Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/syscalls.h>
  36#include <linux/kexec.h>
  37#include <linux/kdb.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/notifier.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/utsname.h>
  47#include <linux/ctype.h>
  48#include <linux/uio.h>
 
 
 
  49
  50#include <asm/uaccess.h>
  51#include <asm-generic/sections.h>
  52
 
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/printk.h>
  55
  56#include "console_cmdline.h"
  57#include "braille.h"
 
  58
  59int console_printk[4] = {
  60	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  61	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  62	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  64};
 
 
 
 
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
 
 
 
 
 
 
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84	.name = "console_lock"
  85};
  86#endif
  87
  88/*
  89 * Number of registered extended console drivers.
  90 *
  91 * If extended consoles are present, in-kernel cont reassembly is disabled
  92 * and each fragment is stored as a separate log entry with proper
  93 * continuation flag so that every emitted message has full metadata.  This
  94 * doesn't change the result for regular consoles or /proc/kmsg.  For
  95 * /dev/kmsg, as long as the reader concatenates messages according to
  96 * consecutive continuation flags, the end result should be the same too.
  97 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98static int nr_ext_console_drivers;
  99
 100/*
 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 102 * macros instead of functions so that _RET_IP_ contains useful information.
 103 */
 104#define down_console_sem() do { \
 105	down(&console_sem);\
 106	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 107} while (0)
 108
 109static int __down_trylock_console_sem(unsigned long ip)
 110{
 111	if (down_trylock(&console_sem))
 
 
 
 
 
 
 
 
 
 
 
 
 112		return 1;
 113	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 114	return 0;
 115}
 116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 117
 118#define up_console_sem() do { \
 119	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 120	up(&console_sem);\
 121} while (0)
 
 
 
 
 
 
 
 122
 123/*
 124 * This is used for debugging the mess that is the VT code by
 125 * keeping track if we have the console semaphore held. It's
 126 * definitely not the perfect debug tool (we don't know if _WE_
 127 * hold it and are racing, but it helps tracking those weird code
 128 * paths in the console code where we end up in places I want
 129 * locked without the console sempahore held).
 130 */
 131static int console_locked, console_suspended;
 132
 133/*
 134 * If exclusive_console is non-NULL then only this console is to be printed to.
 135 */
 136static struct console *exclusive_console;
 137
 138/*
 139 *	Array of consoles built from command line options (console=)
 140 */
 141
 142#define MAX_CMDLINECONSOLES 8
 143
 144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 145
 146static int selected_console = -1;
 147static int preferred_console = -1;
 
 148int console_set_on_cmdline;
 149EXPORT_SYMBOL(console_set_on_cmdline);
 150
 151/* Flag: console code may call schedule() */
 152static int console_may_schedule;
 153
 
 
 
 
 
 
 
 154/*
 155 * The printk log buffer consists of a chain of concatenated variable
 156 * length records. Every record starts with a record header, containing
 157 * the overall length of the record.
 158 *
 159 * The heads to the first and last entry in the buffer, as well as the
 160 * sequence numbers of these entries are maintained when messages are
 161 * stored.
 162 *
 163 * If the heads indicate available messages, the length in the header
 164 * tells the start next message. A length == 0 for the next message
 165 * indicates a wrap-around to the beginning of the buffer.
 166 *
 167 * Every record carries the monotonic timestamp in microseconds, as well as
 168 * the standard userspace syslog level and syslog facility. The usual
 169 * kernel messages use LOG_KERN; userspace-injected messages always carry
 170 * a matching syslog facility, by default LOG_USER. The origin of every
 171 * message can be reliably determined that way.
 172 *
 173 * The human readable log message directly follows the message header. The
 174 * length of the message text is stored in the header, the stored message
 175 * is not terminated.
 176 *
 177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 178 * to provide userspace with a machine-readable message context.
 179 *
 180 * Examples for well-defined, commonly used property names are:
 181 *   DEVICE=b12:8               device identifier
 182 *                                b12:8         block dev_t
 183 *                                c127:3        char dev_t
 184 *                                n8            netdev ifindex
 185 *                                +sound:card0  subsystem:devname
 186 *   SUBSYSTEM=pci              driver-core subsystem name
 187 *
 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 189 * follows directly after a '=' character. Every property is terminated by
 190 * a '\0' character. The last property is not terminated.
 191 *
 192 * Example of a message structure:
 193 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 194 *   0008  34 00                        record is 52 bytes long
 195 *   000a        0b 00                  text is 11 bytes long
 196 *   000c              1f 00            dictionary is 23 bytes long
 197 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 198 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 199 *         69 6e 65                     "ine"
 200 *   001b           44 45 56 49 43      "DEVIC"
 201 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 202 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 203 *         67                           "g"
 204 *   0032     00 00 00                  padding to next message header
 205 *
 206 * The 'struct printk_log' buffer header must never be directly exported to
 207 * userspace, it is a kernel-private implementation detail that might
 208 * need to be changed in the future, when the requirements change.
 209 *
 210 * /dev/kmsg exports the structured data in the following line format:
 211 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 212 *
 213 * Users of the export format should ignore possible additional values
 214 * separated by ',', and find the message after the ';' character.
 215 *
 216 * The optional key/value pairs are attached as continuation lines starting
 217 * with a space character and terminated by a newline. All possible
 218 * non-prinatable characters are escaped in the "\xff" notation.
 219 */
 220
 221enum log_flags {
 222	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 223	LOG_NEWLINE	= 2,	/* text ended with a newline */
 224	LOG_PREFIX	= 4,	/* text started with a prefix */
 225	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 226};
 227
 228struct printk_log {
 229	u64 ts_nsec;		/* timestamp in nanoseconds */
 230	u16 len;		/* length of entire record */
 231	u16 text_len;		/* length of text buffer */
 232	u16 dict_len;		/* length of dictionary buffer */
 233	u8 facility;		/* syslog facility */
 234	u8 flags:5;		/* internal record flags */
 235	u8 level:3;		/* syslog level */
 
 
 
 236}
 237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 238__packed __aligned(4)
 239#endif
 240;
 241
 242/*
 243 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 244 * within the scheduler's rq lock. It must be released before calling
 245 * console_unlock() or anything else that might wake up a process.
 246 */
 247static DEFINE_RAW_SPINLOCK(logbuf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249#ifdef CONFIG_PRINTK
 250DECLARE_WAIT_QUEUE_HEAD(log_wait);
 251/* the next printk record to read by syslog(READ) or /proc/kmsg */
 252static u64 syslog_seq;
 253static u32 syslog_idx;
 254static enum log_flags syslog_prev;
 255static size_t syslog_partial;
 
 256
 257/* index and sequence number of the first record stored in the buffer */
 258static u64 log_first_seq;
 259static u32 log_first_idx;
 260
 261/* index and sequence number of the next record to store in the buffer */
 262static u64 log_next_seq;
 263static u32 log_next_idx;
 264
 265/* the next printk record to write to the console */
 266static u64 console_seq;
 267static u32 console_idx;
 268static enum log_flags console_prev;
 269
 270/* the next printk record to read after the last 'clear' command */
 271static u64 clear_seq;
 272static u32 clear_idx;
 273
 
 
 
 274#define PREFIX_MAX		32
 
 275#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 276
 277#define LOG_LEVEL(v)		((v) & 0x07)
 278#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 279
 280/* record buffer */
 281#define LOG_ALIGN __alignof__(struct printk_log)
 282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 284static char *log_buf = __log_buf;
 285static u32 log_buf_len = __LOG_BUF_LEN;
 286
 
 
 
 
 
 
 
 
 
 
 
 
 287/* Return log buffer address */
 288char *log_buf_addr_get(void)
 289{
 290	return log_buf;
 291}
 292
 293/* Return log buffer size */
 294u32 log_buf_len_get(void)
 295{
 296	return log_buf_len;
 297}
 298
 299/* human readable text of the record */
 300static char *log_text(const struct printk_log *msg)
 301{
 302	return (char *)msg + sizeof(struct printk_log);
 303}
 304
 305/* optional key/value pair dictionary attached to the record */
 306static char *log_dict(const struct printk_log *msg)
 307{
 308	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 309}
 310
 311/* get record by index; idx must point to valid msg */
 312static struct printk_log *log_from_idx(u32 idx)
 313{
 314	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 315
 316	/*
 317	 * A length == 0 record is the end of buffer marker. Wrap around and
 318	 * read the message at the start of the buffer.
 319	 */
 320	if (!msg->len)
 321		return (struct printk_log *)log_buf;
 322	return msg;
 323}
 324
 325/* get next record; idx must point to valid msg */
 326static u32 log_next(u32 idx)
 327{
 328	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 329
 330	/* length == 0 indicates the end of the buffer; wrap */
 331	/*
 332	 * A length == 0 record is the end of buffer marker. Wrap around and
 333	 * read the message at the start of the buffer as *this* one, and
 334	 * return the one after that.
 335	 */
 336	if (!msg->len) {
 337		msg = (struct printk_log *)log_buf;
 338		return msg->len;
 339	}
 340	return idx + msg->len;
 341}
 342
 343/*
 344 * Check whether there is enough free space for the given message.
 345 *
 346 * The same values of first_idx and next_idx mean that the buffer
 347 * is either empty or full.
 348 *
 349 * If the buffer is empty, we must respect the position of the indexes.
 350 * They cannot be reset to the beginning of the buffer.
 351 */
 352static int logbuf_has_space(u32 msg_size, bool empty)
 353{
 354	u32 free;
 355
 356	if (log_next_idx > log_first_idx || empty)
 357		free = max(log_buf_len - log_next_idx, log_first_idx);
 358	else
 359		free = log_first_idx - log_next_idx;
 360
 361	/*
 362	 * We need space also for an empty header that signalizes wrapping
 363	 * of the buffer.
 364	 */
 365	return free >= msg_size + sizeof(struct printk_log);
 366}
 367
 368static int log_make_free_space(u32 msg_size)
 369{
 370	while (log_first_seq < log_next_seq &&
 371	       !logbuf_has_space(msg_size, false)) {
 372		/* drop old messages until we have enough contiguous space */
 373		log_first_idx = log_next(log_first_idx);
 374		log_first_seq++;
 375	}
 376
 377	if (clear_seq < log_first_seq) {
 378		clear_seq = log_first_seq;
 379		clear_idx = log_first_idx;
 380	}
 381
 382	/* sequence numbers are equal, so the log buffer is empty */
 383	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 384		return 0;
 385
 386	return -ENOMEM;
 387}
 388
 389/* compute the message size including the padding bytes */
 390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 391{
 392	u32 size;
 393
 394	size = sizeof(struct printk_log) + text_len + dict_len;
 395	*pad_len = (-size) & (LOG_ALIGN - 1);
 396	size += *pad_len;
 397
 398	return size;
 399}
 400
 401/*
 402 * Define how much of the log buffer we could take at maximum. The value
 403 * must be greater than two. Note that only half of the buffer is available
 404 * when the index points to the middle.
 405 */
 406#define MAX_LOG_TAKE_PART 4
 407static const char trunc_msg[] = "<truncated>";
 408
 409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 410			u16 *dict_len, u32 *pad_len)
 411{
 412	/*
 413	 * The message should not take the whole buffer. Otherwise, it might
 414	 * get removed too soon.
 415	 */
 416	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 417	if (*text_len > max_text_len)
 418		*text_len = max_text_len;
 419	/* enable the warning message */
 420	*trunc_msg_len = strlen(trunc_msg);
 421	/* disable the "dict" completely */
 422	*dict_len = 0;
 423	/* compute the size again, count also the warning message */
 424	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 425}
 426
 427/* insert record into the buffer, discard old ones, update heads */
 428static int log_store(int facility, int level,
 429		     enum log_flags flags, u64 ts_nsec,
 430		     const char *dict, u16 dict_len,
 431		     const char *text, u16 text_len)
 432{
 433	struct printk_log *msg;
 434	u32 size, pad_len;
 435	u16 trunc_msg_len = 0;
 436
 437	/* number of '\0' padding bytes to next message */
 438	size = msg_used_size(text_len, dict_len, &pad_len);
 439
 440	if (log_make_free_space(size)) {
 441		/* truncate the message if it is too long for empty buffer */
 442		size = truncate_msg(&text_len, &trunc_msg_len,
 443				    &dict_len, &pad_len);
 444		/* survive when the log buffer is too small for trunc_msg */
 445		if (log_make_free_space(size))
 446			return 0;
 447	}
 448
 449	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 450		/*
 451		 * This message + an additional empty header does not fit
 452		 * at the end of the buffer. Add an empty header with len == 0
 453		 * to signify a wrap around.
 454		 */
 455		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 456		log_next_idx = 0;
 457	}
 458
 459	/* fill message */
 460	msg = (struct printk_log *)(log_buf + log_next_idx);
 461	memcpy(log_text(msg), text, text_len);
 462	msg->text_len = text_len;
 463	if (trunc_msg_len) {
 464		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 465		msg->text_len += trunc_msg_len;
 466	}
 467	memcpy(log_dict(msg), dict, dict_len);
 468	msg->dict_len = dict_len;
 469	msg->facility = facility;
 470	msg->level = level & 7;
 471	msg->flags = flags & 0x1f;
 472	if (ts_nsec > 0)
 473		msg->ts_nsec = ts_nsec;
 474	else
 475		msg->ts_nsec = local_clock();
 
 
 
 476	memset(log_dict(msg) + dict_len, 0, pad_len);
 477	msg->len = size;
 478
 479	/* insert message */
 480	log_next_idx += msg->len;
 481	log_next_seq++;
 482
 483	return msg->text_len;
 484}
 485
 486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 487
 488static int syslog_action_restricted(int type)
 489{
 490	if (dmesg_restrict)
 491		return 1;
 492	/*
 493	 * Unless restricted, we allow "read all" and "get buffer size"
 494	 * for everybody.
 495	 */
 496	return type != SYSLOG_ACTION_READ_ALL &&
 497	       type != SYSLOG_ACTION_SIZE_BUFFER;
 498}
 499
 500int check_syslog_permissions(int type, int source)
 501{
 502	/*
 503	 * If this is from /proc/kmsg and we've already opened it, then we've
 504	 * already done the capabilities checks at open time.
 505	 */
 506	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 507		goto ok;
 508
 509	if (syslog_action_restricted(type)) {
 510		if (capable(CAP_SYSLOG))
 511			goto ok;
 512		/*
 513		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 514		 * a warning.
 515		 */
 516		if (capable(CAP_SYS_ADMIN)) {
 517			pr_warn_once("%s (%d): Attempt to access syslog with "
 518				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 519				     "(deprecated).\n",
 520				 current->comm, task_pid_nr(current));
 521			goto ok;
 522		}
 523		return -EPERM;
 524	}
 525ok:
 526	return security_syslog(type);
 527}
 528EXPORT_SYMBOL_GPL(check_syslog_permissions);
 529
 530static void append_char(char **pp, char *e, char c)
 531{
 532	if (*pp < e)
 533		*(*pp)++ = c;
 534}
 535
 536static ssize_t msg_print_ext_header(char *buf, size_t size,
 537				    struct printk_log *msg, u64 seq,
 538				    enum log_flags prev_flags)
 539{
 540	u64 ts_usec = msg->ts_nsec;
 541	char cont = '-';
 
 
 542
 543	do_div(ts_usec, 1000);
 
 
 
 
 544
 545	/*
 546	 * If we couldn't merge continuation line fragments during the print,
 547	 * export the stored flags to allow an optional external merge of the
 548	 * records. Merging the records isn't always neccessarily correct, like
 549	 * when we hit a race during printing. In most cases though, it produces
 550	 * better readable output. 'c' in the record flags mark the first
 551	 * fragment of a line, '+' the following.
 552	 */
 553	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 554		cont = 'c';
 555	else if ((msg->flags & LOG_CONT) ||
 556		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 557		cont = '+';
 558
 559	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 560		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 
 561}
 562
 563static ssize_t msg_print_ext_body(char *buf, size_t size,
 564				  char *dict, size_t dict_len,
 565				  char *text, size_t text_len)
 566{
 567	char *p = buf, *e = buf + size;
 568	size_t i;
 569
 570	/* escape non-printable characters */
 571	for (i = 0; i < text_len; i++) {
 572		unsigned char c = text[i];
 573
 574		if (c < ' ' || c >= 127 || c == '\\')
 575			p += scnprintf(p, e - p, "\\x%02x", c);
 576		else
 577			append_char(&p, e, c);
 578	}
 579	append_char(&p, e, '\n');
 580
 581	if (dict_len) {
 582		bool line = true;
 583
 584		for (i = 0; i < dict_len; i++) {
 585			unsigned char c = dict[i];
 586
 587			if (line) {
 588				append_char(&p, e, ' ');
 589				line = false;
 590			}
 591
 592			if (c == '\0') {
 593				append_char(&p, e, '\n');
 594				line = true;
 595				continue;
 596			}
 597
 598			if (c < ' ' || c >= 127 || c == '\\') {
 599				p += scnprintf(p, e - p, "\\x%02x", c);
 600				continue;
 601			}
 602
 603			append_char(&p, e, c);
 604		}
 605		append_char(&p, e, '\n');
 606	}
 607
 608	return p - buf;
 609}
 610
 611/* /dev/kmsg - userspace message inject/listen interface */
 612struct devkmsg_user {
 613	u64 seq;
 614	u32 idx;
 615	enum log_flags prev;
 616	struct mutex lock;
 617	char buf[CONSOLE_EXT_LOG_MAX];
 618};
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 621{
 622	char *buf, *line;
 623	int level = default_message_loglevel;
 624	int facility = 1;	/* LOG_USER */
 
 
 625	size_t len = iov_iter_count(from);
 626	ssize_t ret = len;
 627
 628	if (len > LOG_LINE_MAX)
 629		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 630	buf = kmalloc(len+1, GFP_KERNEL);
 631	if (buf == NULL)
 632		return -ENOMEM;
 633
 634	buf[len] = '\0';
 635	if (copy_from_iter(buf, len, from) != len) {
 636		kfree(buf);
 637		return -EFAULT;
 638	}
 639
 640	/*
 641	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 642	 * the decimal value represents 32bit, the lower 3 bit are the log
 643	 * level, the rest are the log facility.
 644	 *
 645	 * If no prefix or no userspace facility is specified, we
 646	 * enforce LOG_USER, to be able to reliably distinguish
 647	 * kernel-generated messages from userspace-injected ones.
 648	 */
 649	line = buf;
 650	if (line[0] == '<') {
 651		char *endp = NULL;
 652		unsigned int u;
 653
 654		u = simple_strtoul(line + 1, &endp, 10);
 655		if (endp && endp[0] == '>') {
 656			level = LOG_LEVEL(u);
 657			if (LOG_FACILITY(u) != 0)
 658				facility = LOG_FACILITY(u);
 659			endp++;
 660			len -= endp - line;
 661			line = endp;
 662		}
 663	}
 664
 665	printk_emit(facility, level, NULL, 0, "%s", line);
 666	kfree(buf);
 667	return ret;
 668}
 669
 670static ssize_t devkmsg_read(struct file *file, char __user *buf,
 671			    size_t count, loff_t *ppos)
 672{
 673	struct devkmsg_user *user = file->private_data;
 674	struct printk_log *msg;
 675	size_t len;
 676	ssize_t ret;
 677
 678	if (!user)
 679		return -EBADF;
 680
 681	ret = mutex_lock_interruptible(&user->lock);
 682	if (ret)
 683		return ret;
 684	raw_spin_lock_irq(&logbuf_lock);
 
 685	while (user->seq == log_next_seq) {
 686		if (file->f_flags & O_NONBLOCK) {
 687			ret = -EAGAIN;
 688			raw_spin_unlock_irq(&logbuf_lock);
 689			goto out;
 690		}
 691
 692		raw_spin_unlock_irq(&logbuf_lock);
 693		ret = wait_event_interruptible(log_wait,
 694					       user->seq != log_next_seq);
 695		if (ret)
 696			goto out;
 697		raw_spin_lock_irq(&logbuf_lock);
 698	}
 699
 700	if (user->seq < log_first_seq) {
 701		/* our last seen message is gone, return error and reset */
 702		user->idx = log_first_idx;
 703		user->seq = log_first_seq;
 704		ret = -EPIPE;
 705		raw_spin_unlock_irq(&logbuf_lock);
 706		goto out;
 707	}
 708
 709	msg = log_from_idx(user->idx);
 710	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 711				   msg, user->seq, user->prev);
 712	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 713				  log_dict(msg), msg->dict_len,
 714				  log_text(msg), msg->text_len);
 715
 716	user->prev = msg->flags;
 717	user->idx = log_next(user->idx);
 718	user->seq++;
 719	raw_spin_unlock_irq(&logbuf_lock);
 720
 721	if (len > count) {
 722		ret = -EINVAL;
 723		goto out;
 724	}
 725
 726	if (copy_to_user(buf, user->buf, len)) {
 727		ret = -EFAULT;
 728		goto out;
 729	}
 730	ret = len;
 731out:
 732	mutex_unlock(&user->lock);
 733	return ret;
 734}
 735
 
 
 
 
 
 
 
 
 736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 737{
 738	struct devkmsg_user *user = file->private_data;
 739	loff_t ret = 0;
 740
 741	if (!user)
 742		return -EBADF;
 743	if (offset)
 744		return -ESPIPE;
 745
 746	raw_spin_lock_irq(&logbuf_lock);
 747	switch (whence) {
 748	case SEEK_SET:
 749		/* the first record */
 750		user->idx = log_first_idx;
 751		user->seq = log_first_seq;
 752		break;
 753	case SEEK_DATA:
 754		/*
 755		 * The first record after the last SYSLOG_ACTION_CLEAR,
 756		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 757		 * changes no global state, and does not clear anything.
 758		 */
 759		user->idx = clear_idx;
 760		user->seq = clear_seq;
 761		break;
 762	case SEEK_END:
 763		/* after the last record */
 764		user->idx = log_next_idx;
 765		user->seq = log_next_seq;
 766		break;
 767	default:
 768		ret = -EINVAL;
 769	}
 770	raw_spin_unlock_irq(&logbuf_lock);
 771	return ret;
 772}
 773
 774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 775{
 776	struct devkmsg_user *user = file->private_data;
 777	int ret = 0;
 778
 779	if (!user)
 780		return POLLERR|POLLNVAL;
 781
 782	poll_wait(file, &log_wait, wait);
 783
 784	raw_spin_lock_irq(&logbuf_lock);
 785	if (user->seq < log_next_seq) {
 786		/* return error when data has vanished underneath us */
 787		if (user->seq < log_first_seq)
 788			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 789		else
 790			ret = POLLIN|POLLRDNORM;
 791	}
 792	raw_spin_unlock_irq(&logbuf_lock);
 793
 794	return ret;
 795}
 796
 797static int devkmsg_open(struct inode *inode, struct file *file)
 798{
 799	struct devkmsg_user *user;
 800	int err;
 801
 802	/* write-only does not need any file context */
 803	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 804		return 0;
 805
 806	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 807				       SYSLOG_FROM_READER);
 808	if (err)
 809		return err;
 
