, freeable / 2);
 361
 362	/*
 363	 * Avoid risking looping forever due to too large nr value:
 364	 * never try to free more than twice the estimate number of
 365	 * freeable entries.
 366	 */
 367	if (total_scan > freeable * 2)
 368		total_scan = freeable * 2;
 369
 370	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 371				   nr_scanned, nr_eligible,
 372				   freeable, delta, total_scan);
 373
 374	/*
 375	 * Normally, we should not scan less than batch_size objects in one
 376	 * pass to avoid too frequent shrinker calls, but if the slab has less
 377	 * than batch_size objects in total and we are really tight on memory,
 378	 * we will try to reclaim all available objects, otherwise we can end
 379	 * up failing allocations although there are plenty of reclaimable
 380	 * objects spread over several slabs with usage less than the
 381	 * batch_size.
 382	 *
 383	 * We detect the "tight on memory" situations by looking at the total
 384	 * number of objects we want to scan (total_scan). If it is greater
 385	 * than the total number of objects on slab (freeable), we must be
 386	 * scanning at high prio and therefore should try to reclaim as much as
 387	 * possible.
 388	 */
 389	while (total_scan >= batch_size ||
 390	       total_scan >= freeable) {
 391		unsigned long ret;
 392		unsigned long nr_to_scan = min(batch_size, total_scan);
 393
 394		shrinkctl->nr_to_scan = nr_to_scan;
 
 395		ret = shrinker->scan_objects(shrinker, shrinkctl);
 396		if (ret == SHRINK_STOP)
 397			break;
 398		freed += ret;
 399
 400		count_vm_events(SLABS_SCANNED, nr_to_scan);
 401		total_scan -= nr_to_scan;
 402		scanned += nr_to_scan;
 403
 404		cond_resched();
 405	}
 406
 407	if (next_deferred >= scanned)
 408		next_deferred -= scanned;
 409	else
 410		next_deferred = 0;
 
 
 
 
 
 411	/*
 412	 * move the unused scan count back into the shrinker in a
 413	 * manner that handles concurrent updates. If we exhausted the
 414	 * scan, there is no need to do an update.
 415	 */
 416	if (next_deferred > 0)
 417		new_nr = atomic_long_add_return(next_deferred,
 418						&shrinker->nr_deferred[nid]);
 419	else
 420		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 
 
 
 
 
 
 423	return freed;
 424}
 
 
 
 
 
 
 
 425
 426/**
 427 * shrink_slab - shrink slab caches
 428 * @gfp_mask: allocation context
 429 * @nid: node whose slab caches to target
 430 * @memcg: memory cgroup whose slab caches to target
 431 * @nr_scanned: pressure numerator
 432 * @nr_eligible: pressure denominator
 433 *
 434 * Call the shrink functions to age shrinkable caches.
 435 *
 436 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 437 * unaware shrinkers will receive a node id of 0 instead.
 438 *
 439 * @memcg specifies the memory cgroup to target. If it is not NULL,
 440 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 441 * objects from the memory cgroup specified. Otherwise, only unaware
 442 * shrinkers are called.
 443 *
 444 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 445 * the available objects should be scanned.  Page reclaim for example
 446 * passes the number of pages scanned and the number of pages on the
 447 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 448 * when it encountered mapped pages.  The ratio is further biased by
 449 * the ->seeks setting of the shrink function, which indicates the
 450 * cost to recreate an object relative to that of an LRU page.
 451 *
 452 * Returns the number of reclaimed slab objects.
 453 */
 454static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 455				 struct mem_cgroup *memcg,
 456				 unsigned long nr_scanned,
 457				 unsigned long nr_eligible)
 458{
 
 459	struct shrinker *shrinker;
 460	unsigned long freed = 0;
 461
 462	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 463		return 0;
 
 
 
 
 
 
 
 464
 465	if (nr_scanned == 0)
 466		nr_scanned = SWAP_CLUSTER_MAX;
 467
 468	if (!down_read_trylock(&shrinker_rwsem)) {
 469		/*
 470		 * If we would return 0, our callers would understand that we
 471		 * have nothing else to shrink and give up trying. By returning
 472		 * 1 we keep it going and assume we'll be able to shrink next
 473		 * time.
 474		 */
 475		freed = 1;
 476		goto out;
 477	}
 478
 479	list_for_each_entry(shrinker, &shrinker_list, list) {
 480		struct shrink_control sc = {
 481			.gfp_mask = gfp_mask,
 482			.nid = nid,
 483			.memcg = memcg,
 484		};
 485
 
 
 
 
 486		/*
 487		 * If kernel memory accounting is disabled, we ignore
 488		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 489		 * passing NULL for memcg.
 490		 */
 491		if (memcg_kmem_enabled() &&
 492		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 493			continue;
 494
 495		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 496			sc.nid = 0;
 497
 498		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
 499	}
 500
 501	up_read(&shrinker_rwsem);
 502out:
 503	cond_resched();
 504	return freed;
 505}
 506
 507void drop_slab_node(int nid)
 508{
 509	unsigned long freed;
 510
 511	do {
 512		struct mem_cgroup *memcg = NULL;
 513
 
 
 
 514		freed = 0;
 
 515		do {
 516			freed += shrink_slab(GFP_KERNEL, nid, memcg,
 517					     1000, 1000);
 518		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 519	} while (freed > 10);
 520}
 521
 522void drop_slab(void)
 523{
 524	int nid;
 525
 526	for_each_online_node(nid)
 527		drop_slab_node(nid);
 528}
 529
 530static inline int is_page_cache_freeable(struct page *page)
 531{
 532	/*
 533	 * A freeable page cache page is referenced only by the caller
 534	 * that isolated the page, the page cache radix tree and
 535	 * optional buffer heads at page->private.
 536	 */
 537	return page_count(page) - page_has_private(page) == 2;
 
 538}
 539
 540static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 541{
 542	if (current->flags & PF_SWAPWRITE)
 543		return 1;
 544	if (!inode_write_congested(inode))
 545		return 1;
 546	if (inode_to_bdi(inode) == current->backing_dev_info)
 547		return 1;
 548	return 0;
 549}
 550
 551/*
 552 * We detected a synchronous write error writing a page out.  Probably
 553 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 554 * fsync(), msync() or close().
 555 *
 556 * The tricky part is that after writepage we cannot touch the mapping: nothing
 557 * prevents it from being freed up.  But we have a ref on the page and once
 558 * that page is locked, the mapping is pinned.
 559 *
 560 * We're allowed to run sleeping lock_page() here because we know the caller has
 561 * __GFP_FS.
 562 */
 563static void handle_write_error(struct address_space *mapping,
 564				struct page *page, int error)
 565{
 566	lock_page(page);
 567	if (page_mapping(page) == mapping)
 568		mapping_set_error(mapping, error);
 569	unlock_page(page);
 570}
 571
 572/* possible outcome of pageout() */
 573typedef enum {
 574	/* failed to write page out, page is locked */
 575	PAGE_KEEP,
 576	/* move page to the active list, page is locked */
 577	PAGE_ACTIVATE,
 578	/* page has been sent to the disk successfully, page is unlocked */
 579	PAGE_SUCCESS,
 580	/* page is clean and locked */
 581	PAGE_CLEAN,
 582} pageout_t;
 583
 584/*
 585 * pageout is called by shrink_page_list() for each dirty page.
 586 * Calls ->writepage().
 587 */
 588static pageout_t pageout(struct page *page, struct address_space *mapping,
 589			 struct scan_control *sc)
 590{
 591	/*
 592	 * If the page is dirty, only perform writeback if that write
 593	 * will be non-blocking.  To prevent this allocation from being
 594	 * stalled by pagecache activity.  But note that there may be
 595	 * stalls if we need to run get_block().  We could test
 596	 * PagePrivate for that.
 597	 *
 598	 * If this process is currently in __generic_file_write_iter() against
 599	 * this page's queue, we can perform writeback even if that
 600	 * will block.
 601	 *
 602	 * If the page is swapcache, write it back even if that would
 603	 * block, for some throttling. This happens by accident, because
 604	 * swap_backing_dev_info is bust: it doesn't reflect the
 605	 * congestion state of the swapdevs.  Easy to fix, if needed.
 606	 */
 607	if (!is_page_cache_freeable(page))
 608		return PAGE_KEEP;
 609	if (!mapping) {
 610		/*
 611		 * Some data journaling orphaned pages can have
 612		 * page->mapping == NULL while being dirty with clean buffers.
 613		 */
 614		if (page_has_private(page)) {
 615			if (try_to_free_buffers(page)) {
 616				ClearPageDirty(page);
 617				pr_info("%s: orphaned page\n", __func__);
 618				return PAGE_CLEAN;
 619			}
 620		}
 621		return PAGE_KEEP;
 622	}
 623	if (mapping->a_ops->writepage == NULL)
 624		return PAGE_ACTIVATE;
 625	if (!may_write_to_inode(mapping->host, sc))
 626		return PAGE_KEEP;
 627
 628	if (clear_page_dirty_for_io(page)) {
 629		int res;
 630		struct writeback_control wbc = {
 631			.sync_mode = WB_SYNC_NONE,
 632			.nr_to_write = SWAP_CLUSTER_MAX,
 633			.range_start = 0,
 634			.range_end = LLONG_MAX,
 635			.for_reclaim = 1,
 636		};
 637
 638		SetPageReclaim(page);
 639		res = mapping->a_ops->writepage(page, &wbc);
 640		if (res < 0)
 641			handle_write_error(mapping, page, res);
 642		if (res == AOP_WRITEPAGE_ACTIVATE) {
 643			ClearPageReclaim(page);
 644			return PAGE_ACTIVATE;
 645		}
 646
 647		if (!PageWriteback(page)) {
 648			/* synchronous write or broken a_ops? */
 649			ClearPageReclaim(page);
 650		}
 651		trace_mm_vmscan_writepage(page);
 652		inc_node_page_state(page, NR_VMSCAN_WRITE);
 653		return PAGE_SUCCESS;
 654	}
 655
 656	return PAGE_CLEAN;
 657}
 658
 659/*
 660 * Same as remove_mapping, but if the page is removed from the mapping, it
 661 * gets returned with a refcount of 0.
 662 */
 663static int __remove_mapping(struct address_space *mapping, struct page *page,
 664			    bool reclaimed)
 665{
 666	unsigned long flags;
 
 
 667
 668	BUG_ON(!PageLocked(page));
 669	BUG_ON(mapping != page_mapping(page));
 670
 671	spin_lock_irqsave(&mapping->tree_lock, flags);
 672	/*
 673	 * The non racy check for a busy page.
 674	 *
 675	 * Must be careful with the order of the tests. When someone has
 676	 * a ref to the page, it may be possible that they dirty it then
 677	 * drop the reference. So if PageDirty is tested before page_count
 678	 * here, then the following race may occur:
 679	 *
 680	 * get_user_pages(&page);
 681	 * [user mapping goes away]
 682	 * write_to(page);
 683	 *				!PageDirty(page)    [good]
 684	 * SetPageDirty(page);
 685	 * put_page(page);
 686	 *				!page_count(page)   [good, discard it]
 687	 *
 688	 * [oops, our write_to data is lost]
 689	 *
 690	 * Reversing the order of the tests ensures such a situation cannot
 691	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 692	 * load is not satisfied before that of page->_refcount.
 693	 *
 694	 * Note that if SetPageDirty is always performed via set_page_dirty,
 695	 * and thus under tree_lock, then this ordering is not required.
 696	 */
 697	if (!page_ref_freeze(page, 2))
 
 698		goto cannot_free;
 699	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 700	if (unlikely(PageDirty(page))) {
 701		page_ref_unfreeze(page, 2);
 702		goto cannot_free;
 703	}
 704
 705	if (PageSwapCache(page)) {
 706		swp_entry_t swap = { .val = page_private(page) };
 707		mem_cgroup_swapout(page, swap);
 708		__delete_from_swap_cache(page);
 709		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 710		swapcache_free(swap);
 
