Loading...
1/*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/tty.h>
22#include <linux/tty_driver.h>
23#include <linux/console.h>
24#include <linux/init.h>
25#include <linux/jiffies.h>
26#include <linux/nmi.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/interrupt.h> /* For in_interrupt() */
30#include <linux/delay.h>
31#include <linux/smp.h>
32#include <linux/security.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/syscalls.h>
36#include <linux/kexec.h>
37#include <linux/kdb.h>
38#include <linux/ratelimit.h>
39#include <linux/kmsg_dump.h>
40#include <linux/syslog.h>
41#include <linux/cpu.h>
42#include <linux/notifier.h>
43#include <linux/rculist.h>
44#include <linux/poll.h>
45#include <linux/irq_work.h>
46#include <linux/utsname.h>
47#include <linux/ctype.h>
48#include <linux/uio.h>
49
50#include <asm/uaccess.h>
51#include <asm-generic/sections.h>
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/printk.h>
55
56#include "console_cmdline.h"
57#include "braille.h"
58
59int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64};
65
66/*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70int oops_in_progress;
71EXPORT_SYMBOL(oops_in_progress);
72
73/*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78static DEFINE_SEMAPHORE(console_sem);
79struct console *console_drivers;
80EXPORT_SYMBOL_GPL(console_drivers);
81
82#ifdef CONFIG_LOCKDEP
83static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85};
86#endif
87
88/*
89 * Number of registered extended console drivers.
90 *
91 * If extended consoles are present, in-kernel cont reassembly is disabled
92 * and each fragment is stored as a separate log entry with proper
93 * continuation flag so that every emitted message has full metadata. This
94 * doesn't change the result for regular consoles or /proc/kmsg. For
95 * /dev/kmsg, as long as the reader concatenates messages according to
96 * consecutive continuation flags, the end result should be the same too.
97 */
98static int nr_ext_console_drivers;
99
100/*
101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102 * macros instead of functions so that _RET_IP_ contains useful information.
103 */
104#define down_console_sem() do { \
105 down(&console_sem);\
106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107} while (0)
108
109static int __down_trylock_console_sem(unsigned long ip)
110{
111 if (down_trylock(&console_sem))
112 return 1;
113 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 return 0;
115}
116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117
118#define up_console_sem() do { \
119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 up(&console_sem);\
121} while (0)
122
123/*
124 * This is used for debugging the mess that is the VT code by
125 * keeping track if we have the console semaphore held. It's
126 * definitely not the perfect debug tool (we don't know if _WE_
127 * hold it and are racing, but it helps tracking those weird code
128 * paths in the console code where we end up in places I want
129 * locked without the console sempahore held).
130 */
131static int console_locked, console_suspended;
132
133/*
134 * If exclusive_console is non-NULL then only this console is to be printed to.
135 */
136static struct console *exclusive_console;
137
138/*
139 * Array of consoles built from command line options (console=)
140 */
141
142#define MAX_CMDLINECONSOLES 8
143
144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145
146static int selected_console = -1;
147static int preferred_console = -1;
148int console_set_on_cmdline;
149EXPORT_SYMBOL(console_set_on_cmdline);
150
151/* Flag: console code may call schedule() */
152static int console_may_schedule;
153
154/*
155 * The printk log buffer consists of a chain of concatenated variable
156 * length records. Every record starts with a record header, containing
157 * the overall length of the record.
158 *
159 * The heads to the first and last entry in the buffer, as well as the
160 * sequence numbers of these entries are maintained when messages are
161 * stored.
162 *
163 * If the heads indicate available messages, the length in the header
164 * tells the start next message. A length == 0 for the next message
165 * indicates a wrap-around to the beginning of the buffer.
166 *
167 * Every record carries the monotonic timestamp in microseconds, as well as
168 * the standard userspace syslog level and syslog facility. The usual
169 * kernel messages use LOG_KERN; userspace-injected messages always carry
170 * a matching syslog facility, by default LOG_USER. The origin of every
171 * message can be reliably determined that way.
172 *
173 * The human readable log message directly follows the message header. The
174 * length of the message text is stored in the header, the stored message
175 * is not terminated.
176 *
177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
178 * to provide userspace with a machine-readable message context.
179 *
180 * Examples for well-defined, commonly used property names are:
181 * DEVICE=b12:8 device identifier
182 * b12:8 block dev_t
183 * c127:3 char dev_t
184 * n8 netdev ifindex
185 * +sound:card0 subsystem:devname
186 * SUBSYSTEM=pci driver-core subsystem name
187 *
188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189 * follows directly after a '=' character. Every property is terminated by
190 * a '\0' character. The last property is not terminated.
191 *
192 * Example of a message structure:
193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
194 * 0008 34 00 record is 52 bytes long
195 * 000a 0b 00 text is 11 bytes long
196 * 000c 1f 00 dictionary is 23 bytes long
197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
198 * 0010 69 74 27 73 20 61 20 6c "it's a l"
199 * 69 6e 65 "ine"
200 * 001b 44 45 56 49 43 "DEVIC"
201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
202 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
203 * 67 "g"
204 * 0032 00 00 00 padding to next message header
205 *
206 * The 'struct printk_log' buffer header must never be directly exported to
207 * userspace, it is a kernel-private implementation detail that might
208 * need to be changed in the future, when the requirements change.
209 *
210 * /dev/kmsg exports the structured data in the following line format:
211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212 *
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
215 *
216 * The optional key/value pairs are attached as continuation lines starting
217 * with a space character and terminated by a newline. All possible
218 * non-prinatable characters are escaped in the "\xff" notation.
219 */
220
221enum log_flags {
222 LOG_NOCONS = 1, /* already flushed, do not print to console */
223 LOG_NEWLINE = 2, /* text ended with a newline */
224 LOG_PREFIX = 4, /* text started with a prefix */
225 LOG_CONT = 8, /* text is a fragment of a continuation line */
226};
227
228struct printk_log {
229 u64 ts_nsec; /* timestamp in nanoseconds */
230 u16 len; /* length of entire record */
231 u16 text_len; /* length of text buffer */
232 u16 dict_len; /* length of dictionary buffer */
233 u8 facility; /* syslog facility */
234 u8 flags:5; /* internal record flags */
235 u8 level:3; /* syslog level */
236}
237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238__packed __aligned(4)
239#endif
240;
241
242/*
243 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
244 * within the scheduler's rq lock. It must be released before calling
245 * console_unlock() or anything else that might wake up a process.
246 */
247static DEFINE_RAW_SPINLOCK(logbuf_lock);
248
249#ifdef CONFIG_PRINTK
250DECLARE_WAIT_QUEUE_HEAD(log_wait);
251/* the next printk record to read by syslog(READ) or /proc/kmsg */
252static u64 syslog_seq;
253static u32 syslog_idx;
254static enum log_flags syslog_prev;
255static size_t syslog_partial;
256
257/* index and sequence number of the first record stored in the buffer */
258static u64 log_first_seq;
259static u32 log_first_idx;
260
261/* index and sequence number of the next record to store in the buffer */
262static u64 log_next_seq;
263static u32 log_next_idx;
264
265/* the next printk record to write to the console */
266static u64 console_seq;
267static u32 console_idx;
268static enum log_flags console_prev;
269
270/* the next printk record to read after the last 'clear' command */
271static u64 clear_seq;
272static u32 clear_idx;
273
274#define PREFIX_MAX 32
275#define LOG_LINE_MAX (1024 - PREFIX_MAX)
276
277#define LOG_LEVEL(v) ((v) & 0x07)
278#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
279
280/* record buffer */
281#define LOG_ALIGN __alignof__(struct printk_log)
282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284static char *log_buf = __log_buf;
285static u32 log_buf_len = __LOG_BUF_LEN;
286
287/* Return log buffer address */
288char *log_buf_addr_get(void)
289{
290 return log_buf;
291}
292
293/* Return log buffer size */
294u32 log_buf_len_get(void)
295{
296 return log_buf_len;
297}
298
299/* human readable text of the record */
300static char *log_text(const struct printk_log *msg)
301{
302 return (char *)msg + sizeof(struct printk_log);
303}
304
305/* optional key/value pair dictionary attached to the record */
306static char *log_dict(const struct printk_log *msg)
307{
308 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309}
310
311/* get record by index; idx must point to valid msg */
312static struct printk_log *log_from_idx(u32 idx)
313{
314 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315
316 /*
317 * A length == 0 record is the end of buffer marker. Wrap around and
318 * read the message at the start of the buffer.
319 */
320 if (!msg->len)
321 return (struct printk_log *)log_buf;
322 return msg;
323}
324
325/* get next record; idx must point to valid msg */
326static u32 log_next(u32 idx)
327{
328 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329
330 /* length == 0 indicates the end of the buffer; wrap */
331 /*
332 * A length == 0 record is the end of buffer marker. Wrap around and
333 * read the message at the start of the buffer as *this* one, and
334 * return the one after that.
335 */
336 if (!msg->len) {
337 msg = (struct printk_log *)log_buf;
338 return msg->len;
339 }
340 return idx + msg->len;
341}
342
343/*
344 * Check whether there is enough free space for the given message.
345 *
346 * The same values of first_idx and next_idx mean that the buffer
347 * is either empty or full.
348 *
349 * If the buffer is empty, we must respect the position of the indexes.
350 * They cannot be reset to the beginning of the buffer.
351 */
352static int logbuf_has_space(u32 msg_size, bool empty)
353{
354 u32 free;
355
356 if (log_next_idx > log_first_idx || empty)
357 free = max(log_buf_len - log_next_idx, log_first_idx);
358 else
359 free = log_first_idx - log_next_idx;
360
361 /*
362 * We need space also for an empty header that signalizes wrapping
363 * of the buffer.
364 */
365 return free >= msg_size + sizeof(struct printk_log);
366}
367
368static int log_make_free_space(u32 msg_size)
369{
370 while (log_first_seq < log_next_seq &&
371 !logbuf_has_space(msg_size, false)) {
372 /* drop old messages until we have enough contiguous space */
373 log_first_idx = log_next(log_first_idx);
374 log_first_seq++;
375 }
376
377 if (clear_seq < log_first_seq) {
378 clear_seq = log_first_seq;
379 clear_idx = log_first_idx;
380 }
381
382 /* sequence numbers are equal, so the log buffer is empty */
383 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
384 return 0;
385
386 return -ENOMEM;
387}
388
389/* compute the message size including the padding bytes */
390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
391{
392 u32 size;
393
394 size = sizeof(struct printk_log) + text_len + dict_len;
395 *pad_len = (-size) & (LOG_ALIGN - 1);
396 size += *pad_len;
397
398 return size;
399}
400
401/*
402 * Define how much of the log buffer we could take at maximum. The value
403 * must be greater than two. Note that only half of the buffer is available
404 * when the index points to the middle.
405 */
406#define MAX_LOG_TAKE_PART 4
407static const char trunc_msg[] = "<truncated>";
408
409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
410 u16 *dict_len, u32 *pad_len)
411{
412 /*
413 * The message should not take the whole buffer. Otherwise, it might
414 * get removed too soon.
415 */
416 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
417 if (*text_len > max_text_len)
418 *text_len = max_text_len;
419 /* enable the warning message */
420 *trunc_msg_len = strlen(trunc_msg);
421 /* disable the "dict" completely */
422 *dict_len = 0;
423 /* compute the size again, count also the warning message */
424 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
425}
426
427/* insert record into the buffer, discard old ones, update heads */
428static int log_store(int facility, int level,
429 enum log_flags flags, u64 ts_nsec,
430 const char *dict, u16 dict_len,
431 const char *text, u16 text_len)
432{
433 struct printk_log *msg;
434 u32 size, pad_len;
435 u16 trunc_msg_len = 0;
436
437 /* number of '\0' padding bytes to next message */
438 size = msg_used_size(text_len, dict_len, &pad_len);
439
440 if (log_make_free_space(size)) {
441 /* truncate the message if it is too long for empty buffer */
442 size = truncate_msg(&text_len, &trunc_msg_len,
443 &dict_len, &pad_len);
444 /* survive when the log buffer is too small for trunc_msg */
445 if (log_make_free_space(size))
446 return 0;
447 }
448
449 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
450 /*
451 * This message + an additional empty header does not fit
452 * at the end of the buffer. Add an empty header with len == 0
453 * to signify a wrap around.
454 */
455 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
456 log_next_idx = 0;
457 }
458
459 /* fill message */
460 msg = (struct printk_log *)(log_buf + log_next_idx);
461 memcpy(log_text(msg), text, text_len);
462 msg->text_len = text_len;
463 if (trunc_msg_len) {
464 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
465 msg->text_len += trunc_msg_len;
466 }
467 memcpy(log_dict(msg), dict, dict_len);
468 msg->dict_len = dict_len;
469 msg->facility = facility;
470 msg->level = level & 7;
471 msg->flags = flags & 0x1f;
472 if (ts_nsec > 0)
473 msg->ts_nsec = ts_nsec;
474 else
475 msg->ts_nsec = local_clock();
476 memset(log_dict(msg) + dict_len, 0, pad_len);
477 msg->len = size;
478
479 /* insert message */
480 log_next_idx += msg->len;
481 log_next_seq++;
482
483 return msg->text_len;
484}
485
486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
487
488static int syslog_action_restricted(int type)
489{
490 if (dmesg_restrict)
491 return 1;
492 /*
493 * Unless restricted, we allow "read all" and "get buffer size"
494 * for everybody.
495 */
496 return type != SYSLOG_ACTION_READ_ALL &&
497 type != SYSLOG_ACTION_SIZE_BUFFER;
498}
499
500int check_syslog_permissions(int type, int source)
501{
502 /*
503 * If this is from /proc/kmsg and we've already opened it, then we've
504 * already done the capabilities checks at open time.
505 */
506 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
507 goto ok;
508
509 if (syslog_action_restricted(type)) {
510 if (capable(CAP_SYSLOG))
511 goto ok;
512 /*
513 * For historical reasons, accept CAP_SYS_ADMIN too, with
514 * a warning.
515 */
516 if (capable(CAP_SYS_ADMIN)) {
517 pr_warn_once("%s (%d): Attempt to access syslog with "
518 "CAP_SYS_ADMIN but no CAP_SYSLOG "
519 "(deprecated).\n",
520 current->comm, task_pid_nr(current));
521 goto ok;
522 }
523 return -EPERM;
524 }
525ok:
526 return security_syslog(type);
527}
528EXPORT_SYMBOL_GPL(check_syslog_permissions);
529
530static void append_char(char **pp, char *e, char c)
531{
532 if (*pp < e)
533 *(*pp)++ = c;
534}
535
536static ssize_t msg_print_ext_header(char *buf, size_t size,
537 struct printk_log *msg, u64 seq,
538 enum log_flags prev_flags)
539{
540 u64 ts_usec = msg->ts_nsec;
541 char cont = '-';
542
543 do_div(ts_usec, 1000);
544
545 /*
546 * If we couldn't merge continuation line fragments during the print,
547 * export the stored flags to allow an optional external merge of the
548 * records. Merging the records isn't always neccessarily correct, like
549 * when we hit a race during printing. In most cases though, it produces
550 * better readable output. 'c' in the record flags mark the first
551 * fragment of a line, '+' the following.
552 */
553 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
554 cont = 'c';
555 else if ((msg->flags & LOG_CONT) ||
556 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
557 cont = '+';
558
559 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
560 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
561}
562
563static ssize_t msg_print_ext_body(char *buf, size_t size,
564 char *dict, size_t dict_len,
565 char *text, size_t text_len)
566{
567 char *p = buf, *e = buf + size;
568 size_t i;
569
570 /* escape non-printable characters */
571 for (i = 0; i < text_len; i++) {
572 unsigned char c = text[i];
573
574 if (c < ' ' || c >= 127 || c == '\\')
575 p += scnprintf(p, e - p, "\\x%02x", c);
576 else
577 append_char(&p, e, c);
578 }
579 append_char(&p, e, '\n');
580
581 if (dict_len) {
582 bool line = true;
583
584 for (i = 0; i < dict_len; i++) {
585 unsigned char c = dict[i];
586
587 if (line) {
588 append_char(&p, e, ' ');
589 line = false;
590 }
591
592 if (c == '\0') {
593 append_char(&p, e, '\n');
594 line = true;
595 continue;
596 }
597
598 if (c < ' ' || c >= 127 || c == '\\') {
599 p += scnprintf(p, e - p, "\\x%02x", c);
600 continue;
601 }
602
603 append_char(&p, e, c);
604 }
605 append_char(&p, e, '\n');
606 }
607
608 return p - buf;
609}
610
611/* /dev/kmsg - userspace message inject/listen interface */
612struct devkmsg_user {
613 u64 seq;
614 u32 idx;
615 enum log_flags prev;
616 struct mutex lock;
617 char buf[CONSOLE_EXT_LOG_MAX];
618};
619
620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
621{
622 char *buf, *line;
623 int level = default_message_loglevel;
624 int facility = 1; /* LOG_USER */
625 size_t len = iov_iter_count(from);
626 ssize_t ret = len;
627
628 if (len > LOG_LINE_MAX)
629 return -EINVAL;
630 buf = kmalloc(len+1, GFP_KERNEL);
631 if (buf == NULL)
632 return -ENOMEM;
633
634 buf[len] = '\0';
635 if (copy_from_iter(buf, len, from) != len) {
636 kfree(buf);
637 return -EFAULT;
638 }
639
640 /*
641 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
642 * the decimal value represents 32bit, the lower 3 bit are the log
643 * level, the rest are the log facility.
644 *
645 * If no prefix or no userspace facility is specified, we
646 * enforce LOG_USER, to be able to reliably distinguish
647 * kernel-generated messages from userspace-injected ones.
648 */
649 line = buf;
650 if (line[0] == '<') {
651 char *endp = NULL;
652 unsigned int u;
653
654 u = simple_strtoul(line + 1, &endp, 10);
655 if (endp && endp[0] == '>') {
656 level = LOG_LEVEL(u);
657 if (LOG_FACILITY(u) != 0)
658 facility = LOG_FACILITY(u);
659 endp++;
660 len -= endp - line;
661 line = endp;
662 }
663 }
664
665 printk_emit(facility, level, NULL, 0, "%s", line);
666 kfree(buf);
667 return ret;
668}
669
670static ssize_t devkmsg_read(struct file *file, char __user *buf,
671 size_t count, loff_t *ppos)
672{
673 struct devkmsg_user *user = file->private_data;
674 struct printk_log *msg;
675 size_t len;
676 ssize_t ret;
677
678 if (!user)
679 return -EBADF;
680
681 ret = mutex_lock_interruptible(&user->lock);
682 if (ret)
683 return ret;
684 raw_spin_lock_irq(&logbuf_lock);
685 while (user->seq == log_next_seq) {
686 if (file->f_flags & O_NONBLOCK) {
687 ret = -EAGAIN;
688 raw_spin_unlock_irq(&logbuf_lock);
689 goto out;
690 }
691
692 raw_spin_unlock_irq(&logbuf_lock);
693 ret = wait_event_interruptible(log_wait,
694 user->seq != log_next_seq);
695 if (ret)
696 goto out;
697 raw_spin_lock_irq(&logbuf_lock);
698 }
699
700 if (user->seq < log_first_seq) {
701 /* our last seen message is gone, return error and reset */
702 user->idx = log_first_idx;
703 user->seq = log_first_seq;
704 ret = -EPIPE;
705 raw_spin_unlock_irq(&logbuf_lock);
706 goto out;
707 }
708
709 msg = log_from_idx(user->idx);
710 len = msg_print_ext_header(user->buf, sizeof(user->buf),
711 msg, user->seq, user->prev);
712 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
713 log_dict(msg), msg->dict_len,
714 log_text(msg), msg->text_len);
715
716 user->prev = msg->flags;
717 user->idx = log_next(user->idx);
718 user->seq++;
719 raw_spin_unlock_irq(&logbuf_lock);
720
721 if (len > count) {
722 ret = -EINVAL;
723 goto out;
724 }
725
726 if (copy_to_user(buf, user->buf, len)) {
727 ret = -EFAULT;
728 goto out;
729 }
730 ret = len;
731out:
732 mutex_unlock(&user->lock);
733 return ret;
734}
735
736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
737{
738 struct devkmsg_user *user = file->private_data;
739 loff_t ret = 0;
740
741 if (!user)
742 return -EBADF;
743 if (offset)
744 return -ESPIPE;
745
746 raw_spin_lock_irq(&logbuf_lock);
747 switch (whence) {
748 case SEEK_SET:
749 /* the first record */
750 user->idx = log_first_idx;
751 user->seq = log_first_seq;
752 break;
753 case SEEK_DATA:
754 /*
755 * The first record after the last SYSLOG_ACTION_CLEAR,
756 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
757 * changes no global state, and does not clear anything.
758 */
759 user->idx = clear_idx;
760 user->seq = clear_seq;
761 break;
762 case SEEK_END:
763 /* after the last record */
764 user->idx = log_next_idx;
765 user->seq = log_next_seq;
766 break;
767 default:
768 ret = -EINVAL;
769 }
770 raw_spin_unlock_irq(&logbuf_lock);
771 return ret;
772}
773
774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
775{
776 struct devkmsg_user *user = file->private_data;
777 int ret = 0;
778
779 if (!user)
780 return POLLERR|POLLNVAL;
781
782 poll_wait(file, &log_wait, wait);
783
784 raw_spin_lock_irq(&logbuf_lock);
785 if (user->seq < log_next_seq) {
786 /* return error when data has vanished underneath us */
787 if (user->seq < log_first_seq)
788 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
789 else
790 ret = POLLIN|POLLRDNORM;
791 }
792 raw_spin_unlock_irq(&logbuf_lock);
793
794 return ret;
795}
796
797static int devkmsg_open(struct inode *inode, struct file *file)
798{
799 struct devkmsg_user *user;
800 int err;
801
802 /* write-only does not need any file context */
803 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
804 return 0;
805
806 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
807 SYSLOG_FROM_READER);
808 if (err)
809 return err;
810
811 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
812 if (!user)
813 return -ENOMEM;
814
815 mutex_init(&user->lock);
816
817 raw_spin_lock_irq(&logbuf_lock);
818 user->idx = log_first_idx;
819 user->seq = log_first_seq;
820 raw_spin_unlock_irq(&logbuf_lock);
821
822 file->private_data = user;
823 return 0;
824}
825
826static int devkmsg_release(struct inode *inode, struct file *file)
827{
828 struct devkmsg_user *user = file->private_data;
829
830 if (!user)
831 return 0;
832
833 mutex_destroy(&user->lock);
834 kfree(user);
835 return 0;
836}
837
838const struct file_operations kmsg_fops = {
839 .open = devkmsg_open,
840 .read = devkmsg_read,
841 .write_iter = devkmsg_write,
842 .llseek = devkmsg_llseek,
843 .poll = devkmsg_poll,
844 .release = devkmsg_release,
845};
846
847#ifdef CONFIG_KEXEC_CORE
848/*
849 * This appends the listed symbols to /proc/vmcore
850 *
851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
852 * obtain access to symbols that are otherwise very difficult to locate. These
853 * symbols are specifically used so that utilities can access and extract the
854 * dmesg log from a vmcore file after a crash.
855 */
856void log_buf_kexec_setup(void)
857{
858 VMCOREINFO_SYMBOL(log_buf);
859 VMCOREINFO_SYMBOL(log_buf_len);
860 VMCOREINFO_SYMBOL(log_first_idx);
861 VMCOREINFO_SYMBOL(clear_idx);
862 VMCOREINFO_SYMBOL(log_next_idx);
863 /*
864 * Export struct printk_log size and field offsets. User space tools can
865 * parse it and detect any changes to structure down the line.
866 */
867 VMCOREINFO_STRUCT_SIZE(printk_log);
868 VMCOREINFO_OFFSET(printk_log, ts_nsec);
869 VMCOREINFO_OFFSET(printk_log, len);
870 VMCOREINFO_OFFSET(printk_log, text_len);
871 VMCOREINFO_OFFSET(printk_log, dict_len);
872}
873#endif
874
875/* requested log_buf_len from kernel cmdline */
876static unsigned long __initdata new_log_buf_len;
877
878/* we practice scaling the ring buffer by powers of 2 */
879static void __init log_buf_len_update(unsigned size)
880{
881 if (size)
882 size = roundup_pow_of_two(size);
883 if (size > log_buf_len)
884 new_log_buf_len = size;
885}
886
887/* save requested log_buf_len since it's too early to process it */
888static int __init log_buf_len_setup(char *str)
889{
890 unsigned size = memparse(str, &str);
891
892 log_buf_len_update(size);
893
894 return 0;
895}
896early_param("log_buf_len", log_buf_len_setup);
897
898#ifdef CONFIG_SMP
899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
900
901static void __init log_buf_add_cpu(void)
902{
903 unsigned int cpu_extra;
904
905 /*
906 * archs should set up cpu_possible_bits properly with
907 * set_cpu_possible() after setup_arch() but just in
908 * case lets ensure this is valid.
