Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/syscalls.h>
  36#include <linux/kexec.h>
  37#include <linux/kdb.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/notifier.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/utsname.h>
  47#include <linux/ctype.h>
  48#include <linux/uio.h>
 
 
 
  49
  50#include <asm/uaccess.h>
  51#include <asm-generic/sections.h>
  52
 
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/printk.h>
  55
 
  56#include "console_cmdline.h"
  57#include "braille.h"
 
  58
  59int console_printk[4] = {
  60	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  61	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  62	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  64};
 
 
 
 
 
 
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84	.name = "console_lock"
  85};
 
 
 
 
 
 
  86#endif
  87
  88/*
  89 * Number of registered extended console drivers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90 *
  91 * If extended consoles are present, in-kernel cont reassembly is disabled
  92 * and each fragment is stored as a separate log entry with proper
  93 * continuation flag so that every emitted message has full metadata.  This
  94 * doesn't change the result for regular consoles or /proc/kmsg.  For
  95 * /dev/kmsg, as long as the reader concatenates messages according to
  96 * consecutive continuation flags, the end result should be the same too.
  97 */
  98static int nr_ext_console_drivers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100/*
 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 102 * macros instead of functions so that _RET_IP_ contains useful information.
 103 */
 104#define down_console_sem() do { \
 105	down(&console_sem);\
 106	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 107} while (0)
 108
 109static int __down_trylock_console_sem(unsigned long ip)
 110{
 111	if (down_trylock(&console_sem))
 
 
 
 
 
 
 
 
 
 
 
 
 112		return 1;
 113	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 114	return 0;
 115}
 116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 117
 118#define up_console_sem() do { \
 119	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 120	up(&console_sem);\
 121} while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123/*
 124 * This is used for debugging the mess that is the VT code by
 125 * keeping track if we have the console semaphore held. It's
 126 * definitely not the perfect debug tool (we don't know if _WE_
 127 * hold it and are racing, but it helps tracking those weird code
 128 * paths in the console code where we end up in places I want
 129 * locked without the console sempahore held).
 130 */
 131static int console_locked, console_suspended;
 132
 133/*
 134 * If exclusive_console is non-NULL then only this console is to be printed to.
 135 */
 136static struct console *exclusive_console;
 137
 138/*
 139 *	Array of consoles built from command line options (console=)
 140 */
 141
 142#define MAX_CMDLINECONSOLES 8
 143
 144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 145
 146static int selected_console = -1;
 147static int preferred_console = -1;
 148int console_set_on_cmdline;
 149EXPORT_SYMBOL(console_set_on_cmdline);
 150
 151/* Flag: console code may call schedule() */
 152static int console_may_schedule;
 153
 
 
 
 
 
 
 
 154/*
 155 * The printk log buffer consists of a chain of concatenated variable
 156 * length records. Every record starts with a record header, containing
 157 * the overall length of the record.
 158 *
 159 * The heads to the first and last entry in the buffer, as well as the
 160 * sequence numbers of these entries are maintained when messages are
 161 * stored.
 162 *
 163 * If the heads indicate available messages, the length in the header
 164 * tells the start next message. A length == 0 for the next message
 165 * indicates a wrap-around to the beginning of the buffer.
 166 *
 167 * Every record carries the monotonic timestamp in microseconds, as well as
 168 * the standard userspace syslog level and syslog facility. The usual
 169 * kernel messages use LOG_KERN; userspace-injected messages always carry
 170 * a matching syslog facility, by default LOG_USER. The origin of every
 171 * message can be reliably determined that way.
 172 *
 173 * The human readable log message directly follows the message header. The
 174 * length of the message text is stored in the header, the stored message
 175 * is not terminated.
 176 *
 177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 178 * to provide userspace with a machine-readable message context.
 179 *
 180 * Examples for well-defined, commonly used property names are:
 181 *   DEVICE=b12:8               device identifier
 182 *                                b12:8         block dev_t
 183 *                                c127:3        char dev_t
 184 *                                n8            netdev ifindex
 185 *                                +sound:card0  subsystem:devname
 186 *   SUBSYSTEM=pci              driver-core subsystem name
 187 *
 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 189 * follows directly after a '=' character. Every property is terminated by
 190 * a '\0' character. The last property is not terminated.
 191 *
 192 * Example of a message structure:
 193 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 194 *   0008  34 00                        record is 52 bytes long
 195 *   000a        0b 00                  text is 11 bytes long
 196 *   000c              1f 00            dictionary is 23 bytes long
 197 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 198 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 199 *         69 6e 65                     "ine"
 200 *   001b           44 45 56 49 43      "DEVIC"
 201 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 202 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 203 *         67                           "g"
 204 *   0032     00 00 00                  padding to next message header
 205 *
 206 * The 'struct printk_log' buffer header must never be directly exported to
 
 
 
 
 
 
 
 
 
 
 
 
 207 * userspace, it is a kernel-private implementation detail that might
 208 * need to be changed in the future, when the requirements change.
 209 *
 210 * /dev/kmsg exports the structured data in the following line format:
 211 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 212 *
 213 * Users of the export format should ignore possible additional values
 214 * separated by ',', and find the message after the ';' character.
 215 *
 216 * The optional key/value pairs are attached as continuation lines starting
 217 * with a space character and terminated by a newline. All possible
 218 * non-prinatable characters are escaped in the "\xff" notation.
 219 */
 220
 221enum log_flags {
 222	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 223	LOG_NEWLINE	= 2,	/* text ended with a newline */
 224	LOG_PREFIX	= 4,	/* text started with a prefix */
 225	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 226};
 227
 228struct printk_log {
 229	u64 ts_nsec;		/* timestamp in nanoseconds */
 230	u16 len;		/* length of entire record */
 231	u16 text_len;		/* length of text buffer */
 232	u16 dict_len;		/* length of dictionary buffer */
 233	u8 facility;		/* syslog facility */
 234	u8 flags:5;		/* internal record flags */
 235	u8 level:3;		/* syslog level */
 236}
 237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 238__packed __aligned(4)
 239#endif
 240;
 241
 
 242/*
 243 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 244 * within the scheduler's rq lock. It must be released before calling
 245 * console_unlock() or anything else that might wake up a process.
 246 */
 247static DEFINE_RAW_SPINLOCK(logbuf_lock);
 248
 249#ifdef CONFIG_PRINTK
 250DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 251/* the next printk record to read by syslog(READ) or /proc/kmsg */
 252static u64 syslog_seq;
 253static u32 syslog_idx;
 254static enum log_flags syslog_prev;
 255static size_t syslog_partial;
 
 256
 257/* index and sequence number of the first record stored in the buffer */
 258static u64 log_first_seq;
 259static u32 log_first_idx;
 260
 261/* index and sequence number of the next record to store in the buffer */
 262static u64 log_next_seq;
 263static u32 log_next_idx;
 264
 265/* the next printk record to write to the console */
 266static u64 console_seq;
 267static u32 console_idx;
 268static enum log_flags console_prev;
 269
 270/* the next printk record to read after the last 'clear' command */
 271static u64 clear_seq;
 272static u32 clear_idx;
 273
 274#define PREFIX_MAX		32
 275#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 
 
 
 
 
 
 
 
 276
 277#define LOG_LEVEL(v)		((v) & 0x07)
 278#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 279
 280/* record buffer */
 281#define LOG_ALIGN __alignof__(struct printk_log)
 282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 284static char *log_buf = __log_buf;
 285static u32 log_buf_len = __LOG_BUF_LEN;
 286
 287/* Return log buffer address */
 288char *log_buf_addr_get(void)
 289{
 290	return log_buf;
 291}
 
 292
 293/* Return log buffer size */
 294u32 log_buf_len_get(void)
 295{
 296	return log_buf_len;
 297}
 298
 299/* human readable text of the record */
 300static char *log_text(const struct printk_log *msg)
 301{
 302	return (char *)msg + sizeof(struct printk_log);
 303}
 304
 305/* optional key/value pair dictionary attached to the record */
 306static char *log_dict(const struct printk_log *msg)
 307{
 308	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 309}
 310
 311/* get record by index; idx must point to valid msg */
 312static struct printk_log *log_from_idx(u32 idx)
 313{
 314	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 
 
 315
 316	/*
 317	 * A length == 0 record is the end of buffer marker. Wrap around and
 318	 * read the message at the start of the buffer.
 319	 */
 320	if (!msg->len)
 321		return (struct printk_log *)log_buf;
 322	return msg;
 323}
 324
 325/* get next record; idx must point to valid msg */
 326static u32 log_next(u32 idx)
 327{
 328	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 329
 330	/* length == 0 indicates the end of the buffer; wrap */
 331	/*
 332	 * A length == 0 record is the end of buffer marker. Wrap around and
 333	 * read the message at the start of the buffer as *this* one, and
 334	 * return the one after that.
 335	 */
 336	if (!msg->len) {
 337		msg = (struct printk_log *)log_buf;
 338		return msg->len;
 339	}
 340	return idx + msg->len;
 341}
 342
 343/*
 344 * Check whether there is enough free space for the given message.
 345 *
 346 * The same values of first_idx and next_idx mean that the buffer
 347 * is either empty or full.
 348 *
 349 * If the buffer is empty, we must respect the position of the indexes.
 350 * They cannot be reset to the beginning of the buffer.
 351 */
 352static int logbuf_has_space(u32 msg_size, bool empty)
 353{
 354	u32 free;
 
 
 355
 356	if (log_next_idx > log_first_idx || empty)
 357		free = max(log_buf_len - log_next_idx, log_first_idx);
 358	else
 359		free = log_first_idx - log_next_idx;
 
 360
 361	/*
 362	 * We need space also for an empty header that signalizes wrapping
 363	 * of the buffer.
 364	 */
 365	return free >= msg_size + sizeof(struct printk_log);
 366}
 367
 368static int log_make_free_space(u32 msg_size)
 
 369{
 370	while (log_first_seq < log_next_seq &&
 371	       !logbuf_has_space(msg_size, false)) {
 372		/* drop old messages until we have enough contiguous space */
 373		log_first_idx = log_next(log_first_idx);
 374		log_first_seq++;
 375	}
 376
 377	if (clear_seq < log_first_seq) {
 378		clear_seq = log_first_seq;
 379		clear_idx = log_first_idx;
 380	}
 381
 382	/* sequence numbers are equal, so the log buffer is empty */
 383	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 384		return 0;
 385
 386	return -ENOMEM;
 387}
 388
 389/* compute the message size including the padding bytes */
 390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 391{
 392	u32 size;
 393
 394	size = sizeof(struct printk_log) + text_len + dict_len;
 395	*pad_len = (-size) & (LOG_ALIGN - 1);
 396	size += *pad_len;
 397
 398	return size;
 399}
 400
 401/*
 402 * Define how much of the log buffer we could take at maximum. The value
 403 * must be greater than two. Note that only half of the buffer is available
 404 * when the index points to the middle.
 405 */
 406#define MAX_LOG_TAKE_PART 4
 407static const char trunc_msg[] = "<truncated>";
 408
 409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 410			u16 *dict_len, u32 *pad_len)
 411{
 412	/*
 413	 * The message should not take the whole buffer. Otherwise, it might
 414	 * get removed too soon.
 415	 */
 416	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 
 417	if (*text_len > max_text_len)
 418		*text_len = max_text_len;
 419	/* enable the warning message */
 420	*trunc_msg_len = strlen(trunc_msg);
 421	/* disable the "dict" completely */
 422	*dict_len = 0;
 423	/* compute the size again, count also the warning message */
 424	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 425}
 426
 427/* insert record into the buffer, discard old ones, update heads */
 428static int log_store(int facility, int level,
 429		     enum log_flags flags, u64 ts_nsec,
 430		     const char *dict, u16 dict_len,
 431		     const char *text, u16 text_len)
 432{
 433	struct printk_log *msg;
 434	u32 size, pad_len;
 435	u16 trunc_msg_len = 0;
 436
 437	/* number of '\0' padding bytes to next message */
 438	size = msg_used_size(text_len, dict_len, &pad_len);
 439
 440	if (log_make_free_space(size)) {
 441		/* truncate the message if it is too long for empty buffer */
 442		size = truncate_msg(&text_len, &trunc_msg_len,
 443				    &dict_len, &pad_len);
 444		/* survive when the log buffer is too small for trunc_msg */
 445		if (log_make_free_space(size))
 446			return 0;
 447	}
 448
 449	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 450		/*
 451		 * This message + an additional empty header does not fit
 452		 * at the end of the buffer. Add an empty header with len == 0
 453		 * to signify a wrap around.
 454		 */
 455		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 456		log_next_idx = 0;
 457	}
 458
 459	/* fill message */
 460	msg = (struct printk_log *)(log_buf + log_next_idx);
 461	memcpy(log_text(msg), text, text_len);
 462	msg->text_len = text_len;
 463	if (trunc_msg_len) {
 464		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 465		msg->text_len += trunc_msg_len;
 466	}
 467	memcpy(log_dict(msg), dict, dict_len);
 468	msg->dict_len = dict_len;
 469	msg->facility = facility;
 470	msg->level = level & 7;
 471	msg->flags = flags & 0x1f;
 472	if (ts_nsec > 0)
 473		msg->ts_nsec = ts_nsec;
 474	else
 475		msg->ts_nsec = local_clock();
 476	memset(log_dict(msg) + dict_len, 0, pad_len);
 477	msg->len = size;
 478
 479	/* insert message */
 480	log_next_idx += msg->len;
 481	log_next_seq++;
 482
 483	return msg->text_len;
 484}
 485
 486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 487
 488static int syslog_action_restricted(int type)
 489{
 490	if (dmesg_restrict)
 491		return 1;
 492	/*
 493	 * Unless restricted, we allow "read all" and "get buffer size"
 494	 * for everybody.
 495	 */
 496	return type != SYSLOG_ACTION_READ_ALL &&
 497	       type != SYSLOG_ACTION_SIZE_BUFFER;
 498}
 499
 500int check_syslog_permissions(int type, int source)
 501{
 502	/*
 503	 * If this is from /proc/kmsg and we've already opened it, then we've
 504	 * already done the capabilities checks at open time.
 505	 */
 506	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 507		goto ok;
 508
 509	if (syslog_action_restricted(type)) {
 510		if (capable(CAP_SYSLOG))
 511			goto ok;
 512		/*
 513		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 514		 * a warning.
 515		 */
 516		if (capable(CAP_SYS_ADMIN)) {
 517			pr_warn_once("%s (%d): Attempt to access syslog with "
 518				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 519				     "(deprecated).\n",
 520				 current->comm, task_pid_nr(current));
 521			goto ok;
 522		}
 523		return -EPERM;
 524	}
 525ok:
 526	return security_syslog(type);
 527}
 528EXPORT_SYMBOL_GPL(check_syslog_permissions);
 529
 530static void append_char(char **pp, char *e, char c)
 531{
 532	if (*pp < e)
 533		*(*pp)++ = c;
 534}
 535
 536static ssize_t msg_print_ext_header(char *buf, size_t size,
 537				    struct printk_log *msg, u64 seq,
 538				    enum log_flags prev_flags)
 539{
 540	u64 ts_usec = msg->ts_nsec;
 541	char cont = '-';
 
 
 542
 543	do_div(ts_usec, 1000);
 
 
 
 
 544
 545	/*
 546	 * If we couldn't merge continuation line fragments during the print,
 547	 * export the stored flags to allow an optional external merge of the
 548	 * records. Merging the records isn't always neccessarily correct, like
 549	 * when we hit a race during printing. In most cases though, it produces
 550	 * better readable output. 'c' in the record flags mark the first
 551	 * fragment of a line, '+' the following.
 552	 */
 553	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 554		cont = 'c';
 555	else if ((msg->flags & LOG_CONT) ||
 556		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 557		cont = '+';
 558
 559	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 560		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 
 561}
 562
 563static ssize_t msg_print_ext_body(char *buf, size_t size,
 564				  char *dict, size_t dict_len,
 565				  char *text, size_t text_len)
 566{
 567	char *p = buf, *e = buf + size;
 568	size_t i;
 569
 570	/* escape non-printable characters */
 571	for (i = 0; i < text_len; i++) {
 572		unsigned char c = text[i];
 573
 574		if (c < ' ' || c >= 127 || c == '\\')
 575			p += scnprintf(p, e - p, "\\x%02x", c);
 576		else
 577			append_char(&p, e, c);
 578	}
 579	append_char(&p, e, '\n');
 580
 581	if (dict_len) {
 582		bool line = true;
 583
 584		for (i = 0; i < dict_len; i++) {
 585			unsigned char c = dict[i];
 
 
 
 586
 587			if (line) {
 588				append_char(&p, e, ' ');
 589				line = false;
 590			}
 591
 592			if (c == '\0') {
 593				append_char(&p, e, '\n');
 594				line = true;
 595				continue;
 596			}
 597
 598			if (c < ' ' || c >= 127 || c == '\\') {
 599				p += scnprintf(p, e - p, "\\x%02x", c);
 600				continue;
 601			}
 602
 603			append_char(&p, e, c);
 604		}
 605		append_char(&p, e, '\n');
 606	}
 
 607
 608	return p - buf;
 
 
 
 
 
 
 
 
 
 
 609}
 610
 611/* /dev/kmsg - userspace message inject/listen interface */
 612struct devkmsg_user {
 613	u64 seq;
 614	u32 idx;
 615	enum log_flags prev;
 616	struct mutex lock;
 617	char buf[CONSOLE_EXT_LOG_MAX];
 618};
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 621{
 622	char *buf, *line;
 623	int level = default_message_loglevel;
 624	int facility = 1;	/* LOG_USER */
 
 
 625	size_t len = iov_iter_count(from);
 626	ssize_t ret = len;
 627
 628	if (len > LOG_LINE_MAX)
 629		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 630	buf = kmalloc(len+1, GFP_KERNEL);
 631	if (buf == NULL)
 632		return -ENOMEM;
 633
 634	buf[len] = '\0';
 635	if (copy_from_iter(buf, len, from) != len) {
 636		kfree(buf);
 637		return -EFAULT;
 638	}
 639
 640	/*
 641	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 642	 * the decimal value represents 32bit, the lower 3 bit are the log
 643	 * level, the rest are the log facility.
 644	 *
 645	 * If no prefix or no userspace facility is specified, we
 646	 * enforce LOG_USER, to be able to reliably distinguish
 647	 * kernel-generated messages from userspace-injected ones.
 648	 */
 649	line = buf;
 650	if (line[0] == '<') {
 651		char *endp = NULL;
 652		unsigned int u;
 653
 654		u = simple_strtoul(line + 1, &endp, 10);
 655		if (endp && endp[0] == '>') {
 656			level = LOG_LEVEL(u);
 657			if (LOG_FACILITY(u) != 0)
 658				facility = LOG_FACILITY(u);
 659			endp++;
 660			len -= endp - line;
 661			line = endp;
 662		}
 663	}
 664
 665	printk_emit(facility, level, NULL, 0, "%s", line);
 666	kfree(buf);
 667	return ret;
 668}
 669
 670static ssize_t devkmsg_read(struct file *file, char __user *buf,
 671			    size_t count, loff_t *ppos)
 672{
 673	struct devkmsg_user *user = file->private_data;
 674	struct printk_log *msg;
 675	size_t len;
 
 
 676	ssize_t ret;
 677
 678	if (!user)
 679		return -EBADF;
 680
 681	ret = mutex_lock_interruptible(&user->lock);
 682	if (ret)
 683		return ret;
 684	raw_spin_lock_irq(&logbuf_lock);
 685	while (user->seq == log_next_seq) {
 686		if (file->f_flags & O_NONBLOCK) {
 687			ret = -EAGAIN;
 688			raw_spin_unlock_irq(&logbuf_lock);
 689			goto out;
 690		}
 691
 692		raw_spin_unlock_irq(&logbuf_lock);
 
 
 
 
 
 
 
 
 
 693		ret = wait_event_interruptible(log_wait,
 694					       user->seq != log_next_seq);
 
 695		if (ret)
 696			goto out;
 697		raw_spin_lock_irq(&logbuf_lock);
 698	}
 699
 700	if (user->seq < log_first_seq) {
 701		/* our last seen message is gone, return error and reset */
 702		user->idx = log_first_idx;
 703		user->seq = log_first_seq;
 704		ret = -EPIPE;
 705		raw_spin_unlock_irq(&logbuf_lock);
 706		goto out;
 707	}
 708
 709	msg = log_from_idx(user->idx);
 710	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 711				   msg, user->seq, user->prev);
 712	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 713				  log_dict(msg), msg->dict_len,
 714				  log_text(msg), msg->text_len);
 715
 716	user->prev = msg->flags;
 717	user->idx = log_next(user->idx);
 718	user->seq++;
 719	raw_spin_unlock_irq(&logbuf_lock);
 720
 721	if (len > count) {
 722		ret = -EINVAL;
 723		goto out;
 724	}
 725
 726	if (copy_to_user(buf, user->buf, len)) {
 727		ret = -EFAULT;
 728		goto out;
 729	}
 730	ret = len;
 731out:
 732	mutex_unlock(&user->lock);
 733	return ret;
 734}
 735
 
 
 
 
 
 
 
 
 736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 737{
 738	struct devkmsg_user *user = file->private_data;
 739	loff_t ret = 0;
 740
 741	if (!user)
 742		return -EBADF;
 743	if (offset)
 744		return -ESPIPE;
 745
 746	raw_spin_lock_irq(&logbuf_lock);
 747	switch (whence) {
 748	case SEEK_SET:
 749		/* the first record */
 750		user->idx = log_first_idx;
 751		user->seq = log_first_seq;
 752		break;
 753	case SEEK_DATA:
 754		/*
 755		 * The first record after the last SYSLOG_ACTION_CLEAR,
 756		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 757		 * changes no global state, and does not clear anything.
 758		 */
 759		user->idx = clear_idx;
 760		user->seq = clear_seq;
 761		break;
 762	case SEEK_END:
 763		/* after the last record */
 764		user->idx = log_next_idx;
 765		user->seq = log_next_seq;
 766		break;
 767	default:
 768		ret = -EINVAL;
 769	}
 770	raw_spin_unlock_irq(&logbuf_lock);
 771	return ret;
 772}
 773
 774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 775{
 776	struct devkmsg_user *user = file->private_data;
 777	int ret = 0;
 778
 779	if (!user)
 780		return POLLERR|POLLNVAL;
 781
 782	poll_wait(file, &log_wait, wait);
 783
 784	raw_spin_lock_irq(&logbuf_lock);
 785	if (user->seq < log_next_seq) {
 786		/* return error when data has vanished underneath us */
 787		if (user->seq < log_first_seq)
 788			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 789		else
 790			ret = POLLIN|POLLRDNORM;
 791	}
 792	raw_spin_unlock_irq(&logbuf_lock);
 793
 794	return ret;
 795}
 796
 797static int devkmsg_open(struct inode *inode, struct file *file)
 798{
 799	struct devkmsg_user *user;
 800	int err;
 801
 802	/* write-only does not need any file context */
 803	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 804		return 0;
 805
 806	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 807				       SYSLOG_FROM_READER);
 808	if (err)
 809		return err;
 
 
 
 810
 811	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 812	if (!user)
 813		return -ENOMEM;
 814
 
 
 
 815	mutex_init(&user->lock);
 816
 817	raw_spin_lock_irq(&logbuf_lock);
 818	user->idx = log_first_idx;
 819	user->seq = log_first_seq;
 820	raw_spin_unlock_irq(&logbuf_lock);
 821
 822	file->private_data = user;
 823	return 0;
 824}
 825
 826static int devkmsg_release(struct inode *inode, struct file *file)
 827{
 828	struct devkmsg_user *user = file->private_data;
 829
 830	if (!user)
 831		return 0;
 832
 833	mutex_destroy(&user->lock);
 834	kfree(user);
 835	return 0;
 836}
 837
 838const struct file_operations kmsg_fops = {
 839	.open = devkmsg_open,
 840	.read = devkmsg_read,
 841	.write_iter = devkmsg_write,
 842	.llseek = devkmsg_llseek,
 843	.poll = devkmsg_poll,
 844	.release = devkmsg_release,
 845};
 846
 847#ifdef CONFIG_KEXEC_CORE
 848/*
 849 * This appends the listed symbols to /proc/vmcore
 850 *
 851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 852 * obtain access to symbols that are otherwise very difficult to locate.  These
 853 * symbols are specifically used so that utilities can access and extract the
 854 * dmesg log from a vmcore file after a crash.
 855 */
 856void log_buf_kexec_setup(void)
 857{
 858	VMCOREINFO_SYMBOL(log_buf);
 859	VMCOREINFO_SYMBOL(log_buf_len);
 860	VMCOREINFO_SYMBOL(log_first_idx);
 861	VMCOREINFO_SYMBOL(clear_idx);
 862	VMCOREINFO_SYMBOL(log_next_idx);
 
 863	/*
 864	 * Export struct printk_log size and field offsets. User space tools can
 865	 * parse it and detect any changes to structure down the line.
 866	 */
 867	VMCOREINFO_STRUCT_SIZE(printk_log);
 868	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 869	VMCOREINFO_OFFSET(printk_log, len);
 870	VMCOREINFO_OFFSET(printk_log, text_len);
 871	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872}
 873#endif
 874
 875/* requested log_buf_len from kernel cmdline */
 876static unsigned long __initdata new_log_buf_len;
 877
 878/* we practice scaling the ring buffer by powers of 2 */
 879static void __init log_buf_len_update(unsigned size)
 880{
 
 
 
 
 
 881	if (size)
 882		size = roundup_pow_of_two(size);
 883	if (size > log_buf_len)
 884		new_log_buf_len = size;
 885}
 886
 887/* save requested log_buf_len since it's too early to process it */
 888static int __init log_buf_len_setup(char *str)
 889{
 890	unsigned size = memparse(str, &str);
 
 
 
 
 