 
 
 810
 811	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 812	if (!user)
 813		return -ENOMEM;
 814
 
 
 
 815	mutex_init(&user->lock);
 816
 817	raw_spin_lock_irq(&logbuf_lock);
 818	user->idx = log_first_idx;
 819	user->seq = log_first_seq;
 820	raw_spin_unlock_irq(&logbuf_lock);
 821
 822	file->private_data = user;
 823	return 0;
 824}
 825
 826static int devkmsg_release(struct inode *inode, struct file *file)
 827{
 828	struct devkmsg_user *user = file->private_data;
 829
 830	if (!user)
 831		return 0;
 832
 
 
 833	mutex_destroy(&user->lock);
 834	kfree(user);
 835	return 0;
 836}
 837
 838const struct file_operations kmsg_fops = {
 839	.open = devkmsg_open,
 840	.read = devkmsg_read,
 841	.write_iter = devkmsg_write,
 842	.llseek = devkmsg_llseek,
 843	.poll = devkmsg_poll,
 844	.release = devkmsg_release,
 845};
 846
 847#ifdef CONFIG_KEXEC_CORE
 848/*
 849 * This appends the listed symbols to /proc/vmcore
 850 *
 851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 852 * obtain access to symbols that are otherwise very difficult to locate.  These
 853 * symbols are specifically used so that utilities can access and extract the
 854 * dmesg log from a vmcore file after a crash.
 855 */
 856void log_buf_kexec_setup(void)
 857{
 858	VMCOREINFO_SYMBOL(log_buf);
 859	VMCOREINFO_SYMBOL(log_buf_len);
 860	VMCOREINFO_SYMBOL(log_first_idx);
 861	VMCOREINFO_SYMBOL(clear_idx);
 862	VMCOREINFO_SYMBOL(log_next_idx);
 863	/*
 864	 * Export struct printk_log size and field offsets. User space tools can
 865	 * parse it and detect any changes to structure down the line.
 866	 */
 867	VMCOREINFO_STRUCT_SIZE(printk_log);
 868	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 869	VMCOREINFO_OFFSET(printk_log, len);
 870	VMCOREINFO_OFFSET(printk_log, text_len);
 871	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 872}
 873#endif
 874
 875/* requested log_buf_len from kernel cmdline */
 876static unsigned long __initdata new_log_buf_len;
 877
 878/* we practice scaling the ring buffer by powers of 2 */
 879static void __init log_buf_len_update(unsigned size)
 880{
 
 
 
 
 
 881	if (size)
 882		size = roundup_pow_of_two(size);
 883	if (size > log_buf_len)
 884		new_log_buf_len = size;
 885}
 886
 887/* save requested log_buf_len since it's too early to process it */
 888static int __init log_buf_len_setup(char *str)
 889{
 890	unsigned size = memparse(str, &str);
 
 
 
 
 
 891
 892	log_buf_len_update(size);
 893
 894	return 0;
 895}
 896early_param("log_buf_len", log_buf_len_setup);
 897
 898#ifdef CONFIG_SMP
 899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
 900
 901static void __init log_buf_add_cpu(void)
 902{
 903	unsigned int cpu_extra;
 904
 905	/*
 906	 * archs should set up cpu_possible_bits properly with
 907	 * set_cpu_possible() after setup_arch() but just in
 908	 * case lets ensure this is valid.
 909	 */
 910	if (num_possible_cpus() == 1)
 911		return;
 912
 913	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
 914
 915	/* by default this will only continue through for large > 64 CPUs */
 916	if (cpu_extra <= __LOG_BUF_LEN / 2)
 917		return;
 918
 919	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
 920		__LOG_CPU_MAX_BUF_LEN);
 921	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
 922		cpu_extra);
 923	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
 924
 925	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
 926}
 927#else /* !CONFIG_SMP */
 928static inline void log_buf_add_cpu(void) {}
 929#endif /* CONFIG_SMP */
 930
 
 
 
 
 
 
 
 
 931void __init setup_log_buf(int early)
 932{
 933	unsigned long flags;
 934	char *new_log_buf;
 935	int free;
 
 
 
 
 
 
 
 
 936
 937	if (log_buf != __log_buf)
 938		return;
 939
 940	if (!early && !new_log_buf_len)
 941		log_buf_add_cpu();
 942
 943	if (!new_log_buf_len)
 944		return;
 945
 946	if (early) {
 947		new_log_buf =
 948			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
 949	} else {
 950		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
 951							  LOG_ALIGN);
 952	}
 953
 954	if (unlikely(!new_log_buf)) {
 955		pr_err("log_buf_len: %ld bytes not available\n",
 956			new_log_buf_len);
 957		return;
 958	}
 959
 960	raw_spin_lock_irqsave(&logbuf_lock, flags);
 961	log_buf_len = new_log_buf_len;
 962	log_buf = new_log_buf;
 963	new_log_buf_len = 0;
 964	free = __LOG_BUF_LEN - log_next_idx;
 965	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 966	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 967
 968	pr_info("log_buf_len: %d bytes\n", log_buf_len);
 969	pr_info("early log buf free: %d(%d%%)\n",
 970		free, (free * 100) / __LOG_BUF_LEN);
 971}
 972
 973static bool __read_mostly ignore_loglevel;
 974
 975static int __init ignore_loglevel_setup(char *str)
 976{
 977	ignore_loglevel = true;
 978	pr_info("debug: ignoring loglevel setting.\n");
 979
 980	return 0;
 981}
 982
 983early_param("ignore_loglevel", ignore_loglevel_setup);
 984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 985MODULE_PARM_DESC(ignore_loglevel,
 986		 "ignore loglevel setting (prints all kernel messages to the console)");
 987
 
 
 
 
 
 988#ifdef CONFIG_BOOT_PRINTK_DELAY
 989
 990static int boot_delay; /* msecs delay after each printk during bootup */
 991static unsigned long long loops_per_msec;	/* based on boot_delay */
 992
 993static int __init boot_delay_setup(char *str)
 994{
 995	unsigned long lpj;
 996
 997	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 998	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 999
1000	get_option(&str, &boot_delay);
1001	if (boot_delay > 10 * 1000)
1002		boot_delay = 0;
1003
1004	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005		"HZ: %d, loops_per_msec: %llu\n",
1006		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007	return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013	unsigned long long k;
1014	unsigned long timeout;
1015
1016	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017		|| (level >= console_loglevel && !ignore_loglevel)) {
1018		return;
1019	}
1020
1021	k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023	timeout = jiffies + msecs_to_jiffies(boot_delay);
1024	while (k) {
1025		k--;
1026		cpu_relax();
1027		/*
1028		 * use (volatile) jiffies to prevent
1029		 * compiler reduction; loop termination via jiffies
1030		 * is secondary and may or may not happen.
1031		 */
1032		if (time_after(jiffies, timeout))
1033			break;
1034		touch_nmi_watchdog();
1035	}
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048	unsigned long rem_nsec;
 
1049
1050	if (!printk_time)
1051		return 0;
 
1052
1053	rem_nsec = do_div(ts, 1000000000);
 
 
1054
1055	if (!buf)
1056		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 
 
1057
1058	return sprintf(buf, "[%5lu.%06lu] ",
1059		       (unsigned long)ts, rem_nsec / 1000);
 
1060}
 
 
 
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1063{
1064	size_t len = 0;
1065	unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067	if (syslog) {
1068		if (buf) {
1069			len += sprintf(buf, "<%u>", prefix);
1070		} else {
1071			len += 3;
1072			if (prefix > 999)
1073				len += 3;
1074			else if (prefix > 99)
1075				len += 2;
1076			else if (prefix > 9)
1077				len++;
1078		}
1079	}
1080
1081	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082	return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086			     bool syslog, char *buf, size_t size)
1087{
1088	const char *text = log_text(msg);
1089	size_t text_size = msg->text_len;
1090	bool prefix = true;
1091	bool newline = true;
1092	size_t len = 0;
1093
1094	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095		prefix = false;
1096
1097	if (msg->flags & LOG_CONT) {
1098		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099			prefix = false;
1100
1101		if (!(msg->flags & LOG_NEWLINE))
1102			newline = false;
1103	}
1104
1105	do {
1106		const char *next = memchr(text, '\n', text_size);
1107		size_t text_len;
1108
1109		if (next) {
1110			text_len = next - text;
1111			next++;
1112			text_size -= next - text;
1113		} else {
1114			text_len = text_size;
1115		}
1116
1117		if (buf) {
1118			if (print_prefix(msg, syslog, NULL) +
1119			    text_len + 1 >= size - len)
1120				break;
1121
1122			if (prefix)
1123				len += print_prefix(msg, syslog, buf + len);
1124			memcpy(buf + len, text, text_len);
1125			len += text_len;
1126			if (next || newline)
1127				buf[len++] = '\n';
1128		} else {
1129			/* SYSLOG_ACTION_* buffer size only calculation */
1130			if (prefix)
1131				len += print_prefix(msg, syslog, NULL);
1132			len += text_len;
1133			if (next || newline)
1134				len++;
1135		}
1136
1137		prefix = true;
1138		text = next;
1139	} while (text);
1140
1141	return len;
1142}
1143
1144static int syslog_print(char __user *buf, int size)
1145{
1146	char *text;
1147	struct printk_log *msg;
1148	int len = 0;
1149
1150	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151	if (!text)
1152		return -ENOMEM;
1153
1154	while (size > 0) {
1155		size_t n;
1156		size_t skip;
1157
1158		raw_spin_lock_irq(&logbuf_lock);
1159		if (syslog_seq < log_first_seq) {
1160			/* messages are gone, move to first one */
1161			syslog_seq = log_first_seq;
1162			syslog_idx = log_first_idx;
1163			syslog_prev = 0;
1164			syslog_partial = 0;
1165		}
1166		if (syslog_seq == log_next_seq) {
1167			raw_spin_unlock_irq(&logbuf_lock);
1168			break;
1169		}
1170
 
 
 
 
 
 
 
1171		skip = syslog_partial;
1172		msg = log_from_idx(syslog_idx);
1173		n = msg_print_text(msg, syslog_prev, true, text,
1174				   LOG_LINE_MAX + PREFIX_MAX);
1175		if (n - syslog_partial <= size) {
1176			/* message fits into buffer, move forward */
1177			syslog_idx = log_next(syslog_idx);
1178			syslog_seq++;
1179			syslog_prev = msg->flags;
1180			n -= syslog_partial;
1181			syslog_partial = 0;
1182		} else if (!len){
1183			/* partial read(), remember position */
1184			n = size;
1185			syslog_partial += n;
1186		} else
1187			n = 0;
1188		raw_spin_unlock_irq(&logbuf_lock);
1189
1190		if (!n)
1191			break;
1192
1193		if (copy_to_user(buf, text + skip, n)) {
1194			if (!len)
1195				len = -EFAULT;
1196			break;
1197		}
1198
1199		len += n;
1200		size -= n;
1201		buf += n;
1202	}
1203
1204	kfree(text);
1205	return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
1210	char *text;
1211	int len = 0;
 
 
 
 
1212
1213	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214	if (!text)
1215		return -ENOMEM;
1216
1217	raw_spin_lock_irq(&logbuf_lock);
1218	if (buf) {
1219		u64 next_seq;
1220		u64 seq;
1221		u32 idx;
1222		enum log_flags prev;
 
 
 
 
1223
1224		/*
1225		 * Find first record that fits, including all following records,
1226		 * into the user-provided buffer for this dump.
1227		 */
1228		seq = clear_seq;
1229		idx = clear_idx;
1230		prev = 0;
1231		while (seq < log_next_seq) {
1232			struct printk_log *msg = log_from_idx(idx);
1233
1234			len += msg_print_text(msg, prev, true, NULL, 0);
1235			prev = msg->flags;
1236			idx = log_next(idx);
1237			seq++;
1238		}
1239
1240		/* move first record forward until length fits into the buffer */
1241		seq = clear_seq;
1242		idx = clear_idx;
1243		prev = 0;
1244		while (len > size && seq < log_next_seq) {
1245			struct printk_log *msg = log_from_idx(idx);
1246
1247			len -= msg_print_text(msg, prev, true, NULL, 0);
1248			prev = msg->flags;
1249			idx = log_next(idx);
1250			seq++;
1251		}
1252
1253		/* last message fitting into this dump */
1254		next_seq = log_next_seq;
1255
1256		len = 0;
1257		while (len >= 0 && seq < next_seq) {
1258			struct printk_log *msg = log_from_idx(idx);
1259			int textlen;
1260
1261			textlen = msg_print_text(msg, prev, true, text,
1262						 LOG_LINE_MAX + PREFIX_MAX);
1263			if (textlen < 0) {
1264				len = textlen;
1265				break;
1266			}
1267			idx = log_next(idx);
1268			seq++;
1269			prev = msg->flags;
1270
1271			raw_spin_unlock_irq(&logbuf_lock);
1272			if (copy_to_user(buf + len, text, textlen))
1273				len = -EFAULT;
1274			else
1275				len += textlen;
1276			raw_spin_lock_irq(&logbuf_lock);
1277
1278			if (seq < log_first_seq) {
1279				/* messages are gone, move to next one */
1280				seq = log_first_seq;
1281				idx = log_first_idx;
1282				prev = 0;
1283			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284		}
1285	}
1286
1287	if (clear) {
1288		clear_seq = log_next_seq;
1289		clear_idx = log_next_idx;
1290	}
1291	raw_spin_unlock_irq(&logbuf_lock);
1292
1293	kfree(text);
1294	return len;
1295}
1296
 
 
 
 
 
 
 
 
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
1299	bool clear = false;
1300	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301	int error;
1302
1303	error = check_syslog_permissions(type, source);
1304	if (error)
1305		goto out;
1306
1307	switch (type) {
1308	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309		break;
1310	case SYSLOG_ACTION_OPEN:	/* Open log */
1311		break;
1312	case SYSLOG_ACTION_READ:	/* Read from log */
1313		error = -EINVAL;
1314		if (!buf || len < 0)
1315			goto out;
1316		error = 0;
1317		if (!len)
1318			goto out;
1319		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320			error = -EFAULT;
1321			goto out;
1322		}
1323		error = wait_event_interruptible(log_wait,
1324						 syslog_seq != log_next_seq);
1325		if (error)
1326			goto out;
1327		error = syslog_print(buf, len);
1328		break;
1329	/* Read/clear last kernel messages */
1330	case SYSLOG_ACTION_READ_CLEAR:
1331		clear = true;
1332		/* FALL THRU */
1333	/* Read last kernel messages */
1334	case SYSLOG_ACTION_READ_ALL:
1335		error = -EINVAL;
1336		if (!buf || len < 0)
1337			goto out;
1338		error = 0;
1339		if (!len)
1340			goto out;
1341		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342			error = -EFAULT;
1343			goto out;
1344		}
1345		error = syslog_print_all(buf, len, clear);
1346		break;
1347	/* Clear ring buffer */
1348	case SYSLOG_ACTION_CLEAR:
1349		syslog_print_all(NULL, 0, true);
1350		break;
1351	/* Disable logging to console */
1352	case SYSLOG_ACTION_CONSOLE_OFF:
1353		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354			saved_console_loglevel = console_loglevel;
1355		console_loglevel = minimum_console_loglevel;
1356		break;
1357	/* Enable logging to console */
1358	case SYSLOG_ACTION_CONSOLE_ON:
1359		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360			console_loglevel = saved_console_loglevel;
1361			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362		}
1363		break;
1364	/* Set level of messages printed to console */
1365	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366		error = -EINVAL;
1367		if (len < 1 || len > 8)
1368			goto out;
1369		if (len < minimum_console_loglevel)
1370			len = minimum_console_loglevel;
1371		console_loglevel = len;
1372		/* Implicitly re-enable logging to console */
1373		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374		error = 0;
1375		break;
1376	/* Number of chars in the log buffer */
1377	case SYSLOG_ACTION_SIZE_UNREAD:
1378		raw_spin_lock_irq(&logbuf_lock);
1379		if (syslog_seq < log_first_seq) {
1380			/* messages are gone, move to first one */
1381			syslog_seq = log_first_seq;
1382			syslog_idx = log_first_idx;
1383			syslog_prev = 0;
1384			syslog_partial = 0;
1385		}
1386		if (source == SYSLOG_FROM_PROC) {
1387			/*
1388			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389			 * for pending data, not the size; return the count of
1390			 * records, not the length.
1391			 */
1392			error = log_next_seq - syslog_seq;
1393		} else {
1394			u64 seq = syslog_seq;
1395			u32 idx = syslog_idx;
1396			enum log_flags prev = syslog_prev;
1397
1398			error = 0;
1399			while (seq < log_next_seq) {
1400				struct printk_log *msg = log_from_idx(idx);
1401
1402				error += msg_print_text(msg, prev, true, NULL, 0);
 
 
1403				idx = log_next(idx);
1404				seq++;
1405				prev = msg->flags;
1406			}
1407			error -= syslog_partial;
1408		}
1409		raw_spin_unlock_irq(&logbuf_lock);
1410		break;
1411	/* Size of the log buffer */
1412	case SYSLOG_ACTION_SIZE_BUFFER:
1413		error = log_buf_len;
1414		break;
1415	default:
1416		error = -EINVAL;
1417		break;
1418	}
1419out:
1420	return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434				 const char *ext_text, size_t ext_len,
1435				 const char *text, size_t len)
1436{
1437	struct console *con;
1438
1439	trace_console(text, len);
1440
1441	if (level >= console_loglevel && !ignore_loglevel)
1442		return;
1443	if (!console_drivers)
1444		return;
1445
1446	for_each_console(con) {
1447		if (exclusive_console && con != exclusive_console)
1448			continue;
1449		if (!(con->flags & CON_ENABLED))
1450			continue;
1451		if (!con->write)
1452			continue;
1453		if (!cpu_online(smp_processor_id()) &&
1454		    !(con->flags & CON_ANYTIME))
1455			continue;
1456		if (con->flags & CON_EXTENDED)
1457			con->write(con, ext_text, ext_len);
1458		else
1459			con->write(con, text, len);
1460	}
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468static void zap_locks(void)
1469{
1470	static unsigned long oops_timestamp;
1471
1472	if (time_after_eq(jiffies, oops_timestamp) &&
1473	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474		return;
1475
1476	oops_timestamp = jiffies;
1477
1478	debug_locks_off();
1479	/* If a crash is occurring, make sure we can't deadlock */
1480	raw_spin_lock_init(&logbuf_lock);
1481	/* And make sure that we print immediately */
1482	sema_init(&console_sem, 1);
1483}
1484
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
1489	if (unlikely(printk_delay_msec)) {
1490		int m = printk_delay_msec;
1491
1492		while (m--) {
1493			mdelay(1);
1494			touch_nmi_watchdog();
1495		}
1496	}
1497}
1498
 
 
 
 
 
 
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506	char buf[LOG_LINE_MAX];
1507	size_t len;			/* length == 0 means unused buffer */
1508	size_t cons;			/* bytes written to console */
1509	struct task_struct *owner;	/* task of first print*/
1510	u64 ts_nsec;			/* time of first print */
1511	u8 level;			/* log level of first message */
1512	u8 facility;			/* log facility of first message */
1513	enum log_flags flags;		/* prefix, newline flags */
1514	bool flushed:1;			/* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
1518{
1519	if (cont.flushed)
1520		return;
1521	if (cont.len == 0)
1522		return;
1523
1524	if (cont.cons) {
1525		/*
1526		 * If a fragment of this line was directly flushed to the
1527		 * console; wait for the console to pick up the rest of the
1528		 * line. LOG_NOCONS suppresses a duplicated output.
1529		 */
1530		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532		cont.flags = flags;
1533		cont.flushed = true;
1534	} else {
1535		/*
1536		 * If no fragment of this line ever reached the console,
1537		 * just submit it to the store and free the buffer.
1538		 */
1539		log_store(cont.facility, cont.level, flags, 0,
1540			  NULL, 0, cont.buf, cont.len);
1541		cont.len = 0;
1542	}
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
 
1546{
1547	if (cont.len && cont.flushed)
1548		return false;
1549
1550	/*
1551	 * If ext consoles are present, flush and skip in-kernel
1552	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1553	 * the line gets too long, split it up in separate records.
1554	 */
1555	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556		cont_flush(LOG_CONT);
1557		return false;
1558	}
1559
1560	if (!cont.len) {
1561		cont.facility = facility;
1562		cont.level = level;
1563		cont.owner = current;
1564		cont.ts_nsec = local_clock();
1565		cont.flags = 0;
1566		cont.cons = 0;
1567		cont.flushed = false;
1568	}
1569
1570	memcpy(cont.buf + cont.len, text, len);
1571	cont.len += len;
1572
1573	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574		cont_flush(LOG_CONT);
 
 
 
 
1575
1576	return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581	size_t textlen = 0;
1582	size_t len;
1583
1584	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585		textlen += print_time(cont.ts_nsec, text);
1586		size -= textlen;
1587	}
1588
1589	len = cont.len - cont.cons;
1590	if (len > 0) {
1591		if (len+1 > size)
1592			len = size-1;
1593		memcpy(text + textlen, cont.buf + cont.cons, len);
1594		textlen += len;
1595		cont.cons = cont.len;
1596	}
1597
1598	if (cont.flushed) {
1599		if (cont.flags & LOG_NEWLINE)
1600			text[textlen++] = '\n';
1601		/* got everything, release buffer */
1602		cont.len = 0;
1603	}
1604	return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608			    const char *dict, size_t dictlen,
1609			    const char *fmt, va_list args)
1610{
1611	static bool recursion_bug;
1612	static char textbuf[LOG_LINE_MAX];
1613	char *text = textbuf;
1614	size_t text_len = 0;
1615	enum log_flags lflags = 0;
1616	unsigned long flags;
1617	int this_cpu;
1618	int printed_len = 0;
1619	bool in_sched = false;
1620	/* cpu currently holding logbuf_lock in this function */
1621	static unsigned int logbuf_cpu = UINT_MAX;
1622
1623	if (level == LOGLEVEL_SCHED) {
1624		level = LOGLEVEL_DEFAULT;
1625		in_sched = true;
1626	}
1627
1628	boot_delay_msec(level);
1629	printk_delay();
1630
1631	local_irq_save(flags);
1632	this_cpu = smp_processor_id();
1633
1634	/*
1635	 * Ouch, printk recursed into itself!
 