909 */
910 if (num_possible_cpus() == 1)
911 return;
912
913 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
914
915 /* by default this will only continue through for large > 64 CPUs */
916 if (cpu_extra <= __LOG_BUF_LEN / 2)
917 return;
918
919 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
920 __LOG_CPU_MAX_BUF_LEN);
921 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
922 cpu_extra);
923 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
924
925 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
926}
927#else /* !CONFIG_SMP */
928static inline void log_buf_add_cpu(void) {}
929#endif /* CONFIG_SMP */
930
931void __init setup_log_buf(int early)
932{
933 unsigned long flags;
934 char *new_log_buf;
935 int free;
936
937 if (log_buf != __log_buf)
938 return;
939
940 if (!early && !new_log_buf_len)
941 log_buf_add_cpu();
942
943 if (!new_log_buf_len)
944 return;
945
946 if (early) {
947 new_log_buf =
948 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
949 } else {
950 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
951 LOG_ALIGN);
952 }
953
954 if (unlikely(!new_log_buf)) {
955 pr_err("log_buf_len: %ld bytes not available\n",
956 new_log_buf_len);
957 return;
958 }
959
960 raw_spin_lock_irqsave(&logbuf_lock, flags);
961 log_buf_len = new_log_buf_len;
962 log_buf = new_log_buf;
963 new_log_buf_len = 0;
964 free = __LOG_BUF_LEN - log_next_idx;
965 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
966 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
967
968 pr_info("log_buf_len: %d bytes\n", log_buf_len);
969 pr_info("early log buf free: %d(%d%%)\n",
970 free, (free * 100) / __LOG_BUF_LEN);
971}
972
973static bool __read_mostly ignore_loglevel;
974
975static int __init ignore_loglevel_setup(char *str)
976{
977 ignore_loglevel = true;
978 pr_info("debug: ignoring loglevel setting.\n");
979
980 return 0;
981}
982
983early_param("ignore_loglevel", ignore_loglevel_setup);
984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
985MODULE_PARM_DESC(ignore_loglevel,
986 "ignore loglevel setting (prints all kernel messages to the console)");
987
988#ifdef CONFIG_BOOT_PRINTK_DELAY
989
990static int boot_delay; /* msecs delay after each printk during bootup */
991static unsigned long long loops_per_msec; /* based on boot_delay */
992
993static int __init boot_delay_setup(char *str)
994{
995 unsigned long lpj;
996
997 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
998 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
999
1000 get_option(&str, &boot_delay);
1001 if (boot_delay > 10 * 1000)
1002 boot_delay = 0;
1003
1004 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005 "HZ: %d, loops_per_msec: %llu\n",
1006 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007 return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013 unsigned long long k;
1014 unsigned long timeout;
1015
1016 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017 || (level >= console_loglevel && !ignore_loglevel)) {
1018 return;
1019 }
1020
1021 k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023 timeout = jiffies + msecs_to_jiffies(boot_delay);
1024 while (k) {
1025 k--;
1026 cpu_relax();
1027 /*
1028 * use (volatile) jiffies to prevent
1029 * compiler reduction; loop termination via jiffies
1030 * is secondary and may or may not happen.
1031 */
1032 if (time_after(jiffies, timeout))
1033 break;
1034 touch_nmi_watchdog();
1035 }
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048 unsigned long rem_nsec;
1049
1050 if (!printk_time)
1051 return 0;
1052
1053 rem_nsec = do_div(ts, 1000000000);
1054
1055 if (!buf)
1056 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1057
1058 return sprintf(buf, "[%5lu.%06lu] ",
1059 (unsigned long)ts, rem_nsec / 1000);
1060}
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1063{
1064 size_t len = 0;
1065 unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067 if (syslog) {
1068 if (buf) {
1069 len += sprintf(buf, "<%u>", prefix);
1070 } else {
1071 len += 3;
1072 if (prefix > 999)
1073 len += 3;
1074 else if (prefix > 99)
1075 len += 2;
1076 else if (prefix > 9)
1077 len++;
1078 }
1079 }
1080
1081 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082 return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086 bool syslog, char *buf, size_t size)
1087{
1088 const char *text = log_text(msg);
1089 size_t text_size = msg->text_len;
1090 bool prefix = true;
1091 bool newline = true;
1092 size_t len = 0;
1093
1094 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095 prefix = false;
1096
1097 if (msg->flags & LOG_CONT) {
1098 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099 prefix = false;
1100
1101 if (!(msg->flags & LOG_NEWLINE))
1102 newline = false;
1103 }
1104
1105 do {
1106 const char *next = memchr(text, '\n', text_size);
1107 size_t text_len;
1108
1109 if (next) {
1110 text_len = next - text;
1111 next++;
1112 text_size -= next - text;
1113 } else {
1114 text_len = text_size;
1115 }
1116
1117 if (buf) {
1118 if (print_prefix(msg, syslog, NULL) +
1119 text_len + 1 >= size - len)
1120 break;
1121
1122 if (prefix)
1123 len += print_prefix(msg, syslog, buf + len);
1124 memcpy(buf + len, text, text_len);
1125 len += text_len;
1126 if (next || newline)
1127 buf[len++] = '\n';
1128 } else {
1129 /* SYSLOG_ACTION_* buffer size only calculation */
1130 if (prefix)
1131 len += print_prefix(msg, syslog, NULL);
1132 len += text_len;
1133 if (next || newline)
1134 len++;
1135 }
1136
1137 prefix = true;
1138 text = next;
1139 } while (text);
1140
1141 return len;
1142}
1143
1144static int syslog_print(char __user *buf, int size)
1145{
1146 char *text;
1147 struct printk_log *msg;
1148 int len = 0;
1149
1150 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151 if (!text)
1152 return -ENOMEM;
1153
1154 while (size > 0) {
1155 size_t n;
1156 size_t skip;
1157
1158 raw_spin_lock_irq(&logbuf_lock);
1159 if (syslog_seq < log_first_seq) {
1160 /* messages are gone, move to first one */
1161 syslog_seq = log_first_seq;
1162 syslog_idx = log_first_idx;
1163 syslog_prev = 0;
1164 syslog_partial = 0;
1165 }
1166 if (syslog_seq == log_next_seq) {
1167 raw_spin_unlock_irq(&logbuf_lock);
1168 break;
1169 }
1170
1171 skip = syslog_partial;
1172 msg = log_from_idx(syslog_idx);
1173 n = msg_print_text(msg, syslog_prev, true, text,
1174 LOG_LINE_MAX + PREFIX_MAX);
1175 if (n - syslog_partial <= size) {
1176 /* message fits into buffer, move forward */
1177 syslog_idx = log_next(syslog_idx);
1178 syslog_seq++;
1179 syslog_prev = msg->flags;
1180 n -= syslog_partial;
1181 syslog_partial = 0;
1182 } else if (!len){
1183 /* partial read(), remember position */
1184 n = size;
1185 syslog_partial += n;
1186 } else
1187 n = 0;
1188 raw_spin_unlock_irq(&logbuf_lock);
1189
1190 if (!n)
1191 break;
1192
1193 if (copy_to_user(buf, text + skip, n)) {
1194 if (!len)
1195 len = -EFAULT;
1196 break;
1197 }
1198
1199 len += n;
1200 size -= n;
1201 buf += n;
1202 }
1203
1204 kfree(text);
1205 return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
1210 char *text;
1211 int len = 0;
1212
1213 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214 if (!text)
1215 return -ENOMEM;
1216
1217 raw_spin_lock_irq(&logbuf_lock);
1218 if (buf) {
1219 u64 next_seq;
1220 u64 seq;
1221 u32 idx;
1222 enum log_flags prev;
1223
1224 /*
1225 * Find first record that fits, including all following records,
1226 * into the user-provided buffer for this dump.
1227 */
1228 seq = clear_seq;
1229 idx = clear_idx;
1230 prev = 0;
1231 while (seq < log_next_seq) {
1232 struct printk_log *msg = log_from_idx(idx);
1233
1234 len += msg_print_text(msg, prev, true, NULL, 0);
1235 prev = msg->flags;
1236 idx = log_next(idx);
1237 seq++;
1238 }
1239
1240 /* move first record forward until length fits into the buffer */
1241 seq = clear_seq;
1242 idx = clear_idx;
1243 prev = 0;
1244 while (len > size && seq < log_next_seq) {
1245 struct printk_log *msg = log_from_idx(idx);
1246
1247 len -= msg_print_text(msg, prev, true, NULL, 0);
1248 prev = msg->flags;
1249 idx = log_next(idx);
1250 seq++;
1251 }
1252
1253 /* last message fitting into this dump */
1254 next_seq = log_next_seq;
1255
1256 len = 0;
1257 while (len >= 0 && seq < next_seq) {
1258 struct printk_log *msg = log_from_idx(idx);
1259 int textlen;
1260
1261 textlen = msg_print_text(msg, prev, true, text,
1262 LOG_LINE_MAX + PREFIX_MAX);
1263 if (textlen < 0) {
1264 len = textlen;
1265 break;
1266 }
1267 idx = log_next(idx);
1268 seq++;
1269 prev = msg->flags;
1270
1271 raw_spin_unlock_irq(&logbuf_lock);
1272 if (copy_to_user(buf + len, text, textlen))
1273 len = -EFAULT;
1274 else
1275 len += textlen;
1276 raw_spin_lock_irq(&logbuf_lock);
1277
1278 if (seq < log_first_seq) {
1279 /* messages are gone, move to next one */
1280 seq = log_first_seq;
1281 idx = log_first_idx;
1282 prev = 0;
1283 }
1284 }
1285 }
1286
1287 if (clear) {
1288 clear_seq = log_next_seq;
1289 clear_idx = log_next_idx;
1290 }
1291 raw_spin_unlock_irq(&logbuf_lock);
1292
1293 kfree(text);
1294 return len;
1295}
1296
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
1299 bool clear = false;
1300 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301 int error;
1302
1303 error = check_syslog_permissions(type, source);
1304 if (error)
1305 goto out;
1306
1307 switch (type) {
1308 case SYSLOG_ACTION_CLOSE: /* Close log */
1309 break;
1310 case SYSLOG_ACTION_OPEN: /* Open log */
1311 break;
1312 case SYSLOG_ACTION_READ: /* Read from log */
1313 error = -EINVAL;
1314 if (!buf || len < 0)
1315 goto out;
1316 error = 0;
1317 if (!len)
1318 goto out;
1319 if (!access_ok(VERIFY_WRITE, buf, len)) {
1320 error = -EFAULT;
1321 goto out;
1322 }
1323 error = wait_event_interruptible(log_wait,
1324 syslog_seq != log_next_seq);
1325 if (error)
1326 goto out;
1327 error = syslog_print(buf, len);
1328 break;
1329 /* Read/clear last kernel messages */
1330 case SYSLOG_ACTION_READ_CLEAR:
1331 clear = true;
1332 /* FALL THRU */
1333 /* Read last kernel messages */
1334 case SYSLOG_ACTION_READ_ALL:
1335 error = -EINVAL;
1336 if (!buf || len < 0)
1337 goto out;
1338 error = 0;
1339 if (!len)
1340 goto out;
1341 if (!access_ok(VERIFY_WRITE, buf, len)) {
1342 error = -EFAULT;
1343 goto out;
1344 }
1345 error = syslog_print_all(buf, len, clear);
1346 break;
1347 /* Clear ring buffer */
1348 case SYSLOG_ACTION_CLEAR:
1349 syslog_print_all(NULL, 0, true);
1350 break;
1351 /* Disable logging to console */
1352 case SYSLOG_ACTION_CONSOLE_OFF:
1353 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354 saved_console_loglevel = console_loglevel;
1355 console_loglevel = minimum_console_loglevel;
1356 break;
1357 /* Enable logging to console */
1358 case SYSLOG_ACTION_CONSOLE_ON:
1359 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360 console_loglevel = saved_console_loglevel;
1361 saved_console_loglevel = LOGLEVEL_DEFAULT;
1362 }
1363 break;
1364 /* Set level of messages printed to console */
1365 case SYSLOG_ACTION_CONSOLE_LEVEL:
1366 error = -EINVAL;
1367 if (len < 1 || len > 8)
1368 goto out;
1369 if (len < minimum_console_loglevel)
1370 len = minimum_console_loglevel;
1371 console_loglevel = len;
1372 /* Implicitly re-enable logging to console */
1373 saved_console_loglevel = LOGLEVEL_DEFAULT;
1374 error = 0;
1375 break;
1376 /* Number of chars in the log buffer */
1377 case SYSLOG_ACTION_SIZE_UNREAD:
1378 raw_spin_lock_irq(&logbuf_lock);
1379 if (syslog_seq < log_first_seq) {
1380 /* messages are gone, move to first one */
1381 syslog_seq = log_first_seq;
1382 syslog_idx = log_first_idx;
1383 syslog_prev = 0;
1384 syslog_partial = 0;
1385 }
1386 if (source == SYSLOG_FROM_PROC) {
1387 /*
1388 * Short-cut for poll(/"proc/kmsg") which simply checks
1389 * for pending data, not the size; return the count of
1390 * records, not the length.
1391 */
1392 error = log_next_seq - syslog_seq;
1393 } else {
1394 u64 seq = syslog_seq;
1395 u32 idx = syslog_idx;
1396 enum log_flags prev = syslog_prev;
1397
1398 error = 0;
1399 while (seq < log_next_seq) {
1400 struct printk_log *msg = log_from_idx(idx);
1401
1402 error += msg_print_text(msg, prev, true, NULL, 0);
1403 idx = log_next(idx);
1404 seq++;
1405 prev = msg->flags;
1406 }
1407 error -= syslog_partial;
1408 }
1409 raw_spin_unlock_irq(&logbuf_lock);
1410 break;
1411 /* Size of the log buffer */
1412 case SYSLOG_ACTION_SIZE_BUFFER:
1413 error = log_buf_len;
1414 break;
1415 default:
1416 error = -EINVAL;
1417 break;
1418 }
1419out:
1420 return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434 const char *ext_text, size_t ext_len,
1435 const char *text, size_t len)
1436{
1437 struct console *con;
1438
1439 trace_console(text, len);
1440
1441 if (level >= console_loglevel && !ignore_loglevel)
1442 return;
1443 if (!console_drivers)
1444 return;
1445
1446 for_each_console(con) {
1447 if (exclusive_console && con != exclusive_console)
1448 continue;
1449 if (!(con->flags & CON_ENABLED))
1450 continue;
1451 if (!con->write)
1452 continue;
1453 if (!cpu_online(smp_processor_id()) &&
1454 !(con->flags & CON_ANYTIME))
1455 continue;
1456 if (con->flags & CON_EXTENDED)
1457 con->write(con, ext_text, ext_len);
1458 else
1459 con->write(con, text, len);
1460 }
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468static void zap_locks(void)
1469{
1470 static unsigned long oops_timestamp;
1471
1472 if (time_after_eq(jiffies, oops_timestamp) &&
1473 !time_after(jiffies, oops_timestamp + 30 * HZ))
1474 return;
1475
1476 oops_timestamp = jiffies;
1477
1478 debug_locks_off();
1479 /* If a crash is occurring, make sure we can't deadlock */
1480 raw_spin_lock_init(&logbuf_lock);
1481 /* And make sure that we print immediately */
1482 sema_init(&console_sem, 1);
1483}
1484
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
1489 if (unlikely(printk_delay_msec)) {
1490 int m = printk_delay_msec;
1491
1492 while (m--) {
1493 mdelay(1);
1494 touch_nmi_watchdog();
1495 }
1496 }
1497}
1498
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506 char buf[LOG_LINE_MAX];
1507 size_t len; /* length == 0 means unused buffer */
1508 size_t cons; /* bytes written to console */
1509 struct task_struct *owner; /* task of first print*/
1510 u64 ts_nsec; /* time of first print */
1511 u8 level; /* log level of first message */
1512 u8 facility; /* log facility of first message */
1513 enum log_flags flags; /* prefix, newline flags */
1514 bool flushed:1; /* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
1518{
1519 if (cont.flushed)
1520 return;
1521 if (cont.len == 0)
1522 return;
1523
1524 if (cont.cons) {
1525 /*
1526 * If a fragment of this line was directly flushed to the
1527 * console; wait for the console to pick up the rest of the
1528 * line. LOG_NOCONS suppresses a duplicated output.
1529 */
1530 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532 cont.flags = flags;
1533 cont.flushed = true;
1534 } else {
1535 /*
1536 * If no fragment of this line ever reached the console,
1537 * just submit it to the store and free the buffer.
1538 */
1539 log_store(cont.facility, cont.level, flags, 0,
1540 NULL, 0, cont.buf, cont.len);
1541 cont.len = 0;
1542 }
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
1546{
1547 if (cont.len && cont.flushed)
1548 return false;
1549
1550 /*
1551 * If ext consoles are present, flush and skip in-kernel
1552 * continuation. See nr_ext_console_drivers definition. Also, if
1553 * the line gets too long, split it up in separate records.
1554 */
1555 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556 cont_flush(LOG_CONT);
1557 return false;
1558 }
1559
1560 if (!cont.len) {
1561 cont.facility = facility;
1562 cont.level = level;
1563 cont.owner = current;
1564 cont.ts_nsec = local_clock();
1565 cont.flags = 0;
1566 cont.cons = 0;
1567 cont.flushed = false;
1568 }
1569
1570 memcpy(cont.buf + cont.len, text, len);
1571 cont.len += len;
1572
1573 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574 cont_flush(LOG_CONT);
1575
1576 return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581 size_t textlen = 0;
1582 size_t len;
1583
1584 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585 textlen += print_time(cont.ts_nsec, text);
1586 size -= textlen;
1587 }
1588
1589 len = cont.len - cont.cons;
1590 if (len > 0) {
1591 if (len+1 > size)
1592 len = size-1;
1593 memcpy(text + textlen, cont.buf + cont.cons, len);
1594 textlen += len;
1595 cont.cons = cont.len;
1596 }
1597
1598 if (cont.flushed) {
1599 if (cont.flags & LOG_NEWLINE)
1600 text[textlen++] = '\n';
1601 /* got everything, release buffer */
1602 cont.len = 0;
1603 }
1604 return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608 const char *dict, size_t dictlen,
1609 const char *fmt, va_list args)
1610{
1611 static bool recursion_bug;
1612 static char textbuf[LOG_LINE_MAX];
1613 char *text = textbuf;
1614 size_t text_len = 0;
1615 enum log_flags lflags = 0;
1616 unsigned long flags;
1617 int this_cpu;
1618 int printed_len = 0;
1619 bool in_sched = false;
1620 /* cpu currently holding logbuf_lock in this function */
1621 static unsigned int logbuf_cpu = UINT_MAX;
1622
1623 if (level == LOGLEVEL_SCHED) {
1624 level = LOGLEVEL_DEFAULT;
1625 in_sched = true;
1626 }
1627
1628 boot_delay_msec(level);
1629 printk_delay();
1630
1631 local_irq_save(flags);
1632 this_cpu = smp_processor_id();
1633
1634 /*
1635 * Ouch, printk recursed into itself!
1636 */
1637 if (unlikely(logbuf_cpu == this_cpu)) {
1638 /*
1639 * If a crash is occurring during printk() on this CPU,
1640 * then try to get the crash message out but make sure
1641 * we can't deadlock. Otherwise just return to avoid the
1642 * recursion and return - but flag the recursion so that
1643 * it can be printed at the next appropriate moment:
1644 */
1645 if (!oops_in_progress && !lockdep_recursing(current)) {
1646 recursion_bug = true;
1647 local_irq_restore(flags);
1648 return 0;
1649 }
1650 zap_locks();
1651 }
1652
1653 lockdep_off();
1654 /* This stops the holder of console_sem just where we want him */
1655 raw_spin_lock(&logbuf_lock);
1656 logbuf_cpu = this_cpu;
1657
1658 if (unlikely(recursion_bug)) {
1659 static const char recursion_msg[] =
1660 "BUG: recent printk recursion!";
1661
1662 recursion_bug = false;
1663 /* emit KERN_CRIT message */
1664 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665 NULL, 0, recursion_msg,
1666 strlen(recursion_msg));
1667 }
1668
1669 /*
1670 * The printf needs to come first; we need the syslog
1671 * prefix which might be passed-in as a parameter.
1672 */
1673 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675 /* mark and strip a trailing newline */
1676 if (text_len && text[text_len-1] == '\n') {
1677 text_len--;
1678 lflags |= LOG_NEWLINE;
1679 }
1680
1681 /* strip kernel syslog prefix and extract log level or control flags */
1682 if (facility == 0) {
1683 int kern_level = printk_get_level(text);
1684
1685 if (kern_level) {
1686 const char *end_of_header = printk_skip_level(text);
1687 switch (kern_level) {
1688 case '0' ... '7':
1689 if (level == LOGLEVEL_DEFAULT)
1690 level = kern_level - '0';
1691 /* fallthrough */
1692 case 'd': /* KERN_DEFAULT */
1693 lflags |= LOG_PREFIX;
1694 }
1695 /*
1696 * No need to check length here because vscnprintf
1697 * put '\0' at the end of the string. Only valid and
1698 * newly printed level is detected.
1699 */
1700 text_len -= end_of_header - text;
1701 text = (char *)end_of_header;
1702 }
1703 }
1704
1705 if (level == LOGLEVEL_DEFAULT)
1706 level = default_message_loglevel;
1707
1708 if (dict)
1709 lflags |= LOG_PREFIX|LOG_NEWLINE;
1710
1711 if (!(lflags & LOG_NEWLINE)) {
1712 /*
1713 * Flush the conflicting buffer. An earlier newline was missing,
1714 * or another task also prints continuation lines.
1715 */
1716 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717 cont_flush(LOG_NEWLINE);
1718
1719 /* buffer line if possible, otherwise store it right away */
1720 if (cont_add(facility, level, text, text_len))
1721 printed_len += text_len;
1722 else
1723 printed_len += log_store(facility, level,
1724 lflags | LOG_CONT, 0,
1725 dict, dictlen, text, text_len);
1726 } else {
1727 bool stored = false;
1728
1729 /*
1730 * If an earlier newline was missing and it was the same task,
1731 * either merge it with the current buffer and flush, or if
1732 * there was a race with interrupts (prefix == true) then just
1733 * flush it out and store this line separately.
1734 * If the preceding printk was from a different task and missed
1735 * a newline, flush and append the newline.
1736 */
1737 if (cont.len) {
1738 if (cont.owner == current && !(lflags & LOG_PREFIX))
1739 stored = cont_add(facility, level, text,
1740 text_len);
1741 cont_flush(LOG_NEWLINE);
1742 }
1743
1744 if (stored)
1745 printed_len += text_len;
1746 else
1747 printed_len += log_store(facility, level, lflags, 0,
1748 dict, dictlen, text, text_len);
1749 }
1750
1751 logbuf_cpu = UINT_MAX;
1752 raw_spin_unlock(&logbuf_lock);
1753 lockdep_on();
1754 local_irq_restore(flags);
1755
1756 /* If called from the scheduler, we can not call up(). */
1757 if (!in_sched) {
1758 lockdep_off();
1759 /*
1760 * Try to acquire and then immediately release the console
1761 * semaphore. The release will print out buffers and wake up
1762 * /dev/kmsg and syslog() users.
1763 */
1764 if (console_trylock())
1765 console_unlock();
1766 lockdep_on();
1767 }
1768
1769 return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780 const char *dict, size_t dictlen,
1781 const char *fmt, ...)
1782{
1783 va_list args;
1784 int r;
1785
1786 va_start(args, fmt);
1787 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788 va_end(args);
1789
1790 return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796 int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799 if (unlikely(kdb_trap_printk)) {
1800 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801 return r;
1802 }
1803#endif
1804 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806 return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers. If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841 printk_func_t vprintk_func;
1842 va_list args;
1843 int r;
1844
1845 va_start(args, fmt);
1846
1847 /*
1848 * If a caller overrides the per_cpu printk_func, then it needs
1849 * to disable preemption when calling printk(). Otherwise
1850 * the printk_func should be set to the default. No need to
1851 * disable preemption here.
1852 */
1853 vprintk_func = this_cpu_read(printk_func);
1854 r = vprintk_func(fmt, args);
1855
1856 va_end(args);
1857
1858 return r;
1859}
1860EXPORT_SYMBOL(printk);
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX 0
1865#define PREFIX_MAX 0
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877 size_t len;
1878 size_t cons;
1879 u8 level;
1880 bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887 struct printk_log *msg, u64 seq,
1888 enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890 char *dict, size_t dict_len,
1891 char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893 const char *ext_text, size_t ext_len,
1894 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896 bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909 va_list ap;
1910 char buf[512];
1911 int n;
1912
1913 if (!early_console)
1914 return;
1915
1916 va_start(ap, fmt);
1917 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918 va_end(ap);
1919
1920 early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925 char *brl_options)
1926{
1927 struct console_cmdline *c;
1928 int i;
1929
1930 /*
1931 * See if this tty is not yet registered, and
1932 * if we have a slot free.
1933 */
1934 for (i = 0, c = console_cmdline;
1935 i < MAX_CMDLINECONSOLES && c->name[0];
1936 i++, c++) {
1937 if (strcmp(c->name, name) == 0 && c->index == idx) {
1938 if (!brl_options)
1939 selected_console = i;
1940 return 0;
1941 }
1942 }
1943 if (i == MAX_CMDLINECONSOLES)
1944 return -E2BIG;
1945 if (!brl_options)
1946 selected_console = i;
1947 strlcpy(c->name, name, sizeof(c->name));
1948 c->options = options;
1949 braille_set_options(c, brl_options);
1950
1951 c->index = idx;
1952 return 0;
1953}
1954/*
1955 * Set up a console. Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961 char *s, *options, *brl_options = NULL;
1962 int idx;
1963
1964 if (_braille_console_setup(&str, &brl_options))
1965 return 1;
1966
1967 /*
1968 * Decode str into name, index, options.