 891
 892	log_buf_len_update(size);
 893
 894	return 0;
 895}
 896early_param("log_buf_len", log_buf_len_setup);
 897
 898#ifdef CONFIG_SMP
 899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
 900
 901static void __init log_buf_add_cpu(void)
 902{
 903	unsigned int cpu_extra;
 904
 905	/*
 906	 * archs should set up cpu_possible_bits properly with
 907	 * set_cpu_possible() after setup_arch() but just in
 908	 * case lets ensure this is valid.
 909	 */
 910	if (num_possible_cpus() == 1)
 911		return;
 912
 913	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
 914
 915	/* by default this will only continue through for large > 64 CPUs */
 916	if (cpu_extra <= __LOG_BUF_LEN / 2)
 917		return;
 918
 919	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
 920		__LOG_CPU_MAX_BUF_LEN);
 921	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
 922		cpu_extra);
 923	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
 924
 925	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
 926}
 927#else /* !CONFIG_SMP */
 928static inline void log_buf_add_cpu(void) {}
 929#endif /* CONFIG_SMP */
 930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931void __init setup_log_buf(int early)
 932{
 
 
 
 
 
 
 
 
 933	unsigned long flags;
 934	char *new_log_buf;
 935	int free;
 
 
 
 
 
 
 
 
 
 936
 937	if (log_buf != __log_buf)
 938		return;
 939
 940	if (!early && !new_log_buf_len)
 941		log_buf_add_cpu();
 942
 943	if (!new_log_buf_len)
 944		return;
 945
 946	if (early) {
 947		new_log_buf =
 948			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
 949	} else {
 950		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
 951							  LOG_ALIGN);
 952	}
 953
 
 954	if (unlikely(!new_log_buf)) {
 955		pr_err("log_buf_len: %ld bytes not available\n",
 956			new_log_buf_len);
 957		return;
 958	}
 959
 960	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961	log_buf_len = new_log_buf_len;
 962	log_buf = new_log_buf;
 963	new_log_buf_len = 0;
 964	free = __LOG_BUF_LEN - log_next_idx;
 965	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 966	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 967
 968	pr_info("log_buf_len: %d bytes\n", log_buf_len);
 969	pr_info("early log buf free: %d(%d%%)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970		free, (free * 100) / __LOG_BUF_LEN);
 
 
 
 
 
 
 971}
 972
 973static bool __read_mostly ignore_loglevel;
 974
 975static int __init ignore_loglevel_setup(char *str)
 976{
 977	ignore_loglevel = true;
 978	pr_info("debug: ignoring loglevel setting.\n");
 979
 980	return 0;
 981}
 982
 983early_param("ignore_loglevel", ignore_loglevel_setup);
 984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 985MODULE_PARM_DESC(ignore_loglevel,
 986		 "ignore loglevel setting (prints all kernel messages to the console)");
 987
 
 
 
 
 
 988#ifdef CONFIG_BOOT_PRINTK_DELAY
 989
 990static int boot_delay; /* msecs delay after each printk during bootup */
 991static unsigned long long loops_per_msec;	/* based on boot_delay */
 992
 993static int __init boot_delay_setup(char *str)
 994{
 995	unsigned long lpj;
 996
 997	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 998	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 999
1000	get_option(&str, &boot_delay);
1001	if (boot_delay > 10 * 1000)
1002		boot_delay = 0;
1003
1004	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005		"HZ: %d, loops_per_msec: %llu\n",
1006		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007	return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013	unsigned long long k;
1014	unsigned long timeout;
1015
1016	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017		|| (level >= console_loglevel && !ignore_loglevel)) {
1018		return;
1019	}
1020
1021	k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023	timeout = jiffies + msecs_to_jiffies(boot_delay);
1024	while (k) {
1025		k--;
1026		cpu_relax();
1027		/*
1028		 * use (volatile) jiffies to prevent
1029		 * compiler reduction; loop termination via jiffies
1030		 * is secondary and may or may not happen.
1031		 */
1032		if (time_after(jiffies, timeout))
1033			break;
1034		touch_nmi_watchdog();
1035	}
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048	unsigned long rem_nsec;
 
1049
1050	if (!printk_time)
1051		return 0;
 
1052
1053	rem_nsec = do_div(ts, 1000000000);
 
 
1054
1055	if (!buf)
1056		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 
 
1057
1058	return sprintf(buf, "[%5lu.%06lu] ",
1059		       (unsigned long)ts, rem_nsec / 1000);
 
1060}
 
 
 
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1063{
1064	size_t len = 0;
1065	unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067	if (syslog) {
1068		if (buf) {
1069			len += sprintf(buf, "<%u>", prefix);
1070		} else {
1071			len += 3;
1072			if (prefix > 999)
1073				len += 3;
1074			else if (prefix > 99)
1075				len += 2;
1076			else if (prefix > 9)
1077				len++;
1078		}
1079	}
1080
1081	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082	return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086			     bool syslog, char *buf, size_t size)
1087{
1088	const char *text = log_text(msg);
1089	size_t text_size = msg->text_len;
1090	bool prefix = true;
1091	bool newline = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092	size_t len = 0;
 
1093
1094	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095		prefix = false;
1096
1097	if (msg->flags & LOG_CONT) {
1098		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099			prefix = false;
1100
1101		if (!(msg->flags & LOG_NEWLINE))
1102			newline = false;
1103	}
1104
1105	do {
1106		const char *next = memchr(text, '\n', text_size);
1107		size_t text_len;
1108
 
 
 
 
 
 
 
 
1109		if (next) {
1110			text_len = next - text;
1111			next++;
1112			text_size -= next - text;
1113		} else {
1114			text_len = text_size;
 
 
 
1115		}
1116
1117		if (buf) {
1118			if (print_prefix(msg, syslog, NULL) +
1119			    text_len + 1 >= size - len)
 
 
 
 
1120				break;
1121
1122			if (prefix)
1123				len += print_prefix(msg, syslog, buf + len);
1124			memcpy(buf + len, text, text_len);
1125			len += text_len;
1126			if (next || newline)
1127				buf[len++] = '\n';
1128		} else {
1129			/* SYSLOG_ACTION_* buffer size only calculation */
1130			if (prefix)
1131				len += print_prefix(msg, syslog, NULL);
1132			len += text_len;
1133			if (next || newline)
1134				len++;
1135		}
1136
1137		prefix = true;
1138		text = next;
1139	} while (text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140
1141	return len;
1142}
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144static int syslog_print(char __user *buf, int size)
1145{
 
 
1146	char *text;
1147	struct printk_log *msg;
1148	int len = 0;
 
1149
1150	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151	if (!text)
1152		return -ENOMEM;
1153
1154	while (size > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155		size_t n;
1156		size_t skip;
 
1157
1158		raw_spin_lock_irq(&logbuf_lock);
1159		if (syslog_seq < log_first_seq) {
1160			/* messages are gone, move to first one */
1161			syslog_seq = log_first_seq;
1162			syslog_idx = log_first_idx;
1163			syslog_prev = 0;
1164			syslog_partial = 0;
1165		}
1166		if (syslog_seq == log_next_seq) {
1167			raw_spin_unlock_irq(&logbuf_lock);
1168			break;
 
 
 
 
 
1169		}
1170
 
 
 
 
 
 
 
1171		skip = syslog_partial;
1172		msg = log_from_idx(syslog_idx);
1173		n = msg_print_text(msg, syslog_prev, true, text,
1174				   LOG_LINE_MAX + PREFIX_MAX);
1175		if (n - syslog_partial <= size) {
1176			/* message fits into buffer, move forward */
1177			syslog_idx = log_next(syslog_idx);
1178			syslog_seq++;
1179			syslog_prev = msg->flags;
1180			n -= syslog_partial;
1181			syslog_partial = 0;
1182		} else if (!len){
1183			/* partial read(), remember position */
1184			n = size;
1185			syslog_partial += n;
1186		} else
1187			n = 0;
1188		raw_spin_unlock_irq(&logbuf_lock);
1189
1190		if (!n)
1191			break;
1192
1193		if (copy_to_user(buf, text + skip, n)) {
 
 
 
 
1194			if (!len)
1195				len = -EFAULT;
1196			break;
1197		}
1198
1199		len += n;
1200		size -= n;
1201		buf += n;
1202	}
1203
 
1204	kfree(text);
1205	return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
 
 
1210	char *text;
1211	int len = 0;
 
 
1212
1213	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214	if (!text)
1215		return -ENOMEM;
1216
1217	raw_spin_lock_irq(&logbuf_lock);
1218	if (buf) {
1219		u64 next_seq;
1220		u64 seq;
1221		u32 idx;
1222		enum log_flags prev;
 
1223
1224		/*
1225		 * Find first record that fits, including all following records,
1226		 * into the user-provided buffer for this dump.
1227		 */
1228		seq = clear_seq;
1229		idx = clear_idx;
1230		prev = 0;
1231		while (seq < log_next_seq) {
1232			struct printk_log *msg = log_from_idx(idx);
1233
1234			len += msg_print_text(msg, prev, true, NULL, 0);
1235			prev = msg->flags;
1236			idx = log_next(idx);
1237			seq++;
1238		}
1239
1240		/* move first record forward until length fits into the buffer */
1241		seq = clear_seq;
1242		idx = clear_idx;
1243		prev = 0;
1244		while (len > size && seq < log_next_seq) {
1245			struct printk_log *msg = log_from_idx(idx);
1246
1247			len -= msg_print_text(msg, prev, true, NULL, 0);
1248			prev = msg->flags;
1249			idx = log_next(idx);
1250			seq++;
1251		}
1252
1253		/* last message fitting into this dump */
1254		next_seq = log_next_seq;
1255
1256		len = 0;
1257		while (len >= 0 && seq < next_seq) {
1258			struct printk_log *msg = log_from_idx(idx);
1259			int textlen;
1260
1261			textlen = msg_print_text(msg, prev, true, text,
1262						 LOG_LINE_MAX + PREFIX_MAX);
1263			if (textlen < 0) {
1264				len = textlen;
1265				break;
1266			}
1267			idx = log_next(idx);
1268			seq++;
1269			prev = msg->flags;
1270
1271			raw_spin_unlock_irq(&logbuf_lock);
1272			if (copy_to_user(buf + len, text, textlen))
1273				len = -EFAULT;
1274			else
1275				len += textlen;
1276			raw_spin_lock_irq(&logbuf_lock);
1277
1278			if (seq < log_first_seq) {
1279				/* messages are gone, move to next one */
1280				seq = log_first_seq;
1281				idx = log_first_idx;
1282				prev = 0;
1283			}
1284		}
 
 
 
 
 
 
 
 
1285	}
1286
1287	if (clear) {
1288		clear_seq = log_next_seq;
1289		clear_idx = log_next_idx;
 
1290	}
1291	raw_spin_unlock_irq(&logbuf_lock);
1292
1293	kfree(text);
1294	return len;
1295}
1296
 
 
 
 
 
 
 
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
 
1299	bool clear = false;
1300	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301	int error;
1302
1303	error = check_syslog_permissions(type, source);
1304	if (error)
1305		goto out;
1306
1307	switch (type) {
1308	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309		break;
1310	case SYSLOG_ACTION_OPEN:	/* Open log */
1311		break;
1312	case SYSLOG_ACTION_READ:	/* Read from log */
1313		error = -EINVAL;
1314		if (!buf || len < 0)
1315			goto out;
1316		error = 0;
1317		if (!len)
1318			goto out;
1319		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320			error = -EFAULT;
1321			goto out;
1322		}
1323		error = wait_event_interruptible(log_wait,
1324						 syslog_seq != log_next_seq);
1325		if (error)
1326			goto out;
1327		error = syslog_print(buf, len);
1328		break;
1329	/* Read/clear last kernel messages */
1330	case SYSLOG_ACTION_READ_CLEAR:
1331		clear = true;
1332		/* FALL THRU */
1333	/* Read last kernel messages */
1334	case SYSLOG_ACTION_READ_ALL:
1335		error = -EINVAL;
1336		if (!buf || len < 0)
1337			goto out;
1338		error = 0;
1339		if (!len)
1340			goto out;
1341		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342			error = -EFAULT;
1343			goto out;
1344		}
1345		error = syslog_print_all(buf, len, clear);
1346		break;
1347	/* Clear ring buffer */
1348	case SYSLOG_ACTION_CLEAR:
1349		syslog_print_all(NULL, 0, true);
1350		break;
1351	/* Disable logging to console */
1352	case SYSLOG_ACTION_CONSOLE_OFF:
1353		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354			saved_console_loglevel = console_loglevel;
1355		console_loglevel = minimum_console_loglevel;
1356		break;
1357	/* Enable logging to console */
1358	case SYSLOG_ACTION_CONSOLE_ON:
1359		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360			console_loglevel = saved_console_loglevel;
1361			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362		}
1363		break;
1364	/* Set level of messages printed to console */
1365	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366		error = -EINVAL;
1367		if (len < 1 || len > 8)
1368			goto out;
1369		if (len < minimum_console_loglevel)
1370			len = minimum_console_loglevel;
1371		console_loglevel = len;
1372		/* Implicitly re-enable logging to console */
1373		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374		error = 0;
1375		break;
1376	/* Number of chars in the log buffer */
1377	case SYSLOG_ACTION_SIZE_UNREAD:
1378		raw_spin_lock_irq(&logbuf_lock);
1379		if (syslog_seq < log_first_seq) {
 
 
 
 
 
1380			/* messages are gone, move to first one */
1381			syslog_seq = log_first_seq;
1382			syslog_idx = log_first_idx;
1383			syslog_prev = 0;
1384			syslog_partial = 0;
1385		}
1386		if (source == SYSLOG_FROM_PROC) {
1387			/*
1388			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389			 * for pending data, not the size; return the count of
1390			 * records, not the length.
1391			 */
1392			error = log_next_seq - syslog_seq;
1393		} else {
1394			u64 seq = syslog_seq;
1395			u32 idx = syslog_idx;
1396			enum log_flags prev = syslog_prev;
1397
1398			error = 0;
1399			while (seq < log_next_seq) {
1400				struct printk_log *msg = log_from_idx(idx);
1401
1402				error += msg_print_text(msg, prev, true, NULL, 0);
1403				idx = log_next(idx);
1404				seq++;
1405				prev = msg->flags;
1406			}
1407			error -= syslog_partial;
1408		}
1409		raw_spin_unlock_irq(&logbuf_lock);
1410		break;
1411	/* Size of the log buffer */
1412	case SYSLOG_ACTION_SIZE_BUFFER:
1413		error = log_buf_len;
1414		break;
1415	default:
1416		error = -EINVAL;
1417		break;
1418	}
1419out:
1420	return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434				 const char *ext_text, size_t ext_len,
1435				 const char *text, size_t len)
1436{
1437	struct console *con;
1438
1439	trace_console(text, len);
 
 
 
 
1440
1441	if (level >= console_loglevel && !ignore_loglevel)
1442		return;
1443	if (!console_drivers)
1444		return;
1445
1446	for_each_console(con) {
1447		if (exclusive_console && con != exclusive_console)
1448			continue;
1449		if (!(con->flags & CON_ENABLED))
1450			continue;
1451		if (!con->write)
1452			continue;
1453		if (!cpu_online(smp_processor_id()) &&
1454		    !(con->flags & CON_ANYTIME))
1455			continue;
1456		if (con->flags & CON_EXTENDED)
1457			con->write(con, ext_text, ext_len);
1458		else
1459			con->write(con, text, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
 
 
 
 
 
1467 */
1468static void zap_locks(void)
1469{
1470	static unsigned long oops_timestamp;
 
 
 
1471
1472	if (time_after_eq(jiffies, oops_timestamp) &&
1473	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474		return;
1475
1476	oops_timestamp = jiffies;
 
 
 
 
 
 
 
 
1477
1478	debug_locks_off();
1479	/* If a crash is occurring, make sure we can't deadlock */
1480	raw_spin_lock_init(&logbuf_lock);
1481	/* And make sure that we print immediately */
1482	sema_init(&console_sem, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483}
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
 
 
1489	if (unlikely(printk_delay_msec)) {
1490		int m = printk_delay_msec;
1491
1492		while (m--) {
1493			mdelay(1);
1494			touch_nmi_watchdog();
1495		}
1496	}
1497}
1498
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506	char buf[LOG_LINE_MAX];
1507	size_t len;			/* length == 0 means unused buffer */
1508	size_t cons;			/* bytes written to console */
1509	struct task_struct *owner;	/* task of first print*/
1510	u64 ts_nsec;			/* time of first print */
1511	u8 level;			/* log level of first message */
1512	u8 facility;			/* log facility of first message */
1513	enum log_flags flags;		/* prefix, newline flags */
1514	bool flushed:1;			/* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518{
1519	if (cont.flushed)
1520		return;
1521	if (cont.len == 0)
1522		return;
1523
1524	if (cont.cons) {
1525		/*
1526		 * If a fragment of this line was directly flushed to the
1527		 * console; wait for the console to pick up the rest of the
1528		 * line. LOG_NOCONS suppresses a duplicated output.
1529		 */
1530		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532		cont.flags = flags;
1533		cont.flushed = true;
1534	} else {
1535		/*
1536		 * If no fragment of this line ever reached the console,
1537		 * just submit it to the store and free the buffer.
1538		 */
1539		log_store(cont.facility, cont.level, flags, 0,
1540			  NULL, 0, cont.buf, cont.len);
1541		cont.len = 0;
1542	}
 
 
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
 
 
 
1546{
1547	if (cont.len && cont.flushed)
1548		return false;
1549
1550	/*
1551	 * If ext consoles are present, flush and skip in-kernel
1552	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1553	 * the line gets too long, split it up in separate records.
1554	 */
1555	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556		cont_flush(LOG_CONT);
1557		return false;
1558	}
1559
1560	if (!cont.len) {
1561		cont.facility = facility;
1562		cont.level = level;
1563		cont.owner = current;
1564		cont.ts_nsec = local_clock();
1565		cont.flags = 0;
1566		cont.cons = 0;
1567		cont.flushed = false;
1568	}
1569
1570	memcpy(cont.buf + cont.len, text, len);
1571	cont.len += len;
 
1572
1573	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574		cont_flush(LOG_CONT);
 
 
 
 
1575
1576	return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581	size_t textlen = 0;
1582	size_t len;
1583
1584	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585		textlen += print_time(cont.ts_nsec, text);
1586		size -= textlen;
1587	}
1588
1589	len = cont.len - cont.cons;
1590	if (len > 0) {
1591		if (len+1 > size)
1592			len = size-1;
1593		memcpy(text + textlen, cont.buf + cont.cons, len);
1594		textlen += len;
1595		cont.cons = cont.len;
1596	}
1597
1598	if (cont.flushed) {
1599		if (cont.flags & LOG_NEWLINE)
1600			text[textlen++] = '\n';
1601		/* got everything, release buffer */
1602		cont.len = 0;
1603	}
1604	return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608			    const char *dict, size_t dictlen,
1609			    const char *fmt, va_list args)
 
1610{
1611	static bool recursion_bug;
1612	static char textbuf[LOG_LINE_MAX];
1613	char *text = textbuf;
1614	size_t text_len = 0;
1615	enum log_flags lflags = 0;
1616	unsigned long flags;
1617	int this_cpu;
1618	int printed_len = 0;
1619	bool in_sched = false;
1620	/* cpu currently holding logbuf_lock in this function */
1621	static unsigned int logbuf_cpu = UINT_MAX;
 
 
1622
1623	if (level == LOGLEVEL_SCHED) {
1624		level = LOGLEVEL_DEFAULT;
1625		in_sched = true;
1626	}
1627
1628	boot_delay_msec(level);
1629	printk_delay();
 
 
 
 
 
1630
1631	local_irq_save(flags);
1632	this_cpu = smp_processor_id();
1633
1634	/*
1635	 * Ouch, printk recursed into itself!
 
 
 
1636	 */
1637	if (unlikely(logbuf_cpu == this_cpu)) {
1638		/*
1639		 * If a crash is occurring during printk() on this CPU,
1640		 * then try to get the crash message out but make sure
1641		 * we can't deadlock. Otherwise just return to avoid the
1642		 * recursion and return - but flag the recursion so that
1643		 * it can be printed at the next appropriate moment:
1644		 */
1645		if (!oops_in_progress && !lockdep_recursing(current)) {
1646			recursion_bug = true;
1647			local_irq_restore(flags);
1648			return 0;
1649		}
1650		zap_locks();
1651	}
1652
1653	lockdep_off();
1654	/* This stops the holder of console_sem just where we want him */
1655	raw_spin_lock(&logbuf_lock);
1656	logbuf_cpu = this_cpu;
1657
1658	if (unlikely(recursion_bug)) {
1659		static const char recursion_msg[] =
1660			"BUG: recent printk recursion!";
 
 
 
 
 
 
 
 
 
 
1661
1662		recursion_bug = false;
1663		/* emit KERN_CRIT message */
1664		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665					 NULL, 0, recursion_msg,
1666					 strlen(recursion_msg));
1667	}
1668
1669	/*
1670	 * The printf needs to come first; we need the syslog
1671	 * prefix which might be passed-in as a parameter.
 
1672	 */
1673	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675	/* mark and strip a trailing newline */
1676	if (text_len && text[text_len-1] == '\n') {
1677		text_len--;
1678		lflags |= LOG_NEWLINE;
1679	}
1680
1681	/* strip kernel syslog prefix and extract log level or control flags */
1682	if (facility == 0) {
1683		int kern_level = printk_get_level(text);
1684
1685		if (kern_level) {
1686			const char *end_of_header = printk_skip_level(text);
1687			switch (kern_level) {
1688			case '0' ... '7':
1689				if (level == LOGLEVEL_DEFAULT)
1690					level = kern_level - '0';
1691				/* fallthrough */
1692			case 'd':	/* KERN_DEFAULT */
1693				lflags |= LOG_PREFIX;
1694			}
1695			/*
1696			 * No need to check length here because vscnprintf
1697			 * put '\0' at the end of the string. Only valid and
1698			 * newly printed level is detected.
1699			 */
1700			text_len -= end_of_header - text;
1701			text = (char *)end_of_header;
1702		}
1703	}
1704
1705	if (level == LOGLEVEL_DEFAULT)
1706		level = default_message_loglevel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708	if (dict)
1709		lflags |= LOG_PREFIX|LOG_NEWLINE;
 
 
 
1710
1711	if (!(lflags & LOG_NEWLINE)) {
1712		/*
1713		 * Flush the conflicting buffer. An earlier newline was missing,
1714		 * or another task also prints continuation lines.
1715		 */
1716		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717			cont_flush(LOG_NEWLINE);
1718
1719		/* buffer line if possible, otherwise store it right away */
1720		if (cont_add(facility, level, text, text_len))
1721			printed_len += text_len;
1722		else
1723			printed_len += log_store(facility, level,
1724						 lflags | LOG_CONT, 0,
1725						 dict, dictlen, text, text_len);
1726	} else {
1727		bool stored = false;
1728
1729		/*
1730		 * If an earlier newline was missing and it was the same task,
1731		 * either merge it with the current buffer and flush, or if
1732		 * there was a race with interrupts (prefix == true) then just
1733		 * flush it out and store this line separately.
1734		 * If the preceding printk was from a different task and missed
1735		 * a newline, flush and append the newline.
1736		 */
1737		if (cont.len) {
1738			if (cont.owner == current && !(lflags & LOG_PREFIX))
1739				stored = cont_add(facility, level, text,
1740						  text_len);
1741			cont_flush(LOG_NEWLINE);
1742		}
1743
1744		if (stored)
1745			printed_len += text_len;
1746		else
1747			printed_len += log_store(facility, level, lflags, 0,
1748						 dict, dictlen, text, text_len);
1749	}
1750
1751	logbuf_cpu = UINT_MAX;
1752	raw_spin_unlock(&logbuf_lock);
1753	lockdep_on();
1754	local_irq_restore(flags);
1755
1756	/* If called from the scheduler, we can not call up(). */
1757	if (!in_sched) {
1758		lockdep_off();
 
 
 
 
 
 
 
1759		/*
1760		 * Try to acquire and then immediately release the console
1761		 * semaphore.  The release will print out buffers and wake up
1762		 * /dev/kmsg and syslog() users.
 