 
 711	} else {
 712		void (*freepage)(struct page *);
 713		void *shadow = NULL;
 714
 715		freepage = mapping->a_ops->freepage;
 716		/*
 717		 * Remember a shadow entry for reclaimed file cache in
 718		 * order to detect refaults, thus thrashing, later on.
 719		 *
 720		 * But don't store shadows in an address space that is
 721		 * already exiting.  This is not just an optizimation,
 722		 * inode reclaim needs to empty out the radix tree or
 723		 * the nodes are lost.  Don't plant shadows behind its
 724		 * back.
 725		 *
 726		 * We also don't store shadows for DAX mappings because the
 727		 * only page cache pages found in these are zero pages
 728		 * covering holes, and because we don't want to mix DAX
 729		 * exceptional entries and shadow exceptional entries in the
 730		 * same page_tree.
 731		 */
 732		if (reclaimed && page_is_file_cache(page) &&
 733		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 734			shadow = workingset_eviction(mapping, page);
 735		__delete_from_page_cache(page, shadow);
 736		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 737
 738		if (freepage != NULL)
 739			freepage(page);
 740	}
 741
 742	return 1;
 743
 744cannot_free:
 745	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 746	return 0;
 747}
 748
 749/*
 750 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 751 * someone else has a ref on the page, abort and return 0.  If it was
 752 * successfully detached, return 1.  Assumes the caller has a single ref on
 753 * this page.
 754 */
 755int remove_mapping(struct address_space *mapping, struct page *page)
 756{
 757	if (__remove_mapping(mapping, page, false)) {
 758		/*
 759		 * Unfreezing the refcount with 1 rather than 2 effectively
 760		 * drops the pagecache ref for us without requiring another
 761		 * atomic operation.
 762		 */
 763		page_ref_unfreeze(page, 1);
 764		return 1;
 765	}
 766	return 0;
 767}
 768
 769/**
 770 * putback_lru_page - put previously isolated page onto appropriate LRU list
 771 * @page: page to be put back to appropriate lru list
 772 *
 773 * Add previously isolated @page to appropriate LRU list.
 774 * Page may still be unevictable for other reasons.
 775 *
 776 * lru_lock must not be held, interrupts must be enabled.
 777 */
 778void putback_lru_page(struct page *page)
 779{
 780	bool is_unevictable;
 781	int was_unevictable = PageUnevictable(page);
 782
 783	VM_BUG_ON_PAGE(PageLRU(page), page);
 784
 785redo:
 786	ClearPageUnevictable(page);
 787
 788	if (page_evictable(page)) {
 789		/*
 790		 * For evictable pages, we can use the cache.
 791		 * In event of a race, worst case is we end up with an
 792		 * unevictable page on [in]active list.
 793		 * We know how to handle that.
 794		 */
 795		is_unevictable = false;
 796		lru_cache_add(page);
 797	} else {
 798		/*
 799		 * Put unevictable pages directly on zone's unevictable
 800		 * list.
 801		 */
 802		is_unevictable = true;
 803		add_page_to_unevictable_list(page);
 804		/*
 805		 * When racing with an mlock or AS_UNEVICTABLE clearing
 806		 * (page is unlocked) make sure that if the other thread
 807		 * does not observe our setting of PG_lru and fails
 808		 * isolation/check_move_unevictable_pages,
 809		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 810		 * the page back to the evictable list.
 811		 *
 812		 * The other side is TestClearPageMlocked() or shmem_lock().
 813		 */
 814		smp_mb();
 815	}
 816
 817	/*
 818	 * page's status can change while we move it among lru. If an evictable
 819	 * page is on unevictable list, it never be freed. To avoid that,
 820	 * check after we added it to the list, again.
 821	 */
 822	if (is_unevictable && page_evictable(page)) {
 823		if (!isolate_lru_page(page)) {
 824			put_page(page);
 825			goto redo;
 826		}
 827		/* This means someone else dropped this page from LRU
 828		 * So, it will be freed or putback to LRU again. There is
 829		 * nothing to do here.
 830		 */
 831	}
 832
 833	if (was_unevictable && !is_unevictable)
 834		count_vm_event(UNEVICTABLE_PGRESCUED);
 835	else if (!was_unevictable && is_unevictable)
 836		count_vm_event(UNEVICTABLE_PGCULLED);
 837
 838	put_page(page);		/* drop ref from isolate */
 839}
 840
 841enum page_references {
 842	PAGEREF_RECLAIM,
 843	PAGEREF_RECLAIM_CLEAN,
 844	PAGEREF_KEEP,
 845	PAGEREF_ACTIVATE,
 846};
 847
 848static enum page_references page_check_references(struct page *page,
 849						  struct scan_control *sc)
 850{
 851	int referenced_ptes, referenced_page;
 852	unsigned long vm_flags;
 853
 854	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 855					  &vm_flags);
 856	referenced_page = TestClearPageReferenced(page);
 857
 858	/*
 859	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 860	 * move the page to the unevictable list.
 861	 */
 862	if (vm_flags & VM_LOCKED)
 863		return PAGEREF_RECLAIM;
 864
 865	if (referenced_ptes) {
 866		if (PageSwapBacked(page))
 867			return PAGEREF_ACTIVATE;
 868		/*
 869		 * All mapped pages start out with page table
 870		 * references from the instantiating fault, so we need
 871		 * to look twice if a mapped file page is used more
 872		 * than once.
 873		 *
 874		 * Mark it and spare it for another trip around the
 875		 * inactive list.  Another page table reference will
 876		 * lead to its activation.
 877		 *
 878		 * Note: the mark is set for activated pages as well
 879		 * so that recently deactivated but used pages are
 880		 * quickly recovered.
 881		 */
 882		SetPageReferenced(page);
 883
 884		if (referenced_page || referenced_ptes > 1)
 885			return PAGEREF_ACTIVATE;
 886
 887		/*
 888		 * Activate file-backed executable pages after first usage.
 889		 */
 890		if (vm_flags & VM_EXEC)
 891			return PAGEREF_ACTIVATE;
 892
 893		return PAGEREF_KEEP;
 894	}
 895
 896	/* Reclaim if clean, defer dirty pages to writeback */
 897	if (referenced_page && !PageSwapBacked(page))
 898		return PAGEREF_RECLAIM_CLEAN;
 899
 900	return PAGEREF_RECLAIM;
 901}
 902
 903/* Check if a page is dirty or under writeback */
 904static void page_check_dirty_writeback(struct page *page,
 905				       bool *dirty, bool *writeback)
 906{
 907	struct address_space *mapping;
 908
 909	/*
 910	 * Anonymous pages are not handled by flushers and must be written
 911	 * from reclaim context. Do not stall reclaim based on them
 912	 */
 913	if (!page_is_file_cache(page)) {
 
 914		*dirty = false;
 915		*writeback = false;
 916		return;
 917	}
 918
 919	/* By default assume that the page flags are accurate */
 920	*dirty = PageDirty(page);
 921	*writeback = PageWriteback(page);
 922
 923	/* Verify dirty/writeback state if the filesystem supports it */
 924	if (!page_has_private(page))
 925		return;
 926
 927	mapping = page_mapping(page);
 928	if (mapping && mapping->a_ops->is_dirty_writeback)
 929		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 930}
 931
 932/*
 933 * shrink_page_list() returns the number of reclaimed pages
 934 */
 935static unsigned long shrink_page_list(struct list_head *page_list,
 936				      struct pglist_data *pgdat,
 937				      struct scan_control *sc,
 938				      enum ttu_flags ttu_flags,
 939				      unsigned long *ret_nr_dirty,
 940				      unsigned long *ret_nr_unqueued_dirty,
 941				      unsigned long *ret_nr_congested,
 942				      unsigned long *ret_nr_writeback,
 943				      unsigned long *ret_nr_immediate,
 944				      bool force_reclaim)
 945{
 946	LIST_HEAD(ret_pages);
 947	LIST_HEAD(free_pages);
 948	int pgactivate = 0;
 949	unsigned long nr_unqueued_dirty = 0;
 950	unsigned long nr_dirty = 0;
 951	unsigned long nr_congested = 0;
 952	unsigned long nr_reclaimed = 0;
 953	unsigned long nr_writeback = 0;
 954	unsigned long nr_immediate = 0;
 955
 
 956	cond_resched();
 957
 958	while (!list_empty(page_list)) {
 959		struct address_space *mapping;
 960		struct page *page;
 961		int may_enter_fs;
 962		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 963		bool dirty, writeback;
 964		bool lazyfree = false;
 965		int ret = SWAP_SUCCESS;
 966
 967		cond_resched();
 968
 969		page = lru_to_page(page_list);
 970		list_del(&page->lru);
 971
 972		if (!trylock_page(page))
 973			goto keep;
 974
 975		VM_BUG_ON_PAGE(PageActive(page), page);
 976
 977		sc->nr_scanned++;
 
 
 
 978
 979		if (unlikely(!page_evictable(page)))
 980			goto cull_mlocked;
 981
 982		if (!sc->may_unmap && page_mapped(page))
 983			goto keep_locked;
 984
 985		/* Double the slab pressure for mapped and swapcache pages */
 986		if (page_mapped(page) || PageSwapCache(page))
 987			sc->nr_scanned++;
 988
 989		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 990			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 991
 992		/*
 993		 * The number of dirty pages determines if a zone is marked
 994		 * reclaim_congested which affects wait_iff_congested. kswapd
 995		 * will stall and start writing pages if the tail of the LRU
 996		 * is all dirty unqueued pages.
 997		 */
 998		page_check_dirty_writeback(page, &dirty, &writeback);
 999		if (dirty || writeback)
1000			nr_dirty++;
1001
1002		if (dirty && !writeback)
1003			nr_unqueued_dirty++;
1004
1005		/*
1006		 * Treat this page as congested if the underlying BDI is or if
1007		 * pages are cycling through the LRU so quickly that the
1008		 * pages marked for immediate reclaim are making it to the
1009		 * end of the LRU a second time.
1010		 */
1011		mapping = page_mapping(page);
1012		if (((dirty || writeback) && mapping &&
1013		     inode_write_congested(mapping->host)) ||
1014		    (writeback && PageReclaim(page)))
1015			nr_congested++;
1016
1017		/*
1018		 * If a page at the tail of the LRU is under writeback, there
1019		 * are three cases to consider.
1020		 *
1021		 * 1) If reclaim is encountering an excessive number of pages
1022		 *    under writeback and this page is both under writeback and
1023		 *    PageReclaim then it indicates that pages are being queued
1024		 *    for IO but are being recycled through the LRU before the
1025		 *    IO can complete. Waiting on the page itself risks an
1026		 *    indefinite stall if it is impossible to writeback the
1027		 *    page due to IO error or disconnected storage so instead
1028		 *    note that the LRU is being scanned too quickly and the
1029		 *    caller can stall after page list has been processed.
1030		 *
1031		 * 2) Global or new memcg reclaim encounters a page that is
1032		 *    not marked for immediate reclaim, or the caller does not
1033		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1034		 *    not to fs). In this case mark the page for immediate
1035		 *    reclaim and continue scanning.
1036		 *
1037		 *    Require may_enter_fs because we would wait on fs, which
1038		 *    may not have submitted IO yet. And the loop driver might
1039		 *    enter reclaim, and deadlock if it waits on a page for
1040		 *    which it is needed to do the write (loop masks off
1041		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1042		 *    would probably show more reasons.
1043		 *
1044		 * 3) Legacy memcg encounters a page that is already marked
1045		 *    PageReclaim. memcg does not have any dirty pages
1046		 *    throttling so we could easily OOM just because too many
1047		 *    pages are in writeback and there is nothing else to
1048		 *    reclaim. Wait for the writeback to complete.
 
 
 
 
 
 
 
 
 
1049		 */
1050		if (PageWriteback(page)) {
1051			/* Case 1 above */
1052			if (current_is_kswapd() &&
1053			    PageReclaim(page) &&
1054			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1055				nr_immediate++;
1056				goto keep_locked;
1057
1058			/* Case 2 above */
1059			} else if (sane_reclaim(sc) ||
1060			    !PageReclaim(page) || !may_enter_fs) {
1061				/*
1062				 * This is slightly racy - end_page_writeback()
1063				 * might have just cleared PageReclaim, then
1064				 * setting PageReclaim here end up interpreted
1065				 * as PageReadahead - but that does not matter
1066				 * enough to care.  What we do want is for this
1067				 * page to have PageReclaim set next time memcg
1068				 * reclaim reaches the tests above, so it will
1069				 * then wait_on_page_writeback() to avoid OOM;
1070				 * and it's also appropriate in global reclaim.
1071				 */
1072				SetPageReclaim(page);
1073				nr_writeback++;
1074				goto keep_locked;
1075
1076			/* Case 3 above */
1077			} else {
1078				unlock_page(page);
1079				wait_on_page_writeback(page);
1080				/* then go back and try same page again */
1081				list_add_tail(&page->lru, page_list);
1082				continue;
1083			}
1084		}
1085
1086		if (!force_reclaim)
1087			references = page_check_references(page, sc);
1088
1089		switch (references) {
1090		case PAGEREF_ACTIVATE:
1091			goto activate_locked;
1092		case PAGEREF_KEEP:
 
1093			goto keep_locked;
1094		case PAGEREF_RECLAIM:
1095		case PAGEREF_RECLAIM_CLEAN:
1096			; /* try to reclaim the page below */
1097		}
1098
1099		/*
1100		 * Anonymous process memory has backing store?
1101		 * Try to allocate it some swap space here.
 
1102		 */
1103		if (PageAnon(page) && !PageSwapCache(page)) {
1104			if (!(sc->gfp_mask & __GFP_IO))
1105				goto keep_locked;
1106			if (!add_to_swap(page, page_list))
1107				goto activate_locked;
1108			lazyfree = true;
1109			may_enter_fs = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
1111			/* Adding to swap updated mapping */
1112			mapping = page_mapping(page);
 
1113		} else if (unlikely(PageTransHuge(page))) {
1114			/* Split file THP */
1115			if (split_huge_page_to_list(page, page_list))
1116				goto keep_locked;
1117		}
1118
1119		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 
 
 
 
 
 
 
 
 
 
1120
1121		/*
1122		 * The page is mapped into the page tables of one or more
1123		 * processes. Try to unmap it here.
1124		 */
1125		if (page_mapped(page) && mapping) {
1126			switch (ret = try_to_unmap(page, lazyfree ?
1127				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1128				(ttu_flags | TTU_BATCH_FLUSH))) {
1129			case SWAP_FAIL:
 
 
 
 
 
 
 
1130				goto activate_locked;
1131			case SWAP_AGAIN:
1132				goto keep_locked;
1133			case SWAP_MLOCK:
1134				goto cull_mlocked;
1135			case SWAP_LZFREE:
1136				goto lazyfree;
1137			case SWAP_SUCCESS:
1138				; /* try to free the page below */
1139			}
1140		}
1141
1142		if (PageDirty(page)) {
1143			/*
1144			 * Only kswapd can writeback filesystem pages to
1145			 * avoid risk of stack overflow but only writeback
1146			 * if many dirty pages have been encountered.
 