1969 */
1970 if (str[0] >= '0' && str[0] <= '9') {
1971 strcpy(buf, "ttyS");
1972 strncpy(buf + 4, str, sizeof(buf) - 5);
1973 } else {
1974 strncpy(buf, str, sizeof(buf) - 1);
1975 }
1976 buf[sizeof(buf) - 1] = 0;
1977 options = strchr(str, ',');
1978 if (options)
1979 *(options++) = 0;
1980#ifdef __sparc__
1981 if (!strcmp(str, "ttya"))
1982 strcpy(buf, "ttyS0");
1983 if (!strcmp(str, "ttyb"))
1984 strcpy(buf, "ttyS1");
1985#endif
1986 for (s = buf; *s; s++)
1987 if (isdigit(*s) || *s == ',')
1988 break;
1989 idx = simple_strtoul(s, NULL, 10);
1990 *s = 0;
1991
1992 __add_preferred_console(buf, idx, options, brl_options);
1993 console_set_on_cmdline = 1;
1994 return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init. Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013 return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021 console_suspend_enabled = false;
2022 return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026 bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028 " and hibernate operations");
2029
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
2037 if (!console_suspend_enabled)
2038 return;
2039 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040 console_lock();
2041 console_suspended = 1;
2042 up_console_sem();
2043}
2044
2045void resume_console(void)
2046{
2047 if (!console_suspend_enabled)
2048 return;
2049 down_console_sem();
2050 console_suspended = 0;
2051 console_unlock();
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console. This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066 unsigned long action, void *hcpu)
2067{
2068 switch (action) {
2069 case CPU_ONLINE:
2070 case CPU_DEAD:
2071 case CPU_DOWN_FAILED:
2072 case CPU_UP_CANCELED:
2073 console_lock();
2074 console_unlock();
2075 }
2076 return NOTIFY_OK;
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089 might_sleep();
2090
2091 down_console_sem();
2092 if (console_suspended)
2093 return;
2094 console_locked = 1;
2095 console_may_schedule = 1;
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109 if (down_trylock_console_sem())
2110 return 0;
2111 if (console_suspended) {
2112 up_console_sem();
2113 return 0;
2114 }
2115 console_locked = 1;
2116 /*
2117 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119 * because preempt_disable()/preempt_enable() are just barriers there
2120 * and preempt_count() is always 0.
2121 *
2122 * RCU read sections have a separate preemption counter when
2123 * PREEMPT_RCU enabled thus we must take extra care and check
2124 * rcu_preempt_depth(), otherwise RCU read sections modify
2125 * preempt_count().
2126 */
2127 console_may_schedule = !oops_in_progress &&
2128 preemptible() &&
2129 !rcu_preempt_depth();
2130 return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136 return console_locked;
2137}
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2142 */
2143static int have_callable_console(void)
2144{
2145 struct console *con;
2146
2147 for_each_console(con)
2148 if ((con->flags & CON_ENABLED) &&
2149 (con->flags & CON_ANYTIME))
2150 return 1;
2151
2152 return 0;
2153}
2154
2155/*
2156 * Can we actually use the console at this time on this cpu?
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2161 */
2162static inline int can_use_console(void)
2163{
2164 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
2168{
2169 unsigned long flags;
2170 size_t len;
2171
2172 raw_spin_lock_irqsave(&logbuf_lock, flags);
2173
2174 if (!cont.len)
2175 goto out;
2176
2177 /*
2178 * We still queue earlier records, likely because the console was
2179 * busy. The earlier ones need to be printed before this one, we
2180 * did not flush any fragment so far, so just let it queue up.
2181 */
2182 if (console_seq < log_next_seq && !cont.cons)
2183 goto out;
2184
2185 len = cont_print_text(text, size);
2186 raw_spin_unlock(&logbuf_lock);
2187 stop_critical_timings();
2188 call_console_drivers(cont.level, NULL, 0, text, len);
2189 start_critical_timings();
2190 local_irq_restore(flags);
2191 return;
2192out:
2193 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk(). If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212 static char ext_text[CONSOLE_EXT_LOG_MAX];
2213 static char text[LOG_LINE_MAX + PREFIX_MAX];
2214 static u64 seen_seq;
2215 unsigned long flags;
2216 bool wake_klogd = false;
2217 bool do_cond_resched, retry;
2218
2219 if (console_suspended) {
2220 up_console_sem();
2221 return;
2222 }
2223
2224 /*
2225 * Console drivers are called under logbuf_lock, so
2226 * @console_may_schedule should be cleared before; however, we may
2227 * end up dumping a lot of lines, for example, if called from
2228 * console registration path, and should invoke cond_resched()
2229 * between lines if allowable. Not doing so can cause a very long
2230 * scheduling stall on a slow console leading to RCU stall and
2231 * softlockup warnings which exacerbate the issue with more
2232 * messages practically incapacitating the system.
2233 */
2234 do_cond_resched = console_may_schedule;
2235 console_may_schedule = 0;
2236
2237again:
2238 /*
2239 * We released the console_sem lock, so we need to recheck if
2240 * cpu is online and (if not) is there at least one CON_ANYTIME
2241 * console.
2242 */
2243 if (!can_use_console()) {
2244 console_locked = 0;
2245 up_console_sem();
2246 return;
2247 }
2248
2249 /* flush buffered message fragment immediately to console */
2250 console_cont_flush(text, sizeof(text));
2251
2252 for (;;) {
2253 struct printk_log *msg;
2254 size_t ext_len = 0;
2255 size_t len;
2256 int level;
2257
2258 raw_spin_lock_irqsave(&logbuf_lock, flags);
2259 if (seen_seq != log_next_seq) {
2260 wake_klogd = true;
2261 seen_seq = log_next_seq;
2262 }
2263
2264 if (console_seq < log_first_seq) {
2265 len = sprintf(text, "** %u printk messages dropped ** ",
2266 (unsigned)(log_first_seq - console_seq));
2267
2268 /* messages are gone, move to first one */
2269 console_seq = log_first_seq;
2270 console_idx = log_first_idx;
2271 console_prev = 0;
2272 } else {
2273 len = 0;
2274 }
2275skip:
2276 if (console_seq == log_next_seq)
2277 break;
2278
2279 msg = log_from_idx(console_idx);
2280 if (msg->flags & LOG_NOCONS) {
2281 /*
2282 * Skip record we have buffered and already printed
2283 * directly to the console when we received it.
2284 */
2285 console_idx = log_next(console_idx);
2286 console_seq++;
2287 /*
2288 * We will get here again when we register a new
2289 * CON_PRINTBUFFER console. Clear the flag so we
2290 * will properly dump everything later.
2291 */
2292 msg->flags &= ~LOG_NOCONS;
2293 console_prev = msg->flags;
2294 goto skip;
2295 }
2296
2297 level = msg->level;
2298 len += msg_print_text(msg, console_prev, false,
2299 text + len, sizeof(text) - len);
2300 if (nr_ext_console_drivers) {
2301 ext_len = msg_print_ext_header(ext_text,
2302 sizeof(ext_text),
2303 msg, console_seq, console_prev);
2304 ext_len += msg_print_ext_body(ext_text + ext_len,
2305 sizeof(ext_text) - ext_len,
2306 log_dict(msg), msg->dict_len,
2307 log_text(msg), msg->text_len);
2308 }
2309 console_idx = log_next(console_idx);
2310 console_seq++;
2311 console_prev = msg->flags;
2312 raw_spin_unlock(&logbuf_lock);
2313
2314 stop_critical_timings(); /* don't trace print latency */
2315 call_console_drivers(level, ext_text, ext_len, text, len);
2316 start_critical_timings();
2317 local_irq_restore(flags);
2318
2319 if (do_cond_resched)
2320 cond_resched();
2321 }
2322 console_locked = 0;
2323
2324 /* Release the exclusive_console once it is used */
2325 if (unlikely(exclusive_console))
2326 exclusive_console = NULL;
2327
2328 raw_spin_unlock(&logbuf_lock);
2329
2330 up_console_sem();
2331
2332 /*
2333 * Someone could have filled up the buffer again, so re-check if there's
2334 * something to flush. In case we cannot trylock the console_sem again,
2335 * there's a new owner and the console_unlock() from them will do the
2336 * flush, no worries.
2337 */
2338 raw_spin_lock(&logbuf_lock);
2339 retry = console_seq != log_next_seq;
2340 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2341
2342 if (retry && console_trylock())
2343 goto again;
2344
2345 if (wake_klogd)
2346 wake_up_klogd();
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361 if (console_may_schedule)
2362 cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
2368 struct console *c;
2369
2370 /*
2371 * console_unblank can no longer be called in interrupt context unless
2372 * oops_in_progress is set to 1..
2373 */
2374 if (oops_in_progress) {
2375 if (down_trylock_console_sem() != 0)
2376 return;
2377 } else
2378 console_lock();
2379
2380 console_locked = 1;
2381 console_may_schedule = 0;
2382 for_each_console(c)
2383 if ((c->flags & CON_ENABLED) && c->unblank)
2384 c->unblank();
2385 console_unlock();
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
2395 /*
2396 * If someone else is holding the console lock, trylock will fail
2397 * and may_schedule may be set. Ignore and proceed to unlock so
2398 * that messages are flushed out. As this can be called from any
2399 * context and we don't want to get preempted while flushing,
2400 * ensure may_schedule is cleared.
2401 */
2402 console_trylock();
2403 console_may_schedule = 0;
2404 console_unlock();
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412 struct console *c;
2413 struct tty_driver *driver = NULL;
2414
2415 console_lock();
2416 for_each_console(c) {
2417 if (!c->device)
2418 continue;
2419 driver = c->device(c, index);
2420 if (driver)
2421 break;
2422 }
2423 console_unlock();
2424 return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434 console_lock();
2435 console->flags &= ~CON_ENABLED;
2436 console_unlock();
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442 console_lock();
2443 console->flags |= CON_ENABLED;
2444 console_unlock();
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452 keep_bootcon = 1;
2453 pr_info("debug: skip boot console de-registration.\n");
2454
2455 return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 * - Any number of bootconsoles can be registered at any time.
2474 * - As soon as a "real" console is registered, all bootconsoles
2475 * will be unregistered automatically.
2476 * - Once a "real" console is registered, any attempt to register a
2477 * bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481 int i;
2482 unsigned long flags;
2483 struct console *bcon = NULL;
2484 struct console_cmdline *c;
2485
2486 if (console_drivers)
2487 for_each_console(bcon)
2488 if (WARN(bcon == newcon,
2489 "console '%s%d' already registered\n",
2490 bcon->name, bcon->index))
2491 return;
2492
2493 /*
2494 * before we register a new CON_BOOT console, make sure we don't
2495 * already have a valid console
2496 */
2497 if (console_drivers && newcon->flags & CON_BOOT) {
2498 /* find the last or real console */
2499 for_each_console(bcon) {
2500 if (!(bcon->flags & CON_BOOT)) {
2501 pr_info("Too late to register bootconsole %s%d\n",
2502 newcon->name, newcon->index);
2503 return;
2504 }
2505 }
2506 }
2507
2508 if (console_drivers && console_drivers->flags & CON_BOOT)
2509 bcon = console_drivers;
2510
2511 if (preferred_console < 0 || bcon || !console_drivers)
2512 preferred_console = selected_console;
2513
2514 /*
2515 * See if we want to use this console driver. If we
2516 * didn't select a console we take the first one
2517 * that registers here.
2518 */
2519 if (preferred_console < 0) {
2520 if (newcon->index < 0)
2521 newcon->index = 0;
2522 if (newcon->setup == NULL ||
2523 newcon->setup(newcon, NULL) == 0) {
2524 newcon->flags |= CON_ENABLED;
2525 if (newcon->device) {
2526 newcon->flags |= CON_CONSDEV;
2527 preferred_console = 0;
2528 }
2529 }
2530 }
2531
2532 /*
2533 * See if this console matches one we selected on
2534 * the command line.
2535 */
2536 for (i = 0, c = console_cmdline;
2537 i < MAX_CMDLINECONSOLES && c->name[0];
2538 i++, c++) {
2539 if (!newcon->match ||
2540 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541 /* default matching */
2542 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543 if (strcmp(c->name, newcon->name) != 0)
2544 continue;
2545 if (newcon->index >= 0 &&
2546 newcon->index != c->index)
2547 continue;
2548 if (newcon->index < 0)
2549 newcon->index = c->index;
2550
2551 if (_braille_register_console(newcon, c))
2552 return;
2553
2554 if (newcon->setup &&
2555 newcon->setup(newcon, c->options) != 0)
2556 break;
2557 }
2558
2559 newcon->flags |= CON_ENABLED;
2560 if (i == selected_console) {
2561 newcon->flags |= CON_CONSDEV;
2562 preferred_console = selected_console;
2563 }
2564 break;
2565 }
2566
2567 if (!(newcon->flags & CON_ENABLED))
2568 return;
2569
2570 /*
2571 * If we have a bootconsole, and are switching to a real console,
2572 * don't print everything out again, since when the boot console, and
2573 * the real console are the same physical device, it's annoying to
2574 * see the beginning boot messages twice
2575 */
2576 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577 newcon->flags &= ~CON_PRINTBUFFER;
2578
2579 /*
2580 * Put this console in the list - keep the
2581 * preferred driver at the head of the list.
2582 */
2583 console_lock();
2584 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585 newcon->next = console_drivers;
2586 console_drivers = newcon;
2587 if (newcon->next)
2588 newcon->next->flags &= ~CON_CONSDEV;
2589 } else {
2590 newcon->next = console_drivers->next;
2591 console_drivers->next = newcon;
2592 }
2593
2594 if (newcon->flags & CON_EXTENDED)
2595 if (!nr_ext_console_drivers++)
2596 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597
2598 if (newcon->flags & CON_PRINTBUFFER) {
2599 /*
2600 * console_unlock(); will print out the buffered messages
2601 * for us.
2602 */
2603 raw_spin_lock_irqsave(&logbuf_lock, flags);
2604 console_seq = syslog_seq;
2605 console_idx = syslog_idx;
2606 console_prev = syslog_prev;
2607 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608 /*
2609 * We're about to replay the log buffer. Only do this to the
2610 * just-registered console to avoid excessive message spam to
2611 * the already-registered consoles.
2612 */
2613 exclusive_console = newcon;
2614 }
2615 console_unlock();
2616 console_sysfs_notify();
2617
2618 /*
2619 * By unregistering the bootconsoles after we enable the real console
2620 * we get the "console xxx enabled" message on all the consoles -
2621 * boot consoles, real consoles, etc - this is to ensure that end
2622 * users know there might be something in the kernel's log buffer that
2623 * went to the bootconsole (that they do not see on the real console)
2624 */
2625 pr_info("%sconsole [%s%d] enabled\n",
2626 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2627 newcon->name, newcon->index);
2628 if (bcon &&
2629 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630 !keep_bootcon) {
2631 /* We need to iterate through all boot consoles, to make
2632 * sure we print everything out, before we unregister them.
2633 */
2634 for_each_console(bcon)
2635 if (bcon->flags & CON_BOOT)
2636 unregister_console(bcon);
2637 }
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
2642{
2643 struct console *a, *b;
2644 int res;
2645
2646 pr_info("%sconsole [%s%d] disabled\n",
2647 (console->flags & CON_BOOT) ? "boot" : "" ,
2648 console->name, console->index);
2649
2650 res = _braille_unregister_console(console);
2651 if (res)
2652 return res;
2653
2654 res = 1;
2655 console_lock();
2656 if (console_drivers == console) {
2657 console_drivers=console->next;
2658 res = 0;
2659 } else if (console_drivers) {
2660 for (a=console_drivers->next, b=console_drivers ;
2661 a; b=a, a=b->next) {
2662 if (a == console) {
2663 b->next = a->next;
2664 res = 0;
2665 break;
2666 }
2667 }
2668 }
2669
2670 if (!res && (console->flags & CON_EXTENDED))
2671 nr_ext_console_drivers--;
2672
2673 /*
2674 * If this isn't the last console and it has CON_CONSDEV set, we
2675 * need to set it on the next preferred console.
2676 */
2677 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678 console_drivers->flags |= CON_CONSDEV;
2679
2680 console->flags &= ~CON_ENABLED;
2681 console_unlock();
2682 console_sysfs_notify();
2683 return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
2687/*
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
2704 struct console *con;
2705
2706 for_each_console(con) {
2707 if (!keep_bootcon && con->flags & CON_BOOT) {
2708 /*
2709 * Make sure to unregister boot consoles whose data
2710 * resides in the init section before the init section
2711 * is discarded. Boot consoles whose data will stick
2712 * around will automatically be unregistered when the
2713 * proper console replaces them.
2714 */
2715 if (init_section_intersects(con, sizeof(*con)))
2716 unregister_console(con);
2717 }
2718 }
2719 hotcpu_notifier(console_cpu_notify, 0);
2720 return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
2728#define PRINTK_PENDING_WAKEUP 0x01
2729#define PRINTK_PENDING_OUTPUT 0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735 int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737 if (pending & PRINTK_PENDING_OUTPUT) {
2738 /* If trylock fails, someone else is doing the printing */
2739 if (console_trylock())
2740 console_unlock();
2741 }
2742
2743 if (pending & PRINTK_PENDING_WAKEUP)
2744 wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748 .func = wake_up_klogd_work_func,
2749 .flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
2754 preempt_disable();
2755 if (waitqueue_active(&log_wait)) {
2756 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758 }
2759 preempt_enable();
2760}
2761
2762int printk_deferred(const char *fmt, ...)
2763{
2764 va_list args;
2765 int r;
2766
2767 preempt_disable();
2768 va_start(args, fmt);
2769 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770 va_end(args);
2771
2772 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774 preempt_enable();
2775
2776 return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789 return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803 unsigned int interval_msecs)
2804{
2805 unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808 return false;
2809
2810 *caller_jiffies = jiffies;
2811 return true;
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828 unsigned long flags;
2829 int err = -EBUSY;
2830
2831 /* The dump callback needs to be set */
2832 if (!dumper->dump)
2833 return -EINVAL;
2834
2835 spin_lock_irqsave(&dump_list_lock, flags);
2836 /* Don't allow registering multiple times */
2837 if (!dumper->registered) {
2838 dumper->registered = 1;
2839 list_add_tail_rcu(&dumper->list, &dump_list);
2840 err = 0;
2841 }
2842 spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844 return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857 unsigned long flags;
2858 int err = -EINVAL;
2859
2860 spin_lock_irqsave(&dump_list_lock, flags);
2861 if (dumper->registered) {
2862 dumper->registered = 0;
2863 list_del_rcu(&dumper->list);
2864 err = 0;
2865 }
2866 spin_unlock_irqrestore(&dump_list_lock, flags);
2867 synchronize_rcu();
2868
2869 return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886 struct kmsg_dumper *dumper;
2887 unsigned long flags;
2888
2889 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890 return;
2891
2892 rcu_read_lock();
2893 list_for_each_entry_rcu(dumper, &dump_list, list) {
2894 if (dumper->max_reason && reason > dumper->max_reason)
2895 continue;
2896
2897 /* initialize iterator with data about the stored records */
2898 dumper->active = true;
2899
2900 raw_spin_lock_irqsave(&logbuf_lock, flags);
2901 dumper->cur_seq = clear_seq;
2902 dumper->cur_idx = clear_idx;
2903 dumper->next_seq = log_next_seq;
2904 dumper->next_idx = log_next_idx;
2905 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906
2907 /* invoke dumper which will iterate over records */
2908 dumper->dump(dumper, reason);
2909
2910 /* reset iterator */
2911 dumper->active = false;
2912 }
2913 rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936 char *line, size_t size, size_t *len)
2937{
2938 struct printk_log *msg;
2939 size_t l = 0;
2940 bool ret = false;
2941
2942 if (!dumper->active)
2943 goto out;
2944
2945 if (dumper->cur_seq < log_first_seq) {
2946 /* messages are gone, move to first available one */
2947 dumper->cur_seq = log_first_seq;
2948 dumper->cur_idx = log_first_idx;
2949 }
2950
2951 /* last entry */
2952 if (dumper->cur_seq >= log_next_seq)
2953 goto out;
2954
2955 msg = log_from_idx(dumper->cur_idx);
2956 l = msg_print_text(msg, 0, syslog, line, size);
2957
2958 dumper->cur_idx = log_next(dumper->cur_idx);
2959 dumper->cur_seq++;
2960 ret = true;
2961out:
2962 if (len)
2963 *len = l;
2964 return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985 char *line, size_t size, size_t *len)
2986{
2987 unsigned long flags;
2988 bool ret;
2989
2990 raw_spin_lock_irqsave(&logbuf_lock, flags);
2991 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994 return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018 char *buf, size_t size, size_t *len)
3019{
3020 unsigned long flags;
3021 u64 seq;
3022 u32 idx;
3023 u64 next_seq;
3024 u32 next_idx;
3025 enum log_flags prev;
3026 size_t l = 0;
3027 bool ret = false;
3028
3029 if (!dumper->active)
3030 goto out;
3031
3032 raw_spin_lock_irqsave(&logbuf_lock, flags);
3033 if (dumper->cur_seq < log_first_seq) {
3034 /* messages are gone, move to first available one */
3035 dumper->cur_seq = log_first_seq;
3036 dumper->cur_idx = log_first_idx;
3037 }
3038
3039 /* last entry */
3040 if (dumper->cur_seq >= dumper->next_seq) {
3041 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042 goto out;
3043 }
3044
3045 /* calculate length of entire buffer */
3046 seq = dumper->cur_seq;
3047 idx = dumper->cur_idx;
3048 prev = 0;
3049 while (seq < dumper->next_seq) {
3050 struct printk_log *msg = log_from_idx(idx);
3051
3052 l += msg_print_text(msg, prev, true, NULL, 0);
3053 idx = log_next(idx);
3054 seq++;
3055 prev = msg->flags;
3056 }
3057
3058 /* move first record forward until length fits into the buffer */
3059 seq = dumper->cur_seq;
3060 idx = dumper->cur_idx;
3061 prev = 0;
3062 while (l > size && seq < dumper->next_seq) {
3063 struct printk_log *msg = log_from_idx(idx);
3064
3065 l -= msg_print_text(msg, prev, true, NULL, 0);
3066 idx = log_next(idx);
3067 seq++;
3068 prev = msg->flags;
3069 }
3070
3071 /* last message in next interation */
3072 next_seq = seq;
3073 next_idx = idx;
3074
3075 l = 0;
3076 while (seq < dumper->next_seq) {
3077 struct printk_log *msg = log_from_idx(idx);
3078
3079 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080 idx = log_next(idx);
3081 seq++;
3082 prev = msg->flags;
3083 }
3084
3085 dumper->next_seq = next_seq;
3086 dumper->next_idx = next_idx;
3087 ret = true;
3088 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090 if (len)
3091 *len = l;
3092 return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108 dumper->cur_seq = clear_seq;
3109 dumper->cur_idx = clear_idx;
3110 dumper->next_seq = log_next_seq;
3111 dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124 unsigned long flags;
3125
3126 raw_spin_lock_irqsave(&logbuf_lock, flags);
3127 kmsg_dump_rewind_nolock(dumper);
3128 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps. Usually used to add arch-specific system identifiers. If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146 va_list args;
3147
3148 va_start(args, fmt);
3149 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150 fmt, args);
3151 va_end(args);
3152}
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165 print_tainted(), init_utsname()->release,
3166 (int)strcspn(init_utsname()->version, " "),
3167 init_utsname()->version);
3168
3169 if (dump_stack_arch_desc_str[0] != '\0')
3170 printk("%sHardware name: %s\n",
3171 log_lvl, dump_stack_arch_desc_str);
3172
3173 print_worker_info(log_lvl, current);
3174}
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185 dump_stack_print_info(log_lvl);
3186
3187 printk("%stask: %p ti: %p task.ti: %p\n",
3188 log_lvl, current, current_thread_info(),
3189 task_thread_info(current));
3190}
3191
3192#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/tty.h>
25#include <linux/tty_driver.h>
26#include <linux/console.h>
27#include <linux/init.h>
28#include <linux/jiffies.h>
29#include <linux/nmi.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/delay.h>
33#include <linux/smp.h>
34#include <linux/security.h>
35#include <linux/memblock.h>
36#include <linux/syscalls.h>
37#include <linux/vmcore_info.h>
38#include <linux/ratelimit.h>
39#include <linux/kmsg_dump.h>
40#include <linux/syslog.h>
41#include <linux/cpu.h>
42#include <linux/rculist.h>
43#include <linux/poll.h>
44#include <linux/irq_work.h>
45#include <linux/ctype.h>
46#include <linux/uio.h>
47#include <linux/sched/clock.h>
48#include <linux/sched/debug.h>
49#include <linux/sched/task_stack.h>
50
51#include <linux/uaccess.h>
52#include <asm/sections.h>
53
54#include <trace/events/initcall.h>
55#define CREATE_TRACE_POINTS
56#include <trace/events/printk.h>
57
58#include "printk_ringbuffer.h"
59#include "console_cmdline.h"
60#include "braille.h"
61#include "internal.h"
62
63int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68};
69EXPORT_SYMBOL_GPL(console_printk);
70
71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72EXPORT_SYMBOL(ignore_console_lock_warning);
73
74EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75
76/*
77 * Low level drivers may need that to know if they can schedule in
78 * their unblank() callback or not. So let's export it.
