Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
 
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
 
  65#include <linux/if_vlan.h>
 
 
 
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
 
 
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
 
 
 
 
 
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80struct kmem_cache *skbuff_head_cache __read_mostly;
  81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  83EXPORT_SYMBOL(sysctl_max_skb_frags);
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85/**
  86 *	skb_panic - private function for out-of-line support
  87 *	@skb:	buffer
  88 *	@sz:	size
  89 *	@addr:	address
  90 *	@msg:	skb_over_panic or skb_under_panic
  91 *
  92 *	Out-of-line support for skb_put() and skb_push().
  93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  94 *	Keep out of line to prevent kernel bloat.
  95 *	__builtin_return_address is not used because it is not always reliable.
  96 */
  97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  98		      const char msg[])
  99{
 100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 101		 msg, addr, skb->len, sz, skb->head, skb->data,
 102		 (unsigned long)skb->tail, (unsigned long)skb->end,
 103		 skb->dev ? skb->dev->name : "<NULL>");
 104	BUG();
 105}
 106
 107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 108{
 109	skb_panic(skb, sz, addr, __func__);
 110}
 111
 112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114	skb_panic(skb, sz, addr, __func__);
 115}
 116
 117/*
 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 119 * the caller if emergency pfmemalloc reserves are being used. If it is and
 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 121 * may be used. Otherwise, the packet data may be discarded until enough
 122 * memory is free
 
 
 
 
 
 
 
 123 */
 124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 126
 127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 128			       unsigned long ip, bool *pfmemalloc)
 129{
 130	void *obj;
 131	bool ret_pfmemalloc = false;
 132
 133	/*
 134	 * Try a regular allocation, when that fails and we're not entitled
 135	 * to the reserves, fail.
 136	 */
 137	obj = kmalloc_node_track_caller(size,
 138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 139					node);
 140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 141		goto out;
 142
 143	/* Try again but now we are using pfmemalloc reserves */
 144	ret_pfmemalloc = true;
 145	obj = kmalloc_node_track_caller(size, flags, node);
 146
 147out:
 148	if (pfmemalloc)
 149		*pfmemalloc = ret_pfmemalloc;
 150
 151	return obj;
 
 
 
 
 
 
 
 152}
 
 153
 154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 155 *	'private' fields and also do memory statistics to find all the
 156 *	[BEEP] leaks.
 157 *
 158 */
 
 
 
 
 
 159
 160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161{
 162	struct sk_buff *skb;
 163
 164	/* Get the HEAD */
 165	skb = kmem_cache_alloc_node(skbuff_head_cache,
 166				    gfp_mask & ~__GFP_DMA, node);
 167	if (!skb)
 168		goto out;
 
 169
 170	/*
 171	 * Only clear those fields we need to clear, not those that we will
 172	 * actually initialise below. Hence, don't put any more fields after
 173	 * the tail pointer in struct sk_buff!
 174	 */
 175	memset(skb, 0, offsetof(struct sk_buff, tail));
 176	skb->head = NULL;
 177	skb->truesize = sizeof(struct sk_buff);
 178	atomic_set(&skb->users, 1);
 179
 180	skb->mac_header = (typeof(skb->mac_header))~0U;
 181out:
 182	return skb;
 
 183}
 
 184
 185/**
 186 *	__alloc_skb	-	allocate a network buffer
 187 *	@size: size to allocate
 188 *	@gfp_mask: allocation mask
 189 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 190 *		instead of head cache and allocate a cloned (child) skb.
 191 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 192 *		allocations in case the data is required for writeback
 193 *	@node: numa node to allocate memory on
 194 *
 195 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 196 *	tail room of at least size bytes. The object has a reference count
 197 *	of one. The return is the buffer. On a failure the return is %NULL.
 198 *
 199 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 200 *	%GFP_ATOMIC.
 201 */
 202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 203			    int flags, int node)
 204{
 205	struct kmem_cache *cache;
 206	struct skb_shared_info *shinfo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	struct sk_buff *skb;
 208	u8 *data;
 209	bool pfmemalloc;
 210
 211	cache = (flags & SKB_ALLOC_FCLONE)
 212		? skbuff_fclone_cache : skbuff_head_cache;
 
 
 
 
 
 
 213
 214	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 215		gfp_mask |= __GFP_MEMALLOC;
 216
 217	/* Get the HEAD */
 218	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 219	if (!skb)
 220		goto out;
 221	prefetchw(skb);
 222
 223	/* We do our best to align skb_shared_info on a separate cache
 224	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 225	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 226	 * Both skb->head and skb_shared_info are cache line aligned.
 227	 */
 228	size = SKB_DATA_ALIGN(size);
 229	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 230	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 231	if (!data)
 232		goto nodata;
 233	/* kmalloc(size) might give us more room than requested.
 234	 * Put skb_shared_info exactly at the end of allocated zone,
 235	 * to allow max possible filling before reallocation.
 236	 */
 237	size = SKB_WITH_OVERHEAD(ksize(data));
 238	prefetchw(data + size);
 239
 240	/*
 241	 * Only clear those fields we need to clear, not those that we will
 242	 * actually initialise below. Hence, don't put any more fields after
 243	 * the tail pointer in struct sk_buff!
 244	 */
 245	memset(skb, 0, offsetof(struct sk_buff, tail));
 246	/* Account for allocated memory : skb + skb->head */
 247	skb->truesize = SKB_TRUESIZE(size);
 248	skb->pfmemalloc = pfmemalloc;
 249	atomic_set(&skb->users, 1);
 250	skb->head = data;
 251	skb->data = data;
 252	skb_reset_tail_pointer(skb);
 253	skb->end = skb->tail + size;
 254	skb->mac_header = (typeof(skb->mac_header))~0U;
 255	skb->transport_header = (typeof(skb->transport_header))~0U;
 256
 257	/* make sure we initialize shinfo sequentially */
 258	shinfo = skb_shinfo(skb);
 259	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 260	atomic_set(&shinfo->dataref, 1);
 261	kmemcheck_annotate_variable(shinfo->destructor_arg);
 262
 263	if (flags & SKB_ALLOC_FCLONE) {
 264		struct sk_buff_fclones *fclones;
 265
 266		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 
 
 
 267
 268		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 269		skb->fclone = SKB_FCLONE_ORIG;
 270		atomic_set(&fclones->fclone_ref, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271
 272		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 273		fclones->skb2.pfmemalloc = pfmemalloc;
 274	}
 275out:
 276	return skb;
 277nodata:
 278	kmem_cache_free(cache, skb);
 279	skb = NULL;
 280	goto out;
 281}
 282EXPORT_SYMBOL(__alloc_skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283
 284/**
 285 * __build_skb - build a network buffer
 286 * @data: data buffer provided by caller
 287 * @frag_size: size of data, or 0 if head was kmalloced
 288 *
 289 * Allocate a new &sk_buff. Caller provides space holding head and
 290 * skb_shared_info. @data must have been allocated by kmalloc() only if
 291 * @frag_size is 0, otherwise data should come from the page allocator
 292 *  or vmalloc()
 
 293 * The return is the new skb buffer.
 294 * On a failure the return is %NULL, and @data is not freed.
 295 * Notes :
 296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 297 *  Driver should add room at head (NET_SKB_PAD) and
 298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 300 *  before giving packet to stack.
 301 *  RX rings only contains data buffers, not full skbs.
 302 */
 303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 304{
 305	struct skb_shared_info *shinfo;
 306	struct sk_buff *skb;
 307	unsigned int size = frag_size ? : ksize(data);
 308
 309	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 310	if (!skb)
 311		return NULL;
 312
 313	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 314
 315	memset(skb, 0, offsetof(struct sk_buff, tail));
 316	skb->truesize = SKB_TRUESIZE(size);
 317	atomic_set(&skb->users, 1);
 318	skb->head = data;
 319	skb->data = data;
 320	skb_reset_tail_pointer(skb);
 321	skb->end = skb->tail + size;
 322	skb->mac_header = (typeof(skb->mac_header))~0U;
 323	skb->transport_header = (typeof(skb->transport_header))~0U;
 324
 325	/* make sure we initialize shinfo sequentially */
 326	shinfo = skb_shinfo(skb);
 327	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 328	atomic_set(&shinfo->dataref, 1);
 329	kmemcheck_annotate_variable(shinfo->destructor_arg);
 330
 331	return skb;
 332}
 333
 334/* build_skb() is wrapper over __build_skb(), that specifically
 335 * takes care of skb->head and skb->pfmemalloc
 336 * This means that if @frag_size is not zero, then @data must be backed
 337 * by a page fragment, not kmalloc() or vmalloc()
 338 */
 339struct sk_buff *build_skb(void *data, unsigned int frag_size)
 340{
 341	struct sk_buff *skb = __build_skb(data, frag_size);
 342
 343	if (skb && frag_size) {
 344		skb->head_frag = 1;
 345		if (page_is_pfmemalloc(virt_to_head_page(data)))
 346			skb->pfmemalloc = 1;
 347	}
 348	return skb;
 349}
 350EXPORT_SYMBOL(build_skb);
 351
 352#define NAPI_SKB_CACHE_SIZE	64
 
 
 
 
 
 
 
 
 
 
 353
 354struct napi_alloc_cache {
 355	struct page_frag_cache page;
 356	size_t skb_count;
 357	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 358};
 359
 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 
 
 
 
 
 362
 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 364{
 365	struct page_frag_cache *nc;
 366	unsigned long flags;
 367	void *data;
 368
 369	local_irq_save(flags);
 370	nc = this_cpu_ptr(&netdev_alloc_cache);
 371	data = __alloc_page_frag(nc, fragsz, gfp_mask);
 372	local_irq_restore(flags);
 373	return data;
 
 
 
 374}
 375
 376/**
 377 * netdev_alloc_frag - allocate a page fragment
 378 * @fragsz: fragment size
 
 
 
 
 379 *
 380 * Allocates a frag from a page for receive buffer.
 381 * Uses GFP_ATOMIC allocations.
 382 */
 383void *netdev_alloc_frag(unsigned int fragsz)
 384{
 385	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 
 
 
 
 
 
 
 386}
 387EXPORT_SYMBOL(netdev_alloc_frag);
 388
 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 390{
 391	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392
 393	return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
 
 
 
 
 
 
 
 
 394}
 395
 396void *napi_alloc_frag(unsigned int fragsz)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397{
 398	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400EXPORT_SYMBOL(napi_alloc_frag);
 401
 402/**
 403 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 404 *	@dev: network device to receive on
 405 *	@len: length to allocate
 406 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 407 *
 408 *	Allocate a new &sk_buff and assign it a usage count of one. The
 409 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 410 *	the headroom they think they need without accounting for the
 411 *	built in space. The built in space is used for optimisations.
 412 *
 413 *	%NULL is returned if there is no free memory.
 414 */
 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 416				   gfp_t gfp_mask)
 417{
 418	struct page_frag_cache *nc;
 419	unsigned long flags;
 420	struct sk_buff *skb;
 421	bool pfmemalloc;
 422	void *data;
 423
 424	len += NET_SKB_PAD;
 425
 426	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 
 
 
 
 427	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 428		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 429		if (!skb)
 430			goto skb_fail;
 431		goto skb_success;
 432	}
 433
 434	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 435	len = SKB_DATA_ALIGN(len);
 436
 437	if (sk_memalloc_socks())
 438		gfp_mask |= __GFP_MEMALLOC;
 439
 440	local_irq_save(flags);
 441
 442	nc = this_cpu_ptr(&netdev_alloc_cache);
 443	data = __alloc_page_frag(nc, len, gfp_mask);
 444	pfmemalloc = nc->pfmemalloc;
 445
 446	local_irq_restore(flags);
 
 
 
 
 447
 448	if (unlikely(!data))
 449		return NULL;
 450
 451	skb = __build_skb(data, len);
 452	if (unlikely(!skb)) {
 453		skb_free_frag(data);
 454		return NULL;
 455	}
 456
 457	/* use OR instead of assignment to avoid clearing of bits in mask */
 458	if (pfmemalloc)
 459		skb->pfmemalloc = 1;
 460	skb->head_frag = 1;
 461
 462skb_success:
 463	skb_reserve(skb, NET_SKB_PAD);
 464	skb->dev = dev;
 465
 466skb_fail:
 467	return skb;
 468}
 469EXPORT_SYMBOL(__netdev_alloc_skb);
 470
 471/**
 472 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 473 *	@napi: napi instance this buffer was allocated for
 474 *	@len: length to allocate
 475 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 476 *
 477 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 478 *	attempt to allocate the head from a special reserved region used
 479 *	only for NAPI Rx allocation.  By doing this we can save several
 480 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 481 *
 482 *	%NULL is returned if there is no free memory.
 483 */
 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 485				 gfp_t gfp_mask)
 486{
 487	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 488	struct sk_buff *skb;
 
 489	void *data;
 490
 
 491	len += NET_SKB_PAD + NET_IP_ALIGN;
 492
 493	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 
 
 
 
 
 
 494	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 495		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 
 496		if (!skb)
 497			goto skb_fail;
 498		goto skb_success;
 499	}
 500
 501	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 502	len = SKB_DATA_ALIGN(len);
 503
 504	if (sk_memalloc_socks())
 505		gfp_mask |= __GFP_MEMALLOC;
 506
 507	data = __alloc_page_frag(&nc->page, len, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508	if (unlikely(!data))
 509		return NULL;
 510
 511	skb = __build_skb(data, len);
 512	if (unlikely(!skb)) {
 513		skb_free_frag(data);
 514		return NULL;
 515	}
 516
 517	/* use OR instead of assignment to avoid clearing of bits in mask */
 518	if (nc->page.pfmemalloc)
 519		skb->pfmemalloc = 1;
 520	skb->head_frag = 1;
 521
 522skb_success:
 523	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 524	skb->dev = napi->dev;
 525
 526skb_fail:
 527	return skb;
 528}
 529EXPORT_SYMBOL(__napi_alloc_skb);
 530
 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 532		     int size, unsigned int truesize)
 533{
 534	skb_fill_page_desc(skb, i, page, off, size);
 
 
 535	skb->len += size;
 536	skb->data_len += size;
 537	skb->truesize += truesize;
 538}
 539EXPORT_SYMBOL(skb_add_rx_frag);
 540
 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 542			  unsigned int truesize)
 543{
 544	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 545
 
 
 546	skb_frag_size_add(frag, size);
 547	skb->len += size;
 548	skb->data_len += size;
 549	skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_coalesce_rx_frag);
 552
 553static void skb_drop_list(struct sk_buff **listp)
 554{
 555	kfree_skb_list(*listp);
 556	*listp = NULL;
 557}
 558
 559static inline void skb_drop_fraglist(struct sk_buff *skb)
 560{
 561	skb_drop_list(&skb_shinfo(skb)->frag_list);
 562}
 563
 564static void skb_clone_fraglist(struct sk_buff *skb)
 565{
 566	struct sk_buff *list;
 567
 568	skb_walk_frags(skb, list)
 569		skb_get(list);
 570}
 571
 572static void skb_free_head(struct sk_buff *skb)
 573{
 574	unsigned char *head = skb->head;
 
 575
 576	if (skb->head_frag)
 577		skb_free_frag(head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	else
 579		kfree(head);
 580}
 581
 582static void skb_release_data(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583{
 584	struct skb_shared_info *shinfo = skb_shinfo(skb);
 585	int i;
 586
 587	if (skb->cloned &&
 588	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 589			      &shinfo->dataref))
 590		return;
 591
 592	for (i = 0; i < shinfo->nr_frags; i++)
 593		__skb_frag_unref(&shinfo->frags[i]);
 594
 595	/*
 596	 * If skb buf is from userspace, we need to notify the caller
 597	 * the lower device DMA has done;
 598	 */
 599	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 600		struct ubuf_info *uarg;
 601
 602		uarg = shinfo->destructor_arg;
 603		if (uarg->callback)
 604			uarg->callback(uarg, true);
 605	}
 606
 
 
 
 
 607	if (shinfo->frag_list)
 608		kfree_skb_list(shinfo->frag_list);
 609
 610	skb_free_head(skb);
 
 
 
 
 
 
 
 
 
 
 
 611}
 612
 613/*
 614 *	Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618	struct sk_buff_fclones *fclones;
 619
 620	switch (skb->fclone) {
 621	case SKB_FCLONE_UNAVAILABLE:
 622		kmem_cache_free(skbuff_head_cache, skb);
 623		return;
 624
 625	case SKB_FCLONE_ORIG:
 626		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628		/* We usually free the clone (TX completion) before original skb
 629		 * This test would have no chance to be true for the clone,
 630		 * while here, branch prediction will be good.
 631		 */
 632		if (atomic_read(&fclones->fclone_ref) == 1)
 633			goto fastpath;
 634		break;
 635
 636	default: /* SKB_FCLONE_CLONE */
 637		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638		break;
 639	}
 640	if (!atomic_dec_and_test(&fclones->fclone_ref))
 641		return;
 642fastpath:
 643	kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646static void skb_release_head_state(struct sk_buff *skb)
 647{
 648	skb_dst_drop(skb);
 649#ifdef CONFIG_XFRM
 650	secpath_put(skb->sp);
 651#endif
 652	if (skb->destructor) {
 653		WARN_ON(in_irq());
 654		skb->destructor(skb);
 655	}
 656#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 657	nf_conntrack_put(skb->nfct);
 658#endif
 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 660	nf_bridge_put(skb->nf_bridge);
 661#endif
 
 662}
 663
 664/* Free everything but the sk_buff shell. */
 665static void skb_release_all(struct sk_buff *skb)
 
 666{
 667	skb_release_head_state(skb);
 668	if (likely(skb->head))
 669		skb_release_data(skb);
 670}
 671
 672/**
 673 *	__kfree_skb - private function
 674 *	@skb: buffer
 675 *
 676 *	Free an sk_buff. Release anything attached to the buffer.
 677 *	Clean the state. This is an internal helper function. Users should
 678 *	always call kfree_skb
 679 */
 680
 681void __kfree_skb(struct sk_buff *skb)
 682{
 683	skb_release_all(skb);
 684	kfree_skbmem(skb);
 685}
 686EXPORT_SYMBOL(__kfree_skb);
 687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688/**
 689 *	kfree_skb - free an sk_buff
 690 *	@skb: buffer to free
 
 691 *
 692 *	Drop a reference to the buffer and free it if the usage count has
 693 *	hit zero.
 
 694 */
 695void kfree_skb(struct sk_buff *skb)
 
 696{
 697	if (unlikely(!skb))
 698		return;
 699	if (likely(atomic_read(&skb->users) == 1))
 700		smp_rmb();
 701	else if (likely(!atomic_dec_and_test(&skb->users)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702		return;
 703	trace_kfree_skb(skb, __builtin_return_address(0));
 704	__kfree_skb(skb);
 
 
 
 
 
 
 
 
 705}
 706EXPORT_SYMBOL(kfree_skb);
 707
 708void kfree_skb_list(struct sk_buff *segs)
 
 709{
 
 
 
 
 710	while (segs) {
 711		struct sk_buff *next = segs->next;
 712
 713		kfree_skb(segs);
 
 
 
 
 714		segs = next;
 715	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716}
 717EXPORT_SYMBOL(kfree_skb_list);
 718
 719/**
 720 *	skb_tx_error - report an sk_buff xmit error
 721 *	@skb: buffer that triggered an error
 722 *
 723 *	Report xmit error if a device callback is tracking this skb.
 724 *	skb must be freed afterwards.
 725 */
 726void skb_tx_error(struct sk_buff *skb)
 727{
 728	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 729		struct ubuf_info *uarg;
 730
 731		uarg = skb_shinfo(skb)->destructor_arg;
 732		if (uarg->callback)
 733			uarg->callback(uarg, false);
 734		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 735	}
 736}
 737EXPORT_SYMBOL(skb_tx_error);
 738
 
 739/**
 740 *	consume_skb - free an skbuff
 741 *	@skb: buffer to free
 742 *
 743 *	Drop a ref to the buffer and free it if the usage count has hit zero
 744 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 745 *	is being dropped after a failure and notes that
 746 */
 747void consume_skb(struct sk_buff *skb)
 748{
 749	if (unlikely(!skb))
 750		return;
 751	if (likely(atomic_read(&skb->users) == 1))
 752		smp_rmb();
 753	else if (likely(!atomic_dec_and_test(&skb->users)))
 754		return;
 755	trace_consume_skb(skb);
 756	__kfree_skb(skb);
 757}
 758EXPORT_SYMBOL(consume_skb);
 
 759
 760void __kfree_skb_flush(void)
 
 
 
 
 
 
 
 761{
 762	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 763
 764	/* flush skb_cache if containing objects */
 765	if (nc->skb_count) {
 766		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 767				     nc->skb_cache);
 768		nc->skb_count = 0;
 769	}
 770}
 771
 772static inline void _kfree_skb_defer(struct sk_buff *skb)
 773{
 774	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 
 775
 776	/* drop skb->head and call any destructors for packet */
 777	skb_release_all(skb);
 778
 779	/* record skb to CPU local list */
 780	nc->skb_cache[nc->skb_count++] = skb;
 781
 782#ifdef CONFIG_SLUB
 783	/* SLUB writes into objects when freeing */
 784	prefetchw(skb);
 785#endif
 786
 787	/* flush skb_cache if it is filled */
 788	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 789		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 790				     nc->skb_cache);
 791		nc->skb_count = 0;
 
 
 
 
 792	}
 793}
 794void __kfree_skb_defer(struct sk_buff *skb)
 
 795{
 796	_kfree_skb_defer(skb);
 
 797}
 798
 799void napi_consume_skb(struct sk_buff *skb, int budget)
 800{
 801	if (unlikely(!skb))
 802		return;
 
 
 
 
 
 
 
 803
 
 
 804	/* Zero budget indicate non-NAPI context called us, like netpoll */
 805	if (unlikely(!budget)) {
 806		dev_consume_skb_any(skb);
 807		return;
 808	}
 809
 810	if (likely(atomic_read(&skb->users) == 1))
 811		smp_rmb();
 812	else if (likely(!atomic_dec_and_test(&skb->users)))
 813		return;
 
 814	/* if reaching here SKB is ready to free */
 815	trace_consume_skb(skb);
 816
 817	/* if SKB is a clone, don't handle this case */
 818	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 819		__kfree_skb(skb);
 820		return;
 821	}
 822
 823	_kfree_skb_defer(skb);
 
 824}
 825EXPORT_SYMBOL(napi_consume_skb);
 826
 827/* Make sure a field is enclosed inside headers_start/headers_end section */
 828#define CHECK_SKB_FIELD(field) \
 829	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 830		     offsetof(struct sk_buff, headers_start));	\
 831	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 832		     offsetof(struct sk_buff, headers_end));	\
 833
 834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 835{
 836	new->tstamp		= old->tstamp;
 837	/* We do not copy old->sk */
 838	new->dev		= old->dev;
 839	memcpy(new->cb, old->cb, sizeof(old->cb));
 840	skb_dst_copy(new, old);
 841#ifdef CONFIG_XFRM
 842	new->sp			= secpath_get(old->sp);
 843#endif
 844	__nf_copy(new, old, false);
 845
 846	/* Note : this field could be in headers_start/headers_end section
 847	 * It is not yet because we do not want to have a 16 bit hole
 848	 */
 849	new->queue_mapping = old->queue_mapping;
 850
 851	memcpy(&new->headers_start, &old->headers_start,
 852	       offsetof(struct sk_buff, headers_end) -
 853	       offsetof(struct sk_buff, headers_start));
 854	CHECK_SKB_FIELD(protocol);
 855	CHECK_SKB_FIELD(csum);
 856	CHECK_SKB_FIELD(hash);
 857	CHECK_SKB_FIELD(priority);
 858	CHECK_SKB_FIELD(skb_iif);
 859	CHECK_SKB_FIELD(vlan_proto);
 860	CHECK_SKB_FIELD(vlan_tci);
 861	CHECK_SKB_FIELD(transport_header);
 862	CHECK_SKB_FIELD(network_header);
 863	CHECK_SKB_FIELD(mac_header);
 864	CHECK_SKB_FIELD(inner_protocol);
 865	CHECK_SKB_FIELD(inner_transport_header);
 866	CHECK_SKB_FIELD(inner_network_header);
 867	CHECK_SKB_FIELD(inner_mac_header);
 868	CHECK_SKB_FIELD(mark);
 869#ifdef CONFIG_NETWORK_SECMARK
 870	CHECK_SKB_FIELD(secmark);
 871#endif
 872#ifdef CONFIG_NET_RX_BUSY_POLL
 873	CHECK_SKB_FIELD(napi_id);
 874#endif
 