 
 
 
 
1147			 */
1148			if (page_is_file_cache(page) &&
1149					(!current_is_kswapd() ||
1150					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1151				/*
1152				 * Immediately reclaim when written back.
1153				 * Similar in principal to deactivate_page()
1154				 * except we already have the page isolated
1155				 * and know it's dirty
1156				 */
1157				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1158				SetPageReclaim(page);
1159
1160				goto keep_locked;
1161			}
1162
1163			if (references == PAGEREF_RECLAIM_CLEAN)
1164				goto keep_locked;
1165			if (!may_enter_fs)
1166				goto keep_locked;
1167			if (!sc->may_writepage)
1168				goto keep_locked;
1169
1170			/*
1171			 * Page is dirty. Flush the TLB if a writable entry
1172			 * potentially exists to avoid CPU writes after IO
1173			 * starts and then write it out here.
1174			 */
1175			try_to_unmap_flush_dirty();
1176			switch (pageout(page, mapping, sc)) {
1177			case PAGE_KEEP:
1178				goto keep_locked;
1179			case PAGE_ACTIVATE:
1180				goto activate_locked;
1181			case PAGE_SUCCESS:
 
 
1182				if (PageWriteback(page))
1183					goto keep;
1184				if (PageDirty(page))
1185					goto keep;
1186
1187				/*
1188				 * A synchronous write - probably a ramdisk.  Go
1189				 * ahead and try to reclaim the page.
1190				 */
1191				if (!trylock_page(page))
1192					goto keep;
1193				if (PageDirty(page) || PageWriteback(page))
1194					goto keep_locked;
1195				mapping = page_mapping(page);
 
1196			case PAGE_CLEAN:
1197				; /* try to free the page below */
1198			}
1199		}
1200
1201		/*
1202		 * If the page has buffers, try to free the buffer mappings
1203		 * associated with this page. If we succeed we try to free
1204		 * the page as well.
1205		 *
1206		 * We do this even if the page is PageDirty().
1207		 * try_to_release_page() does not perform I/O, but it is
1208		 * possible for a page to have PageDirty set, but it is actually
1209		 * clean (all its buffers are clean).  This happens if the
1210		 * buffers were written out directly, with submit_bh(). ext3
1211		 * will do this, as well as the blockdev mapping.
1212		 * try_to_release_page() will discover that cleanness and will
1213		 * drop the buffers and mark the page clean - it can be freed.
1214		 *
1215		 * Rarely, pages can have buffers and no ->mapping.  These are
1216		 * the pages which were not successfully invalidated in
1217		 * truncate_complete_page().  We try to drop those buffers here
1218		 * and if that worked, and the page is no longer mapped into
1219		 * process address space (page_count == 1) it can be freed.
1220		 * Otherwise, leave the page on the LRU so it is swappable.
1221		 */
1222		if (page_has_private(page)) {
1223			if (!try_to_release_page(page, sc->gfp_mask))
1224				goto activate_locked;
1225			if (!mapping && page_count(page) == 1) {
1226				unlock_page(page);
1227				if (put_page_testzero(page))
1228					goto free_it;
1229				else {
1230					/*
1231					 * rare race with speculative reference.
1232					 * the speculative reference will free
1233					 * this page shortly, so we may
1234					 * increment nr_reclaimed here (and
1235					 * leave it off the LRU).
1236					 */
1237					nr_reclaimed++;
1238					continue;
1239				}
1240			}
1241		}
1242
1243lazyfree:
1244		if (!mapping || !__remove_mapping(mapping, page, true))
 
 
 
 
 
 
 
 
 
 
 
1245			goto keep_locked;
1246
 
 
1247		/*
1248		 * At this point, we have no other references and there is
1249		 * no way to pick any more up (removed from LRU, removed
1250		 * from pagecache). Can use non-atomic bitops now (and
1251		 * we obviously don't have to worry about waking up a process
1252		 * waiting on the page lock, because there are no references.
1253		 */
1254		__ClearPageLocked(page);
1255free_it:
1256		if (ret == SWAP_LZFREE)
1257			count_vm_event(PGLAZYFREED);
1258
1259		nr_reclaimed++;
1260
1261		/*
1262		 * Is there need to periodically free_page_list? It would
1263		 * appear not as the counts should be low
1264		 */
1265		list_add(&page->lru, &free_pages);
1266		continue;
1267
1268cull_mlocked:
1269		if (PageSwapCache(page))
1270			try_to_free_swap(page);
1271		unlock_page(page);
1272		list_add(&page->lru, &ret_pages);
1273		continue;
1274
 
 
 
 
 
 
 
 
 
1275activate_locked:
1276		/* Not a candidate for swapping, so reclaim swap space. */
1277		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
 
1278			try_to_free_swap(page);
1279		VM_BUG_ON_PAGE(PageActive(page), page);
1280		SetPageActive(page);
1281		pgactivate++;
 
 
 
 
1282keep_locked:
1283		unlock_page(page);
1284keep:
1285		list_add(&page->lru, &ret_pages);
1286		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1287	}
1288
 
 
1289	mem_cgroup_uncharge_list(&free_pages);
1290	try_to_unmap_flush();
1291	free_hot_cold_page_list(&free_pages, true);
1292
1293	list_splice(&ret_pages, page_list);
1294	count_vm_events(PGACTIVATE, pgactivate);
1295
1296	*ret_nr_dirty += nr_dirty;
1297	*ret_nr_congested += nr_congested;
1298	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1299	*ret_nr_writeback += nr_writeback;
1300	*ret_nr_immediate += nr_immediate;
1301	return nr_reclaimed;
1302}
1303
1304unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1305					    struct list_head *page_list)
1306{
1307	struct scan_control sc = {
1308		.gfp_mask = GFP_KERNEL,
1309		.priority = DEF_PRIORITY,
1310		.may_unmap = 1,
1311	};
1312	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
 
1313	struct page *page, *next;
1314	LIST_HEAD(clean_pages);
 
1315
1316	list_for_each_entry_safe(page, next, page_list, lru) {
1317		if (page_is_file_cache(page) && !PageDirty(page) &&
1318		    !__PageMovable(page)) {
 
1319			ClearPageActive(page);
1320			list_move(&page->lru, &clean_pages);
1321		}
1322	}
1323
1324	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1325			TTU_UNMAP|TTU_IGNORE_ACCESS,
1326			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
 
 
 
 
 
 
 
 
1327	list_splice(&clean_pages, page_list);
1328	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1329	return ret;
 
 
 
 
 
 
 
 
 
 
 
1330}
1331
1332/*
1333 * Attempt to remove the specified page from its LRU.  Only take this page
1334 * if it is of the appropriate PageActive status.  Pages which are being
1335 * freed elsewhere are also ignored.
1336 *
1337 * page:	page to consider
1338 * mode:	one of the LRU isolation modes defined above
1339 *
1340 * returns 0 on success, -ve errno on failure.
1341 */
1342int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1343{
1344	int ret = -EINVAL;
1345
1346	/* Only take pages on the LRU. */
1347	if (!PageLRU(page))
1348		return ret;
1349
1350	/* Compaction should not handle unevictable pages but CMA can do so */
1351	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1352		return ret;
1353
1354	ret = -EBUSY;
1355
1356	/*
1357	 * To minimise LRU disruption, the caller can indicate that it only
1358	 * wants to isolate pages it will be able to operate on without
1359	 * blocking - clean pages for the most part.
1360	 *
1361	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1362	 * is used by reclaim when it is cannot write to backing storage
1363	 *
1364	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1365	 * that it is possible to migrate without blocking
1366	 */
1367	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1368		/* All the caller can do on PageWriteback is block */
1369		if (PageWriteback(page))
1370			return ret;
1371
1372		if (PageDirty(page)) {
1373			struct address_space *mapping;
1374
1375			/* ISOLATE_CLEAN means only clean pages */
1376			if (mode & ISOLATE_CLEAN)
1377				return ret;
1378
1379			/*
1380			 * Only pages without mappings or that have a
1381			 * ->migratepage callback are possible to migrate
1382			 * without blocking
 
 
 
 
1383			 */
 
 
 
1384			mapping = page_mapping(page);
1385			if (mapping && !mapping->a_ops->migratepage)
1386				return ret;
 
 
1387		}
1388	}
1389
1390	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1391		return ret;
1392
1393	if (likely(get_page_unless_zero(page))) {
1394		/*
1395		 * Be careful not to clear PageLRU until after we're
1396		 * sure the page is not being freed elsewhere -- the
1397		 * page release code relies on it.
1398		 */
1399		ClearPageLRU(page);
1400		ret = 0;
1401	}
1402
1403	return ret;
1404}
1405
1406
1407/*
1408 * Update LRU sizes after isolating pages. The LRU size updates must
1409 * be complete before mem_cgroup_update_lru_size due to a santity check.
1410 */
1411static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1412			enum lru_list lru, unsigned long *nr_zone_taken)
1413{
1414	int zid;
1415
1416	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1417		if (!nr_zone_taken[zid])
1418			continue;
1419
1420		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421#ifdef CONFIG_MEMCG
1422		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1423#endif
1424	}
1425
1426}
1427
1428/*
1429 * zone_lru_lock is heavily contended.  Some of the functions that
 
 
1430 * shrink the lists perform better by taking out a batch of pages
1431 * and working on them outside the LRU lock.
1432 *
1433 * For pagecache intensive workloads, this function is the hottest
1434 * spot in the kernel (apart from copy_*_user functions).
1435 *
1436 * Appropriate locks must be held before calling this function.
1437 *
1438 * @nr_to_scan:	The number of pages to look through on the list.
1439 * @lruvec:	The LRU vector to pull pages from.
1440 * @dst:	The temp list to put pages on to.
1441 * @nr_scanned:	The number of pages that were scanned.
1442 * @sc:		The scan_control struct for this reclaim session
1443 * @mode:	One of the LRU isolation modes
1444 * @lru:	LRU list id for isolating
1445 *
1446 * returns how many pages were moved onto *@dst.
1447 */
1448static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1449		struct lruvec *lruvec, struct list_head *dst,
1450		unsigned long *nr_scanned, struct scan_control *sc,
1451		isolate_mode_t mode, enum lru_list lru)
1452{
1453	struct list_head *src = &lruvec->lists[lru];
1454	unsigned long nr_taken = 0;
1455	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1456	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1457	unsigned long scan, nr_pages;
 
1458	LIST_HEAD(pages_skipped);
 
1459
1460	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1461					!list_empty(src);) {
 
1462		struct page *page;
1463
1464		page = lru_to_page(src);
1465		prefetchw_prev_lru_page(page, src, flags);
1466
1467		VM_BUG_ON_PAGE(!PageLRU(page), page);
 
1468
1469		if (page_zonenum(page) > sc->reclaim_idx) {
1470			list_move(&page->lru, &pages_skipped);
1471			nr_skipped[page_zonenum(page)]++;
1472			continue;
1473		}
1474
1475		/*
1476		 * Account for scanned and skipped separetly to avoid the pgdat
1477		 * being prematurely marked unreclaimable by pgdat_reclaimable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478		 */
1479		scan++;
 
 
 
1480
1481		switch (__isolate_lru_page(page, mode)) {
1482		case 0:
1483			nr_pages = hpage_nr_pages(page);
1484			nr_taken += nr_pages;
1485			nr_zone_taken[page_zonenum(page)] += nr_pages;
1486			list_move(&page->lru, dst);
1487			break;
1488
1489		case -EBUSY:
1490			/* else it is being freed elsewhere */
1491			list_move(&page->lru, src);
1492			continue;
 
1493
1494		default:
1495			BUG();
1496		}
1497	}
1498
1499	/*
1500	 * Splice any skipped pages to the start of the LRU list. Note that
1501	 * this disrupts the LRU order when reclaiming for lower zones but
1502	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1503	 * scanning would soon rescan the same pages to skip and put the
1504	 * system at risk of premature OOM.
1505	 */
1506	if (!list_empty(&pages_skipped)) {
1507		int zid;
1508		unsigned long total_skipped = 0;
1509
 
1510		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1511			if (!nr_skipped[zid])
1512				continue;
1513
1514			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1515			total_skipped += nr_skipped[zid];
1516		}
1517
1518		/*
1519		 * Account skipped pages as a partial scan as the pgdat may be
1520		 * close to unreclaimable. If the LRU list is empty, account
1521		 * skipped pages as a full scan.
1522		 */
1523		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1524
1525		list_splice(&pages_skipped, src);
1526	}
1527	*nr_scanned = scan;
1528	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1529				    nr_taken, mode, is_file_lru(lru));
1530	update_lru_sizes(lruvec, lru, nr_zone_taken);
1531	return nr_taken;
1532}
1533
1534/**
1535 * isolate_lru_page - tries to isolate a page from its LRU list
1536 * @page: page to isolate from its LRU list
1537 *
1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1539 * vmstat statistic corresponding to whatever LRU list the page was on.
1540 *
1541 * Returns 0 if the page was removed from an LRU list.
1542 * Returns -EBUSY if the page was not on an LRU list.
1543 *
1544 * The returned page will have PageLRU() cleared.  If it was found on
1545 * the active list, it will have PageActive set.  If it was found on
1546 * the unevictable list, it will have the PageUnevictable bit set. That flag
1547 * may need to be cleared by the caller before letting the page go.
1548 *
1549 * The vmstat statistic corresponding to the list on which the page was
1550 * found will be decremented.
1551 *
1552 * Restrictions:
 
1553 * (1) Must be called with an elevated refcount on the page. This is a
1554 *     fundamentnal difference from isolate_lru_pages (which is called
1555 *     without a stable reference).
1556 * (2) the lru_lock must not be held.
1557 * (3) interrupts must be enabled.
1558 */
1559int isolate_lru_page(struct page *page)
1560{
1561	int ret = -EBUSY;
1562
1563	VM_BUG_ON_PAGE(!page_count(page), page);
1564	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1565
1566	if (PageLRU(page)) {
1567		struct zone *zone = page_zone(page);
1568		struct lruvec *lruvec;
1569
1570		spin_lock_irq(zone_lru_lock(zone));
1571		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1572		if (PageLRU(page)) {
1573			int lru = page_lru(page);
1574			get_page(page);
1575			ClearPageLRU(page);
1576			del_page_from_lru_list(page, lruvec, lru);
1577			ret = 0;
1578		}
1579		spin_unlock_irq(zone_lru_lock(zone));
1580	}
 
1581	return ret;
1582}
1583
1584/*
1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1586 * then get resheduled. When there are massive number of tasks doing page
1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1588 * the LRU list will go small and be scanned faster than necessary, leading to
1589 * unnecessary swapping, thrashing and OOM.
1590 */
1591static int too_many_isolated(struct pglist_data *pgdat, int file,
1592		struct scan_control *sc)
1593{
1594	unsigned long inactive, isolated;
1595
1596	if (current_is_kswapd())
1597		return 0;
1598
1599	if (!sane_reclaim(sc))
1600		return 0;
1601
1602	if (file) {
1603		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1604		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1605	} else {
1606		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1607		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1608	}
1609
1610	/*
1611	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1612	 * won't get blocked by normal direct-reclaimers, forming a circular
1613	 * deadlock.
1614	 */
1615	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1616		inactive >>= 3;
1617
1618	return isolated > inactive;
1619}
1620
1621static noinline_for_stack void
1622putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
 
 
 
 
1623{
1624	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1626	LIST_HEAD(pages_to_free);
 