1763		 */
1764		if (console_trylock())
1765			console_unlock();
1766		lockdep_on();
1767	}
1768
 
 
 
 
 
1769	return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780			   const char *dict, size_t dictlen,
1781			   const char *fmt, ...)
1782{
1783	va_list args;
1784	int r;
1785
1786	va_start(args, fmt);
1787	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788	va_end(args);
1789
1790	return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796	int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799	if (unlikely(kdb_trap_printk)) {
1800		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801		return r;
1802	}
1803#endif
1804	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806	return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers.  If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841	printk_func_t vprintk_func;
1842	va_list args;
1843	int r;
1844
1845	va_start(args, fmt);
1846
1847	/*
1848	 * If a caller overrides the per_cpu printk_func, then it needs
1849	 * to disable preemption when calling printk(). Otherwise
1850	 * the printk_func should be set to the default. No need to
1851	 * disable preemption here.
1852	 */
1853	vprintk_func = this_cpu_read(printk_func);
1854	r = vprintk_func(fmt, args);
1855
1856	va_end(args);
1857
1858	return r;
1859}
1860EXPORT_SYMBOL(printk);
 
 
 
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX		0
1865#define PREFIX_MAX		0
 
 
 
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877	size_t len;
1878	size_t cons;
1879	u8 level;
1880	bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887				    struct printk_log *msg, u64 seq,
1888				    enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890				  char *dict, size_t dict_len,
1891				  char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893				 const char *ext_text, size_t ext_len,
1894				 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896			     bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909	va_list ap;
1910	char buf[512];
1911	int n;
1912
1913	if (!early_console)
1914		return;
1915
1916	va_start(ap, fmt);
1917	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918	va_end(ap);
1919
1920	early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925				   char *brl_options)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926{
1927	struct console_cmdline *c;
1928	int i;
1929
1930	/*
 
 
 
 
 
 
 
 
1931	 *	See if this tty is not yet registered, and
1932	 *	if we have a slot free.
1933	 */
1934	for (i = 0, c = console_cmdline;
1935	     i < MAX_CMDLINECONSOLES && c->name[0];
1936	     i++, c++) {
1937		if (strcmp(c->name, name) == 0 && c->index == idx) {
1938			if (!brl_options)
1939				selected_console = i;
 
1940			return 0;
1941		}
1942	}
1943	if (i == MAX_CMDLINECONSOLES)
1944		return -E2BIG;
1945	if (!brl_options)
1946		selected_console = i;
1947	strlcpy(c->name, name, sizeof(c->name));
1948	c->options = options;
 
1949	braille_set_options(c, brl_options);
1950
1951	c->index = idx;
1952	return 0;
1953}
 
 
 
 
 
 
 
 
 
 
 
1954/*
1955 * Set up a console.  Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961	char *s, *options, *brl_options = NULL;
1962	int idx;
1963
 
 
 
 
 
 
 
 
 
 
1964	if (_braille_console_setup(&str, &brl_options))
1965		return 1;
1966
1967	/*
1968	 * Decode str into name, index, options.
1969	 */
1970	if (str[0] >= '0' && str[0] <= '9') {
1971		strcpy(buf, "ttyS");
1972		strncpy(buf + 4, str, sizeof(buf) - 5);
1973	} else {
1974		strncpy(buf, str, sizeof(buf) - 1);
1975	}
1976	buf[sizeof(buf) - 1] = 0;
1977	options = strchr(str, ',');
1978	if (options)
1979		*(options++) = 0;
1980#ifdef __sparc__
1981	if (!strcmp(str, "ttya"))
1982		strcpy(buf, "ttyS0");
1983	if (!strcmp(str, "ttyb"))
1984		strcpy(buf, "ttyS1");
1985#endif
1986	for (s = buf; *s; s++)
1987		if (isdigit(*s) || *s == ',')
1988			break;
1989	idx = simple_strtoul(s, NULL, 10);
1990	*s = 0;
1991
1992	__add_preferred_console(buf, idx, options, brl_options);
1993	console_set_on_cmdline = 1;
1994	return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init.  Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013	return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021	console_suspend_enabled = false;
2022	return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026		bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028	" and hibernate operations");
2029
 
 
 
 
 
 
 
 
 
 
 
 
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
 
 
2037	if (!console_suspend_enabled)
2038		return;
2039	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040	console_lock();
2041	console_suspended = 1;
2042	up_console_sem();
 
 
 
 
 
 
 
 
 
 
 
2043}
2044
2045void resume_console(void)
2046{
 
 
2047	if (!console_suspend_enabled)
2048		return;
2049	down_console_sem();
2050	console_suspended = 0;
2051	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console.  This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066	unsigned long action, void *hcpu)
2067{
2068	switch (action) {
2069	case CPU_ONLINE:
2070	case CPU_DEAD:
2071	case CPU_DOWN_FAILED:
2072	case CPU_UP_CANCELED:
2073		console_lock();
2074		console_unlock();
2075	}
2076	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089	might_sleep();
2090
 
 
 
 
2091	down_console_sem();
2092	if (console_suspended)
2093		return;
2094	console_locked = 1;
2095	console_may_schedule = 1;
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109	if (down_trylock_console_sem())
 
2110		return 0;
2111	if (console_suspended) {
2112		up_console_sem();
2113		return 0;
2114	}
2115	console_locked = 1;
2116	/*
2117	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119	 * because preempt_disable()/preempt_enable() are just barriers there
2120	 * and preempt_count() is always 0.
2121	 *
2122	 * RCU read sections have a separate preemption counter when
2123	 * PREEMPT_RCU enabled thus we must take extra care and check
2124	 * rcu_preempt_depth(), otherwise RCU read sections modify
2125	 * preempt_count().
2126	 */
2127	console_may_schedule = !oops_in_progress &&
2128			preemptible() &&
2129			!rcu_preempt_depth();
2130	return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136	return console_locked;
2137}
 
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
 
 
2142 */
2143static int have_callable_console(void)
2144{
2145	struct console *con;
2146
2147	for_each_console(con)
2148		if ((con->flags & CON_ENABLED) &&
2149				(con->flags & CON_ANYTIME))
2150			return 1;
2151
2152	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153}
2154
 
 
 
 
 
 
 
 
2155/*
2156 * Can we actually use the console at this time on this cpu?
 
 
 
 
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
 
 
 
2161 */
2162static inline int can_use_console(void)
2163{
2164	return cpu_online(raw_smp_processor_id()) || have_callable_console();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168{
2169	unsigned long flags;
2170	size_t len;
2171
2172	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
2173
2174	if (!cont.len)
2175		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176
2177	/*
2178	 * We still queue earlier records, likely because the console was
2179	 * busy. The earlier ones need to be printed before this one, we
2180	 * did not flush any fragment so far, so just let it queue up.
2181	 */
2182	if (console_seq < log_next_seq && !cont.cons)
 
 
 
 
 
 
 
 
2183		goto out;
2184
2185	len = cont_print_text(text, size);
2186	raw_spin_unlock(&logbuf_lock);
2187	stop_critical_timings();
2188	call_console_drivers(cont.level, NULL, 0, text, len);
2189	start_critical_timings();
2190	local_irq_restore(flags);
2191	return;
2192out:
2193	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
 
 
 
 
 
 
 
 
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
 
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk().  If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
 
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212	static char ext_text[CONSOLE_EXT_LOG_MAX];
2213	static char text[LOG_LINE_MAX + PREFIX_MAX];
2214	static u64 seen_seq;
 
 
2215	unsigned long flags;
2216	bool wake_klogd = false;
2217	bool do_cond_resched, retry;
2218
2219	if (console_suspended) {
2220		up_console_sem();
2221		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
2222	}
2223
2224	/*
2225	 * Console drivers are called under logbuf_lock, so
2226	 * @console_may_schedule should be cleared before; however, we may
2227	 * end up dumping a lot of lines, for example, if called from
2228	 * console registration path, and should invoke cond_resched()
2229	 * between lines if allowable.  Not doing so can cause a very long
2230	 * scheduling stall on a slow console leading to RCU stall and
2231	 * softlockup warnings which exacerbate the issue with more
2232	 * messages practically incapacitating the system.
2233	 */
2234	do_cond_resched = console_may_schedule;
2235	console_may_schedule = 0;
2236
2237again:
2238	/*
2239	 * We released the console_sem lock, so we need to recheck if
2240	 * cpu is online and (if not) is there at least one CON_ANYTIME
2241	 * console.
2242	 */
2243	if (!can_use_console()) {
2244		console_locked = 0;
2245		up_console_sem();
2246		return;
2247	}
2248
2249	/* flush buffered message fragment immediately to console */
2250	console_cont_flush(text, sizeof(text));
2251
2252	for (;;) {
2253		struct printk_log *msg;
2254		size_t ext_len = 0;
2255		size_t len;
2256		int level;
2257
2258		raw_spin_lock_irqsave(&logbuf_lock, flags);
2259		if (seen_seq != log_next_seq) {
2260			wake_klogd = true;
2261			seen_seq = log_next_seq;
2262		}
2263
2264		if (console_seq < log_first_seq) {
2265			len = sprintf(text, "** %u printk messages dropped ** ",
2266				      (unsigned)(log_first_seq - console_seq));
2267
2268			/* messages are gone, move to first one */
2269			console_seq = log_first_seq;
2270			console_idx = log_first_idx;
2271			console_prev = 0;
2272		} else {
2273			len = 0;
2274		}
2275skip:
2276		if (console_seq == log_next_seq)
2277			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278
2279		msg = log_from_idx(console_idx);
2280		if (msg->flags & LOG_NOCONS) {
2281			/*
2282			 * Skip record we have buffered and already printed
2283			 * directly to the console when we received it.
2284			 */
2285			console_idx = log_next(console_idx);
2286			console_seq++;
2287			/*
2288			 * We will get here again when we register a new
2289			 * CON_PRINTBUFFER console. Clear the flag so we
2290			 * will properly dump everything later.
2291			 */
2292			msg->flags &= ~LOG_NOCONS;
2293			console_prev = msg->flags;
2294			goto skip;
2295		}
2296
2297		level = msg->level;
2298		len += msg_print_text(msg, console_prev, false,
2299				      text + len, sizeof(text) - len);
2300		if (nr_ext_console_drivers) {
2301			ext_len = msg_print_ext_header(ext_text,
2302						sizeof(ext_text),
2303						msg, console_seq, console_prev);
2304			ext_len += msg_print_ext_body(ext_text + ext_len,
2305						sizeof(ext_text) - ext_len,
2306						log_dict(msg), msg->dict_len,
2307						log_text(msg), msg->text_len);
2308		}
2309		console_idx = log_next(console_idx);
2310		console_seq++;
2311		console_prev = msg->flags;
2312		raw_spin_unlock(&logbuf_lock);
2313
2314		stop_critical_timings();	/* don't trace print latency */
2315		call_console_drivers(level, ext_text, ext_len, text, len);
2316		start_critical_timings();
2317		local_irq_restore(flags);
2318
2319		if (do_cond_resched)
2320			cond_resched();
2321	}
2322	console_locked = 0;
2323
2324	/* Release the exclusive_console once it is used */
2325	if (unlikely(exclusive_console))
2326		exclusive_console = NULL;
2327
2328	raw_spin_unlock(&logbuf_lock);
 
 
2329
2330	up_console_sem();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331
2332	/*
2333	 * Someone could have filled up the buffer again, so re-check if there's
2334	 * something to flush. In case we cannot trylock the console_sem again,
2335	 * there's a new owner and the console_unlock() from them will do the
2336	 * flush, no worries.
2337	 */
2338	raw_spin_lock(&logbuf_lock);
2339	retry = console_seq != log_next_seq;
2340	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
 
 
2341
2342	if (retry && console_trylock())
2343		goto again;
2344
2345	if (wake_klogd)
2346		wake_up_klogd();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361	if (console_may_schedule)
2362		cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
 
2368	struct console *c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	/*
2371	 * console_unblank can no longer be called in interrupt context unless
2372	 * oops_in_progress is set to 1..
 
 
 
2373	 */
2374	if (oops_in_progress) {
 
 
 
 
 
 
 
 
 
 
2375		if (down_trylock_console_sem() != 0)
2376			return;
2377	} else
2378		console_lock();
2379
2380	console_locked = 1;
2381	console_may_schedule = 0;
2382	for_each_console(c)
2383		if ((c->flags & CON_ENABLED) && c->unblank)
 
 
2384			c->unblank();
 
 
 
2385	console_unlock();
 
 
 
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
 
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
 
 
 
2395	/*
2396	 * If someone else is holding the console lock, trylock will fail
2397	 * and may_schedule may be set.  Ignore and proceed to unlock so
2398	 * that messages are flushed out.  As this can be called from any
2399	 * context and we don't want to get preempted while flushing,
2400	 * ensure may_schedule is cleared.
 
 
 
 
 
 
 
 
2401	 */
2402	console_trylock();
2403	console_may_schedule = 0;
2404	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412	struct console *c;
2413	struct tty_driver *driver = NULL;
 
2414
 
 
 
 
 
2415	console_lock();
2416	for_each_console(c) {
 
 
2417		if (!c->device)
2418			continue;
2419		driver = c->device(c, index);
2420		if (driver)
2421			break;
2422	}
 
 
2423	console_unlock();
2424	return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434	console_lock();
2435	console->flags &= ~CON_ENABLED;
2436	console_unlock();
 
 
 
 
 
 
 
 
 
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442	console_lock();
2443	console->flags |= CON_ENABLED;
2444	console_unlock();
 
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452	keep_bootcon = 1;
2453	pr_info("debug: skip boot console de-registration.\n");
2454
2455	return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 *  - Any number of bootconsoles can be registered at any time.
2474 *  - As soon as a "real" console is registered, all bootconsoles
2475 *    will be unregistered automatically.
2476 *  - Once a "real" console is registered, any attempt to register a
2477 *    bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481	int i;
2482	unsigned long flags;
2483	struct console *bcon = NULL;
2484	struct console_cmdline *c;
2485
2486	if (console_drivers)
2487		for_each_console(bcon)
2488			if (WARN(bcon == newcon,
2489					"console '%s%d' already registered\n",
2490					bcon->name, bcon->index))
2491				return;
2492
2493	/*
2494	 * before we register a new CON_BOOT console, make sure we don't
2495	 * already have a valid console
2496	 */
2497	if (console_drivers && newcon->flags & CON_BOOT) {
2498		/* find the last or real console */
2499		for_each_console(bcon) {
2500			if (!(bcon->flags & CON_BOOT)) {
2501				pr_info("Too late to register bootconsole %s%d\n",
2502					newcon->name, newcon->index);
2503				return;
2504			}
2505		}
 
 
 
 
 
2506	}
2507
2508	if (console_drivers && console_drivers->flags & CON_BOOT)
2509		bcon = console_drivers;
 
 
 
 
2510
2511	if (preferred_console < 0 || bcon || !console_drivers)
2512		preferred_console = selected_console;
 
 
 
 
 
 
2513
2514	/*
2515	 *	See if we want to use this console driver. If we
2516	 *	didn't select a console we take the first one
2517	 *	that registers here.
 
 
 
 
 
 
 
2518	 */
2519	if (preferred_console < 0) {
2520		if (newcon->index < 0)
2521			newcon->index = 0;
2522		if (newcon->setup == NULL ||
2523		    newcon->setup(newcon, NULL) == 0) {
2524			newcon->flags |= CON_ENABLED;
2525			if (newcon->device) {
2526				newcon->flags |= CON_CONSDEV;
2527				preferred_console = 0;
2528			}
2529		}
2530	}
2531
2532	/*
2533	 *	See if this console matches one we selected on
2534	 *	the command line.
2535	 */
2536	for (i = 0, c = console_cmdline;
2537	     i < MAX_CMDLINECONSOLES && c->name[0];
2538	     i++, c++) {
2539		if (!newcon->match ||
2540		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541			/* default matching */
2542			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543			if (strcmp(c->name, newcon->name) != 0)
2544				continue;
2545			if (newcon->index >= 0 &&
2546			    newcon->index != c->index)
2547				continue;
2548			if (newcon->index < 0)
2549				newcon->index = c->index;
2550
2551			if (_braille_register_console(newcon, c))
2552				return;
2553
2554			if (newcon->setup &&
2555			    newcon->setup(newcon, c->options) != 0)
2556				break;
2557		}
2558
2559		newcon->flags |= CON_ENABLED;
2560		if (i == selected_console) {
2561			newcon->flags |= CON_CONSDEV;
2562			preferred_console = selected_console;
2563		}
2564		break;
2565	}
2566
2567	if (!(newcon->flags & CON_ENABLED))
2568		return;
2569
2570	/*
2571	 * If we have a bootconsole, and are switching to a real console,
2572	 * don't print everything out again, since when the boot console, and
2573	 * the real console are the same physical device, it's annoying to
2574	 * see the beginning boot messages twice
2575	 */
2576	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
 
2577		newcon->flags &= ~CON_PRINTBUFFER;
 
 
 
 
 
 
 
2578
2579	/*
2580	 *	Put this console in the list - keep the
2581	 *	preferred driver at the head of the list.
2582	 */
2583	console_lock();
2584	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585		newcon->next = console_drivers;
2586		console_drivers = newcon;
2587		if (newcon->next)
2588			newcon->next->flags &= ~CON_CONSDEV;
 
 
 
 
2589	} else {
2590		newcon->next = console_drivers->next;
2591		console_drivers->next = newcon;
2592	}
2593
2594	if (newcon->flags & CON_EXTENDED)
2595		if (!nr_ext_console_drivers++)
2596			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
 
 
2597
2598	if (newcon->flags & CON_PRINTBUFFER) {
2599		/*
2600		 * console_unlock(); will print out the buffered messages
2601		 * for us.
2602		 */
2603		raw_spin_lock_irqsave(&logbuf_lock, flags);
2604		console_seq = syslog_seq;
2605		console_idx = syslog_idx;
2606		console_prev = syslog_prev;
2607		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608		/*
2609		 * We're about to replay the log buffer.  Only do this to the
2610		 * just-registered console to avoid excessive message spam to
2611		 * the already-registered consoles.
2612		 */
2613		exclusive_console = newcon;
2614	}
2615	console_unlock();
2616	console_sysfs_notify();
2617
2618	/*
2619	 * By unregistering the bootconsoles after we enable the real console
2620	 * we get the "console xxx enabled" message on all the consoles -
2621	 * boot consoles, real consoles, etc - this is to ensure that end
2622	 * users know there might be something in the kernel's log buffer that
2623	 * went to the bootconsole (that they do not see on the real console)
2624	 */
2625	pr_info("%sconsole [%s%d] enabled\n",
2626		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2627		newcon->name, newcon->index);
2628	if (bcon &&
2629	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630	    !keep_bootcon) {
2631		/* We need to iterate through all boot consoles, to make
2632		 * sure we print everything out, before we unregister them.
2633		 */
2634		for_each_console(bcon)
2635			if (bcon->flags & CON_BOOT)
2636				unregister_console(bcon);
2637	}
 
 
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
 
2642{
2643        struct console *a, *b;
2644	int res;
2645
2646	pr_info("%sconsole [%s%d] disabled\n",
2647		(console->flags & CON_BOOT) ? "boot" : "" ,
2648		console->name, console->index);
2649
2650	res = _braille_unregister_console(console);
2651	if (res)
2652		return res;
 
 
2653
2654	res = 1;
2655	console_lock();
2656	if (console_drivers == console) {
2657		console_drivers=console->next;
2658		res = 0;
2659	} else if (console_drivers) {
2660		for (a=console_drivers->next, b=console_drivers ;
2661		     a; b=a, a=b->next) {
2662			if (a == console) {
2663				b->next = a->next;
2664				res = 0;
2665				break;
2666			}
2667		}
2668	}
2669
2670	if (!res && (console->flags & CON_EXTENDED))
2671		nr_ext_console_drivers--;
2672
2673	/*
 
2674	 * If this isn't the last console and it has CON_CONSDEV set, we
2675	 * need to set it on the next preferred console.
 
 
 
 
2676	 */
2677	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678		console_drivers->flags |= CON_CONSDEV;
 
 
 
 
 
 
 
 
 
 
2679
2680	console->flags &= ~CON_ENABLED;
2681	console_unlock();
2682	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683	return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687/*
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
 
2704	struct console *con;
 
2705
2706	for_each_console(con) {
2707		if (!keep_bootcon && con->flags & CON_BOOT) {
 
 
 
 
 
 
 
 
 
 
2708			/*
2709			 * Make sure to unregister boot consoles whose data
2710			 * resides in the init section before the init section
2711			 * is discarded. Boot consoles whose data will stick
2712			 * around will automatically be unregistered when the
2713			 * proper console replaces them.
2714			 */
2715			if (init_section_intersects(con, sizeof(*con)))
2716				unregister_console(con);
 
2717		}
2718	}
2719	hotcpu_notifier(console_cpu_notify, 0);
 
 
 
 
 
 
 
 
2720	return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
2728#define PRINTK_PENDING_WAKEUP	0x01
2729#define PRINTK_PENDING_OUTPUT	0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735	int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737	if (pending & PRINTK_PENDING_OUTPUT) {
2738		/* If trylock fails, someone else is doing the printing */
2739		if (console_trylock())
2740			console_unlock();
2741	}
2742
2743	if (pending & PRINTK_PENDING_WAKEUP)
2744		wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748	.func = wake_up_klogd_work_func,
2749	.flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
 
 
 
2754	preempt_disable();
2755	if (waitqueue_active(&log_wait)) {
2756		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
 
 
 
 
 
 
 
 
 
 
 
 
2757		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758	}
2759	preempt_enable();
2760}
2761
2762int printk_deferred(const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763{
2764	va_list args;
2765	int r;
2766
2767	preempt_disable();
2768	va_start(args, fmt);
2769	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770	va_end(args);
2771
2772	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774	preempt_enable();
2775
2776	return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789	return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803			unsigned int interval_msecs)
2804{
2805	unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808		return false;
2809
2810	*caller_jiffies = jiffies;
2811	return true;
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828	unsigned long flags;
2829	int err = -EBUSY;
2830
2831	/* The dump callback needs to be set */
2832	if (!dumper->dump)
2833		return -EINVAL;
2834
2835	spin_lock_irqsave(&dump_list_lock, flags);
2836	/* Don't allow registering multiple times */
2837	if (!dumper->registered) {
2838		dumper->registered = 1;
2839		list_add_tail_rcu(&dumper->list, &dump_list);
2840		err = 0;
2841	}
2842	spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844	return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857	unsigned long flags;
2858	int err = -EINVAL;
2859
2860	spin_lock_irqsave(&dump_list_lock, flags);
2861	if (dumper->registered) {
2862		dumper->registered = 0;
2863		list_del_rcu(&dumper->list);
2864		err = 0;
2865	}
2866	spin_unlock_irqrestore(&dump_list_lock, flags);
2867	synchronize_rcu();
2868
2869	return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886	struct kmsg_dumper *dumper;
2887	unsigned long flags;
2888
2889	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890		return;
2891
2892	rcu_read_lock();
2893	list_for_each_entry_rcu(dumper, &dump_list, list) {
2894		if (dumper->max_reason && reason > dumper->max_reason)
2895			continue;
2896
2897		/* initialize iterator with data about the stored records */
2898		dumper->active = true;
2899
2900		raw_spin_lock_irqsave(&logbuf_lock, flags);
2901		dumper->cur_seq = clear_seq;
2902		dumper->cur_idx = clear_idx;
2903		dumper->next_seq = log_next_seq;
2904		dumper->next_idx = log_next_idx;
2905		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2906
2907		/* invoke dumper which will iterate over records */
2908		dumper->dump(dumper, reason);
2909
2910		/* reset iterator */
2911		dumper->active = false;
2912	}
2913	rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936			       char *line, size_t size, size_t *len)
2937{
2938	struct printk_log *msg;
 
 
 
2939	size_t l = 0;
2940	bool ret = false;
2941
2942	if (!dumper->active)
2943		goto out;
2944
2945	if (dumper->cur_seq < log_first_seq) {
2946		/* messages are gone, move to first available one */
2947		dumper->cur_seq = log_first_seq;
2948		dumper->cur_idx = log_first_idx;
2949	}
2950
2951	/* last entry */
2952	if (dumper->cur_seq >= log_next_seq)
2953		goto out;
 
 
 
 
 
 
 
 
 
2954
2955	msg = log_from_idx(dumper->cur_idx);
2956	l = msg_print_text(msg, 0, syslog, line, size);
2957
2958	dumper->cur_idx = log_next(dumper->cur_idx);
2959	dumper->cur_seq++;
2960	ret = true;
2961out:
2962	if (len)
2963		*len = l;
2964	return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985			char *line, size_t size, size_t *len)
2986{
2987	unsigned long flags;
2988	bool ret;
2989
2990	raw_spin_lock_irqsave(&logbuf_lock, flags);
2991	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994	return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018			  char *buf, size_t size, size_t *len)
3019{
3020	unsigned long flags;
 
 
3021	u64 seq;
3022	u32 idx;
3023	u64 next_seq;
3024	u32 next_idx;
3025	enum log_flags prev;
3026	size_t l = 0;
3027	bool ret = false;
 
3028
3029	if (!dumper->active)
3030		goto out;
3031
3032	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033	if (dumper->cur_seq < log_first_seq) {
3034		/* messages are gone, move to first available one */
3035		dumper->cur_seq = log_first_seq;
3036		dumper->cur_idx = log_first_idx;
 
 
 
3037	}
3038
3039	/* last entry */
3040	if (dumper->cur_seq >= dumper->next_seq) {
3041		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042		goto out;
3043	}
3044
3045	/* calculate length of entire buffer */
3046	seq = dumper->cur_seq;
3047	idx = dumper->cur_idx;
3048	prev = 0;
3049	while (seq < dumper->next_seq) {
3050		struct printk_log *msg = log_from_idx(idx);
3051
3052		l += msg_print_text(msg, prev, true, NULL, 0);
3053		idx = log_next(idx);
3054		seq++;
3055		prev = msg->flags;
3056	}
3057
3058	/* move first record forward until length fits into the buffer */
3059	seq = dumper->cur_seq;
3060	idx = dumper->cur_idx;
3061	prev = 0;
3062	while (l > size && seq < dumper->next_seq) {
3063		struct printk_log *msg = log_from_idx(idx);
3064
3065		l -= msg_print_text(msg, prev, true, NULL, 0);
3066		idx = log_next(idx);
3067		seq++;
3068		prev = msg->flags;
3069	}
3070
3071	/* last message in next interation */
 
 
 
3072	next_seq = seq;
3073	next_idx = idx;
3074
3075	l = 0;
3076	while (seq < dumper->next_seq) {
3077		struct printk_log *msg = log_from_idx(idx);
3078
3079		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080		idx = log_next(idx);
3081		seq++;
3082		prev = msg->flags;
 
 
 
 
3083	}
3084
3085	dumper->next_seq = next_seq;
3086	dumper->next_idx = next_idx;
3087	ret = true;
3088	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090	if (len)
3091		*len = l;
3092	return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108	dumper->cur_seq = clear_seq;
3109	dumper->cur_idx = clear_idx;
3110	dumper->next_seq = log_next_seq;
3111	dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124	unsigned long flags;
3125
3126	raw_spin_lock_irqsave(&logbuf_lock, flags);
3127	kmsg_dump_rewind_nolock(dumper);
3128	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
 
 
 
 
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps.  Usually used to add arch-specific system identifiers.  If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146	va_list args;
3147
3148	va_start(args, fmt);
3149	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150		  fmt, args);
3151	va_end(args);
3152}
 
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
 
 
 