79 */
80int oops_in_progress;
81EXPORT_SYMBOL(oops_in_progress);
82
83/*
84 * console_mutex protects console_list updates and console->flags updates.
85 * The flags are synchronized only for consoles that are registered, i.e.
86 * accessible via the console list.
87 */
88static DEFINE_MUTEX(console_mutex);
89
90/*
91 * console_sem protects updates to console->seq
92 * and also provides serialization for console printing.
93 */
94static DEFINE_SEMAPHORE(console_sem, 1);
95HLIST_HEAD(console_list);
96EXPORT_SYMBOL_GPL(console_list);
97DEFINE_STATIC_SRCU(console_srcu);
98
99/*
100 * System may need to suppress printk message under certain
101 * circumstances, like after kernel panic happens.
102 */
103int __read_mostly suppress_printk;
104
105#ifdef CONFIG_LOCKDEP
106static struct lockdep_map console_lock_dep_map = {
107 .name = "console_lock"
108};
109
110void lockdep_assert_console_list_lock_held(void)
111{
112 lockdep_assert_held(&console_mutex);
113}
114EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
115#endif
116
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118bool console_srcu_read_lock_is_held(void)
119{
120 return srcu_read_lock_held(&console_srcu);
121}
122EXPORT_SYMBOL(console_srcu_read_lock_is_held);
123#endif
124
125enum devkmsg_log_bits {
126 __DEVKMSG_LOG_BIT_ON = 0,
127 __DEVKMSG_LOG_BIT_OFF,
128 __DEVKMSG_LOG_BIT_LOCK,
129};
130
131enum devkmsg_log_masks {
132 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
133 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
134 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
135};
136
137/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
138#define DEVKMSG_LOG_MASK_DEFAULT 0
139
140static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141
142static int __control_devkmsg(char *str)
143{
144 size_t len;
145
146 if (!str)
147 return -EINVAL;
148
149 len = str_has_prefix(str, "on");
150 if (len) {
151 devkmsg_log = DEVKMSG_LOG_MASK_ON;
152 return len;
153 }
154
155 len = str_has_prefix(str, "off");
156 if (len) {
157 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
158 return len;
159 }
160
161 len = str_has_prefix(str, "ratelimit");
162 if (len) {
163 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
164 return len;
165 }
166
167 return -EINVAL;
168}
169
170static int __init control_devkmsg(char *str)
171{
172 if (__control_devkmsg(str) < 0) {
173 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
174 return 1;
175 }
176
177 /*
178 * Set sysctl string accordingly:
179 */
180 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
181 strcpy(devkmsg_log_str, "on");
182 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
183 strcpy(devkmsg_log_str, "off");
184 /* else "ratelimit" which is set by default. */
185
186 /*
187 * Sysctl cannot change it anymore. The kernel command line setting of
188 * this parameter is to force the setting to be permanent throughout the
189 * runtime of the system. This is a precation measure against userspace
190 * trying to be a smarta** and attempting to change it up on us.
191 */
192 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
193
194 return 1;
195}
196__setup("printk.devkmsg=", control_devkmsg);
197
198char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
199#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
200int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
201 void *buffer, size_t *lenp, loff_t *ppos)
202{
203 char old_str[DEVKMSG_STR_MAX_SIZE];
204 unsigned int old;
205 int err;
206
207 if (write) {
208 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
209 return -EINVAL;
210
211 old = devkmsg_log;
212 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
213 }
214
215 err = proc_dostring(table, write, buffer, lenp, ppos);
216 if (err)
217 return err;
218
219 if (write) {
220 err = __control_devkmsg(devkmsg_log_str);
221
222 /*
223 * Do not accept an unknown string OR a known string with
224 * trailing crap...
225 */
226 if (err < 0 || (err + 1 != *lenp)) {
227
228 /* ... and restore old setting. */
229 devkmsg_log = old;
230 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
231
232 return -EINVAL;
233 }
234 }
235
236 return 0;
237}
238#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
239
240/**
241 * console_list_lock - Lock the console list
242 *
243 * For console list or console->flags updates
244 */
245void console_list_lock(void)
246{
247 /*
248 * In unregister_console() and console_force_preferred_locked(),
249 * synchronize_srcu() is called with the console_list_lock held.
250 * Therefore it is not allowed that the console_list_lock is taken
251 * with the srcu_lock held.
252 *
253 * Detecting if this context is really in the read-side critical
254 * section is only possible if the appropriate debug options are
255 * enabled.
256 */
257 WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
258 srcu_read_lock_held(&console_srcu));
259
260 mutex_lock(&console_mutex);
261}
262EXPORT_SYMBOL(console_list_lock);
263
264/**
265 * console_list_unlock - Unlock the console list
266 *
267 * Counterpart to console_list_lock()
268 */
269void console_list_unlock(void)
270{
271 mutex_unlock(&console_mutex);
272}
273EXPORT_SYMBOL(console_list_unlock);
274
275/**
276 * console_srcu_read_lock - Register a new reader for the
277 * SRCU-protected console list
278 *
279 * Use for_each_console_srcu() to iterate the console list
280 *
281 * Context: Any context.
282 * Return: A cookie to pass to console_srcu_read_unlock().
283 */
284int console_srcu_read_lock(void)
285{
286 return srcu_read_lock_nmisafe(&console_srcu);
287}
288EXPORT_SYMBOL(console_srcu_read_lock);
289
290/**
291 * console_srcu_read_unlock - Unregister an old reader from
292 * the SRCU-protected console list
293 * @cookie: cookie returned from console_srcu_read_lock()
294 *
295 * Counterpart to console_srcu_read_lock()
296 */
297void console_srcu_read_unlock(int cookie)
298{
299 srcu_read_unlock_nmisafe(&console_srcu, cookie);
300}
301EXPORT_SYMBOL(console_srcu_read_unlock);
302
303/*
304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
305 * macros instead of functions so that _RET_IP_ contains useful information.
306 */
307#define down_console_sem() do { \
308 down(&console_sem);\
309 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
310} while (0)
311
312static int __down_trylock_console_sem(unsigned long ip)
313{
314 int lock_failed;
315 unsigned long flags;
316
317 /*
318 * Here and in __up_console_sem() we need to be in safe mode,
319 * because spindump/WARN/etc from under console ->lock will
320 * deadlock in printk()->down_trylock_console_sem() otherwise.
321 */
322 printk_safe_enter_irqsave(flags);
323 lock_failed = down_trylock(&console_sem);
324 printk_safe_exit_irqrestore(flags);
325
326 if (lock_failed)
327 return 1;
328 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
329 return 0;
330}
331#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
332
333static void __up_console_sem(unsigned long ip)
334{
335 unsigned long flags;
336
337 mutex_release(&console_lock_dep_map, ip);
338
339 printk_safe_enter_irqsave(flags);
340 up(&console_sem);
341 printk_safe_exit_irqrestore(flags);
342}
343#define up_console_sem() __up_console_sem(_RET_IP_)
344
345static bool panic_in_progress(void)
346{
347 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
348}
349
350/* Return true if a panic is in progress on the current CPU. */
351bool this_cpu_in_panic(void)
352{
353 /*
354 * We can use raw_smp_processor_id() here because it is impossible for
355 * the task to be migrated to the panic_cpu, or away from it. If
356 * panic_cpu has already been set, and we're not currently executing on
357 * that CPU, then we never will be.
358 */
359 return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
360}
361
362/*
363 * Return true if a panic is in progress on a remote CPU.
364 *
365 * On true, the local CPU should immediately release any printing resources
366 * that may be needed by the panic CPU.
367 */
368bool other_cpu_in_panic(void)
369{
370 return (panic_in_progress() && !this_cpu_in_panic());
371}
372
373/*
374 * This is used for debugging the mess that is the VT code by
375 * keeping track if we have the console semaphore held. It's
376 * definitely not the perfect debug tool (we don't know if _WE_
377 * hold it and are racing, but it helps tracking those weird code
378 * paths in the console code where we end up in places I want
379 * locked without the console semaphore held).
380 */
381static int console_locked;
382
383/*
384 * Array of consoles built from command line options (console=)
385 */
386
387#define MAX_CMDLINECONSOLES 8
388
389static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
390
391static int preferred_console = -1;
392int console_set_on_cmdline;
393EXPORT_SYMBOL(console_set_on_cmdline);
394
395/* Flag: console code may call schedule() */
396static int console_may_schedule;
397
398enum con_msg_format_flags {
399 MSG_FORMAT_DEFAULT = 0,
400 MSG_FORMAT_SYSLOG = (1 << 0),
401};
402
403static int console_msg_format = MSG_FORMAT_DEFAULT;
404
405/*
406 * The printk log buffer consists of a sequenced collection of records, each
407 * containing variable length message text. Every record also contains its
408 * own meta-data (@info).
409 *
410 * Every record meta-data carries the timestamp in microseconds, as well as
411 * the standard userspace syslog level and syslog facility. The usual kernel
412 * messages use LOG_KERN; userspace-injected messages always carry a matching
413 * syslog facility, by default LOG_USER. The origin of every message can be
414 * reliably determined that way.
415 *
416 * The human readable log message of a record is available in @text, the
417 * length of the message text in @text_len. The stored message is not
418 * terminated.
419 *
420 * Optionally, a record can carry a dictionary of properties (key/value
421 * pairs), to provide userspace with a machine-readable message context.
422 *
423 * Examples for well-defined, commonly used property names are:
424 * DEVICE=b12:8 device identifier
425 * b12:8 block dev_t
426 * c127:3 char dev_t
427 * n8 netdev ifindex
428 * +sound:card0 subsystem:devname
429 * SUBSYSTEM=pci driver-core subsystem name
430 *
431 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
432 * and values are terminated by a '\0' character.
433 *
434 * Example of record values:
435 * record.text_buf = "it's a line" (unterminated)
436 * record.info.seq = 56
437 * record.info.ts_nsec = 36863
438 * record.info.text_len = 11
439 * record.info.facility = 0 (LOG_KERN)
440 * record.info.flags = 0
441 * record.info.level = 3 (LOG_ERR)
442 * record.info.caller_id = 299 (task 299)
443 * record.info.dev_info.subsystem = "pci" (terminated)
444 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
445 *
446 * The 'struct printk_info' buffer must never be directly exported to
447 * userspace, it is a kernel-private implementation detail that might
448 * need to be changed in the future, when the requirements change.
449 *
450 * /dev/kmsg exports the structured data in the following line format:
451 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
452 *
453 * Users of the export format should ignore possible additional values
454 * separated by ',', and find the message after the ';' character.
455 *
456 * The optional key/value pairs are attached as continuation lines starting
457 * with a space character and terminated by a newline. All possible
458 * non-prinatable characters are escaped in the "\xff" notation.
459 */
460
461/* syslog_lock protects syslog_* variables and write access to clear_seq. */
462static DEFINE_MUTEX(syslog_lock);
463
464#ifdef CONFIG_PRINTK
465DECLARE_WAIT_QUEUE_HEAD(log_wait);
466/* All 3 protected by @syslog_lock. */
467/* the next printk record to read by syslog(READ) or /proc/kmsg */
468static u64 syslog_seq;
469static size_t syslog_partial;
470static bool syslog_time;
471
472struct latched_seq {
473 seqcount_latch_t latch;
474 u64 val[2];
475};
476
477/*
478 * The next printk record to read after the last 'clear' command. There are
479 * two copies (updated with seqcount_latch) so that reads can locklessly
480 * access a valid value. Writers are synchronized by @syslog_lock.
481 */
482static struct latched_seq clear_seq = {
483 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
484 .val[0] = 0,
485 .val[1] = 0,
486};
487
488#define LOG_LEVEL(v) ((v) & 0x07)
489#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
490
491/* record buffer */
492#define LOG_ALIGN __alignof__(unsigned long)
493#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
494#define LOG_BUF_LEN_MAX (u32)(1 << 31)
495static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
496static char *log_buf = __log_buf;
497static u32 log_buf_len = __LOG_BUF_LEN;
498
499/*
500 * Define the average message size. This only affects the number of
501 * descriptors that will be available. Underestimating is better than
502 * overestimating (too many available descriptors is better than not enough).
503 */
504#define PRB_AVGBITS 5 /* 32 character average length */
505
506#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
507#error CONFIG_LOG_BUF_SHIFT value too small.
508#endif
509_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
510 PRB_AVGBITS, &__log_buf[0]);
511
512static struct printk_ringbuffer printk_rb_dynamic;
513
514struct printk_ringbuffer *prb = &printk_rb_static;
515
516/*
517 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
518 * per_cpu_areas are initialised. This variable is set to true when
519 * it's safe to access per-CPU data.
520 */
521static bool __printk_percpu_data_ready __ro_after_init;
522
523bool printk_percpu_data_ready(void)
524{
525 return __printk_percpu_data_ready;
526}
527
528/* Must be called under syslog_lock. */
529static void latched_seq_write(struct latched_seq *ls, u64 val)
530{
531 raw_write_seqcount_latch(&ls->latch);
532 ls->val[0] = val;
533 raw_write_seqcount_latch(&ls->latch);
534 ls->val[1] = val;
535}
536
537/* Can be called from any context. */
538static u64 latched_seq_read_nolock(struct latched_seq *ls)
539{
540 unsigned int seq;
541 unsigned int idx;
542 u64 val;
543
544 do {
545 seq = raw_read_seqcount_latch(&ls->latch);
546 idx = seq & 0x1;
547 val = ls->val[idx];
548 } while (raw_read_seqcount_latch_retry(&ls->latch, seq));
549
550 return val;
551}
552
553/* Return log buffer address */
554char *log_buf_addr_get(void)
555{
556 return log_buf;
557}
558
559/* Return log buffer size */
560u32 log_buf_len_get(void)
561{
562 return log_buf_len;
563}
564
565/*
566 * Define how much of the log buffer we could take at maximum. The value
567 * must be greater than two. Note that only half of the buffer is available
568 * when the index points to the middle.
569 */
570#define MAX_LOG_TAKE_PART 4
571static const char trunc_msg[] = "<truncated>";
572
573static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
574{
575 /*
576 * The message should not take the whole buffer. Otherwise, it might
577 * get removed too soon.
578 */
579 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
580
581 if (*text_len > max_text_len)
582 *text_len = max_text_len;
583
584 /* enable the warning message (if there is room) */
585 *trunc_msg_len = strlen(trunc_msg);
586 if (*text_len >= *trunc_msg_len)
587 *text_len -= *trunc_msg_len;
588 else
589 *trunc_msg_len = 0;
590}
591
592int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
593
594static int syslog_action_restricted(int type)
595{
596 if (dmesg_restrict)
597 return 1;
598 /*
599 * Unless restricted, we allow "read all" and "get buffer size"
600 * for everybody.
601 */
602 return type != SYSLOG_ACTION_READ_ALL &&
603 type != SYSLOG_ACTION_SIZE_BUFFER;
604}
605
606static int check_syslog_permissions(int type, int source)
607{
608 /*
609 * If this is from /proc/kmsg and we've already opened it, then we've
610 * already done the capabilities checks at open time.
611 */
612 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
613 goto ok;
614
615 if (syslog_action_restricted(type)) {
616 if (capable(CAP_SYSLOG))
617 goto ok;
618 return -EPERM;
619 }
620ok:
621 return security_syslog(type);
622}
623
624static void append_char(char **pp, char *e, char c)
625{
626 if (*pp < e)
627 *(*pp)++ = c;
628}
629
630static ssize_t info_print_ext_header(char *buf, size_t size,
631 struct printk_info *info)
632{
633 u64 ts_usec = info->ts_nsec;
634 char caller[20];
635#ifdef CONFIG_PRINTK_CALLER
636 u32 id = info->caller_id;
637
638 snprintf(caller, sizeof(caller), ",caller=%c%u",
639 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
640#else
641 caller[0] = '\0';
642#endif
643
644 do_div(ts_usec, 1000);
645
646 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
647 (info->facility << 3) | info->level, info->seq,
648 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
649}
650
651static ssize_t msg_add_ext_text(char *buf, size_t size,
652 const char *text, size_t text_len,
653 unsigned char endc)
654{
655 char *p = buf, *e = buf + size;
656 size_t i;
657
658 /* escape non-printable characters */
659 for (i = 0; i < text_len; i++) {
660 unsigned char c = text[i];
661
662 if (c < ' ' || c >= 127 || c == '\\')
663 p += scnprintf(p, e - p, "\\x%02x", c);
664 else
665 append_char(&p, e, c);
666 }
667 append_char(&p, e, endc);
668
669 return p - buf;
670}
671
672static ssize_t msg_add_dict_text(char *buf, size_t size,
673 const char *key, const char *val)
674{
675 size_t val_len = strlen(val);
676 ssize_t len;
677
678 if (!val_len)
679 return 0;
680
681 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
682 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
683 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
684
685 return len;
686}
687
688static ssize_t msg_print_ext_body(char *buf, size_t size,
689 char *text, size_t text_len,
690 struct dev_printk_info *dev_info)
691{
692 ssize_t len;
693
694 len = msg_add_ext_text(buf, size, text, text_len, '\n');
695
696 if (!dev_info)
697 goto out;
698
699 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
700 dev_info->subsystem);
701 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
702 dev_info->device);
703out:
704 return len;
705}
706
707/* /dev/kmsg - userspace message inject/listen interface */
708struct devkmsg_user {
709 atomic64_t seq;
710 struct ratelimit_state rs;
711 struct mutex lock;
712 struct printk_buffers pbufs;
713};
714
715static __printf(3, 4) __cold
716int devkmsg_emit(int facility, int level, const char *fmt, ...)
717{
718 va_list args;
719 int r;
720
721 va_start(args, fmt);
722 r = vprintk_emit(facility, level, NULL, fmt, args);
723 va_end(args);
724
725 return r;
726}
727
728static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
729{
730 char *buf, *line;
731 int level = default_message_loglevel;
732 int facility = 1; /* LOG_USER */
733 struct file *file = iocb->ki_filp;
734 struct devkmsg_user *user = file->private_data;
735 size_t len = iov_iter_count(from);
736 ssize_t ret = len;
737
738 if (len > PRINTKRB_RECORD_MAX)
739 return -EINVAL;
740
741 /* Ignore when user logging is disabled. */
742 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
743 return len;
744
745 /* Ratelimit when not explicitly enabled. */
746 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
747 if (!___ratelimit(&user->rs, current->comm))
748 return ret;
749 }
750
751 buf = kmalloc(len+1, GFP_KERNEL);
752 if (buf == NULL)
753 return -ENOMEM;
754
755 buf[len] = '\0';
756 if (!copy_from_iter_full(buf, len, from)) {
757 kfree(buf);
758 return -EFAULT;
759 }
760
761 /*
762 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
763 * the decimal value represents 32bit, the lower 3 bit are the log
764 * level, the rest are the log facility.
765 *
766 * If no prefix or no userspace facility is specified, we
767 * enforce LOG_USER, to be able to reliably distinguish
768 * kernel-generated messages from userspace-injected ones.
769 */
770 line = buf;
771 if (line[0] == '<') {
772 char *endp = NULL;
773 unsigned int u;
774
775 u = simple_strtoul(line + 1, &endp, 10);
776 if (endp && endp[0] == '>') {
777 level = LOG_LEVEL(u);
778 if (LOG_FACILITY(u) != 0)
779 facility = LOG_FACILITY(u);
780 endp++;
781 line = endp;
782 }
783 }
784
785 devkmsg_emit(facility, level, "%s", line);
786 kfree(buf);
787 return ret;
788}
789
790static ssize_t devkmsg_read(struct file *file, char __user *buf,
791 size_t count, loff_t *ppos)
792{
793 struct devkmsg_user *user = file->private_data;
794 char *outbuf = &user->pbufs.outbuf[0];
795 struct printk_message pmsg = {
796 .pbufs = &user->pbufs,
797 };
798 ssize_t ret;
799
800 ret = mutex_lock_interruptible(&user->lock);
801 if (ret)
802 return ret;
803
804 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
805 if (file->f_flags & O_NONBLOCK) {
806 ret = -EAGAIN;
807 goto out;
808 }
809
810 /*
811 * Guarantee this task is visible on the waitqueue before
812 * checking the wake condition.
813 *
814 * The full memory barrier within set_current_state() of
815 * prepare_to_wait_event() pairs with the full memory barrier
816 * within wq_has_sleeper().
817 *
818 * This pairs with __wake_up_klogd:A.
819 */
820 ret = wait_event_interruptible(log_wait,
821 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
822 false)); /* LMM(devkmsg_read:A) */
823 if (ret)
824 goto out;
825 }
826
827 if (pmsg.dropped) {
828 /* our last seen message is gone, return error and reset */
829 atomic64_set(&user->seq, pmsg.seq);
830 ret = -EPIPE;
831 goto out;
832 }
833
834 atomic64_set(&user->seq, pmsg.seq + 1);
835
836 if (pmsg.outbuf_len > count) {
837 ret = -EINVAL;
838 goto out;
839 }
840
841 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
842 ret = -EFAULT;
843 goto out;
844 }
845 ret = pmsg.outbuf_len;
846out:
847 mutex_unlock(&user->lock);
848 return ret;
849}
850
851/*
852 * Be careful when modifying this function!!!
853 *
854 * Only few operations are supported because the device works only with the
855 * entire variable length messages (records). Non-standard values are
856 * returned in the other cases and has been this way for quite some time.
857 * User space applications might depend on this behavior.
858 */
859static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
860{
861 struct devkmsg_user *user = file->private_data;
862 loff_t ret = 0;
863
864 if (offset)
865 return -ESPIPE;
866
867 switch (whence) {
868 case SEEK_SET:
869 /* the first record */
870 atomic64_set(&user->seq, prb_first_valid_seq(prb));
871 break;
872 case SEEK_DATA:
873 /*
874 * The first record after the last SYSLOG_ACTION_CLEAR,
875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 * changes no global state, and does not clear anything.
877 */
878 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
879 break;
880 case SEEK_END:
881 /* after the last record */
882 atomic64_set(&user->seq, prb_next_seq(prb));
883 break;
884 default:
885 ret = -EINVAL;
886 }
887 return ret;
888}
889
890static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
891{
892 struct devkmsg_user *user = file->private_data;
893 struct printk_info info;
894 __poll_t ret = 0;
895
896 poll_wait(file, &log_wait, wait);
897
898 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
899 /* return error when data has vanished underneath us */
900 if (info.seq != atomic64_read(&user->seq))
901 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
902 else
903 ret = EPOLLIN|EPOLLRDNORM;
904 }
905
906 return ret;
907}
908
909static int devkmsg_open(struct inode *inode, struct file *file)
910{
911 struct devkmsg_user *user;
912 int err;
913
914 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
915 return -EPERM;
916
917 /* write-only does not need any file context */
918 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
919 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
920 SYSLOG_FROM_READER);
921 if (err)
922 return err;
923 }
924
925 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
926 if (!user)
927 return -ENOMEM;
928
929 ratelimit_default_init(&user->rs);
930 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
931
932 mutex_init(&user->lock);
933
934 atomic64_set(&user->seq, prb_first_valid_seq(prb));
935
936 file->private_data = user;
937 return 0;
938}
939
940static int devkmsg_release(struct inode *inode, struct file *file)
941{
942 struct devkmsg_user *user = file->private_data;
943
944 ratelimit_state_exit(&user->rs);
945
946 mutex_destroy(&user->lock);
947 kvfree(user);
948 return 0;
949}
950
951const struct file_operations kmsg_fops = {
952 .open = devkmsg_open,
953 .read = devkmsg_read,
954 .write_iter = devkmsg_write,
955 .llseek = devkmsg_llseek,
956 .poll = devkmsg_poll,
957 .release = devkmsg_release,
958};
959
960#ifdef CONFIG_VMCORE_INFO
961/*
962 * This appends the listed symbols to /proc/vmcore
963 *
964 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
965 * obtain access to symbols that are otherwise very difficult to locate. These
966 * symbols are specifically used so that utilities can access and extract the
967 * dmesg log from a vmcore file after a crash.
968 */
969void log_buf_vmcoreinfo_setup(void)
970{
971 struct dev_printk_info *dev_info = NULL;
972
973 VMCOREINFO_SYMBOL(prb);
974 VMCOREINFO_SYMBOL(printk_rb_static);
975 VMCOREINFO_SYMBOL(clear_seq);
976
977 /*
978 * Export struct size and field offsets. User space tools can
979 * parse it and detect any changes to structure down the line.