 875#ifdef CONFIG_XPS
 876	CHECK_SKB_FIELD(sender_cpu);
 877#endif
 878#ifdef CONFIG_NET_SCHED
 879	CHECK_SKB_FIELD(tc_index);
 880#ifdef CONFIG_NET_CLS_ACT
 881	CHECK_SKB_FIELD(tc_verd);
 882#endif
 883#endif
 884
 885}
 886
 887/*
 888 * You should not add any new code to this function.  Add it to
 889 * __copy_skb_header above instead.
 890 */
 891static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 892{
 893#define C(x) n->x = skb->x
 894
 895	n->next = n->prev = NULL;
 896	n->sk = NULL;
 897	__copy_skb_header(n, skb);
 898
 899	C(len);
 900	C(data_len);
 901	C(mac_len);
 902	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 903	n->cloned = 1;
 904	n->nohdr = 0;
 
 
 
 905	n->destructor = NULL;
 906	C(tail);
 907	C(end);
 908	C(head);
 909	C(head_frag);
 910	C(data);
 911	C(truesize);
 912	atomic_set(&n->users, 1);
 913
 914	atomic_inc(&(skb_shinfo(skb)->dataref));
 915	skb->cloned = 1;
 916
 917	return n;
 918#undef C
 919}
 920
 921/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922 *	skb_morph	-	morph one skb into another
 923 *	@dst: the skb to receive the contents
 924 *	@src: the skb to supply the contents
 925 *
 926 *	This is identical to skb_clone except that the target skb is
 927 *	supplied by the user.
 928 *
 929 *	The target skb is returned upon exit.
 930 */
 931struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 932{
 933	skb_release_all(dst);
 934	return __skb_clone(dst, src);
 935}
 936EXPORT_SYMBOL_GPL(skb_morph);
 937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938/**
 939 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 940 *	@skb: the skb to modify
 941 *	@gfp_mask: allocation priority
 942 *
 943 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 944 *	It will copy all frags into kernel and drop the reference
 945 *	to userspace pages.
 946 *
 947 *	If this function is called from an interrupt gfp_mask() must be
 948 *	%GFP_ATOMIC.
 949 *
 950 *	Returns 0 on success or a negative error code on failure
 951 *	to allocate kernel memory to copy to.
 952 */
 953int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 954{
 955	int i;
 956	int num_frags = skb_shinfo(skb)->nr_frags;
 957	struct page *page, *head = NULL;
 958	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 
 959
 960	for (i = 0; i < num_frags; i++) {
 961		u8 *vaddr;
 962		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 
 
 963
 964		page = alloc_page(gfp_mask);
 
 
 
 
 
 
 
 
 
 
 965		if (!page) {
 966			while (head) {
 967				struct page *next = (struct page *)page_private(head);
 968				put_page(head);
 969				head = next;
 970			}
 971			return -ENOMEM;
 972		}
 973		vaddr = kmap_atomic(skb_frag_page(f));
 974		memcpy(page_address(page),
 975		       vaddr + f->page_offset, skb_frag_size(f));
 976		kunmap_atomic(vaddr);
 977		set_page_private(page, (unsigned long)head);
 978		head = page;
 979	}
 980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 981	/* skb frags release userspace buffers */
 982	for (i = 0; i < num_frags; i++)
 983		skb_frag_unref(skb, i);
 984
 985	uarg->callback(uarg, false);
 986
 987	/* skb frags point to kernel buffers */
 988	for (i = num_frags - 1; i >= 0; i--) {
 989		__skb_fill_page_desc(skb, i, head, 0,
 990				     skb_shinfo(skb)->frags[i].size);
 991		head = (struct page *)page_private(head);
 992	}
 
 
 
 993
 994	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 
 995	return 0;
 996}
 997EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 998
 999/**
1000 *	skb_clone	-	duplicate an sk_buff
1001 *	@skb: buffer to clone
1002 *	@gfp_mask: allocation priority
1003 *
1004 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 *	copies share the same packet data but not structure. The new
1006 *	buffer has a reference count of 1. If the allocation fails the
1007 *	function returns %NULL otherwise the new buffer is returned.
1008 *
1009 *	If this function is called from an interrupt gfp_mask() must be
1010 *	%GFP_ATOMIC.
1011 */
1012
1013struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014{
1015	struct sk_buff_fclones *fclones = container_of(skb,
1016						       struct sk_buff_fclones,
1017						       skb1);
1018	struct sk_buff *n;
1019
1020	if (skb_orphan_frags(skb, gfp_mask))
1021		return NULL;
1022
1023	if (skb->fclone == SKB_FCLONE_ORIG &&
1024	    atomic_read(&fclones->fclone_ref) == 1) {
1025		n = &fclones->skb2;
1026		atomic_set(&fclones->fclone_ref, 2);
 
1027	} else {
1028		if (skb_pfmemalloc(skb))
1029			gfp_mask |= __GFP_MEMALLOC;
1030
1031		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032		if (!n)
1033			return NULL;
1034
1035		kmemcheck_annotate_bitfield(n, flags1);
1036		n->fclone = SKB_FCLONE_UNAVAILABLE;
1037	}
1038
1039	return __skb_clone(n, skb);
1040}
1041EXPORT_SYMBOL(skb_clone);
1042
1043static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044{
1045	/* Only adjust this if it actually is csum_start rather than csum */
1046	if (skb->ip_summed == CHECKSUM_PARTIAL)
1047		skb->csum_start += off;
1048	/* {transport,network,mac}_header and tail are relative to skb->head */
1049	skb->transport_header += off;
1050	skb->network_header   += off;
1051	if (skb_mac_header_was_set(skb))
1052		skb->mac_header += off;
1053	skb->inner_transport_header += off;
1054	skb->inner_network_header += off;
1055	skb->inner_mac_header += off;
1056}
 
1057
1058static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059{
1060	__copy_skb_header(new, old);
1061
1062	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065}
 
1066
1067static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068{
1069	if (skb_pfmemalloc(skb))
1070		return SKB_ALLOC_RX;
1071	return 0;
1072}
1073
1074/**
1075 *	skb_copy	-	create private copy of an sk_buff
1076 *	@skb: buffer to copy
1077 *	@gfp_mask: allocation priority
1078 *
1079 *	Make a copy of both an &sk_buff and its data. This is used when the
1080 *	caller wishes to modify the data and needs a private copy of the
1081 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1082 *	on success. The returned buffer has a reference count of 1.
1083 *
1084 *	As by-product this function converts non-linear &sk_buff to linear
1085 *	one, so that &sk_buff becomes completely private and caller is allowed
1086 *	to modify all the data of returned buffer. This means that this
1087 *	function is not recommended for use in circumstances when only
1088 *	header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092{
1093	int headerlen = skb_headroom(skb);
1094	unsigned int size = skb_end_offset(skb) + skb->data_len;
1095	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
 
 
 
 
 
 
 
1098	if (!n)
1099		return NULL;
1100
1101	/* Set the data pointer */
1102	skb_reserve(n, headerlen);
1103	/* Set the tail pointer and length */
1104	skb_put(n, skb->len);
1105
1106	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107		BUG();
1108
1109	copy_skb_header(n, skb);
1110	return n;
1111}
1112EXPORT_SYMBOL(skb_copy);
1113
1114/**
1115 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1116 *	@skb: buffer to copy
1117 *	@headroom: headroom of new skb
1118 *	@gfp_mask: allocation priority
1119 *	@fclone: if true allocate the copy of the skb from the fclone
1120 *	cache instead of the head cache; it is recommended to set this
1121 *	to true for the cases where the copy will likely be cloned
1122 *
1123 *	Make a copy of both an &sk_buff and part of its data, located
1124 *	in header. Fragmented data remain shared. This is used when
1125 *	the caller wishes to modify only header of &sk_buff and needs
1126 *	private copy of the header to alter. Returns %NULL on failure
1127 *	or the pointer to the buffer on success.
1128 *	The returned buffer has a reference count of 1.
1129 */
1130
1131struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132				   gfp_t gfp_mask, bool fclone)
1133{
1134	unsigned int size = skb_headlen(skb) + headroom;
1135	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138	if (!n)
1139		goto out;
1140
1141	/* Set the data pointer */
1142	skb_reserve(n, headroom);
1143	/* Set the tail pointer and length */
1144	skb_put(n, skb_headlen(skb));
1145	/* Copy the bytes */
1146	skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148	n->truesize += skb->data_len;
1149	n->data_len  = skb->data_len;
1150	n->len	     = skb->len;
1151
1152	if (skb_shinfo(skb)->nr_frags) {
1153		int i;
1154
1155		if (skb_orphan_frags(skb, gfp_mask)) {
 
1156			kfree_skb(n);
1157			n = NULL;
1158			goto out;
1159		}
1160		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162			skb_frag_ref(skb, i);
1163		}
1164		skb_shinfo(n)->nr_frags = i;
1165	}
1166
1167	if (skb_has_frag_list(skb)) {
1168		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169		skb_clone_fraglist(n);
1170	}
1171
1172	copy_skb_header(n, skb);
1173out:
1174	return n;
1175}
1176EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178/**
1179 *	pskb_expand_head - reallocate header of &sk_buff
1180 *	@skb: buffer to reallocate
1181 *	@nhead: room to add at head
1182 *	@ntail: room to add at tail
1183 *	@gfp_mask: allocation priority
1184 *
1185 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 *	reference count of 1. Returns zero in the case of success or error,
1188 *	if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 *	All the pointers pointing into skb header may change and must be
1191 *	reloaded after call to this function.
1192 */
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195		     gfp_t gfp_mask)
1196{
1197	int i;
1198	u8 *data;
1199	int size = nhead + skb_end_offset(skb) + ntail;
1200	long off;
 
 
1201
1202	BUG_ON(nhead < 0);
1203
1204	if (skb_shared(skb))
1205		BUG();
1206
1207	size = SKB_DATA_ALIGN(size);
1208
1209	if (skb_pfmemalloc(skb))
1210		gfp_mask |= __GFP_MEMALLOC;
1211	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212			       gfp_mask, NUMA_NO_NODE, NULL);
1213	if (!data)
1214		goto nodata;
1215	size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217	/* Copy only real data... and, alas, header. This should be
1218	 * optimized for the cases when header is void.
1219	 */
1220	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222	memcpy((struct skb_shared_info *)(data + size),
1223	       skb_shinfo(skb),
1224	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226	/*
1227	 * if shinfo is shared we must drop the old head gracefully, but if it
1228	 * is not we can just drop the old head and let the existing refcount
1229	 * be since all we did is relocate the values
1230	 */
1231	if (skb_cloned(skb)) {
1232		/* copy this zero copy skb frags */
1233		if (skb_orphan_frags(skb, gfp_mask))
1234			goto nofrags;
 
 
1235		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236			skb_frag_ref(skb, i);
1237
1238		if (skb_has_frag_list(skb))
1239			skb_clone_fraglist(skb);
1240
1241		skb_release_data(skb);
1242	} else {
1243		skb_free_head(skb);
1244	}
1245	off = (data + nhead) - skb->head;
1246
1247	skb->head     = data;
1248	skb->head_frag = 0;
1249	skb->data    += off;
 
 
1250#ifdef NET_SKBUFF_DATA_USES_OFFSET
1251	skb->end      = size;
1252	off           = nhead;
1253#else
1254	skb->end      = skb->head + size;
1255#endif
1256	skb->tail	      += off;
1257	skb_headers_offset_update(skb, nhead);
1258	skb->cloned   = 0;
1259	skb->hdr_len  = 0;
1260	skb->nohdr    = 0;
1261	atomic_set(&skb_shinfo(skb)->dataref, 1);
 
 
 
 
 
 
 
 
 
 
1262	return 0;
1263
1264nofrags:
1265	kfree(data);
1266nodata:
1267	return -ENOMEM;
1268}
1269EXPORT_SYMBOL(pskb_expand_head);
1270
1271/* Make private copy of skb with writable head and some headroom */
1272
1273struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274{
1275	struct sk_buff *skb2;
1276	int delta = headroom - skb_headroom(skb);
1277
1278	if (delta <= 0)
1279		skb2 = pskb_copy(skb, GFP_ATOMIC);
1280	else {
1281		skb2 = skb_clone(skb, GFP_ATOMIC);
1282		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283					     GFP_ATOMIC)) {
1284			kfree_skb(skb2);
1285			skb2 = NULL;
1286		}
1287	}
1288	return skb2;
1289}
1290EXPORT_SYMBOL(skb_realloc_headroom);
1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292/**
1293 *	skb_copy_expand	-	copy and expand sk_buff
1294 *	@skb: buffer to copy
1295 *	@newheadroom: new free bytes at head
1296 *	@newtailroom: new free bytes at tail
1297 *	@gfp_mask: allocation priority
1298 *
1299 *	Make a copy of both an &sk_buff and its data and while doing so
1300 *	allocate additional space.
1301 *
1302 *	This is used when the caller wishes to modify the data and needs a
1303 *	private copy of the data to alter as well as more space for new fields.
1304 *	Returns %NULL on failure or the pointer to the buffer
1305 *	on success. The returned buffer has a reference count of 1.
1306 *
1307 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1308 *	is called from an interrupt.
1309 */
1310struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311				int newheadroom, int newtailroom,
1312				gfp_t gfp_mask)
1313{
1314	/*
1315	 *	Allocate the copy buffer
1316	 */
1317	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318					gfp_mask, skb_alloc_rx_flag(skb),
1319					NUMA_NO_NODE);
1320	int oldheadroom = skb_headroom(skb);
1321	int head_copy_len, head_copy_off;
 
 
 
 
 
1322
 
 
 
 
1323	if (!n)
1324		return NULL;
1325
1326	skb_reserve(n, newheadroom);
1327
1328	/* Set the tail pointer and length */
1329	skb_put(n, skb->len);
1330
1331	head_copy_len = oldheadroom;
1332	head_copy_off = 0;
1333	if (newheadroom <= head_copy_len)
1334		head_copy_len = newheadroom;
1335	else
1336		head_copy_off = newheadroom - head_copy_len;
1337
1338	/* Copy the linear header and data. */
1339	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340			  skb->len + head_copy_len))
1341		BUG();
1342
1343	copy_skb_header(n, skb);
1344
1345	skb_headers_offset_update(n, newheadroom - oldheadroom);
1346
1347	return n;
1348}
1349EXPORT_SYMBOL(skb_copy_expand);
1350
1351/**
1352 *	skb_pad			-	zero pad the tail of an skb
1353 *	@skb: buffer to pad
1354 *	@pad: space to pad
 
1355 *
1356 *	Ensure that a buffer is followed by a padding area that is zero
1357 *	filled. Used by network drivers which may DMA or transfer data
1358 *	beyond the buffer end onto the wire.
1359 *
1360 *	May return error in out of memory cases. The skb is freed on error.
 
1361 */
1362
1363int skb_pad(struct sk_buff *skb, int pad)
1364{
1365	int err;
1366	int ntail;
1367
1368	/* If the skbuff is non linear tailroom is always zero.. */
1369	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370		memset(skb->data+skb->len, 0, pad);
1371		return 0;
1372	}
1373
1374	ntail = skb->data_len + pad - (skb->end - skb->tail);
1375	if (likely(skb_cloned(skb) || ntail > 0)) {
1376		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377		if (unlikely(err))
1378			goto free_skb;
1379	}
1380
1381	/* FIXME: The use of this function with non-linear skb's really needs
1382	 * to be audited.
1383	 */
1384	err = skb_linearize(skb);
1385	if (unlikely(err))
1386		goto free_skb;
1387
1388	memset(skb->data + skb->len, 0, pad);
1389	return 0;
1390
1391free_skb:
1392	kfree_skb(skb);
 
1393	return err;
1394}
1395EXPORT_SYMBOL(skb_pad);
1396
1397/**
1398 *	pskb_put - add data to the tail of a potentially fragmented buffer
1399 *	@skb: start of the buffer to use
1400 *	@tail: tail fragment of the buffer to use
1401 *	@len: amount of data to add
1402 *
1403 *	This function extends the used data area of the potentially
1404 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1405 *	@skb itself. If this would exceed the total buffer size the kernel
1406 *	will panic. A pointer to the first byte of the extra data is
1407 *	returned.
1408 */
1409
1410unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411{
1412	if (tail != skb) {
1413		skb->data_len += len;
1414		skb->len += len;
1415	}
1416	return skb_put(tail, len);
1417}
1418EXPORT_SYMBOL_GPL(pskb_put);
1419
1420/**
1421 *	skb_put - add data to a buffer
1422 *	@skb: buffer to use
1423 *	@len: amount of data to add
1424 *
1425 *	This function extends the used data area of the buffer. If this would
1426 *	exceed the total buffer size the kernel will panic. A pointer to the
1427 *	first byte of the extra data is returned.
1428 */
1429unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430{
1431	unsigned char *tmp = skb_tail_pointer(skb);
1432	SKB_LINEAR_ASSERT(skb);
1433	skb->tail += len;
1434	skb->len  += len;
1435	if (unlikely(skb->tail > skb->end))
1436		skb_over_panic(skb, len, __builtin_return_address(0));
1437	return tmp;
1438}
1439EXPORT_SYMBOL(skb_put);
1440
1441/**
1442 *	skb_push - add data to the start of a buffer
1443 *	@skb: buffer to use
1444 *	@len: amount of data to add
1445 *
1446 *	This function extends the used data area of the buffer at the buffer
1447 *	start. If this would exceed the total buffer headroom the kernel will
1448 *	panic. A pointer to the first byte of the extra data is returned.
1449 */
1450unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451{
1452	skb->data -= len;
1453	skb->len  += len;
1454	if (unlikely(skb->data<skb->head))
1455		skb_under_panic(skb, len, __builtin_return_address(0));
1456	return skb->data;
1457}
1458EXPORT_SYMBOL(skb_push);
1459
1460/**
1461 *	skb_pull - remove data from the start of a buffer
1462 *	@skb: buffer to use
1463 *	@len: amount of data to remove
1464 *
1465 *	This function removes data from the start of a buffer, returning
1466 *	the memory to the headroom. A pointer to the next data in the buffer
1467 *	is returned. Once the data has been pulled future pushes will overwrite
1468 *	the old data.
1469 */
1470unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471{
1472	return skb_pull_inline(skb, len);
1473}
1474EXPORT_SYMBOL(skb_pull);
1475
1476/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477 *	skb_trim - remove end from a buffer
1478 *	@skb: buffer to alter
1479 *	@len: new length
1480 *
1481 *	Cut the length of a buffer down by removing data from the tail. If
1482 *	the buffer is already under the length specified it is not modified.
1483 *	The skb must be linear.
1484 */
1485void skb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487	if (skb->len > len)
1488		__skb_trim(skb, len);
1489}
1490EXPORT_SYMBOL(skb_trim);
1491
1492/* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496{
1497	struct sk_buff **fragp;
1498	struct sk_buff *frag;
1499	int offset = skb_headlen(skb);
1500	int nfrags = skb_shinfo(skb)->nr_frags;
1501	int i;
1502	int err;
1503
1504	if (skb_cloned(skb) &&
1505	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506		return err;
1507
1508	i = 0;
1509	if (offset >= len)
1510		goto drop_pages;
1511
1512	for (; i < nfrags; i++) {
1513		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515		if (end < len) {
1516			offset = end;
1517			continue;
1518		}
1519
1520		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522drop_pages:
1523		skb_shinfo(skb)->nr_frags = i;
1524
1525		for (; i < nfrags; i++)
1526			skb_frag_unref(skb, i);
1527
1528		if (skb_has_frag_list(skb))
1529			skb_drop_fraglist(skb);
1530		goto done;
1531	}
1532
1533	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534	     fragp = &frag->next) {
1535		int end = offset + frag->len;
1536
1537		if (skb_shared(frag)) {
1538			struct sk_buff *nfrag;
1539
1540			nfrag = skb_clone(frag, GFP_ATOMIC);
1541			if (unlikely(!nfrag))
1542				return -ENOMEM;
1543
1544			nfrag->next = frag->next;
1545			consume_skb(frag);
1546			frag = nfrag;
1547			*fragp = frag;
1548		}
1549
1550		if (end < len) {
1551			offset = end;
1552			continue;
1553		}
1554
1555		if (end > len &&
1556		    unlikely((err = pskb_trim(frag, len - offset))))
1557			return err;
1558
1559		if (frag->next)
1560			skb_drop_list(&frag->next);
1561		break;
1562	}
1563
1564done:
1565	if (len > skb_headlen(skb)) {
1566		skb->data_len -= skb->len - len;
1567		skb->len       = len;
1568	} else {
1569		skb->len       = len;
1570		skb->data_len  = 0;
1571		skb_set_tail_pointer(skb, len);
1572	}
1573
 
 
1574	return 0;
1575}
1576EXPORT_SYMBOL(___pskb_trim);
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578/**
1579 *	__pskb_pull_tail - advance tail of skb header
1580 *	@skb: buffer to reallocate
1581 *	@delta: number of bytes to advance tail
1582 *
1583 *	The function makes a sense only on a fragmented &sk_buff,
1584 *	it expands header moving its tail forward and copying necessary
1585 *	data from fragmented part.
1586 *
1587 *	&sk_buff MUST have reference count of 1.
1588 *
1589 *	Returns %NULL (and &sk_buff does not change) if pull failed
1590 *	or value of new tail of skb in the case of success.
1591 *
1592 *	All the pointers pointing into skb header may change and must be
1593 *	reloaded after call to this function.
1594 */
1595
1596/* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604{
1605	/* If skb has not enough free space at tail, get new one
1606	 * plus 128 bytes for future expansions. If we have enough
1607	 * room at tail, reallocate without expansion only if skb is cloned.
1608	 */
1609	int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611	if (eat > 0 || skb_cloned(skb)) {
1612		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613				     GFP_ATOMIC))
1614			return NULL;
1615	}
1616
1617	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618		BUG();
1619
1620	/* Optimization: no fragments, no reasons to preestimate
1621	 * size of pulled pages. Superb.
1622	 */
1623	if (!skb_has_frag_list(skb))
1624		goto pull_pages;
1625
1626	/* Estimate size of pulled pages. */
1627	eat = delta;
1628	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631		if (size >= eat)
1632			goto pull_pages;
1633		eat -= size;
1634	}
1635
1636	/* If we need update frag list, we are in troubles.
1637	 * Certainly, it possible to add an offset to skb data,
1638	 * but taking into account that pulling is expected to
1639	 * be very rare operation, it is worth to fight against
1640	 * further bloating skb head and crucify ourselves here instead.
1641	 * Pure masohism, indeed. 8)8)
1642	 */
1643	if (eat) {
1644		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645		struct sk_buff *clone = NULL;
1646		struct sk_buff *insp = NULL;
1647
1648		do {
1649			BUG_ON(!list);
1650
1651			if (list->len <= eat) {
1652				/* Eaten as whole. */
1653				eat -= list->len;
1654				list = list->next;
1655				insp = list;
1656			} else {
1657				/* Eaten partially. */
 
 
 