1636	 */
1637	if (unlikely(logbuf_cpu == this_cpu)) {
1638		/*
1639		 * If a crash is occurring during printk() on this CPU,
1640		 * then try to get the crash message out but make sure
1641		 * we can't deadlock. Otherwise just return to avoid the
1642		 * recursion and return - but flag the recursion so that
1643		 * it can be printed at the next appropriate moment:
1644		 */
1645		if (!oops_in_progress && !lockdep_recursing(current)) {
1646			recursion_bug = true;
1647			local_irq_restore(flags);
1648			return 0;
1649		}
1650		zap_locks();
 
1651	}
1652
1653	lockdep_off();
1654	/* This stops the holder of console_sem just where we want him */
1655	raw_spin_lock(&logbuf_lock);
1656	logbuf_cpu = this_cpu;
1657
1658	if (unlikely(recursion_bug)) {
1659		static const char recursion_msg[] =
1660			"BUG: recent printk recursion!";
1661
1662		recursion_bug = false;
1663		/* emit KERN_CRIT message */
1664		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665					 NULL, 0, recursion_msg,
1666					 strlen(recursion_msg));
1667	}
1668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669	/*
1670	 * The printf needs to come first; we need the syslog
1671	 * prefix which might be passed-in as a parameter.
1672	 */
1673	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675	/* mark and strip a trailing newline */
1676	if (text_len && text[text_len-1] == '\n') {
1677		text_len--;
1678		lflags |= LOG_NEWLINE;
1679	}
1680
1681	/* strip kernel syslog prefix and extract log level or control flags */
1682	if (facility == 0) {
1683		int kern_level = printk_get_level(text);
1684
1685		if (kern_level) {
1686			const char *end_of_header = printk_skip_level(text);
1687			switch (kern_level) {
1688			case '0' ... '7':
1689				if (level == LOGLEVEL_DEFAULT)
1690					level = kern_level - '0';
1691				/* fallthrough */
1692			case 'd':	/* KERN_DEFAULT */
1693				lflags |= LOG_PREFIX;
1694			}
1695			/*
1696			 * No need to check length here because vscnprintf
1697			 * put '\0' at the end of the string. Only valid and
1698			 * newly printed level is detected.
1699			 */
1700			text_len -= end_of_header - text;
1701			text = (char *)end_of_header;
1702		}
1703	}
1704
1705	if (level == LOGLEVEL_DEFAULT)
1706		level = default_message_loglevel;
1707
1708	if (dict)
1709		lflags |= LOG_PREFIX|LOG_NEWLINE;
1710
1711	if (!(lflags & LOG_NEWLINE)) {
1712		/*
1713		 * Flush the conflicting buffer. An earlier newline was missing,
1714		 * or another task also prints continuation lines.
1715		 */
1716		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717			cont_flush(LOG_NEWLINE);
1718
1719		/* buffer line if possible, otherwise store it right away */
1720		if (cont_add(facility, level, text, text_len))
1721			printed_len += text_len;
1722		else
1723			printed_len += log_store(facility, level,
1724						 lflags | LOG_CONT, 0,
1725						 dict, dictlen, text, text_len);
1726	} else {
1727		bool stored = false;
1728
1729		/*
1730		 * If an earlier newline was missing and it was the same task,
1731		 * either merge it with the current buffer and flush, or if
1732		 * there was a race with interrupts (prefix == true) then just
1733		 * flush it out and store this line separately.
1734		 * If the preceding printk was from a different task and missed
1735		 * a newline, flush and append the newline.
1736		 */
1737		if (cont.len) {
1738			if (cont.owner == current && !(lflags & LOG_PREFIX))
1739				stored = cont_add(facility, level, text,
1740						  text_len);
1741			cont_flush(LOG_NEWLINE);
1742		}
1743
1744		if (stored)
1745			printed_len += text_len;
1746		else
1747			printed_len += log_store(facility, level, lflags, 0,
1748						 dict, dictlen, text, text_len);
1749	}
1750
1751	logbuf_cpu = UINT_MAX;
1752	raw_spin_unlock(&logbuf_lock);
1753	lockdep_on();
1754	local_irq_restore(flags);
 
 
 
 
 
1755
1756	/* If called from the scheduler, we can not call up(). */
1757	if (!in_sched) {
1758		lockdep_off();
 
 
 
 
 
1759		/*
1760		 * Try to acquire and then immediately release the console
1761		 * semaphore.  The release will print out buffers and wake up
1762		 * /dev/kmsg and syslog() users.
1763		 */
1764		if (console_trylock())
1765			console_unlock();
1766		lockdep_on();
1767	}
1768
 
 
1769	return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780			   const char *dict, size_t dictlen,
1781			   const char *fmt, ...)
1782{
1783	va_list args;
1784	int r;
1785
1786	va_start(args, fmt);
1787	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788	va_end(args);
1789
1790	return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796	int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799	if (unlikely(kdb_trap_printk)) {
1800		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801		return r;
1802	}
1803#endif
1804	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806	return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers.  If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841	printk_func_t vprintk_func;
1842	va_list args;
1843	int r;
1844
1845	va_start(args, fmt);
1846
1847	/*
1848	 * If a caller overrides the per_cpu printk_func, then it needs
1849	 * to disable preemption when calling printk(). Otherwise
1850	 * the printk_func should be set to the default. No need to
1851	 * disable preemption here.
1852	 */
1853	vprintk_func = this_cpu_read(printk_func);
1854	r = vprintk_func(fmt, args);
1855
1856	va_end(args);
1857
1858	return r;
1859}
1860EXPORT_SYMBOL(printk);
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX		0
1865#define PREFIX_MAX		0
 
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877	size_t len;
1878	size_t cons;
1879	u8 level;
1880	bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887				    struct printk_log *msg, u64 seq,
1888				    enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890				  char *dict, size_t dict_len,
1891				  char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893				 const char *ext_text, size_t ext_len,
 
1894				 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896			     bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909	va_list ap;
1910	char buf[512];
1911	int n;
1912
1913	if (!early_console)
1914		return;
1915
1916	va_start(ap, fmt);
1917	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918	va_end(ap);
1919
1920	early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925				   char *brl_options)
1926{
1927	struct console_cmdline *c;
1928	int i;
1929
1930	/*
1931	 *	See if this tty is not yet registered, and
1932	 *	if we have a slot free.
1933	 */
1934	for (i = 0, c = console_cmdline;
1935	     i < MAX_CMDLINECONSOLES && c->name[0];
1936	     i++, c++) {
1937		if (strcmp(c->name, name) == 0 && c->index == idx) {
1938			if (!brl_options)
1939				selected_console = i;
 
 
1940			return 0;
1941		}
1942	}
1943	if (i == MAX_CMDLINECONSOLES)
1944		return -E2BIG;
1945	if (!brl_options)
1946		selected_console = i;
1947	strlcpy(c->name, name, sizeof(c->name));
1948	c->options = options;
 
1949	braille_set_options(c, brl_options);
1950
1951	c->index = idx;
1952	return 0;
1953}
 
 
 
 
 
 
 
 
 
 
 
1954/*
1955 * Set up a console.  Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961	char *s, *options, *brl_options = NULL;
1962	int idx;
1963
 
 
 
1964	if (_braille_console_setup(&str, &brl_options))
1965		return 1;
1966
1967	/*
1968	 * Decode str into name, index, options.
1969	 */
1970	if (str[0] >= '0' && str[0] <= '9') {
1971		strcpy(buf, "ttyS");
1972		strncpy(buf + 4, str, sizeof(buf) - 5);
1973	} else {
1974		strncpy(buf, str, sizeof(buf) - 1);
1975	}
1976	buf[sizeof(buf) - 1] = 0;
1977	options = strchr(str, ',');
1978	if (options)
1979		*(options++) = 0;
1980#ifdef __sparc__
1981	if (!strcmp(str, "ttya"))
1982		strcpy(buf, "ttyS0");
1983	if (!strcmp(str, "ttyb"))
1984		strcpy(buf, "ttyS1");
1985#endif
1986	for (s = buf; *s; s++)
1987		if (isdigit(*s) || *s == ',')
1988			break;
1989	idx = simple_strtoul(s, NULL, 10);
1990	*s = 0;
1991
1992	__add_preferred_console(buf, idx, options, brl_options);
1993	console_set_on_cmdline = 1;
1994	return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init.  Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013	return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021	console_suspend_enabled = false;
2022	return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026		bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028	" and hibernate operations");
2029
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
2037	if (!console_suspend_enabled)
2038		return;
2039	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040	console_lock();
2041	console_suspended = 1;
2042	up_console_sem();
2043}
2044
2045void resume_console(void)
2046{
2047	if (!console_suspend_enabled)
2048		return;
2049	down_console_sem();
2050	console_suspended = 0;
2051	console_unlock();
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console.  This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066	unsigned long action, void *hcpu)
2067{
2068	switch (action) {
2069	case CPU_ONLINE:
2070	case CPU_DEAD:
2071	case CPU_DOWN_FAILED:
2072	case CPU_UP_CANCELED:
2073		console_lock();
2074		console_unlock();
2075	}
2076	return NOTIFY_OK;
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089	might_sleep();
2090
2091	down_console_sem();
2092	if (console_suspended)
2093		return;
2094	console_locked = 1;
2095	console_may_schedule = 1;
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109	if (down_trylock_console_sem())
2110		return 0;
2111	if (console_suspended) {
2112		up_console_sem();
2113		return 0;
2114	}
2115	console_locked = 1;
2116	/*
2117	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119	 * because preempt_disable()/preempt_enable() are just barriers there
2120	 * and preempt_count() is always 0.
2121	 *
2122	 * RCU read sections have a separate preemption counter when
2123	 * PREEMPT_RCU enabled thus we must take extra care and check
2124	 * rcu_preempt_depth(), otherwise RCU read sections modify
2125	 * preempt_count().
2126	 */
2127	console_may_schedule = !oops_in_progress &&
2128			preemptible() &&
2129			!rcu_preempt_depth();
2130	return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136	return console_locked;
2137}
 
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2142 */
2143static int have_callable_console(void)
2144{
2145	struct console *con;
2146
2147	for_each_console(con)
2148		if ((con->flags & CON_ENABLED) &&
2149				(con->flags & CON_ANYTIME))
2150			return 1;
2151
2152	return 0;
2153}
2154
2155/*
2156 * Can we actually use the console at this time on this cpu?
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2161 */
2162static inline int can_use_console(void)
2163{
2164	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
2168{
2169	unsigned long flags;
2170	size_t len;
2171
2172	raw_spin_lock_irqsave(&logbuf_lock, flags);
2173
2174	if (!cont.len)
2175		goto out;
2176
2177	/*
2178	 * We still queue earlier records, likely because the console was
2179	 * busy. The earlier ones need to be printed before this one, we
2180	 * did not flush any fragment so far, so just let it queue up.
2181	 */
2182	if (console_seq < log_next_seq && !cont.cons)
2183		goto out;
2184
2185	len = cont_print_text(text, size);
2186	raw_spin_unlock(&logbuf_lock);
2187	stop_critical_timings();
2188	call_console_drivers(cont.level, NULL, 0, text, len);
2189	start_critical_timings();
2190	local_irq_restore(flags);
2191	return;
2192out:
2193	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk().  If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212	static char ext_text[CONSOLE_EXT_LOG_MAX];
2213	static char text[LOG_LINE_MAX + PREFIX_MAX];
2214	static u64 seen_seq;
2215	unsigned long flags;
2216	bool wake_klogd = false;
2217	bool do_cond_resched, retry;
2218
2219	if (console_suspended) {
2220		up_console_sem();
2221		return;
2222	}
2223
2224	/*
2225	 * Console drivers are called under logbuf_lock, so
2226	 * @console_may_schedule should be cleared before; however, we may
2227	 * end up dumping a lot of lines, for example, if called from
2228	 * console registration path, and should invoke cond_resched()
2229	 * between lines if allowable.  Not doing so can cause a very long
2230	 * scheduling stall on a slow console leading to RCU stall and
2231	 * softlockup warnings which exacerbate the issue with more
2232	 * messages practically incapacitating the system.
 
 
 
 
2233	 */
2234	do_cond_resched = console_may_schedule;
 
2235	console_may_schedule = 0;
2236
2237again:
2238	/*
2239	 * We released the console_sem lock, so we need to recheck if
2240	 * cpu is online and (if not) is there at least one CON_ANYTIME
2241	 * console.
2242	 */
2243	if (!can_use_console()) {
2244		console_locked = 0;
2245		up_console_sem();
2246		return;
2247	}
2248
2249	/* flush buffered message fragment immediately to console */
2250	console_cont_flush(text, sizeof(text));
2251
2252	for (;;) {
2253		struct printk_log *msg;
2254		size_t ext_len = 0;
2255		size_t len;
2256		int level;
2257
2258		raw_spin_lock_irqsave(&logbuf_lock, flags);
2259		if (seen_seq != log_next_seq) {
2260			wake_klogd = true;
2261			seen_seq = log_next_seq;
2262		}
2263
 
 
2264		if (console_seq < log_first_seq) {
2265			len = sprintf(text, "** %u printk messages dropped ** ",
2266				      (unsigned)(log_first_seq - console_seq));
 
2267
2268			/* messages are gone, move to first one */
2269			console_seq = log_first_seq;
2270			console_idx = log_first_idx;
2271			console_prev = 0;
2272		} else {
2273			len = 0;
2274		}
2275skip:
2276		if (console_seq == log_next_seq)
2277			break;
2278
2279		msg = log_from_idx(console_idx);
2280		if (msg->flags & LOG_NOCONS) {
2281			/*
2282			 * Skip record we have buffered and already printed
2283			 * directly to the console when we received it.
 
2284			 */
2285			console_idx = log_next(console_idx);
2286			console_seq++;
2287			/*
2288			 * We will get here again when we register a new
2289			 * CON_PRINTBUFFER console. Clear the flag so we
2290			 * will properly dump everything later.
2291			 */
2292			msg->flags &= ~LOG_NOCONS;
2293			console_prev = msg->flags;
2294			goto skip;
2295		}
2296
2297		level = msg->level;
2298		len += msg_print_text(msg, console_prev, false,
2299				      text + len, sizeof(text) - len);
 
 
 
 
 
 
2300		if (nr_ext_console_drivers) {
2301			ext_len = msg_print_ext_header(ext_text,
2302						sizeof(ext_text),
2303						msg, console_seq, console_prev);
2304			ext_len += msg_print_ext_body(ext_text + ext_len,
2305						sizeof(ext_text) - ext_len,
2306						log_dict(msg), msg->dict_len,
2307						log_text(msg), msg->text_len);
2308		}
2309		console_idx = log_next(console_idx);
2310		console_seq++;
2311		console_prev = msg->flags;
2312		raw_spin_unlock(&logbuf_lock);
2313
 
 
 
 
 
 
 
 
2314		stop_critical_timings();	/* don't trace print latency */
2315		call_console_drivers(level, ext_text, ext_len, text, len);
2316		start_critical_timings();
2317		local_irq_restore(flags);
 
 
 
 
 
 
2318
2319		if (do_cond_resched)
2320			cond_resched();
2321	}
2322	console_locked = 0;
2323
2324	/* Release the exclusive_console once it is used */
2325	if (unlikely(exclusive_console))
2326		exclusive_console = NULL;
2327
2328	raw_spin_unlock(&logbuf_lock);
2329
2330	up_console_sem();
2331
2332	/*
2333	 * Someone could have filled up the buffer again, so re-check if there's
2334	 * something to flush. In case we cannot trylock the console_sem again,
2335	 * there's a new owner and the console_unlock() from them will do the
2336	 * flush, no worries.
2337	 */
2338	raw_spin_lock(&logbuf_lock);
2339	retry = console_seq != log_next_seq;
2340	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2341
2342	if (retry && console_trylock())
2343		goto again;
2344
2345	if (wake_klogd)
2346		wake_up_klogd();
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361	if (console_may_schedule)
2362		cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
2368	struct console *c;
2369
2370	/*
2371	 * console_unblank can no longer be called in interrupt context unless
2372	 * oops_in_progress is set to 1..
2373	 */
2374	if (oops_in_progress) {
2375		if (down_trylock_console_sem() != 0)
2376			return;
2377	} else
2378		console_lock();
2379
2380	console_locked = 1;
2381	console_may_schedule = 0;
2382	for_each_console(c)
2383		if ((c->flags & CON_ENABLED) && c->unblank)
2384			c->unblank();
2385	console_unlock();
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
 
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
2395	/*
2396	 * If someone else is holding the console lock, trylock will fail
2397	 * and may_schedule may be set.  Ignore and proceed to unlock so
2398	 * that messages are flushed out.  As this can be called from any
2399	 * context and we don't want to get preempted while flushing,
2400	 * ensure may_schedule is cleared.
2401	 */
2402	console_trylock();
2403	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
2404	console_unlock();
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412	struct console *c;
2413	struct tty_driver *driver = NULL;
2414
2415	console_lock();
2416	for_each_console(c) {
2417		if (!c->device)
2418			continue;
2419		driver = c->device(c, index);
2420		if (driver)
2421			break;
2422	}
2423	console_unlock();
2424	return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434	console_lock();
2435	console->flags &= ~CON_ENABLED;
2436	console_unlock();
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442	console_lock();
2443	console->flags |= CON_ENABLED;
2444	console_unlock();
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452	keep_bootcon = 1;
2453	pr_info("debug: skip boot console de-registration.\n");
2454
2455	return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 *  - Any number of bootconsoles can be registered at any time.
2474 *  - As soon as a "real" console is registered, all bootconsoles
2475 *    will be unregistered automatically.
2476 *  - Once a "real" console is registered, any attempt to register a
2477 *    bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481	int i;
2482	unsigned long flags;
2483	struct console *bcon = NULL;
2484	struct console_cmdline *c;
2485
2486	if (console_drivers)
2487		for_each_console(bcon)
2488			if (WARN(bcon == newcon,
2489					"console '%s%d' already registered\n",
2490					bcon->name, bcon->index))
2491				return;
2492
2493	/*
2494	 * before we register a new CON_BOOT console, make sure we don't
2495	 * already have a valid console
2496	 */
2497	if (console_drivers && newcon->flags & CON_BOOT) {
2498		/* find the last or real console */
2499		for_each_console(bcon) {
2500			if (!(bcon->flags & CON_BOOT)) {
2501				pr_info("Too late to register bootconsole %s%d\n",
2502					newcon->name, newcon->index);
2503				return;
2504			}
2505		}
2506	}
2507
2508	if (console_drivers && console_drivers->flags & CON_BOOT)
2509		bcon = console_drivers;
2510
2511	if (preferred_console < 0 || bcon || !console_drivers)
2512		preferred_console = selected_console;
2513
2514	/*
2515	 *	See if we want to use this console driver. If we
2516	 *	didn't select a console we take the first one
2517	 *	that registers here.
2518	 */
2519	if (preferred_console < 0) {
2520		if (newcon->index < 0)
2521			newcon->index = 0;
2522		if (newcon->setup == NULL ||
2523		    newcon->setup(newcon, NULL) == 0) {
2524			newcon->flags |= CON_ENABLED;
2525			if (newcon->device) {
2526				newcon->flags |= CON_CONSDEV;
2527				preferred_console = 0;
2528			}
2529		}
2530	}
2531
2532	/*
2533	 *	See if this console matches one we selected on
2534	 *	the command line.
2535	 */
2536	for (i = 0, c = console_cmdline;
2537	     i < MAX_CMDLINECONSOLES && c->name[0];
2538	     i++, c++) {
2539		if (!newcon->match ||
2540		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541			/* default matching */
2542			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543			if (strcmp(c->name, newcon->name) != 0)
2544				continue;
2545			if (newcon->index >= 0 &&
2546			    newcon->index != c->index)
2547				continue;
2548			if (newcon->index < 0)
2549				newcon->index = c->index;
2550
2551			if (_braille_register_console(newcon, c))
2552				return;
2553
2554			if (newcon->setup &&
2555			    newcon->setup(newcon, c->options) != 0)
2556				break;
2557		}
2558
2559		newcon->flags |= CON_ENABLED;
2560		if (i == selected_console) {
2561			newcon->flags |= CON_CONSDEV;
2562			preferred_console = selected_console;
2563		}
2564		break;
2565	}
2566
2567	if (!(newcon->flags & CON_ENABLED))
 
2568		return;
2569
2570	/*
2571	 * If we have a bootconsole, and are switching to a real console,
2572	 * don't print everything out again, since when the boot console, and
2573	 * the real console are the same physical device, it's annoying to
2574	 * see the beginning boot messages twice
2575	 */
2576	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577		newcon->flags &= ~CON_PRINTBUFFER;
2578
2579	/*
2580	 *	Put this console in the list - keep the
2581	 *	preferred driver at the head of the list.
2582	 */
2583	console_lock();
2584	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585		newcon->next = console_drivers;
2586		console_drivers = newcon;
2587		if (newcon->next)
2588			newcon->next->flags &= ~CON_CONSDEV;
 
 
2589	} else {
2590		newcon->next = console_drivers->next;
2591		console_drivers->next = newcon;
2592	}
2593
2594	if (newcon->flags & CON_EXTENDED)
2595		if (!nr_ext_console_drivers++)
2596			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597
2598	if (newcon->flags & CON_PRINTBUFFER) {
2599		/*
2600		 * console_unlock(); will print out the buffered messages
2601		 * for us.
2602		 */
2603		raw_spin_lock_irqsave(&logbuf_lock, flags);
2604		console_seq = syslog_seq;
2605		console_idx = syslog_idx;
2606		console_prev = syslog_prev;
2607		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608		/*
2609		 * We're about to replay the log buffer.  Only do this to the
2610		 * just-registered console to avoid excessive message spam to
2611		 * the already-registered consoles.
 