980 */
981
982 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
983 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
984 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
985 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
986
987 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
988 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
989 VMCOREINFO_OFFSET(prb_desc_ring, descs);
990 VMCOREINFO_OFFSET(prb_desc_ring, infos);
991 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
992 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
993
994 VMCOREINFO_STRUCT_SIZE(prb_desc);
995 VMCOREINFO_OFFSET(prb_desc, state_var);
996 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
997
998 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
999 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1000 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1001
1002 VMCOREINFO_STRUCT_SIZE(printk_info);
1003 VMCOREINFO_OFFSET(printk_info, seq);
1004 VMCOREINFO_OFFSET(printk_info, ts_nsec);
1005 VMCOREINFO_OFFSET(printk_info, text_len);
1006 VMCOREINFO_OFFSET(printk_info, caller_id);
1007 VMCOREINFO_OFFSET(printk_info, dev_info);
1008
1009 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1010 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1011 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1012 VMCOREINFO_OFFSET(dev_printk_info, device);
1013 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1014
1015 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1016 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1017 VMCOREINFO_OFFSET(prb_data_ring, data);
1018 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1019 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1020
1021 VMCOREINFO_SIZE(atomic_long_t);
1022 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1023
1024 VMCOREINFO_STRUCT_SIZE(latched_seq);
1025 VMCOREINFO_OFFSET(latched_seq, val);
1026}
1027#endif
1028
1029/* requested log_buf_len from kernel cmdline */
1030static unsigned long __initdata new_log_buf_len;
1031
1032/* we practice scaling the ring buffer by powers of 2 */
1033static void __init log_buf_len_update(u64 size)
1034{
1035 if (size > (u64)LOG_BUF_LEN_MAX) {
1036 size = (u64)LOG_BUF_LEN_MAX;
1037 pr_err("log_buf over 2G is not supported.\n");
1038 }
1039
1040 if (size)
1041 size = roundup_pow_of_two(size);
1042 if (size > log_buf_len)
1043 new_log_buf_len = (unsigned long)size;
1044}
1045
1046/* save requested log_buf_len since it's too early to process it */
1047static int __init log_buf_len_setup(char *str)
1048{
1049 u64 size;
1050
1051 if (!str)
1052 return -EINVAL;
1053
1054 size = memparse(str, &str);
1055
1056 log_buf_len_update(size);
1057
1058 return 0;
1059}
1060early_param("log_buf_len", log_buf_len_setup);
1061
1062#ifdef CONFIG_SMP
1063#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1064
1065static void __init log_buf_add_cpu(void)
1066{
1067 unsigned int cpu_extra;
1068
1069 /*
1070 * archs should set up cpu_possible_bits properly with
1071 * set_cpu_possible() after setup_arch() but just in
1072 * case lets ensure this is valid.
1073 */
1074 if (num_possible_cpus() == 1)
1075 return;
1076
1077 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1078
1079 /* by default this will only continue through for large > 64 CPUs */
1080 if (cpu_extra <= __LOG_BUF_LEN / 2)
1081 return;
1082
1083 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1084 __LOG_CPU_MAX_BUF_LEN);
1085 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1086 cpu_extra);
1087 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1088
1089 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1090}
1091#else /* !CONFIG_SMP */
1092static inline void log_buf_add_cpu(void) {}
1093#endif /* CONFIG_SMP */
1094
1095static void __init set_percpu_data_ready(void)
1096{
1097 __printk_percpu_data_ready = true;
1098}
1099
1100static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1101 struct printk_record *r)
1102{
1103 struct prb_reserved_entry e;
1104 struct printk_record dest_r;
1105
1106 prb_rec_init_wr(&dest_r, r->info->text_len);
1107
1108 if (!prb_reserve(&e, rb, &dest_r))
1109 return 0;
1110
1111 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1112 dest_r.info->text_len = r->info->text_len;
1113 dest_r.info->facility = r->info->facility;
1114 dest_r.info->level = r->info->level;
1115 dest_r.info->flags = r->info->flags;
1116 dest_r.info->ts_nsec = r->info->ts_nsec;
1117 dest_r.info->caller_id = r->info->caller_id;
1118 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1119
1120 prb_final_commit(&e);
1121
1122 return prb_record_text_space(&e);
1123}
1124
1125static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1126
1127void __init setup_log_buf(int early)
1128{
1129 struct printk_info *new_infos;
1130 unsigned int new_descs_count;
1131 struct prb_desc *new_descs;
1132 struct printk_info info;
1133 struct printk_record r;
1134 unsigned int text_size;
1135 size_t new_descs_size;
1136 size_t new_infos_size;
1137 unsigned long flags;
1138 char *new_log_buf;
1139 unsigned int free;
1140 u64 seq;
1141
1142 /*
1143 * Some archs call setup_log_buf() multiple times - first is very
1144 * early, e.g. from setup_arch(), and second - when percpu_areas
1145 * are initialised.
1146 */
1147 if (!early)
1148 set_percpu_data_ready();
1149
1150 if (log_buf != __log_buf)
1151 return;
1152
1153 if (!early && !new_log_buf_len)
1154 log_buf_add_cpu();
1155
1156 if (!new_log_buf_len)
1157 return;
1158
1159 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1160 if (new_descs_count == 0) {
1161 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1162 return;
1163 }
1164
1165 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1166 if (unlikely(!new_log_buf)) {
1167 pr_err("log_buf_len: %lu text bytes not available\n",
1168 new_log_buf_len);
1169 return;
1170 }
1171
1172 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1173 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1174 if (unlikely(!new_descs)) {
1175 pr_err("log_buf_len: %zu desc bytes not available\n",
1176 new_descs_size);
1177 goto err_free_log_buf;
1178 }
1179
1180 new_infos_size = new_descs_count * sizeof(struct printk_info);
1181 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1182 if (unlikely(!new_infos)) {
1183 pr_err("log_buf_len: %zu info bytes not available\n",
1184 new_infos_size);
1185 goto err_free_descs;
1186 }
1187
1188 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1189
1190 prb_init(&printk_rb_dynamic,
1191 new_log_buf, ilog2(new_log_buf_len),
1192 new_descs, ilog2(new_descs_count),
1193 new_infos);
1194
1195 local_irq_save(flags);
1196
1197 log_buf_len = new_log_buf_len;
1198 log_buf = new_log_buf;
1199 new_log_buf_len = 0;
1200
1201 free = __LOG_BUF_LEN;
1202 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1203 text_size = add_to_rb(&printk_rb_dynamic, &r);
1204 if (text_size > free)
1205 free = 0;
1206 else
1207 free -= text_size;
1208 }
1209
1210 prb = &printk_rb_dynamic;
1211
1212 local_irq_restore(flags);
1213
1214 /*
1215 * Copy any remaining messages that might have appeared from
1216 * NMI context after copying but before switching to the
1217 * dynamic buffer.
1218 */
1219 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1220 text_size = add_to_rb(&printk_rb_dynamic, &r);
1221 if (text_size > free)
1222 free = 0;
1223 else
1224 free -= text_size;
1225 }
1226
1227 if (seq != prb_next_seq(&printk_rb_static)) {
1228 pr_err("dropped %llu messages\n",
1229 prb_next_seq(&printk_rb_static) - seq);
1230 }
1231
1232 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1233 pr_info("early log buf free: %u(%u%%)\n",
1234 free, (free * 100) / __LOG_BUF_LEN);
1235 return;
1236
1237err_free_descs:
1238 memblock_free(new_descs, new_descs_size);
1239err_free_log_buf:
1240 memblock_free(new_log_buf, new_log_buf_len);
1241}
1242
1243static bool __read_mostly ignore_loglevel;
1244
1245static int __init ignore_loglevel_setup(char *str)
1246{
1247 ignore_loglevel = true;
1248 pr_info("debug: ignoring loglevel setting.\n");
1249
1250 return 0;
1251}
1252
1253early_param("ignore_loglevel", ignore_loglevel_setup);
1254module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1255MODULE_PARM_DESC(ignore_loglevel,
1256 "ignore loglevel setting (prints all kernel messages to the console)");
1257
1258static bool suppress_message_printing(int level)
1259{
1260 return (level >= console_loglevel && !ignore_loglevel);
1261}
1262
1263#ifdef CONFIG_BOOT_PRINTK_DELAY
1264
1265static int boot_delay; /* msecs delay after each printk during bootup */
1266static unsigned long long loops_per_msec; /* based on boot_delay */
1267
1268static int __init boot_delay_setup(char *str)
1269{
1270 unsigned long lpj;
1271
1272 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1273 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1274
1275 get_option(&str, &boot_delay);
1276 if (boot_delay > 10 * 1000)
1277 boot_delay = 0;
1278
1279 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1280 "HZ: %d, loops_per_msec: %llu\n",
1281 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1282 return 0;
1283}
1284early_param("boot_delay", boot_delay_setup);
1285
1286static void boot_delay_msec(int level)
1287{
1288 unsigned long long k;
1289 unsigned long timeout;
1290
1291 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1292 || suppress_message_printing(level)) {
1293 return;
1294 }
1295
1296 k = (unsigned long long)loops_per_msec * boot_delay;
1297
1298 timeout = jiffies + msecs_to_jiffies(boot_delay);
1299 while (k) {
1300 k--;
1301 cpu_relax();
1302 /*
1303 * use (volatile) jiffies to prevent
1304 * compiler reduction; loop termination via jiffies
1305 * is secondary and may or may not happen.
1306 */
1307 if (time_after(jiffies, timeout))
1308 break;
1309 touch_nmi_watchdog();
1310 }
1311}
1312#else
1313static inline void boot_delay_msec(int level)
1314{
1315}
1316#endif
1317
1318static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1319module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1320
1321static size_t print_syslog(unsigned int level, char *buf)
1322{
1323 return sprintf(buf, "<%u>", level);
1324}
1325
1326static size_t print_time(u64 ts, char *buf)
1327{
1328 unsigned long rem_nsec = do_div(ts, 1000000000);
1329
1330 return sprintf(buf, "[%5lu.%06lu]",
1331 (unsigned long)ts, rem_nsec / 1000);
1332}
1333
1334#ifdef CONFIG_PRINTK_CALLER
1335static size_t print_caller(u32 id, char *buf)
1336{
1337 char caller[12];
1338
1339 snprintf(caller, sizeof(caller), "%c%u",
1340 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1341 return sprintf(buf, "[%6s]", caller);
1342}
1343#else
1344#define print_caller(id, buf) 0
1345#endif
1346
1347static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1348 bool time, char *buf)
1349{
1350 size_t len = 0;
1351
1352 if (syslog)
1353 len = print_syslog((info->facility << 3) | info->level, buf);
1354
1355 if (time)
1356 len += print_time(info->ts_nsec, buf + len);
1357
1358 len += print_caller(info->caller_id, buf + len);
1359
1360 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1361 buf[len++] = ' ';
1362 buf[len] = '\0';
1363 }
1364
1365 return len;
1366}
1367
1368/*
1369 * Prepare the record for printing. The text is shifted within the given
1370 * buffer to avoid a need for another one. The following operations are
1371 * done:
1372 *
1373 * - Add prefix for each line.
1374 * - Drop truncated lines that no longer fit into the buffer.
1375 * - Add the trailing newline that has been removed in vprintk_store().
1376 * - Add a string terminator.
1377 *
1378 * Since the produced string is always terminated, the maximum possible
1379 * return value is @r->text_buf_size - 1;
1380 *
1381 * Return: The length of the updated/prepared text, including the added
1382 * prefixes and the newline. The terminator is not counted. The dropped
1383 * line(s) are not counted.
1384 */
1385static size_t record_print_text(struct printk_record *r, bool syslog,
1386 bool time)
1387{
1388 size_t text_len = r->info->text_len;
1389 size_t buf_size = r->text_buf_size;
1390 char *text = r->text_buf;
1391 char prefix[PRINTK_PREFIX_MAX];
1392 bool truncated = false;
1393 size_t prefix_len;
1394 size_t line_len;
1395 size_t len = 0;
1396 char *next;
1397
1398 /*
1399 * If the message was truncated because the buffer was not large
1400 * enough, treat the available text as if it were the full text.
1401 */
1402 if (text_len > buf_size)
1403 text_len = buf_size;
1404
1405 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1406
1407 /*
1408 * @text_len: bytes of unprocessed text
1409 * @line_len: bytes of current line _without_ newline
1410 * @text: pointer to beginning of current line
1411 * @len: number of bytes prepared in r->text_buf
1412 */
1413 for (;;) {
1414 next = memchr(text, '\n', text_len);
1415 if (next) {
1416 line_len = next - text;
1417 } else {
1418 /* Drop truncated line(s). */
1419 if (truncated)
1420 break;
1421 line_len = text_len;
1422 }
1423
1424 /*
1425 * Truncate the text if there is not enough space to add the
1426 * prefix and a trailing newline and a terminator.
1427 */
1428 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1429 /* Drop even the current line if no space. */
1430 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1431 break;
1432
1433 text_len = buf_size - len - prefix_len - 1 - 1;
1434 truncated = true;
1435 }
1436
1437 memmove(text + prefix_len, text, text_len);
1438 memcpy(text, prefix, prefix_len);
1439
1440 /*
1441 * Increment the prepared length to include the text and
1442 * prefix that were just moved+copied. Also increment for the
1443 * newline at the end of this line. If this is the last line,
1444 * there is no newline, but it will be added immediately below.
1445 */
1446 len += prefix_len + line_len + 1;
1447 if (text_len == line_len) {
1448 /*
1449 * This is the last line. Add the trailing newline
1450 * removed in vprintk_store().
1451 */
1452 text[prefix_len + line_len] = '\n';
1453 break;
1454 }
1455
1456 /*
1457 * Advance beyond the added prefix and the related line with
1458 * its newline.
1459 */
1460 text += prefix_len + line_len + 1;
1461
1462 /*
1463 * The remaining text has only decreased by the line with its
1464 * newline.
1465 *
1466 * Note that @text_len can become zero. It happens when @text
1467 * ended with a newline (either due to truncation or the
1468 * original string ending with "\n\n"). The loop is correctly
1469 * repeated and (if not truncated) an empty line with a prefix
1470 * will be prepared.
1471 */
1472 text_len -= line_len + 1;
1473 }
1474
1475 /*
1476 * If a buffer was provided, it will be terminated. Space for the
1477 * string terminator is guaranteed to be available. The terminator is
1478 * not counted in the return value.
1479 */
1480 if (buf_size > 0)
1481 r->text_buf[len] = 0;
1482
1483 return len;
1484}
1485
1486static size_t get_record_print_text_size(struct printk_info *info,
1487 unsigned int line_count,
1488 bool syslog, bool time)
1489{
1490 char prefix[PRINTK_PREFIX_MAX];
1491 size_t prefix_len;
1492
1493 prefix_len = info_print_prefix(info, syslog, time, prefix);
1494
1495 /*
1496 * Each line will be preceded with a prefix. The intermediate
1497 * newlines are already within the text, but a final trailing
1498 * newline will be added.
1499 */
1500 return ((prefix_len * line_count) + info->text_len + 1);
1501}
1502
1503/*
1504 * Beginning with @start_seq, find the first record where it and all following
1505 * records up to (but not including) @max_seq fit into @size.
1506 *
1507 * @max_seq is simply an upper bound and does not need to exist. If the caller
1508 * does not require an upper bound, -1 can be used for @max_seq.
1509 */
1510static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1511 bool syslog, bool time)
1512{
1513 struct printk_info info;
1514 unsigned int line_count;
1515 size_t len = 0;
1516 u64 seq;
1517
1518 /* Determine the size of the records up to @max_seq. */
1519 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1520 if (info.seq >= max_seq)
1521 break;
1522 len += get_record_print_text_size(&info, line_count, syslog, time);
1523 }
1524
1525 /*
1526 * Adjust the upper bound for the next loop to avoid subtracting
1527 * lengths that were never added.
1528 */
1529 if (seq < max_seq)
1530 max_seq = seq;
1531
1532 /*
1533 * Move first record forward until length fits into the buffer. Ignore
1534 * newest messages that were not counted in the above cycle. Messages
1535 * might appear and get lost in the meantime. This is a best effort
1536 * that prevents an infinite loop that could occur with a retry.
1537 */
1538 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1539 if (len <= size || info.seq >= max_seq)
1540 break;
1541 len -= get_record_print_text_size(&info, line_count, syslog, time);
1542 }
1543
1544 return seq;
1545}
1546
1547/* The caller is responsible for making sure @size is greater than 0. */
1548static int syslog_print(char __user *buf, int size)
1549{
1550 struct printk_info info;
1551 struct printk_record r;
1552 char *text;
1553 int len = 0;
1554 u64 seq;
1555
1556 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1557 if (!text)
1558 return -ENOMEM;
1559
1560 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1561
1562 mutex_lock(&syslog_lock);
1563
1564 /*
1565 * Wait for the @syslog_seq record to be available. @syslog_seq may
1566 * change while waiting.
1567 */
1568 do {
1569 seq = syslog_seq;
1570
1571 mutex_unlock(&syslog_lock);
1572 /*
1573 * Guarantee this task is visible on the waitqueue before
1574 * checking the wake condition.
1575 *
1576 * The full memory barrier within set_current_state() of
1577 * prepare_to_wait_event() pairs with the full memory barrier
1578 * within wq_has_sleeper().
1579 *
1580 * This pairs with __wake_up_klogd:A.
1581 */
1582 len = wait_event_interruptible(log_wait,
1583 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1584 mutex_lock(&syslog_lock);
1585
1586 if (len)
1587 goto out;
1588 } while (syslog_seq != seq);
1589
1590 /*
1591 * Copy records that fit into the buffer. The above cycle makes sure
1592 * that the first record is always available.
1593 */
1594 do {
1595 size_t n;
1596 size_t skip;
1597 int err;
1598
1599 if (!prb_read_valid(prb, syslog_seq, &r))
1600 break;
1601
1602 if (r.info->seq != syslog_seq) {
1603 /* message is gone, move to next valid one */
1604 syslog_seq = r.info->seq;
1605 syslog_partial = 0;
1606 }
1607
1608 /*
1609 * To keep reading/counting partial line consistent,
1610 * use printk_time value as of the beginning of a line.
1611 */
1612 if (!syslog_partial)
1613 syslog_time = printk_time;
1614
1615 skip = syslog_partial;
1616 n = record_print_text(&r, true, syslog_time);
1617 if (n - syslog_partial <= size) {
1618 /* message fits into buffer, move forward */
1619 syslog_seq = r.info->seq + 1;
1620 n -= syslog_partial;
1621 syslog_partial = 0;
1622 } else if (!len){
1623 /* partial read(), remember position */
1624 n = size;
1625 syslog_partial += n;
1626 } else
1627 n = 0;
1628
1629 if (!n)
1630 break;
1631
1632 mutex_unlock(&syslog_lock);
1633 err = copy_to_user(buf, text + skip, n);
1634 mutex_lock(&syslog_lock);
1635
1636 if (err) {
1637 if (!len)
1638 len = -EFAULT;
1639 break;
1640 }
1641
1642 len += n;
1643 size -= n;
1644 buf += n;
1645 } while (size);
1646out:
1647 mutex_unlock(&syslog_lock);
1648 kfree(text);
1649 return len;
1650}
1651
1652static int syslog_print_all(char __user *buf, int size, bool clear)
1653{
1654 struct printk_info info;
1655 struct printk_record r;
1656 char *text;
1657 int len = 0;
1658 u64 seq;
1659 bool time;
1660
1661 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1662 if (!text)
1663 return -ENOMEM;
1664
1665 time = printk_time;
1666 /*
1667 * Find first record that fits, including all following records,
1668 * into the user-provided buffer for this dump.
1669 */
1670 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1671 size, true, time);
1672
1673 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1674
1675 prb_for_each_record(seq, prb, seq, &r) {
1676 int textlen;
1677
1678 textlen = record_print_text(&r, true, time);
1679
1680 if (len + textlen > size) {
1681 seq--;
1682 break;
1683 }
1684
1685 if (copy_to_user(buf + len, text, textlen))
1686 len = -EFAULT;
1687 else
1688 len += textlen;
1689
1690 if (len < 0)
1691 break;
1692 }
1693
1694 if (clear) {
1695 mutex_lock(&syslog_lock);
1696 latched_seq_write(&clear_seq, seq);
1697 mutex_unlock(&syslog_lock);
1698 }
1699
1700 kfree(text);
1701 return len;
1702}
1703
1704static void syslog_clear(void)
1705{
1706 mutex_lock(&syslog_lock);
1707 latched_seq_write(&clear_seq, prb_next_seq(prb));
1708 mutex_unlock(&syslog_lock);
1709}
1710
1711int do_syslog(int type, char __user *buf, int len, int source)
1712{
1713 struct printk_info info;
1714 bool clear = false;
1715 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1716 int error;
1717
1718 error = check_syslog_permissions(type, source);
1719 if (error)
1720 return error;
1721
1722 switch (type) {
1723 case SYSLOG_ACTION_CLOSE: /* Close log */
1724 break;
1725 case SYSLOG_ACTION_OPEN: /* Open log */
1726 break;
1727 case SYSLOG_ACTION_READ: /* Read from log */
1728 if (!buf || len < 0)
1729 return -EINVAL;
1730 if (!len)
1731 return 0;
1732 if (!access_ok(buf, len))
1733 return -EFAULT;
1734 error = syslog_print(buf, len);
1735 break;
1736 /* Read/clear last kernel messages */
1737 case SYSLOG_ACTION_READ_CLEAR:
1738 clear = true;
1739 fallthrough;
1740 /* Read last kernel messages */
1741 case SYSLOG_ACTION_READ_ALL:
1742 if (!buf || len < 0)
1743 return -EINVAL;
1744 if (!len)
1745 return 0;
1746 if (!access_ok(buf, len))
1747 return -EFAULT;
1748 error = syslog_print_all(buf, len, clear);
1749 break;
1750 /* Clear ring buffer */
1751 case SYSLOG_ACTION_CLEAR:
1752 syslog_clear();
1753 break;
1754 /* Disable logging to console */
1755 case SYSLOG_ACTION_CONSOLE_OFF:
1756 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1757 saved_console_loglevel = console_loglevel;
1758 console_loglevel = minimum_console_loglevel;
1759 break;
1760 /* Enable logging to console */
1761 case SYSLOG_ACTION_CONSOLE_ON:
1762 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1763 console_loglevel = saved_console_loglevel;
1764 saved_console_loglevel = LOGLEVEL_DEFAULT;
1765 }
1766 break;
1767 /* Set level of messages printed to console */
1768 case SYSLOG_ACTION_CONSOLE_LEVEL:
1769 if (len < 1 || len > 8)
1770 return -EINVAL;
1771 if (len < minimum_console_loglevel)
1772 len = minimum_console_loglevel;
1773 console_loglevel = len;
1774 /* Implicitly re-enable logging to console */
1775 saved_console_loglevel = LOGLEVEL_DEFAULT;
1776 break;
1777 /* Number of chars in the log buffer */
1778 case SYSLOG_ACTION_SIZE_UNREAD:
1779 mutex_lock(&syslog_lock);
1780 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1781 /* No unread messages. */
1782 mutex_unlock(&syslog_lock);
1783 return 0;
1784 }
1785 if (info.seq != syslog_seq) {
1786 /* messages are gone, move to first one */
1787 syslog_seq = info.seq;
1788 syslog_partial = 0;
1789 }
1790 if (source == SYSLOG_FROM_PROC) {
1791 /*
1792 * Short-cut for poll(/"proc/kmsg") which simply checks
1793 * for pending data, not the size; return the count of
1794 * records, not the length.
1795 */
1796 error = prb_next_seq(prb) - syslog_seq;
1797 } else {
1798 bool time = syslog_partial ? syslog_time : printk_time;
1799 unsigned int line_count;
1800 u64 seq;
1801
1802 prb_for_each_info(syslog_seq, prb, seq, &info,
1803 &line_count) {
1804 error += get_record_print_text_size(&info, line_count,
1805 true, time);
1806 time = printk_time;
1807 }
1808 error -= syslog_partial;
1809 }
1810 mutex_unlock(&syslog_lock);
1811 break;
1812 /* Size of the log buffer */
1813 case SYSLOG_ACTION_SIZE_BUFFER:
1814 error = log_buf_len;
1815 break;
1816 default:
1817 error = -EINVAL;
1818 break;
1819 }
1820
1821 return error;
1822}
1823
1824SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1825{
1826 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1827}
1828
1829/*
1830 * Special console_lock variants that help to reduce the risk of soft-lockups.
1831 * They allow to pass console_lock to another printk() call using a busy wait.
1832 */
1833
1834#ifdef CONFIG_LOCKDEP
1835static struct lockdep_map console_owner_dep_map = {
1836 .name = "console_owner"
1837};
1838#endif
1839
1840static DEFINE_RAW_SPINLOCK(console_owner_lock);
1841static struct task_struct *console_owner;
1842static bool console_waiter;
1843
1844/**
1845 * console_lock_spinning_enable - mark beginning of code where another
1846 * thread might safely busy wait
1847 *
1848 * This basically converts console_lock into a spinlock. This marks
1849 * the section where the console_lock owner can not sleep, because
1850 * there may be a waiter spinning (like a spinlock). Also it must be
1851 * ready to hand over the lock at the end of the section.
1852 */
1853static void console_lock_spinning_enable(void)
1854{
1855 /*
1856 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1857 * Non-panic CPUs abandon the flush anyway.
1858 *
1859 * Just keep the lockdep annotation. The panic-CPU should avoid
1860 * taking console_owner_lock because it might cause a deadlock.
1861 * This looks like the easiest way how to prevent false lockdep
1862 * reports without handling races a lockless way.