 
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165	       print_tainted(), init_utsname()->release,
3166	       (int)strcspn(init_utsname()->version, " "),
3167	       init_utsname()->version);
3168
3169	if (dump_stack_arch_desc_str[0] != '\0')
3170		printk("%sHardware name: %s\n",
3171		       log_lvl, dump_stack_arch_desc_str);
3172
3173	print_worker_info(log_lvl, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3174}
 
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
 
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185	dump_stack_print_info(log_lvl);
 
 
 
3186
3187	printk("%stask: %p ti: %p task.ti: %p\n",
3188	       log_lvl, current, current_thread_info(),
3189	       task_thread_info(current));
3190}
3191
3192#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
 
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
 
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74EXPORT_TRACEPOINT_SYMBOL_GPL(console);
  75
  76/*
  77 * Low level drivers may need that to know if they can schedule in
  78 * their unblank() callback or not. So let's export it.
  79 */
  80int oops_in_progress;
  81EXPORT_SYMBOL(oops_in_progress);
  82
  83/*
  84 * console_mutex protects console_list updates and console->flags updates.
  85 * The flags are synchronized only for consoles that are registered, i.e.
  86 * accessible via the console list.
  87 */
  88static DEFINE_MUTEX(console_mutex);
  89
  90/*
  91 * console_sem protects updates to console->seq
  92 * and also provides serialization for console printing.
  93 */
  94static DEFINE_SEMAPHORE(console_sem, 1);
  95HLIST_HEAD(console_list);
  96EXPORT_SYMBOL_GPL(console_list);
  97DEFINE_STATIC_SRCU(console_srcu);
  98
  99/*
 100 * System may need to suppress printk message under certain
 101 * circumstances, like after kernel panic happens.
 102 */
 103int __read_mostly suppress_printk;
 104
 105#ifdef CONFIG_LOCKDEP
 106static struct lockdep_map console_lock_dep_map = {
 107	.name = "console_lock"
 108};
 109
 110void lockdep_assert_console_list_lock_held(void)
 111{
 112	lockdep_assert_held(&console_mutex);
 113}
 114EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
 115#endif
 116
 117#ifdef CONFIG_DEBUG_LOCK_ALLOC
 118bool console_srcu_read_lock_is_held(void)
 119{
 120	return srcu_read_lock_held(&console_srcu);
 121}
 122EXPORT_SYMBOL(console_srcu_read_lock_is_held);
 123#endif
 124
 125enum devkmsg_log_bits {
 126	__DEVKMSG_LOG_BIT_ON = 0,
 127	__DEVKMSG_LOG_BIT_OFF,
 128	__DEVKMSG_LOG_BIT_LOCK,
 129};
 130
 131enum devkmsg_log_masks {
 132	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 133	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 134	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 135};
 136
 137/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 138#define DEVKMSG_LOG_MASK_DEFAULT	0
 139
 140static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141
 142static int __control_devkmsg(char *str)
 143{
 144	size_t len;
 145
 146	if (!str)
 147		return -EINVAL;
 148
 149	len = str_has_prefix(str, "on");
 150	if (len) {
 151		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 152		return len;
 153	}
 154
 155	len = str_has_prefix(str, "off");
 156	if (len) {
 157		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 158		return len;
 159	}
 160
 161	len = str_has_prefix(str, "ratelimit");
 162	if (len) {
 163		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 164		return len;
 165	}
 166
 167	return -EINVAL;
 168}
 169
 170static int __init control_devkmsg(char *str)
 171{
 172	if (__control_devkmsg(str) < 0) {
 173		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
 174		return 1;
 175	}
 176
 177	/*
 178	 * Set sysctl string accordingly:
 179	 */
 180	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 181		strcpy(devkmsg_log_str, "on");
 182	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 183		strcpy(devkmsg_log_str, "off");
 184	/* else "ratelimit" which is set by default. */
 185
 186	/*
 187	 * Sysctl cannot change it anymore. The kernel command line setting of
 188	 * this parameter is to force the setting to be permanent throughout the
 189	 * runtime of the system. This is a precation measure against userspace
 190	 * trying to be a smarta** and attempting to change it up on us.
 191	 */
 192	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 193
 194	return 1;
 195}
 196__setup("printk.devkmsg=", control_devkmsg);
 197
 198char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 199#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
 200int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 201			      void *buffer, size_t *lenp, loff_t *ppos)
 202{
 203	char old_str[DEVKMSG_STR_MAX_SIZE];
 204	unsigned int old;
 205	int err;
 206
 207	if (write) {
 208		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 209			return -EINVAL;
 210
 211		old = devkmsg_log;
 212		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 213	}
 214
 215	err = proc_dostring(table, write, buffer, lenp, ppos);
 216	if (err)
 217		return err;
 218
 219	if (write) {
 220		err = __control_devkmsg(devkmsg_log_str);
 221
 222		/*
 223		 * Do not accept an unknown string OR a known string with
 224		 * trailing crap...
 225		 */
 226		if (err < 0 || (err + 1 != *lenp)) {
 227
 228			/* ... and restore old setting. */
 229			devkmsg_log = old;
 230			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 231
 232			return -EINVAL;
 233		}
 234	}
 235
 236	return 0;
 237}
 238#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
 239
 240/**
 241 * console_list_lock - Lock the console list
 242 *
 243 * For console list or console->flags updates
 
 
 
 
 
 244 */
 245void console_list_lock(void)
 246{
 247	/*
 248	 * In unregister_console() and console_force_preferred_locked(),
 249	 * synchronize_srcu() is called with the console_list_lock held.
 250	 * Therefore it is not allowed that the console_list_lock is taken
 251	 * with the srcu_lock held.
 252	 *
 253	 * Detecting if this context is really in the read-side critical
 254	 * section is only possible if the appropriate debug options are
 255	 * enabled.
 256	 */
 257	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
 258		     srcu_read_lock_held(&console_srcu));
 259
 260	mutex_lock(&console_mutex);
 261}
 262EXPORT_SYMBOL(console_list_lock);
 263
 264/**
 265 * console_list_unlock - Unlock the console list
 266 *
 267 * Counterpart to console_list_lock()
 268 */
 269void console_list_unlock(void)
 270{
 271	mutex_unlock(&console_mutex);
 272}
 273EXPORT_SYMBOL(console_list_unlock);
 274
 275/**
 276 * console_srcu_read_lock - Register a new reader for the
 277 *	SRCU-protected console list
 278 *
 279 * Use for_each_console_srcu() to iterate the console list
 280 *
 281 * Context: Any context.
 282 * Return: A cookie to pass to console_srcu_read_unlock().
 283 */
 284int console_srcu_read_lock(void)
 285{
 286	return srcu_read_lock_nmisafe(&console_srcu);
 287}
 288EXPORT_SYMBOL(console_srcu_read_lock);
 289
 290/**
 291 * console_srcu_read_unlock - Unregister an old reader from
 292 *	the SRCU-protected console list
 293 * @cookie: cookie returned from console_srcu_read_lock()
 294 *
 295 * Counterpart to console_srcu_read_lock()
 296 */
 297void console_srcu_read_unlock(int cookie)
 298{
 299	srcu_read_unlock_nmisafe(&console_srcu, cookie);
 300}
 301EXPORT_SYMBOL(console_srcu_read_unlock);
 302
 303/*
 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 305 * macros instead of functions so that _RET_IP_ contains useful information.
 306 */
 307#define down_console_sem() do { \
 308	down(&console_sem);\
 309	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 310} while (0)
 311
 312static int __down_trylock_console_sem(unsigned long ip)
 313{
 314	int lock_failed;
 315	unsigned long flags;
 316
 317	/*
 318	 * Here and in __up_console_sem() we need to be in safe mode,
 319	 * because spindump/WARN/etc from under console ->lock will
 320	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 321	 */
 322	printk_safe_enter_irqsave(flags);
 323	lock_failed = down_trylock(&console_sem);
 324	printk_safe_exit_irqrestore(flags);
 325
 326	if (lock_failed)
 327		return 1;
 328	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 329	return 0;
 330}
 331#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 332
 333static void __up_console_sem(unsigned long ip)
 334{
 335	unsigned long flags;
 336
 337	mutex_release(&console_lock_dep_map, ip);
 338
 339	printk_safe_enter_irqsave(flags);
 340	up(&console_sem);
 341	printk_safe_exit_irqrestore(flags);
 342}
 343#define up_console_sem() __up_console_sem(_RET_IP_)
 344
 345static bool panic_in_progress(void)
 346{
 347	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
 348}
 349
 350/*
 351 * This is used for debugging the mess that is the VT code by
 352 * keeping track if we have the console semaphore held. It's
 353 * definitely not the perfect debug tool (we don't know if _WE_
 354 * hold it and are racing, but it helps tracking those weird code
 355 * paths in the console code where we end up in places I want
 356 * locked without the console semaphore held).
 357 */
 358static int console_locked;
 
 
 
 
 
 359
 360/*
 361 *	Array of consoles built from command line options (console=)
 362 */
 363
 364#define MAX_CMDLINECONSOLES 8
 365
 366static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 367
 
 368static int preferred_console = -1;
 369int console_set_on_cmdline;
 370EXPORT_SYMBOL(console_set_on_cmdline);
 371
 372/* Flag: console code may call schedule() */
 373static int console_may_schedule;
 374
 375enum con_msg_format_flags {
 376	MSG_FORMAT_DEFAULT	= 0,
 377	MSG_FORMAT_SYSLOG	= (1 << 0),
 378};
 379
 380static int console_msg_format = MSG_FORMAT_DEFAULT;
 381
 382/*
 383 * The printk log buffer consists of a sequenced collection of records, each
 384 * containing variable length message text. Every record also contains its
 385 * own meta-data (@info).
 386 *
 387 * Every record meta-data carries the timestamp in microseconds, as well as
 388 * the standard userspace syslog level and syslog facility. The usual kernel
 389 * messages use LOG_KERN; userspace-injected messages always carry a matching
 390 * syslog facility, by default LOG_USER. The origin of every message can be
 391 * reliably determined that way.
 392 *
 393 * The human readable log message of a record is available in @text, the
 394 * length of the message text in @text_len. The stored message is not
 395 * terminated.
 
 
 
 
 
 
 
 
 396 *
 397 * Optionally, a record can carry a dictionary of properties (key/value
 398 * pairs), to provide userspace with a machine-readable message context.
 399 *
 400 * Examples for well-defined, commonly used property names are:
 401 *   DEVICE=b12:8               device identifier
 402 *                                b12:8         block dev_t
 403 *                                c127:3        char dev_t
 404 *                                n8            netdev ifindex
 405 *                                +sound:card0  subsystem:devname
 406 *   SUBSYSTEM=pci              driver-core subsystem name
 407 *
 408 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 409 * and values are terminated by a '\0' character.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410 *
 411 * Example of record values:
 412 *   record.text_buf                = "it's a line" (unterminated)
 413 *   record.info.seq                = 56
 414 *   record.info.ts_nsec            = 36863
 415 *   record.info.text_len           = 11
 416 *   record.info.facility           = 0 (LOG_KERN)
 417 *   record.info.flags              = 0
 418 *   record.info.level              = 3 (LOG_ERR)
 419 *   record.info.caller_id          = 299 (task 299)
 420 *   record.info.dev_info.subsystem = "pci" (terminated)
 421 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 422 *
 423 * The 'struct printk_info' buffer must never be directly exported to
 424 * userspace, it is a kernel-private implementation detail that might
 425 * need to be changed in the future, when the requirements change.
 426 *
 427 * /dev/kmsg exports the structured data in the following line format:
 428 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 429 *
 430 * Users of the export format should ignore possible additional values
 431 * separated by ',', and find the message after the ';' character.
 432 *
 433 * The optional key/value pairs are attached as continuation lines starting
 434 * with a space character and terminated by a newline. All possible
 435 * non-prinatable characters are escaped in the "\xff" notation.
 436 */
 437
 438/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 439static DEFINE_MUTEX(syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441#ifdef CONFIG_PRINTK
 442/*
 443 * During panic, heavy printk by other CPUs can delay the
 444 * panic and risk deadlock on console resources.
 
 445 */
 446static int __read_mostly suppress_panic_printk;
 447
 
 448DECLARE_WAIT_QUEUE_HEAD(log_wait);
 449/* All 3 protected by @syslog_lock. */
 450/* the next printk record to read by syslog(READ) or /proc/kmsg */
 451static u64 syslog_seq;
 
 
 452static size_t syslog_partial;
 453static bool syslog_time;
 454
 455struct latched_seq {
 456	seqcount_latch_t	latch;
 457	u64			val[2];
 458};
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460/*
 461 * The next printk record to read after the last 'clear' command. There are
 462 * two copies (updated with seqcount_latch) so that reads can locklessly
 463 * access a valid value. Writers are synchronized by @syslog_lock.
 464 */
 465static struct latched_seq clear_seq = {
 466	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 467	.val[0]		= 0,
 468	.val[1]		= 0,
 469};
 470
 471#define LOG_LEVEL(v)		((v) & 0x07)
 472#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 473
 474/* record buffer */
 475#define LOG_ALIGN __alignof__(unsigned long)
 476#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 477#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 478static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 479static char *log_buf = __log_buf;
 480static u32 log_buf_len = __LOG_BUF_LEN;
 481
 482/*
 483 * Define the average message size. This only affects the number of
 484 * descriptors that will be available. Underestimating is better than
 485 * overestimating (too many available descriptors is better than not enough).
 486 */
 487#define PRB_AVGBITS 5	/* 32 character average length */
 488
 489#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 490#error CONFIG_LOG_BUF_SHIFT value too small.
 491#endif
 492_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 493		 PRB_AVGBITS, &__log_buf[0]);
 494
 495static struct printk_ringbuffer printk_rb_dynamic;
 
 
 
 
 496
 497struct printk_ringbuffer *prb = &printk_rb_static;
 
 
 
 
 498
 499/*
 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 501 * per_cpu_areas are initialised. This variable is set to true when
 502 * it's safe to access per-CPU data.
 503 */
 504static bool __printk_percpu_data_ready __ro_after_init;
 505
 506bool printk_percpu_data_ready(void)
 507{
 508	return __printk_percpu_data_ready;
 
 
 
 
 509}
 510
 511/* Must be called under syslog_lock. */
 512static void latched_seq_write(struct latched_seq *ls, u64 val)
 513{
 514	raw_write_seqcount_latch(&ls->latch);
 515	ls->val[0] = val;
 516	raw_write_seqcount_latch(&ls->latch);
 517	ls->val[1] = val;
 
 
 
 
 
 
 
 
 
 518}
 519
 520/* Can be called from any context. */
 521static u64 latched_seq_read_nolock(struct latched_seq *ls)
 
 
 
 
 
 
 
 
 522{
 523	unsigned int seq;
 524	unsigned int idx;
 525	u64 val;
 526
 527	do {
 528		seq = raw_read_seqcount_latch(&ls->latch);
 529		idx = seq & 0x1;
 530		val = ls->val[idx];
 531	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
 532
 533	return val;
 
 
 
 
 534}
 535
 536/* Return log buffer address */
 537char *log_buf_addr_get(void)
 538{
 539	return log_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540}
 541
 542/* Return log buffer size */
 543u32 log_buf_len_get(void)
 544{
 545	return log_buf_len;
 
 
 
 
 
 
 546}
 547
 548/*
 549 * Define how much of the log buffer we could take at maximum. The value
 550 * must be greater than two. Note that only half of the buffer is available
 551 * when the index points to the middle.
 552 */
 553#define MAX_LOG_TAKE_PART 4
 554static const char trunc_msg[] = "<truncated>";
 555
 556static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 
 557{
 558	/*
 559	 * The message should not take the whole buffer. Otherwise, it might
 560	 * get removed too soon.
 561	 */
 562	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 563
 564	if (*text_len > max_text_len)
 565		*text_len = max_text_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	/* enable the warning message (if there is room) */
 568	*trunc_msg_len = strlen(trunc_msg);
 569	if (*text_len >= *trunc_msg_len)
 570		*text_len -= *trunc_msg_len;
 
 
 
 
 
 
 
 
 
 
 
 571	else
 572		*trunc_msg_len = 0;
 
 
 
 
 
 
 
 
 573}
 574
 575int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 576
 577static int syslog_action_restricted(int type)
 578{
 579	if (dmesg_restrict)
 580		return 1;
 581	/*
 582	 * Unless restricted, we allow "read all" and "get buffer size"
 583	 * for everybody.
 584	 */
 585	return type != SYSLOG_ACTION_READ_ALL &&
 586	       type != SYSLOG_ACTION_SIZE_BUFFER;
 587}
 588
 589static int check_syslog_permissions(int type, int source)
 590{
 591	/*
 592	 * If this is from /proc/kmsg and we've already opened it, then we've
 593	 * already done the capabilities checks at open time.
 594	 */
 595	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 596		goto ok;
 597
 598	if (syslog_action_restricted(type)) {
 599		if (capable(CAP_SYSLOG))
 600			goto ok;
 601		/*
 602		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 603		 * a warning.
 604		 */
 605		if (capable(CAP_SYS_ADMIN)) {
 606			pr_warn_once("%s (%d): Attempt to access syslog with "
 607				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 608				     "(deprecated).\n",
 609				 current->comm, task_pid_nr(current));
 610			goto ok;
 611		}
 612		return -EPERM;
 613	}
 614ok:
 615	return security_syslog(type);
 616}
 
 617
 618static void append_char(char **pp, char *e, char c)
 619{
 620	if (*pp < e)
 621		*(*pp)++ = c;
 622}
 623
 624static ssize_t info_print_ext_header(char *buf, size_t size,
 625				     struct printk_info *info)
 
 626{
 627	u64 ts_usec = info->ts_nsec;
 628	char caller[20];
 629#ifdef CONFIG_PRINTK_CALLER
 630	u32 id = info->caller_id;
 631
 632	snprintf(caller, sizeof(caller), ",caller=%c%u",
 633		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 634#else
 635	caller[0] = '\0';
 636#endif
 637
 638	do_div(ts_usec, 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 641			 (info->facility << 3) | info->level, info->seq,
 642			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 643}
 644
 645static ssize_t msg_add_ext_text(char *buf, size_t size,
 646				const char *text, size_t text_len,
 647				unsigned char endc)
 648{
 649	char *p = buf, *e = buf + size;
 650	size_t i;
 651
 652	/* escape non-printable characters */
 653	for (i = 0; i < text_len; i++) {
 654		unsigned char c = text[i];
 655
 656		if (c < ' ' || c >= 127 || c == '\\')
 657			p += scnprintf(p, e - p, "\\x%02x", c);
 658		else
 659			append_char(&p, e, c);
 660	}
 661	append_char(&p, e, endc);
 662
 663	return p - buf;
 664}
 665
 666static ssize_t msg_add_dict_text(char *buf, size_t size,
 667				 const char *key, const char *val)
 668{
 669	size_t val_len = strlen(val);
 670	ssize_t len;
 671
 672	if (!val_len)
 673		return 0;
 
 
 674
 675	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 676	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 677	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 
 
 678
 679	return len;
 680}
 
 
 681
 682static ssize_t msg_print_ext_body(char *buf, size_t size,
 683				  char *text, size_t text_len,
 684				  struct dev_printk_info *dev_info)
 685{
 686	ssize_t len;
 687
 688	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 689
 690	if (!dev_info)
 691		goto out;
 692
 693	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 694				 dev_info->subsystem);
 695	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 696				 dev_info->device);
 697out:
 698	return len;
 699}
 700
 701/* /dev/kmsg - userspace message inject/listen interface */
 702struct devkmsg_user {
 703	atomic64_t seq;
 704	struct ratelimit_state rs;
 
 705	struct mutex lock;
 706	struct printk_buffers pbufs;
 707};
 708
 709static __printf(3, 4) __cold
 710int devkmsg_emit(int facility, int level, const char *fmt, ...)
 711{
 712	va_list args;
 713	int r;
 714
 715	va_start(args, fmt);
 716	r = vprintk_emit(facility, level, NULL, fmt, args);
 717	va_end(args);
 718
 719	return r;
 720}
 721
 722static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 723{
 724	char *buf, *line;
 725	int level = default_message_loglevel;
 726	int facility = 1;	/* LOG_USER */
 727	struct file *file = iocb->ki_filp;
 728	struct devkmsg_user *user = file->private_data;
 729	size_t len = iov_iter_count(from);
 730	ssize_t ret = len;
 731
 732	if (len > PRINTKRB_RECORD_MAX)
 733		return -EINVAL;
 734
 735	/* Ignore when user logging is disabled. */
 736	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 737		return len;
 738
 739	/* Ratelimit when not explicitly enabled. */
 740	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 741		if (!___ratelimit(&user->rs, current->comm))
 742			return ret;
 743	}
 744
 745	buf = kmalloc(len+1, GFP_KERNEL);
 746	if (buf == NULL)
 747		return -ENOMEM;
 748
 749	buf[len] = '\0';
 750	if (!copy_from_iter_full(buf, len, from)) {
 751		kfree(buf);
 752		return -EFAULT;
 753	}
 754
 755	/*
 756	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 757	 * the decimal value represents 32bit, the lower 3 bit are the log
 758	 * level, the rest are the log facility.
 759	 *
 760	 * If no prefix or no userspace facility is specified, we
 761	 * enforce LOG_USER, to be able to reliably distinguish
 762	 * kernel-generated messages from userspace-injected ones.
 763	 */
 764	line = buf;
 765	if (line[0] == '<') {
 766		char *endp = NULL;
 767		unsigned int u;
 768
 769		u = simple_strtoul(line + 1, &endp, 10);
 770		if (endp && endp[0] == '>') {
 771			level = LOG_LEVEL(u);
 772			if (LOG_FACILITY(u) != 0)
 773				facility = LOG_FACILITY(u);
 774			endp++;
 
 775			line = endp;
 776		}
 777	}
 778
 779	devkmsg_emit(facility, level, "%s", line);
 780	kfree(buf);
 781	return ret;
 782}
 783
 784static ssize_t devkmsg_read(struct file *file, char __user *buf,
 785			    size_t count, loff_t *ppos)
 786{
 787	struct devkmsg_user *user = file->private_data;
 788	char *outbuf = &user->pbufs.outbuf[0];
 789	struct printk_message pmsg = {
 790		.pbufs = &user->pbufs,
 791	};
 792	ssize_t ret;
 793
 
 
 
 794	ret = mutex_lock_interruptible(&user->lock);
 795	if (ret)
 796		return ret;
 797
 798	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
 799		if (file->f_flags & O_NONBLOCK) {
 800			ret = -EAGAIN;
 
 801			goto out;
 802		}
 803
 804		/*
 805		 * Guarantee this task is visible on the waitqueue before
 806		 * checking the wake condition.
 807		 *
 808		 * The full memory barrier within set_current_state() of
 809		 * prepare_to_wait_event() pairs with the full memory barrier
 810		 * within wq_has_sleeper().
 811		 *
 812		 * This pairs with __wake_up_klogd:A.
 813		 */
 814		ret = wait_event_interruptible(log_wait,
 815				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
 816							false)); /* LMM(devkmsg_read:A) */
 817		if (ret)
 818			goto out;
 
 819	}
 820
 821	if (pmsg.dropped) {
 822		/* our last seen message is gone, return error and reset */
 823		atomic64_set(&user->seq, pmsg.seq);
 
 824		ret = -EPIPE;
 
 825		goto out;
 826	}
 827
 828	atomic64_set(&user->seq, pmsg.seq + 1);
 
 
 
 
 
 
 
 
 
 
 829
 830	if (pmsg.outbuf_len > count) {
 831		ret = -EINVAL;
 832		goto out;
 833	}
 834
 835	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
 836		ret = -EFAULT;
 837		goto out;
 838	}
 839	ret = pmsg.outbuf_len;
 840out:
 841	mutex_unlock(&user->lock);
 842	return ret;
 843}
 844
 845/*
 846 * Be careful when modifying this function!!!
 847 *
 848 * Only few operations are supported because the device works only with the
 849 * entire variable length messages (records). Non-standard values are
 850 * returned in the other cases and has been this way for quite some time.
 851 * User space applications might depend on this behavior.
 852 */
 853static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 854{
 855	struct devkmsg_user *user = file->private_data;
 856	loff_t ret = 0;
 857
 
 
 858	if (offset)
 859		return -ESPIPE;
 860
 
 861	switch (whence) {
 862	case SEEK_SET:
 863		/* the first record */
 864		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 865		break;
 866	case SEEK_DATA:
 867		/*
 868		 * The first record after the last SYSLOG_ACTION_CLEAR,
 869		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 870		 * changes no global state, and does not clear anything.
 871		 */
 872		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 
 873		break;
 874	case SEEK_END:
 875		/* after the last record */
 876		atomic64_set(&user->seq, prb_next_seq(prb));
 
 877		break;
 878	default:
 879		ret = -EINVAL;
 880	}
 
 881	return ret;
 882}
 883
 884static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 885{
 886	struct devkmsg_user *user = file->private_data;
 887	struct printk_info info;
 888	__poll_t ret = 0;
 
 
 889
 890	poll_wait(file, &log_wait, wait);
 891
 892	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 
 893		/* return error when data has vanished underneath us */
 894		if (info.seq != atomic64_read(&user->seq))
 895			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 896		else
 897			ret = EPOLLIN|EPOLLRDNORM;
 898	}
 
 899
 900	return ret;
 901}
 902
 903static int devkmsg_open(struct inode *inode, struct file *file)
 904{
 905	struct devkmsg_user *user;
 906	int err;
 907
 908	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 909		return -EPERM;
 
 910
 911	/* write-only does not need any file context */
 912	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 913		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 914					       SYSLOG_FROM_READER);
 915		if (err)
 916			return err;
 917	}
 918
 919	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 920	if (!user)
 921		return -ENOMEM;
 922
 923	ratelimit_default_init(&user->rs);
 924	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 925
 926	mutex_init(&user->lock);
 927
 928	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 
 
 929
 930	file->private_data = user;
 931	return 0;
 932}
 933
 934static int devkmsg_release(struct inode *inode, struct file *file)
 935{
 936	struct devkmsg_user *user = file->private_data;
 937
 938	ratelimit_state_exit(&user->rs);
 