 
 
 
2612		 */
2613		exclusive_console = newcon;
 
 
 
 
2614	}
2615	console_unlock();
2616	console_sysfs_notify();
2617
2618	/*
2619	 * By unregistering the bootconsoles after we enable the real console
2620	 * we get the "console xxx enabled" message on all the consoles -
2621	 * boot consoles, real consoles, etc - this is to ensure that end
2622	 * users know there might be something in the kernel's log buffer that
2623	 * went to the bootconsole (that they do not see on the real console)
2624	 */
2625	pr_info("%sconsole [%s%d] enabled\n",
2626		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2627		newcon->name, newcon->index);
2628	if (bcon &&
2629	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630	    !keep_bootcon) {
2631		/* We need to iterate through all boot consoles, to make
2632		 * sure we print everything out, before we unregister them.
2633		 */
2634		for_each_console(bcon)
2635			if (bcon->flags & CON_BOOT)
2636				unregister_console(bcon);
2637	}
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
2642{
2643        struct console *a, *b;
2644	int res;
2645
2646	pr_info("%sconsole [%s%d] disabled\n",
2647		(console->flags & CON_BOOT) ? "boot" : "" ,
2648		console->name, console->index);
2649
2650	res = _braille_unregister_console(console);
2651	if (res)
2652		return res;
 
 
2653
2654	res = 1;
2655	console_lock();
2656	if (console_drivers == console) {
2657		console_drivers=console->next;
2658		res = 0;
2659	} else if (console_drivers) {
2660		for (a=console_drivers->next, b=console_drivers ;
2661		     a; b=a, a=b->next) {
2662			if (a == console) {
2663				b->next = a->next;
2664				res = 0;
2665				break;
2666			}
2667		}
2668	}
2669
2670	if (!res && (console->flags & CON_EXTENDED))
 
 
 
2671		nr_ext_console_drivers--;
2672
2673	/*
2674	 * If this isn't the last console and it has CON_CONSDEV set, we
2675	 * need to set it on the next preferred console.
2676	 */
2677	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678		console_drivers->flags |= CON_CONSDEV;
2679
2680	console->flags &= ~CON_ENABLED;
2681	console_unlock();
2682	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
2683	return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
2687/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
2704	struct console *con;
 
2705
2706	for_each_console(con) {
2707		if (!keep_bootcon && con->flags & CON_BOOT) {
 
 
 
 
 
 
 
 
 
2708			/*
2709			 * Make sure to unregister boot consoles whose data
2710			 * resides in the init section before the init section
2711			 * is discarded. Boot consoles whose data will stick
2712			 * around will automatically be unregistered when the
2713			 * proper console replaces them.
2714			 */
2715			if (init_section_intersects(con, sizeof(*con)))
2716				unregister_console(con);
 
2717		}
2718	}
2719	hotcpu_notifier(console_cpu_notify, 0);
 
 
 
 
 
2720	return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
2728#define PRINTK_PENDING_WAKEUP	0x01
2729#define PRINTK_PENDING_OUTPUT	0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735	int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737	if (pending & PRINTK_PENDING_OUTPUT) {
2738		/* If trylock fails, someone else is doing the printing */
2739		if (console_trylock())
2740			console_unlock();
2741	}
2742
2743	if (pending & PRINTK_PENDING_WAKEUP)
2744		wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748	.func = wake_up_klogd_work_func,
2749	.flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
 
 
 
2754	preempt_disable();
2755	if (waitqueue_active(&log_wait)) {
2756		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758	}
2759	preempt_enable();
2760}
2761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2762int printk_deferred(const char *fmt, ...)
2763{
2764	va_list args;
2765	int r;
2766
2767	preempt_disable();
2768	va_start(args, fmt);
2769	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770	va_end(args);
2771
2772	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774	preempt_enable();
2775
2776	return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789	return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803			unsigned int interval_msecs)
2804{
2805	unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808		return false;
2809
2810	*caller_jiffies = jiffies;
2811	return true;
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828	unsigned long flags;
2829	int err = -EBUSY;
2830
2831	/* The dump callback needs to be set */
2832	if (!dumper->dump)
2833		return -EINVAL;
2834
2835	spin_lock_irqsave(&dump_list_lock, flags);
2836	/* Don't allow registering multiple times */
2837	if (!dumper->registered) {
2838		dumper->registered = 1;
2839		list_add_tail_rcu(&dumper->list, &dump_list);
2840		err = 0;
2841	}
2842	spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844	return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857	unsigned long flags;
2858	int err = -EINVAL;
2859
2860	spin_lock_irqsave(&dump_list_lock, flags);
2861	if (dumper->registered) {
2862		dumper->registered = 0;
2863		list_del_rcu(&dumper->list);
2864		err = 0;
2865	}
2866	spin_unlock_irqrestore(&dump_list_lock, flags);
2867	synchronize_rcu();
2868
2869	return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886	struct kmsg_dumper *dumper;
2887	unsigned long flags;
2888
2889	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890		return;
2891
2892	rcu_read_lock();
2893	list_for_each_entry_rcu(dumper, &dump_list, list) {
2894		if (dumper->max_reason && reason > dumper->max_reason)
 
 
 
 
 
 
 
 
 
 
2895			continue;
2896
2897		/* initialize iterator with data about the stored records */
2898		dumper->active = true;
2899
2900		raw_spin_lock_irqsave(&logbuf_lock, flags);
2901		dumper->cur_seq = clear_seq;
2902		dumper->cur_idx = clear_idx;
2903		dumper->next_seq = log_next_seq;
2904		dumper->next_idx = log_next_idx;
2905		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906
2907		/* invoke dumper which will iterate over records */
2908		dumper->dump(dumper, reason);
2909
2910		/* reset iterator */
2911		dumper->active = false;
2912	}
2913	rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936			       char *line, size_t size, size_t *len)
2937{
2938	struct printk_log *msg;
2939	size_t l = 0;
2940	bool ret = false;
2941
2942	if (!dumper->active)
2943		goto out;
2944
2945	if (dumper->cur_seq < log_first_seq) {
2946		/* messages are gone, move to first available one */
2947		dumper->cur_seq = log_first_seq;
2948		dumper->cur_idx = log_first_idx;
2949	}
2950
2951	/* last entry */
2952	if (dumper->cur_seq >= log_next_seq)
2953		goto out;
2954
2955	msg = log_from_idx(dumper->cur_idx);
2956	l = msg_print_text(msg, 0, syslog, line, size);
2957
2958	dumper->cur_idx = log_next(dumper->cur_idx);
2959	dumper->cur_seq++;
2960	ret = true;
2961out:
2962	if (len)
2963		*len = l;
2964	return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985			char *line, size_t size, size_t *len)
2986{
2987	unsigned long flags;
2988	bool ret;
2989
2990	raw_spin_lock_irqsave(&logbuf_lock, flags);
2991	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994	return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018			  char *buf, size_t size, size_t *len)
3019{
3020	unsigned long flags;
3021	u64 seq;
3022	u32 idx;
3023	u64 next_seq;
3024	u32 next_idx;
3025	enum log_flags prev;
3026	size_t l = 0;
3027	bool ret = false;
 
3028
3029	if (!dumper->active)
3030		goto out;
3031
3032	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033	if (dumper->cur_seq < log_first_seq) {
3034		/* messages are gone, move to first available one */
3035		dumper->cur_seq = log_first_seq;
3036		dumper->cur_idx = log_first_idx;
3037	}
3038
3039	/* last entry */
3040	if (dumper->cur_seq >= dumper->next_seq) {
3041		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042		goto out;
3043	}
3044
3045	/* calculate length of entire buffer */
3046	seq = dumper->cur_seq;
3047	idx = dumper->cur_idx;
3048	prev = 0;
3049	while (seq < dumper->next_seq) {
3050		struct printk_log *msg = log_from_idx(idx);
3051
3052		l += msg_print_text(msg, prev, true, NULL, 0);
3053		idx = log_next(idx);
3054		seq++;
3055		prev = msg->flags;
3056	}
3057
3058	/* move first record forward until length fits into the buffer */
3059	seq = dumper->cur_seq;
3060	idx = dumper->cur_idx;
3061	prev = 0;
3062	while (l > size && seq < dumper->next_seq) {
3063		struct printk_log *msg = log_from_idx(idx);
3064
3065		l -= msg_print_text(msg, prev, true, NULL, 0);
3066		idx = log_next(idx);
3067		seq++;
3068		prev = msg->flags;
3069	}
3070
3071	/* last message in next interation */
3072	next_seq = seq;
3073	next_idx = idx;
3074
3075	l = 0;
3076	while (seq < dumper->next_seq) {
3077		struct printk_log *msg = log_from_idx(idx);
3078
3079		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080		idx = log_next(idx);
3081		seq++;
3082		prev = msg->flags;
3083	}
3084
3085	dumper->next_seq = next_seq;
3086	dumper->next_idx = next_idx;
3087	ret = true;
3088	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090	if (len)
3091		*len = l;
3092	return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108	dumper->cur_seq = clear_seq;
3109	dumper->cur_idx = clear_idx;
3110	dumper->next_seq = log_next_seq;
3111	dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124	unsigned long flags;
3125
3126	raw_spin_lock_irqsave(&logbuf_lock, flags);
3127	kmsg_dump_rewind_nolock(dumper);
3128	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps.  Usually used to add arch-specific system identifiers.  If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146	va_list args;
3147
3148	va_start(args, fmt);
3149	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150		  fmt, args);
3151	va_end(args);
3152}
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165	       print_tainted(), init_utsname()->release,
3166	       (int)strcspn(init_utsname()->version, " "),
3167	       init_utsname()->version);
3168
3169	if (dump_stack_arch_desc_str[0] != '\0')
3170		printk("%sHardware name: %s\n",
3171		       log_lvl, dump_stack_arch_desc_str);
3172
3173	print_worker_info(log_lvl, current);
3174}
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185	dump_stack_print_info(log_lvl);
3186
3187	printk("%stask: %p ti: %p task.ti: %p\n",
3188	       log_lvl, current, current_thread_info(),
3189	       task_thread_info(current));
3190}
3191
3192#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
 
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
 
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "console_cmdline.h"
  59#include "braille.h"
  60#include "internal.h"
  61
  62int console_printk[4] = {
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  64	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  65	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  66	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  67};
  68EXPORT_SYMBOL_GPL(console_printk);
  69
  70atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  71EXPORT_SYMBOL(ignore_console_lock_warning);
  72
  73/*
  74 * Low level drivers may need that to know if they can schedule in
  75 * their unblank() callback or not. So let's export it.
  76 */
  77int oops_in_progress;
  78EXPORT_SYMBOL(oops_in_progress);
  79
  80/*
  81 * console_sem protects the console_drivers list, and also
  82 * provides serialisation for access to the entire console
  83 * driver system.
  84 */
  85static DEFINE_SEMAPHORE(console_sem);
  86struct console *console_drivers;
  87EXPORT_SYMBOL_GPL(console_drivers);
  88
  89/*
  90 * System may need to suppress printk message under certain
  91 * circumstances, like after kernel panic happens.
  92 */
  93int __read_mostly suppress_printk;
  94
  95#ifdef CONFIG_LOCKDEP
  96static struct lockdep_map console_lock_dep_map = {
  97	.name = "console_lock"
  98};
  99#endif
 100
 101enum devkmsg_log_bits {
 102	__DEVKMSG_LOG_BIT_ON = 0,
 103	__DEVKMSG_LOG_BIT_OFF,
 104	__DEVKMSG_LOG_BIT_LOCK,
 105};
 106
 107enum devkmsg_log_masks {
 108	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 109	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 110	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 111};
 112
 113/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 114#define DEVKMSG_LOG_MASK_DEFAULT	0
 115
 116static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 117
 118static int __control_devkmsg(char *str)
 119{
 120	size_t len;
 121
 122	if (!str)
 123		return -EINVAL;
 124
 125	len = str_has_prefix(str, "on");
 126	if (len) {
 127		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 128		return len;
 129	}
 130
 131	len = str_has_prefix(str, "off");
 132	if (len) {
 133		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 134		return len;
 135	}
 136
 137	len = str_has_prefix(str, "ratelimit");
 138	if (len) {
 139		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 140		return len;
 141	}
 142
 143	return -EINVAL;
 144}
 145
 146static int __init control_devkmsg(char *str)
 147{
 148	if (__control_devkmsg(str) < 0)
 149		return 1;
 150
 151	/*
 152	 * Set sysctl string accordingly:
 153	 */
 154	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 155		strcpy(devkmsg_log_str, "on");
 156	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 157		strcpy(devkmsg_log_str, "off");
 158	/* else "ratelimit" which is set by default. */
 159
 160	/*
 161	 * Sysctl cannot change it anymore. The kernel command line setting of
 162	 * this parameter is to force the setting to be permanent throughout the
 163	 * runtime of the system. This is a precation measure against userspace
 164	 * trying to be a smarta** and attempting to change it up on us.
 165	 */
 166	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 167
 168	return 0;
 169}
 170__setup("printk.devkmsg=", control_devkmsg);
 171
 172char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 173
 174int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 175			      void *buffer, size_t *lenp, loff_t *ppos)
 176{
 177	char old_str[DEVKMSG_STR_MAX_SIZE];
 178	unsigned int old;
 179	int err;
 180
 181	if (write) {
 182		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 183			return -EINVAL;
 184
 185		old = devkmsg_log;
 186		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 187	}
 188
 189	err = proc_dostring(table, write, buffer, lenp, ppos);
 190	if (err)
 191		return err;
 192
 193	if (write) {
 194		err = __control_devkmsg(devkmsg_log_str);
 195
 196		/*
 197		 * Do not accept an unknown string OR a known string with
 198		 * trailing crap...
 199		 */
 200		if (err < 0 || (err + 1 != *lenp)) {
 201
 202			/* ... and restore old setting. */
 203			devkmsg_log = old;
 204			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 205
 206			return -EINVAL;
 207		}
 208	}
 209
 210	return 0;
 211}
 212
 213/* Number of registered extended console drivers. */
 214static int nr_ext_console_drivers;
 215
 216/*
 217 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 218 * macros instead of functions so that _RET_IP_ contains useful information.
 219 */
 220#define down_console_sem() do { \
 221	down(&console_sem);\
 222	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 223} while (0)
 224
 225static int __down_trylock_console_sem(unsigned long ip)
 226{
 227	int lock_failed;
 228	unsigned long flags;
 229
 230	/*
 231	 * Here and in __up_console_sem() we need to be in safe mode,
 232	 * because spindump/WARN/etc from under console ->lock will
 233	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 234	 */
 235	printk_safe_enter_irqsave(flags);
 236	lock_failed = down_trylock(&console_sem);
 237	printk_safe_exit_irqrestore(flags);
 238
 239	if (lock_failed)
 240		return 1;
 241	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 242	return 0;
 243}
 244#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 245
 246static void __up_console_sem(unsigned long ip)
 247{
 248	unsigned long flags;
 249
 250	mutex_release(&console_lock_dep_map, ip);
 251
 252	printk_safe_enter_irqsave(flags);
 253	up(&console_sem);
 254	printk_safe_exit_irqrestore(flags);
 255}
 256#define up_console_sem() __up_console_sem(_RET_IP_)
 257
 258/*
 259 * This is used for debugging the mess that is the VT code by
 260 * keeping track if we have the console semaphore held. It's
 261 * definitely not the perfect debug tool (we don't know if _WE_
 262 * hold it and are racing, but it helps tracking those weird code
 263 * paths in the console code where we end up in places I want
 264 * locked without the console sempahore held).
 265 */
 266static int console_locked, console_suspended;
 267
 268/*
 269 * If exclusive_console is non-NULL then only this console is to be printed to.
 270 */
 271static struct console *exclusive_console;
 272
 273/*
 274 *	Array of consoles built from command line options (console=)
 275 */
 276
 277#define MAX_CMDLINECONSOLES 8
 278
 279static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 280
 
 281static int preferred_console = -1;
 282static bool has_preferred_console;
 283int console_set_on_cmdline;
 284EXPORT_SYMBOL(console_set_on_cmdline);
 285
 286/* Flag: console code may call schedule() */
 287static int console_may_schedule;
 288
 289enum con_msg_format_flags {
 290	MSG_FORMAT_DEFAULT	= 0,
 291	MSG_FORMAT_SYSLOG	= (1 << 0),
 292};
 293
 294static int console_msg_format = MSG_FORMAT_DEFAULT;
 295
 296/*
 297 * The printk log buffer consists of a chain of concatenated variable
 298 * length records. Every record starts with a record header, containing
 299 * the overall length of the record.
 300 *
 301 * The heads to the first and last entry in the buffer, as well as the
 302 * sequence numbers of these entries are maintained when messages are
 303 * stored.
 304 *
 305 * If the heads indicate available messages, the length in the header
 306 * tells the start next message. A length == 0 for the next message
 307 * indicates a wrap-around to the beginning of the buffer.
 308 *
 309 * Every record carries the monotonic timestamp in microseconds, as well as
 310 * the standard userspace syslog level and syslog facility. The usual
 311 * kernel messages use LOG_KERN; userspace-injected messages always carry
 312 * a matching syslog facility, by default LOG_USER. The origin of every
 313 * message can be reliably determined that way.
 314 *
 315 * The human readable log message directly follows the message header. The
 316 * length of the message text is stored in the header, the stored message
 317 * is not terminated.
 318 *
 319 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 320 * to provide userspace with a machine-readable message context.
 321 *
 322 * Examples for well-defined, commonly used property names are:
 323 *   DEVICE=b12:8               device identifier
 324 *                                b12:8         block dev_t
 325 *                                c127:3        char dev_t
 326 *                                n8            netdev ifindex
 327 *                                +sound:card0  subsystem:devname
 328 *   SUBSYSTEM=pci              driver-core subsystem name
 329 *
 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 331 * follows directly after a '=' character. Every property is terminated by
 332 * a '\0' character. The last property is not terminated.
 333 *
 334 * Example of a message structure:
 335 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 336 *   0008  34 00                        record is 52 bytes long
 337 *   000a        0b 00                  text is 11 bytes long
 338 *   000c              1f 00            dictionary is 23 bytes long
 339 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 340 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 341 *         69 6e 65                     "ine"
 342 *   001b           44 45 56 49 43      "DEVIC"
 343 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 344 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 345 *         67                           "g"
 346 *   0032     00 00 00                  padding to next message header
 347 *
 348 * The 'struct printk_log' buffer header must never be directly exported to
 349 * userspace, it is a kernel-private implementation detail that might
 350 * need to be changed in the future, when the requirements change.
 351 *
 352 * /dev/kmsg exports the structured data in the following line format:
 353 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 354 *
 355 * Users of the export format should ignore possible additional values
 356 * separated by ',', and find the message after the ';' character.
 357 *
 358 * The optional key/value pairs are attached as continuation lines starting
 359 * with a space character and terminated by a newline. All possible
 360 * non-prinatable characters are escaped in the "\xff" notation.
 361 */
 362
 363enum log_flags {
 
 364	LOG_NEWLINE	= 2,	/* text ended with a newline */
 
 365	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 366};
 367
 368struct printk_log {
 369	u64 ts_nsec;		/* timestamp in nanoseconds */
 370	u16 len;		/* length of entire record */
 371	u16 text_len;		/* length of text buffer */
 372	u16 dict_len;		/* length of dictionary buffer */
 373	u8 facility;		/* syslog facility */
 374	u8 flags:5;		/* internal record flags */
 375	u8 level:3;		/* syslog level */
 376#ifdef CONFIG_PRINTK_CALLER
 377	u32 caller_id;            /* thread id or processor id */
 378#endif
 379}
 380#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 381__packed __aligned(4)
 382#endif
 383;
 384
 385/*
 386 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 387 * within the scheduler's rq lock. It must be released before calling
 388 * console_unlock() or anything else that might wake up a process.
 389 */
 390DEFINE_RAW_SPINLOCK(logbuf_lock);
 391
 392/*
 393 * Helper macros to lock/unlock logbuf_lock and switch between
 394 * printk-safe/unsafe modes.
 395 */
 396#define logbuf_lock_irq()				\
 397	do {						\
 398		printk_safe_enter_irq();		\
 399		raw_spin_lock(&logbuf_lock);		\
 400	} while (0)
 401
 402#define logbuf_unlock_irq()				\
 403	do {						\
 404		raw_spin_unlock(&logbuf_lock);		\
 405		printk_safe_exit_irq();			\
 406	} while (0)
 407
 408#define logbuf_lock_irqsave(flags)			\
 409	do {						\
 410		printk_safe_enter_irqsave(flags);	\
 411		raw_spin_lock(&logbuf_lock);		\
 412	} while (0)
 413
 414#define logbuf_unlock_irqrestore(flags)		\
 415	do {						\
 416		raw_spin_unlock(&logbuf_lock);		\
 417		printk_safe_exit_irqrestore(flags);	\
 418	} while (0)
 419
 420#ifdef CONFIG_PRINTK
 421DECLARE_WAIT_QUEUE_HEAD(log_wait);
 422/* the next printk record to read by syslog(READ) or /proc/kmsg */
 423static u64 syslog_seq;
 424static u32 syslog_idx;
 