1658
1659				if (skb_shared(list)) {
1660					/* Sucks! We need to fork list. :-( */
1661					clone = skb_clone(list, GFP_ATOMIC);
1662					if (!clone)
1663						return NULL;
1664					insp = list->next;
1665					list = clone;
1666				} else {
1667					/* This may be pulled without
1668					 * problems. */
1669					insp = list;
1670				}
1671				if (!pskb_pull(list, eat)) {
1672					kfree_skb(clone);
1673					return NULL;
1674				}
1675				break;
1676			}
1677		} while (eat);
1678
1679		/* Free pulled out fragments. */
1680		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681			skb_shinfo(skb)->frag_list = list->next;
1682			kfree_skb(list);
1683		}
1684		/* And insert new clone at head. */
1685		if (clone) {
1686			clone->next = list;
1687			skb_shinfo(skb)->frag_list = clone;
1688		}
1689	}
1690	/* Success! Now we may commit changes to skb data. */
1691
1692pull_pages:
1693	eat = delta;
1694	k = 0;
1695	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698		if (size <= eat) {
1699			skb_frag_unref(skb, i);
1700			eat -= size;
1701		} else {
1702			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
 
 
1703			if (eat) {
1704				skb_shinfo(skb)->frags[k].page_offset += eat;
1705				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
 
 
1706				eat = 0;
1707			}
1708			k++;
1709		}
1710	}
1711	skb_shinfo(skb)->nr_frags = k;
1712
 
1713	skb->tail     += delta;
1714	skb->data_len -= delta;
1715
 
 
 
1716	return skb_tail_pointer(skb);
1717}
1718EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720/**
1721 *	skb_copy_bits - copy bits from skb to kernel buffer
1722 *	@skb: source skb
1723 *	@offset: offset in source
1724 *	@to: destination buffer
1725 *	@len: number of bytes to copy
1726 *
1727 *	Copy the specified number of bytes from the source skb to the
1728 *	destination buffer.
1729 *
1730 *	CAUTION ! :
1731 *		If its prototype is ever changed,
1732 *		check arch/{*}/net/{*}.S files,
1733 *		since it is called from BPF assembly code.
1734 */
1735int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736{
1737	int start = skb_headlen(skb);
1738	struct sk_buff *frag_iter;
1739	int i, copy;
1740
1741	if (offset > (int)skb->len - len)
1742		goto fault;
1743
1744	/* Copy header. */
1745	if ((copy = start - offset) > 0) {
1746		if (copy > len)
1747			copy = len;
1748		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749		if ((len -= copy) == 0)
1750			return 0;
1751		offset += copy;
1752		to     += copy;
1753	}
1754
1755	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756		int end;
1757		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759		WARN_ON(start > offset + len);
1760
1761		end = start + skb_frag_size(f);
1762		if ((copy = end - offset) > 0) {
 
 
1763			u8 *vaddr;
1764
1765			if (copy > len)
1766				copy = len;
1767
1768			vaddr = kmap_atomic(skb_frag_page(f));
1769			memcpy(to,
1770			       vaddr + f->page_offset + offset - start,
1771			       copy);
1772			kunmap_atomic(vaddr);
 
 
1773
1774			if ((len -= copy) == 0)
1775				return 0;
1776			offset += copy;
1777			to     += copy;
1778		}
1779		start = end;
1780	}
1781
1782	skb_walk_frags(skb, frag_iter) {
1783		int end;
1784
1785		WARN_ON(start > offset + len);
1786
1787		end = start + frag_iter->len;
1788		if ((copy = end - offset) > 0) {
1789			if (copy > len)
1790				copy = len;
1791			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792				goto fault;
1793			if ((len -= copy) == 0)
1794				return 0;
1795			offset += copy;
1796			to     += copy;
1797		}
1798		start = end;
1799	}
1800
1801	if (!len)
1802		return 0;
1803
1804fault:
1805	return -EFAULT;
1806}
1807EXPORT_SYMBOL(skb_copy_bits);
1808
1809/*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814{
1815	put_page(spd->pages[i]);
1816}
1817
1818static struct page *linear_to_page(struct page *page, unsigned int *len,
1819				   unsigned int *offset,
1820				   struct sock *sk)
1821{
1822	struct page_frag *pfrag = sk_page_frag(sk);
1823
1824	if (!sk_page_frag_refill(sk, pfrag))
1825		return NULL;
1826
1827	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828
1829	memcpy(page_address(pfrag->page) + pfrag->offset,
1830	       page_address(page) + *offset, *len);
1831	*offset = pfrag->offset;
1832	pfrag->offset += *len;
1833
1834	return pfrag->page;
1835}
1836
1837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838			     struct page *page,
1839			     unsigned int offset)
1840{
1841	return	spd->nr_pages &&
1842		spd->pages[spd->nr_pages - 1] == page &&
1843		(spd->partial[spd->nr_pages - 1].offset +
1844		 spd->partial[spd->nr_pages - 1].len == offset);
1845}
1846
1847/*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850static bool spd_fill_page(struct splice_pipe_desc *spd,
1851			  struct pipe_inode_info *pipe, struct page *page,
1852			  unsigned int *len, unsigned int offset,
1853			  bool linear,
1854			  struct sock *sk)
1855{
1856	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857		return true;
1858
1859	if (linear) {
1860		page = linear_to_page(page, len, &offset, sk);
1861		if (!page)
1862			return true;
1863	}
1864	if (spd_can_coalesce(spd, page, offset)) {
1865		spd->partial[spd->nr_pages - 1].len += *len;
1866		return false;
1867	}
1868	get_page(page);
1869	spd->pages[spd->nr_pages] = page;
1870	spd->partial[spd->nr_pages].len = *len;
1871	spd->partial[spd->nr_pages].offset = offset;
1872	spd->nr_pages++;
1873
1874	return false;
1875}
1876
1877static bool __splice_segment(struct page *page, unsigned int poff,
1878			     unsigned int plen, unsigned int *off,
1879			     unsigned int *len,
1880			     struct splice_pipe_desc *spd, bool linear,
1881			     struct sock *sk,
1882			     struct pipe_inode_info *pipe)
1883{
1884	if (!*len)
1885		return true;
1886
1887	/* skip this segment if already processed */
1888	if (*off >= plen) {
1889		*off -= plen;
1890		return false;
1891	}
1892
1893	/* ignore any bits we already processed */
1894	poff += *off;
1895	plen -= *off;
1896	*off = 0;
1897
1898	do {
1899		unsigned int flen = min(*len, plen);
1900
1901		if (spd_fill_page(spd, pipe, page, &flen, poff,
1902				  linear, sk))
1903			return true;
1904		poff += flen;
1905		plen -= flen;
1906		*len -= flen;
1907	} while (*len && plen);
1908
1909	return false;
1910}
1911
1912/*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917			      unsigned int *offset, unsigned int *len,
1918			      struct splice_pipe_desc *spd, struct sock *sk)
1919{
1920	int seg;
1921	struct sk_buff *iter;
1922
1923	/* map the linear part :
1924	 * If skb->head_frag is set, this 'linear' part is backed by a
1925	 * fragment, and if the head is not shared with any clones then
1926	 * we can avoid a copy since we own the head portion of this page.
1927	 */
1928	if (__splice_segment(virt_to_page(skb->data),
1929			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1930			     skb_headlen(skb),
1931			     offset, len, spd,
1932			     skb_head_is_locked(skb),
1933			     sk, pipe))
1934		return true;
1935
1936	/*
1937	 * then map the fragments
1938	 */
1939	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942		if (__splice_segment(skb_frag_page(f),
1943				     f->page_offset, skb_frag_size(f),
1944				     offset, len, spd, false, sk, pipe))
1945			return true;
1946	}
1947
1948	skb_walk_frags(skb, iter) {
1949		if (*offset >= iter->len) {
1950			*offset -= iter->len;
1951			continue;
1952		}
1953		/* __skb_splice_bits() only fails if the output has no room
1954		 * left, so no point in going over the frag_list for the error
1955		 * case.
1956		 */
1957		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958			return true;
1959	}
1960
1961	return false;
1962}
1963
1964ssize_t skb_socket_splice(struct sock *sk,
1965			  struct pipe_inode_info *pipe,
1966			  struct splice_pipe_desc *spd)
1967{
1968	int ret;
1969
1970	/* Drop the socket lock, otherwise we have reverse
1971	 * locking dependencies between sk_lock and i_mutex
1972	 * here as compared to sendfile(). We enter here
1973	 * with the socket lock held, and splice_to_pipe() will
1974	 * grab the pipe inode lock. For sendfile() emulation,
1975	 * we call into ->sendpage() with the i_mutex lock held
1976	 * and networking will grab the socket lock.
1977	 */
1978	release_sock(sk);
1979	ret = splice_to_pipe(pipe, spd);
1980	lock_sock(sk);
1981
1982	return ret;
1983}
1984
1985/*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1988 */
1989int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990		    struct pipe_inode_info *pipe, unsigned int tlen,
1991		    unsigned int flags,
1992		    ssize_t (*splice_cb)(struct sock *,
1993					 struct pipe_inode_info *,
1994					 struct splice_pipe_desc *))
1995{
1996	struct partial_page partial[MAX_SKB_FRAGS];
1997	struct page *pages[MAX_SKB_FRAGS];
1998	struct splice_pipe_desc spd = {
1999		.pages = pages,
2000		.partial = partial,
2001		.nr_pages_max = MAX_SKB_FRAGS,
2002		.flags = flags,
2003		.ops = &nosteal_pipe_buf_ops,
2004		.spd_release = sock_spd_release,
2005	};
2006	int ret = 0;
2007
2008	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009
2010	if (spd.nr_pages)
2011		ret = splice_cb(sk, pipe, &spd);
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017/**
2018 *	skb_store_bits - store bits from kernel buffer to skb
2019 *	@skb: destination buffer
2020 *	@offset: offset in destination
2021 *	@from: source buffer
2022 *	@len: number of bytes to copy
2023 *
2024 *	Copy the specified number of bytes from the source buffer to the
2025 *	destination skb.  This function handles all the messy bits of
2026 *	traversing fragment lists and such.
2027 */
2028
2029int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030{
2031	int start = skb_headlen(skb);
2032	struct sk_buff *frag_iter;
2033	int i, copy;
2034
2035	if (offset > (int)skb->len - len)
2036		goto fault;
2037
2038	if ((copy = start - offset) > 0) {
2039		if (copy > len)
2040			copy = len;
2041		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042		if ((len -= copy) == 0)
2043			return 0;
2044		offset += copy;
2045		from += copy;
2046	}
2047
2048	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050		int end;
2051
2052		WARN_ON(start > offset + len);
2053
2054		end = start + skb_frag_size(frag);
2055		if ((copy = end - offset) > 0) {
 
 
2056			u8 *vaddr;
2057
2058			if (copy > len)
2059				copy = len;
2060
2061			vaddr = kmap_atomic(skb_frag_page(frag));
2062			memcpy(vaddr + frag->page_offset + offset - start,
2063			       from, copy);
2064			kunmap_atomic(vaddr);
 
 
 
2065
2066			if ((len -= copy) == 0)
2067				return 0;
2068			offset += copy;
2069			from += copy;
2070		}
2071		start = end;
2072	}
2073
2074	skb_walk_frags(skb, frag_iter) {
2075		int end;
2076
2077		WARN_ON(start > offset + len);
2078
2079		end = start + frag_iter->len;
2080		if ((copy = end - offset) > 0) {
2081			if (copy > len)
2082				copy = len;
2083			if (skb_store_bits(frag_iter, offset - start,
2084					   from, copy))
2085				goto fault;
2086			if ((len -= copy) == 0)
2087				return 0;
2088			offset += copy;
2089			from += copy;
2090		}
2091		start = end;
2092	}
2093	if (!len)
2094		return 0;
2095
2096fault:
2097	return -EFAULT;
2098}
2099EXPORT_SYMBOL(skb_store_bits);
2100
2101/* Checksum skb data. */
2102__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103		      __wsum csum, const struct skb_checksum_ops *ops)
2104{
2105	int start = skb_headlen(skb);
2106	int i, copy = start - offset;
2107	struct sk_buff *frag_iter;
2108	int pos = 0;
2109
2110	/* Checksum header. */
2111	if (copy > 0) {
2112		if (copy > len)
2113			copy = len;
2114		csum = ops->update(skb->data + offset, copy, csum);
 
2115		if ((len -= copy) == 0)
2116			return csum;
2117		offset += copy;
2118		pos	= copy;
2119	}
2120
2121	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122		int end;
2123		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125		WARN_ON(start > offset + len);
2126
2127		end = start + skb_frag_size(frag);
2128		if ((copy = end - offset) > 0) {
 
 
2129			__wsum csum2;
2130			u8 *vaddr;
2131
2132			if (copy > len)
2133				copy = len;
2134			vaddr = kmap_atomic(skb_frag_page(frag));
2135			csum2 = ops->update(vaddr + frag->page_offset +
2136					    offset - start, copy, 0);
2137			kunmap_atomic(vaddr);
2138			csum = ops->combine(csum, csum2, pos, copy);
 
 
 
 
 
 
 
 
 
 
2139			if (!(len -= copy))
2140				return csum;
2141			offset += copy;
2142			pos    += copy;
2143		}
2144		start = end;
2145	}
2146
2147	skb_walk_frags(skb, frag_iter) {
2148		int end;
2149
2150		WARN_ON(start > offset + len);
2151
2152		end = start + frag_iter->len;
2153		if ((copy = end - offset) > 0) {
2154			__wsum csum2;
2155			if (copy > len)
2156				copy = len;
2157			csum2 = __skb_checksum(frag_iter, offset - start,
2158					       copy, 0, ops);
2159			csum = ops->combine(csum, csum2, pos, copy);
 
2160			if ((len -= copy) == 0)
2161				return csum;
2162			offset += copy;
2163			pos    += copy;
2164		}
2165		start = end;
2166	}
2167	BUG_ON(len);
2168
2169	return csum;
2170}
2171EXPORT_SYMBOL(__skb_checksum);
2172
2173__wsum skb_checksum(const struct sk_buff *skb, int offset,
2174		    int len, __wsum csum)
2175{
2176	const struct skb_checksum_ops ops = {
2177		.update  = csum_partial_ext,
2178		.combine = csum_block_add_ext,
2179	};
2180
2181	return __skb_checksum(skb, offset, len, csum, &ops);
2182}
2183EXPORT_SYMBOL(skb_checksum);
2184
2185/* Both of above in one bottle. */
2186
2187__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188				    u8 *to, int len, __wsum csum)
2189{
2190	int start = skb_headlen(skb);
2191	int i, copy = start - offset;
2192	struct sk_buff *frag_iter;
2193	int pos = 0;
 
2194
2195	/* Copy header. */
2196	if (copy > 0) {
2197		if (copy > len)
2198			copy = len;
2199		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200						 copy, csum);
2201		if ((len -= copy) == 0)
2202			return csum;
2203		offset += copy;
2204		to     += copy;
2205		pos	= copy;
2206	}
2207
2208	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209		int end;
2210
2211		WARN_ON(start > offset + len);
2212
2213		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214		if ((copy = end - offset) > 0) {
 
 
 
2215			__wsum csum2;
2216			u8 *vaddr;
2217			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219			if (copy > len)
2220				copy = len;
2221			vaddr = kmap_atomic(skb_frag_page(frag));
2222			csum2 = csum_partial_copy_nocheck(vaddr +
2223							  frag->page_offset +
2224							  offset - start, to,
2225							  copy, 0);
2226			kunmap_atomic(vaddr);
2227			csum = csum_block_add(csum, csum2, pos);
 
 
 
 
 
 
2228			if (!(len -= copy))
2229				return csum;
2230			offset += copy;
2231			to     += copy;
2232			pos    += copy;
2233		}
2234		start = end;
2235	}
2236
2237	skb_walk_frags(skb, frag_iter) {
2238		__wsum csum2;
2239		int end;
2240
2241		WARN_ON(start > offset + len);
2242
2243		end = start + frag_iter->len;
2244		if ((copy = end - offset) > 0) {
2245			if (copy > len)
2246				copy = len;
2247			csum2 = skb_copy_and_csum_bits(frag_iter,
2248						       offset - start,
2249						       to, copy, 0);
2250			csum = csum_block_add(csum, csum2, pos);
2251			if ((len -= copy) == 0)
2252				return csum;
2253			offset += copy;
2254			to     += copy;
2255			pos    += copy;
2256		}
2257		start = end;
2258	}
2259	BUG_ON(len);
2260	return csum;
2261}
2262EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2264 /**
2265 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 *	@from: source buffer
2267 *
2268 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2269 *	into skb_zerocopy().
2270 */
2271unsigned int
2272skb_zerocopy_headlen(const struct sk_buff *from)
2273{
2274	unsigned int hlen = 0;
2275
2276	if (!from->head_frag ||
2277	    skb_headlen(from) < L1_CACHE_BYTES ||
2278	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279		hlen = skb_headlen(from);
 
 
 
2280
2281	if (skb_has_frag_list(from))
2282		hlen = from->len;
2283
2284	return hlen;
2285}
2286EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288/**
2289 *	skb_zerocopy - Zero copy skb to skb
2290 *	@to: destination buffer
2291 *	@from: source buffer
2292 *	@len: number of bytes to copy from source buffer
2293 *	@hlen: size of linear headroom in destination buffer
2294 *
2295 *	Copies up to `len` bytes from `from` to `to` by creating references
2296 *	to the frags in the source buffer.
2297 *
2298 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 *	headroom in the `to` buffer.
2300 *
2301 *	Return value:
2302 *	0: everything is OK
2303 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306int
2307skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308{
2309	int i, j = 0;
2310	int plen = 0; /* length of skb->head fragment */
2311	int ret;
2312	struct page *page;
2313	unsigned int offset;
2314
2315	BUG_ON(!from->head_frag && !hlen);
2316
2317	/* dont bother with small payloads */
2318	if (len <= skb_tailroom(to))
2319		return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321	if (hlen) {
2322		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323		if (unlikely(ret))
2324			return ret;
2325		len -= hlen;
2326	} else {
2327		plen = min_t(int, skb_headlen(from), len);
2328		if (plen) {
2329			page = virt_to_head_page(from->head);
2330			offset = from->data - (unsigned char *)page_address(page);
2331			__skb_fill_page_desc(to, 0, page, offset, plen);
 
2332			get_page(page);
2333			j = 1;
2334			len -= plen;
2335		}
2336	}
2337
2338	to->truesize += len + plen;
2339	to->len += len + plen;
2340	to->data_len += len + plen;
2341
2342	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343		skb_tx_error(from);
2344		return -ENOMEM;
2345	}
 
2346
2347	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
 
 
2348		if (!len)
2349			break;
2350		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352		len -= skb_shinfo(to)->frags[j].size;
 
 
2353		skb_frag_ref(to, j);
2354		j++;
2355	}
2356	skb_shinfo(to)->nr_frags = j;
2357
2358	return 0;
2359}
2360EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363{
2364	__wsum csum;
2365	long csstart;
2366
2367	if (skb->ip_summed == CHECKSUM_PARTIAL)
2368		csstart = skb_checksum_start_offset(skb);
2369	else
2370		csstart = skb_headlen(skb);
2371
2372	BUG_ON(csstart > skb_headlen(skb));
2373
2374	skb_copy_from_linear_data(skb, to, csstart);
2375
2376	csum = 0;
2377	if (csstart != skb->len)
2378		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379					      skb->len - csstart, 0);
2380
2381	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382		long csstuff = csstart + skb->csum_offset;
2383
2384		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385	}
2386}
2387EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389/**
2390 *	skb_dequeue - remove from the head of the queue
2391 *	@list: list to dequeue from
2392 *
2393 *	Remove the head of the list. The list lock is taken so the function
2394 *	may be used safely with other locking list functions. The head item is
2395 *	returned or %NULL if the list is empty.
2396 */
2397
2398struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399{
2400	unsigned long flags;
2401	struct sk_buff *result;
2402
2403	spin_lock_irqsave(&list->lock, flags);
2404	result = __skb_dequeue(list);
2405	spin_unlock_irqrestore(&list->lock, flags);
2406	return result;
2407}
2408EXPORT_SYMBOL(skb_dequeue);
2409
2410/**
2411 *	skb_dequeue_tail - remove from the tail of the queue
2412 *	@list: list to dequeue from
2413 *
2414 *	Remove the tail of the list. The list lock is taken so the function
2415 *	may be used safely with other locking list functions. The tail item is
2416 *	returned or %NULL if the list is empty.
2417 */
2418struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420	unsigned long flags;
2421	struct sk_buff *result;
2422
2423	spin_lock_irqsave(&list->lock, flags);
2424	result = __skb_dequeue_tail(list);
2425	spin_unlock_irqrestore(&list->lock, flags);
2426	return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430/**
2431 *	skb_queue_purge - empty a list
2432 *	@list: list to empty
 
2433 *
2434 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 *	the list and one reference dropped. This function takes the list
2436 *	lock and is atomic with respect to other list locking functions.
2437 */
2438void skb_queue_purge(struct sk_buff_head *list)
 
2439{
2440	struct sk_buff *skb;
2441	while ((skb = skb_dequeue(list)) != NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442		kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443}
2444EXPORT_SYMBOL(skb_queue_purge);
2445
2446/**
2447 *	skb_queue_head - queue a buffer at the list head
2448 *	@list: list to use
2449 *	@newsk: buffer to queue
2450 *
2451 *	Queue a buffer at the start of the list. This function takes the
2452 *	list lock and can be used safely with other locking &sk_buff functions
2453 *	safely.
2454 *
2455 *	A buffer cannot be placed on two lists at the same time.
2456 */
2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458{
2459	unsigned long flags;
2460
2461	spin_lock_irqsave(&list->lock, flags);
2462	__skb_queue_head(list, newsk);
2463	spin_unlock_irqrestore(&list->lock, flags);
2464}
2465EXPORT_SYMBOL(skb_queue_head);
2466
2467/**
2468 *	skb_queue_tail - queue a buffer at the list tail
2469 *	@list: list to use
2470 *	@newsk: buffer to queue
2471 *
2472 *	Queue a buffer at the tail of the list. This function takes the
2473 *	list lock and can be used safely with other locking &sk_buff functions
2474 *	safely.
2475 *
2476 *	A buffer cannot be placed on two lists at the same time.
2477 */
2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479{
2480	unsigned long flags;
2481
2482	spin_lock_irqsave(&list->lock, flags);
2483	__skb_queue_tail(list, newsk);
2484	spin_unlock_irqrestore(&list->lock, flags);
2485}
2486EXPORT_SYMBOL(skb_queue_tail);
2487
2488/**
2489 *	skb_unlink	-	remove a buffer from a list
2490 *	@skb: buffer to remove
2491 *	@list: list to use
2492 *
2493 *	Remove a packet from a list. The list locks are taken and this
2494 *	function is atomic with respect to other list locked calls
2495 *
2496 *	You must know what list the SKB is on.
2497 */
2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499{
2500	unsigned long flags;
2501
2502	spin_lock_irqsave(&list->lock, flags);
2503	__skb_unlink(skb, list);
2504	spin_unlock_irqrestore(&list->lock, flags);
2505}
2506EXPORT_SYMBOL(skb_unlink);
2507
2508/**
2509 *	skb_append	-	append a buffer
2510 *	@old: buffer to insert after
2511 *	@newsk: buffer to insert
2512 *	@list: list to use
2513 *
2514 *	Place a packet after a given packet in a list. The list locks are taken
2515 *	and this function is atomic with respect to other list locked calls.
2516 *	A buffer cannot be placed on two lists at the same time.
2517 */
2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519{
2520	unsigned long flags;
2521
2522	spin_lock_irqsave(&list->lock, flags);
2523	__skb_queue_after(list, old, newsk);
2524	spin_unlock_irqrestore(&list->lock, flags);
2525}
2526EXPORT_SYMBOL(skb_append);
2527
2528/**
2529 *	skb_insert	-	insert a buffer
2530 *	@old: buffer to insert before
2531 *	@newsk: buffer to insert
2532 *	@list: list to use
2533 *
2534 *	Place a packet before a given packet in a list. The list locks are
2535 * 	taken and this function is atomic with respect to other list locked
2536 *	calls.
2537 *
2538 *	A buffer cannot be placed on two lists at the same time.
2539 */
2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541{
2542	unsigned long flags;
2543
2544	spin_lock_irqsave(&list->lock, flags);
2545	__skb_insert(newsk, old->prev, old, list);
2546	spin_unlock_irqrestore(&list->lock, flags);
2547}
2548EXPORT_SYMBOL(skb_insert);
2549
2550static inline void skb_split_inside_header(struct sk_buff *skb,
2551					   struct sk_buff* skb1,
2552					   const u32 len, const int pos)
2553{
2554	int i;
2555
2556	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557					 pos - len);
2558	/* And move data appendix as is. */
2559	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563	skb_shinfo(skb)->nr_frags  = 0;
2564	skb1->data_len		   = skb->data_len;
2565	skb1->len		   += skb1->data_len;
2566	skb->data_len		   = 0;
2567	skb->len		   = len;
2568	skb_set_tail_pointer(skb, len);
2569}
2570
2571static inline void skb_split_no_header(struct sk_buff *skb,
2572				       struct sk_buff* skb1,
2573				       const u32 len, int pos)
2574{
2575	int i, k = 0;
2576	const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578	skb_shinfo(skb)->nr_frags = 0;
2579	skb1->len		  = skb1->data_len = skb->len - len;
2580	skb->len		  = len;
2581	skb->data_len		  = len - pos;
2582
2583	for (i = 0; i < nfrags; i++) {
2584		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586		if (pos + size > len) {
2587			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589			if (pos < len) {
2590				/* Split frag.
2591				 * We have two variants in this case:
2592				 * 1. Move all the frag to the second
2593				 *    part, if it is possible. F.e.
2594				 *    this approach is mandatory for TUX,
2595				 *    where splitting is expensive.
2596				 * 2. Split is accurately. We make this.
2597				 */
2598				skb_frag_ref(skb, i);
2599				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602				skb_shinfo(skb)->nr_frags++;
2603			}
2604			k++;
2605		} else
2606			skb_shinfo(skb)->nr_frags++;
2607		pos += size;
2608	}
2609	skb_shinfo(skb1)->nr_frags = k;
2610}
2611
2612/**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619{
2620	int pos = skb_headlen(skb);
 