1627
1628	/*
1629	 * Put back any unfreeable pages.
1630	 */
1631	while (!list_empty(page_list)) {
1632		struct page *page = lru_to_page(page_list);
1633		int lru;
1634
1635		VM_BUG_ON_PAGE(PageLRU(page), page);
1636		list_del(&page->lru);
1637		if (unlikely(!page_evictable(page))) {
1638			spin_unlock_irq(&pgdat->lru_lock);
1639			putback_lru_page(page);
1640			spin_lock_irq(&pgdat->lru_lock);
1641			continue;
1642		}
1643
1644		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1645
 
 
 
 
 
 
 
 
 
1646		SetPageLRU(page);
1647		lru = page_lru(page);
1648		add_page_to_lru_list(page, lruvec, lru);
1649
1650		if (is_active_lru(lru)) {
1651			int file = is_file_lru(lru);
1652			int numpages = hpage_nr_pages(page);
1653			reclaim_stat->recent_rotated[file] += numpages;
1654		}
1655		if (put_page_testzero(page)) {
1656			__ClearPageLRU(page);
1657			__ClearPageActive(page);
1658			del_page_from_lru_list(page, lruvec, lru);
1659
1660			if (unlikely(PageCompound(page))) {
1661				spin_unlock_irq(&pgdat->lru_lock);
1662				mem_cgroup_uncharge(page);
1663				(*get_compound_page_dtor(page))(page);
1664				spin_lock_irq(&pgdat->lru_lock);
1665			} else
1666				list_add(&page->lru, &pages_to_free);
 
 
1667		}
 
 
 
 
 
 
 
 
 
 
 
1668	}
1669
1670	/*
1671	 * To save our caller's stack, now use input list for pages to free.
1672	 */
1673	list_splice(&pages_to_free, page_list);
 
 
1674}
1675
1676/*
1677 * If a kernel thread (such as nfsd for loop-back mounts) services
1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1679 * In that case we should only throttle if the backing device it is
1680 * writing to is congested.  In other cases it is safe to throttle.
1681 */
1682static int current_may_throttle(void)
1683{
1684	return !(current->flags & PF_LESS_THROTTLE) ||
1685		current->backing_dev_info == NULL ||
1686		bdi_write_congested(current->backing_dev_info);
1687}
1688
1689static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1690				struct scan_control *sc, enum lru_list lru)
1691{
1692	int zid;
1693	struct zone *zone;
1694	int file = is_file_lru(lru);
1695	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1696
1697	if (!global_reclaim(sc))
1698		return true;
1699
1700	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1701		zone = &pgdat->node_zones[zid];
1702		if (!managed_zone(zone))
1703			continue;
1704
1705		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1706				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1707			return true;
1708	}
1709
1710	return false;
1711}
1712
1713/*
1714 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1715 * of reclaimed pages
1716 */
1717static noinline_for_stack unsigned long
1718shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719		     struct scan_control *sc, enum lru_list lru)
1720{
1721	LIST_HEAD(page_list);
1722	unsigned long nr_scanned;
1723	unsigned long nr_reclaimed = 0;
1724	unsigned long nr_taken;
1725	unsigned long nr_dirty = 0;
1726	unsigned long nr_congested = 0;
1727	unsigned long nr_unqueued_dirty = 0;
1728	unsigned long nr_writeback = 0;
1729	unsigned long nr_immediate = 0;
1730	isolate_mode_t isolate_mode = 0;
1731	int file = is_file_lru(lru);
1732	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1733	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1734
1735	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1736		return 0;
 
1737
1738	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1739		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
1740
1741		/* We are about to die and free our memory. Return now. */
1742		if (fatal_signal_pending(current))
1743			return SWAP_CLUSTER_MAX;
1744	}
1745
1746	lru_add_drain();
1747
1748	if (!sc->may_unmap)
1749		isolate_mode |= ISOLATE_UNMAPPED;
1750	if (!sc->may_writepage)
1751		isolate_mode |= ISOLATE_CLEAN;
1752
1753	spin_lock_irq(&pgdat->lru_lock);
1754
1755	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1756				     &nr_scanned, sc, isolate_mode, lru);
1757
1758	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1759	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
1760
1761	if (global_reclaim(sc)) {
1762		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1763		if (current_is_kswapd())
1764			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1765		else
1766			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1767	}
1768	spin_unlock_irq(&pgdat->lru_lock);
1769
1770	if (nr_taken == 0)
1771		return 0;
1772
1773	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1774				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1775				&nr_writeback, &nr_immediate,
1776				false);
1777
1778	spin_lock_irq(&pgdat->lru_lock);
1779
1780	if (global_reclaim(sc)) {
1781		if (current_is_kswapd())
1782			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1783		else
1784			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1785	}
1786
1787	putback_inactive_pages(lruvec, &page_list);
 
1788
1789	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
 
 
 
 
 
 
1790
1791	spin_unlock_irq(&pgdat->lru_lock);
1792
1793	mem_cgroup_uncharge_list(&page_list);
1794	free_hot_cold_page_list(&page_list, true);
1795
1796	/*
1797	 * If reclaim is isolating dirty pages under writeback, it implies
1798	 * that the long-lived page allocation rate is exceeding the page
1799	 * laundering rate. Either the global limits are not being effective
1800	 * at throttling processes due to the page distribution throughout
1801	 * zones or there is heavy usage of a slow backing device. The
1802	 * only option is to throttle from reclaim context which is not ideal
1803	 * as there is no guarantee the dirtying process is throttled in the
1804	 * same way balance_dirty_pages() manages.
1805	 *
1806	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1807	 * of pages under pages flagged for immediate reclaim and stall if any
1808	 * are encountered in the nr_immediate check below.
1809	 */
1810	if (nr_writeback && nr_writeback == nr_taken)
1811		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1812
1813	/*
1814	 * Legacy memcg will stall in page writeback so avoid forcibly
1815	 * stalling here.
1816	 */
1817	if (sane_reclaim(sc)) {
1818		/*
1819		 * Tag a zone as congested if all the dirty pages scanned were
1820		 * backed by a congested BDI and wait_iff_congested will stall.
1821		 */
1822		if (nr_dirty && nr_dirty == nr_congested)
1823			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1824
1825		/*
1826		 * If dirty pages are scanned that are not queued for IO, it
1827		 * implies that flushers are not keeping up. In this case, flag
1828		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1829		 * reclaim context.
1830		 */
1831		if (nr_unqueued_dirty == nr_taken)
1832			set_bit(PGDAT_DIRTY, &pgdat->flags);
1833
1834		/*
1835		 * If kswapd scans pages marked marked for immediate
1836		 * reclaim and under writeback (nr_immediate), it implies
1837		 * that pages are cycling through the LRU faster than
1838		 * they are written so also forcibly stall.
1839		 */
1840		if (nr_immediate && current_may_throttle())
1841			congestion_wait(BLK_RW_ASYNC, HZ/10);
1842	}
1843
1844	/*
1845	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1846	 * is congested. Allow kswapd to continue until it starts encountering
1847	 * unqueued dirty pages or cycling through the LRU too quickly.
1848	 */
1849	if (!sc->hibernation_mode && !current_is_kswapd() &&
1850	    current_may_throttle())
1851		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1854			nr_scanned, nr_reclaimed,
1855			sc->priority, file);
1856	return nr_reclaimed;
1857}
1858
1859/*
1860 * This moves pages from the active list to the inactive list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation.  But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page.  It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 */
1876
1877static void move_active_pages_to_lru(struct lruvec *lruvec,
1878				     struct list_head *list,
1879				     struct list_head *pages_to_free,
1880				     enum lru_list lru)
1881{
1882	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883	unsigned long pgmoved = 0;
1884	struct page *page;
1885	int nr_pages;
1886
1887	while (!list_empty(list)) {
1888		page = lru_to_page(list);
1889		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1890
1891		VM_BUG_ON_PAGE(PageLRU(page), page);
1892		SetPageLRU(page);
1893
1894		nr_pages = hpage_nr_pages(page);
1895		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1896		list_move(&page->lru, &lruvec->lists[lru]);
1897		pgmoved += nr_pages;
1898
1899		if (put_page_testzero(page)) {
1900			__ClearPageLRU(page);
1901			__ClearPageActive(page);
1902			del_page_from_lru_list(page, lruvec, lru);
1903
1904			if (unlikely(PageCompound(page))) {
1905				spin_unlock_irq(&pgdat->lru_lock);
1906				mem_cgroup_uncharge(page);
1907				(*get_compound_page_dtor(page))(page);
1908				spin_lock_irq(&pgdat->lru_lock);
1909			} else
1910				list_add(&page->lru, pages_to_free);
1911		}
1912	}
1913
1914	if (!is_active_lru(lru))
1915		__count_vm_events(PGDEACTIVATE, pgmoved);
1916}
1917
1918static void shrink_active_list(unsigned long nr_to_scan,
1919			       struct lruvec *lruvec,
1920			       struct scan_control *sc,
1921			       enum lru_list lru)
1922{
1923	unsigned long nr_taken;
1924	unsigned long nr_scanned;
1925	unsigned long vm_flags;
1926	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1927	LIST_HEAD(l_active);
1928	LIST_HEAD(l_inactive);
1929	struct page *page;
1930	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1931	unsigned long nr_rotated = 0;
1932	isolate_mode_t isolate_mode = 0;
1933	int file = is_file_lru(lru);
1934	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1935
1936	lru_add_drain();
1937
1938	if (!sc->may_unmap)
1939		isolate_mode |= ISOLATE_UNMAPPED;
1940	if (!sc->may_writepage)
1941		isolate_mode |= ISOLATE_CLEAN;
1942
1943	spin_lock_irq(&pgdat->lru_lock);
1944
1945	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1946				     &nr_scanned, sc, isolate_mode, lru);
1947
1948	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949	reclaim_stat->recent_scanned[file] += nr_taken;
1950
1951	if (global_reclaim(sc))
1952		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1953	__count_vm_events(PGREFILL, nr_scanned);
1954
1955	spin_unlock_irq(&pgdat->lru_lock);
1956
1957	while (!list_empty(&l_hold)) {
1958		cond_resched();
1959		page = lru_to_page(&l_hold);
1960		list_del(&page->lru);
1961
1962		if (unlikely(!page_evictable(page))) {
1963			putback_lru_page(page);
1964			continue;
1965		}
1966
1967		if (unlikely(buffer_heads_over_limit)) {
1968			if (page_has_private(page) && trylock_page(page)) {
1969				if (page_has_private(page))
1970					try_to_release_page(page, 0);
1971				unlock_page(page);
1972			}
1973		}
1974
1975		if (page_referenced(page, 0, sc->target_mem_cgroup,
1976				    &vm_flags)) {
1977			nr_rotated += hpage_nr_pages(page);
1978			/*
1979			 * Identify referenced, file-backed active pages and
1980			 * give them one more trip around the active list. So
1981			 * that executable code get better chances to stay in
1982			 * memory under moderate memory pressure.  Anon pages
1983			 * are not likely to be evicted by use-once streaming
1984			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1985			 * so we ignore them here.
1986			 */
1987			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
 
1988				list_add(&page->lru, &l_active);
1989				continue;
1990			}
1991		}
1992
1993		ClearPageActive(page);	/* we are de-activating */
 
1994		list_add(&page->lru, &l_inactive);
1995	}
1996
1997	/*
1998	 * Move pages back to the lru list.
1999	 */
2000	spin_lock_irq(&pgdat->lru_lock);
2001	/*
2002	 * Count referenced pages from currently used mappings as rotated,
2003	 * even though only some of them are actually re-activated.  This
2004	 * helps balance scan pressure between file and anonymous pages in
2005	 * get_scan_count.
2006	 */
2007	reclaim_stat->recent_rotated[file] += nr_rotated;
 
2008
2009	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2010	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2011	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2012	spin_unlock_irq(&pgdat->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013
2014	mem_cgroup_uncharge_list(&l_hold);
2015	free_hot_cold_page_list(&l_hold, true);
2016}
2017
2018/*
2019 * The inactive anon list should be small enough that the VM never has
2020 * to do too much work.
2021 *
2022 * The inactive file list should be small enough to leave most memory
2023 * to the established workingset on the scan-resistant active list,
2024 * but large enough to avoid thrashing the aggregate readahead window.
2025 *
2026 * Both inactive lists should also be large enough that each inactive
2027 * page has a chance to be referenced again before it is reclaimed.
2028 *
 
 
2029 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2030 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2031 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2032 *
2033 * total     target    max
2034 * memory    ratio     inactive
2035 * -------------------------------------
2036 *   10MB       1         5MB
2037 *  100MB       1        50MB
2038 *    1GB       3       250MB
2039 *   10GB      10       0.9GB
2040 *  100GB      31         3GB
2041 *    1TB     101        10GB
2042 *   10TB     320        32GB
2043 */
2044static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2045						struct scan_control *sc)
2046{
 
 
2047	unsigned long inactive_ratio;
2048	unsigned long inactive, active;
2049	enum lru_list inactive_lru = file * LRU_FILE;
2050	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2051	unsigned long gb;
2052
2053	/*
2054	 * If we don't have swap space, anonymous page deactivation
2055	 * is pointless.
2056	 */
2057	if (!file && !total_swap_pages)
2058		return false;
2059
2060	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2061	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2062
2063	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2064	if (gb)
2065		inactive_ratio = int_sqrt(10 * gb);
2066	else
2067		inactive_ratio = 1;
2068
2069	return inactive * inactive_ratio < active;
2070}
2071
2072static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2073				 struct lruvec *lruvec, struct scan_control *sc)
2074{
2075	if (is_active_lru(lru)) {
2076		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2077			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2078		return 0;
2079	}
2080
2081	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2082}
2083
2084enum scan_balance {
2085	SCAN_EQUAL,
2086	SCAN_FRACT,
2087	SCAN_ANON,
2088	SCAN_FILE,
2089};
2090
2091/*
2092 * Determine how aggressively the anon and file LRU lists should be
2093 * scanned.  The relative value of each set of LRU lists is determined
2094 * by looking at the fraction of the pages scanned we did rotate back
2095 * onto the active list instead of evict.
2096 *
2097 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2098 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2099 */
2100static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2101			   struct scan_control *sc, unsigned long *nr,
2102			   unsigned long *lru_pages)
2103{
 