 425static size_t syslog_partial;
 426static bool syslog_time;
 427
 428/* index and sequence number of the first record stored in the buffer */
 429static u64 log_first_seq;
 430static u32 log_first_idx;
 431
 432/* index and sequence number of the next record to store in the buffer */
 433static u64 log_next_seq;
 434static u32 log_next_idx;
 435
 436/* the next printk record to write to the console */
 437static u64 console_seq;
 438static u32 console_idx;
 439static u64 exclusive_console_stop_seq;
 440
 441/* the next printk record to read after the last 'clear' command */
 442static u64 clear_seq;
 443static u32 clear_idx;
 444
 445#ifdef CONFIG_PRINTK_CALLER
 446#define PREFIX_MAX		48
 447#else
 448#define PREFIX_MAX		32
 449#endif
 450#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 451
 452#define LOG_LEVEL(v)		((v) & 0x07)
 453#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 454
 455/* record buffer */
 456#define LOG_ALIGN __alignof__(struct printk_log)
 457#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 458#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 459static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 460static char *log_buf = __log_buf;
 461static u32 log_buf_len = __LOG_BUF_LEN;
 462
 463/*
 464 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 465 * per_cpu_areas are initialised. This variable is set to true when
 466 * it's safe to access per-CPU data.
 467 */
 468static bool __printk_percpu_data_ready __read_mostly;
 469
 470bool printk_percpu_data_ready(void)
 471{
 472	return __printk_percpu_data_ready;
 473}
 474
 475/* Return log buffer address */
 476char *log_buf_addr_get(void)
 477{
 478	return log_buf;
 479}
 480
 481/* Return log buffer size */
 482u32 log_buf_len_get(void)
 483{
 484	return log_buf_len;
 485}
 486
 487/* human readable text of the record */
 488static char *log_text(const struct printk_log *msg)
 489{
 490	return (char *)msg + sizeof(struct printk_log);
 491}
 492
 493/* optional key/value pair dictionary attached to the record */
 494static char *log_dict(const struct printk_log *msg)
 495{
 496	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 497}
 498
 499/* get record by index; idx must point to valid msg */
 500static struct printk_log *log_from_idx(u32 idx)
 501{
 502	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 503
 504	/*
 505	 * A length == 0 record is the end of buffer marker. Wrap around and
 506	 * read the message at the start of the buffer.
 507	 */
 508	if (!msg->len)
 509		return (struct printk_log *)log_buf;
 510	return msg;
 511}
 512
 513/* get next record; idx must point to valid msg */
 514static u32 log_next(u32 idx)
 515{
 516	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 517
 518	/* length == 0 indicates the end of the buffer; wrap */
 519	/*
 520	 * A length == 0 record is the end of buffer marker. Wrap around and
 521	 * read the message at the start of the buffer as *this* one, and
 522	 * return the one after that.
 523	 */
 524	if (!msg->len) {
 525		msg = (struct printk_log *)log_buf;
 526		return msg->len;
 527	}
 528	return idx + msg->len;
 529}
 530
 531/*
 532 * Check whether there is enough free space for the given message.
 533 *
 534 * The same values of first_idx and next_idx mean that the buffer
 535 * is either empty or full.
 536 *
 537 * If the buffer is empty, we must respect the position of the indexes.
 538 * They cannot be reset to the beginning of the buffer.
 539 */
 540static int logbuf_has_space(u32 msg_size, bool empty)
 541{
 542	u32 free;
 543
 544	if (log_next_idx > log_first_idx || empty)
 545		free = max(log_buf_len - log_next_idx, log_first_idx);
 546	else
 547		free = log_first_idx - log_next_idx;
 548
 549	/*
 550	 * We need space also for an empty header that signalizes wrapping
 551	 * of the buffer.
 552	 */
 553	return free >= msg_size + sizeof(struct printk_log);
 554}
 555
 556static int log_make_free_space(u32 msg_size)
 557{
 558	while (log_first_seq < log_next_seq &&
 559	       !logbuf_has_space(msg_size, false)) {
 560		/* drop old messages until we have enough contiguous space */
 561		log_first_idx = log_next(log_first_idx);
 562		log_first_seq++;
 563	}
 564
 565	if (clear_seq < log_first_seq) {
 566		clear_seq = log_first_seq;
 567		clear_idx = log_first_idx;
 568	}
 569
 570	/* sequence numbers are equal, so the log buffer is empty */
 571	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 572		return 0;
 573
 574	return -ENOMEM;
 575}
 576
 577/* compute the message size including the padding bytes */
 578static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 579{
 580	u32 size;
 581
 582	size = sizeof(struct printk_log) + text_len + dict_len;
 583	*pad_len = (-size) & (LOG_ALIGN - 1);
 584	size += *pad_len;
 585
 586	return size;
 587}
 588
 589/*
 590 * Define how much of the log buffer we could take at maximum. The value
 591 * must be greater than two. Note that only half of the buffer is available
 592 * when the index points to the middle.
 593 */
 594#define MAX_LOG_TAKE_PART 4
 595static const char trunc_msg[] = "<truncated>";
 596
 597static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 598			u16 *dict_len, u32 *pad_len)
 599{
 600	/*
 601	 * The message should not take the whole buffer. Otherwise, it might
 602	 * get removed too soon.
 603	 */
 604	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 605	if (*text_len > max_text_len)
 606		*text_len = max_text_len;
 607	/* enable the warning message */
 608	*trunc_msg_len = strlen(trunc_msg);
 609	/* disable the "dict" completely */
 610	*dict_len = 0;
 611	/* compute the size again, count also the warning message */
 612	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 613}
 614
 615/* insert record into the buffer, discard old ones, update heads */
 616static int log_store(u32 caller_id, int facility, int level,
 617		     enum log_flags flags, u64 ts_nsec,
 618		     const char *dict, u16 dict_len,
 619		     const char *text, u16 text_len)
 620{
 621	struct printk_log *msg;
 622	u32 size, pad_len;
 623	u16 trunc_msg_len = 0;
 624
 625	/* number of '\0' padding bytes to next message */
 626	size = msg_used_size(text_len, dict_len, &pad_len);
 627
 628	if (log_make_free_space(size)) {
 629		/* truncate the message if it is too long for empty buffer */
 630		size = truncate_msg(&text_len, &trunc_msg_len,
 631				    &dict_len, &pad_len);
 632		/* survive when the log buffer is too small for trunc_msg */
 633		if (log_make_free_space(size))
 634			return 0;
 635	}
 636
 637	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 638		/*
 639		 * This message + an additional empty header does not fit
 640		 * at the end of the buffer. Add an empty header with len == 0
 641		 * to signify a wrap around.
 642		 */
 643		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 644		log_next_idx = 0;
 645	}
 646
 647	/* fill message */
 648	msg = (struct printk_log *)(log_buf + log_next_idx);
 649	memcpy(log_text(msg), text, text_len);
 650	msg->text_len = text_len;
 651	if (trunc_msg_len) {
 652		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 653		msg->text_len += trunc_msg_len;
 654	}
 655	memcpy(log_dict(msg), dict, dict_len);
 656	msg->dict_len = dict_len;
 657	msg->facility = facility;
 658	msg->level = level & 7;
 659	msg->flags = flags & 0x1f;
 660	if (ts_nsec > 0)
 661		msg->ts_nsec = ts_nsec;
 662	else
 663		msg->ts_nsec = local_clock();
 664#ifdef CONFIG_PRINTK_CALLER
 665	msg->caller_id = caller_id;
 666#endif
 667	memset(log_dict(msg) + dict_len, 0, pad_len);
 668	msg->len = size;
 669
 670	/* insert message */
 671	log_next_idx += msg->len;
 672	log_next_seq++;
 673
 674	return msg->text_len;
 675}
 676
 677int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 678
 679static int syslog_action_restricted(int type)
 680{
 681	if (dmesg_restrict)
 682		return 1;
 683	/*
 684	 * Unless restricted, we allow "read all" and "get buffer size"
 685	 * for everybody.
 686	 */
 687	return type != SYSLOG_ACTION_READ_ALL &&
 688	       type != SYSLOG_ACTION_SIZE_BUFFER;
 689}
 690
 691static int check_syslog_permissions(int type, int source)
 692{
 693	/*
 694	 * If this is from /proc/kmsg and we've already opened it, then we've
 695	 * already done the capabilities checks at open time.
 696	 */
 697	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 698		goto ok;
 699
 700	if (syslog_action_restricted(type)) {
 701		if (capable(CAP_SYSLOG))
 702			goto ok;
 703		/*
 704		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 705		 * a warning.
 706		 */
 707		if (capable(CAP_SYS_ADMIN)) {
 708			pr_warn_once("%s (%d): Attempt to access syslog with "
 709				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 710				     "(deprecated).\n",
 711				 current->comm, task_pid_nr(current));
 712			goto ok;
 713		}
 714		return -EPERM;
 715	}
 716ok:
 717	return security_syslog(type);
 718}
 
 719
 720static void append_char(char **pp, char *e, char c)
 721{
 722	if (*pp < e)
 723		*(*pp)++ = c;
 724}
 725
 726static ssize_t msg_print_ext_header(char *buf, size_t size,
 727				    struct printk_log *msg, u64 seq)
 
 728{
 729	u64 ts_usec = msg->ts_nsec;
 730	char caller[20];
 731#ifdef CONFIG_PRINTK_CALLER
 732	u32 id = msg->caller_id;
 733
 734	snprintf(caller, sizeof(caller), ",caller=%c%u",
 735		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 736#else
 737	caller[0] = '\0';
 738#endif
 739
 740	do_div(ts_usec, 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 741
 742	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 743			 (msg->facility << 3) | msg->level, seq, ts_usec,
 744			 msg->flags & LOG_CONT ? 'c' : '-', caller);
 745}
 746
 747static ssize_t msg_print_ext_body(char *buf, size_t size,
 748				  char *dict, size_t dict_len,
 749				  char *text, size_t text_len)
 750{
 751	char *p = buf, *e = buf + size;
 752	size_t i;
 753
 754	/* escape non-printable characters */
 755	for (i = 0; i < text_len; i++) {
 756		unsigned char c = text[i];
 757
 758		if (c < ' ' || c >= 127 || c == '\\')
 759			p += scnprintf(p, e - p, "\\x%02x", c);
 760		else
 761			append_char(&p, e, c);
 762	}
 763	append_char(&p, e, '\n');
 764
 765	if (dict_len) {
 766		bool line = true;
 767
 768		for (i = 0; i < dict_len; i++) {
 769			unsigned char c = dict[i];
 770
 771			if (line) {
 772				append_char(&p, e, ' ');
 773				line = false;
 774			}
 775
 776			if (c == '\0') {
 777				append_char(&p, e, '\n');
 778				line = true;
 779				continue;
 780			}
 781
 782			if (c < ' ' || c >= 127 || c == '\\') {
 783				p += scnprintf(p, e - p, "\\x%02x", c);
 784				continue;
 785			}
 786
 787			append_char(&p, e, c);
 788		}
 789		append_char(&p, e, '\n');
 790	}
 791
 792	return p - buf;
 793}
 794
 795/* /dev/kmsg - userspace message inject/listen interface */
 796struct devkmsg_user {
 797	u64 seq;
 798	u32 idx;
 799	struct ratelimit_state rs;
 800	struct mutex lock;
 801	char buf[CONSOLE_EXT_LOG_MAX];
 802};
 803
 804static __printf(3, 4) __cold
 805int devkmsg_emit(int facility, int level, const char *fmt, ...)
 806{
 807	va_list args;
 808	int r;
 809
 810	va_start(args, fmt);
 811	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
 812	va_end(args);
 813
 814	return r;
 815}
 816
 817static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 818{
 819	char *buf, *line;
 820	int level = default_message_loglevel;
 821	int facility = 1;	/* LOG_USER */
 822	struct file *file = iocb->ki_filp;
 823	struct devkmsg_user *user = file->private_data;
 824	size_t len = iov_iter_count(from);
 825	ssize_t ret = len;
 826
 827	if (!user || len > LOG_LINE_MAX)
 828		return -EINVAL;
 829
 830	/* Ignore when user logging is disabled. */
 831	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 832		return len;
 833
 834	/* Ratelimit when not explicitly enabled. */
 835	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 836		if (!___ratelimit(&user->rs, current->comm))
 837			return ret;
 838	}
 839
 840	buf = kmalloc(len+1, GFP_KERNEL);
 841	if (buf == NULL)
 842		return -ENOMEM;
 843
 844	buf[len] = '\0';
 845	if (!copy_from_iter_full(buf, len, from)) {
 846		kfree(buf);
 847		return -EFAULT;
 848	}
 849
 850	/*
 851	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 852	 * the decimal value represents 32bit, the lower 3 bit are the log
 853	 * level, the rest are the log facility.
 854	 *
 855	 * If no prefix or no userspace facility is specified, we
 856	 * enforce LOG_USER, to be able to reliably distinguish
 857	 * kernel-generated messages from userspace-injected ones.
 858	 */
 859	line = buf;
 860	if (line[0] == '<') {
 861		char *endp = NULL;
 862		unsigned int u;
 863
 864		u = simple_strtoul(line + 1, &endp, 10);
 865		if (endp && endp[0] == '>') {
 866			level = LOG_LEVEL(u);
 867			if (LOG_FACILITY(u) != 0)
 868				facility = LOG_FACILITY(u);
 869			endp++;
 870			len -= endp - line;
 871			line = endp;
 872		}
 873	}
 874
 875	devkmsg_emit(facility, level, "%s", line);
 876	kfree(buf);
 877	return ret;
 878}
 879
 880static ssize_t devkmsg_read(struct file *file, char __user *buf,
 881			    size_t count, loff_t *ppos)
 882{
 883	struct devkmsg_user *user = file->private_data;
 884	struct printk_log *msg;
 885	size_t len;
 886	ssize_t ret;
 887
 888	if (!user)
 889		return -EBADF;
 890
 891	ret = mutex_lock_interruptible(&user->lock);
 892	if (ret)
 893		return ret;
 894
 895	logbuf_lock_irq();
 896	while (user->seq == log_next_seq) {
 897		if (file->f_flags & O_NONBLOCK) {
 898			ret = -EAGAIN;
 899			logbuf_unlock_irq();
 900			goto out;
 901		}
 902
 903		logbuf_unlock_irq();
 904		ret = wait_event_interruptible(log_wait,
 905					       user->seq != log_next_seq);
 906		if (ret)
 907			goto out;
 908		logbuf_lock_irq();
 909	}
 910
 911	if (user->seq < log_first_seq) {
 912		/* our last seen message is gone, return error and reset */
 913		user->idx = log_first_idx;
 914		user->seq = log_first_seq;
 915		ret = -EPIPE;
 916		logbuf_unlock_irq();
 917		goto out;
 918	}
 919
 920	msg = log_from_idx(user->idx);
 921	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 922				   msg, user->seq);
 923	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 924				  log_dict(msg), msg->dict_len,
 925				  log_text(msg), msg->text_len);
 926
 
 927	user->idx = log_next(user->idx);
 928	user->seq++;
 929	logbuf_unlock_irq();
 930
 931	if (len > count) {
 932		ret = -EINVAL;
 933		goto out;
 934	}
 935
 936	if (copy_to_user(buf, user->buf, len)) {
 937		ret = -EFAULT;
 938		goto out;
 939	}
 940	ret = len;
 941out:
 942	mutex_unlock(&user->lock);
 943	return ret;
 944}
 945
 946/*
 947 * Be careful when modifying this function!!!
 948 *
 949 * Only few operations are supported because the device works only with the
 950 * entire variable length messages (records). Non-standard values are
 951 * returned in the other cases and has been this way for quite some time.
 952 * User space applications might depend on this behavior.
 953 */
 954static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 955{
 956	struct devkmsg_user *user = file->private_data;
 957	loff_t ret = 0;
 958
 959	if (!user)
 960		return -EBADF;
 961	if (offset)
 962		return -ESPIPE;
 963
 964	logbuf_lock_irq();
 965	switch (whence) {
 966	case SEEK_SET:
 967		/* the first record */
 968		user->idx = log_first_idx;
 969		user->seq = log_first_seq;
 970		break;
 971	case SEEK_DATA:
 972		/*
 973		 * The first record after the last SYSLOG_ACTION_CLEAR,
 974		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 975		 * changes no global state, and does not clear anything.
 976		 */
 977		user->idx = clear_idx;
 978		user->seq = clear_seq;
 979		break;
 980	case SEEK_END:
 981		/* after the last record */
 982		user->idx = log_next_idx;
 983		user->seq = log_next_seq;
 984		break;
 985	default:
 986		ret = -EINVAL;
 987	}
 988	logbuf_unlock_irq();
 989	return ret;
 990}
 991
 992static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 993{
 994	struct devkmsg_user *user = file->private_data;
 995	__poll_t ret = 0;
 996
 997	if (!user)
 998		return EPOLLERR|EPOLLNVAL;
 999
1000	poll_wait(file, &log_wait, wait);
1001
1002	logbuf_lock_irq();
1003	if (user->seq < log_next_seq) {
1004		/* return error when data has vanished underneath us */
1005		if (user->seq < log_first_seq)
1006			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1007		else
1008			ret = EPOLLIN|EPOLLRDNORM;
1009	}
1010	logbuf_unlock_irq();
1011
1012	return ret;
1013}
1014
1015static int devkmsg_open(struct inode *inode, struct file *file)
1016{
1017	struct devkmsg_user *user;
1018	int err;
1019
1020	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1021		return -EPERM;
 
1022
1023	/* write-only does not need any file context */
1024	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1025		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1026					       SYSLOG_FROM_READER);
1027		if (err)
1028			return err;
1029	}
1030
1031	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1032	if (!user)
1033		return -ENOMEM;
1034
1035	ratelimit_default_init(&user->rs);
1036	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1037
1038	mutex_init(&user->lock);
1039
1040	logbuf_lock_irq();
1041	user->idx = log_first_idx;
1042	user->seq = log_first_seq;
1043	logbuf_unlock_irq();
1044
1045	file->private_data = user;
1046	return 0;
1047}
1048
1049static int devkmsg_release(struct inode *inode, struct file *file)
1050{
1051	struct devkmsg_user *user = file->private_data;
1052
1053	if (!user)
1054		return 0;
1055
1056	ratelimit_state_exit(&user->rs);
1057
1058	mutex_destroy(&user->lock);
1059	kfree(user);
1060	return 0;
1061}
1062
1063const struct file_operations kmsg_fops = {
1064	.open = devkmsg_open,
1065	.read = devkmsg_read,
1066	.write_iter = devkmsg_write,
1067	.llseek = devkmsg_llseek,
1068	.poll = devkmsg_poll,
1069	.release = devkmsg_release,
1070};
1071
1072#ifdef CONFIG_CRASH_CORE
1073/*
1074 * This appends the listed symbols to /proc/vmcore
1075 *
1076 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1077 * obtain access to symbols that are otherwise very difficult to locate.  These
1078 * symbols are specifically used so that utilities can access and extract the
1079 * dmesg log from a vmcore file after a crash.
1080 */
1081void log_buf_vmcoreinfo_setup(void)
1082{
1083	VMCOREINFO_SYMBOL(log_buf);
1084	VMCOREINFO_SYMBOL(log_buf_len);
1085	VMCOREINFO_SYMBOL(log_first_idx);
1086	VMCOREINFO_SYMBOL(clear_idx);
1087	VMCOREINFO_SYMBOL(log_next_idx);
1088	/*
1089	 * Export struct printk_log size and field offsets. User space tools can
1090	 * parse it and detect any changes to structure down the line.
1091	 */
1092	VMCOREINFO_STRUCT_SIZE(printk_log);
1093	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1094	VMCOREINFO_OFFSET(printk_log, len);
1095	VMCOREINFO_OFFSET(printk_log, text_len);
1096	VMCOREINFO_OFFSET(printk_log, dict_len);
1097#ifdef CONFIG_PRINTK_CALLER
1098	VMCOREINFO_OFFSET(printk_log, caller_id);
1099#endif
1100}
1101#endif
1102
1103/* requested log_buf_len from kernel cmdline */
1104static unsigned long __initdata new_log_buf_len;
1105
1106/* we practice scaling the ring buffer by powers of 2 */
1107static void __init log_buf_len_update(u64 size)
1108{
1109	if (size > (u64)LOG_BUF_LEN_MAX) {
1110		size = (u64)LOG_BUF_LEN_MAX;
1111		pr_err("log_buf over 2G is not supported.\n");
1112	}
1113
1114	if (size)
1115		size = roundup_pow_of_two(size);
1116	if (size > log_buf_len)
1117		new_log_buf_len = (unsigned long)size;
1118}
1119
1120/* save requested log_buf_len since it's too early to process it */
1121static int __init log_buf_len_setup(char *str)
1122{
1123	u64 size;
1124
1125	if (!str)
1126		return -EINVAL;
1127
1128	size = memparse(str, &str);
1129
1130	log_buf_len_update(size);
1131
1132	return 0;
1133}
1134early_param("log_buf_len", log_buf_len_setup);
1135
1136#ifdef CONFIG_SMP
1137#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1138
1139static void __init log_buf_add_cpu(void)
1140{
1141	unsigned int cpu_extra;
1142
1143	/*
1144	 * archs should set up cpu_possible_bits properly with
1145	 * set_cpu_possible() after setup_arch() but just in
1146	 * case lets ensure this is valid.
1147	 */
1148	if (num_possible_cpus() == 1)
1149		return;
1150
1151	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1152
1153	/* by default this will only continue through for large > 64 CPUs */
1154	if (cpu_extra <= __LOG_BUF_LEN / 2)
1155		return;
1156
1157	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1158		__LOG_CPU_MAX_BUF_LEN);
1159	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1160		cpu_extra);
1161	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1162
1163	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1164}
1165#else /* !CONFIG_SMP */
1166static inline void log_buf_add_cpu(void) {}
1167#endif /* CONFIG_SMP */
1168
1169static void __init set_percpu_data_ready(void)
1170{
1171	printk_safe_init();
1172	/* Make sure we set this flag only after printk_safe() init is done */
1173	barrier();
1174	__printk_percpu_data_ready = true;
1175}
1176
1177void __init setup_log_buf(int early)
1178{
1179	unsigned long flags;
1180	char *new_log_buf;
1181	unsigned int free;
1182
1183	/*
1184	 * Some archs call setup_log_buf() multiple times - first is very
1185	 * early, e.g. from setup_arch(), and second - when percpu_areas
1186	 * are initialised.
1187	 */
1188	if (!early)
1189		set_percpu_data_ready();
1190
1191	if (log_buf != __log_buf)
1192		return;
1193
1194	if (!early && !new_log_buf_len)
1195		log_buf_add_cpu();
1196
1197	if (!new_log_buf_len)
1198		return;
1199
1200	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
 
 
 
 
 
 
 