 
 
2621
2622	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
 
2623	if (len < pos)	/* Split line is inside header. */
2624		skb_split_inside_header(skb, skb1, len, pos);
2625	else		/* Second chunk has no header, nothing to copy. */
2626		skb_split_no_header(skb, skb1, len, pos);
2627}
2628EXPORT_SYMBOL(skb_split);
2629
2630/* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634static int skb_prepare_for_shift(struct sk_buff *skb)
2635{
2636	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637}
2638
2639/**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658{
2659	int from, to, merge, todo;
2660	struct skb_frag_struct *fragfrom, *fragto;
2661
2662	BUG_ON(shiftlen > skb->len);
2663	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
 
 
 
 
2664
2665	todo = shiftlen;
2666	from = 0;
2667	to = skb_shinfo(tgt)->nr_frags;
2668	fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670	/* Actual merge is delayed until the point when we know we can
2671	 * commit all, so that we don't have to undo partial changes
2672	 */
2673	if (!to ||
2674	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675			      fragfrom->page_offset)) {
2676		merge = -1;
2677	} else {
2678		merge = to - 1;
2679
2680		todo -= skb_frag_size(fragfrom);
2681		if (todo < 0) {
2682			if (skb_prepare_for_shift(skb) ||
2683			    skb_prepare_for_shift(tgt))
2684				return 0;
2685
2686			/* All previous frag pointers might be stale! */
2687			fragfrom = &skb_shinfo(skb)->frags[from];
2688			fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690			skb_frag_size_add(fragto, shiftlen);
2691			skb_frag_size_sub(fragfrom, shiftlen);
2692			fragfrom->page_offset += shiftlen;
2693
2694			goto onlymerged;
2695		}
2696
2697		from++;
2698	}
2699
2700	/* Skip full, not-fitting skb to avoid expensive operations */
2701	if ((shiftlen == skb->len) &&
2702	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703		return 0;
2704
2705	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706		return 0;
2707
2708	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709		if (to == MAX_SKB_FRAGS)
2710			return 0;
2711
2712		fragfrom = &skb_shinfo(skb)->frags[from];
2713		fragto = &skb_shinfo(tgt)->frags[to];
2714
2715		if (todo >= skb_frag_size(fragfrom)) {
2716			*fragto = *fragfrom;
2717			todo -= skb_frag_size(fragfrom);
2718			from++;
2719			to++;
2720
2721		} else {
2722			__skb_frag_ref(fragfrom);
2723			fragto->page = fragfrom->page;
2724			fragto->page_offset = fragfrom->page_offset;
2725			skb_frag_size_set(fragto, todo);
2726
2727			fragfrom->page_offset += todo;
2728			skb_frag_size_sub(fragfrom, todo);
2729			todo = 0;
2730
2731			to++;
2732			break;
2733		}
2734	}
2735
2736	/* Ready to "commit" this state change to tgt */
2737	skb_shinfo(tgt)->nr_frags = to;
2738
2739	if (merge >= 0) {
2740		fragfrom = &skb_shinfo(skb)->frags[0];
2741		fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744		__skb_frag_unref(fragfrom);
2745	}
2746
2747	/* Reposition in the original skb */
2748	to = 0;
2749	while (from < skb_shinfo(skb)->nr_frags)
2750		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751	skb_shinfo(skb)->nr_frags = to;
2752
2753	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755onlymerged:
2756	/* Most likely the tgt won't ever need its checksum anymore, skb on
2757	 * the other hand might need it if it needs to be resent
2758	 */
2759	tgt->ip_summed = CHECKSUM_PARTIAL;
2760	skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762	/* Yak, is it really working this way? Some helper please? */
2763	skb->len -= shiftlen;
2764	skb->data_len -= shiftlen;
2765	skb->truesize -= shiftlen;
2766	tgt->len += shiftlen;
2767	tgt->data_len += shiftlen;
2768	tgt->truesize += shiftlen;
2769
2770	return shiftlen;
2771}
2772
2773/**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784			  unsigned int to, struct skb_seq_state *st)
2785{
2786	st->lower_offset = from;
2787	st->upper_offset = to;
2788	st->root_skb = st->cur_skb = skb;
2789	st->frag_idx = st->stepped_offset = 0;
2790	st->frag_data = NULL;
 
2791}
2792EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794/**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 *       this limitation is the cost for zerocopy sequential
2813 *       reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 *       at the moment, state->root_skb could be replaced with
2817 *       a stack for this purpose.
2818 */
2819unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820			  struct skb_seq_state *st)
2821{
2822	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823	skb_frag_t *frag;
2824
2825	if (unlikely(abs_offset >= st->upper_offset)) {
2826		if (st->frag_data) {
2827			kunmap_atomic(st->frag_data);
2828			st->frag_data = NULL;
2829		}
2830		return 0;
2831	}
2832
2833next_skb:
2834	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836	if (abs_offset < block_limit && !st->frag_data) {
2837		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838		return block_limit - abs_offset;
2839	}
2840
2841	if (st->frag_idx == 0 && !st->frag_data)
2842		st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
 
 
2845		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846		block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
 
 
 
 
 
 
 
 
 
 
 
 
2848		if (abs_offset < block_limit) {
2849			if (!st->frag_data)
2850				st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852			*data = (u8 *) st->frag_data + frag->page_offset +
2853				(abs_offset - st->stepped_offset);
2854
2855			return block_limit - abs_offset;
2856		}
2857
2858		if (st->frag_data) {
2859			kunmap_atomic(st->frag_data);
2860			st->frag_data = NULL;
2861		}
2862
2863		st->frag_idx++;
2864		st->stepped_offset += skb_frag_size(frag);
 
 
 
 
2865	}
2866
2867	if (st->frag_data) {
2868		kunmap_atomic(st->frag_data);
2869		st->frag_data = NULL;
2870	}
2871
2872	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874		st->frag_idx = 0;
2875		goto next_skb;
2876	} else if (st->cur_skb->next) {
2877		st->cur_skb = st->cur_skb->next;
2878		st->frag_idx = 0;
2879		goto next_skb;
2880	}
2881
2882	return 0;
2883}
2884EXPORT_SYMBOL(skb_seq_read);
2885
2886/**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893void skb_abort_seq_read(struct skb_seq_state *st)
2894{
2895	if (st->frag_data)
2896		kunmap_atomic(st->frag_data);
2897}
2898EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2901
2902static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903					  struct ts_config *conf,
2904					  struct ts_state *state)
2905{
2906	return skb_seq_read(offset, text, TS_SKB_CB(state));
2907}
2908
2909static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910{
2911	skb_abort_seq_read(TS_SKB_CB(state));
2912}
2913
2914/**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927			   unsigned int to, struct ts_config *config)
2928{
 
2929	struct ts_state state;
2930	unsigned int ret;
2931
 
 
2932	config->get_next_block = skb_ts_get_next_block;
2933	config->finish = skb_ts_finish;
2934
2935	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937	ret = textsearch_find(config, &state);
2938	return (ret <= to - from ? ret : UINT_MAX);
2939}
2940EXPORT_SYMBOL(skb_find_text);
2941
2942/**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock  structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2952 */
2953int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954			int (*getfrag)(void *from, char *to, int offset,
2955					int len, int odd, struct sk_buff *skb),
2956			void *from, int length)
2957{
2958	int frg_cnt = skb_shinfo(skb)->nr_frags;
2959	int copy;
2960	int offset = 0;
2961	int ret;
2962	struct page_frag *pfrag = &current->task_frag;
2963
2964	do {
2965		/* Return error if we don't have space for new frag */
2966		if (frg_cnt >= MAX_SKB_FRAGS)
2967			return -EMSGSIZE;
2968
2969		if (!sk_page_frag_refill(sk, pfrag))
2970			return -ENOMEM;
2971
2972		/* copy the user data to page */
2973		copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976			      offset, copy, 0, skb);
2977		if (ret < 0)
2978			return -EFAULT;
2979
2980		/* copy was successful so update the size parameters */
2981		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982				   copy);
2983		frg_cnt++;
2984		pfrag->offset += copy;
2985		get_page(pfrag->page);
2986
2987		skb->truesize += copy;
2988		atomic_add(copy, &sk->sk_wmem_alloc);
2989		skb->len += copy;
2990		skb->data_len += copy;
2991		offset += copy;
2992		length -= copy;
2993
2994	} while (length > 0);
2995
2996	return 0;
2997}
2998EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001			 int offset, size_t size)
3002{
3003	int i = skb_shinfo(skb)->nr_frags;
3004
3005	if (skb_can_coalesce(skb, i, page, offset)) {
3006		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007	} else if (i < MAX_SKB_FRAGS) {
 
3008		get_page(page);
3009		skb_fill_page_desc(skb, i, page, offset, size);
3010	} else {
3011		return -EMSGSIZE;
3012	}
3013
3014	return 0;
3015}
3016EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018/**
3019 *	skb_push_rcsum - push skb and update receive checksum
3020 *	@skb: buffer to update
3021 *	@len: length of data pulled
3022 *
3023 *	This function performs an skb_push on the packet and updates
3024 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3025 *	receive path processing instead of skb_push unless you know
3026 *	that the checksum difference is zero (e.g., a valid IP header)
3027 *	or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030{
3031	skb_push(skb, len);
3032	skb_postpush_rcsum(skb, skb->data, len);
3033	return skb->data;
3034}
3035
3036/**
3037 *	skb_pull_rcsum - pull skb and update receive checksum
3038 *	@skb: buffer to update
3039 *	@len: length of data pulled
3040 *
3041 *	This function performs an skb_pull on the packet and updates
3042 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3043 *	receive path processing instead of skb_pull unless you know
3044 *	that the checksum difference is zero (e.g., a valid IP header)
3045 *	or you are setting ip_summed to CHECKSUM_NONE.
3046 */
3047unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048{
3049	unsigned char *data = skb->data;
3050
3051	BUG_ON(len > skb->len);
3052	__skb_pull(skb, len);
3053	skb_postpull_rcsum(skb, data, len);
3054	return skb->data;
3055}
3056EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058/**
3059 *	skb_segment - Perform protocol segmentation on skb.
3060 *	@head_skb: buffer to segment
3061 *	@features: features for the output path (see dev->features)
3062 *
3063 *	This function performs segmentation on the given skb.  It returns
3064 *	a pointer to the first in a list of new skbs for the segments.
3065 *	In case of error it returns ERR_PTR(err).
3066 */
3067struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068			    netdev_features_t features)
3069{
3070	struct sk_buff *segs = NULL;
3071	struct sk_buff *tail = NULL;
3072	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076	struct sk_buff *frag_skb = head_skb;
3077	unsigned int offset = doffset;
3078	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
 
3079	unsigned int headroom;
3080	unsigned int len;
 
 
3081	__be16 proto;
3082	bool csum;
3083	int sg = !!(features & NETIF_F_SG);
3084	int nfrags = skb_shinfo(head_skb)->nr_frags;
3085	int err = -ENOMEM;
3086	int i = 0;
3087	int pos;
3088	int dummy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089
3090	__skb_push(head_skb, doffset);
3091	proto = skb_network_protocol(head_skb, &dummy);
3092	if (unlikely(!proto))
3093		return ERR_PTR(-EINVAL);
3094
 
3095	csum = !!can_checksum_protocol(features, proto);
3096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097	headroom = skb_headroom(head_skb);
3098	pos = skb_headlen(head_skb);
3099
 
 
 
 
 
 
 
3100	do {
3101		struct sk_buff *nskb;
3102		skb_frag_t *nskb_frag;
3103		int hsize;
3104		int size;
3105
3106		len = head_skb->len - offset;
3107		if (len > mss)
3108			len = mss;
 
 
 
 
3109
3110		hsize = skb_headlen(head_skb) - offset;
3111		if (hsize < 0)
3112			hsize = 0;
3113		if (hsize > len || !sg)
3114			hsize = len;
3115
3116		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117		    (skb_headlen(list_skb) == len || sg)) {
3118			BUG_ON(skb_headlen(list_skb) > len);
3119
 
 
 
 
3120			i = 0;
3121			nfrags = skb_shinfo(list_skb)->nr_frags;
3122			frag = skb_shinfo(list_skb)->frags;
3123			frag_skb = list_skb;
3124			pos += skb_headlen(list_skb);
3125
3126			while (pos < offset + len) {
3127				BUG_ON(i >= nfrags);
3128
3129				size = skb_frag_size(frag);
3130				if (pos + size > offset + len)
3131					break;
3132
3133				i++;
3134				pos += size;
3135				frag++;
3136			}
3137
3138			nskb = skb_clone(list_skb, GFP_ATOMIC);
3139			list_skb = list_skb->next;
3140
3141			if (unlikely(!nskb))
3142				goto err;
3143
3144			if (unlikely(pskb_trim(nskb, len))) {
3145				kfree_skb(nskb);
3146				goto err;
3147			}
3148
3149			hsize = skb_end_offset(nskb);
3150			if (skb_cow_head(nskb, doffset + headroom)) {
3151				kfree_skb(nskb);
3152				goto err;
3153			}
3154
3155			nskb->truesize += skb_end_offset(nskb) - hsize;
3156			skb_release_head_state(nskb);
3157			__skb_push(nskb, doffset);
3158		} else {
 
 
 
 
 
3159			nskb = __alloc_skb(hsize + doffset + headroom,
3160					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161					   NUMA_NO_NODE);
3162
3163			if (unlikely(!nskb))
3164				goto err;
3165
3166			skb_reserve(nskb, headroom);
3167			__skb_put(nskb, doffset);
3168		}
3169
3170		if (segs)
3171			tail->next = nskb;
3172		else
3173			segs = nskb;
3174		tail = nskb;
3175
3176		__copy_skb_header(nskb, head_skb);
3177
3178		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179		skb_reset_mac_len(nskb);
3180
3181		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182						 nskb->data - tnl_hlen,
3183						 doffset + tnl_hlen);
3184
3185		if (nskb->len == len + doffset)
3186			goto perform_csum_check;
3187
3188		if (!sg) {
3189			if (!nskb->remcsum_offload)
3190				nskb->ip_summed = CHECKSUM_NONE;
3191			SKB_GSO_CB(nskb)->csum =
3192				skb_copy_and_csum_bits(head_skb, offset,
3193						       skb_put(nskb, len),
3194						       len, 0);
3195			SKB_GSO_CB(nskb)->csum_start =
3196				skb_headroom(nskb) + doffset;
 
 
 
 
 
 
3197			continue;
3198		}
3199
3200		nskb_frag = skb_shinfo(nskb)->frags;
3201
3202		skb_copy_from_linear_data_offset(head_skb, offset,
3203						 skb_put(nskb, hsize), hsize);
3204
3205		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206			SKBTX_SHARED_FRAG;
 
 
 
3207
3208		while (pos < offset + len) {
3209			if (i >= nfrags) {
3210				BUG_ON(skb_headlen(list_skb));
 
 
 
3211
3212				i = 0;
3213				nfrags = skb_shinfo(list_skb)->nr_frags;
3214				frag = skb_shinfo(list_skb)->frags;
3215				frag_skb = list_skb;
 
 
 
 
3216
3217				BUG_ON(!nfrags);
 
 
 
3218
3219				list_skb = list_skb->next;
3220			}
3221
3222			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223				     MAX_SKB_FRAGS)) {
3224				net_warn_ratelimited(
3225					"skb_segment: too many frags: %u %u\n",
3226					pos, mss);
 
3227				goto err;
3228			}
3229
3230			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231				goto err;
3232
3233			*nskb_frag = *frag;
3234			__skb_frag_ref(nskb_frag);
3235			size = skb_frag_size(nskb_frag);
3236
3237			if (pos < offset) {
3238				nskb_frag->page_offset += offset - pos;
3239				skb_frag_size_sub(nskb_frag, offset - pos);
3240			}
3241
3242			skb_shinfo(nskb)->nr_frags++;
3243
3244			if (pos + size <= offset + len) {
3245				i++;
3246				frag++;
3247				pos += size;
3248			} else {
3249				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250				goto skip_fraglist;
3251			}
3252
3253			nskb_frag++;
3254		}
3255
3256skip_fraglist:
3257		nskb->data_len = len - hsize;
3258		nskb->len += nskb->data_len;
3259		nskb->truesize += nskb->data_len;
3260
3261perform_csum_check:
3262		if (!csum) {
3263			if (skb_has_shared_frag(nskb)) {
3264				err = __skb_linearize(nskb);
3265				if (err)
3266					goto err;
3267			}
3268			if (!nskb->remcsum_offload)
3269				nskb->ip_summed = CHECKSUM_NONE;
3270			SKB_GSO_CB(nskb)->csum =
3271				skb_checksum(nskb, doffset,
3272					     nskb->len - doffset, 0);
3273			SKB_GSO_CB(nskb)->csum_start =
3274				skb_headroom(nskb) + doffset;
3275		}
3276	} while ((offset += len) < head_skb->len);
3277
3278	/* Some callers want to get the end of the list.
3279	 * Put it in segs->prev to avoid walking the list.
3280	 * (see validate_xmit_skb_list() for example)
3281	 */
3282	segs->prev = tail;
3283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284	/* Following permits correct backpressure, for protocols
3285	 * using skb_set_owner_w().
3286	 * Idea is to tranfert ownership from head_skb to last segment.
3287	 */
3288	if (head_skb->destructor == sock_wfree) {
3289		swap(tail->truesize, head_skb->truesize);
3290		swap(tail->destructor, head_skb->destructor);
3291		swap(tail->sk, head_skb->sk);
3292	}
3293	return segs;
3294
3295err:
3296	kfree_skb_list(segs);
3297	return ERR_PTR(err);
3298}
3299EXPORT_SYMBOL_GPL(skb_segment);
3300
3301int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3302{
3303	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3304	unsigned int offset = skb_gro_offset(skb);
3305	unsigned int headlen = skb_headlen(skb);
3306	unsigned int len = skb_gro_len(skb);
3307	struct sk_buff *lp, *p = *head;
3308	unsigned int delta_truesize;
3309
3310	if (unlikely(p->len + len >= 65536))
3311		return -E2BIG;
3312
3313	lp = NAPI_GRO_CB(p)->last;
3314	pinfo = skb_shinfo(lp);
3315
3316	if (headlen <= offset) {
3317		skb_frag_t *frag;
3318		skb_frag_t *frag2;
3319		int i = skbinfo->nr_frags;
3320		int nr_frags = pinfo->nr_frags + i;
3321
3322		if (nr_frags > MAX_SKB_FRAGS)
3323			goto merge;
3324
3325		offset -= headlen;
3326		pinfo->nr_frags = nr_frags;
3327		skbinfo->nr_frags = 0;
3328
3329		frag = pinfo->frags + nr_frags;
3330		frag2 = skbinfo->frags + i;
3331		do {
3332			*--frag = *--frag2;
3333		} while (--i);
3334
3335		frag->page_offset += offset;
3336		skb_frag_size_sub(frag, offset);
3337
3338		/* all fragments truesize : remove (head size + sk_buff) */
3339		delta_truesize = skb->truesize -
3340				 SKB_TRUESIZE(skb_end_offset(skb));
3341
3342		skb->truesize -= skb->data_len;
3343		skb->len -= skb->data_len;
3344		skb->data_len = 0;
3345
3346		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3347		goto done;
3348	} else if (skb->head_frag) {
3349		int nr_frags = pinfo->nr_frags;
3350		skb_frag_t *frag = pinfo->frags + nr_frags;
3351		struct page *page = virt_to_head_page(skb->head);
3352		unsigned int first_size = headlen - offset;
3353		unsigned int first_offset;
3354
3355		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3356			goto merge;
3357
3358		first_offset = skb->data -
3359			       (unsigned char *)page_address(page) +
3360			       offset;
3361
3362		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3363
3364		frag->page.p	  = page;
3365		frag->page_offset = first_offset;
3366		skb_frag_size_set(frag, first_size);
3367
3368		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3369		/* We dont need to clear skbinfo->nr_frags here */
3370
3371		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3372		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3373		goto done;
3374	}
3375
3376merge:
3377	delta_truesize = skb->truesize;
3378	if (offset > headlen) {
3379		unsigned int eat = offset - headlen;
3380
3381		skbinfo->frags[0].page_offset += eat;
3382		skb_frag_size_sub(&skbinfo->frags[0], eat);
3383		skb->data_len -= eat;
3384		skb->len -= eat;
3385		offset = headlen;
3386	}
3387
3388	__skb_pull(skb, offset);
 
3389
3390	if (NAPI_GRO_CB(p)->last == p)
3391		skb_shinfo(p)->frag_list = skb;
3392	else
3393		NAPI_GRO_CB(p)->last->next = skb;
3394	NAPI_GRO_CB(p)->last = skb;
3395	__skb_header_release(skb);
3396	lp = p;
3397
3398done:
3399	NAPI_GRO_CB(p)->count++;
3400	p->data_len += len;
3401	p->truesize += delta_truesize;
3402	p->len += len;
3403	if (lp != p) {
3404		lp->data_len += len;
3405		lp->truesize += delta_truesize;
3406		lp->len += len;
3407	}
3408	NAPI_GRO_CB(skb)->same_flow = 1;
3409	return 0;
3410}
 
 
 
 
 
 
 
 
 
 
 
 
 
3411
3412void __init skb_init(void)
3413{
3414	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3415					      sizeof(struct sk_buff),
3416					      0,
3417					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 
 
 
3418					      NULL);
3419	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3420						sizeof(struct sk_buff_fclones),
3421						0,
3422						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3423						NULL);
 
 
 
 
 
 
 
 
 
 
 
 
3424}
3425
3426/**
3427 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428 *	@skb: Socket buffer containing the buffers to be mapped
3429 *	@sg: The scatter-gather list to map into
3430 *	@offset: The offset into the buffer's contents to start mapping
3431 *	@len: Length of buffer space to be mapped
3432 *
3433 *	Fill the specified scatter-gather list with mappings/pointers into a
3434 *	region of the buffer space attached to a socket buffer.
3435 */
3436static int
3437__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
 
3438{
3439	int start = skb_headlen(skb);
3440	int i, copy = start - offset;
3441	struct sk_buff *frag_iter;
3442	int elt = 0;
3443
 
 
 