1863 */
1864 if (panic_in_progress())
1865 goto lockdep;
1866
1867 raw_spin_lock(&console_owner_lock);
1868 console_owner = current;
1869 raw_spin_unlock(&console_owner_lock);
1870
1871lockdep:
1872 /* The waiter may spin on us after setting console_owner */
1873 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1874}
1875
1876/**
1877 * console_lock_spinning_disable_and_check - mark end of code where another
1878 * thread was able to busy wait and check if there is a waiter
1879 * @cookie: cookie returned from console_srcu_read_lock()
1880 *
1881 * This is called at the end of the section where spinning is allowed.
1882 * It has two functions. First, it is a signal that it is no longer
1883 * safe to start busy waiting for the lock. Second, it checks if
1884 * there is a busy waiter and passes the lock rights to her.
1885 *
1886 * Important: Callers lose both the console_lock and the SRCU read lock if
1887 * there was a busy waiter. They must not touch items synchronized by
1888 * console_lock or SRCU read lock in this case.
1889 *
1890 * Return: 1 if the lock rights were passed, 0 otherwise.
1891 */
1892static int console_lock_spinning_disable_and_check(int cookie)
1893{
1894 int waiter;
1895
1896 /*
1897 * Ignore spinning waiters during panic() because they might get stopped
1898 * or blocked at any time,
1899 *
1900 * It is safe because nobody is allowed to start spinning during panic
1901 * in the first place. If there has been a waiter then non panic CPUs
1902 * might stay spinning. They would get stopped anyway. The panic context
1903 * will never start spinning and an interrupted spin on panic CPU will
1904 * never continue.
1905 */
1906 if (panic_in_progress()) {
1907 /* Keep lockdep happy. */
1908 spin_release(&console_owner_dep_map, _THIS_IP_);
1909 return 0;
1910 }
1911
1912 raw_spin_lock(&console_owner_lock);
1913 waiter = READ_ONCE(console_waiter);
1914 console_owner = NULL;
1915 raw_spin_unlock(&console_owner_lock);
1916
1917 if (!waiter) {
1918 spin_release(&console_owner_dep_map, _THIS_IP_);
1919 return 0;
1920 }
1921
1922 /* The waiter is now free to continue */
1923 WRITE_ONCE(console_waiter, false);
1924
1925 spin_release(&console_owner_dep_map, _THIS_IP_);
1926
1927 /*
1928 * Preserve lockdep lock ordering. Release the SRCU read lock before
1929 * releasing the console_lock.
1930 */
1931 console_srcu_read_unlock(cookie);
1932
1933 /*
1934 * Hand off console_lock to waiter. The waiter will perform
1935 * the up(). After this, the waiter is the console_lock owner.
1936 */
1937 mutex_release(&console_lock_dep_map, _THIS_IP_);
1938 return 1;
1939}
1940
1941/**
1942 * console_trylock_spinning - try to get console_lock by busy waiting
1943 *
1944 * This allows to busy wait for the console_lock when the current
1945 * owner is running in specially marked sections. It means that
1946 * the current owner is running and cannot reschedule until it
1947 * is ready to lose the lock.
1948 *
1949 * Return: 1 if we got the lock, 0 othrewise
1950 */
1951static int console_trylock_spinning(void)
1952{
1953 struct task_struct *owner = NULL;
1954 bool waiter;
1955 bool spin = false;
1956 unsigned long flags;
1957
1958 if (console_trylock())
1959 return 1;
1960
1961 /*
1962 * It's unsafe to spin once a panic has begun. If we are the
1963 * panic CPU, we may have already halted the owner of the
1964 * console_sem. If we are not the panic CPU, then we should
1965 * avoid taking console_sem, so the panic CPU has a better
1966 * chance of cleanly acquiring it later.
1967 */
1968 if (panic_in_progress())
1969 return 0;
1970
1971 printk_safe_enter_irqsave(flags);
1972
1973 raw_spin_lock(&console_owner_lock);
1974 owner = READ_ONCE(console_owner);
1975 waiter = READ_ONCE(console_waiter);
1976 if (!waiter && owner && owner != current) {
1977 WRITE_ONCE(console_waiter, true);
1978 spin = true;
1979 }
1980 raw_spin_unlock(&console_owner_lock);
1981
1982 /*
1983 * If there is an active printk() writing to the
1984 * consoles, instead of having it write our data too,
1985 * see if we can offload that load from the active
1986 * printer, and do some printing ourselves.
1987 * Go into a spin only if there isn't already a waiter
1988 * spinning, and there is an active printer, and
1989 * that active printer isn't us (recursive printk?).
1990 */
1991 if (!spin) {
1992 printk_safe_exit_irqrestore(flags);
1993 return 0;
1994 }
1995
1996 /* We spin waiting for the owner to release us */
1997 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1998 /* Owner will clear console_waiter on hand off */
1999 while (READ_ONCE(console_waiter))
2000 cpu_relax();
2001 spin_release(&console_owner_dep_map, _THIS_IP_);
2002
2003 printk_safe_exit_irqrestore(flags);
2004 /*
2005 * The owner passed the console lock to us.
2006 * Since we did not spin on console lock, annotate
2007 * this as a trylock. Otherwise lockdep will
2008 * complain.
2009 */
2010 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2011
2012 /*
2013 * Update @console_may_schedule for trylock because the previous
2014 * owner may have been schedulable.
2015 */
2016 console_may_schedule = 0;
2017
2018 return 1;
2019}
2020
2021/*
2022 * Recursion is tracked separately on each CPU. If NMIs are supported, an
2023 * additional NMI context per CPU is also separately tracked. Until per-CPU
2024 * is available, a separate "early tracking" is performed.
2025 */
2026static DEFINE_PER_CPU(u8, printk_count);
2027static u8 printk_count_early;
2028#ifdef CONFIG_HAVE_NMI
2029static DEFINE_PER_CPU(u8, printk_count_nmi);
2030static u8 printk_count_nmi_early;
2031#endif
2032
2033/*
2034 * Recursion is limited to keep the output sane. printk() should not require
2035 * more than 1 level of recursion (allowing, for example, printk() to trigger
2036 * a WARN), but a higher value is used in case some printk-internal errors
2037 * exist, such as the ringbuffer validation checks failing.
2038 */
2039#define PRINTK_MAX_RECURSION 3
2040
2041/*
2042 * Return a pointer to the dedicated counter for the CPU+context of the
2043 * caller.
2044 */
2045static u8 *__printk_recursion_counter(void)
2046{
2047#ifdef CONFIG_HAVE_NMI
2048 if (in_nmi()) {
2049 if (printk_percpu_data_ready())
2050 return this_cpu_ptr(&printk_count_nmi);
2051 return &printk_count_nmi_early;
2052 }
2053#endif
2054 if (printk_percpu_data_ready())
2055 return this_cpu_ptr(&printk_count);
2056 return &printk_count_early;
2057}
2058
2059/*
2060 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2061 * The caller must check the boolean return value to see if the recursion is
2062 * allowed. On failure, interrupts are not disabled.
2063 *
2064 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2065 * that is passed to printk_exit_irqrestore().
2066 */
2067#define printk_enter_irqsave(recursion_ptr, flags) \
2068({ \
2069 bool success = true; \
2070 \
2071 typecheck(u8 *, recursion_ptr); \
2072 local_irq_save(flags); \
2073 (recursion_ptr) = __printk_recursion_counter(); \
2074 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
2075 local_irq_restore(flags); \
2076 success = false; \
2077 } else { \
2078 (*(recursion_ptr))++; \
2079 } \
2080 success; \
2081})
2082
2083/* Exit recursion tracking, restoring interrupts. */
2084#define printk_exit_irqrestore(recursion_ptr, flags) \
2085 do { \
2086 typecheck(u8 *, recursion_ptr); \
2087 (*(recursion_ptr))--; \
2088 local_irq_restore(flags); \
2089 } while (0)
2090
2091int printk_delay_msec __read_mostly;
2092
2093static inline void printk_delay(int level)
2094{
2095 boot_delay_msec(level);
2096
2097 if (unlikely(printk_delay_msec)) {
2098 int m = printk_delay_msec;
2099
2100 while (m--) {
2101 mdelay(1);
2102 touch_nmi_watchdog();
2103 }
2104 }
2105}
2106
2107static inline u32 printk_caller_id(void)
2108{
2109 return in_task() ? task_pid_nr(current) :
2110 0x80000000 + smp_processor_id();
2111}
2112
2113/**
2114 * printk_parse_prefix - Parse level and control flags.
2115 *
2116 * @text: The terminated text message.
2117 * @level: A pointer to the current level value, will be updated.
2118 * @flags: A pointer to the current printk_info flags, will be updated.
2119 *
2120 * @level may be NULL if the caller is not interested in the parsed value.
2121 * Otherwise the variable pointed to by @level must be set to
2122 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2123 *
2124 * @flags may be NULL if the caller is not interested in the parsed value.
2125 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2126 * value.
2127 *
2128 * Return: The length of the parsed level and control flags.
2129 */
2130u16 printk_parse_prefix(const char *text, int *level,
2131 enum printk_info_flags *flags)
2132{
2133 u16 prefix_len = 0;
2134 int kern_level;
2135
2136 while (*text) {
2137 kern_level = printk_get_level(text);
2138 if (!kern_level)
2139 break;
2140
2141 switch (kern_level) {
2142 case '0' ... '7':
2143 if (level && *level == LOGLEVEL_DEFAULT)
2144 *level = kern_level - '0';
2145 break;
2146 case 'c': /* KERN_CONT */
2147 if (flags)
2148 *flags |= LOG_CONT;
2149 }
2150
2151 prefix_len += 2;
2152 text += 2;
2153 }
2154
2155 return prefix_len;
2156}
2157
2158__printf(5, 0)
2159static u16 printk_sprint(char *text, u16 size, int facility,
2160 enum printk_info_flags *flags, const char *fmt,
2161 va_list args)
2162{
2163 u16 text_len;
2164
2165 text_len = vscnprintf(text, size, fmt, args);
2166
2167 /* Mark and strip a trailing newline. */
2168 if (text_len && text[text_len - 1] == '\n') {
2169 text_len--;
2170 *flags |= LOG_NEWLINE;
2171 }
2172
2173 /* Strip log level and control flags. */
2174 if (facility == 0) {
2175 u16 prefix_len;
2176
2177 prefix_len = printk_parse_prefix(text, NULL, NULL);
2178 if (prefix_len) {
2179 text_len -= prefix_len;
2180 memmove(text, text + prefix_len, text_len);
2181 }
2182 }
2183
2184 trace_console(text, text_len);
2185
2186 return text_len;
2187}
2188
2189__printf(4, 0)
2190int vprintk_store(int facility, int level,
2191 const struct dev_printk_info *dev_info,
2192 const char *fmt, va_list args)
2193{
2194 struct prb_reserved_entry e;
2195 enum printk_info_flags flags = 0;
2196 struct printk_record r;
2197 unsigned long irqflags;
2198 u16 trunc_msg_len = 0;
2199 char prefix_buf[8];
2200 u8 *recursion_ptr;
2201 u16 reserve_size;
2202 va_list args2;
2203 u32 caller_id;
2204 u16 text_len;
2205 int ret = 0;
2206 u64 ts_nsec;
2207
2208 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2209 return 0;
2210
2211 /*
2212 * Since the duration of printk() can vary depending on the message
2213 * and state of the ringbuffer, grab the timestamp now so that it is
2214 * close to the call of printk(). This provides a more deterministic
2215 * timestamp with respect to the caller.
2216 */
2217 ts_nsec = local_clock();
2218
2219 caller_id = printk_caller_id();
2220
2221 /*
2222 * The sprintf needs to come first since the syslog prefix might be
2223 * passed in as a parameter. An extra byte must be reserved so that
2224 * later the vscnprintf() into the reserved buffer has room for the
2225 * terminating '\0', which is not counted by vsnprintf().
2226 */
2227 va_copy(args2, args);
2228 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2229 va_end(args2);
2230
2231 if (reserve_size > PRINTKRB_RECORD_MAX)
2232 reserve_size = PRINTKRB_RECORD_MAX;
2233
2234 /* Extract log level or control flags. */
2235 if (facility == 0)
2236 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2237
2238 if (level == LOGLEVEL_DEFAULT)
2239 level = default_message_loglevel;
2240
2241 if (dev_info)
2242 flags |= LOG_NEWLINE;
2243
2244 if (flags & LOG_CONT) {
2245 prb_rec_init_wr(&r, reserve_size);
2246 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2247 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2248 facility, &flags, fmt, args);
2249 r.info->text_len += text_len;
2250
2251 if (flags & LOG_NEWLINE) {
2252 r.info->flags |= LOG_NEWLINE;
2253 prb_final_commit(&e);
2254 } else {
2255 prb_commit(&e);
2256 }
2257
2258 ret = text_len;
2259 goto out;
2260 }
2261 }
2262
2263 /*
2264 * Explicitly initialize the record before every prb_reserve() call.
2265 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2266 * structure when they fail.
2267 */
2268 prb_rec_init_wr(&r, reserve_size);
2269 if (!prb_reserve(&e, prb, &r)) {
2270 /* truncate the message if it is too long for empty buffer */
2271 truncate_msg(&reserve_size, &trunc_msg_len);
2272
2273 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2274 if (!prb_reserve(&e, prb, &r))
2275 goto out;
2276 }
2277
2278 /* fill message */
2279 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2280 if (trunc_msg_len)
2281 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2282 r.info->text_len = text_len + trunc_msg_len;
2283 r.info->facility = facility;
2284 r.info->level = level & 7;
2285 r.info->flags = flags & 0x1f;
2286 r.info->ts_nsec = ts_nsec;
2287 r.info->caller_id = caller_id;
2288 if (dev_info)
2289 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2290
2291 /* A message without a trailing newline can be continued. */
2292 if (!(flags & LOG_NEWLINE))
2293 prb_commit(&e);
2294 else
2295 prb_final_commit(&e);
2296
2297 ret = text_len + trunc_msg_len;
2298out:
2299 printk_exit_irqrestore(recursion_ptr, irqflags);
2300 return ret;
2301}
2302
2303asmlinkage int vprintk_emit(int facility, int level,
2304 const struct dev_printk_info *dev_info,
2305 const char *fmt, va_list args)
2306{
2307 int printed_len;
2308 bool in_sched = false;
2309
2310 /* Suppress unimportant messages after panic happens */
2311 if (unlikely(suppress_printk))
2312 return 0;
2313
2314 /*
2315 * The messages on the panic CPU are the most important. If
2316 * non-panic CPUs are generating any messages, they will be
2317 * silently dropped.
2318 */
2319 if (other_cpu_in_panic())
2320 return 0;
2321
2322 if (level == LOGLEVEL_SCHED) {
2323 level = LOGLEVEL_DEFAULT;
2324 in_sched = true;
2325 }
2326
2327 printk_delay(level);
2328
2329 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2330
2331 /* If called from the scheduler, we can not call up(). */
2332 if (!in_sched) {
2333 /*
2334 * The caller may be holding system-critical or
2335 * timing-sensitive locks. Disable preemption during
2336 * printing of all remaining records to all consoles so that
2337 * this context can return as soon as possible. Hopefully
2338 * another printk() caller will take over the printing.
2339 */
2340 preempt_disable();
2341 /*
2342 * Try to acquire and then immediately release the console
2343 * semaphore. The release will print out buffers. With the
2344 * spinning variant, this context tries to take over the
2345 * printing from another printing context.
2346 */
2347 if (console_trylock_spinning())
2348 console_unlock();
2349 preempt_enable();
2350 }
2351
2352 if (in_sched)
2353 defer_console_output();
2354 else
2355 wake_up_klogd();
2356
2357 return printed_len;
2358}
2359EXPORT_SYMBOL(vprintk_emit);
2360
2361int vprintk_default(const char *fmt, va_list args)
2362{
2363 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2364}
2365EXPORT_SYMBOL_GPL(vprintk_default);
2366
2367asmlinkage __visible int _printk(const char *fmt, ...)
2368{
2369 va_list args;
2370 int r;
2371
2372 va_start(args, fmt);
2373 r = vprintk(fmt, args);
2374 va_end(args);
2375
2376 return r;
2377}
2378EXPORT_SYMBOL(_printk);
2379
2380static bool pr_flush(int timeout_ms, bool reset_on_progress);
2381static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2382
2383#else /* CONFIG_PRINTK */
2384
2385#define printk_time false
2386
2387#define prb_read_valid(rb, seq, r) false
2388#define prb_first_valid_seq(rb) 0
2389#define prb_next_seq(rb) 0
2390
2391static u64 syslog_seq;
2392
2393static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2394static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2395
2396#endif /* CONFIG_PRINTK */
2397
2398#ifdef CONFIG_EARLY_PRINTK
2399struct console *early_console;
2400
2401asmlinkage __visible void early_printk(const char *fmt, ...)
2402{
2403 va_list ap;
2404 char buf[512];
2405 int n;
2406
2407 if (!early_console)
2408 return;
2409
2410 va_start(ap, fmt);
2411 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2412 va_end(ap);
2413
2414 early_console->write(early_console, buf, n);
2415}
2416#endif
2417
2418static void set_user_specified(struct console_cmdline *c, bool user_specified)
2419{
2420 if (!user_specified)
2421 return;
2422
2423 /*
2424 * @c console was defined by the user on the command line.
2425 * Do not clear when added twice also by SPCR or the device tree.
2426 */
2427 c->user_specified = true;
2428 /* At least one console defined by the user on the command line. */
2429 console_set_on_cmdline = 1;
2430}
2431
2432static int __add_preferred_console(const char *name, const short idx, char *options,
2433 char *brl_options, bool user_specified)
2434{
2435 struct console_cmdline *c;
2436 int i;
2437
2438 /*
2439 * We use a signed short index for struct console for device drivers to
2440 * indicate a not yet assigned index or port. However, a negative index
2441 * value is not valid for preferred console.
2442 */
2443 if (idx < 0)
2444 return -EINVAL;
2445
2446 /*
2447 * See if this tty is not yet registered, and
2448 * if we have a slot free.
2449 */
2450 for (i = 0, c = console_cmdline;
2451 i < MAX_CMDLINECONSOLES && c->name[0];
2452 i++, c++) {
2453 if (strcmp(c->name, name) == 0 && c->index == idx) {
2454 if (!brl_options)
2455 preferred_console = i;
2456 set_user_specified(c, user_specified);
2457 return 0;
2458 }
2459 }
2460 if (i == MAX_CMDLINECONSOLES)
2461 return -E2BIG;
2462 if (!brl_options)
2463 preferred_console = i;
2464 strscpy(c->name, name, sizeof(c->name));
2465 c->options = options;
2466 set_user_specified(c, user_specified);
2467 braille_set_options(c, brl_options);
2468
2469 c->index = idx;
2470 return 0;
2471}
2472
2473static int __init console_msg_format_setup(char *str)
2474{
2475 if (!strcmp(str, "syslog"))
2476 console_msg_format = MSG_FORMAT_SYSLOG;
2477 if (!strcmp(str, "default"))
2478 console_msg_format = MSG_FORMAT_DEFAULT;
2479 return 1;
2480}
2481__setup("console_msg_format=", console_msg_format_setup);
2482
2483/*
2484 * Set up a console. Called via do_early_param() in init/main.c
2485 * for each "console=" parameter in the boot command line.
2486 */
2487static int __init console_setup(char *str)
2488{
2489 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2490 char *s, *options, *brl_options = NULL;
2491 int idx;
2492
2493 /*
2494 * console="" or console=null have been suggested as a way to
2495 * disable console output. Use ttynull that has been created
2496 * for exactly this purpose.
2497 */
2498 if (str[0] == 0 || strcmp(str, "null") == 0) {
2499 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2500 return 1;
2501 }
2502
2503 if (_braille_console_setup(&str, &brl_options))
2504 return 1;
2505
2506 /*
2507 * Decode str into name, index, options.
2508 */
2509 if (str[0] >= '0' && str[0] <= '9') {
2510 strcpy(buf, "ttyS");
2511 strncpy(buf + 4, str, sizeof(buf) - 5);
2512 } else {
2513 strncpy(buf, str, sizeof(buf) - 1);
2514 }
2515 buf[sizeof(buf) - 1] = 0;
2516 options = strchr(str, ',');
2517 if (options)
2518 *(options++) = 0;
2519#ifdef __sparc__
2520 if (!strcmp(str, "ttya"))
2521 strcpy(buf, "ttyS0");
2522 if (!strcmp(str, "ttyb"))
2523 strcpy(buf, "ttyS1");
2524#endif
2525 for (s = buf; *s; s++)
2526 if (isdigit(*s) || *s == ',')
2527 break;
2528 idx = simple_strtoul(s, NULL, 10);
2529 *s = 0;
2530
2531 __add_preferred_console(buf, idx, options, brl_options, true);
2532 return 1;
2533}
2534__setup("console=", console_setup);
2535
2536/**
2537 * add_preferred_console - add a device to the list of preferred consoles.
2538 * @name: device name
2539 * @idx: device index
2540 * @options: options for this console
2541 *
2542 * The last preferred console added will be used for kernel messages
2543 * and stdin/out/err for init. Normally this is used by console_setup
2544 * above to handle user-supplied console arguments; however it can also
2545 * be used by arch-specific code either to override the user or more
2546 * commonly to provide a default console (ie from PROM variables) when
2547 * the user has not supplied one.
2548 */
2549int add_preferred_console(const char *name, const short idx, char *options)
2550{
2551 return __add_preferred_console(name, idx, options, NULL, false);
2552}
2553
2554bool console_suspend_enabled = true;
2555EXPORT_SYMBOL(console_suspend_enabled);
2556
2557static int __init console_suspend_disable(char *str)
2558{
2559 console_suspend_enabled = false;
2560 return 1;
2561}
2562__setup("no_console_suspend", console_suspend_disable);
2563module_param_named(console_suspend, console_suspend_enabled,
2564 bool, S_IRUGO | S_IWUSR);
2565MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2566 " and hibernate operations");
2567
2568static bool printk_console_no_auto_verbose;
2569
2570void console_verbose(void)
2571{
2572 if (console_loglevel && !printk_console_no_auto_verbose)
2573 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2574}
2575EXPORT_SYMBOL_GPL(console_verbose);
2576
2577module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2578MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2579
2580/**
2581 * suspend_console - suspend the console subsystem
2582 *
2583 * This disables printk() while we go into suspend states
2584 */
2585void suspend_console(void)
2586{
2587 struct console *con;
2588
2589 if (!console_suspend_enabled)
2590 return;
2591 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2592 pr_flush(1000, true);
2593
2594 console_list_lock();
2595 for_each_console(con)
2596 console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2597 console_list_unlock();
2598
2599 /*
2600 * Ensure that all SRCU list walks have completed. All printing
2601 * contexts must be able to see that they are suspended so that it
2602 * is guaranteed that all printing has stopped when this function
2603 * completes.
2604 */
2605 synchronize_srcu(&console_srcu);
2606}
2607
2608void resume_console(void)
2609{
2610 struct console *con;
2611
2612 if (!console_suspend_enabled)
2613 return;
2614
2615 console_list_lock();
2616 for_each_console(con)
2617 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2618 console_list_unlock();
2619
2620 /*
2621 * Ensure that all SRCU list walks have completed. All printing
2622 * contexts must be able to see they are no longer suspended so
2623 * that they are guaranteed to wake up and resume printing.
2624 */
2625 synchronize_srcu(&console_srcu);
2626
2627 pr_flush(1000, true);
2628}
2629
2630/**
2631 * console_cpu_notify - print deferred console messages after CPU hotplug
2632 * @cpu: unused
2633 *
2634 * If printk() is called from a CPU that is not online yet, the messages
2635 * will be printed on the console only if there are CON_ANYTIME consoles.
2636 * This function is called when a new CPU comes online (or fails to come
2637 * up) or goes offline.
2638 */
2639static int console_cpu_notify(unsigned int cpu)
2640{
2641 if (!cpuhp_tasks_frozen) {
2642 /* If trylock fails, someone else is doing the printing */
2643 if (console_trylock())
2644 console_unlock();
2645 }
2646 return 0;
2647}
2648
2649/**
2650 * console_lock - block the console subsystem from printing
2651 *
2652 * Acquires a lock which guarantees that no consoles will
2653 * be in or enter their write() callback.
2654 *
2655 * Can sleep, returns nothing.
2656 */
2657void console_lock(void)
2658{
2659 might_sleep();
2660
2661 /* On panic, the console_lock must be left to the panic cpu. */
2662 while (other_cpu_in_panic())
2663 msleep(1000);
2664
2665 down_console_sem();
2666 console_locked = 1;
2667 console_may_schedule = 1;
2668}
2669EXPORT_SYMBOL(console_lock);
2670
2671/**
2672 * console_trylock - try to block the console subsystem from printing
2673 *
2674 * Try to acquire a lock which guarantees that no consoles will
2675 * be in or enter their write() callback.
2676 *
2677 * returns 1 on success, and 0 on failure to acquire the lock.
2678 */
2679int console_trylock(void)
2680{
2681 /* On panic, the console_lock must be left to the panic cpu. */
2682 if (other_cpu_in_panic())
2683 return 0;
2684 if (down_trylock_console_sem())
2685 return 0;
2686 console_locked = 1;
2687 console_may_schedule = 0;
2688 return 1;
2689}
2690EXPORT_SYMBOL(console_trylock);
2691
2692int is_console_locked(void)
2693{
2694 return console_locked;
2695}
2696EXPORT_SYMBOL(is_console_locked);
2697
2698/*
2699 * Check if the given console is currently capable and allowed to print
2700 * records.