 939
 940	mutex_destroy(&user->lock);
 941	kvfree(user);
 942	return 0;
 943}
 944
 945const struct file_operations kmsg_fops = {
 946	.open = devkmsg_open,
 947	.read = devkmsg_read,
 948	.write_iter = devkmsg_write,
 949	.llseek = devkmsg_llseek,
 950	.poll = devkmsg_poll,
 951	.release = devkmsg_release,
 952};
 953
 954#ifdef CONFIG_CRASH_CORE
 955/*
 956 * This appends the listed symbols to /proc/vmcore
 957 *
 958 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 959 * obtain access to symbols that are otherwise very difficult to locate.  These
 960 * symbols are specifically used so that utilities can access and extract the
 961 * dmesg log from a vmcore file after a crash.
 962 */
 963void log_buf_vmcoreinfo_setup(void)
 964{
 965	struct dev_printk_info *dev_info = NULL;
 966
 967	VMCOREINFO_SYMBOL(prb);
 968	VMCOREINFO_SYMBOL(printk_rb_static);
 969	VMCOREINFO_SYMBOL(clear_seq);
 970
 971	/*
 972	 * Export struct size and field offsets. User space tools can
 973	 * parse it and detect any changes to structure down the line.
 974	 */
 975
 976	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 977	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 978	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 979	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 980
 981	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 982	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 983	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 984	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 985	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 986	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 987
 988	VMCOREINFO_STRUCT_SIZE(prb_desc);
 989	VMCOREINFO_OFFSET(prb_desc, state_var);
 990	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 991
 992	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 993	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 994	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 995
 996	VMCOREINFO_STRUCT_SIZE(printk_info);
 997	VMCOREINFO_OFFSET(printk_info, seq);
 998	VMCOREINFO_OFFSET(printk_info, ts_nsec);
 999	VMCOREINFO_OFFSET(printk_info, text_len);
1000	VMCOREINFO_OFFSET(printk_info, caller_id);
1001	VMCOREINFO_OFFSET(printk_info, dev_info);
1002
1003	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1004	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1005	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1006	VMCOREINFO_OFFSET(dev_printk_info, device);
1007	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1008
1009	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1010	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1011	VMCOREINFO_OFFSET(prb_data_ring, data);
1012	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1013	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1014
1015	VMCOREINFO_SIZE(atomic_long_t);
1016	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1017
1018	VMCOREINFO_STRUCT_SIZE(latched_seq);
1019	VMCOREINFO_OFFSET(latched_seq, val);
1020}
1021#endif
1022
1023/* requested log_buf_len from kernel cmdline */
1024static unsigned long __initdata new_log_buf_len;
1025
1026/* we practice scaling the ring buffer by powers of 2 */
1027static void __init log_buf_len_update(u64 size)
1028{
1029	if (size > (u64)LOG_BUF_LEN_MAX) {
1030		size = (u64)LOG_BUF_LEN_MAX;
1031		pr_err("log_buf over 2G is not supported.\n");
1032	}
1033
1034	if (size)
1035		size = roundup_pow_of_two(size);
1036	if (size > log_buf_len)
1037		new_log_buf_len = (unsigned long)size;
1038}
1039
1040/* save requested log_buf_len since it's too early to process it */
1041static int __init log_buf_len_setup(char *str)
1042{
1043	u64 size;
1044
1045	if (!str)
1046		return -EINVAL;
1047
1048	size = memparse(str, &str);
1049
1050	log_buf_len_update(size);
1051
1052	return 0;
1053}
1054early_param("log_buf_len", log_buf_len_setup);
1055
1056#ifdef CONFIG_SMP
1057#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1058
1059static void __init log_buf_add_cpu(void)
1060{
1061	unsigned int cpu_extra;
1062
1063	/*
1064	 * archs should set up cpu_possible_bits properly with
1065	 * set_cpu_possible() after setup_arch() but just in
1066	 * case lets ensure this is valid.
1067	 */
1068	if (num_possible_cpus() == 1)
1069		return;
1070
1071	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1072
1073	/* by default this will only continue through for large > 64 CPUs */
1074	if (cpu_extra <= __LOG_BUF_LEN / 2)
1075		return;
1076
1077	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1078		__LOG_CPU_MAX_BUF_LEN);
1079	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1080		cpu_extra);
1081	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1082
1083	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1084}
1085#else /* !CONFIG_SMP */
1086static inline void log_buf_add_cpu(void) {}
1087#endif /* CONFIG_SMP */
1088
1089static void __init set_percpu_data_ready(void)
1090{
1091	__printk_percpu_data_ready = true;
1092}
1093
1094static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1095				     struct printk_record *r)
1096{
1097	struct prb_reserved_entry e;
1098	struct printk_record dest_r;
1099
1100	prb_rec_init_wr(&dest_r, r->info->text_len);
1101
1102	if (!prb_reserve(&e, rb, &dest_r))
1103		return 0;
1104
1105	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1106	dest_r.info->text_len = r->info->text_len;
1107	dest_r.info->facility = r->info->facility;
1108	dest_r.info->level = r->info->level;
1109	dest_r.info->flags = r->info->flags;
1110	dest_r.info->ts_nsec = r->info->ts_nsec;
1111	dest_r.info->caller_id = r->info->caller_id;
1112	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1113
1114	prb_final_commit(&e);
1115
1116	return prb_record_text_space(&e);
1117}
1118
1119static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1120
1121void __init setup_log_buf(int early)
1122{
1123	struct printk_info *new_infos;
1124	unsigned int new_descs_count;
1125	struct prb_desc *new_descs;
1126	struct printk_info info;
1127	struct printk_record r;
1128	unsigned int text_size;
1129	size_t new_descs_size;
1130	size_t new_infos_size;
1131	unsigned long flags;
1132	char *new_log_buf;
1133	unsigned int free;
1134	u64 seq;
1135
1136	/*
1137	 * Some archs call setup_log_buf() multiple times - first is very
1138	 * early, e.g. from setup_arch(), and second - when percpu_areas
1139	 * are initialised.
1140	 */
1141	if (!early)
1142		set_percpu_data_ready();
1143
1144	if (log_buf != __log_buf)
1145		return;
1146
1147	if (!early && !new_log_buf_len)
1148		log_buf_add_cpu();
1149
1150	if (!new_log_buf_len)
1151		return;
1152
1153	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1154	if (new_descs_count == 0) {
1155		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1156		return;
 
 
1157	}
1158
1159	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1160	if (unlikely(!new_log_buf)) {
1161		pr_err("log_buf_len: %lu text bytes not available\n",
1162		       new_log_buf_len);
1163		return;
1164	}
1165
1166	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1167	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1168	if (unlikely(!new_descs)) {
1169		pr_err("log_buf_len: %zu desc bytes not available\n",
1170		       new_descs_size);
1171		goto err_free_log_buf;
1172	}
1173
1174	new_infos_size = new_descs_count * sizeof(struct printk_info);
1175	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1176	if (unlikely(!new_infos)) {
1177		pr_err("log_buf_len: %zu info bytes not available\n",
1178		       new_infos_size);
1179		goto err_free_descs;
1180	}
1181
1182	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1183
1184	prb_init(&printk_rb_dynamic,
1185		 new_log_buf, ilog2(new_log_buf_len),
1186		 new_descs, ilog2(new_descs_count),
1187		 new_infos);
1188
1189	local_irq_save(flags);
1190
1191	log_buf_len = new_log_buf_len;
1192	log_buf = new_log_buf;
1193	new_log_buf_len = 0;
 
 
 
1194
1195	free = __LOG_BUF_LEN;
1196	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1197		text_size = add_to_rb(&printk_rb_dynamic, &r);
1198		if (text_size > free)
1199			free = 0;
1200		else
1201			free -= text_size;
1202	}
1203
1204	prb = &printk_rb_dynamic;
1205
1206	local_irq_restore(flags);
1207
1208	/*
1209	 * Copy any remaining messages that might have appeared from
1210	 * NMI context after copying but before switching to the
1211	 * dynamic buffer.
1212	 */
1213	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1214		text_size = add_to_rb(&printk_rb_dynamic, &r);
1215		if (text_size > free)
1216			free = 0;
1217		else
1218			free -= text_size;
1219	}
1220
1221	if (seq != prb_next_seq(&printk_rb_static)) {
1222		pr_err("dropped %llu messages\n",
1223		       prb_next_seq(&printk_rb_static) - seq);
1224	}
1225
1226	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1227	pr_info("early log buf free: %u(%u%%)\n",
1228		free, (free * 100) / __LOG_BUF_LEN);
1229	return;
1230
1231err_free_descs:
1232	memblock_free(new_descs, new_descs_size);
1233err_free_log_buf:
1234	memblock_free(new_log_buf, new_log_buf_len);
1235}
1236
1237static bool __read_mostly ignore_loglevel;
1238
1239static int __init ignore_loglevel_setup(char *str)
1240{
1241	ignore_loglevel = true;
1242	pr_info("debug: ignoring loglevel setting.\n");
1243
1244	return 0;
1245}
1246
1247early_param("ignore_loglevel", ignore_loglevel_setup);
1248module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1249MODULE_PARM_DESC(ignore_loglevel,
1250		 "ignore loglevel setting (prints all kernel messages to the console)");
1251
1252static bool suppress_message_printing(int level)
1253{
1254	return (level >= console_loglevel && !ignore_loglevel);
1255}
1256
1257#ifdef CONFIG_BOOT_PRINTK_DELAY
1258
1259static int boot_delay; /* msecs delay after each printk during bootup */
1260static unsigned long long loops_per_msec;	/* based on boot_delay */
1261
1262static int __init boot_delay_setup(char *str)
1263{
1264	unsigned long lpj;
1265
1266	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1267	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1268
1269	get_option(&str, &boot_delay);
1270	if (boot_delay > 10 * 1000)
1271		boot_delay = 0;
1272
1273	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1274		"HZ: %d, loops_per_msec: %llu\n",
1275		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1276	return 0;
1277}
1278early_param("boot_delay", boot_delay_setup);
1279
1280static void boot_delay_msec(int level)
1281{
1282	unsigned long long k;
1283	unsigned long timeout;
1284
1285	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1286		|| suppress_message_printing(level)) {
1287		return;
1288	}
1289
1290	k = (unsigned long long)loops_per_msec * boot_delay;
1291
1292	timeout = jiffies + msecs_to_jiffies(boot_delay);
1293	while (k) {
1294		k--;
1295		cpu_relax();
1296		/*
1297		 * use (volatile) jiffies to prevent
1298		 * compiler reduction; loop termination via jiffies
1299		 * is secondary and may or may not happen.
1300		 */
1301		if (time_after(jiffies, timeout))
1302			break;
1303		touch_nmi_watchdog();
1304	}
1305}
1306#else
1307static inline void boot_delay_msec(int level)
1308{
1309}
1310#endif
1311
1312static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1313module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1314
1315static size_t print_syslog(unsigned int level, char *buf)
1316{
1317	return sprintf(buf, "<%u>", level);
1318}
1319
1320static size_t print_time(u64 ts, char *buf)
1321{
1322	unsigned long rem_nsec = do_div(ts, 1000000000);
1323
1324	return sprintf(buf, "[%5lu.%06lu]",
1325		       (unsigned long)ts, rem_nsec / 1000);
1326}
1327
1328#ifdef CONFIG_PRINTK_CALLER
1329static size_t print_caller(u32 id, char *buf)
1330{
1331	char caller[12];
1332
1333	snprintf(caller, sizeof(caller), "%c%u",
1334		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1335	return sprintf(buf, "[%6s]", caller);
1336}
1337#else
1338#define print_caller(id, buf) 0
1339#endif
1340
1341static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1342				bool time, char *buf)
1343{
1344	size_t len = 0;
 
1345
1346	if (syslog)
1347		len = print_syslog((info->facility << 3) | info->level, buf);
1348
1349	if (time)
1350		len += print_time(info->ts_nsec, buf + len);
1351
1352	len += print_caller(info->caller_id, buf + len);
1353
1354	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1355		buf[len++] = ' ';
1356		buf[len] = '\0';
 
1357	}
1358
 
1359	return len;
1360}
1361
1362/*
1363 * Prepare the record for printing. The text is shifted within the given
1364 * buffer to avoid a need for another one. The following operations are
1365 * done:
1366 *
1367 *   - Add prefix for each line.
1368 *   - Drop truncated lines that no longer fit into the buffer.
1369 *   - Add the trailing newline that has been removed in vprintk_store().
1370 *   - Add a string terminator.
1371 *
1372 * Since the produced string is always terminated, the maximum possible
1373 * return value is @r->text_buf_size - 1;
1374 *
1375 * Return: The length of the updated/prepared text, including the added
1376 * prefixes and the newline. The terminator is not counted. The dropped
1377 * line(s) are not counted.
1378 */
1379static size_t record_print_text(struct printk_record *r, bool syslog,
1380				bool time)
1381{
1382	size_t text_len = r->info->text_len;
1383	size_t buf_size = r->text_buf_size;
1384	char *text = r->text_buf;
1385	char prefix[PRINTK_PREFIX_MAX];
1386	bool truncated = false;
1387	size_t prefix_len;
1388	size_t line_len;
1389	size_t len = 0;
1390	char *next;
1391
1392	/*
1393	 * If the message was truncated because the buffer was not large
1394	 * enough, treat the available text as if it were the full text.
1395	 */
1396	if (text_len > buf_size)
1397		text_len = buf_size;
 
 
 
 
1398
1399	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
 
 
1400
1401	/*
1402	 * @text_len: bytes of unprocessed text
1403	 * @line_len: bytes of current line _without_ newline
1404	 * @text:     pointer to beginning of current line
1405	 * @len:      number of bytes prepared in r->text_buf
1406	 */
1407	for (;;) {
1408		next = memchr(text, '\n', text_len);
1409		if (next) {
1410			line_len = next - text;
 
 
1411		} else {
1412			/* Drop truncated line(s). */
1413			if (truncated)
1414				break;
1415			line_len = text_len;
1416		}
1417
1418		/*
1419		 * Truncate the text if there is not enough space to add the
1420		 * prefix and a trailing newline and a terminator.
1421		 */
1422		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1423			/* Drop even the current line if no space. */
1424			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1425				break;
1426
1427			text_len = buf_size - len - prefix_len - 1 - 1;
1428			truncated = true;
 
 
 
 
 
 
 
 
 
 
 
1429		}
1430
1431		memmove(text + prefix_len, text, text_len);
1432		memcpy(text, prefix, prefix_len);
1433
1434		/*
1435		 * Increment the prepared length to include the text and
1436		 * prefix that were just moved+copied. Also increment for the
1437		 * newline at the end of this line. If this is the last line,
1438		 * there is no newline, but it will be added immediately below.
1439		 */
1440		len += prefix_len + line_len + 1;
1441		if (text_len == line_len) {
1442			/*
1443			 * This is the last line. Add the trailing newline
1444			 * removed in vprintk_store().
1445			 */
1446			text[prefix_len + line_len] = '\n';
1447			break;
1448		}
1449
1450		/*
1451		 * Advance beyond the added prefix and the related line with
1452		 * its newline.
1453		 */
1454		text += prefix_len + line_len + 1;
1455
1456		/*
1457		 * The remaining text has only decreased by the line with its
1458		 * newline.
1459		 *
1460		 * Note that @text_len can become zero. It happens when @text
1461		 * ended with a newline (either due to truncation or the
1462		 * original string ending with "\n\n"). The loop is correctly
1463		 * repeated and (if not truncated) an empty line with a prefix
1464		 * will be prepared.
1465		 */
1466		text_len -= line_len + 1;
1467	}
1468
1469	/*
1470	 * If a buffer was provided, it will be terminated. Space for the
1471	 * string terminator is guaranteed to be available. The terminator is
1472	 * not counted in the return value.
1473	 */
1474	if (buf_size > 0)
1475		r->text_buf[len] = 0;
1476
1477	return len;
1478}
1479
1480static size_t get_record_print_text_size(struct printk_info *info,
1481					 unsigned int line_count,
1482					 bool syslog, bool time)
1483{
1484	char prefix[PRINTK_PREFIX_MAX];
1485	size_t prefix_len;
1486
1487	prefix_len = info_print_prefix(info, syslog, time, prefix);
1488
1489	/*
1490	 * Each line will be preceded with a prefix. The intermediate
1491	 * newlines are already within the text, but a final trailing
1492	 * newline will be added.
1493	 */
1494	return ((prefix_len * line_count) + info->text_len + 1);
1495}
1496
1497/*
1498 * Beginning with @start_seq, find the first record where it and all following
1499 * records up to (but not including) @max_seq fit into @size.
1500 *
1501 * @max_seq is simply an upper bound and does not need to exist. If the caller
1502 * does not require an upper bound, -1 can be used for @max_seq.
1503 */
1504static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1505				  bool syslog, bool time)
1506{
1507	struct printk_info info;
1508	unsigned int line_count;
1509	size_t len = 0;
1510	u64 seq;
1511
1512	/* Determine the size of the records up to @max_seq. */
1513	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1514		if (info.seq >= max_seq)
1515			break;
1516		len += get_record_print_text_size(&info, line_count, syslog, time);
1517	}
1518
1519	/*
1520	 * Adjust the upper bound for the next loop to avoid subtracting
1521	 * lengths that were never added.
1522	 */
1523	if (seq < max_seq)
1524		max_seq = seq;
1525
1526	/*
1527	 * Move first record forward until length fits into the buffer. Ignore
1528	 * newest messages that were not counted in the above cycle. Messages
1529	 * might appear and get lost in the meantime. This is a best effort
1530	 * that prevents an infinite loop that could occur with a retry.
1531	 */
1532	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1533		if (len <= size || info.seq >= max_seq)
1534			break;
1535		len -= get_record_print_text_size(&info, line_count, syslog, time);
1536	}
1537
1538	return seq;
1539}
1540
1541/* The caller is responsible for making sure @size is greater than 0. */
1542static int syslog_print(char __user *buf, int size)
1543{
1544	struct printk_info info;
1545	struct printk_record r;
1546	char *text;
 
1547	int len = 0;
1548	u64 seq;
1549
1550	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1551	if (!text)
1552		return -ENOMEM;
1553
1554	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1555
1556	mutex_lock(&syslog_lock);
1557
1558	/*
1559	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1560	 * change while waiting.
1561	 */
1562	do {
1563		seq = syslog_seq;
1564
1565		mutex_unlock(&syslog_lock);
1566		/*
1567		 * Guarantee this task is visible on the waitqueue before
1568		 * checking the wake condition.
1569		 *
1570		 * The full memory barrier within set_current_state() of
1571		 * prepare_to_wait_event() pairs with the full memory barrier
1572		 * within wq_has_sleeper().
1573		 *
1574		 * This pairs with __wake_up_klogd:A.
1575		 */
1576		len = wait_event_interruptible(log_wait,
1577				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1578		mutex_lock(&syslog_lock);
1579
1580		if (len)
1581			goto out;
1582	} while (syslog_seq != seq);
1583
1584	/*
1585	 * Copy records that fit into the buffer. The above cycle makes sure
1586	 * that the first record is always available.
1587	 */
1588	do {
1589		size_t n;
1590		size_t skip;
1591		int err;
1592
1593		if (!prb_read_valid(prb, syslog_seq, &r))
 
 
 
 
 
 
 
 
 
1594			break;
1595
1596		if (r.info->seq != syslog_seq) {
1597			/* message is gone, move to next valid one */
1598			syslog_seq = r.info->seq;
1599			syslog_partial = 0;
1600		}
1601
1602		/*
1603		 * To keep reading/counting partial line consistent,
1604		 * use printk_time value as of the beginning of a line.
1605		 */
1606		if (!syslog_partial)
1607			syslog_time = printk_time;
1608
1609		skip = syslog_partial;
1610		n = record_print_text(&r, true, syslog_time);
 
 
1611		if (n - syslog_partial <= size) {
1612			/* message fits into buffer, move forward */
1613			syslog_seq = r.info->seq + 1;
 
 
1614			n -= syslog_partial;
1615			syslog_partial = 0;
1616		} else if (!len){
1617			/* partial read(), remember position */
1618			n = size;
1619			syslog_partial += n;
1620		} else
1621			n = 0;
 
1622
1623		if (!n)
1624			break;
1625
1626		mutex_unlock(&syslog_lock);
1627		err = copy_to_user(buf, text + skip, n);
1628		mutex_lock(&syslog_lock);
1629
1630		if (err) {
1631			if (!len)
1632				len = -EFAULT;
1633			break;
1634		}
1635
1636		len += n;
1637		size -= n;
1638		buf += n;
1639	} while (size);
1640out:
1641	mutex_unlock(&syslog_lock);
1642	kfree(text);
1643	return len;
1644}
1645
1646static int syslog_print_all(char __user *buf, int size, bool clear)
1647{
1648	struct printk_info info;
1649	struct printk_record r;
1650	char *text;
1651	int len = 0;
1652	u64 seq;
1653	bool time;
1654
1655	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1656	if (!text)
1657		return -ENOMEM;
1658
1659	time = printk_time;
1660	/*
1661	 * Find first record that fits, including all following records,
1662	 * into the user-provided buffer for this dump.
1663	 */
1664	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1665				     size, true, time);
1666
1667	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668
1669	prb_for_each_record(seq, prb, seq, &r) {
1670		int textlen;
1671
1672		textlen = record_print_text(&r, true, time);
1673
1674		if (len + textlen > size) {
1675			seq--;
1676			break;
 
 
 
 
 
1677		}
1678
1679		if (copy_to_user(buf + len, text, textlen))
1680			len = -EFAULT;
1681		else
1682			len += textlen;
1683
1684		if (len < 0)
1685			break;
1686	}
1687
1688	if (clear) {
1689		mutex_lock(&syslog_lock);
1690		latched_seq_write(&clear_seq, seq);
1691		mutex_unlock(&syslog_lock);
1692	}
 
1693
1694	kfree(text);
1695	return len;
1696}
1697
1698static void syslog_clear(void)
1699{
1700	mutex_lock(&syslog_lock);
1701	latched_seq_write(&clear_seq, prb_next_seq(prb));
1702	mutex_unlock(&syslog_lock);
1703}
1704
1705int do_syslog(int type, char __user *buf, int len, int source)
1706{
1707	struct printk_info info;
1708	bool clear = false;
1709	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1710	int error;
1711
1712	error = check_syslog_permissions(type, source);
1713	if (error)
1714		return error;
1715
1716	switch (type) {
1717	case SYSLOG_ACTION_CLOSE:	/* Close log */
1718		break;
1719	case SYSLOG_ACTION_OPEN:	/* Open log */
1720		break;
1721	case SYSLOG_ACTION_READ:	/* Read from log */
 
1722		if (!buf || len < 0)
1723			return -EINVAL;
 
1724		if (!len)
1725			return 0;
1726		if (!access_ok(buf, len))
1727			return -EFAULT;
 
 
 
 
 
 
1728		error = syslog_print(buf, len);
1729		break;
1730	/* Read/clear last kernel messages */
1731	case SYSLOG_ACTION_READ_CLEAR:
1732		clear = true;
1733		fallthrough;
1734	/* Read last kernel messages */
1735	case SYSLOG_ACTION_READ_ALL:
 
1736		if (!buf || len < 0)
1737			return -EINVAL;
 
1738		if (!len)
1739			return 0;
1740		if (!access_ok(buf, len))
1741			return -EFAULT;
 
 
1742		error = syslog_print_all(buf, len, clear);
1743		break;
1744	/* Clear ring buffer */
1745	case SYSLOG_ACTION_CLEAR:
1746		syslog_clear();
1747		break;
1748	/* Disable logging to console */
1749	case SYSLOG_ACTION_CONSOLE_OFF:
1750		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1751			saved_console_loglevel = console_loglevel;
1752		console_loglevel = minimum_console_loglevel;
1753		break;
1754	/* Enable logging to console */
1755	case SYSLOG_ACTION_CONSOLE_ON:
1756		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1757			console_loglevel = saved_console_loglevel;
1758			saved_console_loglevel = LOGLEVEL_DEFAULT;
1759		}
1760		break;
1761	/* Set level of messages printed to console */
1762	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1763		if (len < 1 || len > 8)
1764			return -EINVAL;
1765		if (len < minimum_console_loglevel)
1766			len = minimum_console_loglevel;
1767		console_loglevel = len;
1768		/* Implicitly re-enable logging to console */
1769		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1770		break;
1771	/* Number of chars in the log buffer */
1772	case SYSLOG_ACTION_SIZE_UNREAD:
1773		mutex_lock(&syslog_lock);
1774		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1775			/* No unread messages. */
1776			mutex_unlock(&syslog_lock);
1777			return 0;
1778		}
1779		if (info.seq != syslog_seq) {
1780			/* messages are gone, move to first one */
1781			syslog_seq = info.seq;
 
 
1782			syslog_partial = 0;
1783		}
1784		if (source == SYSLOG_FROM_PROC) {
1785			/*
1786			 * Short-cut for poll(/"proc/kmsg") which simply checks
1787			 * for pending data, not the size; return the count of
1788			 * records, not the length.
1789			 */
1790			error = prb_next_seq(prb) - syslog_seq;
1791		} else {
1792			bool time = syslog_partial ? syslog_time : printk_time;
1793			unsigned int line_count;
1794			u64 seq;
1795
1796			prb_for_each_info(syslog_seq, prb, seq, &info,
1797					  &line_count) {
1798				error += get_record_print_text_size(&info, line_count,
1799								    true, time);
1800				time = printk_time;
 
 
 
1801			}
1802			error -= syslog_partial;
1803		}
1804		mutex_unlock(&syslog_lock);
1805		break;
1806	/* Size of the log buffer */
1807	case SYSLOG_ACTION_SIZE_BUFFER:
1808		error = log_buf_len;
1809		break;
1810	default:
1811		error = -EINVAL;
1812		break;
1813	}
1814
1815	return error;
1816}
1817
1818SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1819{
1820	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1821}
1822
1823/*
1824 * Special console_lock variants that help to reduce the risk of soft-lockups.
1825 * They allow to pass console_lock to another printk() call using a busy wait.
1826 */
 