3444	if (copy > 0) {
3445		if (copy > len)
3446			copy = len;
3447		sg_set_buf(sg, skb->data + offset, copy);
3448		elt++;
3449		if ((len -= copy) == 0)
3450			return elt;
3451		offset += copy;
3452	}
3453
3454	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3455		int end;
3456
3457		WARN_ON(start > offset + len);
3458
3459		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460		if ((copy = end - offset) > 0) {
3461			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
3462
3463			if (copy > len)
3464				copy = len;
3465			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3466					frag->page_offset+offset-start);
3467			elt++;
3468			if (!(len -= copy))
3469				return elt;
3470			offset += copy;
3471		}
3472		start = end;
3473	}
3474
3475	skb_walk_frags(skb, frag_iter) {
3476		int end;
3477
3478		WARN_ON(start > offset + len);
3479
3480		end = start + frag_iter->len;
3481		if ((copy = end - offset) > 0) {
 
 
 
3482			if (copy > len)
3483				copy = len;
3484			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3485					      copy);
 
 
 
3486			if ((len -= copy) == 0)
3487				return elt;
3488			offset += copy;
3489		}
3490		start = end;
3491	}
3492	BUG_ON(len);
3493	return elt;
3494}
3495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497 * sglist without mark the sg which contain last skb data as the end.
3498 * So the caller can mannipulate sg list as will when padding new data after
3499 * the first call without calling sg_unmark_end to expend sg list.
3500 *
3501 * Scenario to use skb_to_sgvec_nomark:
3502 * 1. sg_init_table
3503 * 2. skb_to_sgvec_nomark(payload1)
3504 * 3. skb_to_sgvec_nomark(payload2)
3505 *
3506 * This is equivalent to:
3507 * 1. sg_init_table
3508 * 2. skb_to_sgvec(payload1)
3509 * 3. sg_unmark_end
3510 * 4. skb_to_sgvec(payload2)
3511 *
3512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513 * is more preferable.
3514 */
3515int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3516			int offset, int len)
3517{
3518	return __skb_to_sgvec(skb, sg, offset, len);
3519}
3520EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3521
3522int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3523{
3524	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3525
3526	sg_mark_end(&sg[nsg - 1]);
3527
3528	return nsg;
3529}
3530EXPORT_SYMBOL_GPL(skb_to_sgvec);
3531
3532/**
3533 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3534 *	@skb: The socket buffer to check.
3535 *	@tailbits: Amount of trailing space to be added
3536 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3537 *
3538 *	Make sure that the data buffers attached to a socket buffer are
3539 *	writable. If they are not, private copies are made of the data buffers
3540 *	and the socket buffer is set to use these instead.
3541 *
3542 *	If @tailbits is given, make sure that there is space to write @tailbits
3543 *	bytes of data beyond current end of socket buffer.  @trailer will be
3544 *	set to point to the skb in which this space begins.
3545 *
3546 *	The number of scatterlist elements required to completely map the
3547 *	COW'd and extended socket buffer will be returned.
3548 */
3549int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3550{
3551	int copyflag;
3552	int elt;
3553	struct sk_buff *skb1, **skb_p;
3554
3555	/* If skb is cloned or its head is paged, reallocate
3556	 * head pulling out all the pages (pages are considered not writable
3557	 * at the moment even if they are anonymous).
3558	 */
3559	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3560	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3561		return -ENOMEM;
3562
3563	/* Easy case. Most of packets will go this way. */
3564	if (!skb_has_frag_list(skb)) {
3565		/* A little of trouble, not enough of space for trailer.
3566		 * This should not happen, when stack is tuned to generate
3567		 * good frames. OK, on miss we reallocate and reserve even more
3568		 * space, 128 bytes is fair. */
3569
3570		if (skb_tailroom(skb) < tailbits &&
3571		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3572			return -ENOMEM;
3573
3574		/* Voila! */
3575		*trailer = skb;
3576		return 1;
3577	}
3578
3579	/* Misery. We are in troubles, going to mincer fragments... */
3580
3581	elt = 1;
3582	skb_p = &skb_shinfo(skb)->frag_list;
3583	copyflag = 0;
3584
3585	while ((skb1 = *skb_p) != NULL) {
3586		int ntail = 0;
3587
3588		/* The fragment is partially pulled by someone,
3589		 * this can happen on input. Copy it and everything
3590		 * after it. */
3591
3592		if (skb_shared(skb1))
3593			copyflag = 1;
3594
3595		/* If the skb is the last, worry about trailer. */
3596
3597		if (skb1->next == NULL && tailbits) {
3598			if (skb_shinfo(skb1)->nr_frags ||
3599			    skb_has_frag_list(skb1) ||
3600			    skb_tailroom(skb1) < tailbits)
3601				ntail = tailbits + 128;
3602		}
3603
3604		if (copyflag ||
3605		    skb_cloned(skb1) ||
3606		    ntail ||
3607		    skb_shinfo(skb1)->nr_frags ||
3608		    skb_has_frag_list(skb1)) {
3609			struct sk_buff *skb2;
3610
3611			/* Fuck, we are miserable poor guys... */
3612			if (ntail == 0)
3613				skb2 = skb_copy(skb1, GFP_ATOMIC);
3614			else
3615				skb2 = skb_copy_expand(skb1,
3616						       skb_headroom(skb1),
3617						       ntail,
3618						       GFP_ATOMIC);
3619			if (unlikely(skb2 == NULL))
3620				return -ENOMEM;
3621
3622			if (skb1->sk)
3623				skb_set_owner_w(skb2, skb1->sk);
3624
3625			/* Looking around. Are we still alive?
3626			 * OK, link new skb, drop old one */
3627
3628			skb2->next = skb1->next;
3629			*skb_p = skb2;
3630			kfree_skb(skb1);
3631			skb1 = skb2;
3632		}
3633		elt++;
3634		*trailer = skb1;
3635		skb_p = &skb1->next;
3636	}
3637
3638	return elt;
3639}
3640EXPORT_SYMBOL_GPL(skb_cow_data);
3641
3642static void sock_rmem_free(struct sk_buff *skb)
3643{
3644	struct sock *sk = skb->sk;
3645
3646	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3647}
3648
 
 
 
 
 
 
 
 
 
3649/*
3650 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3651 */
3652int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3653{
3654	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3655	    (unsigned int)sk->sk_rcvbuf)
3656		return -ENOMEM;
3657
3658	skb_orphan(skb);
3659	skb->sk = sk;
3660	skb->destructor = sock_rmem_free;
3661	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
 
3662
3663	/* before exiting rcu section, make sure dst is refcounted */
3664	skb_dst_force(skb);
3665
3666	skb_queue_tail(&sk->sk_error_queue, skb);
3667	if (!sock_flag(sk, SOCK_DEAD))
3668		sk->sk_data_ready(sk);
3669	return 0;
3670}
3671EXPORT_SYMBOL(sock_queue_err_skb);
3672
 
 
 
 
 
 
3673struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3674{
3675	struct sk_buff_head *q = &sk->sk_error_queue;
3676	struct sk_buff *skb, *skb_next;
 
3677	unsigned long flags;
3678	int err = 0;
 
 
3679
3680	spin_lock_irqsave(&q->lock, flags);
3681	skb = __skb_dequeue(q);
3682	if (skb && (skb_next = skb_peek(q)))
3683		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
 
 
 
3684	spin_unlock_irqrestore(&q->lock, flags);
3685
3686	sk->sk_err = err;
3687	if (err)
3688		sk->sk_error_report(sk);
 
 
3689
3690	return skb;
3691}
3692EXPORT_SYMBOL(sock_dequeue_err_skb);
3693
3694/**
3695 * skb_clone_sk - create clone of skb, and take reference to socket
3696 * @skb: the skb to clone
3697 *
3698 * This function creates a clone of a buffer that holds a reference on
3699 * sk_refcnt.  Buffers created via this function are meant to be
3700 * returned using sock_queue_err_skb, or free via kfree_skb.
3701 *
3702 * When passing buffers allocated with this function to sock_queue_err_skb
3703 * it is necessary to wrap the call with sock_hold/sock_put in order to
3704 * prevent the socket from being released prior to being enqueued on
3705 * the sk_error_queue.
3706 */
3707struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3708{
3709	struct sock *sk = skb->sk;
3710	struct sk_buff *clone;
3711
3712	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3713		return NULL;
3714
3715	clone = skb_clone(skb, GFP_ATOMIC);
3716	if (!clone) {
3717		sock_put(sk);
3718		return NULL;
3719	}
3720
3721	clone->sk = sk;
3722	clone->destructor = sock_efree;
3723
3724	return clone;
3725}
3726EXPORT_SYMBOL(skb_clone_sk);
3727
3728static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3729					struct sock *sk,
3730					int tstype)
 
3731{
3732	struct sock_exterr_skb *serr;
3733	int err;
3734
 
 
3735	serr = SKB_EXT_ERR(skb);
3736	memset(serr, 0, sizeof(*serr));
3737	serr->ee.ee_errno = ENOMSG;
3738	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3739	serr->ee.ee_info = tstype;
3740	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
 
 
3741		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3742		if (sk->sk_protocol == IPPROTO_TCP &&
3743		    sk->sk_type == SOCK_STREAM)
3744			serr->ee.ee_data -= sk->sk_tskey;
3745	}
3746
3747	err = sock_queue_err_skb(sk, skb);
3748
3749	if (err)
3750		kfree_skb(skb);
3751}
3752
3753static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3754{
3755	bool ret;
3756
3757	if (likely(sysctl_tstamp_allow_data || tsonly))
3758		return true;
3759
3760	read_lock_bh(&sk->sk_callback_lock);
3761	ret = sk->sk_socket && sk->sk_socket->file &&
3762	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3763	read_unlock_bh(&sk->sk_callback_lock);
3764	return ret;
3765}
3766
3767void skb_complete_tx_timestamp(struct sk_buff *skb,
3768			       struct skb_shared_hwtstamps *hwtstamps)
3769{
3770	struct sock *sk = skb->sk;
3771
3772	if (!skb_may_tx_timestamp(sk, false))
3773		return;
3774
3775	/* take a reference to prevent skb_orphan() from freeing the socket */
3776	sock_hold(sk);
3777
3778	*skb_hwtstamps(skb) = *hwtstamps;
3779	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
 
 
 
 
 
 
 
3780
3781	sock_put(sk);
 
3782}
3783EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3784
3785void __skb_tstamp_tx(struct sk_buff *orig_skb,
 
3786		     struct skb_shared_hwtstamps *hwtstamps,
3787		     struct sock *sk, int tstype)
3788{
3789	struct sk_buff *skb;
3790	bool tsonly;
 
3791
3792	if (!sk)
3793		return;
3794
3795	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
 
 
 
 
 
3796	if (!skb_may_tx_timestamp(sk, tsonly))
3797		return;
3798
3799	if (tsonly)
3800		skb = alloc_skb(0, GFP_ATOMIC);
3801	else
 
 
 
 
 
 
 
 
3802		skb = skb_clone(orig_skb, GFP_ATOMIC);
 
 
 
 
 
 
3803	if (!skb)
3804		return;
3805
3806	if (tsonly) {
3807		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
 
3808		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3809	}
3810
3811	if (hwtstamps)
3812		*skb_hwtstamps(skb) = *hwtstamps;
3813	else
3814		skb->tstamp = ktime_get_real();
3815
3816	__skb_complete_tx_timestamp(skb, sk, tstype);
3817}
3818EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3819
3820void skb_tstamp_tx(struct sk_buff *orig_skb,
3821		   struct skb_shared_hwtstamps *hwtstamps)
3822{
3823	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3824			       SCM_TSTAMP_SND);
3825}
3826EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3827
 
3828void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3829{
3830	struct sock *sk = skb->sk;
3831	struct sock_exterr_skb *serr;
3832	int err;
3833
3834	skb->wifi_acked_valid = 1;
3835	skb->wifi_acked = acked;
3836
3837	serr = SKB_EXT_ERR(skb);
3838	memset(serr, 0, sizeof(*serr));
3839	serr->ee.ee_errno = ENOMSG;
3840	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3841
3842	/* take a reference to prevent skb_orphan() from freeing the socket */
3843	sock_hold(sk);
3844
3845	err = sock_queue_err_skb(sk, skb);
 
 
 
3846	if (err)
3847		kfree_skb(skb);
3848
3849	sock_put(sk);
3850}
3851EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
 
3852
3853/**
3854 * skb_partial_csum_set - set up and verify partial csum values for packet
3855 * @skb: the skb to set
3856 * @start: the number of bytes after skb->data to start checksumming.
3857 * @off: the offset from start to place the checksum.
3858 *
3859 * For untrusted partially-checksummed packets, we need to make sure the values
3860 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3861 *
3862 * This function checks and sets those values and skb->ip_summed: if this
3863 * returns false you should drop the packet.
3864 */
3865bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3866{
3867	if (unlikely(start > skb_headlen(skb)) ||
3868	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3869		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870				     start, off, skb_headlen(skb));
 
 
3871		return false;
3872	}
3873	skb->ip_summed = CHECKSUM_PARTIAL;
3874	skb->csum_start = skb_headroom(skb) + start;
3875	skb->csum_offset = off;
3876	skb_set_transport_header(skb, start);
3877	return true;
3878}
3879EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3880
3881static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3882			       unsigned int max)
3883{
3884	if (skb_headlen(skb) >= len)
3885		return 0;
3886
3887	/* If we need to pullup then pullup to the max, so we
3888	 * won't need to do it again.
3889	 */
3890	if (max > skb->len)
3891		max = skb->len;
3892
3893	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3894		return -ENOMEM;
3895
3896	if (skb_headlen(skb) < len)
3897		return -EPROTO;
3898
3899	return 0;
3900}
3901
3902#define MAX_TCP_HDR_LEN (15 * 4)
3903
3904static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3905				      typeof(IPPROTO_IP) proto,
3906				      unsigned int off)
3907{
3908	switch (proto) {
3909		int err;
3910
 
3911	case IPPROTO_TCP:
3912		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3913					  off + MAX_TCP_HDR_LEN);
3914		if (!err && !skb_partial_csum_set(skb, off,
3915						  offsetof(struct tcphdr,
3916							   check)))
3917			err = -EPROTO;
3918		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3919
3920	case IPPROTO_UDP:
3921		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3922					  off + sizeof(struct udphdr));
3923		if (!err && !skb_partial_csum_set(skb, off,
3924						  offsetof(struct udphdr,
3925							   check)))
3926			err = -EPROTO;
3927		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3928	}
3929
3930	return ERR_PTR(-EPROTO);
3931}
3932
3933/* This value should be large enough to cover a tagged ethernet header plus
3934 * maximally sized IP and TCP or UDP headers.
3935 */
3936#define MAX_IP_HDR_LEN 128
3937
3938static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3939{
3940	unsigned int off;
3941	bool fragment;
3942	__sum16 *csum;
3943	int err;
3944
3945	fragment = false;
3946
3947	err = skb_maybe_pull_tail(skb,
3948				  sizeof(struct iphdr),
3949				  MAX_IP_HDR_LEN);
3950	if (err < 0)
3951		goto out;
3952
3953	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3954		fragment = true;
3955
3956	off = ip_hdrlen(skb);
3957
3958	err = -EPROTO;
3959
3960	if (fragment)
3961		goto out;
3962
3963	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3964	if (IS_ERR(csum))
3965		return PTR_ERR(csum);
3966
3967	if (recalculate)
3968		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3969					   ip_hdr(skb)->daddr,
3970					   skb->len - off,
3971					   ip_hdr(skb)->protocol, 0);
3972	err = 0;
3973
3974out:
3975	return err;
3976}
3977
3978/* This value should be large enough to cover a tagged ethernet header plus
3979 * an IPv6 header, all options, and a maximal TCP or UDP header.
3980 */
3981#define MAX_IPV6_HDR_LEN 256
3982
3983#define OPT_HDR(type, skb, off) \
3984	(type *)(skb_network_header(skb) + (off))
3985
3986static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3987{
3988	int err;
3989	u8 nexthdr;
3990	unsigned int off;
3991	unsigned int len;
3992	bool fragment;
3993	bool done;
3994	__sum16 *csum;
3995
3996	fragment = false;
3997	done = false;
3998
3999	off = sizeof(struct ipv6hdr);
4000
4001	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4002	if (err < 0)
4003		goto out;
4004
4005	nexthdr = ipv6_hdr(skb)->nexthdr;
4006
4007	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4008	while (off <= len && !done) {
4009		switch (nexthdr) {
4010		case IPPROTO_DSTOPTS:
4011		case IPPROTO_HOPOPTS:
4012		case IPPROTO_ROUTING: {
4013			struct ipv6_opt_hdr *hp;
4014
4015			err = skb_maybe_pull_tail(skb,
4016						  off +
4017						  sizeof(struct ipv6_opt_hdr),
4018						  MAX_IPV6_HDR_LEN);
4019			if (err < 0)
4020				goto out;
4021
4022			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4023			nexthdr = hp->nexthdr;
4024			off += ipv6_optlen(hp);
4025			break;
4026		}
4027		case IPPROTO_AH: {
4028			struct ip_auth_hdr *hp;
4029
4030			err = skb_maybe_pull_tail(skb,
4031						  off +
4032						  sizeof(struct ip_auth_hdr),
4033						  MAX_IPV6_HDR_LEN);
4034			if (err < 0)
4035				goto out;
4036
4037			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4038			nexthdr = hp->nexthdr;
4039			off += ipv6_authlen(hp);
4040			break;
4041		}
4042		case IPPROTO_FRAGMENT: {
4043			struct frag_hdr *hp;
4044
4045			err = skb_maybe_pull_tail(skb,
4046						  off +
4047						  sizeof(struct frag_hdr),
4048						  MAX_IPV6_HDR_LEN);
4049			if (err < 0)
4050				goto out;
4051
4052			hp = OPT_HDR(struct frag_hdr, skb, off);
4053
4054			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4055				fragment = true;
4056
4057			nexthdr = hp->nexthdr;
4058			off += sizeof(struct frag_hdr);
4059			break;
4060		}
4061		default:
4062			done = true;
4063			break;
4064		}
4065	}
4066
4067	err = -EPROTO;
4068
4069	if (!done || fragment)
4070		goto out;
4071
4072	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4073	if (IS_ERR(csum))
4074		return PTR_ERR(csum);
4075
4076	if (recalculate)
4077		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4078					 &ipv6_hdr(skb)->daddr,
4079					 skb->len - off, nexthdr, 0);
4080	err = 0;
4081
4082out:
4083	return err;
4084}
4085
4086/**
4087 * skb_checksum_setup - set up partial checksum offset
4088 * @skb: the skb to set up
4089 * @recalculate: if true the pseudo-header checksum will be recalculated
4090 */
4091int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4092{
4093	int err;
4094
4095	switch (skb->protocol) {
4096	case htons(ETH_P_IP):
4097		err = skb_checksum_setup_ipv4(skb, recalculate);
4098		break;
4099
4100	case htons(ETH_P_IPV6):
4101		err = skb_checksum_setup_ipv6(skb, recalculate);
4102		break;
4103
4104	default:
4105		err = -EPROTO;
4106		break;
4107	}
4108
4109	return err;
4110}
4111EXPORT_SYMBOL(skb_checksum_setup);
4112
4113/**
4114 * skb_checksum_maybe_trim - maybe trims the given skb
4115 * @skb: the skb to check
4116 * @transport_len: the data length beyond the network header
4117 *
4118 * Checks whether the given skb has data beyond the given transport length.
4119 * If so, returns a cloned skb trimmed to this transport length.
4120 * Otherwise returns the provided skb. Returns NULL in error cases
4121 * (e.g. transport_len exceeds skb length or out-of-memory).
4122 *
4123 * Caller needs to set the skb transport header and free any returned skb if it
4124 * differs from the provided skb.
4125 */
4126static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4127					       unsigned int transport_len)
4128{
4129	struct sk_buff *skb_chk;
4130	unsigned int len = skb_transport_offset(skb) + transport_len;
4131	int ret;
4132
4133	if (skb->len < len)
4134		return NULL;
4135	else if (skb->len == len)
4136		return skb;
4137
4138	skb_chk = skb_clone(skb, GFP_ATOMIC);
4139	if (!skb_chk)
4140		return NULL;
4141
4142	ret = pskb_trim_rcsum(skb_chk, len);
4143	if (ret) {
4144		kfree_skb(skb_chk);
4145		return NULL;
4146	}
4147
4148	return skb_chk;
4149}
4150
4151/**
4152 * skb_checksum_trimmed - validate checksum of an skb
4153 * @skb: the skb to check
4154 * @transport_len: the data length beyond the network header
4155 * @skb_chkf: checksum function to use
4156 *
4157 * Applies the given checksum function skb_chkf to the provided skb.
4158 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4159 *
4160 * If the skb has data beyond the given transport length, then a
4161 * trimmed & cloned skb is checked and returned.
4162 *
4163 * Caller needs to set the skb transport header and free any returned skb if it
4164 * differs from the provided skb.
4165 */
4166struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4167				     unsigned int transport_len,
4168				     __sum16(*skb_chkf)(struct sk_buff *skb))
4169{
4170	struct sk_buff *skb_chk;
4171	unsigned int offset = skb_transport_offset(skb);
4172	__sum16 ret;
4173
4174	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4175	if (!skb_chk)
4176		goto err;
4177
4178	if (!pskb_may_pull(skb_chk, offset))
4179		goto err;
4180
4181	skb_pull_rcsum(skb_chk, offset);
4182	ret = skb_chkf(skb_chk);
4183	skb_push_rcsum(skb_chk, offset);
4184
4185	if (ret)
4186		goto err;
4187
4188	return skb_chk;
4189
4190err:
4191	if (skb_chk && skb_chk != skb)
4192		kfree_skb(skb_chk);
4193
4194	return NULL;
4195
4196}
4197EXPORT_SYMBOL(skb_checksum_trimmed);
4198
4199void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4200{
4201	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4202			     skb->dev->name);
4203}
4204EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4205
4206void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4207{
4208	if (head_stolen) {
4209		skb_release_head_state(skb);
4210		kmem_cache_free(skbuff_head_cache, skb);
4211	} else {
4212		__kfree_skb(skb);
4213	}
4214}
4215EXPORT_SYMBOL(kfree_skb_partial);
4216
4217/**
4218 * skb_try_coalesce - try to merge skb to prior one
4219 * @to: prior buffer
4220 * @from: buffer to add
4221 * @fragstolen: pointer to boolean
4222 * @delta_truesize: how much more was allocated than was requested
4223 */
4224bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4225		      bool *fragstolen, int *delta_truesize)
4226{
 
4227	int i, delta, len = from->len;
4228
4229	*fragstolen = false;
4230
4231	if (skb_cloned(to))
4232		return false;
4233
 
 
 
 
 
 
 
 
 
4234	if (len <= skb_tailroom(to)) {
4235		if (len)
4236			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4237		*delta_truesize = 0;
4238		return true;
4239	}
4240
4241	if (skb_has_frag_list(to) || skb_has_frag_list(from))
 
 
 
 
4242		return false;
4243
4244	if (skb_headlen(from) != 0) {
4245		struct page *page;
4246		unsigned int offset;
4247
4248		if (skb_shinfo(to)->nr_frags +
4249		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4250			return false;
4251
4252		if (skb_head_is_locked(from))
4253			return false;
4254
4255		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4256
4257		page = virt_to_head_page(from->head);
4258		offset = from->data - (unsigned char *)page_address(page);
4259
4260		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4261				   page, offset, skb_headlen(from));
4262		*fragstolen = true;
4263	} else {
4264		if (skb_shinfo(to)->nr_frags +
4265		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4266			return false;
4267
4268		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4269	}
4270
4271	WARN_ON_ONCE(delta < len);
4272
4273	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4274	       skb_shinfo(from)->frags,
4275	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4276	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4277
4278	if (!skb_cloned(from))
4279		skb_shinfo(from)->nr_frags = 0;
4280
4281	/* if the skb is not cloned this does nothing
4282	 * since we set nr_frags to 0.
4283	 */
4284	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4285		skb_frag_ref(from, i);
 