2701 *
2702 * Requires the console_srcu_read_lock.
2703 */
2704static inline bool console_is_usable(struct console *con)
2705{
2706 short flags = console_srcu_read_flags(con);
2707
2708 if (!(flags & CON_ENABLED))
2709 return false;
2710
2711 if ((flags & CON_SUSPENDED))
2712 return false;
2713
2714 if (!con->write)
2715 return false;
2716
2717 /*
2718 * Console drivers may assume that per-cpu resources have been
2719 * allocated. So unless they're explicitly marked as being able to
2720 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2721 */
2722 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2723 return false;
2724
2725 return true;
2726}
2727
2728static void __console_unlock(void)
2729{
2730 console_locked = 0;
2731 up_console_sem();
2732}
2733
2734#ifdef CONFIG_PRINTK
2735
2736/*
2737 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2738 * is achieved by shifting the existing message over and inserting the dropped
2739 * message.
2740 *
2741 * @pmsg is the printk message to prepend.
2742 *
2743 * @dropped is the dropped count to report in the dropped message.
2744 *
2745 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2746 * the dropped message, the message text will be sufficiently truncated.
2747 *
2748 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2749 */
2750void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2751{
2752 struct printk_buffers *pbufs = pmsg->pbufs;
2753 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2754 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2755 char *scratchbuf = &pbufs->scratchbuf[0];
2756 char *outbuf = &pbufs->outbuf[0];
2757 size_t len;
2758
2759 len = scnprintf(scratchbuf, scratchbuf_sz,
2760 "** %lu printk messages dropped **\n", dropped);
2761
2762 /*
2763 * Make sure outbuf is sufficiently large before prepending.
2764 * Keep at least the prefix when the message must be truncated.
2765 * It is a rather theoretical problem when someone tries to
2766 * use a minimalist buffer.
2767 */
2768 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2769 return;
2770
2771 if (pmsg->outbuf_len + len >= outbuf_sz) {
2772 /* Truncate the message, but keep it terminated. */
2773 pmsg->outbuf_len = outbuf_sz - (len + 1);
2774 outbuf[pmsg->outbuf_len] = 0;
2775 }
2776
2777 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2778 memcpy(outbuf, scratchbuf, len);
2779 pmsg->outbuf_len += len;
2780}
2781
2782/*
2783 * Read and format the specified record (or a later record if the specified
2784 * record is not available).
2785 *
2786 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2787 * struct printk_buffers.
2788 *
2789 * @seq is the record to read and format. If it is not available, the next
2790 * valid record is read.
2791 *
2792 * @is_extended specifies if the message should be formatted for extended
2793 * console output.
2794 *
2795 * @may_supress specifies if records may be skipped based on loglevel.
2796 *
2797 * Returns false if no record is available. Otherwise true and all fields
2798 * of @pmsg are valid. (See the documentation of struct printk_message
2799 * for information about the @pmsg fields.)
2800 */
2801bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2802 bool is_extended, bool may_suppress)
2803{
2804 struct printk_buffers *pbufs = pmsg->pbufs;
2805 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2806 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2807 char *scratchbuf = &pbufs->scratchbuf[0];
2808 char *outbuf = &pbufs->outbuf[0];
2809 struct printk_info info;
2810 struct printk_record r;
2811 size_t len = 0;
2812
2813 /*
2814 * Formatting extended messages requires a separate buffer, so use the
2815 * scratch buffer to read in the ringbuffer text.
2816 *
2817 * Formatting normal messages is done in-place, so read the ringbuffer
2818 * text directly into the output buffer.
2819 */
2820 if (is_extended)
2821 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2822 else
2823 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2824
2825 if (!prb_read_valid(prb, seq, &r))
2826 return false;
2827
2828 pmsg->seq = r.info->seq;
2829 pmsg->dropped = r.info->seq - seq;
2830
2831 /* Skip record that has level above the console loglevel. */
2832 if (may_suppress && suppress_message_printing(r.info->level))
2833 goto out;
2834
2835 if (is_extended) {
2836 len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2837 len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2838 &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2839 } else {
2840 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2841 }
2842out:
2843 pmsg->outbuf_len = len;
2844 return true;
2845}
2846
2847/*
2848 * Used as the printk buffers for non-panic, serialized console printing.
2849 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2850 * Its usage requires the console_lock held.
2851 */
2852struct printk_buffers printk_shared_pbufs;
2853
2854/*
2855 * Print one record for the given console. The record printed is whatever
2856 * record is the next available record for the given console.
2857 *
2858 * @handover will be set to true if a printk waiter has taken over the
2859 * console_lock, in which case the caller is no longer holding both the
2860 * console_lock and the SRCU read lock. Otherwise it is set to false.
2861 *
2862 * @cookie is the cookie from the SRCU read lock.
2863 *
2864 * Returns false if the given console has no next record to print, otherwise
2865 * true.
2866 *
2867 * Requires the console_lock and the SRCU read lock.
2868 */
2869static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2870{
2871 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2872 char *outbuf = &printk_shared_pbufs.outbuf[0];
2873 struct printk_message pmsg = {
2874 .pbufs = &printk_shared_pbufs,
2875 };
2876 unsigned long flags;
2877
2878 *handover = false;
2879
2880 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2881 return false;
2882
2883 con->dropped += pmsg.dropped;
2884
2885 /* Skip messages of formatted length 0. */
2886 if (pmsg.outbuf_len == 0) {
2887 con->seq = pmsg.seq + 1;
2888 goto skip;
2889 }
2890
2891 if (con->dropped && !is_extended) {
2892 console_prepend_dropped(&pmsg, con->dropped);
2893 con->dropped = 0;
2894 }
2895
2896 /*
2897 * While actively printing out messages, if another printk()
2898 * were to occur on another CPU, it may wait for this one to
2899 * finish. This task can not be preempted if there is a
2900 * waiter waiting to take over.
2901 *
2902 * Interrupts are disabled because the hand over to a waiter
2903 * must not be interrupted until the hand over is completed
2904 * (@console_waiter is cleared).
2905 */
2906 printk_safe_enter_irqsave(flags);
2907 console_lock_spinning_enable();
2908
2909 /* Do not trace print latency. */
2910 stop_critical_timings();
2911
2912 /* Write everything out to the hardware. */
2913 con->write(con, outbuf, pmsg.outbuf_len);
2914
2915 start_critical_timings();
2916
2917 con->seq = pmsg.seq + 1;
2918
2919 *handover = console_lock_spinning_disable_and_check(cookie);
2920 printk_safe_exit_irqrestore(flags);
2921skip:
2922 return true;
2923}
2924
2925#else
2926
2927static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2928{
2929 *handover = false;
2930 return false;
2931}
2932
2933#endif /* CONFIG_PRINTK */
2934
2935/*
2936 * Print out all remaining records to all consoles.
2937 *
2938 * @do_cond_resched is set by the caller. It can be true only in schedulable
2939 * context.
2940 *
2941 * @next_seq is set to the sequence number after the last available record.
2942 * The value is valid only when this function returns true. It means that all
2943 * usable consoles are completely flushed.
2944 *
2945 * @handover will be set to true if a printk waiter has taken over the
2946 * console_lock, in which case the caller is no longer holding the
2947 * console_lock. Otherwise it is set to false.
2948 *
2949 * Returns true when there was at least one usable console and all messages
2950 * were flushed to all usable consoles. A returned false informs the caller
2951 * that everything was not flushed (either there were no usable consoles or
2952 * another context has taken over printing or it is a panic situation and this
2953 * is not the panic CPU). Regardless the reason, the caller should assume it
2954 * is not useful to immediately try again.
2955 *
2956 * Requires the console_lock.
2957 */
2958static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2959{
2960 bool any_usable = false;
2961 struct console *con;
2962 bool any_progress;
2963 int cookie;
2964
2965 *next_seq = 0;
2966 *handover = false;
2967
2968 do {
2969 any_progress = false;
2970
2971 cookie = console_srcu_read_lock();
2972 for_each_console_srcu(con) {
2973 bool progress;
2974
2975 if (!console_is_usable(con))
2976 continue;
2977 any_usable = true;
2978
2979 progress = console_emit_next_record(con, handover, cookie);
2980
2981 /*
2982 * If a handover has occurred, the SRCU read lock
2983 * is already released.
2984 */
2985 if (*handover)
2986 return false;
2987
2988 /* Track the next of the highest seq flushed. */
2989 if (con->seq > *next_seq)
2990 *next_seq = con->seq;
2991
2992 if (!progress)
2993 continue;
2994 any_progress = true;
2995
2996 /* Allow panic_cpu to take over the consoles safely. */
2997 if (other_cpu_in_panic())
2998 goto abandon;
2999
3000 if (do_cond_resched)
3001 cond_resched();
3002 }
3003 console_srcu_read_unlock(cookie);
3004 } while (any_progress);
3005
3006 return any_usable;
3007
3008abandon:
3009 console_srcu_read_unlock(cookie);
3010 return false;
3011}
3012
3013/**
3014 * console_unlock - unblock the console subsystem from printing
3015 *
3016 * Releases the console_lock which the caller holds to block printing of
3017 * the console subsystem.
3018 *
3019 * While the console_lock was held, console output may have been buffered
3020 * by printk(). If this is the case, console_unlock(); emits
3021 * the output prior to releasing the lock.
3022 *
3023 * console_unlock(); may be called from any context.
3024 */
3025void console_unlock(void)
3026{
3027 bool do_cond_resched;
3028 bool handover;
3029 bool flushed;
3030 u64 next_seq;
3031
3032 /*
3033 * Console drivers are called with interrupts disabled, so
3034 * @console_may_schedule should be cleared before; however, we may
3035 * end up dumping a lot of lines, for example, if called from
3036 * console registration path, and should invoke cond_resched()
3037 * between lines if allowable. Not doing so can cause a very long
3038 * scheduling stall on a slow console leading to RCU stall and
3039 * softlockup warnings which exacerbate the issue with more
3040 * messages practically incapacitating the system. Therefore, create
3041 * a local to use for the printing loop.
3042 */
3043 do_cond_resched = console_may_schedule;
3044
3045 do {
3046 console_may_schedule = 0;
3047
3048 flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3049 if (!handover)
3050 __console_unlock();
3051
3052 /*
3053 * Abort if there was a failure to flush all messages to all
3054 * usable consoles. Either it is not possible to flush (in
3055 * which case it would be an infinite loop of retrying) or
3056 * another context has taken over printing.
3057 */
3058 if (!flushed)
3059 break;
3060
3061 /*
3062 * Some context may have added new records after
3063 * console_flush_all() but before unlocking the console.
3064 * Re-check if there is a new record to flush. If the trylock
3065 * fails, another context is already handling the printing.
3066 */
3067 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3068}
3069EXPORT_SYMBOL(console_unlock);
3070
3071/**
3072 * console_conditional_schedule - yield the CPU if required
3073 *
3074 * If the console code is currently allowed to sleep, and
3075 * if this CPU should yield the CPU to another task, do
3076 * so here.
3077 *
3078 * Must be called within console_lock();.
3079 */
3080void __sched console_conditional_schedule(void)
3081{
3082 if (console_may_schedule)
3083 cond_resched();
3084}
3085EXPORT_SYMBOL(console_conditional_schedule);
3086
3087void console_unblank(void)
3088{
3089 bool found_unblank = false;
3090 struct console *c;
3091 int cookie;
3092
3093 /*
3094 * First check if there are any consoles implementing the unblank()
3095 * callback. If not, there is no reason to continue and take the
3096 * console lock, which in particular can be dangerous if
3097 * @oops_in_progress is set.
3098 */
3099 cookie = console_srcu_read_lock();
3100 for_each_console_srcu(c) {
3101 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3102 found_unblank = true;
3103 break;
3104 }
3105 }
3106 console_srcu_read_unlock(cookie);
3107 if (!found_unblank)
3108 return;
3109
3110 /*
3111 * Stop console printing because the unblank() callback may
3112 * assume the console is not within its write() callback.
3113 *
3114 * If @oops_in_progress is set, this may be an atomic context.
3115 * In that case, attempt a trylock as best-effort.
3116 */
3117 if (oops_in_progress) {
3118 /* Semaphores are not NMI-safe. */
3119 if (in_nmi())
3120 return;
3121
3122 /*
3123 * Attempting to trylock the console lock can deadlock
3124 * if another CPU was stopped while modifying the
3125 * semaphore. "Hope and pray" that this is not the
3126 * current situation.
3127 */
3128 if (down_trylock_console_sem() != 0)
3129 return;
3130 } else
3131 console_lock();
3132
3133 console_locked = 1;
3134 console_may_schedule = 0;
3135
3136 cookie = console_srcu_read_lock();
3137 for_each_console_srcu(c) {
3138 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3139 c->unblank();
3140 }
3141 console_srcu_read_unlock(cookie);
3142
3143 console_unlock();
3144
3145 if (!oops_in_progress)
3146 pr_flush(1000, true);
3147}
3148
3149/**
3150 * console_flush_on_panic - flush console content on panic
3151 * @mode: flush all messages in buffer or just the pending ones
3152 *
3153 * Immediately output all pending messages no matter what.
3154 */
3155void console_flush_on_panic(enum con_flush_mode mode)
3156{
3157 bool handover;
3158 u64 next_seq;
3159
3160 /*
3161 * Ignore the console lock and flush out the messages. Attempting a
3162 * trylock would not be useful because:
3163 *
3164 * - if it is contended, it must be ignored anyway
3165 * - console_lock() and console_trylock() block and fail
3166 * respectively in panic for non-panic CPUs
3167 * - semaphores are not NMI-safe
3168 */
3169
3170 /*
3171 * If another context is holding the console lock,
3172 * @console_may_schedule might be set. Clear it so that
3173 * this context does not call cond_resched() while flushing.
3174 */
3175 console_may_schedule = 0;
3176
3177 if (mode == CONSOLE_REPLAY_ALL) {
3178 struct console *c;
3179 short flags;
3180 int cookie;
3181 u64 seq;
3182
3183 seq = prb_first_valid_seq(prb);
3184
3185 cookie = console_srcu_read_lock();
3186 for_each_console_srcu(c) {
3187 flags = console_srcu_read_flags(c);
3188
3189 if (flags & CON_NBCON) {
3190 nbcon_seq_force(c, seq);
3191 } else {
3192 /*
3193 * This is an unsynchronized assignment. On
3194 * panic legacy consoles are only best effort.
3195 */
3196 c->seq = seq;
3197 }
3198 }
3199 console_srcu_read_unlock(cookie);
3200 }
3201
3202 console_flush_all(false, &next_seq, &handover);
3203}
3204
3205/*
3206 * Return the console tty driver structure and its associated index
3207 */
3208struct tty_driver *console_device(int *index)
3209{
3210 struct console *c;
3211 struct tty_driver *driver = NULL;
3212 int cookie;
3213
3214 /*
3215 * Take console_lock to serialize device() callback with
3216 * other console operations. For example, fg_console is
3217 * modified under console_lock when switching vt.
3218 */
3219 console_lock();
3220
3221 cookie = console_srcu_read_lock();
3222 for_each_console_srcu(c) {
3223 if (!c->device)
3224 continue;
3225 driver = c->device(c, index);
3226 if (driver)
3227 break;
3228 }
3229 console_srcu_read_unlock(cookie);
3230
3231 console_unlock();
3232 return driver;
3233}
3234
3235/*
3236 * Prevent further output on the passed console device so that (for example)
3237 * serial drivers can disable console output before suspending a port, and can
3238 * re-enable output afterwards.
3239 */
3240void console_stop(struct console *console)
3241{
3242 __pr_flush(console, 1000, true);
3243 console_list_lock();
3244 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3245 console_list_unlock();
3246
3247 /*
3248 * Ensure that all SRCU list walks have completed. All contexts must
3249 * be able to see that this console is disabled so that (for example)
3250 * the caller can suspend the port without risk of another context
3251 * using the port.
3252 */
3253 synchronize_srcu(&console_srcu);
3254}
3255EXPORT_SYMBOL(console_stop);
3256
3257void console_start(struct console *console)
3258{
3259 console_list_lock();
3260 console_srcu_write_flags(console, console->flags | CON_ENABLED);
3261 console_list_unlock();
3262 __pr_flush(console, 1000, true);
3263}
3264EXPORT_SYMBOL(console_start);
3265
3266static int __read_mostly keep_bootcon;
3267
3268static int __init keep_bootcon_setup(char *str)
3269{
3270 keep_bootcon = 1;
3271 pr_info("debug: skip boot console de-registration.\n");
3272
3273 return 0;
3274}
3275
3276early_param("keep_bootcon", keep_bootcon_setup);
3277
3278static int console_call_setup(struct console *newcon, char *options)
3279{
3280 int err;
3281
3282 if (!newcon->setup)
3283 return 0;
3284
3285 /* Synchronize with possible boot console. */
3286 console_lock();
3287 err = newcon->setup(newcon, options);
3288 console_unlock();
3289
3290 return err;
3291}
3292
3293/*
3294 * This is called by register_console() to try to match
3295 * the newly registered console with any of the ones selected
3296 * by either the command line or add_preferred_console() and
3297 * setup/enable it.
3298 *
3299 * Care need to be taken with consoles that are statically
3300 * enabled such as netconsole
3301 */
3302static int try_enable_preferred_console(struct console *newcon,
3303 bool user_specified)
3304{
3305 struct console_cmdline *c;
3306 int i, err;
3307
3308 for (i = 0, c = console_cmdline;
3309 i < MAX_CMDLINECONSOLES && c->name[0];
3310 i++, c++) {
3311 if (c->user_specified != user_specified)
3312 continue;
3313 if (!newcon->match ||
3314 newcon->match(newcon, c->name, c->index, c->options) != 0) {
3315 /* default matching */
3316 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3317 if (strcmp(c->name, newcon->name) != 0)
3318 continue;
3319 if (newcon->index >= 0 &&
3320 newcon->index != c->index)
3321 continue;
3322 if (newcon->index < 0)
3323 newcon->index = c->index;
3324
3325 if (_braille_register_console(newcon, c))
3326 return 0;
3327
3328 err = console_call_setup(newcon, c->options);
3329 if (err)
3330 return err;
3331 }
3332 newcon->flags |= CON_ENABLED;
3333 if (i == preferred_console)
3334 newcon->flags |= CON_CONSDEV;
3335 return 0;
3336 }
3337
3338 /*
3339 * Some consoles, such as pstore and netconsole, can be enabled even
3340 * without matching. Accept the pre-enabled consoles only when match()
3341 * and setup() had a chance to be called.
3342 */
3343 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
3344 return 0;
3345
3346 return -ENOENT;
3347}
3348
3349/* Try to enable the console unconditionally */
3350static void try_enable_default_console(struct console *newcon)
3351{
3352 if (newcon->index < 0)
3353 newcon->index = 0;
3354
3355 if (console_call_setup(newcon, NULL) != 0)
3356 return;
3357
3358 newcon->flags |= CON_ENABLED;
3359
3360 if (newcon->device)
3361 newcon->flags |= CON_CONSDEV;
3362}
3363
3364static void console_init_seq(struct console *newcon, bool bootcon_registered)
3365{
3366 struct console *con;
3367 bool handover;
3368
3369 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3370 /* Get a consistent copy of @syslog_seq. */
3371 mutex_lock(&syslog_lock);
3372 newcon->seq = syslog_seq;
3373 mutex_unlock(&syslog_lock);
3374 } else {
3375 /* Begin with next message added to ringbuffer. */
3376 newcon->seq = prb_next_seq(prb);
3377
3378 /*
3379 * If any enabled boot consoles are due to be unregistered
3380 * shortly, some may not be caught up and may be the same
3381 * device as @newcon. Since it is not known which boot console
3382 * is the same device, flush all consoles and, if necessary,
3383 * start with the message of the enabled boot console that is
3384 * the furthest behind.
3385 */
3386 if (bootcon_registered && !keep_bootcon) {
3387 /*
3388 * Hold the console_lock to stop console printing and
3389 * guarantee safe access to console->seq.
3390 */
3391 console_lock();
3392
3393 /*
3394 * Flush all consoles and set the console to start at
3395 * the next unprinted sequence number.
3396 */
3397 if (!console_flush_all(true, &newcon->seq, &handover)) {
3398 /*
3399 * Flushing failed. Just choose the lowest
3400 * sequence of the enabled boot consoles.
3401 */
3402
3403 /*
3404 * If there was a handover, this context no
3405 * longer holds the console_lock.
3406 */
3407 if (handover)
3408 console_lock();
3409
3410 newcon->seq = prb_next_seq(prb);
3411 for_each_console(con) {
3412 if ((con->flags & CON_BOOT) &&
3413 (con->flags & CON_ENABLED) &&
3414 con->seq < newcon->seq) {
3415 newcon->seq = con->seq;
3416 }
3417 }
3418 }
3419
3420 console_unlock();
3421 }
3422 }
3423}
3424
3425#define console_first() \
3426 hlist_entry(console_list.first, struct console, node)
3427
3428static int unregister_console_locked(struct console *console);
3429
3430/*
3431 * The console driver calls this routine during kernel initialization
3432 * to register the console printing procedure with printk() and to
3433 * print any messages that were printed by the kernel before the
3434 * console driver was initialized.
3435 *
3436 * This can happen pretty early during the boot process (because of
3437 * early_printk) - sometimes before setup_arch() completes - be careful
3438 * of what kernel features are used - they may not be initialised yet.
3439 *
3440 * There are two types of consoles - bootconsoles (early_printk) and
3441 * "real" consoles (everything which is not a bootconsole) which are
3442 * handled differently.
3443 * - Any number of bootconsoles can be registered at any time.
3444 * - As soon as a "real" console is registered, all bootconsoles
3445 * will be unregistered automatically.
3446 * - Once a "real" console is registered, any attempt to register a
3447 * bootconsoles will be rejected
3448 */
3449void register_console(struct console *newcon)
3450{
3451 struct console *con;
3452 bool bootcon_registered = false;
3453 bool realcon_registered = false;
3454 int err;
3455
3456 console_list_lock();
3457
3458 for_each_console(con) {
3459 if (WARN(con == newcon, "console '%s%d' already registered\n",
3460 con->name, con->index)) {
3461 goto unlock;
3462 }
3463
3464 if (con->flags & CON_BOOT)
3465 bootcon_registered = true;
3466 else
3467 realcon_registered = true;
3468 }
3469
3470 /* Do not register boot consoles when there already is a real one. */
3471 if ((newcon->flags & CON_BOOT) && realcon_registered) {
3472 pr_info("Too late to register bootconsole %s%d\n",
3473 newcon->name, newcon->index);
3474 goto unlock;
3475 }
3476
3477 if (newcon->flags & CON_NBCON) {
3478 /*
3479 * Ensure the nbcon console buffers can be allocated
3480 * before modifying any global data.
3481 */
3482 if (!nbcon_alloc(newcon))
3483 goto unlock;
3484 }
3485
3486 /*
3487 * See if we want to enable this console driver by default.
3488 *
3489 * Nope when a console is preferred by the command line, device
3490 * tree, or SPCR.
3491 *
3492 * The first real console with tty binding (driver) wins. More
3493 * consoles might get enabled before the right one is found.
3494 *
3495 * Note that a console with tty binding will have CON_CONSDEV
3496 * flag set and will be first in the list.
3497 */
3498 if (preferred_console < 0) {
3499 if (hlist_empty(&console_list) || !console_first()->device ||
3500 console_first()->flags & CON_BOOT) {
3501 try_enable_default_console(newcon);
3502 }
3503 }
3504
3505 /* See if this console matches one we selected on the command line */
3506 err = try_enable_preferred_console(newcon, true);
3507
3508 /* If not, try to match against the platform default(s) */
3509 if (err == -ENOENT)
3510 err = try_enable_preferred_console(newcon, false);
3511
3512 /* printk() messages are not printed to the Braille console. */
3513 if (err || newcon->flags & CON_BRL) {
3514 if (newcon->flags & CON_NBCON)
3515 nbcon_free(newcon);
3516 goto unlock;
3517 }
3518
3519 /*
3520 * If we have a bootconsole, and are switching to a real console,
3521 * don't print everything out again, since when the boot console, and
3522 * the real console are the same physical device, it's annoying to
3523 * see the beginning boot messages twice
3524 */
3525 if (bootcon_registered &&
3526 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3527 newcon->flags &= ~CON_PRINTBUFFER;
3528 }
3529
3530 newcon->dropped = 0;
3531 console_init_seq(newcon, bootcon_registered);
3532
3533 if (newcon->flags & CON_NBCON)
3534 nbcon_init(newcon);
3535
3536 /*
3537 * Put this console in the list - keep the
3538 * preferred driver at the head of the list.
3539 */
3540 if (hlist_empty(&console_list)) {
3541 /* Ensure CON_CONSDEV is always set for the head. */
3542 newcon->flags |= CON_CONSDEV;
3543 hlist_add_head_rcu(&newcon->node, &console_list);
3544
3545 } else if (newcon->flags & CON_CONSDEV) {
3546 /* Only the new head can have CON_CONSDEV set. */
3547 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3548 hlist_add_head_rcu(&newcon->node, &console_list);
3549
3550 } else {
3551 hlist_add_behind_rcu(&newcon->node, console_list.first);
3552 }
3553
3554 /*
3555 * No need to synchronize SRCU here! The caller does not rely
3556 * on all contexts being able to see the new console before
3557 * register_console() completes.