 
2104	int swappiness = mem_cgroup_swappiness(memcg);
2105	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2106	u64 fraction[2];
2107	u64 denominator = 0;	/* gcc */
2108	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2109	unsigned long anon_prio, file_prio;
2110	enum scan_balance scan_balance;
2111	unsigned long anon, file;
2112	bool force_scan = false;
2113	unsigned long ap, fp;
2114	enum lru_list lru;
2115	bool some_scanned;
2116	int pass;
2117
2118	/*
2119	 * If the zone or memcg is small, nr[l] can be 0.  This
2120	 * results in no scanning on this priority and a potential
2121	 * priority drop.  Global direct reclaim can go to the next
2122	 * zone and tends to have no problems. Global kswapd is for
2123	 * zone balancing and it needs to scan a minimum amount. When
2124	 * reclaiming for a memcg, a priority drop can cause high
2125	 * latencies, so it's better to scan a minimum amount there as
2126	 * well.
2127	 */
2128	if (current_is_kswapd()) {
2129		if (!pgdat_reclaimable(pgdat))
2130			force_scan = true;
2131		if (!mem_cgroup_online(memcg))
2132			force_scan = true;
2133	}
2134	if (!global_reclaim(sc))
2135		force_scan = true;
2136
2137	/* If we have no swap space, do not bother scanning anon pages. */
2138	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2139		scan_balance = SCAN_FILE;
2140		goto out;
2141	}
2142
2143	/*
2144	 * Global reclaim will swap to prevent OOM even with no
2145	 * swappiness, but memcg users want to use this knob to
2146	 * disable swapping for individual groups completely when
2147	 * using the memory controller's swap limit feature would be
2148	 * too expensive.
2149	 */
2150	if (!global_reclaim(sc) && !swappiness) {
2151		scan_balance = SCAN_FILE;
2152		goto out;
2153	}
2154
2155	/*
2156	 * Do not apply any pressure balancing cleverness when the
2157	 * system is close to OOM, scan both anon and file equally
2158	 * (unless the swappiness setting disagrees with swapping).
2159	 */
2160	if (!sc->priority && swappiness) {
2161		scan_balance = SCAN_EQUAL;
2162		goto out;
2163	}
2164
2165	/*
2166	 * Prevent the reclaimer from falling into the cache trap: as
2167	 * cache pages start out inactive, every cache fault will tip
2168	 * the scan balance towards the file LRU.  And as the file LRU
2169	 * shrinks, so does the window for rotation from references.
2170	 * This means we have a runaway feedback loop where a tiny
2171	 * thrashing file LRU becomes infinitely more attractive than
2172	 * anon pages.  Try to detect this based on file LRU size.
2173	 */
2174	if (global_reclaim(sc)) {
2175		unsigned long pgdatfile;
2176		unsigned long pgdatfree;
2177		int z;
2178		unsigned long total_high_wmark = 0;
2179
2180		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2181		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2182			   node_page_state(pgdat, NR_INACTIVE_FILE);
2183
2184		for (z = 0; z < MAX_NR_ZONES; z++) {
2185			struct zone *zone = &pgdat->node_zones[z];
2186			if (!managed_zone(zone))
2187				continue;
2188
2189			total_high_wmark += high_wmark_pages(zone);
2190		}
2191
2192		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2193			scan_balance = SCAN_ANON;
2194			goto out;
2195		}
2196	}
2197
2198	/*
2199	 * If there is enough inactive page cache, i.e. if the size of the
2200	 * inactive list is greater than that of the active list *and* the
2201	 * inactive list actually has some pages to scan on this priority, we
2202	 * do not reclaim anything from the anonymous working set right now.
2203	 * Without the second condition we could end up never scanning an
2204	 * lruvec even if it has plenty of old anonymous pages unless the
2205	 * system is under heavy pressure.
2206	 */
2207	if (!inactive_list_is_low(lruvec, true, sc) &&
2208	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2209		scan_balance = SCAN_FILE;
2210		goto out;
2211	}
2212
2213	scan_balance = SCAN_FRACT;
2214
2215	/*
2216	 * With swappiness at 100, anonymous and file have the same priority.
2217	 * This scanning priority is essentially the inverse of IO cost.
2218	 */
2219	anon_prio = swappiness;
2220	file_prio = 200 - anon_prio;
2221
2222	/*
2223	 * OK, so we have swap space and a fair amount of page cache
2224	 * pages.  We use the recently rotated / recently scanned
2225	 * ratios to determine how valuable each cache is.
2226	 *
2227	 * Because workloads change over time (and to avoid overflow)
2228	 * we keep these statistics as a floating average, which ends
2229	 * up weighing recent references more than old ones.
2230	 *
2231	 * anon in [0], file in [1]
2232	 */
 
 
 
 
2233
2234	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2235		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2236	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2237		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2238
2239	spin_lock_irq(&pgdat->lru_lock);
2240	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2241		reclaim_stat->recent_scanned[0] /= 2;
2242		reclaim_stat->recent_rotated[0] /= 2;
2243	}
2244
2245	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2246		reclaim_stat->recent_scanned[1] /= 2;
2247		reclaim_stat->recent_rotated[1] /= 2;
2248	}
2249
2250	/*
2251	 * The amount of pressure on anon vs file pages is inversely
2252	 * proportional to the fraction of recently scanned pages on
2253	 * each list that were recently referenced and in active use.
2254	 */
2255	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2256	ap /= reclaim_stat->recent_rotated[0] + 1;
2257
2258	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2259	fp /= reclaim_stat->recent_rotated[1] + 1;
2260	spin_unlock_irq(&pgdat->lru_lock);
2261
2262	fraction[0] = ap;
2263	fraction[1] = fp;
2264	denominator = ap + fp + 1;
2265out:
2266	some_scanned = false;
2267	/* Only use force_scan on second pass. */
2268	for (pass = 0; !some_scanned && pass < 2; pass++) {
2269		*lru_pages = 0;
2270		for_each_evictable_lru(lru) {
2271			int file = is_file_lru(lru);
2272			unsigned long size;
2273			unsigned long scan;
2274
2275			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2276			scan = size >> sc->priority;
2277
2278			if (!scan && pass && force_scan)
2279				scan = min(size, SWAP_CLUSTER_MAX);
2280
2281			switch (scan_balance) {
2282			case SCAN_EQUAL:
2283				/* Scan lists relative to size */
2284				break;
2285			case SCAN_FRACT:
2286				/*
2287				 * Scan types proportional to swappiness and
2288				 * their relative recent reclaim efficiency.
2289				 */
2290				scan = div64_u64(scan * fraction[file],
2291							denominator);
2292				break;
2293			case SCAN_FILE:
2294			case SCAN_ANON:
2295				/* Scan one type exclusively */
2296				if ((scan_balance == SCAN_FILE) != file) {
2297					size = 0;
2298					scan = 0;
2299				}
2300				break;
2301			default:
2302				/* Look ma, no brain */
2303				BUG();
 
 
 
 
 
 
 
 
 
 
 
2304			}
2305
2306			*lru_pages += size;
2307			nr[lru] = scan;
 
 
 
2308
2309			/*
2310			 * Skip the second pass and don't force_scan,
2311			 * if we found something to scan.
 
2312			 */
2313			some_scanned |= !!scan;
 
 
2314		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315	}
2316}
2317
2318/*
2319 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2320 */
2321static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2322			      struct scan_control *sc, unsigned long *lru_pages)
2323{
2324	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2325	unsigned long nr[NR_LRU_LISTS];
2326	unsigned long targets[NR_LRU_LISTS];
2327	unsigned long nr_to_scan;
2328	enum lru_list lru;
2329	unsigned long nr_reclaimed = 0;
2330	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2331	struct blk_plug plug;
2332	bool scan_adjusted;
2333
2334	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2335
2336	/* Record the original scan target for proportional adjustments later */
2337	memcpy(targets, nr, sizeof(nr));
2338
2339	/*
2340	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2341	 * event that can occur when there is little memory pressure e.g.
2342	 * multiple streaming readers/writers. Hence, we do not abort scanning
2343	 * when the requested number of pages are reclaimed when scanning at
2344	 * DEF_PRIORITY on the assumption that the fact we are direct
2345	 * reclaiming implies that kswapd is not keeping up and it is best to
2346	 * do a batch of work at once. For memcg reclaim one check is made to
2347	 * abort proportional reclaim if either the file or anon lru has already
2348	 * dropped to zero at the first pass.
2349	 */
2350	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2351			 sc->priority == DEF_PRIORITY);
2352
2353	blk_start_plug(&plug);
2354	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2355					nr[LRU_INACTIVE_FILE]) {
2356		unsigned long nr_anon, nr_file, percentage;
2357		unsigned long nr_scanned;
2358
2359		for_each_evictable_lru(lru) {
2360			if (nr[lru]) {
2361				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2362				nr[lru] -= nr_to_scan;
2363
2364				nr_reclaimed += shrink_list(lru, nr_to_scan,
2365							    lruvec, sc);
2366			}
2367		}
2368
2369		cond_resched();
2370
2371		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2372			continue;
2373
2374		/*
2375		 * For kswapd and memcg, reclaim at least the number of pages
2376		 * requested. Ensure that the anon and file LRUs are scanned
2377		 * proportionally what was requested by get_scan_count(). We
2378		 * stop reclaiming one LRU and reduce the amount scanning
2379		 * proportional to the original scan target.
2380		 */
2381		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2382		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2383
2384		/*
2385		 * It's just vindictive to attack the larger once the smaller
2386		 * has gone to zero.  And given the way we stop scanning the
2387		 * smaller below, this makes sure that we only make one nudge
2388		 * towards proportionality once we've got nr_to_reclaim.
2389		 */
2390		if (!nr_file || !nr_anon)
2391			break;
2392
2393		if (nr_file > nr_anon) {
2394			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2395						targets[LRU_ACTIVE_ANON] + 1;
2396			lru = LRU_BASE;
2397			percentage = nr_anon * 100 / scan_target;
2398		} else {
2399			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2400						targets[LRU_ACTIVE_FILE] + 1;
2401			lru = LRU_FILE;
2402			percentage = nr_file * 100 / scan_target;
2403		}
2404
2405		/* Stop scanning the smaller of the LRU */
2406		nr[lru] = 0;
2407		nr[lru + LRU_ACTIVE] = 0;
2408
2409		/*
2410		 * Recalculate the other LRU scan count based on its original
2411		 * scan target and the percentage scanning already complete
2412		 */
2413		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2414		nr_scanned = targets[lru] - nr[lru];
2415		nr[lru] = targets[lru] * (100 - percentage) / 100;
2416		nr[lru] -= min(nr[lru], nr_scanned);
2417
2418		lru += LRU_ACTIVE;
2419		nr_scanned = targets[lru] - nr[lru];
2420		nr[lru] = targets[lru] * (100 - percentage) / 100;
2421		nr[lru] -= min(nr[lru], nr_scanned);
2422
2423		scan_adjusted = true;
2424	}
2425	blk_finish_plug(&plug);
2426	sc->nr_reclaimed += nr_reclaimed;
2427
2428	/*
2429	 * Even if we did not try to evict anon pages at all, we want to
2430	 * rebalance the anon lru active/inactive ratio.
2431	 */
2432	if (inactive_list_is_low(lruvec, false, sc))
2433		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2434				   sc, LRU_ACTIVE_ANON);
2435}
2436
2437/* Use reclaim/compaction for costly allocs or under memory pressure */
2438static bool in_reclaim_compaction(struct scan_control *sc)
2439{
2440	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2441			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2442			 sc->priority < DEF_PRIORITY - 2))
2443		return true;
2444
2445	return false;
2446}
2447
2448/*
2449 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2450 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2451 * true if more pages should be reclaimed such that when the page allocator
2452 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2453 * It will give up earlier than that if there is difficulty reclaiming pages.
2454 */
2455static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2456					unsigned long nr_reclaimed,
2457					unsigned long nr_scanned,
2458					struct scan_control *sc)
2459{
2460	unsigned long pages_for_compaction;
2461	unsigned long inactive_lru_pages;
2462	int z;
2463
2464	/* If not in reclaim/compaction mode, stop */
2465	if (!in_reclaim_compaction(sc))
2466		return false;
2467
2468	/* Consider stopping depending on scan and reclaim activity */
2469	if (sc->gfp_mask & __GFP_REPEAT) {
2470		/*
2471		 * For __GFP_REPEAT allocations, stop reclaiming if the
2472		 * full LRU list has been scanned and we are still failing
2473		 * to reclaim pages. This full LRU scan is potentially
2474		 * expensive but a __GFP_REPEAT caller really wants to succeed
2475		 */
2476		if (!nr_reclaimed && !nr_scanned)
2477			return false;
2478	} else {
2479		/*
2480		 * For non-__GFP_REPEAT allocations which can presumably
2481		 * fail without consequence, stop if we failed to reclaim
2482		 * any pages from the last SWAP_CLUSTER_MAX number of
2483		 * pages that were scanned. This will return to the
2484		 * caller faster at the risk reclaim/compaction and
2485		 * the resulting allocation attempt fails
2486		 */
2487		if (!nr_reclaimed)
2488			return false;
2489	}
2490
2491	/*
2492	 * If we have not reclaimed enough pages for compaction and the
2493	 * inactive lists are large enough, continue reclaiming
 
 
 
 
 
 
2494	 */
2495	pages_for_compaction = compact_gap(sc->order);
2496	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2497	if (get_nr_swap_pages() > 0)
2498		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2499	if (sc->nr_reclaimed < pages_for_compaction &&
2500			inactive_lru_pages > pages_for_compaction)
2501		return true;
2502
2503	/* If compaction would go ahead or the allocation would succeed, stop */
2504	for (z = 0; z <= sc->reclaim_idx; z++) {
2505		struct zone *zone = &pgdat->node_zones[z];
2506		if (!managed_zone(zone))
2507			continue;
2508
2509		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2510		case COMPACT_SUCCESS:
2511		case COMPACT_CONTINUE:
2512			return false;
2513		default:
2514			/* check next zone */
2515			;
2516		}
2517	}
2518	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2522{
2523	struct reclaim_state *reclaim_state = current->reclaim_state;
2524	unsigned long nr_reclaimed, nr_scanned;
 