 
4286
4287	to->truesize += delta;
4288	to->len += len;
4289	to->data_len += len;
4290
4291	*delta_truesize = delta;
4292	return true;
4293}
4294EXPORT_SYMBOL(skb_try_coalesce);
4295
4296/**
4297 * skb_scrub_packet - scrub an skb
4298 *
4299 * @skb: buffer to clean
4300 * @xnet: packet is crossing netns
4301 *
4302 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303 * into/from a tunnel. Some information have to be cleared during these
4304 * operations.
4305 * skb_scrub_packet can also be used to clean a skb before injecting it in
4306 * another namespace (@xnet == true). We have to clear all information in the
4307 * skb that could impact namespace isolation.
4308 */
4309void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4310{
4311	skb->tstamp.tv64 = 0;
4312	skb->pkt_type = PACKET_HOST;
4313	skb->skb_iif = 0;
4314	skb->ignore_df = 0;
4315	skb_dst_drop(skb);
4316	secpath_reset(skb);
4317	nf_reset(skb);
4318	nf_reset_trace(skb);
4319
 
 
 
 
 
4320	if (!xnet)
4321		return;
4322
4323	skb_orphan(skb);
4324	skb->mark = 0;
 
4325}
4326EXPORT_SYMBOL_GPL(skb_scrub_packet);
4327
4328/**
4329 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4330 *
4331 * @skb: GSO skb
4332 *
4333 * skb_gso_transport_seglen is used to determine the real size of the
4334 * individual segments, including Layer4 headers (TCP/UDP).
4335 *
4336 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4337 */
4338unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4339{
4340	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4341	unsigned int thlen = 0;
4342
4343	if (skb->encapsulation) {
4344		thlen = skb_inner_transport_header(skb) -
4345			skb_transport_header(skb);
4346
4347		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4348			thlen += inner_tcp_hdrlen(skb);
4349	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4350		thlen = tcp_hdrlen(skb);
4351	}
4352	/* UFO sets gso_size to the size of the fragmentation
4353	 * payload, i.e. the size of the L4 (UDP) header is already
4354	 * accounted for.
4355	 */
4356	return thlen + shinfo->gso_size;
4357}
4358EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4359
4360static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4361{
 
 
 
4362	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4363		kfree_skb(skb);
4364		return NULL;
4365	}
4366
4367	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4368		2 * ETH_ALEN);
 
 
 
 
 
 
 
 
 
 
4369	skb->mac_header += VLAN_HLEN;
4370	return skb;
4371}
4372
4373struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4374{
4375	struct vlan_hdr *vhdr;
4376	u16 vlan_tci;
4377
4378	if (unlikely(skb_vlan_tag_present(skb))) {
4379		/* vlan_tci is already set-up so leave this for another time */
4380		return skb;
4381	}
4382
4383	skb = skb_share_check(skb, GFP_ATOMIC);
4384	if (unlikely(!skb))
4385		goto err_free;
4386
4387	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4388		goto err_free;
4389
4390	vhdr = (struct vlan_hdr *)skb->data;
4391	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4392	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4393
4394	skb_pull_rcsum(skb, VLAN_HLEN);
4395	vlan_set_encap_proto(skb, vhdr);
4396
4397	skb = skb_reorder_vlan_header(skb);
4398	if (unlikely(!skb))
4399		goto err_free;
4400
4401	skb_reset_network_header(skb);
4402	skb_reset_transport_header(skb);
 
4403	skb_reset_mac_len(skb);
4404
4405	return skb;
4406
4407err_free:
4408	kfree_skb(skb);
4409	return NULL;
4410}
4411EXPORT_SYMBOL(skb_vlan_untag);
4412
4413int skb_ensure_writable(struct sk_buff *skb, int write_len)
4414{
4415	if (!pskb_may_pull(skb, write_len))
4416		return -ENOMEM;
4417
4418	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4419		return 0;
4420
4421	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422}
4423EXPORT_SYMBOL(skb_ensure_writable);
4424
4425/* remove VLAN header from packet and update csum accordingly. */
4426static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4427{
4428	struct vlan_hdr *vhdr;
4429	unsigned int offset = skb->data - skb_mac_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4430	int err;
4431
4432	__skb_push(skb, offset);
 
 
 
 
 
4433	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4434	if (unlikely(err))
4435		goto pull;
4436
4437	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4438
4439	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4440	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4441
4442	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4443	__skb_pull(skb, VLAN_HLEN);
4444
4445	vlan_set_encap_proto(skb, vhdr);
4446	skb->mac_header += VLAN_HLEN;
4447
4448	if (skb_network_offset(skb) < ETH_HLEN)
4449		skb_set_network_header(skb, ETH_HLEN);
4450
4451	skb_reset_mac_len(skb);
4452pull:
4453	__skb_pull(skb, offset);
4454
4455	return err;
4456}
 
4457
 
 
 
4458int skb_vlan_pop(struct sk_buff *skb)
4459{
4460	u16 vlan_tci;
4461	__be16 vlan_proto;
4462	int err;
4463
4464	if (likely(skb_vlan_tag_present(skb))) {
4465		skb->vlan_tci = 0;
4466	} else {
4467		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4468			      skb->protocol != htons(ETH_P_8021AD)) ||
4469			     skb->len < VLAN_ETH_HLEN))
4470			return 0;
4471
4472		err = __skb_vlan_pop(skb, &vlan_tci);
4473		if (err)
4474			return err;
4475	}
4476	/* move next vlan tag to hw accel tag */
4477	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4478		    skb->protocol != htons(ETH_P_8021AD)) ||
4479		   skb->len < VLAN_ETH_HLEN))
4480		return 0;
4481
4482	vlan_proto = skb->protocol;
4483	err = __skb_vlan_pop(skb, &vlan_tci);
4484	if (unlikely(err))
4485		return err;
4486
4487	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4488	return 0;
4489}
4490EXPORT_SYMBOL(skb_vlan_pop);
4491
 
 
 
4492int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4493{
4494	if (skb_vlan_tag_present(skb)) {
4495		unsigned int offset = skb->data - skb_mac_header(skb);
4496		int err;
4497
4498		/* __vlan_insert_tag expect skb->data pointing to mac header.
4499		 * So change skb->data before calling it and change back to
4500		 * original position later
4501		 */
4502		__skb_push(skb, offset);
 
4503		err = __vlan_insert_tag(skb, skb->vlan_proto,
4504					skb_vlan_tag_get(skb));
4505		if (err) {
4506			__skb_pull(skb, offset);
4507			return err;
4508		}
4509
4510		skb->protocol = skb->vlan_proto;
4511		skb->mac_len += VLAN_HLEN;
4512
4513		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4514		__skb_pull(skb, offset);
4515	}
4516	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4517	return 0;
4518}
4519EXPORT_SYMBOL(skb_vlan_push);
4520
4521/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522 * alloc_skb_with_frags - allocate skb with page frags
4523 *
4524 * @header_len: size of linear part
4525 * @data_len: needed length in frags
4526 * @max_page_order: max page order desired.
4527 * @errcode: pointer to error code if any
4528 * @gfp_mask: allocation mask
4529 *
4530 * This can be used to allocate a paged skb, given a maximal order for frags.
4531 */
4532struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4533				     unsigned long data_len,
4534				     int max_page_order,
4535				     int *errcode,
4536				     gfp_t gfp_mask)
4537{
4538	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4539	unsigned long chunk;
4540	struct sk_buff *skb;
4541	struct page *page;
4542	gfp_t gfp_head;
4543	int i;
4544
4545	*errcode = -EMSGSIZE;
4546	/* Note this test could be relaxed, if we succeed to allocate
4547	 * high order pages...
4548	 */
4549	if (npages > MAX_SKB_FRAGS)
4550		return NULL;
4551
4552	gfp_head = gfp_mask;
4553	if (gfp_head & __GFP_DIRECT_RECLAIM)
4554		gfp_head |= __GFP_REPEAT;
4555
4556	*errcode = -ENOBUFS;
4557	skb = alloc_skb(header_len, gfp_head);
4558	if (!skb)
4559		return NULL;
4560
4561	skb->truesize += npages << PAGE_SHIFT;
4562
4563	for (i = 0; npages > 0; i++) {
4564		int order = max_page_order;
 
4565
4566		while (order) {
4567			if (npages >= 1 << order) {
4568				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4569						   __GFP_COMP |
4570						   __GFP_NOWARN |
4571						   __GFP_NORETRY,
4572						   order);
4573				if (page)
4574					goto fill_page;
4575				/* Do not retry other high order allocations */
4576				order = 1;
4577				max_page_order = 0;
4578			}
4579			order--;
 
 
 
4580		}
4581		page = alloc_page(gfp_mask);
4582		if (!page)
4583			goto failure;
4584fill_page:
4585		chunk = min_t(unsigned long, data_len,
4586			      PAGE_SIZE << order);
4587		skb_fill_page_desc(skb, i, page, 0, chunk);
 
 
4588		data_len -= chunk;
4589		npages -= 1 << order;
4590	}
4591	return skb;
4592
4593failure:
4594	kfree_skb(skb);
4595	return NULL;
4596}
4597EXPORT_SYMBOL(alloc_skb_with_frags);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *	Fixes:
   9 *		Alan Cox	:	Fixed the worst of the load
  10 *					balancer bugs.
  11 *		Dave Platt	:	Interrupt stacking fix.
  12 *	Richard Kooijman	:	Timestamp fixes.
  13 *		Alan Cox	:	Changed buffer format.
  14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  15 *		Linus Torvalds	:	Better skb_clone.
  16 *		Alan Cox	:	Added skb_copy.
  17 *		Alan Cox	:	Added all the changed routines Linus
  18 *					only put in the headers
  19 *		Ray VanTassle	:	Fixed --skb->lock in free
  20 *		Alan Cox	:	skb_copy copy arp field
  21 *		Andi Kleen	:	slabified it.
  22 *		Robert Olsson	:	Removed skb_head_pool
  23 *
  24 *	NOTE:
  25 *		The __skb_ routines should be called with interrupts
  26 *	disabled, or you better be *real* sure that the operation is atomic
  27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *	or via disabling bottom half handlers, etc).
 
 
 
 
 
  29 */
  30
  31/*
  32 *	The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
 
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/bitfield.h>
  62#include <linux/if_vlan.h>
  63#include <linux/mpls.h>
  64#include <linux/kcov.h>
  65#include <linux/iov_iter.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/gso.h>
  72#include <net/hotdata.h>
  73#include <net/ip6_checksum.h>
  74#include <net/xfrm.h>
  75#include <net/mpls.h>
  76#include <net/mptcp.h>
  77#include <net/mctp.h>
  78#include <net/page_pool/helpers.h>
  79#include <net/dropreason.h>
  80
  81#include <linux/uaccess.h>
  82#include <trace/events/skb.h>
  83#include <linux/highmem.h>
  84#include <linux/capability.h>
  85#include <linux/user_namespace.h>
  86#include <linux/indirect_call_wrapper.h>
  87#include <linux/textsearch.h>
  88
  89#include "dev.h"
  90#include "sock_destructor.h"
  91
  92#ifdef CONFIG_SKB_EXTENSIONS
  93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  94#endif
  95
  96#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
  97
  98/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
  99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
 100 * size, and we can differentiate heads from skb_small_head_cache
 101 * vs system slabs by looking at their size (skb_end_offset()).
 102 */
 103#define SKB_SMALL_HEAD_CACHE_SIZE					\
 104	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
 105		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
 106		SKB_SMALL_HEAD_SIZE)
 107
 108#define SKB_SMALL_HEAD_HEADROOM						\
 109	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
 110
 
 
 111int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
 112EXPORT_SYMBOL(sysctl_max_skb_frags);
 113
 114/* kcm_write_msgs() relies on casting paged frags to bio_vec to use
 115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
 116 * netmem is a page.
 117 */
 118static_assert(offsetof(struct bio_vec, bv_page) ==
 119	      offsetof(skb_frag_t, netmem));
 120static_assert(sizeof_field(struct bio_vec, bv_page) ==
 121	      sizeof_field(skb_frag_t, netmem));
 122
 123static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
 124static_assert(sizeof_field(struct bio_vec, bv_len) ==
 125	      sizeof_field(skb_frag_t, len));
 126
 127static_assert(offsetof(struct bio_vec, bv_offset) ==
 128	      offsetof(skb_frag_t, offset));
 129static_assert(sizeof_field(struct bio_vec, bv_offset) ==
 130	      sizeof_field(skb_frag_t, offset));
 131
 132#undef FN
 133#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
 134static const char * const drop_reasons[] = {
 135	[SKB_CONSUMED] = "CONSUMED",
 136	DEFINE_DROP_REASON(FN, FN)
 137};
 138
 139static const struct drop_reason_list drop_reasons_core = {
 140	.reasons = drop_reasons,
 141	.n_reasons = ARRAY_SIZE(drop_reasons),
 142};
 143
 144const struct drop_reason_list __rcu *
 145drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
 146	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
 147};
 148EXPORT_SYMBOL(drop_reasons_by_subsys);
 149
 150/**
 151 * drop_reasons_register_subsys - register another drop reason subsystem
 152 * @subsys: the subsystem to register, must not be the core
 153 * @list: the list of drop reasons within the subsystem, must point to
 154 *	a statically initialized list
 155 */
 156void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
 157				  const struct drop_reason_list *list)
 158{
 159	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
 160		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
 161		 "invalid subsystem %d\n", subsys))
 162		return;
 163
 164	/* must point to statically allocated memory, so INIT is OK */
 165	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
 166}
 167EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
 168
 169/**
 170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
 171 * @subsys: the subsystem to remove, must not be the core
 172 *
 173 * Note: This will synchronize_rcu() to ensure no users when it returns.
 174 */
 175void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
 176{
 177	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
 178		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
 179		 "invalid subsystem %d\n", subsys))
 180		return;
 181
 182	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
 183
 184	synchronize_rcu();
 185}
 186EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
 187
 188/**
 189 *	skb_panic - private function for out-of-line support
 190 *	@skb:	buffer
 191 *	@sz:	size
 192 *	@addr:	address
 193 *	@msg:	skb_over_panic or skb_under_panic
 194 *
 195 *	Out-of-line support for skb_put() and skb_push().
 196 *	Called via the wrapper skb_over_panic() or skb_under_panic().
 197 *	Keep out of line to prevent kernel bloat.
 198 *	__builtin_return_address is not used because it is not always reliable.
 199 */
 200static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 201		      const char msg[])
 202{
 203	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 204		 msg, addr, skb->len, sz, skb->head, skb->data,
 205		 (unsigned long)skb->tail, (unsigned long)skb->end,
 206		 skb->dev ? skb->dev->name : "<NULL>");
 207	BUG();
 208}
 209
 210static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 211{
 212	skb_panic(skb, sz, addr, __func__);
 213}
 214
 215static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 216{
 217	skb_panic(skb, sz, addr, __func__);
 218}
 219
 220#define NAPI_SKB_CACHE_SIZE	64
 221#define NAPI_SKB_CACHE_BULK	16
 222#define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
 223
 224#if PAGE_SIZE == SZ_4K
 225
 226#define NAPI_HAS_SMALL_PAGE_FRAG	1
 227#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
 228
 229/* specialized page frag allocator using a single order 0 page
 230 * and slicing it into 1K sized fragment. Constrained to systems
 231 * with a very limited amount of 1K fragments fitting a single
 232 * page - to avoid excessive truesize underestimation
 233 */
 
 
 234
 235struct page_frag_1k {
 236	void *va;
 237	u16 offset;
 238	bool pfmemalloc;
 239};
 240
 241static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
 242{
 243	struct page *page;
 244	int offset;
 
 
 
 
 
 245
 246	offset = nc->offset - SZ_1K;
 247	if (likely(offset >= 0))
 248		goto use_frag;
 249
 250	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
 251	if (!page)
 252		return NULL;
 253
 254	nc->va = page_address(page);
 255	nc->pfmemalloc = page_is_pfmemalloc(page);
 256	offset = PAGE_SIZE - SZ_1K;
 257	page_ref_add(page, offset / SZ_1K);
 258
 259use_frag:
 260	nc->offset = offset;
 261	return nc->va + offset;
 262}
 263#else
 264
 265/* the small page is actually unused in this build; add dummy helpers
 266 * to please the compiler and avoid later preprocessor's conditionals
 
 
 267 */
 268#define NAPI_HAS_SMALL_PAGE_FRAG	0
 269#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
 270
 271struct page_frag_1k {
 272};
 273
 274static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
 275{
 276	return NULL;
 277}
 278
 279#endif
 280
 281struct napi_alloc_cache {
 282	struct page_frag_cache page;
 283	struct page_frag_1k page_small;
 284	unsigned int skb_count;
 285	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 286};
 287
 288static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 289static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 290
 291/* Double check that napi_get_frags() allocates skbs with
 292 * skb->head being backed by slab, not a page fragment.
 293 * This is to make sure bug fixed in 3226b158e67c
 294 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
 295 * does not accidentally come back.
 296 */
 297void napi_get_frags_check(struct napi_struct *napi)
 298{
 299	struct sk_buff *skb;
 300
 301	local_bh_disable();
 302	skb = napi_get_frags(napi);
 303	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
 304	napi_free_frags(napi);
 305	local_bh_enable();
 306}
 307
 308void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 309{
 310	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 
 
 
 
 
 
 311
 312	fragsz = SKB_DATA_ALIGN(fragsz);
 313
 314	return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
 315				       align_mask);
 316}
 317EXPORT_SYMBOL(__napi_alloc_frag_align);
 318
 319void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320{
 321	void *data;
 322
 323	fragsz = SKB_DATA_ALIGN(fragsz);
 324	if (in_hardirq() || irqs_disabled()) {
 325		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
 326
 327		data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
 328					       align_mask);
 329	} else {
 330		struct napi_alloc_cache *nc;
 331
 332		local_bh_disable();
 333		nc = this_cpu_ptr(&napi_alloc_cache);
 334		data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
 335					       align_mask);
 336		local_bh_enable();
 337	}
 338	return data;
 339}
 340EXPORT_SYMBOL(__netdev_alloc_frag_align);
 341
 342static struct sk_buff *napi_skb_cache_get(void)
 343{
 344	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 345	struct sk_buff *skb;
 
 
 346
 347	if (unlikely(!nc->skb_count)) {
 348		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
 349						      GFP_ATOMIC,
 350						      NAPI_SKB_CACHE_BULK,
 351						      nc->skb_cache);
 352		if (unlikely(!nc->skb_count))
 353			return NULL;
 354	}
 355
 356	skb = nc->skb_cache[--nc->skb_count];
 357	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
 358
 359	return skb;
 360}
 
 
 
 361
 362static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
 363					 unsigned int size)
 364{
 365	struct skb_shared_info *shinfo;
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 368
 369	/* Assumes caller memset cleared SKB */
 
 
 
 
 370	skb->truesize = SKB_TRUESIZE(size);
 371	refcount_set(&skb->users, 1);
 
 372	skb->head = data;
 373	skb->data = data;
 374	skb_reset_tail_pointer(skb);
 375	skb_set_end_offset(skb, size);
 376	skb->mac_header = (typeof(skb->mac_header))~0U;
 377	skb->transport_header = (typeof(skb->transport_header))~0U;
 378	skb->alloc_cpu = raw_smp_processor_id();
 379	/* make sure we initialize shinfo sequentially */
 380	shinfo = skb_shinfo(skb);
 381	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 382	atomic_set(&shinfo->dataref, 1);
 
 383
 384	skb_set_kcov_handle(skb, kcov_common_handle());
 385}
 386
 387static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
 388				     unsigned int *size)
 389{
 390	void *resized;
 391
 392	/* Must find the allocation size (and grow it to match). */
 393	*size = ksize(data);
 394	/* krealloc() will immediately return "data" when
 395	 * "ksize(data)" is requested: it is the existing upper
 396	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
 397	 * that this "new" pointer needs to be passed back to the
 398	 * caller for use so the __alloc_size hinting will be
 399	 * tracked correctly.
 400	 */
 401	resized = krealloc(data, *size, GFP_ATOMIC);
 402	WARN_ON_ONCE(resized != data);
 403	return resized;
 404}
 405
 406/* build_skb() variant which can operate on slab buffers.
 407 * Note that this should be used sparingly as slab buffers
 408 * cannot be combined efficiently by GRO!
 409 */
 410struct sk_buff *slab_build_skb(void *data)
 411{
 412	struct sk_buff *skb;
 413	unsigned int size;
 414
 415	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
 416	if (unlikely(!skb))
 417		return NULL;
 418
 419	memset(skb, 0, offsetof(struct sk_buff, tail));
 420	data = __slab_build_skb(skb, data, &size);
 421	__finalize_skb_around(skb, data, size);
 422
 
 
 
 
 423	return skb;
 
 
 
 
 424}
 425EXPORT_SYMBOL(slab_build_skb);
 426
 427/* Caller must provide SKB that is memset cleared */
 428static void __build_skb_around(struct sk_buff *skb, void *data,
 429			       unsigned int frag_size)
 430{
 431	unsigned int size = frag_size;
 432
 433	/* frag_size == 0 is considered deprecated now. Callers
 434	 * using slab buffer should use slab_build_skb() instead.
 435	 */
 436	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
 437		data = __slab_build_skb(skb, data, &size);
 438
 439	__finalize_skb_around(skb, data, size);
 440}
 441
 442/**
 443 * __build_skb - build a network buffer
 444 * @data: data buffer provided by caller
 445 * @frag_size: size of data (must not be 0)
 446 *
 447 * Allocate a new &sk_buff. Caller provides space holding head and
 448 * skb_shared_info. @data must have been allocated from the page
 449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
 450 * allocation is deprecated, and callers should use slab_build_skb()
 451 * instead.)
 452 * The return is the new skb buffer.
 453 * On a failure the return is %NULL, and @data is not freed.
 454 * Notes :
 455 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 456 *  Driver should add room at head (NET_SKB_PAD) and
 457 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 458 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 459 *  before giving packet to stack.
 460 *  RX rings only contains data buffers, not full skbs.
 461 */
 462struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 463{
 
 464	struct sk_buff *skb;
 
 465
 466	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
 467	if (unlikely(!skb))
 468		return NULL;
 469
 
 
 470	memset(skb, 0, offsetof(struct sk_buff, tail));
 471	__build_skb_around(skb, data, frag_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 472
 473	return skb;
 474}
 475
 476/* build_skb() is wrapper over __build_skb(), that specifically
 477 * takes care of skb->head and skb->pfmemalloc
 
 
 478 */
 479struct sk_buff *build_skb(void *data, unsigned int frag_size)
 480{
 481	struct sk_buff *skb = __build_skb(data, frag_size);
 482
 483	if (likely(skb && frag_size)) {
 484		skb->head_frag = 1;
 485		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 
 486	}
 487	return skb;
 488}
 489EXPORT_SYMBOL(build_skb);
 490
 491/**
 492 * build_skb_around - build a network buffer around provided skb
 493 * @skb: sk_buff provide by caller, must be memset cleared
 494 * @data: data buffer provided by caller
 495 * @frag_size: size of data
 496 */
 497struct sk_buff *build_skb_around(struct sk_buff *skb,
 498				 void *data, unsigned int frag_size)
 499{
 500	if (unlikely(!skb))
 501		return NULL;
 502
 503	__build_skb_around(skb, data, frag_size);
 
 
 
 
 504
 505	if (frag_size) {
 506		skb->head_frag = 1;
 507		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 508	}
 509	return skb;
 510}
 511EXPORT_SYMBOL(build_skb_around);
 512
 513/**
 514 * __napi_build_skb - build a network buffer
 515 * @data: data buffer provided by caller
 516 * @frag_size: size of data
 517 *
 518 * Version of __build_skb() that uses NAPI percpu caches to obtain
 519 * skbuff_head instead of inplace allocation.
 520 *
 521 * Returns a new &sk_buff on success, %NULL on allocation failure.
 522 */
 523static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
 524{
 525	struct sk_buff *skb;
 
 
 526
 527	skb = napi_skb_cache_get();
 528	if (unlikely(!skb))
 529		return NULL;
 530
 531	memset(skb, 0, offsetof(struct sk_buff, tail));
 532	__build_skb_around(skb, data, frag_size);
 533
 534	return skb;
 535}
 536
 537/**
 538 * napi_build_skb - build a network buffer
 539 * @data: data buffer provided by caller
 540 * @frag_size: size of data
 541 *
 542 * Version of __napi_build_skb() that takes care of skb->head_frag
 543 * and skb->pfmemalloc when the data is a page or page fragment.
 544 *
 545 * Returns a new &sk_buff on success, %NULL on allocation failure.
 