1201	if (unlikely(!new_log_buf)) {
1202		pr_err("log_buf_len: %lu bytes not available\n",
1203			new_log_buf_len);
1204		return;
1205	}
1206
1207	logbuf_lock_irqsave(flags);
1208	log_buf_len = new_log_buf_len;
1209	log_buf = new_log_buf;
1210	new_log_buf_len = 0;
1211	free = __LOG_BUF_LEN - log_next_idx;
1212	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1213	logbuf_unlock_irqrestore(flags);
1214
1215	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1216	pr_info("early log buf free: %u(%u%%)\n",
1217		free, (free * 100) / __LOG_BUF_LEN);
1218}
1219
1220static bool __read_mostly ignore_loglevel;
1221
1222static int __init ignore_loglevel_setup(char *str)
1223{
1224	ignore_loglevel = true;
1225	pr_info("debug: ignoring loglevel setting.\n");
1226
1227	return 0;
1228}
1229
1230early_param("ignore_loglevel", ignore_loglevel_setup);
1231module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1232MODULE_PARM_DESC(ignore_loglevel,
1233		 "ignore loglevel setting (prints all kernel messages to the console)");
1234
1235static bool suppress_message_printing(int level)
1236{
1237	return (level >= console_loglevel && !ignore_loglevel);
1238}
1239
1240#ifdef CONFIG_BOOT_PRINTK_DELAY
1241
1242static int boot_delay; /* msecs delay after each printk during bootup */
1243static unsigned long long loops_per_msec;	/* based on boot_delay */
1244
1245static int __init boot_delay_setup(char *str)
1246{
1247	unsigned long lpj;
1248
1249	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1250	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1251
1252	get_option(&str, &boot_delay);
1253	if (boot_delay > 10 * 1000)
1254		boot_delay = 0;
1255
1256	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1257		"HZ: %d, loops_per_msec: %llu\n",
1258		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1259	return 0;
1260}
1261early_param("boot_delay", boot_delay_setup);
1262
1263static void boot_delay_msec(int level)
1264{
1265	unsigned long long k;
1266	unsigned long timeout;
1267
1268	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1269		|| suppress_message_printing(level)) {
1270		return;
1271	}
1272
1273	k = (unsigned long long)loops_per_msec * boot_delay;
1274
1275	timeout = jiffies + msecs_to_jiffies(boot_delay);
1276	while (k) {
1277		k--;
1278		cpu_relax();
1279		/*
1280		 * use (volatile) jiffies to prevent
1281		 * compiler reduction; loop termination via jiffies
1282		 * is secondary and may or may not happen.
1283		 */
1284		if (time_after(jiffies, timeout))
1285			break;
1286		touch_nmi_watchdog();
1287	}
1288}
1289#else
1290static inline void boot_delay_msec(int level)
1291{
1292}
1293#endif
1294
1295static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1296module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1297
1298static size_t print_syslog(unsigned int level, char *buf)
1299{
1300	return sprintf(buf, "<%u>", level);
1301}
1302
1303static size_t print_time(u64 ts, char *buf)
1304{
1305	unsigned long rem_nsec = do_div(ts, 1000000000);
1306
1307	return sprintf(buf, "[%5lu.%06lu]",
1308		       (unsigned long)ts, rem_nsec / 1000);
1309}
1310
1311#ifdef CONFIG_PRINTK_CALLER
1312static size_t print_caller(u32 id, char *buf)
1313{
1314	char caller[12];
1315
1316	snprintf(caller, sizeof(caller), "%c%u",
1317		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1318	return sprintf(buf, "[%6s]", caller);
1319}
1320#else
1321#define print_caller(id, buf) 0
1322#endif
1323
1324static size_t print_prefix(const struct printk_log *msg, bool syslog,
1325			   bool time, char *buf)
1326{
1327	size_t len = 0;
 
1328
1329	if (syslog)
1330		len = print_syslog((msg->facility << 3) | msg->level, buf);
1331
1332	if (time)
1333		len += print_time(msg->ts_nsec, buf + len);
1334
1335	len += print_caller(msg->caller_id, buf + len);
1336
1337	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1338		buf[len++] = ' ';
1339		buf[len] = '\0';
 
1340	}
1341
 
1342	return len;
1343}
1344
1345static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1346			     bool time, char *buf, size_t size)
1347{
1348	const char *text = log_text(msg);
1349	size_t text_size = msg->text_len;
 
 
1350	size_t len = 0;
1351	char prefix[PREFIX_MAX];
1352	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
 
 
 
 
 
 
 
 
 
1353
1354	do {
1355		const char *next = memchr(text, '\n', text_size);
1356		size_t text_len;
1357
1358		if (next) {
1359			text_len = next - text;
1360			next++;
1361			text_size -= next - text;
1362		} else {
1363			text_len = text_size;
1364		}
1365
1366		if (buf) {
1367			if (prefix_len + text_len + 1 >= size - len)
 
1368				break;
1369
1370			memcpy(buf + len, prefix, prefix_len);
1371			len += prefix_len;
1372			memcpy(buf + len, text, text_len);
1373			len += text_len;
1374			buf[len++] = '\n';
 
1375		} else {
1376			/* SYSLOG_ACTION_* buffer size only calculation */
1377			len += prefix_len + text_len + 1;
 
 
 
 
1378		}
1379
 
1380		text = next;
1381	} while (text);
1382
1383	return len;
1384}
1385
1386static int syslog_print(char __user *buf, int size)
1387{
1388	char *text;
1389	struct printk_log *msg;
1390	int len = 0;
1391
1392	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1393	if (!text)
1394		return -ENOMEM;
1395
1396	while (size > 0) {
1397		size_t n;
1398		size_t skip;
1399
1400		logbuf_lock_irq();
1401		if (syslog_seq < log_first_seq) {
1402			/* messages are gone, move to first one */
1403			syslog_seq = log_first_seq;
1404			syslog_idx = log_first_idx;
 
1405			syslog_partial = 0;
1406		}
1407		if (syslog_seq == log_next_seq) {
1408			logbuf_unlock_irq();
1409			break;
1410		}
1411
1412		/*
1413		 * To keep reading/counting partial line consistent,
1414		 * use printk_time value as of the beginning of a line.
1415		 */
1416		if (!syslog_partial)
1417			syslog_time = printk_time;
1418
1419		skip = syslog_partial;
1420		msg = log_from_idx(syslog_idx);
1421		n = msg_print_text(msg, true, syslog_time, text,
1422				   LOG_LINE_MAX + PREFIX_MAX);
1423		if (n - syslog_partial <= size) {
1424			/* message fits into buffer, move forward */
1425			syslog_idx = log_next(syslog_idx);
1426			syslog_seq++;
 
1427			n -= syslog_partial;
1428			syslog_partial = 0;
1429		} else if (!len){
1430			/* partial read(), remember position */
1431			n = size;
1432			syslog_partial += n;
1433		} else
1434			n = 0;
1435		logbuf_unlock_irq();
1436
1437		if (!n)
1438			break;
1439
1440		if (copy_to_user(buf, text + skip, n)) {
1441			if (!len)
1442				len = -EFAULT;
1443			break;
1444		}
1445
1446		len += n;
1447		size -= n;
1448		buf += n;
1449	}
1450
1451	kfree(text);
1452	return len;
1453}
1454
1455static int syslog_print_all(char __user *buf, int size, bool clear)
1456{
1457	char *text;
1458	int len = 0;
1459	u64 next_seq;
1460	u64 seq;
1461	u32 idx;
1462	bool time;
1463
1464	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1465	if (!text)
1466		return -ENOMEM;
1467
1468	time = printk_time;
1469	logbuf_lock_irq();
1470	/*
1471	 * Find first record that fits, including all following records,
1472	 * into the user-provided buffer for this dump.
1473	 */
1474	seq = clear_seq;
1475	idx = clear_idx;
1476	while (seq < log_next_seq) {
1477		struct printk_log *msg = log_from_idx(idx);
1478
1479		len += msg_print_text(msg, true, time, NULL, 0);
1480		idx = log_next(idx);
1481		seq++;
1482	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484	/* move first record forward until length fits into the buffer */
1485	seq = clear_seq;
1486	idx = clear_idx;
1487	while (len > size && seq < log_next_seq) {
1488		struct printk_log *msg = log_from_idx(idx);
1489
1490		len -= msg_print_text(msg, true, time, NULL, 0);
1491		idx = log_next(idx);
1492		seq++;
1493	}
1494
1495	/* last message fitting into this dump */
1496	next_seq = log_next_seq;
1497
1498	len = 0;
1499	while (len >= 0 && seq < next_seq) {
1500		struct printk_log *msg = log_from_idx(idx);
1501		int textlen = msg_print_text(msg, true, time, text,
1502					     LOG_LINE_MAX + PREFIX_MAX);
1503
1504		idx = log_next(idx);
1505		seq++;
1506
1507		logbuf_unlock_irq();
1508		if (copy_to_user(buf + len, text, textlen))
1509			len = -EFAULT;
1510		else
1511			len += textlen;
1512		logbuf_lock_irq();
1513
1514		if (seq < log_first_seq) {
1515			/* messages are gone, move to next one */
1516			seq = log_first_seq;
1517			idx = log_first_idx;
1518		}
1519	}
1520
1521	if (clear) {
1522		clear_seq = log_next_seq;
1523		clear_idx = log_next_idx;
1524	}
1525	logbuf_unlock_irq();
1526
1527	kfree(text);
1528	return len;
1529}
1530
1531static void syslog_clear(void)
1532{
1533	logbuf_lock_irq();
1534	clear_seq = log_next_seq;
1535	clear_idx = log_next_idx;
1536	logbuf_unlock_irq();
1537}
1538
1539int do_syslog(int type, char __user *buf, int len, int source)
1540{
1541	bool clear = false;
1542	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1543	int error;
1544
1545	error = check_syslog_permissions(type, source);
1546	if (error)
1547		return error;
1548
1549	switch (type) {
1550	case SYSLOG_ACTION_CLOSE:	/* Close log */
1551		break;
1552	case SYSLOG_ACTION_OPEN:	/* Open log */
1553		break;
1554	case SYSLOG_ACTION_READ:	/* Read from log */
 
1555		if (!buf || len < 0)
1556			return -EINVAL;
 
1557		if (!len)
1558			return 0;
1559		if (!access_ok(buf, len))
1560			return -EFAULT;
 
 
1561		error = wait_event_interruptible(log_wait,
1562						 syslog_seq != log_next_seq);
1563		if (error)
1564			return error;
1565		error = syslog_print(buf, len);
1566		break;
1567	/* Read/clear last kernel messages */
1568	case SYSLOG_ACTION_READ_CLEAR:
1569		clear = true;
1570		/* FALL THRU */
1571	/* Read last kernel messages */
1572	case SYSLOG_ACTION_READ_ALL:
 
1573		if (!buf || len < 0)
1574			return -EINVAL;
 
1575		if (!len)
1576			return 0;
1577		if (!access_ok(buf, len))
1578			return -EFAULT;
 
 
1579		error = syslog_print_all(buf, len, clear);
1580		break;
1581	/* Clear ring buffer */
1582	case SYSLOG_ACTION_CLEAR:
1583		syslog_clear();
1584		break;
1585	/* Disable logging to console */
1586	case SYSLOG_ACTION_CONSOLE_OFF:
1587		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1588			saved_console_loglevel = console_loglevel;
1589		console_loglevel = minimum_console_loglevel;
1590		break;
1591	/* Enable logging to console */
1592	case SYSLOG_ACTION_CONSOLE_ON:
1593		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1594			console_loglevel = saved_console_loglevel;
1595			saved_console_loglevel = LOGLEVEL_DEFAULT;
1596		}
1597		break;
1598	/* Set level of messages printed to console */
1599	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1600		if (len < 1 || len > 8)
1601			return -EINVAL;
1602		if (len < minimum_console_loglevel)
1603			len = minimum_console_loglevel;
1604		console_loglevel = len;
1605		/* Implicitly re-enable logging to console */
1606		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1607		break;
1608	/* Number of chars in the log buffer */
1609	case SYSLOG_ACTION_SIZE_UNREAD:
1610		logbuf_lock_irq();
1611		if (syslog_seq < log_first_seq) {
1612			/* messages are gone, move to first one */
1613			syslog_seq = log_first_seq;
1614			syslog_idx = log_first_idx;
 
1615			syslog_partial = 0;
1616		}
1617		if (source == SYSLOG_FROM_PROC) {
1618			/*
1619			 * Short-cut for poll(/"proc/kmsg") which simply checks
1620			 * for pending data, not the size; return the count of
1621			 * records, not the length.
1622			 */
1623			error = log_next_seq - syslog_seq;
1624		} else {
1625			u64 seq = syslog_seq;
1626			u32 idx = syslog_idx;
1627			bool time = syslog_partial ? syslog_time : printk_time;
1628
 
1629			while (seq < log_next_seq) {
1630				struct printk_log *msg = log_from_idx(idx);
1631
1632				error += msg_print_text(msg, true, time, NULL,
1633							0);
1634				time = printk_time;
1635				idx = log_next(idx);
1636				seq++;
 
1637			}
1638			error -= syslog_partial;
1639		}
1640		logbuf_unlock_irq();
1641		break;
1642	/* Size of the log buffer */
1643	case SYSLOG_ACTION_SIZE_BUFFER:
1644		error = log_buf_len;
1645		break;
1646	default:
1647		error = -EINVAL;
1648		break;
1649	}
1650
1651	return error;
1652}
1653
1654SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1655{
1656	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1657}
1658
1659/*
1660 * Special console_lock variants that help to reduce the risk of soft-lockups.
1661 * They allow to pass console_lock to another printk() call using a busy wait.
1662 */
1663
1664#ifdef CONFIG_LOCKDEP
1665static struct lockdep_map console_owner_dep_map = {
1666	.name = "console_owner"
1667};
1668#endif
1669
1670static DEFINE_RAW_SPINLOCK(console_owner_lock);
1671static struct task_struct *console_owner;
1672static bool console_waiter;
1673
1674/**
1675 * console_lock_spinning_enable - mark beginning of code where another
1676 *	thread might safely busy wait
1677 *
1678 * This basically converts console_lock into a spinlock. This marks
1679 * the section where the console_lock owner can not sleep, because
1680 * there may be a waiter spinning (like a spinlock). Also it must be
1681 * ready to hand over the lock at the end of the section.
1682 */
1683static void console_lock_spinning_enable(void)
1684{
1685	raw_spin_lock(&console_owner_lock);
1686	console_owner = current;
1687	raw_spin_unlock(&console_owner_lock);
1688
1689	/* The waiter may spin on us after setting console_owner */
1690	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1691}
1692
1693/**
1694 * console_lock_spinning_disable_and_check - mark end of code where another
1695 *	thread was able to busy wait and check if there is a waiter
1696 *
1697 * This is called at the end of the section where spinning is allowed.
1698 * It has two functions. First, it is a signal that it is no longer
1699 * safe to start busy waiting for the lock. Second, it checks if
1700 * there is a busy waiter and passes the lock rights to her.
1701 *
1702 * Important: Callers lose the lock if there was a busy waiter.
1703 *	They must not touch items synchronized by console_lock
1704 *	in this case.
1705 *
1706 * Return: 1 if the lock rights were passed, 0 otherwise.
1707 */
1708static int console_lock_spinning_disable_and_check(void)
1709{
1710	int waiter;
1711
1712	raw_spin_lock(&console_owner_lock);
1713	waiter = READ_ONCE(console_waiter);
1714	console_owner = NULL;
1715	raw_spin_unlock(&console_owner_lock);
1716
1717	if (!waiter) {
1718		spin_release(&console_owner_dep_map, _THIS_IP_);
1719		return 0;
1720	}
1721
1722	/* The waiter is now free to continue */
1723	WRITE_ONCE(console_waiter, false);
1724
1725	spin_release(&console_owner_dep_map, _THIS_IP_);
1726
1727	/*
1728	 * Hand off console_lock to waiter. The waiter will perform
1729	 * the up(). After this, the waiter is the console_lock owner.
1730	 */
1731	mutex_release(&console_lock_dep_map, _THIS_IP_);
1732	return 1;
1733}
1734
1735/**
1736 * console_trylock_spinning - try to get console_lock by busy waiting
1737 *
1738 * This allows to busy wait for the console_lock when the current
1739 * owner is running in specially marked sections. It means that
1740 * the current owner is running and cannot reschedule until it
1741 * is ready to lose the lock.
1742 *
1743 * Return: 1 if we got the lock, 0 othrewise
1744 */
1745static int console_trylock_spinning(void)
1746{
1747	struct task_struct *owner = NULL;
1748	bool waiter;
1749	bool spin = false;
1750	unsigned long flags;
1751
1752	if (console_trylock())
1753		return 1;
1754
1755	printk_safe_enter_irqsave(flags);
1756
1757	raw_spin_lock(&console_owner_lock);
1758	owner = READ_ONCE(console_owner);
1759	waiter = READ_ONCE(console_waiter);
1760	if (!waiter && owner && owner != current) {
1761		WRITE_ONCE(console_waiter, true);
1762		spin = true;
1763	}
1764	raw_spin_unlock(&console_owner_lock);
1765
1766	/*
1767	 * If there is an active printk() writing to the
1768	 * consoles, instead of having it write our data too,
1769	 * see if we can offload that load from the active
1770	 * printer, and do some printing ourselves.
1771	 * Go into a spin only if there isn't already a waiter
1772	 * spinning, and there is an active printer, and
1773	 * that active printer isn't us (recursive printk?).
1774	 */
1775	if (!spin) {
1776		printk_safe_exit_irqrestore(flags);
1777		return 0;
1778	}
1779
1780	/* We spin waiting for the owner to release us */
1781	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1782	/* Owner will clear console_waiter on hand off */
1783	while (READ_ONCE(console_waiter))
1784		cpu_relax();
1785	spin_release(&console_owner_dep_map, _THIS_IP_);
1786
1787	printk_safe_exit_irqrestore(flags);
1788	/*
1789	 * The owner passed the console lock to us.
1790	 * Since we did not spin on console lock, annotate
1791	 * this as a trylock. Otherwise lockdep will
1792	 * complain.
1793	 */
1794	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1795
1796	return 1;
1797}
1798
1799/*
1800 * Call the console drivers, asking them to write out
1801 * log_buf[start] to log_buf[end - 1].
1802 * The console_lock must be held.
1803 */
1804static void call_console_drivers(const char *ext_text, size_t ext_len,
 
1805				 const char *text, size_t len)
1806{
1807	struct console *con;
1808
1809	trace_console_rcuidle(text, len);
 
 
 
 
 
1810
1811	for_each_console(con) {
1812		if (exclusive_console && con != exclusive_console)
1813			continue;
1814		if (!(con->flags & CON_ENABLED))
1815			continue;
1816		if (!con->write)
1817			continue;
1818		if (!cpu_online(smp_processor_id()) &&
1819		    !(con->flags & CON_ANYTIME))
1820			continue;
1821		if (con->flags & CON_EXTENDED)
1822			con->write(con, ext_text, ext_len);
1823		else
1824			con->write(con, text, len);
1825	}
1826}
1827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828int printk_delay_msec __read_mostly;
1829
1830static inline void printk_delay(void)
1831{
1832	if (unlikely(printk_delay_msec)) {
1833		int m = printk_delay_msec;
1834
1835		while (m--) {
1836			mdelay(1);
1837			touch_nmi_watchdog();
1838		}
1839	}
1840}
1841
1842static inline u32 printk_caller_id(void)
1843{
1844	return in_task() ? task_pid_nr(current) :
1845		0x80000000 + raw_smp_processor_id();
1846}
1847
1848/*
1849 * Continuation lines are buffered, and not committed to the record buffer
1850 * until the line is complete, or a race forces it. The line fragments
1851 * though, are printed immediately to the consoles to ensure everything has
1852 * reached the console in case of a kernel crash.
1853 */
1854static struct cont {
1855	char buf[LOG_LINE_MAX];
1856	size_t len;			/* length == 0 means unused buffer */
1857	u32 caller_id;			/* printk_caller_id() of first print */
 
1858	u64 ts_nsec;			/* time of first print */
1859	u8 level;			/* log level of first message */
1860	u8 facility;			/* log facility of first message */
1861	enum log_flags flags;		/* prefix, newline flags */
 
1862} cont;
1863
1864static void cont_flush(void)
1865{
 
 
1866	if (cont.len == 0)
1867		return;
1868
1869	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1870		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1871	cont.len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872}
1873
1874static bool cont_add(u32 caller_id, int facility, int level,
1875		     enum log_flags flags, const char *text, size_t len)
1876{
1877	/* If the line gets too long, split it up in separate records. */
1878	if (cont.len + len > sizeof(cont.buf)) {
1879		cont_flush();
 
 
 
 
 
 
 
1880		return false;
1881	}
1882
1883	if (!cont.len) {
1884		cont.facility = facility;
1885		cont.level = level;
1886		cont.caller_id = caller_id;
1887		cont.ts_nsec = local_clock();
1888		cont.flags = flags;
 
 
1889	}
1890
1891	memcpy(cont.buf + cont.len, text, len);
1892	cont.len += len;
1893
1894	// The original flags come from the first line,
1895	// but later continuations can add a newline.
1896	if (flags & LOG_NEWLINE) {
1897		cont.flags |= LOG_NEWLINE;
1898		cont_flush();
1899	}
1900
1901	return true;
1902}
1903
1904static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1905{
1906	const u32 caller_id = printk_caller_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907
1908	/*
1909	 * If an earlier line was buffered, and we're a continuation
1910	 * write from the same context, try to add it to the buffer.
1911	 */
1912	if (cont.len) {
1913		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1914			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1915				return text_len;
 
 
 
 
 
 
 
 
1916		}
1917		/* Otherwise, make sure it's flushed */
1918		cont_flush();
1919	}
1920
1921	/* Skip empty continuation lines that couldn't be added - they just flush */
1922	if (!text_len && (lflags & LOG_CONT))
1923		return 0;
 
1924
1925	/* If it doesn't end in a newline, try to buffer the current line */
1926	if (!(lflags & LOG_NEWLINE)) {
1927		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1928			return text_len;
 
 
 
 
 
1929	}
1930
1931	/* Store it in the record log */
1932	return log_store(caller_id, facility, level, lflags, 0,
1933			 dict, dictlen, text, text_len);
1934}
1935
1936/* Must be called under logbuf_lock. */
1937int vprintk_store(int facility, int level,
1938		  const char *dict, size_t dictlen,
1939		  const char *fmt, va_list args)
1940{
1941	static char textbuf[LOG_LINE_MAX];
1942	char *text = textbuf;
1943	size_t text_len;
1944	enum log_flags lflags = 0;
1945
1946	/*
1947	 * The printf needs to come first; we need the syslog
1948	 * prefix which might be passed-in as a parameter.
1949	 */
1950	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1951
1952	/* mark and strip a trailing newline */
1953	if (text_len && text[text_len-1] == '\n') {
1954		text_len--;
1955		lflags |= LOG_NEWLINE;
1956	}
1957
1958	/* strip kernel syslog prefix and extract log level or control flags */
1959	if (facility == 0) {
1960		int kern_level;
1961
1962		while ((kern_level = printk_get_level(text)) != 0) {
 
1963			switch (kern_level) {
1964			case '0' ... '7':
1965				if (level == LOGLEVEL_DEFAULT)
1966					level = kern_level - '0';
1967				break;
1968			case 'c':	/* KERN_CONT */
1969				lflags |= LOG_CONT;
1970			}
1971
1972			text_len -= 2;
1973			text += 2;
 
 
 
 
1974		}
1975	}
1976
1977	if (level == LOGLEVEL_DEFAULT)
1978		level = default_message_loglevel;
1979
1980	if (dict)
1981		lflags |= LOG_NEWLINE;
1982
1983	return log_output(facility, level, lflags,
1984			  dict, dictlen, text, text_len);
1985}
 
 
 
 
1986
1987asmlinkage int vprintk_emit(int facility, int level,
1988			    const char *dict, size_t dictlen,
1989			    const char *fmt, va_list args)
1990{
1991	int printed_len;
1992	bool in_sched = false, pending_output;
1993	unsigned long flags;
1994	u64 curr_log_seq;
 
1995
1996	/* Suppress unimportant messages after panic happens */
1997	if (unlikely(suppress_printk))
1998		return 0;
 
 
 
 
 