 
 
 
 
 
1827
1828#ifdef CONFIG_LOCKDEP
1829static struct lockdep_map console_owner_dep_map = {
1830	.name = "console_owner"
1831};
1832#endif
1833
1834static DEFINE_RAW_SPINLOCK(console_owner_lock);
1835static struct task_struct *console_owner;
1836static bool console_waiter;
 
1837
1838/**
1839 * console_lock_spinning_enable - mark beginning of code where another
1840 *	thread might safely busy wait
1841 *
1842 * This basically converts console_lock into a spinlock. This marks
1843 * the section where the console_lock owner can not sleep, because
1844 * there may be a waiter spinning (like a spinlock). Also it must be
1845 * ready to hand over the lock at the end of the section.
1846 */
1847static void console_lock_spinning_enable(void)
1848{
1849	raw_spin_lock(&console_owner_lock);
1850	console_owner = current;
1851	raw_spin_unlock(&console_owner_lock);
1852
1853	/* The waiter may spin on us after setting console_owner */
1854	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1855}
1856
1857/**
1858 * console_lock_spinning_disable_and_check - mark end of code where another
1859 *	thread was able to busy wait and check if there is a waiter
1860 * @cookie: cookie returned from console_srcu_read_lock()
1861 *
1862 * This is called at the end of the section where spinning is allowed.
1863 * It has two functions. First, it is a signal that it is no longer
1864 * safe to start busy waiting for the lock. Second, it checks if
1865 * there is a busy waiter and passes the lock rights to her.
1866 *
1867 * Important: Callers lose both the console_lock and the SRCU read lock if
1868 *	there was a busy waiter. They must not touch items synchronized by
1869 *	console_lock or SRCU read lock in this case.
1870 *
1871 * Return: 1 if the lock rights were passed, 0 otherwise.
1872 */
1873static int console_lock_spinning_disable_and_check(int cookie)
1874{
1875	int waiter;
1876
1877	raw_spin_lock(&console_owner_lock);
1878	waiter = READ_ONCE(console_waiter);
1879	console_owner = NULL;
1880	raw_spin_unlock(&console_owner_lock);
1881
1882	if (!waiter) {
1883		spin_release(&console_owner_dep_map, _THIS_IP_);
1884		return 0;
1885	}
1886
1887	/* The waiter is now free to continue */
1888	WRITE_ONCE(console_waiter, false);
1889
1890	spin_release(&console_owner_dep_map, _THIS_IP_);
1891
1892	/*
1893	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1894	 * releasing the console_lock.
1895	 */
1896	console_srcu_read_unlock(cookie);
1897
1898	/*
1899	 * Hand off console_lock to waiter. The waiter will perform
1900	 * the up(). After this, the waiter is the console_lock owner.
1901	 */
1902	mutex_release(&console_lock_dep_map, _THIS_IP_);
1903	return 1;
1904}
1905
1906/**
1907 * console_trylock_spinning - try to get console_lock by busy waiting
1908 *
1909 * This allows to busy wait for the console_lock when the current
1910 * owner is running in specially marked sections. It means that
1911 * the current owner is running and cannot reschedule until it
1912 * is ready to lose the lock.
1913 *
1914 * Return: 1 if we got the lock, 0 othrewise
1915 */
1916static int console_trylock_spinning(void)
1917{
1918	struct task_struct *owner = NULL;
1919	bool waiter;
1920	bool spin = false;
1921	unsigned long flags;
1922
1923	if (console_trylock())
1924		return 1;
 
1925
1926	/*
1927	 * It's unsafe to spin once a panic has begun. If we are the
1928	 * panic CPU, we may have already halted the owner of the
1929	 * console_sem. If we are not the panic CPU, then we should
1930	 * avoid taking console_sem, so the panic CPU has a better
1931	 * chance of cleanly acquiring it later.
1932	 */
1933	if (panic_in_progress())
1934		return 0;
1935
1936	printk_safe_enter_irqsave(flags);
1937
1938	raw_spin_lock(&console_owner_lock);
1939	owner = READ_ONCE(console_owner);
1940	waiter = READ_ONCE(console_waiter);
1941	if (!waiter && owner && owner != current) {
1942		WRITE_ONCE(console_waiter, true);
1943		spin = true;
1944	}
1945	raw_spin_unlock(&console_owner_lock);
1946
1947	/*
1948	 * If there is an active printk() writing to the
1949	 * consoles, instead of having it write our data too,
1950	 * see if we can offload that load from the active
1951	 * printer, and do some printing ourselves.
1952	 * Go into a spin only if there isn't already a waiter
1953	 * spinning, and there is an active printer, and
1954	 * that active printer isn't us (recursive printk?).
1955	 */
1956	if (!spin) {
1957		printk_safe_exit_irqrestore(flags);
1958		return 0;
1959	}
1960
1961	/* We spin waiting for the owner to release us */
1962	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1963	/* Owner will clear console_waiter on hand off */
1964	while (READ_ONCE(console_waiter))
1965		cpu_relax();
1966	spin_release(&console_owner_dep_map, _THIS_IP_);
1967
1968	printk_safe_exit_irqrestore(flags);
1969	/*
1970	 * The owner passed the console lock to us.
1971	 * Since we did not spin on console lock, annotate
1972	 * this as a trylock. Otherwise lockdep will
1973	 * complain.
1974	 */
1975	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1976
1977	return 1;
1978}
1979
1980/*
1981 * Recursion is tracked separately on each CPU. If NMIs are supported, an
1982 * additional NMI context per CPU is also separately tracked. Until per-CPU
1983 * is available, a separate "early tracking" is performed.
1984 */
1985static DEFINE_PER_CPU(u8, printk_count);
1986static u8 printk_count_early;
1987#ifdef CONFIG_HAVE_NMI
1988static DEFINE_PER_CPU(u8, printk_count_nmi);
1989static u8 printk_count_nmi_early;
1990#endif
1991
1992/*
1993 * Recursion is limited to keep the output sane. printk() should not require
1994 * more than 1 level of recursion (allowing, for example, printk() to trigger
1995 * a WARN), but a higher value is used in case some printk-internal errors
1996 * exist, such as the ringbuffer validation checks failing.
1997 */
1998#define PRINTK_MAX_RECURSION 3
1999
2000/*
2001 * Return a pointer to the dedicated counter for the CPU+context of the
2002 * caller.
2003 */
2004static u8 *__printk_recursion_counter(void)
2005{
2006#ifdef CONFIG_HAVE_NMI
2007	if (in_nmi()) {
2008		if (printk_percpu_data_ready())
2009			return this_cpu_ptr(&printk_count_nmi);
2010		return &printk_count_nmi_early;
2011	}
2012#endif
2013	if (printk_percpu_data_ready())
2014		return this_cpu_ptr(&printk_count);
2015	return &printk_count_early;
2016}
2017
2018/*
2019 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2020 * The caller must check the boolean return value to see if the recursion is
2021 * allowed. On failure, interrupts are not disabled.
2022 *
2023 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2024 * that is passed to printk_exit_irqrestore().
2025 */
2026#define printk_enter_irqsave(recursion_ptr, flags)	\
2027({							\
2028	bool success = true;				\
2029							\
2030	typecheck(u8 *, recursion_ptr);			\
2031	local_irq_save(flags);				\
2032	(recursion_ptr) = __printk_recursion_counter();	\
2033	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2034		local_irq_restore(flags);		\
2035		success = false;			\
2036	} else {					\
2037		(*(recursion_ptr))++;			\
2038	}						\
2039	success;					\
2040})
2041
2042/* Exit recursion tracking, restoring interrupts. */
2043#define printk_exit_irqrestore(recursion_ptr, flags)	\
2044	do {						\
2045		typecheck(u8 *, recursion_ptr);		\
2046		(*(recursion_ptr))--;			\
2047		local_irq_restore(flags);		\
2048	} while (0)
2049
2050int printk_delay_msec __read_mostly;
2051
2052static inline void printk_delay(int level)
2053{
2054	boot_delay_msec(level);
2055
2056	if (unlikely(printk_delay_msec)) {
2057		int m = printk_delay_msec;
2058
2059		while (m--) {
2060			mdelay(1);
2061			touch_nmi_watchdog();
2062		}
2063	}
2064}
2065
2066static inline u32 printk_caller_id(void)
2067{
2068	return in_task() ? task_pid_nr(current) :
2069		0x80000000 + smp_processor_id();
2070}
 
 
 
 
 
 
 
 
 
 
 
 
2071
2072/**
2073 * printk_parse_prefix - Parse level and control flags.
2074 *
2075 * @text:     The terminated text message.
2076 * @level:    A pointer to the current level value, will be updated.
2077 * @flags:    A pointer to the current printk_info flags, will be updated.
2078 *
2079 * @level may be NULL if the caller is not interested in the parsed value.
2080 * Otherwise the variable pointed to by @level must be set to
2081 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2082 *
2083 * @flags may be NULL if the caller is not interested in the parsed value.
2084 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2085 * value.
2086 *
2087 * Return: The length of the parsed level and control flags.
2088 */
2089u16 printk_parse_prefix(const char *text, int *level,
2090			enum printk_info_flags *flags)
2091{
2092	u16 prefix_len = 0;
2093	int kern_level;
 
 
2094
2095	while (*text) {
2096		kern_level = printk_get_level(text);
2097		if (!kern_level)
2098			break;
2099
2100		switch (kern_level) {
2101		case '0' ... '7':
2102			if (level && *level == LOGLEVEL_DEFAULT)
2103				*level = kern_level - '0';
2104			break;
2105		case 'c':	/* KERN_CONT */
2106			if (flags)
2107				*flags |= LOG_CONT;
2108		}
2109
2110		prefix_len += 2;
2111		text += 2;
 
2112	}
2113
2114	return prefix_len;
2115}
2116
2117__printf(5, 0)
2118static u16 printk_sprint(char *text, u16 size, int facility,
2119			 enum printk_info_flags *flags, const char *fmt,
2120			 va_list args)
2121{
2122	u16 text_len;
 
2123
2124	text_len = vscnprintf(text, size, fmt, args);
 
 
 
 
 
 
 
 
2125
2126	/* Mark and strip a trailing newline. */
2127	if (text_len && text[text_len - 1] == '\n') {
2128		text_len--;
2129		*flags |= LOG_NEWLINE;
 
 
 
 
2130	}
2131
2132	/* Strip log level and control flags. */
2133	if (facility == 0) {
2134		u16 prefix_len;
2135
2136		prefix_len = printk_parse_prefix(text, NULL, NULL);
2137		if (prefix_len) {
2138			text_len -= prefix_len;
2139			memmove(text, text + prefix_len, text_len);
2140		}
2141	}
2142
2143	trace_console(text, text_len);
 
2144
2145	return text_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146}
2147
2148__printf(4, 0)
2149int vprintk_store(int facility, int level,
2150		  const struct dev_printk_info *dev_info,
2151		  const char *fmt, va_list args)
2152{
2153	struct prb_reserved_entry e;
2154	enum printk_info_flags flags = 0;
2155	struct printk_record r;
2156	unsigned long irqflags;
2157	u16 trunc_msg_len = 0;
2158	char prefix_buf[8];
2159	u8 *recursion_ptr;
2160	u16 reserve_size;
2161	va_list args2;
2162	u32 caller_id;
2163	u16 text_len;
2164	int ret = 0;
2165	u64 ts_nsec;
2166
2167	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2168		return 0;
 
 
2169
2170	/*
2171	 * Since the duration of printk() can vary depending on the message
2172	 * and state of the ringbuffer, grab the timestamp now so that it is
2173	 * close to the call of printk(). This provides a more deterministic
2174	 * timestamp with respect to the caller.
2175	 */
2176	ts_nsec = local_clock();
2177
2178	caller_id = printk_caller_id();
 
2179
2180	/*
2181	 * The sprintf needs to come first since the syslog prefix might be
2182	 * passed in as a parameter. An extra byte must be reserved so that
2183	 * later the vscnprintf() into the reserved buffer has room for the
2184	 * terminating '\0', which is not counted by vsnprintf().
2185	 */
2186	va_copy(args2, args);
2187	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2188	va_end(args2);
2189
2190	if (reserve_size > PRINTKRB_RECORD_MAX)
2191		reserve_size = PRINTKRB_RECORD_MAX;
2192
2193	/* Extract log level or control flags. */
2194	if (facility == 0)
2195		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2196
2197	if (level == LOGLEVEL_DEFAULT)
2198		level = default_message_loglevel;
 
 
2199
2200	if (dev_info)
2201		flags |= LOG_NEWLINE;
 
 
2202
2203	if (flags & LOG_CONT) {
2204		prb_rec_init_wr(&r, reserve_size);
2205		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2206			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2207						 facility, &flags, fmt, args);
2208			r.info->text_len += text_len;
2209
2210			if (flags & LOG_NEWLINE) {
2211				r.info->flags |= LOG_NEWLINE;
2212				prb_final_commit(&e);
2213			} else {
2214				prb_commit(&e);
2215			}
2216
2217			ret = text_len;
2218			goto out;
2219		}
 
 
2220	}
2221
2222	/*
2223	 * Explicitly initialize the record before every prb_reserve() call.
2224	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2225	 * structure when they fail.
2226	 */
2227	prb_rec_init_wr(&r, reserve_size);
2228	if (!prb_reserve(&e, prb, &r)) {
2229		/* truncate the message if it is too long for empty buffer */
2230		truncate_msg(&reserve_size, &trunc_msg_len);
 
 
 
 
 
 
 
2231
2232		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2233		if (!prb_reserve(&e, prb, &r))
2234			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235	}
2236
2237	/* fill message */
2238	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2239	if (trunc_msg_len)
2240		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2241	r.info->text_len = text_len + trunc_msg_len;
2242	r.info->facility = facility;
2243	r.info->level = level & 7;
2244	r.info->flags = flags & 0x1f;
2245	r.info->ts_nsec = ts_nsec;
2246	r.info->caller_id = caller_id;
2247	if (dev_info)
2248		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2249
2250	/* A message without a trailing newline can be continued. */
2251	if (!(flags & LOG_NEWLINE))
2252		prb_commit(&e);
2253	else
2254		prb_final_commit(&e);
2255
2256	ret = text_len + trunc_msg_len;
2257out:
2258	printk_exit_irqrestore(recursion_ptr, irqflags);
2259	return ret;
2260}
2261
2262asmlinkage int vprintk_emit(int facility, int level,
2263			    const struct dev_printk_info *dev_info,
2264			    const char *fmt, va_list args)
2265{
2266	int printed_len;
2267	bool in_sched = false;
 
2268
2269	/* Suppress unimportant messages after panic happens */
2270	if (unlikely(suppress_printk))
2271		return 0;
 
 
 
 
 
 
2272
2273	if (unlikely(suppress_panic_printk) &&
2274	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2275		return 0;
 
 
 
 
 
 
 
 
 
 
 
2276
2277	if (level == LOGLEVEL_SCHED) {
2278		level = LOGLEVEL_DEFAULT;
2279		in_sched = true;
 
 
2280	}
2281
2282	printk_delay(level);
2283
2284	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
 
2285
2286	/* If called from the scheduler, we can not call up(). */
2287	if (!in_sched) {
2288		/*
2289		 * The caller may be holding system-critical or
2290		 * timing-sensitive locks. Disable preemption during
2291		 * printing of all remaining records to all consoles so that
2292		 * this context can return as soon as possible. Hopefully
2293		 * another printk() caller will take over the printing.
2294		 */
2295		preempt_disable();
2296		/*
2297		 * Try to acquire and then immediately release the console
2298		 * semaphore. The release will print out buffers. With the
2299		 * spinning variant, this context tries to take over the
2300		 * printing from another printing context.
2301		 */
2302		if (console_trylock_spinning())
2303			console_unlock();
2304		preempt_enable();
2305	}
2306
2307	if (in_sched)
2308		defer_console_output();
2309	else
2310		wake_up_klogd();
2311
2312	return printed_len;
2313}
2314EXPORT_SYMBOL(vprintk_emit);
2315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316int vprintk_default(const char *fmt, va_list args)
2317{
2318	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
 
 
 
 
 
 
 
 
 
 
2319}
2320EXPORT_SYMBOL_GPL(vprintk_default);
2321
2322asmlinkage __visible int _printk(const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2323{
 
2324	va_list args;
2325	int r;
2326
2327	va_start(args, fmt);
2328	r = vprintk(fmt, args);
 
 
 
 
 
 
 
 
 
2329	va_end(args);
2330
2331	return r;
2332}
2333EXPORT_SYMBOL(_printk);
2334
2335static bool pr_flush(int timeout_ms, bool reset_on_progress);
2336static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2337
2338#else /* CONFIG_PRINTK */
2339
2340#define printk_time		false
2341
2342#define prb_read_valid(rb, seq, r)	false
2343#define prb_first_valid_seq(rb)		0
2344#define prb_next_seq(rb)		0
2345
2346static u64 syslog_seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347
2348static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2349static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2350
2351#endif /* CONFIG_PRINTK */
2352
2353#ifdef CONFIG_EARLY_PRINTK
2354struct console *early_console;
2355
2356asmlinkage __visible void early_printk(const char *fmt, ...)
2357{
2358	va_list ap;
2359	char buf[512];
2360	int n;
2361
2362	if (!early_console)
2363		return;
2364
2365	va_start(ap, fmt);
2366	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2367	va_end(ap);
2368
2369	early_console->write(early_console, buf, n);
2370}
2371#endif
2372
2373static void set_user_specified(struct console_cmdline *c, bool user_specified)
2374{
2375	if (!user_specified)
2376		return;
2377
2378	/*
2379	 * @c console was defined by the user on the command line.
2380	 * Do not clear when added twice also by SPCR or the device tree.
2381	 */
2382	c->user_specified = true;
2383	/* At least one console defined by the user on the command line. */
2384	console_set_on_cmdline = 1;
2385}
2386
2387static int __add_preferred_console(const char *name, const short idx, char *options,
2388				   char *brl_options, bool user_specified)
2389{
2390	struct console_cmdline *c;
2391	int i;
2392
2393	/*
2394	 * We use a signed short index for struct console for device drivers to
2395	 * indicate a not yet assigned index or port. However, a negative index
2396	 * value is not valid for preferred console.
2397	 */
2398	if (idx < 0)
2399		return -EINVAL;
2400
2401	/*
2402	 *	See if this tty is not yet registered, and
2403	 *	if we have a slot free.
2404	 */
2405	for (i = 0, c = console_cmdline;
2406	     i < MAX_CMDLINECONSOLES && c->name[0];
2407	     i++, c++) {
2408		if (strcmp(c->name, name) == 0 && c->index == idx) {
2409			if (!brl_options)
2410				preferred_console = i;
2411			set_user_specified(c, user_specified);
2412			return 0;
2413		}
2414	}
2415	if (i == MAX_CMDLINECONSOLES)
2416		return -E2BIG;
2417	if (!brl_options)
2418		preferred_console = i;
2419	strscpy(c->name, name, sizeof(c->name));
2420	c->options = options;
2421	set_user_specified(c, user_specified);
2422	braille_set_options(c, brl_options);
2423
2424	c->index = idx;
2425	return 0;
2426}
2427
2428static int __init console_msg_format_setup(char *str)
2429{
2430	if (!strcmp(str, "syslog"))
2431		console_msg_format = MSG_FORMAT_SYSLOG;
2432	if (!strcmp(str, "default"))
2433		console_msg_format = MSG_FORMAT_DEFAULT;
2434	return 1;
2435}
2436__setup("console_msg_format=", console_msg_format_setup);
2437
2438/*
2439 * Set up a console.  Called via do_early_param() in init/main.c
2440 * for each "console=" parameter in the boot command line.
2441 */
2442static int __init console_setup(char *str)
2443{
2444	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2445	char *s, *options, *brl_options = NULL;
2446	int idx;
2447
2448	/*
2449	 * console="" or console=null have been suggested as a way to
2450	 * disable console output. Use ttynull that has been created
2451	 * for exactly this purpose.
2452	 */
2453	if (str[0] == 0 || strcmp(str, "null") == 0) {
2454		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2455		return 1;
2456	}
2457
2458	if (_braille_console_setup(&str, &brl_options))
2459		return 1;
2460
2461	/*
2462	 * Decode str into name, index, options.
2463	 */
2464	if (str[0] >= '0' && str[0] <= '9') {
2465		strcpy(buf, "ttyS");
2466		strncpy(buf + 4, str, sizeof(buf) - 5);
2467	} else {
2468		strncpy(buf, str, sizeof(buf) - 1);
2469	}
2470	buf[sizeof(buf) - 1] = 0;
2471	options = strchr(str, ',');
2472	if (options)
2473		*(options++) = 0;
2474#ifdef __sparc__
2475	if (!strcmp(str, "ttya"))
2476		strcpy(buf, "ttyS0");
2477	if (!strcmp(str, "ttyb"))
2478		strcpy(buf, "ttyS1");
2479#endif
2480	for (s = buf; *s; s++)
2481		if (isdigit(*s) || *s == ',')
2482			break;
2483	idx = simple_strtoul(s, NULL, 10);
2484	*s = 0;
2485
2486	__add_preferred_console(buf, idx, options, brl_options, true);
 
2487	return 1;
2488}
2489__setup("console=", console_setup);
2490
2491/**
2492 * add_preferred_console - add a device to the list of preferred consoles.
2493 * @name: device name
2494 * @idx: device index
2495 * @options: options for this console
2496 *
2497 * The last preferred console added will be used for kernel messages
2498 * and stdin/out/err for init.  Normally this is used by console_setup
2499 * above to handle user-supplied console arguments; however it can also
2500 * be used by arch-specific code either to override the user or more
2501 * commonly to provide a default console (ie from PROM variables) when
2502 * the user has not supplied one.
2503 */
2504int add_preferred_console(const char *name, const short idx, char *options)
2505{
2506	return __add_preferred_console(name, idx, options, NULL, false);
2507}
2508
2509bool console_suspend_enabled = true;
2510EXPORT_SYMBOL(console_suspend_enabled);
2511
2512static int __init console_suspend_disable(char *str)
2513{
2514	console_suspend_enabled = false;
2515	return 1;
2516}
2517__setup("no_console_suspend", console_suspend_disable);
2518module_param_named(console_suspend, console_suspend_enabled,
2519		bool, S_IRUGO | S_IWUSR);
2520MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2521	" and hibernate operations");
2522
2523static bool printk_console_no_auto_verbose;
2524
2525void console_verbose(void)
2526{
2527	if (console_loglevel && !printk_console_no_auto_verbose)
2528		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2529}
2530EXPORT_SYMBOL_GPL(console_verbose);
2531
2532module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2533MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2534
2535/**
2536 * suspend_console - suspend the console subsystem
2537 *
2538 * This disables printk() while we go into suspend states
2539 */
2540void suspend_console(void)
2541{
2542	struct console *con;
2543
2544	if (!console_suspend_enabled)
2545		return;
2546	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2547	pr_flush(1000, true);
2548
2549	console_list_lock();
2550	for_each_console(con)
2551		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2552	console_list_unlock();
2553
2554	/*
2555	 * Ensure that all SRCU list walks have completed. All printing
2556	 * contexts must be able to see that they are suspended so that it
2557	 * is guaranteed that all printing has stopped when this function
2558	 * completes.
2559	 */
2560	synchronize_srcu(&console_srcu);
2561}
2562
2563void resume_console(void)
2564{
2565	struct console *con;
2566
2567	if (!console_suspend_enabled)
2568		return;
2569
2570	console_list_lock();
2571	for_each_console(con)
2572		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2573	console_list_unlock();
2574
2575	/*
2576	 * Ensure that all SRCU list walks have completed. All printing
2577	 * contexts must be able to see they are no longer suspended so
2578	 * that they are guaranteed to wake up and resume printing.
2579	 */
2580	synchronize_srcu(&console_srcu);
2581
2582	pr_flush(1000, true);
2583}
2584
2585/**
2586 * console_cpu_notify - print deferred console messages after CPU hotplug
2587 * @cpu: unused
 
 
2588 *
2589 * If printk() is called from a CPU that is not online yet, the messages
2590 * will be printed on the console only if there are CON_ANYTIME consoles.
2591 * This function is called when a new CPU comes online (or fails to come
2592 * up) or goes offline.
2593 */
2594static int console_cpu_notify(unsigned int cpu)
2595{
2596	if (!cpuhp_tasks_frozen) {
2597		/* If trylock fails, someone else is doing the printing */
2598		if (console_trylock())
2599			console_unlock();
 
 
 
 
2600	}
2601	return 0;
2602}
2603
2604/*
2605 * Return true if a panic is in progress on a remote CPU.
2606 *
2607 * On true, the local CPU should immediately release any printing resources
2608 * that may be needed by the panic CPU.
2609 */
2610bool other_cpu_in_panic(void)
2611{
2612	if (!panic_in_progress())
2613		return false;
2614
2615	/*
2616	 * We can use raw_smp_processor_id() here because it is impossible for
2617	 * the task to be migrated to the panic_cpu, or away from it. If
2618	 * panic_cpu has already been set, and we're not currently executing on
2619	 * that CPU, then we never will be.
2620	 */
2621	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2622}
2623
2624/**
2625 * console_lock - block the console subsystem from printing
2626 *
2627 * Acquires a lock which guarantees that no consoles will
2628 * be in or enter their write() callback.
2629 *
2630 * Can sleep, returns nothing.
2631 */
2632void console_lock(void)
2633{
2634	might_sleep();
2635
2636	/* On panic, the console_lock must be left to the panic cpu. */
2637	while (other_cpu_in_panic())
2638		msleep(1000);
2639
2640	down_console_sem();
 