 546 */
 547struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
 548{
 549	struct sk_buff *skb = __napi_build_skb(data, frag_size);
 550
 551	if (likely(skb) && frag_size) {
 552		skb->head_frag = 1;
 553		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
 554	}
 555
 556	return skb;
 557}
 558EXPORT_SYMBOL(napi_build_skb);
 559
 560/*
 561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 562 * the caller if emergency pfmemalloc reserves are being used. If it is and
 563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 564 * may be used. Otherwise, the packet data may be discarded until enough
 565 * memory is free
 566 */
 567static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
 568			     bool *pfmemalloc)
 569{
 570	bool ret_pfmemalloc = false;
 571	size_t obj_size;
 572	void *obj;
 573
 574	obj_size = SKB_HEAD_ALIGN(*size);
 575	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
 576	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
 577		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
 578				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 579				node);
 580		*size = SKB_SMALL_HEAD_CACHE_SIZE;
 581		if (obj || !(gfp_pfmemalloc_allowed(flags)))
 582			goto out;
 583		/* Try again but now we are using pfmemalloc reserves */
 584		ret_pfmemalloc = true;
 585		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
 586		goto out;
 587	}
 588
 589	obj_size = kmalloc_size_roundup(obj_size);
 590	/* The following cast might truncate high-order bits of obj_size, this
 591	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
 592	 */
 593	*size = (unsigned int)obj_size;
 594
 595	/*
 596	 * Try a regular allocation, when that fails and we're not entitled
 597	 * to the reserves, fail.
 598	 */
 599	obj = kmalloc_node_track_caller(obj_size,
 600					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 601					node);
 602	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 603		goto out;
 604
 605	/* Try again but now we are using pfmemalloc reserves */
 606	ret_pfmemalloc = true;
 607	obj = kmalloc_node_track_caller(obj_size, flags, node);
 608
 609out:
 610	if (pfmemalloc)
 611		*pfmemalloc = ret_pfmemalloc;
 612
 613	return obj;
 614}
 615
 616/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 617 *	'private' fields and also do memory statistics to find all the
 618 *	[BEEP] leaks.
 619 *
 620 */
 621
 622/**
 623 *	__alloc_skb	-	allocate a network buffer
 624 *	@size: size to allocate
 625 *	@gfp_mask: allocation mask
 626 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 627 *		instead of head cache and allocate a cloned (child) skb.
 628 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 629 *		allocations in case the data is required for writeback
 630 *	@node: numa node to allocate memory on
 631 *
 632 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 633 *	tail room of at least size bytes. The object has a reference count
 634 *	of one. The return is the buffer. On a failure the return is %NULL.
 635 *
 636 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 637 *	%GFP_ATOMIC.
 638 */
 639struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 640			    int flags, int node)
 641{
 642	struct kmem_cache *cache;
 643	struct sk_buff *skb;
 644	bool pfmemalloc;
 645	u8 *data;
 646
 647	cache = (flags & SKB_ALLOC_FCLONE)
 648		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
 649
 650	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 651		gfp_mask |= __GFP_MEMALLOC;
 652
 653	/* Get the HEAD */
 654	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
 655	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
 656		skb = napi_skb_cache_get();
 657	else
 658		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
 659	if (unlikely(!skb))
 660		return NULL;
 661	prefetchw(skb);
 662
 663	/* We do our best to align skb_shared_info on a separate cache
 664	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 665	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 666	 * Both skb->head and skb_shared_info are cache line aligned.
 667	 */
 668	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
 669	if (unlikely(!data))
 670		goto nodata;
 671	/* kmalloc_size_roundup() might give us more room than requested.
 672	 * Put skb_shared_info exactly at the end of allocated zone,
 673	 * to allow max possible filling before reallocation.
 674	 */
 675	prefetchw(data + SKB_WITH_OVERHEAD(size));
 676
 677	/*
 678	 * Only clear those fields we need to clear, not those that we will
 679	 * actually initialise below. Hence, don't put any more fields after
 680	 * the tail pointer in struct sk_buff!
 681	 */
 682	memset(skb, 0, offsetof(struct sk_buff, tail));
 683	__build_skb_around(skb, data, size);
 684	skb->pfmemalloc = pfmemalloc;
 685
 686	if (flags & SKB_ALLOC_FCLONE) {
 687		struct sk_buff_fclones *fclones;
 688
 689		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 690
 691		skb->fclone = SKB_FCLONE_ORIG;
 692		refcount_set(&fclones->fclone_ref, 1);
 693	}
 694
 695	return skb;
 696
 697nodata:
 698	kmem_cache_free(cache, skb);
 699	return NULL;
 700}
 701EXPORT_SYMBOL(__alloc_skb);
 702
 703/**
 704 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 705 *	@dev: network device to receive on
 706 *	@len: length to allocate
 707 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 708 *
 709 *	Allocate a new &sk_buff and assign it a usage count of one. The
 710 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 711 *	the headroom they think they need without accounting for the
 712 *	built in space. The built in space is used for optimisations.
 713 *
 714 *	%NULL is returned if there is no free memory.
 715 */
 716struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 717				   gfp_t gfp_mask)
 718{
 719	struct page_frag_cache *nc;
 
 720	struct sk_buff *skb;
 721	bool pfmemalloc;
 722	void *data;
 723
 724	len += NET_SKB_PAD;
 725
 726	/* If requested length is either too small or too big,
 727	 * we use kmalloc() for skb->head allocation.
 728	 */
 729	if (len <= SKB_WITH_OVERHEAD(1024) ||
 730	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 731	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 732		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 733		if (!skb)
 734			goto skb_fail;
 735		goto skb_success;
 736	}
 737
 738	len = SKB_HEAD_ALIGN(len);
 
 739
 740	if (sk_memalloc_socks())
 741		gfp_mask |= __GFP_MEMALLOC;
 742
 743	if (in_hardirq() || irqs_disabled()) {
 744		nc = this_cpu_ptr(&netdev_alloc_cache);
 745		data = page_frag_alloc(nc, len, gfp_mask);
 746		pfmemalloc = nc->pfmemalloc;
 747	} else {
 748		local_bh_disable();
 749		nc = this_cpu_ptr(&napi_alloc_cache.page);
 750		data = page_frag_alloc(nc, len, gfp_mask);
 751		pfmemalloc = nc->pfmemalloc;
 752		local_bh_enable();
 753	}
 754
 755	if (unlikely(!data))
 756		return NULL;
 757
 758	skb = __build_skb(data, len);
 759	if (unlikely(!skb)) {
 760		skb_free_frag(data);
 761		return NULL;
 762	}
 763
 
 764	if (pfmemalloc)
 765		skb->pfmemalloc = 1;
 766	skb->head_frag = 1;
 767
 768skb_success:
 769	skb_reserve(skb, NET_SKB_PAD);
 770	skb->dev = dev;
 771
 772skb_fail:
 773	return skb;
 774}
 775EXPORT_SYMBOL(__netdev_alloc_skb);
 776
 777/**
 778 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 779 *	@napi: napi instance this buffer was allocated for
 780 *	@len: length to allocate
 781 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 782 *
 783 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 784 *	attempt to allocate the head from a special reserved region used
 785 *	only for NAPI Rx allocation.  By doing this we can save several
 786 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 787 *
 788 *	%NULL is returned if there is no free memory.
 789 */
 790struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 791				 gfp_t gfp_mask)
 792{
 793	struct napi_alloc_cache *nc;
 794	struct sk_buff *skb;
 795	bool pfmemalloc;
 796	void *data;
 797
 798	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
 799	len += NET_SKB_PAD + NET_IP_ALIGN;
 800
 801	/* If requested length is either too small or too big,
 802	 * we use kmalloc() for skb->head allocation.
 803	 * When the small frag allocator is available, prefer it over kmalloc
 804	 * for small fragments
 805	 */
 806	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
 807	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 808	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 809		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
 810				  NUMA_NO_NODE);
 811		if (!skb)
 812			goto skb_fail;
 813		goto skb_success;
 814	}
 815
 816	nc = this_cpu_ptr(&napi_alloc_cache);
 
 817
 818	if (sk_memalloc_socks())
 819		gfp_mask |= __GFP_MEMALLOC;
 820
 821	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
 822		/* we are artificially inflating the allocation size, but
 823		 * that is not as bad as it may look like, as:
 824		 * - 'len' less than GRO_MAX_HEAD makes little sense
 825		 * - On most systems, larger 'len' values lead to fragment
 826		 *   size above 512 bytes
 827		 * - kmalloc would use the kmalloc-1k slab for such values
 828		 * - Builds with smaller GRO_MAX_HEAD will very likely do
 829		 *   little networking, as that implies no WiFi and no
 830		 *   tunnels support, and 32 bits arches.
 831		 */
 832		len = SZ_1K;
 833
 834		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
 835		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
 836	} else {
 837		len = SKB_HEAD_ALIGN(len);
 838
 839		data = page_frag_alloc(&nc->page, len, gfp_mask);
 840		pfmemalloc = nc->page.pfmemalloc;
 841	}
 842
 843	if (unlikely(!data))
 844		return NULL;
 845
 846	skb = __napi_build_skb(data, len);
 847	if (unlikely(!skb)) {
 848		skb_free_frag(data);
 849		return NULL;
 850	}
 851
 852	if (pfmemalloc)
 
 853		skb->pfmemalloc = 1;
 854	skb->head_frag = 1;
 855
 856skb_success:
 857	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 858	skb->dev = napi->dev;
 859
 860skb_fail:
 861	return skb;
 862}
 863EXPORT_SYMBOL(__napi_alloc_skb);
 864
 865void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
 866			    int off, int size, unsigned int truesize)
 867{
 868	DEBUG_NET_WARN_ON_ONCE(size > truesize);
 869
 870	skb_fill_netmem_desc(skb, i, netmem, off, size);
 871	skb->len += size;
 872	skb->data_len += size;
 873	skb->truesize += truesize;
 874}
 875EXPORT_SYMBOL(skb_add_rx_frag_netmem);
 876
 877void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 878			  unsigned int truesize)
 879{
 880	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 881
 882	DEBUG_NET_WARN_ON_ONCE(size > truesize);
 883
 884	skb_frag_size_add(frag, size);
 885	skb->len += size;
 886	skb->data_len += size;
 887	skb->truesize += truesize;
 888}
 889EXPORT_SYMBOL(skb_coalesce_rx_frag);
 890
 891static void skb_drop_list(struct sk_buff **listp)
 892{
 893	kfree_skb_list(*listp);
 894	*listp = NULL;
 895}
 896
 897static inline void skb_drop_fraglist(struct sk_buff *skb)
 898{
 899	skb_drop_list(&skb_shinfo(skb)->frag_list);
 900}
 901
 902static void skb_clone_fraglist(struct sk_buff *skb)
 903{
 904	struct sk_buff *list;
 905
 906	skb_walk_frags(skb, list)
 907		skb_get(list);
 908}
 909
 910static bool is_pp_page(struct page *page)
 911{
 912	return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
 913}
 914
 915int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
 916		    unsigned int headroom)
 917{
 918#if IS_ENABLED(CONFIG_PAGE_POOL)
 919	u32 size, truesize, len, max_head_size, off;
 920	struct sk_buff *skb = *pskb, *nskb;
 921	int err, i, head_off;
 922	void *data;
 923
 924	/* XDP does not support fraglist so we need to linearize
 925	 * the skb.
 926	 */
 927	if (skb_has_frag_list(skb))
 928		return -EOPNOTSUPP;
 929
 930	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
 931	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
 932		return -ENOMEM;
 933
 934	size = min_t(u32, skb->len, max_head_size);
 935	truesize = SKB_HEAD_ALIGN(size) + headroom;
 936	data = page_pool_dev_alloc_va(pool, &truesize);
 937	if (!data)
 938		return -ENOMEM;
 939
 940	nskb = napi_build_skb(data, truesize);
 941	if (!nskb) {
 942		page_pool_free_va(pool, data, true);
 943		return -ENOMEM;
 944	}
 945
 946	skb_reserve(nskb, headroom);
 947	skb_copy_header(nskb, skb);
 948	skb_mark_for_recycle(nskb);
 949
 950	err = skb_copy_bits(skb, 0, nskb->data, size);
 951	if (err) {
 952		consume_skb(nskb);
 953		return err;
 954	}
 955	skb_put(nskb, size);
 956
 957	head_off = skb_headroom(nskb) - skb_headroom(skb);
 958	skb_headers_offset_update(nskb, head_off);
 959
 960	off = size;
 961	len = skb->len - off;
 962	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
 963		struct page *page;
 964		u32 page_off;
 965
 966		size = min_t(u32, len, PAGE_SIZE);
 967		truesize = size;
 968
 969		page = page_pool_dev_alloc(pool, &page_off, &truesize);
 970		if (!page) {
 971			consume_skb(nskb);
 972			return -ENOMEM;
 973		}
 974
 975		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
 976		err = skb_copy_bits(skb, off, page_address(page) + page_off,
 977				    size);
 978		if (err) {
 979			consume_skb(nskb);
 980			return err;
 981		}
 982
 983		len -= size;
 984		off += size;
 985	}
 986
 987	consume_skb(skb);
 988	*pskb = nskb;
 989
 990	return 0;
 991#else
 992	return -EOPNOTSUPP;
 993#endif
 994}
 995EXPORT_SYMBOL(skb_pp_cow_data);
 996
 997int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
 998			 struct bpf_prog *prog)
 999{
1000	if (!prog->aux->xdp_has_frags)
1001		return -EINVAL;
1002
1003	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004}
1005EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006
1007#if IS_ENABLED(CONFIG_PAGE_POOL)
1008bool napi_pp_put_page(struct page *page, bool napi_safe)
1009{
1010	bool allow_direct = false;
1011	struct page_pool *pp;
1012
1013	page = compound_head(page);
1014
1015	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016	 * in order to preserve any existing bits, such as bit 0 for the
1017	 * head page of compound page and bit 1 for pfmemalloc page, so
1018	 * mask those bits for freeing side when doing below checking,
1019	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020	 * to avoid recycling the pfmemalloc page.
1021	 */
1022	if (unlikely(!is_pp_page(page)))
1023		return false;
1024
1025	pp = page->pp;
1026
1027	/* Allow direct recycle if we have reasons to believe that we are
1028	 * in the same context as the consumer would run, so there's
1029	 * no possible race.
1030	 * __page_pool_put_page() makes sure we're not in hardirq context
1031	 * and interrupts are enabled prior to accessing the cache.
1032	 */
1033	if (napi_safe || in_softirq()) {
1034		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035		unsigned int cpuid = smp_processor_id();
1036
1037		allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038		allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039	}
1040
1041	/* Driver set this to memory recycling info. Reset it on recycle.
1042	 * This will *not* work for NIC using a split-page memory model.
1043	 * The page will be returned to the pool here regardless of the
1044	 * 'flipped' fragment being in use or not.
1045	 */
1046	page_pool_put_full_page(pp, page, allow_direct);
1047
1048	return true;
1049}
1050EXPORT_SYMBOL(napi_pp_put_page);
1051#endif
1052
1053static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054{
1055	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056		return false;
1057	return napi_pp_put_page(virt_to_page(data), napi_safe);
1058}
1059
1060/**
1061 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062 * @skb:	page pool aware skb
1063 *
1064 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065 * intended to gain fragment references only for page pool aware skbs,
1066 * i.e. when skb->pp_recycle is true, and not for fragments in a
1067 * non-pp-recycling skb. It has a fallback to increase references on normal
1068 * pages, as page pool aware skbs may also have normal page fragments.
1069 */
1070static int skb_pp_frag_ref(struct sk_buff *skb)
1071{
1072	struct skb_shared_info *shinfo;
1073	struct page *head_page;
1074	int i;
1075
1076	if (!skb->pp_recycle)
1077		return -EINVAL;
1078
1079	shinfo = skb_shinfo(skb);
1080
1081	for (i = 0; i < shinfo->nr_frags; i++) {
1082		head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083		if (likely(is_pp_page(head_page)))
1084			page_pool_ref_page(head_page);
1085		else
1086			page_ref_inc(head_page);
1087	}
1088	return 0;
1089}
1090
1091static void skb_kfree_head(void *head, unsigned int end_offset)
1092{
1093	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095	else
1096		kfree(head);
1097}
1098
1099static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100{
1101	unsigned char *head = skb->head;
1102
1103	if (skb->head_frag) {
1104		if (skb_pp_recycle(skb, head, napi_safe))
1105			return;
1106		skb_free_frag(head);
1107	} else {
1108		skb_kfree_head(head, skb_end_offset(skb));
1109	}
1110}
1111
1112static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113			     bool napi_safe)
1114{
1115	struct skb_shared_info *shinfo = skb_shinfo(skb);
1116	int i;
1117
1118	if (!skb_data_unref(skb, shinfo))
1119		goto exit;
 
 
1120
1121	if (skb_zcopy(skb)) {
1122		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
 
 
 
 
 
 
 
1123
1124		skb_zcopy_clear(skb, true);
1125		if (skip_unref)
1126			goto free_head;
1127	}
1128
1129	for (i = 0; i < shinfo->nr_frags; i++)
1130		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131
1132free_head:
1133	if (shinfo->frag_list)
1134		kfree_skb_list_reason(shinfo->frag_list, reason);
1135
1136	skb_free_head(skb, napi_safe);
1137exit:
1138	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1139	 * bit is only set on the head though, so in order to avoid races
1140	 * while trying to recycle fragments on __skb_frag_unref() we need
1141	 * to make one SKB responsible for triggering the recycle path.
1142	 * So disable the recycling bit if an SKB is cloned and we have
1143	 * additional references to the fragmented part of the SKB.
1144	 * Eventually the last SKB will have the recycling bit set and it's
1145	 * dataref set to 0, which will trigger the recycling
1146	 */
1147	skb->pp_recycle = 0;
1148}
1149
1150/*
1151 *	Free an skbuff by memory without cleaning the state.
1152 */
1153static void kfree_skbmem(struct sk_buff *skb)
1154{
1155	struct sk_buff_fclones *fclones;
1156
1157	switch (skb->fclone) {
1158	case SKB_FCLONE_UNAVAILABLE:
1159		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160		return;
1161
1162	case SKB_FCLONE_ORIG:
1163		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164
1165		/* We usually free the clone (TX completion) before original skb
1166		 * This test would have no chance to be true for the clone,
1167		 * while here, branch prediction will be good.
1168		 */
1169		if (refcount_read(&fclones->fclone_ref) == 1)
1170			goto fastpath;
1171		break;
1172
1173	default: /* SKB_FCLONE_CLONE */
1174		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175		break;
1176	}
1177	if (!refcount_dec_and_test(&fclones->fclone_ref))
1178		return;
1179fastpath:
1180	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181}
1182
1183void skb_release_head_state(struct sk_buff *skb)
1184{
1185	skb_dst_drop(skb);
 
 
 
1186	if (skb->destructor) {
1187		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188		skb->destructor(skb);
1189	}
1190#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191	nf_conntrack_put(skb_nfct(skb));
 
 
 
1192#endif
1193	skb_ext_put(skb);
1194}
1195
1196/* Free everything but the sk_buff shell. */
1197static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198			    bool napi_safe)
1199{
1200	skb_release_head_state(skb);
1201	if (likely(skb->head))
1202		skb_release_data(skb, reason, napi_safe);
1203}
1204
1205/**
1206 *	__kfree_skb - private function
1207 *	@skb: buffer
1208 *
1209 *	Free an sk_buff. Release anything attached to the buffer.
1210 *	Clean the state. This is an internal helper function. Users should
1211 *	always call kfree_skb
1212 */
1213
1214void __kfree_skb(struct sk_buff *skb)
1215{
1216	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217	kfree_skbmem(skb);
1218}
1219EXPORT_SYMBOL(__kfree_skb);
1220
1221static __always_inline
1222bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223{
1224	if (unlikely(!skb_unref(skb)))
1225		return false;
1226
1227	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228			       u32_get_bits(reason,
1229					    SKB_DROP_REASON_SUBSYS_MASK) >=
1230				SKB_DROP_REASON_SUBSYS_NUM);
1231
1232	if (reason == SKB_CONSUMED)
1233		trace_consume_skb(skb, __builtin_return_address(0));
1234	else
1235		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236	return true;
1237}
1238
1239/**
1240 *	kfree_skb_reason - free an sk_buff with special reason
1241 *	@skb: buffer to free
1242 *	@reason: reason why this skb is dropped
1243 *
1244 *	Drop a reference to the buffer and free it if the usage count has
1245 *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246 *	tracepoint.
1247 */
1248void __fix_address
1249kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250{
1251	if (__kfree_skb_reason(skb, reason))
1252		__kfree_skb(skb);
1253}
1254EXPORT_SYMBOL(kfree_skb_reason);
1255
1256#define KFREE_SKB_BULK_SIZE	16
1257
1258struct skb_free_array {
1259	unsigned int skb_count;
1260	void *skb_array[KFREE_SKB_BULK_SIZE];
1261};
1262
1263static void kfree_skb_add_bulk(struct sk_buff *skb,
1264			       struct skb_free_array *sa,
1265			       enum skb_drop_reason reason)
1266{
1267	/* if SKB is a clone, don't handle this case */
1268	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269		__kfree_skb(skb);
1270		return;
1271	}
1272
1273	skb_release_all(skb, reason, false);
1274	sa->skb_array[sa->skb_count++] = skb;
1275
1276	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278				     sa->skb_array);
1279		sa->skb_count = 0;
1280	}
1281}
 