2525	bool reclaimable = false;
 
2526
2527	do {
2528		struct mem_cgroup *root = sc->target_mem_cgroup;
2529		struct mem_cgroup_reclaim_cookie reclaim = {
2530			.pgdat = pgdat,
2531			.priority = sc->priority,
2532		};
2533		unsigned long node_lru_pages = 0;
2534		struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535
2536		nr_reclaimed = sc->nr_reclaimed;
2537		nr_scanned = sc->nr_scanned;
2538
2539		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2540		do {
2541			unsigned long lru_pages;
2542			unsigned long reclaimed;
2543			unsigned long scanned;
 
2544
2545			if (mem_cgroup_low(root, memcg)) {
2546				if (!sc->may_thrash)
2547					continue;
2548				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2549			}
2550
2551			reclaimed = sc->nr_reclaimed;
2552			scanned = sc->nr_scanned;
2553
2554			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2555			node_lru_pages += lru_pages;
 
 
2556
2557			if (memcg)
2558				shrink_slab(sc->gfp_mask, pgdat->node_id,
2559					    memcg, sc->nr_scanned - scanned,
2560					    lru_pages);
2561
2562			/* Record the group's reclaim efficiency */
2563			vmpressure(sc->gfp_mask, memcg, false,
2564				   sc->nr_scanned - scanned,
2565				   sc->nr_reclaimed - reclaimed);
2566
2567			/*
2568			 * Direct reclaim and kswapd have to scan all memory
2569			 * cgroups to fulfill the overall scan target for the
2570			 * node.
2571			 *
2572			 * Limit reclaim, on the other hand, only cares about
2573			 * nr_to_reclaim pages to be reclaimed and it will
2574			 * retry with decreasing priority if one round over the
2575			 * whole hierarchy is not sufficient.
2576			 */
2577			if (!global_reclaim(sc) &&
2578					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2579				mem_cgroup_iter_break(root, memcg);
2580				break;
2581			}
2582		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2583
 
2584		/*
2585		 * Shrink the slab caches in the same proportion that
2586		 * the eligible LRU pages were scanned.
 
 
 
 
 
 
 
 
 
 
 
 
 
2587		 */
2588		if (global_reclaim(sc))
2589			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2590				    sc->nr_scanned - nr_scanned,
2591				    node_lru_pages);
 
 
2592
2593		if (reclaim_state) {
2594			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2595			reclaim_state->reclaimed_slab = 0;
2596		}
 
 
 
 
 
2597
2598		/* Record the subtree's reclaim efficiency */
2599		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2600			   sc->nr_scanned - nr_scanned,
2601			   sc->nr_reclaimed - nr_reclaimed);
 
 
 
 
 
 
 
 
2602
2603		if (sc->nr_reclaimed - nr_reclaimed)
2604			reclaimable = true;
 
 
 
 
 
 
 
 
2605
2606	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2607					 sc->nr_scanned - nr_scanned, sc));
 
2608
2609	return reclaimable;
 
 
 
 
 
 
 
2610}
2611
2612/*
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2616 */
2617static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2618{
2619	unsigned long watermark;
2620	enum compact_result suitable;
2621
2622	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2623	if (suitable == COMPACT_SUCCESS)
2624		/* Allocation should succeed already. Don't reclaim. */
2625		return true;
2626	if (suitable == COMPACT_SKIPPED)
2627		/* Compaction cannot yet proceed. Do reclaim. */
2628		return false;
2629
2630	/*
2631	 * Compaction is already possible, but it takes time to run and there
2632	 * are potentially other callers using the pages just freed. So proceed
2633	 * with reclaim to make a buffer of free pages available to give
2634	 * compaction a reasonable chance of completing and allocating the page.
2635	 * Note that we won't actually reclaim the whole buffer in one attempt
2636	 * as the target watermark in should_continue_reclaim() is lower. But if
2637	 * we are already above the high+gap watermark, don't reclaim at all.
2638	 */
2639	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2640
2641	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2642}
2643
2644/*
2645 * This is the direct reclaim path, for page-allocating processes.  We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2647 * request.
2648 *
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2651 */
2652static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2653{
2654	struct zoneref *z;
2655	struct zone *zone;
2656	unsigned long nr_soft_reclaimed;
2657	unsigned long nr_soft_scanned;
2658	gfp_t orig_mask;
2659	pg_data_t *last_pgdat = NULL;
2660
2661	/*
2662	 * If the number of buffer_heads in the machine exceeds the maximum
2663	 * allowed level, force direct reclaim to scan the highmem zone as
2664	 * highmem pages could be pinning lowmem pages storing buffer_heads
2665	 */
2666	orig_mask = sc->gfp_mask;
2667	if (buffer_heads_over_limit) {
2668		sc->gfp_mask |= __GFP_HIGHMEM;
2669		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2670	}
2671
2672	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2673					sc->reclaim_idx, sc->nodemask) {
2674		/*
2675		 * Take care memory controller reclaiming has small influence
2676		 * to global LRU.
2677		 */
2678		if (global_reclaim(sc)) {
2679			if (!cpuset_zone_allowed(zone,
2680						 GFP_KERNEL | __GFP_HARDWALL))
2681				continue;
2682
2683			if (sc->priority != DEF_PRIORITY &&
2684			    !pgdat_reclaimable(zone->zone_pgdat))
2685				continue;	/* Let kswapd poll it */
2686
2687			/*
2688			 * If we already have plenty of memory free for
2689			 * compaction in this zone, don't free any more.
2690			 * Even though compaction is invoked for any
2691			 * non-zero order, only frequent costly order
2692			 * reclamation is disruptive enough to become a
2693			 * noticeable problem, like transparent huge
2694			 * page allocations.
2695			 */
2696			if (IS_ENABLED(CONFIG_COMPACTION) &&
2697			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2698			    compaction_ready(zone, sc)) {
2699				sc->compaction_ready = true;
2700				continue;
2701			}
2702
2703			/*
2704			 * Shrink each node in the zonelist once. If the
2705			 * zonelist is ordered by zone (not the default) then a
2706			 * node may be shrunk multiple times but in that case
2707			 * the user prefers lower zones being preserved.
2708			 */
2709			if (zone->zone_pgdat == last_pgdat)
2710				continue;
2711
2712			/*
2713			 * This steals pages from memory cgroups over softlimit
2714			 * and returns the number of reclaimed pages and
2715			 * scanned pages. This works for global memory pressure
2716			 * and balancing, not for a memcg's limit.
2717			 */
2718			nr_soft_scanned = 0;
2719			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2720						sc->order, sc->gfp_mask,
2721						&nr_soft_scanned);
2722			sc->nr_reclaimed += nr_soft_reclaimed;
2723			sc->nr_scanned += nr_soft_scanned;
2724			/* need some check for avoid more shrink_zone() */
2725		}
2726
2727		/* See comment about same check for global reclaim above */
2728		if (zone->zone_pgdat == last_pgdat)
2729			continue;
2730		last_pgdat = zone->zone_pgdat;
2731		shrink_node(zone->zone_pgdat, sc);
2732	}
2733
2734	/*
2735	 * Restore to original mask to avoid the impact on the caller if we
2736	 * promoted it to __GFP_HIGHMEM.
2737	 */
2738	sc->gfp_mask = orig_mask;
2739}
2740
 
 
 
 
 
 
 
 
 
 
 
 
2741/*
2742 * This is the main entry point to direct page reclaim.
2743 *
2744 * If a full scan of the inactive list fails to free enough memory then we
2745 * are "out of memory" and something needs to be killed.
2746 *
2747 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2748 * high - the zone may be full of dirty or under-writeback pages, which this
2749 * caller can't do much about.  We kick the writeback threads and take explicit
2750 * naps in the hope that some of these pages can be written.  But if the
2751 * allocating task holds filesystem locks which prevent writeout this might not
2752 * work, and the allocation attempt will fail.
2753 *
2754 * returns:	0, if no pages reclaimed
2755 * 		else, the number of pages reclaimed
2756 */
2757static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2758					  struct scan_control *sc)
2759{
2760	int initial_priority = sc->priority;
2761	unsigned long total_scanned = 0;
2762	unsigned long writeback_threshold;
 
2763retry:
2764	delayacct_freepages_start();
2765
2766	if (global_reclaim(sc))
2767		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2768
2769	do {
2770		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2771				sc->priority);
2772		sc->nr_scanned = 0;
2773		shrink_zones(zonelist, sc);
2774
2775		total_scanned += sc->nr_scanned;
2776		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2777			break;
2778
2779		if (sc->compaction_ready)
2780			break;
2781
2782		/*
2783		 * If we're getting trouble reclaiming, start doing
2784		 * writepage even in laptop mode.
2785		 */
2786		if (sc->priority < DEF_PRIORITY - 2)
2787			sc->may_writepage = 1;
 
 
 
 
 
 
 
 
 
 
2788
2789		/*
2790		 * Try to write back as many pages as we just scanned.  This
2791		 * tends to cause slow streaming writers to write data to the
2792		 * disk smoothly, at the dirtying rate, which is nice.   But
2793		 * that's undesirable in laptop mode, where we *want* lumpy
2794		 * writeout.  So in laptop mode, write out the whole world.
2795		 */
2796		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2797		if (total_scanned > writeback_threshold) {
2798			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2799						WB_REASON_TRY_TO_FREE_PAGES);
2800			sc->may_writepage = 1;
2801		}
2802	} while (--sc->priority >= 0);
2803
2804	delayacct_freepages_end();
2805
2806	if (sc->nr_reclaimed)
2807		return sc->nr_reclaimed;
2808
2809	/* Aborted reclaim to try compaction? don't OOM, then */
2810	if (sc->compaction_ready)
2811		return 1;
2812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813	/* Untapped cgroup reserves?  Don't OOM, retry. */
2814	if (!sc->may_thrash) {
2815		sc->priority = initial_priority;
2816		sc->may_thrash = 1;
 
 
2817		goto retry;
2818	}
2819
2820	return 0;
2821}
2822
2823static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2824{
2825	struct zone *zone;
2826	unsigned long pfmemalloc_reserve = 0;
2827	unsigned long free_pages = 0;
2828	int i;
2829	bool wmark_ok;
2830
 
 
 
2831	for (i = 0; i <= ZONE_NORMAL; i++) {
2832		zone = &pgdat->node_zones[i];
2833		if (!managed_zone(zone) ||
2834		    pgdat_reclaimable_pages(pgdat) == 0)
 
 
2835			continue;
2836
2837		pfmemalloc_reserve += min_wmark_pages(zone);
2838		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2839	}
2840
2841	/* If there are no reserves (unexpected config) then do not throttle */
2842	if (!pfmemalloc_reserve)
2843		return true;
2844
2845	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2846
2847	/* kswapd must be awake if processes are being throttled */
2848	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2849		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2850						(enum zone_type)ZONE_NORMAL);
 
2851		wake_up_interruptible(&pgdat->kswapd_wait);
2852	}
2853
2854	return wmark_ok;
2855}
2856
2857/*
2858 * Throttle direct reclaimers if backing storage is backed by the network
2859 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2860 * depleted. kswapd will continue to make progress and wake the processes
2861 * when the low watermark is reached.
2862 *
2863 * Returns true if a fatal signal was delivered during throttling. If this
2864 * happens, the page allocator should not consider triggering the OOM killer.
2865 */
2866static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2867					nodemask_t *nodemask)
2868{
2869	struct zoneref *z;
2870	struct zone *zone;
2871	pg_data_t *pgdat = NULL;
2872
2873	/*
2874	 * Kernel threads should not be throttled as they may be indirectly
2875	 * responsible for cleaning pages necessary for reclaim to make forward
2876	 * progress. kjournald for example may enter direct reclaim while
2877	 * committing a transaction where throttling it could forcing other
2878	 * processes to block on log_wait_commit().
2879	 */
2880	if (current->flags & PF_KTHREAD)
2881		goto out;
2882
2883	/*
2884	 * If a fatal signal is pending, this process should not throttle.
2885	 * It should return quickly so it can exit and free its memory
2886	 */
2887	if (fatal_signal_pending(current))
2888		goto out;
2889
2890	/*
2891	 * Check if the pfmemalloc reserves are ok by finding the first node
2892	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2893	 * GFP_KERNEL will be required for allocating network buffers when
2894	 * swapping over the network so ZONE_HIGHMEM is unusable.
2895	 *
2896	 * Throttling is based on the first usable node and throttled processes
2897	 * wait on a queue until kswapd makes progress and wakes them. There
2898	 * is an affinity then between processes waking up and where reclaim
2899	 * progress has been made assuming the process wakes on the same node.
2900	 * More importantly, processes running on remote nodes will not compete
2901	 * for remote pfmemalloc reserves and processes on different nodes
2902	 * should make reasonable progress.
2903	 */
2904	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2905					gfp_zone(gfp_mask), nodemask) {
2906		if (zone_idx(zone) > ZONE_NORMAL)
2907			continue;
2908
2909		/* Throttle based on the first usable node */
2910		pgdat = zone->zone_pgdat;
2911		if (pfmemalloc_watermark_ok(pgdat))
2912			goto out;
2913		break;
2914	}
2915
2916	/* If no zone was usable by the allocation flags then do not throttle */
2917	if (!pgdat)
2918		goto out;
2919
2920	/* Account for the throttling */
2921	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2922
2923	/*
2924	 * If the caller cannot enter the filesystem, it's possible that it
2925	 * is due to the caller holding an FS lock or performing a journal
2926	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2927	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2928	 * blocked waiting on the same lock. Instead, throttle for up to a
2929	 * second before continuing.
2930	 */
2931	if (!(gfp_mask & __GFP_FS)) {
2932		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2933			pfmemalloc_watermark_ok(pgdat), HZ);
2934
2935		goto check_pending;
2936	}
2937
2938	/* Throttle until kswapd wakes the process */
2939	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2940		pfmemalloc_watermark_ok(pgdat));
2941
2942check_pending:
2943	if (fatal_signal_pending(current))
2944		return true;
2945
2946out:
2947	return false;
2948}
2949
2950unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2951				gfp_t gfp_mask, nodemask_t *nodemask)
2952{
2953	unsigned long nr_reclaimed;
2954	struct scan_control sc = {
2955		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2956		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2957		.reclaim_idx = gfp_zone(gfp_mask),
2958		.order = order,
2959		.nodemask = nodemask,
2960		.priority = DEF_PRIORITY,
2961		.may_writepage = !laptop_mode,
2962		.may_unmap = 1,
2963		.may_swap = 1,
2964	};
2965
2966	/*
 