 
2641	console_locked = 1;
2642	console_may_schedule = 1;
2643}
2644EXPORT_SYMBOL(console_lock);
2645
2646/**
2647 * console_trylock - try to block the console subsystem from printing
2648 *
2649 * Try to acquire a lock which guarantees that no consoles will
2650 * be in or enter their write() callback.
2651 *
2652 * returns 1 on success, and 0 on failure to acquire the lock.
2653 */
2654int console_trylock(void)
2655{
2656	/* On panic, the console_lock must be left to the panic cpu. */
2657	if (other_cpu_in_panic())
2658		return 0;
2659	if (down_trylock_console_sem())
 
2660		return 0;
 
2661	console_locked = 1;
2662	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2663	return 1;
2664}
2665EXPORT_SYMBOL(console_trylock);
2666
2667int is_console_locked(void)
2668{
2669	return console_locked;
2670}
2671EXPORT_SYMBOL(is_console_locked);
2672
2673/*
2674 * Check if the given console is currently capable and allowed to print
2675 * records.
2676 *
2677 * Requires the console_srcu_read_lock.
2678 */
2679static inline bool console_is_usable(struct console *con)
2680{
2681	short flags = console_srcu_read_flags(con);
2682
2683	if (!(flags & CON_ENABLED))
2684		return false;
 
 
2685
2686	if ((flags & CON_SUSPENDED))
2687		return false;
2688
2689	if (!con->write)
2690		return false;
2691
2692	/*
2693	 * Console drivers may assume that per-cpu resources have been
2694	 * allocated. So unless they're explicitly marked as being able to
2695	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2696	 */
2697	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2698		return false;
2699
2700	return true;
2701}
2702
2703static void __console_unlock(void)
2704{
2705	console_locked = 0;
2706	up_console_sem();
2707}
2708
2709#ifdef CONFIG_PRINTK
2710
2711/*
2712 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2713 * is achieved by shifting the existing message over and inserting the dropped
2714 * message.
2715 *
2716 * @pmsg is the printk message to prepend.
2717 *
2718 * @dropped is the dropped count to report in the dropped message.
2719 *
2720 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2721 * the dropped message, the message text will be sufficiently truncated.
2722 *
2723 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2724 */
2725void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2726{
2727	struct printk_buffers *pbufs = pmsg->pbufs;
2728	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2729	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2730	char *scratchbuf = &pbufs->scratchbuf[0];
2731	char *outbuf = &pbufs->outbuf[0];
2732	size_t len;
2733
2734	len = scnprintf(scratchbuf, scratchbuf_sz,
2735		       "** %lu printk messages dropped **\n", dropped);
2736
2737	/*
2738	 * Make sure outbuf is sufficiently large before prepending.
2739	 * Keep at least the prefix when the message must be truncated.
2740	 * It is a rather theoretical problem when someone tries to
2741	 * use a minimalist buffer.
2742	 */
2743	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2744		return;
2745
2746	if (pmsg->outbuf_len + len >= outbuf_sz) {
2747		/* Truncate the message, but keep it terminated. */
2748		pmsg->outbuf_len = outbuf_sz - (len + 1);
2749		outbuf[pmsg->outbuf_len] = 0;
2750	}
2751
2752	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2753	memcpy(outbuf, scratchbuf, len);
2754	pmsg->outbuf_len += len;
2755}
2756
2757/*
2758 * Read and format the specified record (or a later record if the specified
2759 * record is not available).
2760 *
2761 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2762 * struct printk_buffers.
2763 *
2764 * @seq is the record to read and format. If it is not available, the next
2765 * valid record is read.
2766 *
2767 * @is_extended specifies if the message should be formatted for extended
2768 * console output.
2769 *
2770 * @may_supress specifies if records may be skipped based on loglevel.
2771 *
2772 * Returns false if no record is available. Otherwise true and all fields
2773 * of @pmsg are valid. (See the documentation of struct printk_message
2774 * for information about the @pmsg fields.)
2775 */
2776bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2777			     bool is_extended, bool may_suppress)
2778{
2779	static int panic_console_dropped;
 
2780
2781	struct printk_buffers *pbufs = pmsg->pbufs;
2782	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2783	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2784	char *scratchbuf = &pbufs->scratchbuf[0];
2785	char *outbuf = &pbufs->outbuf[0];
2786	struct printk_info info;
2787	struct printk_record r;
2788	size_t len = 0;
2789
2790	/*
2791	 * Formatting extended messages requires a separate buffer, so use the
2792	 * scratch buffer to read in the ringbuffer text.
2793	 *
2794	 * Formatting normal messages is done in-place, so read the ringbuffer
2795	 * text directly into the output buffer.
2796	 */
2797	if (is_extended)
2798		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2799	else
2800		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2801
2802	if (!prb_read_valid(prb, seq, &r))
2803		return false;
2804
2805	pmsg->seq = r.info->seq;
2806	pmsg->dropped = r.info->seq - seq;
2807
2808	/*
2809	 * Check for dropped messages in panic here so that printk
2810	 * suppression can occur as early as possible if necessary.
 
2811	 */
2812	if (pmsg->dropped &&
2813	    panic_in_progress() &&
2814	    panic_console_dropped++ > 10) {
2815		suppress_panic_printk = 1;
2816		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2817	}
2818
2819	/* Skip record that has level above the console loglevel. */
2820	if (may_suppress && suppress_message_printing(r.info->level))
2821		goto out;
2822
2823	if (is_extended) {
2824		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2825		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2826					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2827	} else {
2828		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2829	}
2830out:
2831	pmsg->outbuf_len = len;
2832	return true;
2833}
2834
2835/*
2836 * Used as the printk buffers for non-panic, serialized console printing.
2837 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2838 * Its usage requires the console_lock held.
2839 */
2840struct printk_buffers printk_shared_pbufs;
2841
2842/*
2843 * Print one record for the given console. The record printed is whatever
2844 * record is the next available record for the given console.
2845 *
2846 * @handover will be set to true if a printk waiter has taken over the
2847 * console_lock, in which case the caller is no longer holding both the
2848 * console_lock and the SRCU read lock. Otherwise it is set to false.
2849 *
2850 * @cookie is the cookie from the SRCU read lock.
 
 
2851 *
2852 * Returns false if the given console has no next record to print, otherwise
2853 * true.
2854 *
2855 * Requires the console_lock and the SRCU read lock.
2856 */
2857static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2858{
2859	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2860	char *outbuf = &printk_shared_pbufs.outbuf[0];
2861	struct printk_message pmsg = {
2862		.pbufs = &printk_shared_pbufs,
2863	};
2864	unsigned long flags;
 
 
2865
2866	*handover = false;
2867
2868	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2869		return false;
2870
2871	con->dropped += pmsg.dropped;
2872
2873	/* Skip messages of formatted length 0. */
2874	if (pmsg.outbuf_len == 0) {
2875		con->seq = pmsg.seq + 1;
2876		goto skip;
2877	}
2878
2879	if (con->dropped && !is_extended) {
2880		console_prepend_dropped(&pmsg, con->dropped);
2881		con->dropped = 0;
2882	}
2883
2884	/*
2885	 * While actively printing out messages, if another printk()
2886	 * were to occur on another CPU, it may wait for this one to
2887	 * finish. This task can not be preempted if there is a
2888	 * waiter waiting to take over.
2889	 *
2890	 * Interrupts are disabled because the hand over to a waiter
2891	 * must not be interrupted until the hand over is completed
2892	 * (@console_waiter is cleared).
2893	 */
2894	printk_safe_enter_irqsave(flags);
2895	console_lock_spinning_enable();
2896
2897	/* Do not trace print latency. */
2898	stop_critical_timings();
 
 
 
 
 
 
 
 
 
2899
2900	/* Write everything out to the hardware. */
2901	con->write(con, outbuf, pmsg.outbuf_len);
2902
2903	start_critical_timings();
 
 
 
 
 
 
 
 
 
 
2904
2905	con->seq = pmsg.seq + 1;
 
 
2906
2907	*handover = console_lock_spinning_disable_and_check(cookie);
2908	printk_safe_exit_irqrestore(flags);
 
 
 
 
 
2909skip:
2910	return true;
2911}
2912
2913#else
2914
2915static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2916{
2917	*handover = false;
2918	return false;
2919}
2920
2921#endif /* CONFIG_PRINTK */
2922
2923/*
2924 * Print out all remaining records to all consoles.
2925 *
2926 * @do_cond_resched is set by the caller. It can be true only in schedulable
2927 * context.
2928 *
2929 * @next_seq is set to the sequence number after the last available record.
2930 * The value is valid only when this function returns true. It means that all
2931 * usable consoles are completely flushed.
2932 *
2933 * @handover will be set to true if a printk waiter has taken over the
2934 * console_lock, in which case the caller is no longer holding the
2935 * console_lock. Otherwise it is set to false.
2936 *
2937 * Returns true when there was at least one usable console and all messages
2938 * were flushed to all usable consoles. A returned false informs the caller
2939 * that everything was not flushed (either there were no usable consoles or
2940 * another context has taken over printing or it is a panic situation and this
2941 * is not the panic CPU). Regardless the reason, the caller should assume it
2942 * is not useful to immediately try again.
2943 *
2944 * Requires the console_lock.
2945 */
2946static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2947{
2948	bool any_usable = false;
2949	struct console *con;
2950	bool any_progress;
2951	int cookie;
2952
2953	*next_seq = 0;
2954	*handover = false;
2955
2956	do {
2957		any_progress = false;
2958
2959		cookie = console_srcu_read_lock();
2960		for_each_console_srcu(con) {
2961			bool progress;
2962
2963			if (!console_is_usable(con))
2964				continue;
2965			any_usable = true;
2966
2967			progress = console_emit_next_record(con, handover, cookie);
2968
 
 
 
 
 
 
 
 
2969			/*
2970			 * If a handover has occurred, the SRCU read lock
2971			 * is already released.
 
2972			 */
2973			if (*handover)
2974				return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975
2976			/* Track the next of the highest seq flushed. */
2977			if (con->seq > *next_seq)
2978				*next_seq = con->seq;
 
2979
2980			if (!progress)
2981				continue;
2982			any_progress = true;
2983
2984			/* Allow panic_cpu to take over the consoles safely. */
2985			if (other_cpu_in_panic())
2986				goto abandon;
2987
2988			if (do_cond_resched)
2989				cond_resched();
2990		}
2991		console_srcu_read_unlock(cookie);
2992	} while (any_progress);
2993
2994	return any_usable;
2995
2996abandon:
2997	console_srcu_read_unlock(cookie);
2998	return false;
2999}
3000
3001/**
3002 * console_unlock - unblock the console subsystem from printing
3003 *
3004 * Releases the console_lock which the caller holds to block printing of
3005 * the console subsystem.
3006 *
3007 * While the console_lock was held, console output may have been buffered
3008 * by printk().  If this is the case, console_unlock(); emits
3009 * the output prior to releasing the lock.
3010 *
3011 * console_unlock(); may be called from any context.
3012 */
3013void console_unlock(void)
3014{
3015	bool do_cond_resched;
3016	bool handover;
3017	bool flushed;
3018	u64 next_seq;
3019
3020	/*
3021	 * Console drivers are called with interrupts disabled, so
3022	 * @console_may_schedule should be cleared before; however, we may
3023	 * end up dumping a lot of lines, for example, if called from
3024	 * console registration path, and should invoke cond_resched()
3025	 * between lines if allowable.  Not doing so can cause a very long
3026	 * scheduling stall on a slow console leading to RCU stall and
3027	 * softlockup warnings which exacerbate the issue with more
3028	 * messages practically incapacitating the system. Therefore, create
3029	 * a local to use for the printing loop.
3030	 */
3031	do_cond_resched = console_may_schedule;
3032
3033	do {
3034		console_may_schedule = 0;
3035
3036		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3037		if (!handover)
3038			__console_unlock();
3039
3040		/*
3041		 * Abort if there was a failure to flush all messages to all
3042		 * usable consoles. Either it is not possible to flush (in
3043		 * which case it would be an infinite loop of retrying) or
3044		 * another context has taken over printing.
3045		 */
3046		if (!flushed)
3047			break;
3048
3049		/*
3050		 * Some context may have added new records after
3051		 * console_flush_all() but before unlocking the console.
3052		 * Re-check if there is a new record to flush. If the trylock
3053		 * fails, another context is already handling the printing.
3054		 */
3055	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3056}
3057EXPORT_SYMBOL(console_unlock);
3058
3059/**
3060 * console_conditional_schedule - yield the CPU if required
3061 *
3062 * If the console code is currently allowed to sleep, and
3063 * if this CPU should yield the CPU to another task, do
3064 * so here.
3065 *
3066 * Must be called within console_lock();.
3067 */
3068void __sched console_conditional_schedule(void)
3069{
3070	if (console_may_schedule)
3071		cond_resched();
3072}
3073EXPORT_SYMBOL(console_conditional_schedule);
3074
3075void console_unblank(void)
3076{
3077	bool found_unblank = false;
3078	struct console *c;
3079	int cookie;
3080
3081	/*
3082	 * First check if there are any consoles implementing the unblank()
3083	 * callback. If not, there is no reason to continue and take the
3084	 * console lock, which in particular can be dangerous if
3085	 * @oops_in_progress is set.
3086	 */
3087	cookie = console_srcu_read_lock();
3088	for_each_console_srcu(c) {
3089		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3090			found_unblank = true;
3091			break;
3092		}
3093	}
3094	console_srcu_read_unlock(cookie);
3095	if (!found_unblank)
3096		return;
3097
3098	/*
3099	 * Stop console printing because the unblank() callback may
3100	 * assume the console is not within its write() callback.
3101	 *
3102	 * If @oops_in_progress is set, this may be an atomic context.
3103	 * In that case, attempt a trylock as best-effort.
3104	 */
3105	if (oops_in_progress) {
3106		/* Semaphores are not NMI-safe. */
3107		if (in_nmi())
3108			return;
3109
3110		/*
3111		 * Attempting to trylock the console lock can deadlock
3112		 * if another CPU was stopped while modifying the
3113		 * semaphore. "Hope and pray" that this is not the
3114		 * current situation.
3115		 */
3116		if (down_trylock_console_sem() != 0)
3117			return;
3118	} else
3119		console_lock();
3120
3121	console_locked = 1;
3122	console_may_schedule = 0;
3123
3124	cookie = console_srcu_read_lock();
3125	for_each_console_srcu(c) {
3126		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3127			c->unblank();
3128	}
3129	console_srcu_read_unlock(cookie);
3130
3131	console_unlock();
3132
3133	if (!oops_in_progress)
3134		pr_flush(1000, true);
3135}
3136
3137/**
3138 * console_flush_on_panic - flush console content on panic
3139 * @mode: flush all messages in buffer or just the pending ones
3140 *
3141 * Immediately output all pending messages no matter what.
3142 */
3143void console_flush_on_panic(enum con_flush_mode mode)
3144{
3145	bool handover;
3146	u64 next_seq;
3147
3148	/*
3149	 * Ignore the console lock and flush out the messages. Attempting a
3150	 * trylock would not be useful because:
3151	 *
3152	 *   - if it is contended, it must be ignored anyway
3153	 *   - console_lock() and console_trylock() block and fail
3154	 *     respectively in panic for non-panic CPUs
3155	 *   - semaphores are not NMI-safe
3156	 */
3157
3158	/*
3159	 * If another context is holding the console lock,
3160	 * @console_may_schedule might be set. Clear it so that
3161	 * this context does not call cond_resched() while flushing.
3162	 */
 
3163	console_may_schedule = 0;
3164
3165	if (mode == CONSOLE_REPLAY_ALL) {
3166		struct console *c;
3167		short flags;
3168		int cookie;
3169		u64 seq;
3170
3171		seq = prb_first_valid_seq(prb);
3172
3173		cookie = console_srcu_read_lock();
3174		for_each_console_srcu(c) {
3175			flags = console_srcu_read_flags(c);
3176
3177			if (flags & CON_NBCON) {
3178				nbcon_seq_force(c, seq);
3179			} else {
3180				/*
3181				 * This is an unsynchronized assignment. On
3182				 * panic legacy consoles are only best effort.
3183				 */
3184				c->seq = seq;
3185			}
3186		}
3187		console_srcu_read_unlock(cookie);
3188	}
3189
3190	console_flush_all(false, &next_seq, &handover);
3191}
3192
3193/*
3194 * Return the console tty driver structure and its associated index
3195 */
3196struct tty_driver *console_device(int *index)
3197{
3198	struct console *c;
3199	struct tty_driver *driver = NULL;
3200	int cookie;
3201
3202	/*
3203	 * Take console_lock to serialize device() callback with
3204	 * other console operations. For example, fg_console is
3205	 * modified under console_lock when switching vt.
3206	 */
3207	console_lock();
3208
3209	cookie = console_srcu_read_lock();
3210	for_each_console_srcu(c) {
3211		if (!c->device)
3212			continue;
3213		driver = c->device(c, index);
3214		if (driver)
3215			break;
3216	}
3217	console_srcu_read_unlock(cookie);
3218
3219	console_unlock();
3220	return driver;
3221}
3222
3223/*
3224 * Prevent further output on the passed console device so that (for example)
3225 * serial drivers can disable console output before suspending a port, and can
3226 * re-enable output afterwards.
3227 */
3228void console_stop(struct console *console)
3229{
3230	__pr_flush(console, 1000, true);
3231	console_list_lock();
3232	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3233	console_list_unlock();
3234
3235	/*
3236	 * Ensure that all SRCU list walks have completed. All contexts must
3237	 * be able to see that this console is disabled so that (for example)
3238	 * the caller can suspend the port without risk of another context
3239	 * using the port.
3240	 */
3241	synchronize_srcu(&console_srcu);
3242}
3243EXPORT_SYMBOL(console_stop);
3244
3245void console_start(struct console *console)
3246{
3247	console_list_lock();
3248	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3249	console_list_unlock();
3250	__pr_flush(console, 1000, true);
3251}
3252EXPORT_SYMBOL(console_start);
3253
3254static int __read_mostly keep_bootcon;
3255
3256static int __init keep_bootcon_setup(char *str)
3257{
3258	keep_bootcon = 1;
3259	pr_info("debug: skip boot console de-registration.\n");
3260
3261	return 0;
3262}
3263
3264early_param("keep_bootcon", keep_bootcon_setup);
3265
3266/*
3267 * This is called by register_console() to try to match
3268 * the newly registered console with any of the ones selected
3269 * by either the command line or add_preferred_console() and
3270 * setup/enable it.
3271 *
3272 * Care need to be taken with consoles that are statically
3273 * enabled such as netconsole
3274 */
3275static int try_enable_preferred_console(struct console *newcon,
3276					bool user_specified)
3277{
3278	struct console_cmdline *c;
3279	int i, err;
3280
3281	for (i = 0, c = console_cmdline;
3282	     i < MAX_CMDLINECONSOLES && c->name[0];
3283	     i++, c++) {
3284		if (c->user_specified != user_specified)
3285			continue;
3286		if (!newcon->match ||
3287		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3288			/* default matching */
3289			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3290			if (strcmp(c->name, newcon->name) != 0)
3291				continue;
3292			if (newcon->index >= 0 &&
3293			    newcon->index != c->index)
3294				continue;
3295			if (newcon->index < 0)
3296				newcon->index = c->index;
3297
3298			if (_braille_register_console(newcon, c))
3299				return 0;
3300
3301			if (newcon->setup &&
3302			    (err = newcon->setup(newcon, c->options)) != 0)
3303				return err;
3304		}
3305		newcon->flags |= CON_ENABLED;
3306		if (i == preferred_console)
3307			newcon->flags |= CON_CONSDEV;
3308		return 0;
3309	}
3310
3311	/*
3312	 * Some consoles, such as pstore and netconsole, can be enabled even
3313	 * without matching. Accept the pre-enabled consoles only when match()
3314	 * and setup() had a chance to be called.
3315	 */
3316	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3317		return 0;
3318
3319	return -ENOENT;
3320}
3321
3322/* Try to enable the console unconditionally */
3323static void try_enable_default_console(struct console *newcon)
3324{
3325	if (newcon->index < 0)
3326		newcon->index = 0;
3327
3328	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3329		return;
3330
3331	newcon->flags |= CON_ENABLED;
3332
3333	if (newcon->device)
3334		newcon->flags |= CON_CONSDEV;
3335}
3336
3337static void console_init_seq(struct console *newcon, bool bootcon_registered)
3338{
3339	struct console *con;
3340	bool handover;
3341
3342	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3343		/* Get a consistent copy of @syslog_seq. */
3344		mutex_lock(&syslog_lock);
3345		newcon->seq = syslog_seq;
3346		mutex_unlock(&syslog_lock);
3347	} else {
3348		/* Begin with next message added to ringbuffer. */
3349		newcon->seq = prb_next_seq(prb);
3350
3351		/*
3352		 * If any enabled boot consoles are due to be unregistered
3353		 * shortly, some may not be caught up and may be the same
3354		 * device as @newcon. Since it is not known which boot console
3355		 * is the same device, flush all consoles and, if necessary,
3356		 * start with the message of the enabled boot console that is
3357		 * the furthest behind.
3358		 */
3359		if (bootcon_registered && !keep_bootcon) {
3360			/*
3361			 * Hold the console_lock to stop console printing and
3362			 * guarantee safe access to console->seq.
3363			 */
3364			console_lock();
3365
3366			/*
3367			 * Flush all consoles and set the console to start at
3368			 * the next unprinted sequence number.
3369			 */
3370			if (!console_flush_all(true, &newcon->seq, &handover)) {
3371				/*
3372				 * Flushing failed. Just choose the lowest
3373				 * sequence of the enabled boot consoles.
3374				 */
3375
3376				/*
3377				 * If there was a handover, this context no
3378				 * longer holds the console_lock.
3379				 */
3380				if (handover)
3381					console_lock();
3382
3383				newcon->seq = prb_next_seq(prb);
3384				for_each_console(con) {
3385					if ((con->flags & CON_BOOT) &&
3386					    (con->flags & CON_ENABLED) &&
3387					    con->seq < newcon->seq) {
3388						newcon->seq = con->seq;
3389					}
3390				}
3391			}
3392
3393			console_unlock();
3394		}
3395	}
3396}
3397
3398#define console_first()				\
3399	hlist_entry(console_list.first, struct console, node)
3400
3401static int unregister_console_locked(struct console *console);
3402
3403/*
3404 * The console driver calls this routine during kernel initialization
3405 * to register the console printing procedure with printk() and to
3406 * print any messages that were printed by the kernel before the
3407 * console driver was initialized.
3408 *
3409 * This can happen pretty early during the boot process (because of
3410 * early_printk) - sometimes before setup_arch() completes - be careful
3411 * of what kernel features are used - they may not be initialised yet.
3412 *
3413 * There are two types of consoles - bootconsoles (early_printk) and
3414 * "real" consoles (everything which is not a bootconsole) which are
3415 * handled differently.
3416 *  - Any number of bootconsoles can be registered at any time.
3417 *  - As soon as a "real" console is registered, all bootconsoles
3418 *    will be unregistered automatically.
3419 *  - Once a "real" console is registered, any attempt to register a
3420 *    bootconsoles will be rejected
3421 */
3422void register_console(struct console *newcon)
3423{
3424	struct console *con;
3425	bool bootcon_registered = false;
3426	bool realcon_registered = false;
3427	int err;
3428
3429	console_list_lock();
3430
3431	for_each_console(con) {
3432		if (WARN(con == newcon, "console '%s%d' already registered\n",
3433					 con->name, con->index)) {
3434			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
3435		}
3436
3437		if (con->flags & CON_BOOT)
3438			bootcon_registered = true;
3439		else
3440			realcon_registered = true;
3441	}
3442
3443	/* Do not register boot consoles when there already is a real one. */
3444	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3445		pr_info("Too late to register bootconsole %s%d\n",
3446			newcon->name, newcon->index);
3447		goto unlock;
3448	}
3449
3450	if (newcon->flags & CON_NBCON) {
3451		/*
3452		 * Ensure the nbcon console buffers can be allocated
3453		 * before modifying any global data.
3454		 */
3455		if (!nbcon_alloc(newcon))
3456			goto unlock;
3457	}
3458
3459	/*
3460	 * See if we want to enable this console driver by default.
3461	 *
3462	 * Nope when a console is preferred by the command line, device
3463	 * tree, or SPCR.
3464	 *
3465	 * The first real console with tty binding (driver) wins. More
3466	 * consoles might get enabled before the right one is found.
3467	 *
3468	 * Note that a console with tty binding will have CON_CONSDEV
3469	 * flag set and will be first in the list.
3470	 */
3471	if (preferred_console < 0) {
3472		if (hlist_empty(&console_list) || !console_first()->device ||
3473		    console_first()->flags & CON_BOOT) {
3474			try_enable_default_console(newcon);
 
 
 
 
 
 
3475		}
3476	}
3477
3478	/* See if this console matches one we selected on the command line */
3479	err = try_enable_preferred_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480
3481	/* If not, try to match against the platform default(s) */
3482	if (err == -ENOENT)
3483		err = try_enable_preferred_console(newcon, false);
3484
3485	/* printk() messages are not printed to the Braille console. */
3486	if (err || newcon->flags & CON_BRL) {
3487		if (newcon->flags & CON_NBCON)
3488			nbcon_free(newcon);
3489		goto unlock;
 
 
3490	}
3491
 
 
 
3492	/*
3493	 * If we have a bootconsole, and are switching to a real console,
3494	 * don't print everything out again, since when the boot console, and
3495	 * the real console are the same physical device, it's annoying to
3496	 * see the beginning boot messages twice
3497	 */
3498	if (bootcon_registered &&
3499	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3500		newcon->flags &= ~CON_PRINTBUFFER;
3501	}
3502
3503	newcon->dropped = 0;
3504	console_init_seq(newcon, bootcon_registered);
3505
3506	if (newcon->flags & CON_NBCON)
3507		nbcon_init(newcon);
3508
3509	/*
3510	 * Put this console in the list - keep the
3511	 * preferred driver at the head of the list.
3512	 */
3513	if (hlist_empty(&console_list)) {
3514		/* Ensure CON_CONSDEV is always set for the head. */
3515		newcon->flags |= CON_CONSDEV;
3516		hlist_add_head_rcu(&newcon->node, &console_list);
3517
3518	} else if (newcon->flags & CON_CONSDEV) {
3519		/* Only the new head can have CON_CONSDEV set. */
3520		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3521		hlist_add_head_rcu(&newcon->node, &console_list);
3522
3523	} else {
3524		hlist_add_behind_rcu(&newcon->node, console_list.first);
 