3558 */
3559
3560 console_sysfs_notify();
3561
3562 /*
3563 * By unregistering the bootconsoles after we enable the real console
3564 * we get the "console xxx enabled" message on all the consoles -
3565 * boot consoles, real consoles, etc - this is to ensure that end
3566 * users know there might be something in the kernel's log buffer that
3567 * went to the bootconsole (that they do not see on the real console)
3568 */
3569 con_printk(KERN_INFO, newcon, "enabled\n");
3570 if (bootcon_registered &&
3571 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3572 !keep_bootcon) {
3573 struct hlist_node *tmp;
3574
3575 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3576 if (con->flags & CON_BOOT)
3577 unregister_console_locked(con);
3578 }
3579 }
3580unlock:
3581 console_list_unlock();
3582}
3583EXPORT_SYMBOL(register_console);
3584
3585/* Must be called under console_list_lock(). */
3586static int unregister_console_locked(struct console *console)
3587{
3588 int res;
3589
3590 lockdep_assert_console_list_lock_held();
3591
3592 con_printk(KERN_INFO, console, "disabled\n");
3593
3594 res = _braille_unregister_console(console);
3595 if (res < 0)
3596 return res;
3597 if (res > 0)
3598 return 0;
3599
3600 /* Disable it unconditionally */
3601 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3602
3603 if (!console_is_registered_locked(console))
3604 return -ENODEV;
3605
3606 hlist_del_init_rcu(&console->node);
3607
3608 /*
3609 * <HISTORICAL>
3610 * If this isn't the last console and it has CON_CONSDEV set, we
3611 * need to set it on the next preferred console.
3612 * </HISTORICAL>
3613 *
3614 * The above makes no sense as there is no guarantee that the next
3615 * console has any device attached. Oh well....
3616 */
3617 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3618 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3619
3620 /*
3621 * Ensure that all SRCU list walks have completed. All contexts
3622 * must not be able to see this console in the list so that any
3623 * exit/cleanup routines can be performed safely.
3624 */
3625 synchronize_srcu(&console_srcu);
3626
3627 if (console->flags & CON_NBCON)
3628 nbcon_free(console);
3629
3630 console_sysfs_notify();
3631
3632 if (console->exit)
3633 res = console->exit(console);
3634
3635 return res;
3636}
3637
3638int unregister_console(struct console *console)
3639{
3640 int res;
3641
3642 console_list_lock();
3643 res = unregister_console_locked(console);
3644 console_list_unlock();
3645 return res;
3646}
3647EXPORT_SYMBOL(unregister_console);
3648
3649/**
3650 * console_force_preferred_locked - force a registered console preferred
3651 * @con: The registered console to force preferred.
3652 *
3653 * Must be called under console_list_lock().
3654 */
3655void console_force_preferred_locked(struct console *con)
3656{
3657 struct console *cur_pref_con;
3658
3659 if (!console_is_registered_locked(con))
3660 return;
3661
3662 cur_pref_con = console_first();
3663
3664 /* Already preferred? */
3665 if (cur_pref_con == con)
3666 return;
3667
3668 /*
3669 * Delete, but do not re-initialize the entry. This allows the console
3670 * to continue to appear registered (via any hlist_unhashed_lockless()
3671 * checks), even though it was briefly removed from the console list.
3672 */
3673 hlist_del_rcu(&con->node);
3674
3675 /*
3676 * Ensure that all SRCU list walks have completed so that the console
3677 * can be added to the beginning of the console list and its forward
3678 * list pointer can be re-initialized.
3679 */
3680 synchronize_srcu(&console_srcu);
3681
3682 con->flags |= CON_CONSDEV;
3683 WARN_ON(!con->device);
3684
3685 /* Only the new head can have CON_CONSDEV set. */
3686 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3687 hlist_add_head_rcu(&con->node, &console_list);
3688}
3689EXPORT_SYMBOL(console_force_preferred_locked);
3690
3691/*
3692 * Initialize the console device. This is called *early*, so
3693 * we can't necessarily depend on lots of kernel help here.
3694 * Just do some early initializations, and do the complex setup
3695 * later.
3696 */
3697void __init console_init(void)
3698{
3699 int ret;
3700 initcall_t call;
3701 initcall_entry_t *ce;
3702
3703 /* Setup the default TTY line discipline. */
3704 n_tty_init();
3705
3706 /*
3707 * set up the console device so that later boot sequences can
3708 * inform about problems etc..
3709 */
3710 ce = __con_initcall_start;
3711 trace_initcall_level("console");
3712 while (ce < __con_initcall_end) {
3713 call = initcall_from_entry(ce);
3714 trace_initcall_start(call);
3715 ret = call();
3716 trace_initcall_finish(call, ret);
3717 ce++;
3718 }
3719}
3720
3721/*
3722 * Some boot consoles access data that is in the init section and which will
3723 * be discarded after the initcalls have been run. To make sure that no code
3724 * will access this data, unregister the boot consoles in a late initcall.
3725 *
3726 * If for some reason, such as deferred probe or the driver being a loadable
3727 * module, the real console hasn't registered yet at this point, there will
3728 * be a brief interval in which no messages are logged to the console, which
3729 * makes it difficult to diagnose problems that occur during this time.
3730 *
3731 * To mitigate this problem somewhat, only unregister consoles whose memory
3732 * intersects with the init section. Note that all other boot consoles will
3733 * get unregistered when the real preferred console is registered.
3734 */
3735static int __init printk_late_init(void)
3736{
3737 struct hlist_node *tmp;
3738 struct console *con;
3739 int ret;
3740
3741 console_list_lock();
3742 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3743 if (!(con->flags & CON_BOOT))
3744 continue;
3745
3746 /* Check addresses that might be used for enabled consoles. */
3747 if (init_section_intersects(con, sizeof(*con)) ||
3748 init_section_contains(con->write, 0) ||
3749 init_section_contains(con->read, 0) ||
3750 init_section_contains(con->device, 0) ||
3751 init_section_contains(con->unblank, 0) ||
3752 init_section_contains(con->data, 0)) {
3753 /*
3754 * Please, consider moving the reported consoles out
3755 * of the init section.
3756 */
3757 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3758 con->name, con->index);
3759 unregister_console_locked(con);
3760 }
3761 }
3762 console_list_unlock();
3763
3764 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3765 console_cpu_notify);
3766 WARN_ON(ret < 0);
3767 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3768 console_cpu_notify, NULL);
3769 WARN_ON(ret < 0);
3770 printk_sysctl_init();
3771 return 0;
3772}
3773late_initcall(printk_late_init);
3774
3775#if defined CONFIG_PRINTK
3776/* If @con is specified, only wait for that console. Otherwise wait for all. */
3777static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3778{
3779 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3780 unsigned long remaining_jiffies = timeout_jiffies;
3781 struct console *c;
3782 u64 last_diff = 0;
3783 u64 printk_seq;
3784 short flags;
3785 int cookie;
3786 u64 diff;
3787 u64 seq;
3788
3789 might_sleep();
3790
3791 seq = prb_next_reserve_seq(prb);
3792
3793 /* Flush the consoles so that records up to @seq are printed. */
3794 console_lock();
3795 console_unlock();
3796
3797 for (;;) {
3798 unsigned long begin_jiffies;
3799 unsigned long slept_jiffies;
3800
3801 diff = 0;
3802
3803 /*
3804 * Hold the console_lock to guarantee safe access to
3805 * console->seq. Releasing console_lock flushes more
3806 * records in case @seq is still not printed on all
3807 * usable consoles.
3808 */
3809 console_lock();
3810
3811 cookie = console_srcu_read_lock();
3812 for_each_console_srcu(c) {
3813 if (con && con != c)
3814 continue;
3815
3816 flags = console_srcu_read_flags(c);
3817
3818 /*
3819 * If consoles are not usable, it cannot be expected
3820 * that they make forward progress, so only increment
3821 * @diff for usable consoles.
3822 */
3823 if (!console_is_usable(c))
3824 continue;
3825
3826 if (flags & CON_NBCON) {
3827 printk_seq = nbcon_seq_read(c);
3828 } else {
3829 printk_seq = c->seq;
3830 }
3831
3832 if (printk_seq < seq)
3833 diff += seq - printk_seq;
3834 }
3835 console_srcu_read_unlock(cookie);
3836
3837 if (diff != last_diff && reset_on_progress)
3838 remaining_jiffies = timeout_jiffies;
3839
3840 console_unlock();
3841
3842 /* Note: @diff is 0 if there are no usable consoles. */
3843 if (diff == 0 || remaining_jiffies == 0)
3844 break;
3845
3846 /* msleep(1) might sleep much longer. Check time by jiffies. */
3847 begin_jiffies = jiffies;
3848 msleep(1);
3849 slept_jiffies = jiffies - begin_jiffies;
3850
3851 remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3852
3853 last_diff = diff;
3854 }
3855
3856 return (diff == 0);
3857}
3858
3859/**
3860 * pr_flush() - Wait for printing threads to catch up.
3861 *
3862 * @timeout_ms: The maximum time (in ms) to wait.
3863 * @reset_on_progress: Reset the timeout if forward progress is seen.
3864 *
3865 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3866 * represents infinite waiting.
3867 *
3868 * If @reset_on_progress is true, the timeout will be reset whenever any
3869 * printer has been seen to make some forward progress.
3870 *
3871 * Context: Process context. May sleep while acquiring console lock.
3872 * Return: true if all usable printers are caught up.
3873 */
3874static bool pr_flush(int timeout_ms, bool reset_on_progress)
3875{
3876 return __pr_flush(NULL, timeout_ms, reset_on_progress);
3877}
3878
3879/*
3880 * Delayed printk version, for scheduler-internal messages:
3881 */
3882#define PRINTK_PENDING_WAKEUP 0x01
3883#define PRINTK_PENDING_OUTPUT 0x02
3884
3885static DEFINE_PER_CPU(int, printk_pending);
3886
3887static void wake_up_klogd_work_func(struct irq_work *irq_work)
3888{
3889 int pending = this_cpu_xchg(printk_pending, 0);
3890
3891 if (pending & PRINTK_PENDING_OUTPUT) {
3892 /* If trylock fails, someone else is doing the printing */
3893 if (console_trylock())
3894 console_unlock();
3895 }
3896
3897 if (pending & PRINTK_PENDING_WAKEUP)
3898 wake_up_interruptible(&log_wait);
3899}
3900
3901static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3902 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3903
3904static void __wake_up_klogd(int val)
3905{
3906 if (!printk_percpu_data_ready())
3907 return;
3908
3909 preempt_disable();
3910 /*
3911 * Guarantee any new records can be seen by tasks preparing to wait
3912 * before this context checks if the wait queue is empty.
3913 *
3914 * The full memory barrier within wq_has_sleeper() pairs with the full
3915 * memory barrier within set_current_state() of
3916 * prepare_to_wait_event(), which is called after ___wait_event() adds
3917 * the waiter but before it has checked the wait condition.
3918 *
3919 * This pairs with devkmsg_read:A and syslog_print:A.
3920 */
3921 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3922 (val & PRINTK_PENDING_OUTPUT)) {
3923 this_cpu_or(printk_pending, val);
3924 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3925 }
3926 preempt_enable();
3927}
3928
3929/**
3930 * wake_up_klogd - Wake kernel logging daemon
3931 *
3932 * Use this function when new records have been added to the ringbuffer
3933 * and the console printing of those records has already occurred or is
3934 * known to be handled by some other context. This function will only
3935 * wake the logging daemon.
3936 *
3937 * Context: Any context.
3938 */
3939void wake_up_klogd(void)
3940{
3941 __wake_up_klogd(PRINTK_PENDING_WAKEUP);
3942}
3943
3944/**
3945 * defer_console_output - Wake kernel logging daemon and trigger
3946 * console printing in a deferred context
3947 *
3948 * Use this function when new records have been added to the ringbuffer,
3949 * this context is responsible for console printing those records, but
3950 * the current context is not allowed to perform the console printing.
3951 * Trigger an irq_work context to perform the console printing. This
3952 * function also wakes the logging daemon.
3953 *
3954 * Context: Any context.
3955 */
3956void defer_console_output(void)
3957{
3958 /*
3959 * New messages may have been added directly to the ringbuffer
3960 * using vprintk_store(), so wake any waiters as well.
3961 */
3962 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3963}
3964
3965void printk_trigger_flush(void)
3966{
3967 defer_console_output();
3968}
3969
3970int vprintk_deferred(const char *fmt, va_list args)
3971{
3972 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3973}
3974
3975int _printk_deferred(const char *fmt, ...)
3976{
3977 va_list args;
3978 int r;
3979
3980 va_start(args, fmt);
3981 r = vprintk_deferred(fmt, args);
3982 va_end(args);
3983
3984 return r;
3985}
3986
3987/*
3988 * printk rate limiting, lifted from the networking subsystem.
3989 *
3990 * This enforces a rate limit: not more than 10 kernel messages
3991 * every 5s to make a denial-of-service attack impossible.
3992 */
3993DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3994
3995int __printk_ratelimit(const char *func)
3996{
3997 return ___ratelimit(&printk_ratelimit_state, func);
3998}
3999EXPORT_SYMBOL(__printk_ratelimit);
4000
4001/**
4002 * printk_timed_ratelimit - caller-controlled printk ratelimiting
4003 * @caller_jiffies: pointer to caller's state
4004 * @interval_msecs: minimum interval between prints
4005 *
4006 * printk_timed_ratelimit() returns true if more than @interval_msecs
4007 * milliseconds have elapsed since the last time printk_timed_ratelimit()
4008 * returned true.
4009 */
4010bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4011 unsigned int interval_msecs)
4012{
4013 unsigned long elapsed = jiffies - *caller_jiffies;
4014
4015 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4016 return false;
4017
4018 *caller_jiffies = jiffies;
4019 return true;
4020}
4021EXPORT_SYMBOL(printk_timed_ratelimit);
4022
4023static DEFINE_SPINLOCK(dump_list_lock);
4024static LIST_HEAD(dump_list);
4025
4026/**
4027 * kmsg_dump_register - register a kernel log dumper.
4028 * @dumper: pointer to the kmsg_dumper structure
4029 *
4030 * Adds a kernel log dumper to the system. The dump callback in the
4031 * structure will be called when the kernel oopses or panics and must be
4032 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4033 */
4034int kmsg_dump_register(struct kmsg_dumper *dumper)
4035{
4036 unsigned long flags;
4037 int err = -EBUSY;
4038
4039 /* The dump callback needs to be set */
4040 if (!dumper->dump)
4041 return -EINVAL;
4042
4043 spin_lock_irqsave(&dump_list_lock, flags);
4044 /* Don't allow registering multiple times */
4045 if (!dumper->registered) {
4046 dumper->registered = 1;
4047 list_add_tail_rcu(&dumper->list, &dump_list);
4048 err = 0;
4049 }
4050 spin_unlock_irqrestore(&dump_list_lock, flags);
4051
4052 return err;
4053}
4054EXPORT_SYMBOL_GPL(kmsg_dump_register);
4055
4056/**
4057 * kmsg_dump_unregister - unregister a kmsg dumper.
4058 * @dumper: pointer to the kmsg_dumper structure
4059 *
4060 * Removes a dump device from the system. Returns zero on success and
4061 * %-EINVAL otherwise.
4062 */
4063int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4064{
4065 unsigned long flags;
4066 int err = -EINVAL;
4067
4068 spin_lock_irqsave(&dump_list_lock, flags);
4069 if (dumper->registered) {
4070 dumper->registered = 0;
4071 list_del_rcu(&dumper->list);
4072 err = 0;
4073 }
4074 spin_unlock_irqrestore(&dump_list_lock, flags);
4075 synchronize_rcu();
4076
4077 return err;
4078}
4079EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4080
4081static bool always_kmsg_dump;
4082module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4083
4084const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4085{
4086 switch (reason) {
4087 case KMSG_DUMP_PANIC:
4088 return "Panic";
4089 case KMSG_DUMP_OOPS:
4090 return "Oops";
4091 case KMSG_DUMP_EMERG:
4092 return "Emergency";
4093 case KMSG_DUMP_SHUTDOWN:
4094 return "Shutdown";
4095 default:
4096 return "Unknown";
4097 }
4098}
4099EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4100
4101/**
4102 * kmsg_dump - dump kernel log to kernel message dumpers.
4103 * @reason: the reason (oops, panic etc) for dumping
4104 *
4105 * Call each of the registered dumper's dump() callback, which can
4106 * retrieve the kmsg records with kmsg_dump_get_line() or
4107 * kmsg_dump_get_buffer().
4108 */
4109void kmsg_dump(enum kmsg_dump_reason reason)
4110{
4111 struct kmsg_dumper *dumper;
4112
4113 rcu_read_lock();
4114 list_for_each_entry_rcu(dumper, &dump_list, list) {
4115 enum kmsg_dump_reason max_reason = dumper->max_reason;
4116
4117 /*
4118 * If client has not provided a specific max_reason, default
4119 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4120 */
4121 if (max_reason == KMSG_DUMP_UNDEF) {
4122 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4123 KMSG_DUMP_OOPS;
4124 }
4125 if (reason > max_reason)
4126 continue;
4127
4128 /* invoke dumper which will iterate over records */
4129 dumper->dump(dumper, reason);
4130 }
4131 rcu_read_unlock();
4132}
4133
4134/**
4135 * kmsg_dump_get_line - retrieve one kmsg log line
4136 * @iter: kmsg dump iterator
4137 * @syslog: include the "<4>" prefixes
4138 * @line: buffer to copy the line to
4139 * @size: maximum size of the buffer
4140 * @len: length of line placed into buffer
4141 *
4142 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4143 * record, and copy one record into the provided buffer.
4144 *
4145 * Consecutive calls will return the next available record moving
4146 * towards the end of the buffer with the youngest messages.
4147 *
4148 * A return value of FALSE indicates that there are no more records to
4149 * read.
4150 */
4151bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4152 char *line, size_t size, size_t *len)
4153{
4154 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4155 struct printk_info info;
4156 unsigned int line_count;
4157 struct printk_record r;
4158 size_t l = 0;
4159 bool ret = false;
4160
4161 if (iter->cur_seq < min_seq)
4162 iter->cur_seq = min_seq;
4163
4164 prb_rec_init_rd(&r, &info, line, size);
4165
4166 /* Read text or count text lines? */
4167 if (line) {
4168 if (!prb_read_valid(prb, iter->cur_seq, &r))
4169 goto out;
4170 l = record_print_text(&r, syslog, printk_time);
4171 } else {
4172 if (!prb_read_valid_info(prb, iter->cur_seq,
4173 &info, &line_count)) {
4174 goto out;
4175 }
4176 l = get_record_print_text_size(&info, line_count, syslog,
4177 printk_time);
4178
4179 }
4180
4181 iter->cur_seq = r.info->seq + 1;
4182 ret = true;
4183out:
4184 if (len)
4185 *len = l;
4186 return ret;
4187}
4188EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4189
4190/**
4191 * kmsg_dump_get_buffer - copy kmsg log lines
4192 * @iter: kmsg dump iterator
4193 * @syslog: include the "<4>" prefixes
4194 * @buf: buffer to copy the line to
4195 * @size: maximum size of the buffer
4196 * @len_out: length of line placed into buffer
4197 *
4198 * Start at the end of the kmsg buffer and fill the provided buffer
4199 * with as many of the *youngest* kmsg records that fit into it.
4200 * If the buffer is large enough, all available kmsg records will be
4201 * copied with a single call.
4202 *
4203 * Consecutive calls will fill the buffer with the next block of
4204 * available older records, not including the earlier retrieved ones.
4205 *
4206 * A return value of FALSE indicates that there are no more records to
4207 * read.
4208 */
4209bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4210 char *buf, size_t size, size_t *len_out)
4211{
4212 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4213 struct printk_info info;
4214 struct printk_record r;
4215 u64 seq;
4216 u64 next_seq;
4217 size_t len = 0;
4218 bool ret = false;
4219 bool time = printk_time;
4220
4221 if (!buf || !size)
4222 goto out;
4223
4224 if (iter->cur_seq < min_seq)
4225 iter->cur_seq = min_seq;
4226
4227 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4228 if (info.seq != iter->cur_seq) {
4229 /* messages are gone, move to first available one */
4230 iter->cur_seq = info.seq;
4231 }
4232 }
4233
4234 /* last entry */
4235 if (iter->cur_seq >= iter->next_seq)
4236 goto out;
4237
4238 /*
4239 * Find first record that fits, including all following records,
4240 * into the user-provided buffer for this dump. Pass in size-1
4241 * because this function (by way of record_print_text()) will
4242 * not write more than size-1 bytes of text into @buf.
4243 */
4244 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4245 size - 1, syslog, time);
4246
4247 /*
4248 * Next kmsg_dump_get_buffer() invocation will dump block of
4249 * older records stored right before this one.
4250 */
4251 next_seq = seq;
4252
4253 prb_rec_init_rd(&r, &info, buf, size);
4254
4255 prb_for_each_record(seq, prb, seq, &r) {
4256 if (r.info->seq >= iter->next_seq)
4257 break;
4258
4259 len += record_print_text(&r, syslog, time);
4260
4261 /* Adjust record to store to remaining buffer space. */
4262 prb_rec_init_rd(&r, &info, buf + len, size - len);
4263 }
4264
4265 iter->next_seq = next_seq;
4266 ret = true;
4267out:
4268 if (len_out)
4269 *len_out = len;
4270 return ret;
4271}
4272EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4273
4274/**
4275 * kmsg_dump_rewind - reset the iterator
4276 * @iter: kmsg dump iterator
4277 *
4278 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4279 * kmsg_dump_get_buffer() can be called again and used multiple
4280 * times within the same dumper.dump() callback.
4281 */
4282void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4283{
4284 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4285 iter->next_seq = prb_next_seq(prb);
4286}
4287EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4288
4289#endif
4290
4291#ifdef CONFIG_SMP
4292static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4293static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4294
4295/**
4296 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4297 * spinning lock is not owned by any CPU.
4298 *
4299 * Context: Any context.
4300 */
4301void __printk_cpu_sync_wait(void)
4302{
4303 do {
4304 cpu_relax();
4305 } while (atomic_read(&printk_cpu_sync_owner) != -1);
4306}
4307EXPORT_SYMBOL(__printk_cpu_sync_wait);
4308
4309/**
4310 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4311 * spinning lock.
4312 *
4313 * If no processor has the lock, the calling processor takes the lock and
4314 * becomes the owner. If the calling processor is already the owner of the
4315 * lock, this function succeeds immediately.
4316 *
4317 * Context: Any context. Expects interrupts to be disabled.
4318 * Return: 1 on success, otherwise 0.
4319 */
4320int __printk_cpu_sync_try_get(void)
4321{
4322 int cpu;
4323 int old;
4324
4325 cpu = smp_processor_id();
4326
4327 /*
4328 * Guarantee loads and stores from this CPU when it is the lock owner
4329 * are _not_ visible to the previous lock owner. This pairs with
4330 * __printk_cpu_sync_put:B.
4331 *
4332 * Memory barrier involvement:
4333 *
4334 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4335 * then __printk_cpu_sync_put:A can never read from
4336 * __printk_cpu_sync_try_get:B.
4337 *
4338 * Relies on:
4339 *
4340 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4341 * of the previous CPU
4342 * matching
4343 * ACQUIRE from __printk_cpu_sync_try_get:A to
4344 * __printk_cpu_sync_try_get:B of this CPU
4345 */
4346 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4347 cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4348 if (old == -1) {
4349 /*
4350 * This CPU is now the owner and begins loading/storing
4351 * data: LMM(__printk_cpu_sync_try_get:B)
4352 */
4353 return 1;
4354
4355 } else if (old == cpu) {
4356 /* This CPU is already the owner. */
4357 atomic_inc(&printk_cpu_sync_nested);
4358 return 1;
4359 }
4360
4361 return 0;
4362}
4363EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4364
4365/**
4366 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4367 *
4368 * The calling processor must be the owner of the lock.
4369 *
4370 * Context: Any context. Expects interrupts to be disabled.
4371 */
4372void __printk_cpu_sync_put(void)
4373{
4374 if (atomic_read(&printk_cpu_sync_nested)) {
4375 atomic_dec(&printk_cpu_sync_nested);
4376 return;
4377 }
4378
4379 /*
4380 * This CPU is finished loading/storing data:
4381 * LMM(__printk_cpu_sync_put:A)
4382 */
4383
4384 /*
4385 * Guarantee loads and stores from this CPU when it was the
4386 * lock owner are visible to the next lock owner. This pairs
4387 * with __printk_cpu_sync_try_get:A.
4388 *
4389 * Memory barrier involvement:
4390 *
4391 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4392 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4393 *
4394 * Relies on:
4395 *
4396 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4397 * of this CPU
4398 * matching
4399 * ACQUIRE from __printk_cpu_sync_try_get:A to
4400 * __printk_cpu_sync_try_get:B of the next CPU
4401 */
4402 atomic_set_release(&printk_cpu_sync_owner,
4403 -1); /* LMM(__printk_cpu_sync_put:B) */
4404}
4405EXPORT_SYMBOL(__printk_cpu_sync_put);
4406#endif /* CONFIG_SMP */