 
 
 
 
 
 
 
2967	 * Do not enter reclaim if fatal signal was delivered while throttled.
2968	 * 1 is returned so that the page allocator does not OOM kill at this
2969	 * point.
2970	 */
2971	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2972		return 1;
2973
2974	trace_mm_vmscan_direct_reclaim_begin(order,
2975				sc.may_writepage,
2976				gfp_mask,
2977				sc.reclaim_idx);
2978
2979	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2980
2981	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2982
2983	return nr_reclaimed;
2984}
2985
2986#ifdef CONFIG_MEMCG
2987
 
2988unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2989						gfp_t gfp_mask, bool noswap,
2990						pg_data_t *pgdat,
2991						unsigned long *nr_scanned)
2992{
 
2993	struct scan_control sc = {
2994		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2995		.target_mem_cgroup = memcg,
2996		.may_writepage = !laptop_mode,
2997		.may_unmap = 1,
2998		.reclaim_idx = MAX_NR_ZONES - 1,
2999		.may_swap = !noswap,
3000	};
3001	unsigned long lru_pages;
 
3002
3003	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3004			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3005
3006	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3007						      sc.may_writepage,
3008						      sc.gfp_mask,
3009						      sc.reclaim_idx);
3010
3011	/*
3012	 * NOTE: Although we can get the priority field, using it
3013	 * here is not a good idea, since it limits the pages we can scan.
3014	 * if we don't reclaim here, the shrink_node from balance_pgdat
3015	 * will pick up pages from other mem cgroup's as well. We hack
3016	 * the priority and make it zero.
3017	 */
3018	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3019
3020	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3021
3022	*nr_scanned = sc.nr_scanned;
 
3023	return sc.nr_reclaimed;
3024}
3025
3026unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3027					   unsigned long nr_pages,
3028					   gfp_t gfp_mask,
3029					   bool may_swap)
3030{
3031	struct zonelist *zonelist;
3032	unsigned long nr_reclaimed;
3033	int nid;
3034	struct scan_control sc = {
3035		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3036		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3037				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3038		.reclaim_idx = MAX_NR_ZONES - 1,
3039		.target_mem_cgroup = memcg,
3040		.priority = DEF_PRIORITY,
3041		.may_writepage = !laptop_mode,
3042		.may_unmap = 1,
3043		.may_swap = may_swap,
3044	};
3045
3046	/*
3047	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3048	 * take care of from where we get pages. So the node where we start the
3049	 * scan does not need to be the current node.
3050	 */
3051	nid = mem_cgroup_select_victim_node(memcg);
3052
3053	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
 
 
3054
3055	trace_mm_vmscan_memcg_reclaim_begin(0,
3056					    sc.may_writepage,
3057					    sc.gfp_mask,
3058					    sc.reclaim_idx);
3059
3060	current->flags |= PF_MEMALLOC;
3061	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3062	current->flags &= ~PF_MEMALLOC;
3063
 
3064	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
3065
3066	return nr_reclaimed;
3067}
3068#endif
3069
3070static void age_active_anon(struct pglist_data *pgdat,
3071				struct scan_control *sc)
3072{
3073	struct mem_cgroup *memcg;
 
3074
3075	if (!total_swap_pages)
3076		return;
3077
 
 
 
 
3078	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3079	do {
3080		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
 
 
 
 
 
3081
3082		if (inactive_list_is_low(lruvec, false, sc))
3083			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3084					   sc, LRU_ACTIVE_ANON);
 
3085
3086		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3087	} while (memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088}
3089
3090static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
 
 
 
 
3091{
3092	unsigned long mark = high_wmark_pages(zone);
 
 
3093
3094	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3095		return false;
 
 
 
 
 
 
 
 
 
 
 
 
3096
3097	/*
3098	 * If any eligible zone is balanced then the node is not considered
3099	 * to be congested or dirty
 
3100	 */
3101	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3102	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
 
 
 
3103
3104	return true;
 
 
 
 
 
 
 
3105}
3106
3107/*
3108 * Prepare kswapd for sleeping. This verifies that there are no processes
3109 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3110 *
3111 * Returns true if kswapd is ready to sleep
3112 */
3113static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
3114{
3115	int i;
3116
3117	/*
3118	 * The throttled processes are normally woken up in balance_pgdat() as
3119	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3120	 * race between when kswapd checks the watermarks and a process gets
3121	 * throttled. There is also a potential race if processes get
3122	 * throttled, kswapd wakes, a large process exits thereby balancing the
3123	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3124	 * the wake up checks. If kswapd is going to sleep, no process should
3125	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3126	 * the wake up is premature, processes will wake kswapd and get
3127	 * throttled again. The difference from wake ups in balance_pgdat() is
3128	 * that here we are under prepare_to_wait().
3129	 */
3130	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3131		wake_up_all(&pgdat->pfmemalloc_wait);
3132
3133	for (i = 0; i <= classzone_idx; i++) {
3134		struct zone *zone = pgdat->node_zones + i;
 
3135
3136		if (!managed_zone(zone))
3137			continue;
3138
3139		if (!zone_balanced(zone, order, classzone_idx))
3140			return false;
3141	}
3142
3143	return true;
3144}
3145
3146/*
3147 * kswapd shrinks a node of pages that are at or below the highest usable
3148 * zone that is currently unbalanced.
3149 *
3150 * Returns true if kswapd scanned at least the requested number of pages to
3151 * reclaim or if the lack of progress was due to pages under writeback.
3152 * This is used to determine if the scanning priority needs to be raised.
3153 */
3154static bool kswapd_shrink_node(pg_data_t *pgdat,
3155			       struct scan_control *sc)
3156{
3157	struct zone *zone;
3158	int z;
3159
3160	/* Reclaim a number of pages proportional to the number of zones */
3161	sc->nr_to_reclaim = 0;
3162	for (z = 0; z <= sc->reclaim_idx; z++) {
3163		zone = pgdat->node_zones + z;
3164		if (!managed_zone(zone))
3165			continue;
3166
3167		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3168	}
3169
3170	/*
3171	 * Historically care was taken to put equal pressure on all zones but
3172	 * now pressure is applied based on node LRU order.
3173	 */
3174	shrink_node(pgdat, sc);
3175
3176	/*
3177	 * Fragmentation may mean that the system cannot be rebalanced for
3178	 * high-order allocations. If twice the allocation size has been
3179	 * reclaimed then recheck watermarks only at order-0 to prevent
3180	 * excessive reclaim. Assume that a process requested a high-order
3181	 * can direct reclaim/compact.
3182	 */
3183	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3184		sc->order = 0;
3185
3186	return sc->nr_scanned >= sc->nr_to_reclaim;
3187}
3188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3189/*
3190 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3191 * that are eligible for use by the caller until at least one zone is
3192 * balanced.
3193 *
3194 * Returns the order kswapd finished reclaiming at.
3195 *
3196 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3197 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3198 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3199 * or lower is eligible for reclaim until at least one usable zone is
3200 * balanced.
3201 */
3202static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3203{
3204	int i;
3205	unsigned long nr_soft_reclaimed;
3206	unsigned long nr_soft_scanned;
 
 
 
 
3207	struct zone *zone;
3208	struct scan_control sc = {
3209		.gfp_mask = GFP_KERNEL,
3210		.order = order,
3211		.priority = DEF_PRIORITY,
3212		.may_writepage = !laptop_mode,
3213		.may_unmap = 1,
3214		.may_swap = 1,
3215	};
 
 
 
 
 
3216	count_vm_event(PAGEOUTRUN);
3217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218	do {
 
3219		bool raise_priority = true;
 
 
3220
3221		sc.nr_reclaimed = 0;
3222		sc.reclaim_idx = classzone_idx;
3223
3224		/*
3225		 * If the number of buffer_heads exceeds the maximum allowed
3226		 * then consider reclaiming from all zones. This has a dual
3227		 * purpose -- on 64-bit systems it is expected that
3228		 * buffer_heads are stripped during active rotation. On 32-bit
3229		 * systems, highmem pages can pin lowmem memory and shrinking
3230		 * buffers can relieve lowmem pressure. Reclaim may still not
3231		 * go ahead if all eligible zones for the original allocation
3232		 * request are balanced to avoid excessive reclaim from kswapd.
3233		 */
3234		if (buffer_heads_over_limit) {
3235			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3236				zone = pgdat->node_zones + i;
3237				if (!managed_zone(zone))
3238					continue;
3239
3240				sc.reclaim_idx = i;
3241				break;
3242			}
3243		}
3244
3245		/*
3246		 * Only reclaim if there are no eligible zones. Check from
3247		 * high to low zone as allocations prefer higher zones.
3248		 * Scanning from low to high zone would allow congestion to be
3249		 * cleared during a very small window when a small low
3250		 * zone was balanced even under extreme pressure when the
3251		 * overall node may be congested. Note that sc.reclaim_idx
3252		 * is not used as buffer_heads_over_limit may have adjusted
3253		 * it.
 
 
 
 
 
 
 
 
3254		 */
3255		for (i = classzone_idx; i >= 0; i--) {
3256			zone = pgdat->node_zones + i;
3257			if (!managed_zone(zone))
3258				continue;
 
 
3259
3260			if (zone_balanced(zone, sc.order, classzone_idx))
3261				goto out;
3262		}
 
 
 
 
 
3263
3264		/*
3265		 * Do some background aging of the anon list, to give
3266		 * pages a chance to be referenced before reclaiming. All
3267		 * pages are rotated regardless of classzone as this is
3268		 * about consistent aging.
3269		 */
3270		age_active_anon(pgdat, &sc);
3271
3272		/*
3273		 * If we're getting trouble reclaiming, start doing writepage
3274		 * even in laptop mode.
3275		 */
3276		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3277			sc.may_writepage = 1;
3278
3279		/* Call soft limit reclaim before calling shrink_node. */
3280		sc.nr_scanned = 0;
3281		nr_soft_scanned = 0;
3282		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3283						sc.gfp_mask, &nr_soft_scanned);
3284		sc.nr_reclaimed += nr_soft_reclaimed;
3285
3286		/*
3287		 * There should be no need to raise the scanning priority if
3288		 * enough pages are already being scanned that that high
3289		 * watermark would be met at 100% efficiency.
3290		 */
3291		if (kswapd_shrink_node(pgdat, &sc))
3292			raise_priority = false;
3293
3294		/*
3295		 * If the low watermark is met there is no need for processes
3296		 * to be throttled on pfmemalloc_wait as they should not be
3297		 * able to safely make forward progress. Wake them
3298		 */
3299		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3300				pfmemalloc_watermark_ok(pgdat))
3301			wake_up_all(&pgdat->pfmemalloc_wait);
3302
3303		/* Check if kswapd should be suspending */
3304		if (try_to_freeze() || kthread_should_stop())
 
 
 
3305			break;
3306
3307		/*
3308		 * Raise priority if scanning rate is too low or there was no
3309		 * progress in reclaiming pages
3310		 */
3311		if (raise_priority || !sc.nr_reclaimed)
 
 
 
 
 
 
 
 
 
 
 
3312			sc.priority--;
3313	} while (sc.priority >= 1);
3314
 
 
 
3315out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3316	/*
3317	 * Return the order kswapd stopped reclaiming at as
3318	 * prepare_kswapd_sleep() takes it into account. If another caller
3319	 * entered the allocator slow path while kswapd was awake, order will
3320	 * remain at the higher level.
3321	 */
3322	return sc.order;
3323}
3324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3326				unsigned int classzone_idx)
3327{
3328	long remaining = 0;
3329	DEFINE_WAIT(wait);
3330
3331	if (freezing(current) || kthread_should_stop())
3332		return;
3333
3334	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3335
3336	/* Try to sleep for a short interval */
3337	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
 
 
 
 
 
 
3338		/*
3339		 * Compaction records what page blocks it recently failed to
3340		 * isolate pages from and skips them in the future scanning.
3341		 * When kswapd is going to sleep, it is reasonable to assume
3342		 * that pages and compaction may succeed so reset the cache.
3343		 */
3344		reset_isolation_suitable(pgdat);
3345
3346		/*
3347		 * We have freed the memory, now we should compact it to make
3348		 * allocation of the requested order possible.
3349		 */
3350		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3351
3352		remaining = schedule_timeout(HZ/10);
3353
3354		/*
3355		 * If woken prematurely then reset kswapd_classzone_idx and
3356		 * order. The values will either be from a wakeup request or
3357		 * the previous request that slept prematurely.
3358		 */
3359		if (remaining) {
3360			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3361			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
 
 
 
 
3362		}
3363
3364		finish_wait(&pgdat->kswapd_wait, &wait);
3365		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3366	}
3367
3368	/*
3369	 * After a short sleep, check if it was a premature sleep. If not, then
3370	 * go fully to sleep until explicitly woken up.
3371	 */
3372	if (!remaining &&
3373	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3374		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3375
3376		/*
3377		 * vmstat counters are not perfectly accurate and the estimated
3378		 * value for counters such as NR_FREE_PAGES can deviate from the
3379		 * true value by nr_online_cpus * threshold. To avoid the zone
3380		 * watermarks being breached while under pressure, we reduce the
3381		 * per-cpu vmstat threshold while kswapd is awake and restore
3382		 * them before going back to sleep.
3383		 */
3384		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3385
3386		if (!kthread_should_stop())
3387			schedule();
3388
3389		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3390	} else {
3391		if (remaining)
3392			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3393		else
3394			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3395	}
3396	finish_wait(&pgdat->kswapd_wait, &wait);
3397}
3398
3399/*
3400 * The background pageout daemon, started as a kernel thread
3401 * from the init process.
3402 *
3403 * This basically trickles out pages so that we have _some_
3404 * free memory available even if there is no other activity
3405 * that frees anything up. This is needed for things like routing
3406 * etc, where we otherwise might have all activity going on in
3407 * asynchronous contexts that cannot page things out.
3408 *
3409 * If there are applications that are active memory-allocators
3410 * (most normal use), this basically shouldn't matter.
3411 */
3412static int kswapd(void *p)
3413{
3414	unsigned int alloc_order, reclaim_order, classzone_idx;
3415	pg_data_t *pgdat = (pg_data_t*)p;
 