 
 
 
 
 
 
1999
2000	if (level == LOGLEVEL_SCHED) {
2001		level = LOGLEVEL_DEFAULT;
2002		in_sched = true;
 
 
2003	}
2004
2005	boot_delay_msec(level);
2006	printk_delay();
2007
2008	/* This stops the holder of console_sem just where we want him */
2009	logbuf_lock_irqsave(flags);
2010	curr_log_seq = log_next_seq;
2011	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2012	pending_output = (curr_log_seq != log_next_seq);
2013	logbuf_unlock_irqrestore(flags);
2014
2015	/* If called from the scheduler, we can not call up(). */
2016	if (!in_sched && pending_output) {
2017		/*
2018		 * Disable preemption to avoid being preempted while holding
2019		 * console_sem which would prevent anyone from printing to
2020		 * console
2021		 */
2022		preempt_disable();
2023		/*
2024		 * Try to acquire and then immediately release the console
2025		 * semaphore.  The release will print out buffers and wake up
2026		 * /dev/kmsg and syslog() users.
2027		 */
2028		if (console_trylock_spinning())
2029			console_unlock();
2030		preempt_enable();
2031	}
2032
2033	if (pending_output)
2034		wake_up_klogd();
2035	return printed_len;
2036}
2037EXPORT_SYMBOL(vprintk_emit);
2038
2039asmlinkage int vprintk(const char *fmt, va_list args)
2040{
2041	return vprintk_func(fmt, args);
2042}
2043EXPORT_SYMBOL(vprintk);
2044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045int vprintk_default(const char *fmt, va_list args)
2046{
2047	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
 
 
 
 
 
 
 
 
 
 
2048}
2049EXPORT_SYMBOL_GPL(vprintk_default);
2050
 
 
 
 
 
 
 
 
2051/**
2052 * printk - print a kernel message
2053 * @fmt: format string
2054 *
2055 * This is printk(). It can be called from any context. We want it to work.
2056 *
2057 * We try to grab the console_lock. If we succeed, it's easy - we log the
2058 * output and call the console drivers.  If we fail to get the semaphore, we
2059 * place the output into the log buffer and return. The current holder of
2060 * the console_sem will notice the new output in console_unlock(); and will
2061 * send it to the consoles before releasing the lock.
2062 *
2063 * One effect of this deferred printing is that code which calls printk() and
2064 * then changes console_loglevel may break. This is because console_loglevel
2065 * is inspected when the actual printing occurs.
2066 *
2067 * See also:
2068 * printf(3)
2069 *
2070 * See the vsnprintf() documentation for format string extensions over C99.
2071 */
2072asmlinkage __visible int printk(const char *fmt, ...)
2073{
 
2074	va_list args;
2075	int r;
2076
2077	va_start(args, fmt);
 
 
 
 
 
 
 
 
2078	r = vprintk_func(fmt, args);
 
2079	va_end(args);
2080
2081	return r;
2082}
2083EXPORT_SYMBOL(printk);
2084
2085#else /* CONFIG_PRINTK */
2086
2087#define LOG_LINE_MAX		0
2088#define PREFIX_MAX		0
2089#define printk_time		false
2090
2091static u64 syslog_seq;
2092static u32 syslog_idx;
2093static u64 console_seq;
2094static u32 console_idx;
2095static u64 exclusive_console_stop_seq;
2096static u64 log_first_seq;
2097static u32 log_first_idx;
2098static u64 log_next_seq;
 
 
 
 
 
 
 
2099static char *log_text(const struct printk_log *msg) { return NULL; }
2100static char *log_dict(const struct printk_log *msg) { return NULL; }
2101static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2102static u32 log_next(u32 idx) { return 0; }
2103static ssize_t msg_print_ext_header(char *buf, size_t size,
2104				    struct printk_log *msg,
2105				    u64 seq) { return 0; }
2106static ssize_t msg_print_ext_body(char *buf, size_t size,
2107				  char *dict, size_t dict_len,
2108				  char *text, size_t text_len) { return 0; }
2109static void console_lock_spinning_enable(void) { }
2110static int console_lock_spinning_disable_and_check(void) { return 0; }
2111static void call_console_drivers(const char *ext_text, size_t ext_len,
2112				 const char *text, size_t len) {}
2113static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2114			     bool time, char *buf, size_t size) { return 0; }
2115static bool suppress_message_printing(int level) { return false; }
 
 
 
2116
2117#endif /* CONFIG_PRINTK */
2118
2119#ifdef CONFIG_EARLY_PRINTK
2120struct console *early_console;
2121
2122asmlinkage __visible void early_printk(const char *fmt, ...)
2123{
2124	va_list ap;
2125	char buf[512];
2126	int n;
2127
2128	if (!early_console)
2129		return;
2130
2131	va_start(ap, fmt);
2132	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2133	va_end(ap);
2134
2135	early_console->write(early_console, buf, n);
2136}
2137#endif
2138
2139static int __add_preferred_console(char *name, int idx, char *options,
2140				   char *brl_options, bool user_specified)
2141{
2142	struct console_cmdline *c;
2143	int i;
2144
2145	/*
2146	 *	See if this tty is not yet registered, and
2147	 *	if we have a slot free.
2148	 */
2149	for (i = 0, c = console_cmdline;
2150	     i < MAX_CMDLINECONSOLES && c->name[0];
2151	     i++, c++) {
2152		if (strcmp(c->name, name) == 0 && c->index == idx) {
2153			if (!brl_options)
2154				preferred_console = i;
2155			if (user_specified)
2156				c->user_specified = true;
2157			return 0;
2158		}
2159	}
2160	if (i == MAX_CMDLINECONSOLES)
2161		return -E2BIG;
2162	if (!brl_options)
2163		preferred_console = i;
2164	strlcpy(c->name, name, sizeof(c->name));
2165	c->options = options;
2166	c->user_specified = user_specified;
2167	braille_set_options(c, brl_options);
2168
2169	c->index = idx;
2170	return 0;
2171}
2172
2173static int __init console_msg_format_setup(char *str)
2174{
2175	if (!strcmp(str, "syslog"))
2176		console_msg_format = MSG_FORMAT_SYSLOG;
2177	if (!strcmp(str, "default"))
2178		console_msg_format = MSG_FORMAT_DEFAULT;
2179	return 1;
2180}
2181__setup("console_msg_format=", console_msg_format_setup);
2182
2183/*
2184 * Set up a console.  Called via do_early_param() in init/main.c
2185 * for each "console=" parameter in the boot command line.
2186 */
2187static int __init console_setup(char *str)
2188{
2189	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2190	char *s, *options, *brl_options = NULL;
2191	int idx;
2192
2193	if (str[0] == 0)
2194		return 1;
2195
2196	if (_braille_console_setup(&str, &brl_options))
2197		return 1;
2198
2199	/*
2200	 * Decode str into name, index, options.
2201	 */
2202	if (str[0] >= '0' && str[0] <= '9') {
2203		strcpy(buf, "ttyS");
2204		strncpy(buf + 4, str, sizeof(buf) - 5);
2205	} else {
2206		strncpy(buf, str, sizeof(buf) - 1);
2207	}
2208	buf[sizeof(buf) - 1] = 0;
2209	options = strchr(str, ',');
2210	if (options)
2211		*(options++) = 0;
2212#ifdef __sparc__
2213	if (!strcmp(str, "ttya"))
2214		strcpy(buf, "ttyS0");
2215	if (!strcmp(str, "ttyb"))
2216		strcpy(buf, "ttyS1");
2217#endif
2218	for (s = buf; *s; s++)
2219		if (isdigit(*s) || *s == ',')
2220			break;
2221	idx = simple_strtoul(s, NULL, 10);
2222	*s = 0;
2223
2224	__add_preferred_console(buf, idx, options, brl_options, true);
2225	console_set_on_cmdline = 1;
2226	return 1;
2227}
2228__setup("console=", console_setup);
2229
2230/**
2231 * add_preferred_console - add a device to the list of preferred consoles.
2232 * @name: device name
2233 * @idx: device index
2234 * @options: options for this console
2235 *
2236 * The last preferred console added will be used for kernel messages
2237 * and stdin/out/err for init.  Normally this is used by console_setup
2238 * above to handle user-supplied console arguments; however it can also
2239 * be used by arch-specific code either to override the user or more
2240 * commonly to provide a default console (ie from PROM variables) when
2241 * the user has not supplied one.
2242 */
2243int add_preferred_console(char *name, int idx, char *options)
2244{
2245	return __add_preferred_console(name, idx, options, NULL, false);
2246}
2247
2248bool console_suspend_enabled = true;
2249EXPORT_SYMBOL(console_suspend_enabled);
2250
2251static int __init console_suspend_disable(char *str)
2252{
2253	console_suspend_enabled = false;
2254	return 1;
2255}
2256__setup("no_console_suspend", console_suspend_disable);
2257module_param_named(console_suspend, console_suspend_enabled,
2258		bool, S_IRUGO | S_IWUSR);
2259MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2260	" and hibernate operations");
2261
2262/**
2263 * suspend_console - suspend the console subsystem
2264 *
2265 * This disables printk() while we go into suspend states
2266 */
2267void suspend_console(void)
2268{
2269	if (!console_suspend_enabled)
2270		return;
2271	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2272	console_lock();
2273	console_suspended = 1;
2274	up_console_sem();
2275}
2276
2277void resume_console(void)
2278{
2279	if (!console_suspend_enabled)
2280		return;
2281	down_console_sem();
2282	console_suspended = 0;
2283	console_unlock();
2284}
2285
2286/**
2287 * console_cpu_notify - print deferred console messages after CPU hotplug
2288 * @cpu: unused
 
 
2289 *
2290 * If printk() is called from a CPU that is not online yet, the messages
2291 * will be printed on the console only if there are CON_ANYTIME consoles.
2292 * This function is called when a new CPU comes online (or fails to come
2293 * up) or goes offline.
2294 */
2295static int console_cpu_notify(unsigned int cpu)
2296{
2297	if (!cpuhp_tasks_frozen) {
2298		/* If trylock fails, someone else is doing the printing */
2299		if (console_trylock())
2300			console_unlock();
 
 
 
 
2301	}
2302	return 0;
2303}
2304
2305/**
2306 * console_lock - lock the console system for exclusive use.
2307 *
2308 * Acquires a lock which guarantees that the caller has
2309 * exclusive access to the console system and the console_drivers list.
2310 *
2311 * Can sleep, returns nothing.
2312 */
2313void console_lock(void)
2314{
2315	might_sleep();
2316
2317	down_console_sem();
2318	if (console_suspended)
2319		return;
2320	console_locked = 1;
2321	console_may_schedule = 1;
2322}
2323EXPORT_SYMBOL(console_lock);
2324
2325/**
2326 * console_trylock - try to lock the console system for exclusive use.
2327 *
2328 * Try to acquire a lock which guarantees that the caller has exclusive
2329 * access to the console system and the console_drivers list.
2330 *
2331 * returns 1 on success, and 0 on failure to acquire the lock.
2332 */
2333int console_trylock(void)
2334{
2335	if (down_trylock_console_sem())
2336		return 0;
2337	if (console_suspended) {
2338		up_console_sem();
2339		return 0;
2340	}
2341	console_locked = 1;
2342	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2343	return 1;
2344}
2345EXPORT_SYMBOL(console_trylock);
2346
2347int is_console_locked(void)
2348{
2349	return console_locked;
2350}
2351EXPORT_SYMBOL(is_console_locked);
2352
2353/*
2354 * Check if we have any console that is capable of printing while cpu is
2355 * booting or shutting down. Requires console_sem.
2356 */
2357static int have_callable_console(void)
2358{
2359	struct console *con;
2360
2361	for_each_console(con)
2362		if ((con->flags & CON_ENABLED) &&
2363				(con->flags & CON_ANYTIME))
2364			return 1;
2365
2366	return 0;
2367}
2368
2369/*
2370 * Can we actually use the console at this time on this cpu?
2371 *
2372 * Console drivers may assume that per-cpu resources have been allocated. So
2373 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2374 * call them until this CPU is officially up.
2375 */
2376static inline int can_use_console(void)
2377{
2378	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2379}
2380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381/**
2382 * console_unlock - unlock the console system
2383 *
2384 * Releases the console_lock which the caller holds on the console system
2385 * and the console driver list.
2386 *
2387 * While the console_lock was held, console output may have been buffered
2388 * by printk().  If this is the case, console_unlock(); emits
2389 * the output prior to releasing the lock.
2390 *
2391 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2392 *
2393 * console_unlock(); may be called from any context.
2394 */
2395void console_unlock(void)
2396{
2397	static char ext_text[CONSOLE_EXT_LOG_MAX];
2398	static char text[LOG_LINE_MAX + PREFIX_MAX];
 
2399	unsigned long flags;
 
2400	bool do_cond_resched, retry;
2401
2402	if (console_suspended) {
2403		up_console_sem();
2404		return;
2405	}
2406
2407	/*
2408	 * Console drivers are called with interrupts disabled, so
2409	 * @console_may_schedule should be cleared before; however, we may
2410	 * end up dumping a lot of lines, for example, if called from
2411	 * console registration path, and should invoke cond_resched()
2412	 * between lines if allowable.  Not doing so can cause a very long
2413	 * scheduling stall on a slow console leading to RCU stall and
2414	 * softlockup warnings which exacerbate the issue with more
2415	 * messages practically incapacitating the system.
2416	 *
2417	 * console_trylock() is not able to detect the preemptive
2418	 * context reliably. Therefore the value must be stored before
2419	 * and cleared after the the "again" goto label.
2420	 */
2421	do_cond_resched = console_may_schedule;
2422again:
2423	console_may_schedule = 0;
2424
 
2425	/*
2426	 * We released the console_sem lock, so we need to recheck if
2427	 * cpu is online and (if not) is there at least one CON_ANYTIME
2428	 * console.
2429	 */
2430	if (!can_use_console()) {
2431		console_locked = 0;
2432		up_console_sem();
2433		return;
2434	}
2435
 
 
 
2436	for (;;) {
2437		struct printk_log *msg;
2438		size_t ext_len = 0;
2439		size_t len;
 
 
 
 
 
 
 
2440
2441		printk_safe_enter_irqsave(flags);
2442		raw_spin_lock(&logbuf_lock);
2443		if (console_seq < log_first_seq) {
2444			len = snprintf(text, sizeof(text),
2445				       "** %llu printk messages dropped **\n",
2446				       log_first_seq - console_seq);
2447
2448			/* messages are gone, move to first one */
2449			console_seq = log_first_seq;
2450			console_idx = log_first_idx;
 
2451		} else {
2452			len = 0;
2453		}
2454skip:
2455		if (console_seq == log_next_seq)
2456			break;
2457
2458		msg = log_from_idx(console_idx);
2459		if (suppress_message_printing(msg->level)) {
2460			/*
2461			 * Skip record we have buffered and already printed
2462			 * directly to the console when we received it, and
2463			 * record that has level above the console loglevel.
2464			 */
2465			console_idx = log_next(console_idx);
2466			console_seq++;
 
 
 
 
 
 
 
2467			goto skip;
2468		}
2469
2470		/* Output to all consoles once old messages replayed. */
2471		if (unlikely(exclusive_console &&
2472			     console_seq >= exclusive_console_stop_seq)) {
2473			exclusive_console = NULL;
2474		}
2475
2476		len += msg_print_text(msg,
2477				console_msg_format & MSG_FORMAT_SYSLOG,
2478				printk_time, text + len, sizeof(text) - len);
2479		if (nr_ext_console_drivers) {
2480			ext_len = msg_print_ext_header(ext_text,
2481						sizeof(ext_text),
2482						msg, console_seq);
2483			ext_len += msg_print_ext_body(ext_text + ext_len,
2484						sizeof(ext_text) - ext_len,
2485						log_dict(msg), msg->dict_len,
2486						log_text(msg), msg->text_len);
2487		}
2488		console_idx = log_next(console_idx);
2489		console_seq++;
 
2490		raw_spin_unlock(&logbuf_lock);
2491
2492		/*
2493		 * While actively printing out messages, if another printk()
2494		 * were to occur on another CPU, it may wait for this one to
2495		 * finish. This task can not be preempted if there is a
2496		 * waiter waiting to take over.
2497		 */
2498		console_lock_spinning_enable();
2499
2500		stop_critical_timings();	/* don't trace print latency */
2501		call_console_drivers(ext_text, ext_len, text, len);
2502		start_critical_timings();
2503
2504		if (console_lock_spinning_disable_and_check()) {
2505			printk_safe_exit_irqrestore(flags);
2506			return;
2507		}
2508
2509		printk_safe_exit_irqrestore(flags);
2510
2511		if (do_cond_resched)
2512			cond_resched();
2513	}
 
2514
2515	console_locked = 0;
 
 
2516
2517	raw_spin_unlock(&logbuf_lock);
2518
2519	up_console_sem();
2520
2521	/*
2522	 * Someone could have filled up the buffer again, so re-check if there's
2523	 * something to flush. In case we cannot trylock the console_sem again,
2524	 * there's a new owner and the console_unlock() from them will do the
2525	 * flush, no worries.
2526	 */
2527	raw_spin_lock(&logbuf_lock);
2528	retry = console_seq != log_next_seq;
2529	raw_spin_unlock(&logbuf_lock);
2530	printk_safe_exit_irqrestore(flags);
2531
2532	if (retry && console_trylock())
2533		goto again;
 
 
 
2534}
2535EXPORT_SYMBOL(console_unlock);
2536
2537/**
2538 * console_conditional_schedule - yield the CPU if required
2539 *
2540 * If the console code is currently allowed to sleep, and
2541 * if this CPU should yield the CPU to another task, do
2542 * so here.
2543 *
2544 * Must be called within console_lock();.
2545 */
2546void __sched console_conditional_schedule(void)
2547{
2548	if (console_may_schedule)
2549		cond_resched();
2550}
2551EXPORT_SYMBOL(console_conditional_schedule);
2552
2553void console_unblank(void)
2554{
2555	struct console *c;
2556
2557	/*
2558	 * console_unblank can no longer be called in interrupt context unless
2559	 * oops_in_progress is set to 1..
2560	 */
2561	if (oops_in_progress) {
2562		if (down_trylock_console_sem() != 0)
2563			return;
2564	} else
2565		console_lock();
2566
2567	console_locked = 1;
2568	console_may_schedule = 0;
2569	for_each_console(c)
2570		if ((c->flags & CON_ENABLED) && c->unblank)
2571			c->unblank();
2572	console_unlock();
2573}
2574
2575/**
2576 * console_flush_on_panic - flush console content on panic
2577 * @mode: flush all messages in buffer or just the pending ones
2578 *
2579 * Immediately output all pending messages no matter what.
2580 */
2581void console_flush_on_panic(enum con_flush_mode mode)
2582{
2583	/*
2584	 * If someone else is holding the console lock, trylock will fail
2585	 * and may_schedule may be set.  Ignore and proceed to unlock so
2586	 * that messages are flushed out.  As this can be called from any
2587	 * context and we don't want to get preempted while flushing,
2588	 * ensure may_schedule is cleared.
2589	 */
2590	console_trylock();
2591	console_may_schedule = 0;
2592
2593	if (mode == CONSOLE_REPLAY_ALL) {
2594		unsigned long flags;
2595
2596		logbuf_lock_irqsave(flags);
2597		console_seq = log_first_seq;
2598		console_idx = log_first_idx;
2599		logbuf_unlock_irqrestore(flags);
2600	}
2601	console_unlock();
2602}
2603
2604/*
2605 * Return the console tty driver structure and its associated index
2606 */
2607struct tty_driver *console_device(int *index)
2608{
2609	struct console *c;
2610	struct tty_driver *driver = NULL;
2611
2612	console_lock();
2613	for_each_console(c) {
2614		if (!c->device)
2615			continue;
2616		driver = c->device(c, index);
2617		if (driver)
2618			break;
2619	}
2620	console_unlock();
2621	return driver;
2622}
2623
2624/*
2625 * Prevent further output on the passed console device so that (for example)
2626 * serial drivers can disable console output before suspending a port, and can
2627 * re-enable output afterwards.
2628 */
2629void console_stop(struct console *console)
2630{
2631	console_lock();
2632	console->flags &= ~CON_ENABLED;
2633	console_unlock();
2634}
2635EXPORT_SYMBOL(console_stop);
2636
2637void console_start(struct console *console)
2638{
2639	console_lock();
2640	console->flags |= CON_ENABLED;
2641	console_unlock();
2642}
2643EXPORT_SYMBOL(console_start);
2644
2645static int __read_mostly keep_bootcon;
2646
2647static int __init keep_bootcon_setup(char *str)
2648{
2649	keep_bootcon = 1;
2650	pr_info("debug: skip boot console de-registration.\n");
2651
2652	return 0;
2653}
2654
2655early_param("keep_bootcon", keep_bootcon_setup);
2656
2657/*
2658 * This is called by register_console() to try to match
2659 * the newly registered console with any of the ones selected
2660 * by either the command line or add_preferred_console() and
2661 * setup/enable it.
2662 *
2663 * Care need to be taken with consoles that are statically
2664 * enabled such as netconsole
2665 */
2666static int try_enable_new_console(struct console *newcon, bool user_specified)
2667{
2668	struct console_cmdline *c;
2669	int i, err;
2670
2671	for (i = 0, c = console_cmdline;
2672	     i < MAX_CMDLINECONSOLES && c->name[0];
2673	     i++, c++) {
2674		if (c->user_specified != user_specified)
2675			continue;
2676		if (!newcon->match ||
2677		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2678			/* default matching */
2679			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2680			if (strcmp(c->name, newcon->name) != 0)
2681				continue;
2682			if (newcon->index >= 0 &&
2683			    newcon->index != c->index)
2684				continue;
2685			if (newcon->index < 0)
2686				newcon->index = c->index;
2687
2688			if (_braille_register_console(newcon, c))
2689				return 0;
2690
2691			if (newcon->setup &&
2692			    (err = newcon->setup(newcon, c->options)) != 0)
2693				return err;
2694		}
2695		newcon->flags |= CON_ENABLED;
2696		if (i == preferred_console) {
2697			newcon->flags |= CON_CONSDEV;
2698			has_preferred_console = true;
2699		}
2700		return 0;
2701	}
2702
2703	/*
2704	 * Some consoles, such as pstore and netconsole, can be enabled even
2705	 * without matching. Accept the pre-enabled consoles only when match()
2706	 * and setup() had a chance to be called.
2707	 */
2708	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2709		return 0;
2710
2711	return -ENOENT;
2712}
2713
2714/*
2715 * The console driver calls this routine during kernel initialization
2716 * to register the console printing procedure with printk() and to
2717 * print any messages that were printed by the kernel before the
2718 * console driver was initialized.
2719 *
2720 * This can happen pretty early during the boot process (because of
2721 * early_printk) - sometimes before setup_arch() completes - be careful
2722 * of what kernel features are used - they may not be initialised yet.
2723 *
2724 * There are two types of consoles - bootconsoles (early_printk) and
2725 * "real" consoles (everything which is not a bootconsole) which are
2726 * handled differently.
2727 *  - Any number of bootconsoles can be registered at any time.
2728 *  - As soon as a "real" console is registered, all bootconsoles
2729 *    will be unregistered automatically.
2730 *  - Once a "real" console is registered, any attempt to register a
2731 *    bootconsoles will be rejected
2732 */
2733void register_console(struct console *newcon)
2734{
 