3525	}
3526
3527	/*
3528	 * No need to synchronize SRCU here! The caller does not rely
3529	 * on all contexts being able to see the new console before
3530	 * register_console() completes.
3531	 */
3532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533	console_sysfs_notify();
3534
3535	/*
3536	 * By unregistering the bootconsoles after we enable the real console
3537	 * we get the "console xxx enabled" message on all the consoles -
3538	 * boot consoles, real consoles, etc - this is to ensure that end
3539	 * users know there might be something in the kernel's log buffer that
3540	 * went to the bootconsole (that they do not see on the real console)
3541	 */
3542	con_printk(KERN_INFO, newcon, "enabled\n");
3543	if (bootcon_registered &&
 
 
3544	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3545	    !keep_bootcon) {
3546		struct hlist_node *tmp;
3547
3548		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3549			if (con->flags & CON_BOOT)
3550				unregister_console_locked(con);
3551		}
3552	}
3553unlock:
3554	console_list_unlock();
3555}
3556EXPORT_SYMBOL(register_console);
3557
3558/* Must be called under console_list_lock(). */
3559static int unregister_console_locked(struct console *console)
3560{
 
3561	int res;
3562
3563	lockdep_assert_console_list_lock_held();
3564
3565	con_printk(KERN_INFO, console, "disabled\n");
3566
3567	res = _braille_unregister_console(console);
3568	if (res < 0)
3569		return res;
3570	if (res > 0)
3571		return 0;
3572
3573	/* Disable it unconditionally */
3574	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3575
3576	if (!console_is_registered_locked(console))
3577		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
3578
3579	hlist_del_init_rcu(&console->node);
 
3580
3581	/*
3582	 * <HISTORICAL>
3583	 * If this isn't the last console and it has CON_CONSDEV set, we
3584	 * need to set it on the next preferred console.
3585	 * </HISTORICAL>
3586	 *
3587	 * The above makes no sense as there is no guarantee that the next
3588	 * console has any device attached. Oh well....
3589	 */
3590	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3591		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3592
3593	/*
3594	 * Ensure that all SRCU list walks have completed. All contexts
3595	 * must not be able to see this console in the list so that any
3596	 * exit/cleanup routines can be performed safely.
3597	 */
3598	synchronize_srcu(&console_srcu);
3599
3600	if (console->flags & CON_NBCON)
3601		nbcon_free(console);
3602
 
 
3603	console_sysfs_notify();
3604
3605	if (console->exit)
3606		res = console->exit(console);
3607
3608	return res;
3609}
3610
3611int unregister_console(struct console *console)
3612{
3613	int res;
3614
3615	console_list_lock();
3616	res = unregister_console_locked(console);
3617	console_list_unlock();
3618	return res;
3619}
3620EXPORT_SYMBOL(unregister_console);
3621
3622/**
3623 * console_force_preferred_locked - force a registered console preferred
3624 * @con: The registered console to force preferred.
3625 *
3626 * Must be called under console_list_lock().
3627 */
3628void console_force_preferred_locked(struct console *con)
3629{
3630	struct console *cur_pref_con;
3631
3632	if (!console_is_registered_locked(con))
3633		return;
3634
3635	cur_pref_con = console_first();
3636
3637	/* Already preferred? */
3638	if (cur_pref_con == con)
3639		return;
3640
3641	/*
3642	 * Delete, but do not re-initialize the entry. This allows the console
3643	 * to continue to appear registered (via any hlist_unhashed_lockless()
3644	 * checks), even though it was briefly removed from the console list.
3645	 */
3646	hlist_del_rcu(&con->node);
3647
3648	/*
3649	 * Ensure that all SRCU list walks have completed so that the console
3650	 * can be added to the beginning of the console list and its forward
3651	 * list pointer can be re-initialized.
3652	 */
3653	synchronize_srcu(&console_srcu);
3654
3655	con->flags |= CON_CONSDEV;
3656	WARN_ON(!con->device);
3657
3658	/* Only the new head can have CON_CONSDEV set. */
3659	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3660	hlist_add_head_rcu(&con->node, &console_list);
3661}
3662EXPORT_SYMBOL(console_force_preferred_locked);
3663
3664/*
3665 * Initialize the console device. This is called *early*, so
3666 * we can't necessarily depend on lots of kernel help here.
3667 * Just do some early initializations, and do the complex setup
3668 * later.
3669 */
3670void __init console_init(void)
3671{
3672	int ret;
3673	initcall_t call;
3674	initcall_entry_t *ce;
3675
3676	/* Setup the default TTY line discipline. */
3677	n_tty_init();
3678
3679	/*
3680	 * set up the console device so that later boot sequences can
3681	 * inform about problems etc..
3682	 */
3683	ce = __con_initcall_start;
3684	trace_initcall_level("console");
3685	while (ce < __con_initcall_end) {
3686		call = initcall_from_entry(ce);
3687		trace_initcall_start(call);
3688		ret = call();
3689		trace_initcall_finish(call, ret);
3690		ce++;
3691	}
3692}
3693
3694/*
3695 * Some boot consoles access data that is in the init section and which will
3696 * be discarded after the initcalls have been run. To make sure that no code
3697 * will access this data, unregister the boot consoles in a late initcall.
3698 *
3699 * If for some reason, such as deferred probe or the driver being a loadable
3700 * module, the real console hasn't registered yet at this point, there will
3701 * be a brief interval in which no messages are logged to the console, which
3702 * makes it difficult to diagnose problems that occur during this time.
3703 *
3704 * To mitigate this problem somewhat, only unregister consoles whose memory
3705 * intersects with the init section. Note that all other boot consoles will
3706 * get unregistered when the real preferred console is registered.
 
3707 */
3708static int __init printk_late_init(void)
3709{
3710	struct hlist_node *tmp;
3711	struct console *con;
3712	int ret;
3713
3714	console_list_lock();
3715	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3716		if (!(con->flags & CON_BOOT))
3717			continue;
3718
3719		/* Check addresses that might be used for enabled consoles. */
3720		if (init_section_intersects(con, sizeof(*con)) ||
3721		    init_section_contains(con->write, 0) ||
3722		    init_section_contains(con->read, 0) ||
3723		    init_section_contains(con->device, 0) ||
3724		    init_section_contains(con->unblank, 0) ||
3725		    init_section_contains(con->data, 0)) {
3726			/*
3727			 * Please, consider moving the reported consoles out
3728			 * of the init section.
 
 
 
3729			 */
3730			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3731				con->name, con->index);
3732			unregister_console_locked(con);
3733		}
3734	}
3735	console_list_unlock();
3736
3737	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3738					console_cpu_notify);
3739	WARN_ON(ret < 0);
3740	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3741					console_cpu_notify, NULL);
3742	WARN_ON(ret < 0);
3743	printk_sysctl_init();
3744	return 0;
3745}
3746late_initcall(printk_late_init);
3747
3748#if defined CONFIG_PRINTK
3749/* If @con is specified, only wait for that console. Otherwise wait for all. */
3750static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3751{
3752	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3753	unsigned long remaining_jiffies = timeout_jiffies;
3754	struct console *c;
3755	u64 last_diff = 0;
3756	u64 printk_seq;
3757	short flags;
3758	int cookie;
3759	u64 diff;
3760	u64 seq;
3761
3762	might_sleep();
3763
3764	seq = prb_next_seq(prb);
3765
3766	/* Flush the consoles so that records up to @seq are printed. */
3767	console_lock();
3768	console_unlock();
3769
3770	for (;;) {
3771		unsigned long begin_jiffies;
3772		unsigned long slept_jiffies;
3773
3774		diff = 0;
3775
3776		/*
3777		 * Hold the console_lock to guarantee safe access to
3778		 * console->seq. Releasing console_lock flushes more
3779		 * records in case @seq is still not printed on all
3780		 * usable consoles.
3781		 */
3782		console_lock();
3783
3784		cookie = console_srcu_read_lock();
3785		for_each_console_srcu(c) {
3786			if (con && con != c)
3787				continue;
3788
3789			flags = console_srcu_read_flags(c);
3790
3791			/*
3792			 * If consoles are not usable, it cannot be expected
3793			 * that they make forward progress, so only increment
3794			 * @diff for usable consoles.
3795			 */
3796			if (!console_is_usable(c))
3797				continue;
3798
3799			if (flags & CON_NBCON) {
3800				printk_seq = nbcon_seq_read(c);
3801			} else {
3802				printk_seq = c->seq;
3803			}
3804
3805			if (printk_seq < seq)
3806				diff += seq - printk_seq;
3807		}
3808		console_srcu_read_unlock(cookie);
3809
3810		if (diff != last_diff && reset_on_progress)
3811			remaining_jiffies = timeout_jiffies;
3812
3813		console_unlock();
3814
3815		/* Note: @diff is 0 if there are no usable consoles. */
3816		if (diff == 0 || remaining_jiffies == 0)
3817			break;
3818
3819		/* msleep(1) might sleep much longer. Check time by jiffies. */
3820		begin_jiffies = jiffies;
3821		msleep(1);
3822		slept_jiffies = jiffies - begin_jiffies;
3823
3824		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3825
3826		last_diff = diff;
3827	}
3828
3829	return (diff == 0);
3830}
3831
3832/**
3833 * pr_flush() - Wait for printing threads to catch up.
3834 *
3835 * @timeout_ms:        The maximum time (in ms) to wait.
3836 * @reset_on_progress: Reset the timeout if forward progress is seen.
3837 *
3838 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3839 * represents infinite waiting.
3840 *
3841 * If @reset_on_progress is true, the timeout will be reset whenever any
3842 * printer has been seen to make some forward progress.
3843 *
3844 * Context: Process context. May sleep while acquiring console lock.
3845 * Return: true if all usable printers are caught up.
3846 */
3847static bool pr_flush(int timeout_ms, bool reset_on_progress)
3848{
3849	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3850}
3851
3852/*
3853 * Delayed printk version, for scheduler-internal messages:
3854 */
3855#define PRINTK_PENDING_WAKEUP	0x01
3856#define PRINTK_PENDING_OUTPUT	0x02
3857
3858static DEFINE_PER_CPU(int, printk_pending);
3859
3860static void wake_up_klogd_work_func(struct irq_work *irq_work)
3861{
3862	int pending = this_cpu_xchg(printk_pending, 0);
3863
3864	if (pending & PRINTK_PENDING_OUTPUT) {
3865		/* If trylock fails, someone else is doing the printing */
3866		if (console_trylock())
3867			console_unlock();
3868	}
3869
3870	if (pending & PRINTK_PENDING_WAKEUP)
3871		wake_up_interruptible(&log_wait);
3872}
3873
3874static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3875	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
 
 
3876
3877static void __wake_up_klogd(int val)
3878{
3879	if (!printk_percpu_data_ready())
3880		return;
3881
3882	preempt_disable();
3883	/*
3884	 * Guarantee any new records can be seen by tasks preparing to wait
3885	 * before this context checks if the wait queue is empty.
3886	 *
3887	 * The full memory barrier within wq_has_sleeper() pairs with the full
3888	 * memory barrier within set_current_state() of
3889	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3890	 * the waiter but before it has checked the wait condition.
3891	 *
3892	 * This pairs with devkmsg_read:A and syslog_print:A.
3893	 */
3894	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3895	    (val & PRINTK_PENDING_OUTPUT)) {
3896		this_cpu_or(printk_pending, val);
3897		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3898	}
3899	preempt_enable();
3900}
3901
3902/**
3903 * wake_up_klogd - Wake kernel logging daemon
3904 *
3905 * Use this function when new records have been added to the ringbuffer
3906 * and the console printing of those records has already occurred or is
3907 * known to be handled by some other context. This function will only
3908 * wake the logging daemon.
3909 *
3910 * Context: Any context.
3911 */
3912void wake_up_klogd(void)
3913{
3914	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3915}
3916
3917/**
3918 * defer_console_output - Wake kernel logging daemon and trigger
3919 *	console printing in a deferred context
3920 *
3921 * Use this function when new records have been added to the ringbuffer,
3922 * this context is responsible for console printing those records, but
3923 * the current context is not allowed to perform the console printing.
3924 * Trigger an irq_work context to perform the console printing. This
3925 * function also wakes the logging daemon.
3926 *
3927 * Context: Any context.
3928 */
3929void defer_console_output(void)
3930{
3931	/*
3932	 * New messages may have been added directly to the ringbuffer
3933	 * using vprintk_store(), so wake any waiters as well.
3934	 */
3935	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3936}
3937
3938void printk_trigger_flush(void)
3939{
3940	defer_console_output();
3941}
3942
3943int vprintk_deferred(const char *fmt, va_list args)
3944{
3945	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3946}
3947
3948int _printk_deferred(const char *fmt, ...)
3949{
3950	va_list args;
3951	int r;
3952
 
3953	va_start(args, fmt);
3954	r = vprintk_deferred(fmt, args);
3955	va_end(args);
3956
 
 
 
 
3957	return r;
3958}
3959
3960/*
3961 * printk rate limiting, lifted from the networking subsystem.
3962 *
3963 * This enforces a rate limit: not more than 10 kernel messages
3964 * every 5s to make a denial-of-service attack impossible.
3965 */
3966DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3967
3968int __printk_ratelimit(const char *func)
3969{
3970	return ___ratelimit(&printk_ratelimit_state, func);
3971}
3972EXPORT_SYMBOL(__printk_ratelimit);
3973
3974/**
3975 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3976 * @caller_jiffies: pointer to caller's state
3977 * @interval_msecs: minimum interval between prints
3978 *
3979 * printk_timed_ratelimit() returns true if more than @interval_msecs
3980 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3981 * returned true.
3982 */
3983bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3984			unsigned int interval_msecs)
3985{
3986	unsigned long elapsed = jiffies - *caller_jiffies;
3987
3988	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3989		return false;
3990
3991	*caller_jiffies = jiffies;
3992	return true;
3993}
3994EXPORT_SYMBOL(printk_timed_ratelimit);
3995
3996static DEFINE_SPINLOCK(dump_list_lock);
3997static LIST_HEAD(dump_list);
3998
3999/**
4000 * kmsg_dump_register - register a kernel log dumper.
4001 * @dumper: pointer to the kmsg_dumper structure
4002 *
4003 * Adds a kernel log dumper to the system. The dump callback in the
4004 * structure will be called when the kernel oopses or panics and must be
4005 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4006 */
4007int kmsg_dump_register(struct kmsg_dumper *dumper)
4008{
4009	unsigned long flags;
4010	int err = -EBUSY;
4011
4012	/* The dump callback needs to be set */
4013	if (!dumper->dump)
4014		return -EINVAL;
4015
4016	spin_lock_irqsave(&dump_list_lock, flags);
4017	/* Don't allow registering multiple times */
4018	if (!dumper->registered) {
4019		dumper->registered = 1;
4020		list_add_tail_rcu(&dumper->list, &dump_list);
4021		err = 0;
4022	}
4023	spin_unlock_irqrestore(&dump_list_lock, flags);
4024
4025	return err;
4026}
4027EXPORT_SYMBOL_GPL(kmsg_dump_register);
4028
4029/**
4030 * kmsg_dump_unregister - unregister a kmsg dumper.
4031 * @dumper: pointer to the kmsg_dumper structure
4032 *
4033 * Removes a dump device from the system. Returns zero on success and
4034 * %-EINVAL otherwise.
4035 */
4036int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4037{
4038	unsigned long flags;
4039	int err = -EINVAL;
4040
4041	spin_lock_irqsave(&dump_list_lock, flags);
4042	if (dumper->registered) {
4043		dumper->registered = 0;
4044		list_del_rcu(&dumper->list);
4045		err = 0;
4046	}
4047	spin_unlock_irqrestore(&dump_list_lock, flags);
4048	synchronize_rcu();
4049
4050	return err;
4051}
4052EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4053
4054static bool always_kmsg_dump;
4055module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4056
4057const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4058{
4059	switch (reason) {
4060	case KMSG_DUMP_PANIC:
4061		return "Panic";
4062	case KMSG_DUMP_OOPS:
4063		return "Oops";
4064	case KMSG_DUMP_EMERG:
4065		return "Emergency";
4066	case KMSG_DUMP_SHUTDOWN:
4067		return "Shutdown";
4068	default:
4069		return "Unknown";
4070	}
4071}
4072EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4073
4074/**
4075 * kmsg_dump - dump kernel log to kernel message dumpers.
4076 * @reason: the reason (oops, panic etc) for dumping
4077 *
4078 * Call each of the registered dumper's dump() callback, which can
4079 * retrieve the kmsg records with kmsg_dump_get_line() or
4080 * kmsg_dump_get_buffer().
4081 */
4082void kmsg_dump(enum kmsg_dump_reason reason)
4083{
4084	struct kmsg_dumper *dumper;
 
 
 
 
4085
4086	rcu_read_lock();
4087	list_for_each_entry_rcu(dumper, &dump_list, list) {
4088		enum kmsg_dump_reason max_reason = dumper->max_reason;
 
4089
4090		/*
4091		 * If client has not provided a specific max_reason, default
4092		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4093		 */
4094		if (max_reason == KMSG_DUMP_UNDEF) {
4095			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4096							KMSG_DUMP_OOPS;
4097		}
4098		if (reason > max_reason)
4099			continue;
4100
4101		/* invoke dumper which will iterate over records */
4102		dumper->dump(dumper, reason);
 
 
 
4103	}
4104	rcu_read_unlock();
4105}
4106
4107/**
4108 * kmsg_dump_get_line - retrieve one kmsg log line
4109 * @iter: kmsg dump iterator
4110 * @syslog: include the "<4>" prefixes
4111 * @line: buffer to copy the line to
4112 * @size: maximum size of the buffer
4113 * @len: length of line placed into buffer
4114 *
4115 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4116 * record, and copy one record into the provided buffer.
4117 *
4118 * Consecutive calls will return the next available record moving
4119 * towards the end of the buffer with the youngest messages.
4120 *
4121 * A return value of FALSE indicates that there are no more records to
4122 * read.
 
 
4123 */
4124bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4125			char *line, size_t size, size_t *len)
4126{
4127	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4128	struct printk_info info;
4129	unsigned int line_count;
4130	struct printk_record r;
4131	size_t l = 0;
4132	bool ret = false;
4133
4134	if (iter->cur_seq < min_seq)
4135		iter->cur_seq = min_seq;
4136
4137	prb_rec_init_rd(&r, &info, line, size);
 
 
 
 
4138
4139	/* Read text or count text lines? */
4140	if (line) {
4141		if (!prb_read_valid(prb, iter->cur_seq, &r))
4142			goto out;
4143		l = record_print_text(&r, syslog, printk_time);
4144	} else {
4145		if (!prb_read_valid_info(prb, iter->cur_seq,
4146					 &info, &line_count)) {
4147			goto out;
4148		}
4149		l = get_record_print_text_size(&info, line_count, syslog,
4150					       printk_time);
4151
4152	}
 
4153
4154	iter->cur_seq = r.info->seq + 1;
 
4155	ret = true;
4156out:
4157	if (len)
4158		*len = l;
4159	return ret;
4160}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4162
4163/**
4164 * kmsg_dump_get_buffer - copy kmsg log lines
4165 * @iter: kmsg dump iterator
4166 * @syslog: include the "<4>" prefixes
4167 * @buf: buffer to copy the line to
4168 * @size: maximum size of the buffer
4169 * @len_out: length of line placed into buffer
4170 *
4171 * Start at the end of the kmsg buffer and fill the provided buffer
4172 * with as many of the *youngest* kmsg records that fit into it.
4173 * If the buffer is large enough, all available kmsg records will be
4174 * copied with a single call.
4175 *
4176 * Consecutive calls will fill the buffer with the next block of
4177 * available older records, not including the earlier retrieved ones.
4178 *
4179 * A return value of FALSE indicates that there are no more records to
4180 * read.
4181 */
4182bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4183			  char *buf, size_t size, size_t *len_out)
4184{
4185	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4186	struct printk_info info;
4187	struct printk_record r;
4188	u64 seq;
 
4189	u64 next_seq;
4190	size_t len = 0;
 
 
4191	bool ret = false;
4192	bool time = printk_time;
4193
4194	if (!buf || !size)
4195		goto out;
4196
4197	if (iter->cur_seq < min_seq)
4198		iter->cur_seq = min_seq;
4199
4200	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4201		if (info.seq != iter->cur_seq) {
4202			/* messages are gone, move to first available one */
4203			iter->cur_seq = info.seq;
4204		}
4205	}
4206
4207	/* last entry */
4208	if (iter->cur_seq >= iter->next_seq)
 
4209		goto out;
 
4210
4211	/*
4212	 * Find first record that fits, including all following records,
4213	 * into the user-provided buffer for this dump. Pass in size-1
4214	 * because this function (by way of record_print_text()) will
4215	 * not write more than size-1 bytes of text into @buf.
4216	 */
4217	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4218				     size - 1, syslog, time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4219
4220	/*
4221	 * Next kmsg_dump_get_buffer() invocation will dump block of
4222	 * older records stored right before this one.
4223	 */
4224	next_seq = seq;
 
4225
4226	prb_rec_init_rd(&r, &info, buf, size);
 
 
4227
4228	prb_for_each_record(seq, prb, seq, &r) {
4229		if (r.info->seq >= iter->next_seq)
4230			break;
4231
4232		len += record_print_text(&r, syslog, time);
4233
4234		/* Adjust record to store to remaining buffer space. */
4235		prb_rec_init_rd(&r, &info, buf + len, size - len);
4236	}
4237
4238	iter->next_seq = next_seq;
 
4239	ret = true;
 
4240out:
4241	if (len_out)
4242		*len_out = len;
4243	return ret;
4244}
4245EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4246
4247/**
4248 * kmsg_dump_rewind - reset the iterator
4249 * @iter: kmsg dump iterator
4250 *
4251 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4252 * kmsg_dump_get_buffer() can be called again and used multiple
4253 * times within the same dumper.dump() callback.
 
 
4254 */
4255void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4256{
4257	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4258	iter->next_seq = prb_next_seq(prb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4259}
4260EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4261
4262#endif
4263
4264#ifdef CONFIG_SMP
4265static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4266static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4267
4268/**
4269 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4270 *                            spinning lock is not owned by any CPU.
 
4271 *
4272 * Context: Any context.
 
 
 
4273 */
4274void __printk_cpu_sync_wait(void)
4275{
4276	do {
4277		cpu_relax();
4278	} while (atomic_read(&printk_cpu_sync_owner) != -1);
 
 
 
4279}
4280EXPORT_SYMBOL(__printk_cpu_sync_wait);
4281
4282/**
4283 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4284 *                               spinning lock.
4285 *
4286 * If no processor has the lock, the calling processor takes the lock and
4287 * becomes the owner. If the calling processor is already the owner of the
4288 * lock, this function succeeds immediately.
4289 *
4290 * Context: Any context. Expects interrupts to be disabled.
4291 * Return: 1 on success, otherwise 0.
4292 */
4293int __printk_cpu_sync_try_get(void)
4294{
4295	int cpu;
4296	int old;
 
 
 
4297
4298	cpu = smp_processor_id();
 
 
4299
4300	/*
4301	 * Guarantee loads and stores from this CPU when it is the lock owner
4302	 * are _not_ visible to the previous lock owner. This pairs with
4303	 * __printk_cpu_sync_put:B.
4304	 *
4305	 * Memory barrier involvement:
4306	 *
4307	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4308	 * then __printk_cpu_sync_put:A can never read from
4309	 * __printk_cpu_sync_try_get:B.
4310	 *
4311	 * Relies on:
4312	 *
4313	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4314	 * of the previous CPU
4315	 *    matching
4316	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4317	 * __printk_cpu_sync_try_get:B of this CPU
4318	 */
4319	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4320				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4321	if (old == -1) {
4322		/*
4323		 * This CPU is now the owner and begins loading/storing
4324		 * data: LMM(__printk_cpu_sync_try_get:B)
4325		 */
4326		return 1;
4327
4328	} else if (old == cpu) {
4329		/* This CPU is already the owner. */
4330		atomic_inc(&printk_cpu_sync_nested);
4331		return 1;
4332	}
4333
4334	return 0;
4335}
4336EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4337
4338/**
4339 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
 
4340 *
4341 * The calling processor must be the owner of the lock.
4342 *
4343 * Context: Any context. Expects interrupts to be disabled.
4344 */
4345void __printk_cpu_sync_put(void)
4346{
4347	if (atomic_read(&printk_cpu_sync_nested)) {
4348		atomic_dec(&printk_cpu_sync_nested);
4349		return;
4350	}
4351
4352	/*
4353	 * This CPU is finished loading/storing data:
4354	 * LMM(__printk_cpu_sync_put:A)
4355	 */
4356
4357	/*
4358	 * Guarantee loads and stores from this CPU when it was the
4359	 * lock owner are visible to the next lock owner. This pairs
4360	 * with __printk_cpu_sync_try_get:A.
4361	 *
4362	 * Memory barrier involvement:
4363	 *
4364	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4365	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4366	 *
4367	 * Relies on:
4368	 *
4369	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4370	 * of this CPU
4371	 *    matching
4372	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4373	 * __printk_cpu_sync_try_get:B of the next CPU
4374	 */
4375	atomic_set_release(&printk_cpu_sync_owner,
4376			   -1); /* LMM(__printk_cpu_sync_put:B) */
4377}
4378EXPORT_SYMBOL(__printk_cpu_sync_put);
4379#endif /* CONFIG_SMP */