3416	struct task_struct *tsk = current;
3417
3418	struct reclaim_state reclaim_state = {
3419		.reclaimed_slab = 0,
3420	};
3421	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3422
3423	lockdep_set_current_reclaim_state(GFP_KERNEL);
3424
3425	if (!cpumask_empty(cpumask))
3426		set_cpus_allowed_ptr(tsk, cpumask);
3427	current->reclaim_state = &reclaim_state;
3428
3429	/*
3430	 * Tell the memory management that we're a "memory allocator",
3431	 * and that if we need more memory we should get access to it
3432	 * regardless (see "__alloc_pages()"). "kswapd" should
3433	 * never get caught in the normal page freeing logic.
3434	 *
3435	 * (Kswapd normally doesn't need memory anyway, but sometimes
3436	 * you need a small amount of memory in order to be able to
3437	 * page out something else, and this flag essentially protects
3438	 * us from recursively trying to free more memory as we're
3439	 * trying to free the first piece of memory in the first place).
3440	 */
3441	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3442	set_freezable();
3443
3444	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3445	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3446	for ( ; ; ) {
3447		bool ret;
3448
 
 
 
 
3449kswapd_try_sleep:
3450		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3451					classzone_idx);
3452
3453		/* Read the new order and classzone_idx */
3454		alloc_order = reclaim_order = pgdat->kswapd_order;
3455		classzone_idx = pgdat->kswapd_classzone_idx;
3456		pgdat->kswapd_order = 0;
3457		pgdat->kswapd_classzone_idx = 0;
 
3458
3459		ret = try_to_freeze();
3460		if (kthread_should_stop())
3461			break;
3462
3463		/*
3464		 * We can speed up thawing tasks if we don't call balance_pgdat
3465		 * after returning from the refrigerator
3466		 */
3467		if (ret)
3468			continue;
3469
3470		/*
3471		 * Reclaim begins at the requested order but if a high-order
3472		 * reclaim fails then kswapd falls back to reclaiming for
3473		 * order-0. If that happens, kswapd will consider sleeping
3474		 * for the order it finished reclaiming at (reclaim_order)
3475		 * but kcompactd is woken to compact for the original
3476		 * request (alloc_order).
3477		 */
3478		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3479						alloc_order);
3480		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
 
3481		if (reclaim_order < alloc_order)
3482			goto kswapd_try_sleep;
3483
3484		alloc_order = reclaim_order = pgdat->kswapd_order;
3485		classzone_idx = pgdat->kswapd_classzone_idx;
3486	}
3487
3488	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3489	current->reclaim_state = NULL;
3490	lockdep_clear_current_reclaim_state();
3491
3492	return 0;
3493}
3494
3495/*
3496 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
3497 */
3498void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
3499{
3500	pg_data_t *pgdat;
3501	int z;
3502
3503	if (!managed_zone(zone))
3504		return;
3505
3506	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3507		return;
 
3508	pgdat = zone->zone_pgdat;
3509	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3510	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
 
 
 
 
 
 
3511	if (!waitqueue_active(&pgdat->kswapd_wait))
3512		return;
3513
3514	/* Only wake kswapd if all zones are unbalanced */
3515	for (z = 0; z <= classzone_idx; z++) {
3516		zone = pgdat->node_zones + z;
3517		if (!managed_zone(zone))
3518			continue;
3519
3520		if (zone_balanced(zone, order, classzone_idx))
3521			return;
 
 
 
 
 
 
3522	}
3523
3524	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
 
3525	wake_up_interruptible(&pgdat->kswapd_wait);
3526}
3527
3528#ifdef CONFIG_HIBERNATION
3529/*
3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 * freed pages.
3532 *
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
3536 */
3537unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3538{
3539	struct reclaim_state reclaim_state;
3540	struct scan_control sc = {
3541		.nr_to_reclaim = nr_to_reclaim,
3542		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3543		.reclaim_idx = MAX_NR_ZONES - 1,
3544		.priority = DEF_PRIORITY,
3545		.may_writepage = 1,
3546		.may_unmap = 1,
3547		.may_swap = 1,
3548		.hibernation_mode = 1,
3549	};
3550	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3551	struct task_struct *p = current;
3552	unsigned long nr_reclaimed;
 
3553
3554	p->flags |= PF_MEMALLOC;
3555	lockdep_set_current_reclaim_state(sc.gfp_mask);
3556	reclaim_state.reclaimed_slab = 0;
3557	p->reclaim_state = &reclaim_state;
3558
3559	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3560
3561	p->reclaim_state = NULL;
3562	lockdep_clear_current_reclaim_state();
3563	p->flags &= ~PF_MEMALLOC;
3564
3565	return nr_reclaimed;
3566}
3567#endif /* CONFIG_HIBERNATION */
3568
3569/* It's optimal to keep kswapds on the same CPUs as their memory, but
3570   not required for correctness.  So if the last cpu in a node goes
3571   away, we get changed to run anywhere: as the first one comes back,
3572   restore their cpu bindings. */
3573static int kswapd_cpu_online(unsigned int cpu)
3574{
3575	int nid;
3576
3577	for_each_node_state(nid, N_MEMORY) {
3578		pg_data_t *pgdat = NODE_DATA(nid);
3579		const struct cpumask *mask;
3580
3581		mask = cpumask_of_node(pgdat->node_id);
3582
3583		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3584			/* One of our CPUs online: restore mask */
3585			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3586	}
3587	return 0;
3588}
3589
3590/*
3591 * This kswapd start function will be called by init and node-hot-add.
3592 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3593 */
3594int kswapd_run(int nid)
3595{
3596	pg_data_t *pgdat = NODE_DATA(nid);
3597	int ret = 0;
3598
3599	if (pgdat->kswapd)
3600		return 0;
3601
3602	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3603	if (IS_ERR(pgdat->kswapd)) {
3604		/* failure at boot is fatal */
3605		BUG_ON(system_state == SYSTEM_BOOTING);
3606		pr_err("Failed to start kswapd on node %d\n", nid);
3607		ret = PTR_ERR(pgdat->kswapd);
3608		pgdat->kswapd = NULL;
3609	}
3610	return ret;
3611}
3612
3613/*
3614 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3615 * hold mem_hotplug_begin/end().
3616 */
3617void kswapd_stop(int nid)
3618{
3619	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3620
3621	if (kswapd) {
3622		kthread_stop(kswapd);
3623		NODE_DATA(nid)->kswapd = NULL;
3624	}
3625}
3626
3627static int __init kswapd_init(void)
3628{
3629	int nid, ret;
3630
3631	swap_setup();
3632	for_each_node_state(nid, N_MEMORY)
3633 		kswapd_run(nid);
3634	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3635					"mm/vmscan:online", kswapd_cpu_online,
3636					NULL);
3637	WARN_ON(ret < 0);
3638	return 0;
3639}
3640
3641module_init(kswapd_init)
3642
3643#ifdef CONFIG_NUMA
3644/*
3645 * Node reclaim mode
3646 *
3647 * If non-zero call node_reclaim when the number of free pages falls below
3648 * the watermarks.
3649 */
3650int node_reclaim_mode __read_mostly;
3651
3652#define RECLAIM_OFF 0
3653#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3654#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3655#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3656
3657/*
3658 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3660 * a zone.
3661 */
3662#define NODE_RECLAIM_PRIORITY 4
3663
3664/*
3665 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 * occur.
3667 */
3668int sysctl_min_unmapped_ratio = 1;
3669
3670/*
3671 * If the number of slab pages in a zone grows beyond this percentage then
3672 * slab reclaim needs to occur.
3673 */
3674int sysctl_min_slab_ratio = 5;
3675
3676static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3677{
3678	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3679	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3680		node_page_state(pgdat, NR_ACTIVE_FILE);
3681
3682	/*
3683	 * It's possible for there to be more file mapped pages than
3684	 * accounted for by the pages on the file LRU lists because
3685	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3686	 */
3687	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3688}
3689
3690/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3692{
3693	unsigned long nr_pagecache_reclaimable;
3694	unsigned long delta = 0;
3695
3696	/*
3697	 * If RECLAIM_UNMAP is set, then all file pages are considered
3698	 * potentially reclaimable. Otherwise, we have to worry about
3699	 * pages like swapcache and node_unmapped_file_pages() provides
3700	 * a better estimate
3701	 */
3702	if (node_reclaim_mode & RECLAIM_UNMAP)
3703		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3704	else
3705		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3706
3707	/* If we can't clean pages, remove dirty pages from consideration */
3708	if (!(node_reclaim_mode & RECLAIM_WRITE))
3709		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3710
3711	/* Watch for any possible underflows due to delta */
3712	if (unlikely(delta > nr_pagecache_reclaimable))
3713		delta = nr_pagecache_reclaimable;
3714
3715	return nr_pagecache_reclaimable - delta;
3716}
3717
3718/*
3719 * Try to free up some pages from this node through reclaim.
3720 */
3721static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3722{
3723	/* Minimum pages needed in order to stay on node */
3724	const unsigned long nr_pages = 1 << order;
3725	struct task_struct *p = current;
3726	struct reclaim_state reclaim_state;
3727	int classzone_idx = gfp_zone(gfp_mask);
3728	struct scan_control sc = {
3729		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3730		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3731		.order = order,
3732		.priority = NODE_RECLAIM_PRIORITY,
3733		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3734		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3735		.may_swap = 1,
3736		.reclaim_idx = classzone_idx,
3737	};
 
 
 
 
3738
3739	cond_resched();
 
 
3740	/*
3741	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742	 * and we also need to be able to write out pages for RECLAIM_WRITE
3743	 * and RECLAIM_UNMAP.
3744	 */
3745	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746	lockdep_set_current_reclaim_state(gfp_mask);
3747	reclaim_state.reclaimed_slab = 0;
3748	p->reclaim_state = &reclaim_state;
3749
3750	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3751		/*
3752		 * Free memory by calling shrink zone with increasing
3753		 * priorities until we have enough memory freed.
3754		 */
3755		do {
3756			shrink_node(pgdat, &sc);
3757		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3758	}
3759
3760	p->reclaim_state = NULL;
3761	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762	lockdep_clear_current_reclaim_state();
 
 
 
 
 
3763	return sc.nr_reclaimed >= nr_pages;
3764}
3765
3766int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3767{
3768	int ret;
3769
3770	/*
3771	 * Node reclaim reclaims unmapped file backed pages and
3772	 * slab pages if we are over the defined limits.
3773	 *
3774	 * A small portion of unmapped file backed pages is needed for
3775	 * file I/O otherwise pages read by file I/O will be immediately
3776	 * thrown out if the node is overallocated. So we do not reclaim
3777	 * if less than a specified percentage of the node is used by
3778	 * unmapped file backed pages.
3779	 */
3780	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3781	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3782		return NODE_RECLAIM_FULL;
3783
3784	if (!pgdat_reclaimable(pgdat))
3785		return NODE_RECLAIM_FULL;
3786
3787	/*
3788	 * Do not scan if the allocation should not be delayed.
3789	 */
3790	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3791		return NODE_RECLAIM_NOSCAN;
3792
3793	/*
3794	 * Only run node reclaim on the local node or on nodes that do not
3795	 * have associated processors. This will favor the local processor
3796	 * over remote processors and spread off node memory allocations
3797	 * as wide as possible.
3798	 */
3799	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3800		return NODE_RECLAIM_NOSCAN;
3801
3802	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3803		return NODE_RECLAIM_NOSCAN;
3804
3805	ret = __node_reclaim(pgdat, gfp_mask, order);
3806	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3807
3808	if (!ret)
3809		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3810
3811	return ret;
3812}
3813#endif
3814
3815/*
3816 * page_evictable - test whether a page is evictable
3817 * @page: the page to test
3818 *
3819 * Test whether page is evictable--i.e., should be placed on active/inactive
3820 * lists vs unevictable list.
3821 *
3822 * Reasons page might not be evictable:
3823 * (1) page's mapping marked unevictable
3824 * (2) page is part of an mlocked VMA
3825 *
3826 */
3827int page_evictable(struct page *page)
3828{
3829	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3830}
3831
3832#ifdef CONFIG_SHMEM
3833/**
3834 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3835 * @pages:	array of pages to check
3836 * @nr_pages:	number of pages to check
3837 *
3838 * Checks pages for evictability and moves them to the appropriate lru list.
3839 *
3840 * This function is only used for SysV IPC SHM_UNLOCK.
3841 */
3842void check_move_unevictable_pages(struct page **pages, int nr_pages)
3843{
3844	struct lruvec *lruvec;
3845	struct pglist_data *pgdat = NULL;
3846	int pgscanned = 0;
3847	int pgrescued = 0;
3848	int i;
3849
3850	for (i = 0; i < nr_pages; i++) {
3851		struct page *page = pages[i];
3852		struct pglist_data *pagepgdat = page_pgdat(page);
 
 
 
3853
3854		pgscanned++;
3855		if (pagepgdat != pgdat) {
3856			if (pgdat)
3857				spin_unlock_irq(&pgdat->lru_lock);
3858			pgdat = pagepgdat;
3859			spin_lock_irq(&pgdat->lru_lock);
3860		}
3861		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3862
3863		if (!PageLRU(page) || !PageUnevictable(page))
 
3864			continue;
3865
3866		if (page_evictable(page)) {
3867			enum lru_list lru = page_lru_base_type(page);
3868
3869			VM_BUG_ON_PAGE(PageActive(page), page);
3870			ClearPageUnevictable(page);
3871			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3872			add_page_to_lru_list(page, lruvec, lru);
3873			pgrescued++;
3874		}
 
3875	}
3876
3877	if (pgdat) {
3878		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3879		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3880		spin_unlock_irq(&pgdat->lru_lock);
 
 
3881	}
3882}
3883#endif /* CONFIG_SHMEM */