2735	unsigned long flags;
2736	struct console *bcon = NULL;
2737	int err;
2738
2739	for_each_console(bcon) {
2740		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2741					 bcon->name, bcon->index))
2742			return;
2743	}
 
2744
2745	/*
2746	 * before we register a new CON_BOOT console, make sure we don't
2747	 * already have a valid console
2748	 */
2749	if (newcon->flags & CON_BOOT) {
 
2750		for_each_console(bcon) {
2751			if (!(bcon->flags & CON_BOOT)) {
2752				pr_info("Too late to register bootconsole %s%d\n",
2753					newcon->name, newcon->index);
2754				return;
2755			}
2756		}
2757	}
2758
2759	if (console_drivers && console_drivers->flags & CON_BOOT)
2760		bcon = console_drivers;
2761
2762	if (!has_preferred_console || bcon || !console_drivers)
2763		has_preferred_console = preferred_console >= 0;
2764
2765	/*
2766	 *	See if we want to use this console driver. If we
2767	 *	didn't select a console we take the first one
2768	 *	that registers here.
2769	 */
2770	if (!has_preferred_console) {
2771		if (newcon->index < 0)
2772			newcon->index = 0;
2773		if (newcon->setup == NULL ||
2774		    newcon->setup(newcon, NULL) == 0) {
2775			newcon->flags |= CON_ENABLED;
2776			if (newcon->device) {
2777				newcon->flags |= CON_CONSDEV;
2778				has_preferred_console = true;
2779			}
2780		}
2781	}
2782
2783	/* See if this console matches one we selected on the command line */
2784	err = try_enable_new_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785
2786	/* If not, try to match against the platform default(s) */
2787	if (err == -ENOENT)
2788		err = try_enable_new_console(newcon, false);
 
 
 
 
2789
2790	/* printk() messages are not printed to the Braille console. */
2791	if (err || newcon->flags & CON_BRL)
2792		return;
2793
2794	/*
2795	 * If we have a bootconsole, and are switching to a real console,
2796	 * don't print everything out again, since when the boot console, and
2797	 * the real console are the same physical device, it's annoying to
2798	 * see the beginning boot messages twice
2799	 */
2800	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2801		newcon->flags &= ~CON_PRINTBUFFER;
2802
2803	/*
2804	 *	Put this console in the list - keep the
2805	 *	preferred driver at the head of the list.
2806	 */
2807	console_lock();
2808	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2809		newcon->next = console_drivers;
2810		console_drivers = newcon;
2811		if (newcon->next)
2812			newcon->next->flags &= ~CON_CONSDEV;
2813		/* Ensure this flag is always set for the head of the list */
2814		newcon->flags |= CON_CONSDEV;
2815	} else {
2816		newcon->next = console_drivers->next;
2817		console_drivers->next = newcon;
2818	}
2819
2820	if (newcon->flags & CON_EXTENDED)
2821		nr_ext_console_drivers++;
 
2822
2823	if (newcon->flags & CON_PRINTBUFFER) {
2824		/*
2825		 * console_unlock(); will print out the buffered messages
2826		 * for us.
2827		 */
2828		logbuf_lock_irqsave(flags);
 
 
 
 
2829		/*
2830		 * We're about to replay the log buffer.  Only do this to the
2831		 * just-registered console to avoid excessive message spam to
2832		 * the already-registered consoles.
2833		 *
2834		 * Set exclusive_console with disabled interrupts to reduce
2835		 * race window with eventual console_flush_on_panic() that
2836		 * ignores console_lock.
2837		 */
2838		exclusive_console = newcon;
2839		exclusive_console_stop_seq = console_seq;
2840		console_seq = syslog_seq;
2841		console_idx = syslog_idx;
2842		logbuf_unlock_irqrestore(flags);
2843	}
2844	console_unlock();
2845	console_sysfs_notify();
2846
2847	/*
2848	 * By unregistering the bootconsoles after we enable the real console
2849	 * we get the "console xxx enabled" message on all the consoles -
2850	 * boot consoles, real consoles, etc - this is to ensure that end
2851	 * users know there might be something in the kernel's log buffer that
2852	 * went to the bootconsole (that they do not see on the real console)
2853	 */
2854	pr_info("%sconsole [%s%d] enabled\n",
2855		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2856		newcon->name, newcon->index);
2857	if (bcon &&
2858	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2859	    !keep_bootcon) {
2860		/* We need to iterate through all boot consoles, to make
2861		 * sure we print everything out, before we unregister them.
2862		 */
2863		for_each_console(bcon)
2864			if (bcon->flags & CON_BOOT)
2865				unregister_console(bcon);
2866	}
2867}
2868EXPORT_SYMBOL(register_console);
2869
2870int unregister_console(struct console *console)
2871{
2872	struct console *con;
2873	int res;
2874
2875	pr_info("%sconsole [%s%d] disabled\n",
2876		(console->flags & CON_BOOT) ? "boot" : "" ,
2877		console->name, console->index);
2878
2879	res = _braille_unregister_console(console);
2880	if (res < 0)
2881		return res;
2882	if (res > 0)
2883		return 0;
2884
2885	res = -ENODEV;
2886	console_lock();
2887	if (console_drivers == console) {
2888		console_drivers=console->next;
2889		res = 0;
2890	} else {
2891		for_each_console(con) {
2892			if (con->next == console) {
2893				con->next = console->next;
 
2894				res = 0;
2895				break;
2896			}
2897		}
2898	}
2899
2900	if (res)
2901		goto out_disable_unlock;
2902
2903	if (console->flags & CON_EXTENDED)
2904		nr_ext_console_drivers--;
2905
2906	/*
2907	 * If this isn't the last console and it has CON_CONSDEV set, we
2908	 * need to set it on the next preferred console.
2909	 */
2910	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2911		console_drivers->flags |= CON_CONSDEV;
2912
2913	console->flags &= ~CON_ENABLED;
2914	console_unlock();
2915	console_sysfs_notify();
2916
2917	if (console->exit)
2918		res = console->exit(console);
2919
2920	return res;
2921
2922out_disable_unlock:
2923	console->flags &= ~CON_ENABLED;
2924	console_unlock();
2925
2926	return res;
2927}
2928EXPORT_SYMBOL(unregister_console);
2929
2930/*
2931 * Initialize the console device. This is called *early*, so
2932 * we can't necessarily depend on lots of kernel help here.
2933 * Just do some early initializations, and do the complex setup
2934 * later.
2935 */
2936void __init console_init(void)
2937{
2938	int ret;
2939	initcall_t call;
2940	initcall_entry_t *ce;
2941
2942	/* Setup the default TTY line discipline. */
2943	n_tty_init();
2944
2945	/*
2946	 * set up the console device so that later boot sequences can
2947	 * inform about problems etc..
2948	 */
2949	ce = __con_initcall_start;
2950	trace_initcall_level("console");
2951	while (ce < __con_initcall_end) {
2952		call = initcall_from_entry(ce);
2953		trace_initcall_start(call);
2954		ret = call();
2955		trace_initcall_finish(call, ret);
2956		ce++;
2957	}
2958}
2959
2960/*
2961 * Some boot consoles access data that is in the init section and which will
2962 * be discarded after the initcalls have been run. To make sure that no code
2963 * will access this data, unregister the boot consoles in a late initcall.
2964 *
2965 * If for some reason, such as deferred probe or the driver being a loadable
2966 * module, the real console hasn't registered yet at this point, there will
2967 * be a brief interval in which no messages are logged to the console, which
2968 * makes it difficult to diagnose problems that occur during this time.
2969 *
2970 * To mitigate this problem somewhat, only unregister consoles whose memory
2971 * intersects with the init section. Note that all other boot consoles will
2972 * get unregistred when the real preferred console is registered.
 
2973 */
2974static int __init printk_late_init(void)
2975{
2976	struct console *con;
2977	int ret;
2978
2979	for_each_console(con) {
2980		if (!(con->flags & CON_BOOT))
2981			continue;
2982
2983		/* Check addresses that might be used for enabled consoles. */
2984		if (init_section_intersects(con, sizeof(*con)) ||
2985		    init_section_contains(con->write, 0) ||
2986		    init_section_contains(con->read, 0) ||
2987		    init_section_contains(con->device, 0) ||
2988		    init_section_contains(con->unblank, 0) ||
2989		    init_section_contains(con->data, 0)) {
2990			/*
2991			 * Please, consider moving the reported consoles out
2992			 * of the init section.
 
 
 
2993			 */
2994			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2995				con->name, con->index);
2996			unregister_console(con);
2997		}
2998	}
2999	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3000					console_cpu_notify);
3001	WARN_ON(ret < 0);
3002	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3003					console_cpu_notify, NULL);
3004	WARN_ON(ret < 0);
3005	return 0;
3006}
3007late_initcall(printk_late_init);
3008
3009#if defined CONFIG_PRINTK
3010/*
3011 * Delayed printk version, for scheduler-internal messages:
3012 */
3013#define PRINTK_PENDING_WAKEUP	0x01
3014#define PRINTK_PENDING_OUTPUT	0x02
3015
3016static DEFINE_PER_CPU(int, printk_pending);
3017
3018static void wake_up_klogd_work_func(struct irq_work *irq_work)
3019{
3020	int pending = __this_cpu_xchg(printk_pending, 0);
3021
3022	if (pending & PRINTK_PENDING_OUTPUT) {
3023		/* If trylock fails, someone else is doing the printing */
3024		if (console_trylock())
3025			console_unlock();
3026	}
3027
3028	if (pending & PRINTK_PENDING_WAKEUP)
3029		wake_up_interruptible(&log_wait);
3030}
3031
3032static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3033	.func = wake_up_klogd_work_func,
3034	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3035};
3036
3037void wake_up_klogd(void)
3038{
3039	if (!printk_percpu_data_ready())
3040		return;
3041
3042	preempt_disable();
3043	if (waitqueue_active(&log_wait)) {
3044		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3045		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3046	}
3047	preempt_enable();
3048}
3049
3050void defer_console_output(void)
3051{
3052	if (!printk_percpu_data_ready())
3053		return;
3054
3055	preempt_disable();
3056	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3057	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3058	preempt_enable();
3059}
3060
3061int vprintk_deferred(const char *fmt, va_list args)
3062{
3063	int r;
3064
3065	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3066	defer_console_output();
3067
3068	return r;
3069}
3070
3071int printk_deferred(const char *fmt, ...)
3072{
3073	va_list args;
3074	int r;
3075
 
3076	va_start(args, fmt);
3077	r = vprintk_deferred(fmt, args);
3078	va_end(args);
3079
 
 
 
 
3080	return r;
3081}
3082
3083/*
3084 * printk rate limiting, lifted from the networking subsystem.
3085 *
3086 * This enforces a rate limit: not more than 10 kernel messages
3087 * every 5s to make a denial-of-service attack impossible.
3088 */
3089DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3090
3091int __printk_ratelimit(const char *func)
3092{
3093	return ___ratelimit(&printk_ratelimit_state, func);
3094}
3095EXPORT_SYMBOL(__printk_ratelimit);
3096
3097/**
3098 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3099 * @caller_jiffies: pointer to caller's state
3100 * @interval_msecs: minimum interval between prints
3101 *
3102 * printk_timed_ratelimit() returns true if more than @interval_msecs
3103 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3104 * returned true.
3105 */
3106bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3107			unsigned int interval_msecs)
3108{
3109	unsigned long elapsed = jiffies - *caller_jiffies;
3110
3111	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3112		return false;
3113
3114	*caller_jiffies = jiffies;
3115	return true;
3116}
3117EXPORT_SYMBOL(printk_timed_ratelimit);
3118
3119static DEFINE_SPINLOCK(dump_list_lock);
3120static LIST_HEAD(dump_list);
3121
3122/**
3123 * kmsg_dump_register - register a kernel log dumper.
3124 * @dumper: pointer to the kmsg_dumper structure
3125 *
3126 * Adds a kernel log dumper to the system. The dump callback in the
3127 * structure will be called when the kernel oopses or panics and must be
3128 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3129 */
3130int kmsg_dump_register(struct kmsg_dumper *dumper)
3131{
3132	unsigned long flags;
3133	int err = -EBUSY;
3134
3135	/* The dump callback needs to be set */
3136	if (!dumper->dump)
3137		return -EINVAL;
3138
3139	spin_lock_irqsave(&dump_list_lock, flags);
3140	/* Don't allow registering multiple times */
3141	if (!dumper->registered) {
3142		dumper->registered = 1;
3143		list_add_tail_rcu(&dumper->list, &dump_list);
3144		err = 0;
3145	}
3146	spin_unlock_irqrestore(&dump_list_lock, flags);
3147
3148	return err;
3149}
3150EXPORT_SYMBOL_GPL(kmsg_dump_register);
3151
3152/**
3153 * kmsg_dump_unregister - unregister a kmsg dumper.
3154 * @dumper: pointer to the kmsg_dumper structure
3155 *
3156 * Removes a dump device from the system. Returns zero on success and
3157 * %-EINVAL otherwise.
3158 */
3159int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3160{
3161	unsigned long flags;
3162	int err = -EINVAL;
3163
3164	spin_lock_irqsave(&dump_list_lock, flags);
3165	if (dumper->registered) {
3166		dumper->registered = 0;
3167		list_del_rcu(&dumper->list);
3168		err = 0;
3169	}
3170	spin_unlock_irqrestore(&dump_list_lock, flags);
3171	synchronize_rcu();
3172
3173	return err;
3174}
3175EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3176
3177static bool always_kmsg_dump;
3178module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3179
3180const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3181{
3182	switch (reason) {
3183	case KMSG_DUMP_PANIC:
3184		return "Panic";
3185	case KMSG_DUMP_OOPS:
3186		return "Oops";
3187	case KMSG_DUMP_EMERG:
3188		return "Emergency";
3189	case KMSG_DUMP_SHUTDOWN:
3190		return "Shutdown";
3191	default:
3192		return "Unknown";
3193	}
3194}
3195EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3196
3197/**
3198 * kmsg_dump - dump kernel log to kernel message dumpers.
3199 * @reason: the reason (oops, panic etc) for dumping
3200 *
3201 * Call each of the registered dumper's dump() callback, which can
3202 * retrieve the kmsg records with kmsg_dump_get_line() or
3203 * kmsg_dump_get_buffer().
3204 */
3205void kmsg_dump(enum kmsg_dump_reason reason)
3206{
3207	struct kmsg_dumper *dumper;
3208	unsigned long flags;
3209
 
 
 
3210	rcu_read_lock();
3211	list_for_each_entry_rcu(dumper, &dump_list, list) {
3212		enum kmsg_dump_reason max_reason = dumper->max_reason;
3213
3214		/*
3215		 * If client has not provided a specific max_reason, default
3216		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3217		 */
3218		if (max_reason == KMSG_DUMP_UNDEF) {
3219			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3220							KMSG_DUMP_OOPS;
3221		}
3222		if (reason > max_reason)
3223			continue;
3224
3225		/* initialize iterator with data about the stored records */
3226		dumper->active = true;
3227
3228		logbuf_lock_irqsave(flags);
3229		dumper->cur_seq = clear_seq;
3230		dumper->cur_idx = clear_idx;
3231		dumper->next_seq = log_next_seq;
3232		dumper->next_idx = log_next_idx;
3233		logbuf_unlock_irqrestore(flags);
3234
3235		/* invoke dumper which will iterate over records */
3236		dumper->dump(dumper, reason);
3237
3238		/* reset iterator */
3239		dumper->active = false;
3240	}
3241	rcu_read_unlock();
3242}
3243
3244/**
3245 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3246 * @dumper: registered kmsg dumper
3247 * @syslog: include the "<4>" prefixes
3248 * @line: buffer to copy the line to
3249 * @size: maximum size of the buffer
3250 * @len: length of line placed into buffer
3251 *
3252 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3253 * record, and copy one record into the provided buffer.
3254 *
3255 * Consecutive calls will return the next available record moving
3256 * towards the end of the buffer with the youngest messages.
3257 *
3258 * A return value of FALSE indicates that there are no more records to
3259 * read.
3260 *
3261 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3262 */
3263bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3264			       char *line, size_t size, size_t *len)
3265{
3266	struct printk_log *msg;
3267	size_t l = 0;
3268	bool ret = false;
3269
3270	if (!dumper->active)
3271		goto out;
3272
3273	if (dumper->cur_seq < log_first_seq) {
3274		/* messages are gone, move to first available one */
3275		dumper->cur_seq = log_first_seq;
3276		dumper->cur_idx = log_first_idx;
3277	}
3278
3279	/* last entry */
3280	if (dumper->cur_seq >= log_next_seq)
3281		goto out;
3282
3283	msg = log_from_idx(dumper->cur_idx);
3284	l = msg_print_text(msg, syslog, printk_time, line, size);
3285
3286	dumper->cur_idx = log_next(dumper->cur_idx);
3287	dumper->cur_seq++;
3288	ret = true;
3289out:
3290	if (len)
3291		*len = l;
3292	return ret;
3293}
3294
3295/**
3296 * kmsg_dump_get_line - retrieve one kmsg log line
3297 * @dumper: registered kmsg dumper
3298 * @syslog: include the "<4>" prefixes
3299 * @line: buffer to copy the line to
3300 * @size: maximum size of the buffer
3301 * @len: length of line placed into buffer
3302 *
3303 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3304 * record, and copy one record into the provided buffer.
3305 *
3306 * Consecutive calls will return the next available record moving
3307 * towards the end of the buffer with the youngest messages.
3308 *
3309 * A return value of FALSE indicates that there are no more records to
3310 * read.
3311 */
3312bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3313			char *line, size_t size, size_t *len)
3314{
3315	unsigned long flags;
3316	bool ret;
3317
3318	logbuf_lock_irqsave(flags);
3319	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3320	logbuf_unlock_irqrestore(flags);
3321
3322	return ret;
3323}
3324EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3325
3326/**
3327 * kmsg_dump_get_buffer - copy kmsg log lines
3328 * @dumper: registered kmsg dumper
3329 * @syslog: include the "<4>" prefixes
3330 * @buf: buffer to copy the line to
3331 * @size: maximum size of the buffer
3332 * @len: length of line placed into buffer
3333 *
3334 * Start at the end of the kmsg buffer and fill the provided buffer
3335 * with as many of the the *youngest* kmsg records that fit into it.
3336 * If the buffer is large enough, all available kmsg records will be
3337 * copied with a single call.
3338 *
3339 * Consecutive calls will fill the buffer with the next block of
3340 * available older records, not including the earlier retrieved ones.
3341 *
3342 * A return value of FALSE indicates that there are no more records to
3343 * read.
3344 */
3345bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3346			  char *buf, size_t size, size_t *len)
3347{
3348	unsigned long flags;
3349	u64 seq;
3350	u32 idx;
3351	u64 next_seq;
3352	u32 next_idx;
 
3353	size_t l = 0;
3354	bool ret = false;
3355	bool time = printk_time;
3356
3357	if (!dumper->active)
3358		goto out;
3359
3360	logbuf_lock_irqsave(flags);
3361	if (dumper->cur_seq < log_first_seq) {
3362		/* messages are gone, move to first available one */
3363		dumper->cur_seq = log_first_seq;
3364		dumper->cur_idx = log_first_idx;
3365	}
3366
3367	/* last entry */
3368	if (dumper->cur_seq >= dumper->next_seq) {
3369		logbuf_unlock_irqrestore(flags);
3370		goto out;
3371	}
3372
3373	/* calculate length of entire buffer */
3374	seq = dumper->cur_seq;
3375	idx = dumper->cur_idx;
 
3376	while (seq < dumper->next_seq) {
3377		struct printk_log *msg = log_from_idx(idx);
3378
3379		l += msg_print_text(msg, true, time, NULL, 0);
3380		idx = log_next(idx);
3381		seq++;
 
3382	}
3383
3384	/* move first record forward until length fits into the buffer */
3385	seq = dumper->cur_seq;
3386	idx = dumper->cur_idx;
3387	while (l >= size && seq < dumper->next_seq) {
 
3388		struct printk_log *msg = log_from_idx(idx);
3389
3390		l -= msg_print_text(msg, true, time, NULL, 0);
3391		idx = log_next(idx);
3392		seq++;
 
3393	}
3394
3395	/* last message in next interation */
3396	next_seq = seq;
3397	next_idx = idx;
3398
3399	l = 0;
3400	while (seq < dumper->next_seq) {
3401		struct printk_log *msg = log_from_idx(idx);
3402
3403		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3404		idx = log_next(idx);
3405		seq++;
 
3406	}
3407
3408	dumper->next_seq = next_seq;
3409	dumper->next_idx = next_idx;
3410	ret = true;
3411	logbuf_unlock_irqrestore(flags);
3412out:
3413	if (len)
3414		*len = l;
3415	return ret;
3416}
3417EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3418
3419/**
3420 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3421 * @dumper: registered kmsg dumper
3422 *
3423 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3424 * kmsg_dump_get_buffer() can be called again and used multiple
3425 * times within the same dumper.dump() callback.
3426 *
3427 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3428 */
3429void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3430{
3431	dumper->cur_seq = clear_seq;
3432	dumper->cur_idx = clear_idx;
3433	dumper->next_seq = log_next_seq;
3434	dumper->next_idx = log_next_idx;
3435}
3436
3437/**
3438 * kmsg_dump_rewind - reset the iterator
3439 * @dumper: registered kmsg dumper
3440 *
3441 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3442 * kmsg_dump_get_buffer() can be called again and used multiple
3443 * times within the same dumper.dump() callback.
3444 */
3445void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3446{
3447	unsigned long flags;
3448
3449	logbuf_lock_irqsave(flags);
3450	kmsg_dump_rewind_nolock(dumper);
3451	logbuf_unlock_irqrestore(flags);
3452}
3453EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3454
3455#endif