1282
1283void __fix_address
1284kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285{
1286	struct skb_free_array sa;
1287
1288	sa.skb_count = 0;
1289
1290	while (segs) {
1291		struct sk_buff *next = segs->next;
1292
1293		if (__kfree_skb_reason(segs, reason)) {
1294			skb_poison_list(segs);
1295			kfree_skb_add_bulk(segs, &sa, reason);
1296		}
1297
1298		segs = next;
1299	}
1300
1301	if (sa.skb_count)
1302		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303}
1304EXPORT_SYMBOL(kfree_skb_list_reason);
1305
1306/* Dump skb information and contents.
1307 *
1308 * Must only be called from net_ratelimit()-ed paths.
1309 *
1310 * Dumps whole packets if full_pkt, only headers otherwise.
1311 */
1312void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313{
1314	struct skb_shared_info *sh = skb_shinfo(skb);
1315	struct net_device *dev = skb->dev;
1316	struct sock *sk = skb->sk;
1317	struct sk_buff *list_skb;
1318	bool has_mac, has_trans;
1319	int headroom, tailroom;
1320	int i, len, seg_len;
1321
1322	if (full_pkt)
1323		len = skb->len;
1324	else
1325		len = min_t(int, skb->len, MAX_HEADER + 128);
1326
1327	headroom = skb_headroom(skb);
1328	tailroom = skb_tailroom(skb);
1329
1330	has_mac = skb_mac_header_was_set(skb);
1331	has_trans = skb_transport_header_was_set(skb);
1332
1333	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1339	       has_mac ? skb->mac_header : -1,
1340	       has_mac ? skb_mac_header_len(skb) : -1,
1341	       skb->network_header,
1342	       has_trans ? skb_network_header_len(skb) : -1,
1343	       has_trans ? skb->transport_header : -1,
1344	       sh->tx_flags, sh->nr_frags,
1345	       sh->gso_size, sh->gso_type, sh->gso_segs,
1346	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347	       skb->csum_valid, skb->csum_level,
1348	       skb->hash, skb->sw_hash, skb->l4_hash,
1349	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350
1351	if (dev)
1352		printk("%sdev name=%s feat=%pNF\n",
1353		       level, dev->name, &dev->features);
1354	if (sk)
1355		printk("%ssk family=%hu type=%u proto=%u\n",
1356		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357
1358	if (full_pkt && headroom)
1359		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360			       16, 1, skb->head, headroom, false);
1361
1362	seg_len = min_t(int, skb_headlen(skb), len);
1363	if (seg_len)
1364		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1365			       16, 1, skb->data, seg_len, false);
1366	len -= seg_len;
1367
1368	if (full_pkt && tailroom)
1369		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370			       16, 1, skb_tail_pointer(skb), tailroom, false);
1371
1372	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374		u32 p_off, p_len, copied;
1375		struct page *p;
1376		u8 *vaddr;
1377
1378		skb_frag_foreach_page(frag, skb_frag_off(frag),
1379				      skb_frag_size(frag), p, p_off, p_len,
1380				      copied) {
1381			seg_len = min_t(int, p_len, len);
1382			vaddr = kmap_atomic(p);
1383			print_hex_dump(level, "skb frag:     ",
1384				       DUMP_PREFIX_OFFSET,
1385				       16, 1, vaddr + p_off, seg_len, false);
1386			kunmap_atomic(vaddr);
1387			len -= seg_len;
1388			if (!len)
1389				break;
1390		}
1391	}
1392
1393	if (full_pkt && skb_has_frag_list(skb)) {
1394		printk("skb fraglist:\n");
1395		skb_walk_frags(skb, list_skb)
1396			skb_dump(level, list_skb, true);
1397	}
1398}
1399EXPORT_SYMBOL(skb_dump);
1400
1401/**
1402 *	skb_tx_error - report an sk_buff xmit error
1403 *	@skb: buffer that triggered an error
1404 *
1405 *	Report xmit error if a device callback is tracking this skb.
1406 *	skb must be freed afterwards.
1407 */
1408void skb_tx_error(struct sk_buff *skb)
1409{
1410	if (skb) {
1411		skb_zcopy_downgrade_managed(skb);
1412		skb_zcopy_clear(skb, true);
 
 
 
 
1413	}
1414}
1415EXPORT_SYMBOL(skb_tx_error);
1416
1417#ifdef CONFIG_TRACEPOINTS
1418/**
1419 *	consume_skb - free an skbuff
1420 *	@skb: buffer to free
1421 *
1422 *	Drop a ref to the buffer and free it if the usage count has hit zero
1423 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424 *	is being dropped after a failure and notes that
1425 */
1426void consume_skb(struct sk_buff *skb)
1427{
1428	if (!skb_unref(skb))
1429		return;
1430
1431	trace_consume_skb(skb, __builtin_return_address(0));
 
 
 
1432	__kfree_skb(skb);
1433}
1434EXPORT_SYMBOL(consume_skb);
1435#endif
1436
1437/**
1438 *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1439 *	@skb: buffer to free
1440 *
1441 *	Alike consume_skb(), but this variant assumes that this is the last
1442 *	skb reference and all the head states have been already dropped
1443 */
1444void __consume_stateless_skb(struct sk_buff *skb)
1445{
1446	trace_consume_skb(skb, __builtin_return_address(0));
1447	skb_release_data(skb, SKB_CONSUMED, false);
1448	kfree_skbmem(skb);
 
 
 
 
 
1449}
1450
1451static void napi_skb_cache_put(struct sk_buff *skb)
1452{
1453	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454	u32 i;
1455
1456	if (!kasan_mempool_poison_object(skb))
1457		return;
1458
 
1459	nc->skb_cache[nc->skb_count++] = skb;
1460
 
 
 
 
 
 
1461	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463			kasan_mempool_unpoison_object(nc->skb_cache[i],
1464						kmem_cache_size(net_hotdata.skbuff_cache));
1465
1466		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468		nc->skb_count = NAPI_SKB_CACHE_HALF;
1469	}
1470}
1471
1472void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473{
1474	skb_release_all(skb, reason, true);
1475	napi_skb_cache_put(skb);
1476}
1477
1478void napi_skb_free_stolen_head(struct sk_buff *skb)
1479{
1480	if (unlikely(skb->slow_gro)) {
1481		nf_reset_ct(skb);
1482		skb_dst_drop(skb);
1483		skb_ext_put(skb);
1484		skb_orphan(skb);
1485		skb->slow_gro = 0;
1486	}
1487	napi_skb_cache_put(skb);
1488}
1489
1490void napi_consume_skb(struct sk_buff *skb, int budget)
1491{
1492	/* Zero budget indicate non-NAPI context called us, like netpoll */
1493	if (unlikely(!budget)) {
1494		dev_consume_skb_any(skb);
1495		return;
1496	}
1497
1498	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499
1500	if (!skb_unref(skb))
1501		return;
1502
1503	/* if reaching here SKB is ready to free */
1504	trace_consume_skb(skb, __builtin_return_address(0));
1505
1506	/* if SKB is a clone, don't handle this case */
1507	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508		__kfree_skb(skb);
1509		return;
1510	}
1511
1512	skb_release_all(skb, SKB_CONSUMED, !!budget);
1513	napi_skb_cache_put(skb);
1514}
1515EXPORT_SYMBOL(napi_consume_skb);
1516
1517/* Make sure a field is contained by headers group */
1518#define CHECK_SKB_FIELD(field) \
1519	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1520		     offsetof(struct sk_buff, headers.field));	\
 
 
1521
1522static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523{
1524	new->tstamp		= old->tstamp;
1525	/* We do not copy old->sk */
1526	new->dev		= old->dev;
1527	memcpy(new->cb, old->cb, sizeof(old->cb));
1528	skb_dst_copy(new, old);
1529	__skb_ext_copy(new, old);
 
 
1530	__nf_copy(new, old, false);
1531
1532	/* Note : this field could be in the headers group.
1533	 * It is not yet because we do not want to have a 16 bit hole
1534	 */
1535	new->queue_mapping = old->queue_mapping;
1536
1537	memcpy(&new->headers, &old->headers, sizeof(new->headers));
 
 
1538	CHECK_SKB_FIELD(protocol);
1539	CHECK_SKB_FIELD(csum);
1540	CHECK_SKB_FIELD(hash);
1541	CHECK_SKB_FIELD(priority);
1542	CHECK_SKB_FIELD(skb_iif);
1543	CHECK_SKB_FIELD(vlan_proto);
1544	CHECK_SKB_FIELD(vlan_tci);
1545	CHECK_SKB_FIELD(transport_header);
1546	CHECK_SKB_FIELD(network_header);
1547	CHECK_SKB_FIELD(mac_header);
1548	CHECK_SKB_FIELD(inner_protocol);
1549	CHECK_SKB_FIELD(inner_transport_header);
1550	CHECK_SKB_FIELD(inner_network_header);
1551	CHECK_SKB_FIELD(inner_mac_header);
1552	CHECK_SKB_FIELD(mark);
1553#ifdef CONFIG_NETWORK_SECMARK
1554	CHECK_SKB_FIELD(secmark);
1555#endif
1556#ifdef CONFIG_NET_RX_BUSY_POLL
1557	CHECK_SKB_FIELD(napi_id);
1558#endif
1559	CHECK_SKB_FIELD(alloc_cpu);
1560#ifdef CONFIG_XPS
1561	CHECK_SKB_FIELD(sender_cpu);
1562#endif
1563#ifdef CONFIG_NET_SCHED
1564	CHECK_SKB_FIELD(tc_index);
 
 
 
1565#endif
1566
1567}
1568
1569/*
1570 * You should not add any new code to this function.  Add it to
1571 * __copy_skb_header above instead.
1572 */
1573static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574{
1575#define C(x) n->x = skb->x
1576
1577	n->next = n->prev = NULL;
1578	n->sk = NULL;
1579	__copy_skb_header(n, skb);
1580
1581	C(len);
1582	C(data_len);
1583	C(mac_len);
1584	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585	n->cloned = 1;
1586	n->nohdr = 0;
1587	n->peeked = 0;
1588	C(pfmemalloc);
1589	C(pp_recycle);
1590	n->destructor = NULL;
1591	C(tail);
1592	C(end);
1593	C(head);
1594	C(head_frag);
1595	C(data);
1596	C(truesize);
1597	refcount_set(&n->users, 1);
1598
1599	atomic_inc(&(skb_shinfo(skb)->dataref));
1600	skb->cloned = 1;
1601
1602	return n;
1603#undef C
1604}
1605
1606/**
1607 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608 * @first: first sk_buff of the msg
1609 */
1610struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611{
1612	struct sk_buff *n;
1613
1614	n = alloc_skb(0, GFP_ATOMIC);
1615	if (!n)
1616		return NULL;
1617
1618	n->len = first->len;
1619	n->data_len = first->len;
1620	n->truesize = first->truesize;
1621
1622	skb_shinfo(n)->frag_list = first;
1623
1624	__copy_skb_header(n, first);
1625	n->destructor = NULL;
1626
1627	return n;
1628}
1629EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630
1631/**
1632 *	skb_morph	-	morph one skb into another
1633 *	@dst: the skb to receive the contents
1634 *	@src: the skb to supply the contents
1635 *
1636 *	This is identical to skb_clone except that the target skb is
1637 *	supplied by the user.
1638 *
1639 *	The target skb is returned upon exit.
1640 */
1641struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642{
1643	skb_release_all(dst, SKB_CONSUMED, false);
1644	return __skb_clone(dst, src);
1645}
1646EXPORT_SYMBOL_GPL(skb_morph);
1647
1648int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649{
1650	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651	struct user_struct *user;
1652
1653	if (capable(CAP_IPC_LOCK) || !size)
1654		return 0;
1655
1656	rlim = rlimit(RLIMIT_MEMLOCK);
1657	if (rlim == RLIM_INFINITY)
1658		return 0;
1659
1660	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1661	max_pg = rlim >> PAGE_SHIFT;
1662	user = mmp->user ? : current_user();
1663
1664	old_pg = atomic_long_read(&user->locked_vm);
1665	do {
1666		new_pg = old_pg + num_pg;
1667		if (new_pg > max_pg)
1668			return -ENOBUFS;
1669	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670
1671	if (!mmp->user) {
1672		mmp->user = get_uid(user);
1673		mmp->num_pg = num_pg;
1674	} else {
1675		mmp->num_pg += num_pg;
1676	}
1677
1678	return 0;
1679}
1680EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681
1682void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683{
1684	if (mmp->user) {
1685		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686		free_uid(mmp->user);
1687	}
1688}
1689EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690
1691static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692{
1693	struct ubuf_info_msgzc *uarg;
1694	struct sk_buff *skb;
1695
1696	WARN_ON_ONCE(!in_task());
1697
1698	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699	if (!skb)
1700		return NULL;
1701
1702	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703	uarg = (void *)skb->cb;
1704	uarg->mmp.user = NULL;
1705
1706	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707		kfree_skb(skb);
1708		return NULL;
1709	}
1710
1711	uarg->ubuf.callback = msg_zerocopy_callback;
1712	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713	uarg->len = 1;
1714	uarg->bytelen = size;
1715	uarg->zerocopy = 1;
1716	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717	refcount_set(&uarg->ubuf.refcnt, 1);
1718	sock_hold(sk);
1719
1720	return &uarg->ubuf;
1721}
1722
1723static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724{
1725	return container_of((void *)uarg, struct sk_buff, cb);
1726}
1727
1728struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729				       struct ubuf_info *uarg)
1730{
1731	if (uarg) {
1732		struct ubuf_info_msgzc *uarg_zc;
1733		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1734		u32 bytelen, next;
1735
1736		/* there might be non MSG_ZEROCOPY users */
1737		if (uarg->callback != msg_zerocopy_callback)
1738			return NULL;
1739
1740		/* realloc only when socket is locked (TCP, UDP cork),
1741		 * so uarg->len and sk_zckey access is serialized
1742		 */
1743		if (!sock_owned_by_user(sk)) {
1744			WARN_ON_ONCE(1);
1745			return NULL;
1746		}
1747
1748		uarg_zc = uarg_to_msgzc(uarg);
1749		bytelen = uarg_zc->bytelen + size;
1750		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751			/* TCP can create new skb to attach new uarg */
1752			if (sk->sk_type == SOCK_STREAM)
1753				goto new_alloc;
1754			return NULL;
1755		}
1756
1757		next = (u32)atomic_read(&sk->sk_zckey);
1758		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760				return NULL;
1761			uarg_zc->len++;
1762			uarg_zc->bytelen = bytelen;
1763			atomic_set(&sk->sk_zckey, ++next);
1764
1765			/* no extra ref when appending to datagram (MSG_MORE) */
1766			if (sk->sk_type == SOCK_STREAM)
1767				net_zcopy_get(uarg);
1768
1769			return uarg;
1770		}
1771	}
1772
1773new_alloc:
1774	return msg_zerocopy_alloc(sk, size);
1775}
1776EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777
1778static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779{
1780	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781	u32 old_lo, old_hi;
1782	u64 sum_len;
1783
1784	old_lo = serr->ee.ee_info;
1785	old_hi = serr->ee.ee_data;
1786	sum_len = old_hi - old_lo + 1ULL + len;
1787
1788	if (sum_len >= (1ULL << 32))
1789		return false;
1790
1791	if (lo != old_hi + 1)
1792		return false;
1793
1794	serr->ee.ee_data += len;
1795	return true;
1796}
1797
1798static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799{
1800	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801	struct sock_exterr_skb *serr;
1802	struct sock *sk = skb->sk;
1803	struct sk_buff_head *q;
1804	unsigned long flags;
1805	bool is_zerocopy;
1806	u32 lo, hi;
1807	u16 len;
1808
1809	mm_unaccount_pinned_pages(&uarg->mmp);
1810
1811	/* if !len, there was only 1 call, and it was aborted
1812	 * so do not queue a completion notification
1813	 */
1814	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815		goto release;
1816
1817	len = uarg->len;
1818	lo = uarg->id;
1819	hi = uarg->id + len - 1;
1820	is_zerocopy = uarg->zerocopy;
1821
1822	serr = SKB_EXT_ERR(skb);
1823	memset(serr, 0, sizeof(*serr));
1824	serr->ee.ee_errno = 0;
1825	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826	serr->ee.ee_data = hi;
1827	serr->ee.ee_info = lo;
1828	if (!is_zerocopy)
1829		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830
1831	q = &sk->sk_error_queue;
1832	spin_lock_irqsave(&q->lock, flags);
1833	tail = skb_peek_tail(q);
1834	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1836		__skb_queue_tail(q, skb);
1837		skb = NULL;
1838	}
1839	spin_unlock_irqrestore(&q->lock, flags);
1840
1841	sk_error_report(sk);
1842
1843release:
1844	consume_skb(skb);
1845	sock_put(sk);
1846}
1847
1848void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849			   bool success)
1850{
1851	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852
1853	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854
1855	if (refcount_dec_and_test(&uarg->refcnt))
1856		__msg_zerocopy_callback(uarg_zc);
1857}
1858EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859
1860void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861{
1862	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1863
1864	atomic_dec(&sk->sk_zckey);
1865	uarg_to_msgzc(uarg)->len--;
1866
1867	if (have_uref)
1868		msg_zerocopy_callback(NULL, uarg, true);
1869}
1870EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1871
1872int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873			     struct msghdr *msg, int len,
1874			     struct ubuf_info *uarg)
1875{
1876	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1877	int err, orig_len = skb->len;
1878
1879	/* An skb can only point to one uarg. This edge case happens when
1880	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881	 */
1882	if (orig_uarg && uarg != orig_uarg)
1883		return -EEXIST;
1884
1885	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887		struct sock *save_sk = skb->sk;
1888
1889		/* Streams do not free skb on error. Reset to prev state. */
1890		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891		skb->sk = sk;
1892		___pskb_trim(skb, orig_len);
1893		skb->sk = save_sk;
1894		return err;
1895	}
1896
1897	skb_zcopy_set(skb, uarg, NULL);
1898	return skb->len - orig_len;
1899}
1900EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901
1902void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903{
1904	int i;
1905
1906	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908		skb_frag_ref(skb, i);
1909}
1910EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911
1912static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913			      gfp_t gfp_mask)
1914{
1915	if (skb_zcopy(orig)) {
1916		if (skb_zcopy(nskb)) {
1917			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918			if (!gfp_mask) {
1919				WARN_ON_ONCE(1);
1920				return -ENOMEM;
1921			}
1922			if (skb_uarg(nskb) == skb_uarg(orig))
1923				return 0;
1924			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925				return -EIO;
1926		}
1927		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928	}
1929	return 0;
1930}
1931
1932/**
1933 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1934 *	@skb: the skb to modify
1935 *	@gfp_mask: allocation priority
1936 *
1937 *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938 *	It will copy all frags into kernel and drop the reference
1939 *	to userspace pages.
1940 *
1941 *	If this function is called from an interrupt gfp_mask() must be
1942 *	%GFP_ATOMIC.
1943 *
1944 *	Returns 0 on success or a negative error code on failure
1945 *	to allocate kernel memory to copy to.
1946 */
1947int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948{
 
1949	int num_frags = skb_shinfo(skb)->nr_frags;
1950	struct page *page, *head = NULL;
1951	int i, order, psize, new_frags;
1952	u32 d_off;
1953
1954	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955		return -EINVAL;
1956
1957	if (!num_frags)
1958		goto release;
1959
1960	/* We might have to allocate high order pages, so compute what minimum
1961	 * page order is needed.
1962	 */
1963	order = 0;
1964	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965		order++;
1966	psize = (PAGE_SIZE << order);
1967
1968	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969	for (i = 0; i < new_frags; i++) {
1970		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971		if (!page) {
1972			while (head) {
1973				struct page *next = (struct page *)page_private(head);
1974				put_page(head);
1975				head = next;
1976			}
1977			return -ENOMEM;
1978		}
 
 
 
 
1979		set_page_private(page, (unsigned long)head);
1980		head = page;
1981	}
1982
1983	page = head;
1984	d_off = 0;
1985	for (i = 0; i < num_frags; i++) {
1986		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987		u32 p_off, p_len, copied;
1988		struct page *p;
1989		u8 *vaddr;
1990
1991		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992				      p, p_off, p_len, copied) {
1993			u32 copy, done = 0;
1994			vaddr = kmap_atomic(p);
1995
1996			while (done < p_len) {
1997				if (d_off == psize) {
1998					d_off = 0;
1999					page = (struct page *)page_private(page);
2000				}
2001				copy = min_t(u32, psize - d_off, p_len - done);
2002				memcpy(page_address(page) + d_off,
2003				       vaddr + p_off + done, copy);
2004				done += copy;
2005				d_off += copy;
2006			}
2007			kunmap_atomic(vaddr);
2008		}
2009	}
2010
2011	/* skb frags release userspace buffers */
2012	for (i = 0; i < num_frags; i++)
2013		skb_frag_unref(skb, i);
2014
 
 
2015	/* skb frags point to kernel buffers */
2016	for (i = 0; i < new_frags - 1; i++) {
2017		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
 
2018		head = (struct page *)page_private(head);
2019	}
2020	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021			       d_off);
2022	skb_shinfo(skb)->nr_frags = new_frags;
2023
2024release:
2025	skb_zcopy_clear(skb, false);
2026	return 0;
2027}
2028EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029
2030/**
2031 *	skb_clone	-	duplicate an sk_buff
2032 *	@skb: buffer to clone
2033 *	@gfp_mask: allocation priority
2034 *
2035 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036 *	copies share the same packet data but not structure. The new
2037 *	buffer has a reference count of 1. If the allocation fails the
2038 *	function returns %NULL otherwise the new buffer is returned.
2039 *
2040 *	If this function is called from an interrupt gfp_mask() must be
2041 *	%GFP_ATOMIC.
2042 */
2043
2044struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045{
2046	struct sk_buff_fclones *fclones = container_of(skb,
2047						       struct sk_buff_fclones,
2048						       skb1);
2049	struct sk_buff *n;
2050
2051	if (skb_orphan_frags(skb, gfp_mask))
2052		return NULL;
2053
2054	if (skb->fclone == SKB_FCLONE_ORIG &&
2055	    refcount_read(&fclones->fclone_ref) == 1) {
2056		n = &fclones->skb2;
2057		refcount_set(&fclones->fclone_ref, 2);
2058		n->fclone = SKB_FCLONE_CLONE;
2059	} else {
2060		if (skb_pfmemalloc(skb))
2061			gfp_mask |= __GFP_MEMALLOC;
2062
2063		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064		if (!n)
2065			return NULL;
2066
 
2067		n->fclone = SKB_FCLONE_UNAVAILABLE;
2068	}
2069
2070	return __skb_clone(n, skb);
2071}
2072EXPORT_SYMBOL(skb_clone);
2073
2074void skb_headers_offset_update(struct sk_buff *skb, int off)
2075{
2076	/* Only adjust this if it actually is csum_start rather than csum */
2077	if (skb->ip_summed == CHECKSUM_PARTIAL)
2078		skb->csum_start += off;
2079	/* {transport,network,mac}_header and tail are relative to skb->head */
2080	skb->transport_header += off;
2081	skb->network_header   += off;
2082	if (skb_mac_header_was_set(skb))
2083		skb->mac_header += off;
2084	skb->inner_transport_header += off;
2085	skb->inner_network_header += off;
2086	skb->inner_mac_header += off;
2087}
2088EXPORT_SYMBOL(skb_headers_offset_update);
2089
2090void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091{
2092	__copy_skb_header(new, old);
2093
2094	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097}
2098EXPORT_SYMBOL(skb_copy_header);
2099
2100static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101{
2102	if (skb_pfmemalloc(skb))
2103		return SKB_ALLOC_RX;
2104	return 0;
2105}
2106
2107/**
2108 *	skb_copy	-	create private copy of an sk_buff
2109 *	@skb: buffer to copy
2110 *	@gfp_mask: allocation priority
2111 *
2112 *	Make a copy of both an &sk_buff and its data. This is used when the
2113 *	caller wishes to modify the data and needs a private copy of the
2114 *	data to alter. Returns %NULL on failure or the pointer to the buffer
2115 *	on success. The returned buffer has a reference count of 1.
2116 *
2117 *	As by-product this function converts non-linear &sk_buff to linear
2118 *	one, so that &sk_buff becomes completely private and caller is allowed
2119 *	to modify all the data of returned buffer. This means that this
2120 *	function is not recommended for use in circumstances when only
2121 *	header is going to be modified. Use pskb_copy() instead.
2122 */
2123
2124struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125{
2126	struct sk_buff *n;
2127	unsigned int size;
2128	int headerlen;
 
2129
2130	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2131		return NULL;
2132
2133	headerlen = skb_headroom(skb);
2134	size = skb_end_offset(skb) + skb->data_len;
2135	n = __alloc_skb(size, gfp_mask,
2136			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2137	if (!n)
2138		return NULL;
2139
2140	/* Set the data pointer */
2141	skb_reserve(n, headerlen);
2142	/* Set the tail pointer and length */
2143	skb_put(n, skb->len);
2144
2145	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
 
2146
2147	skb_copy_header(n, skb);
2148	return n;
2149}
2150EXPORT_SYMBOL(skb_copy);
2151
2152/**
2153 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2154 *	@skb: buffer to copy
2155 *	@headroom: headroom of new skb
2156 *	@gfp_mask: allocation priority
2157 *	@fclone: if true allocate the copy of the skb from the fclone
2158 *	cache instead of the head cache; it is recommended to set this
2159 *	to true for the cases where the copy will likely be cloned
2160 *
2161 *	Make a copy of both an &sk_buff and part of its data, located
2162 *	in header. Fragmented data remain shared. This is used when
2163 *	the caller wishes to modify only header of &sk_buff and needs
2164 *	private copy of the header to alter. Returns %NULL on failure
2165 *	or the pointer to the buffer on success.
2166 *	The returned buffer has a reference count of 1.
2167 */
2168
2169struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2170				   gfp_t gfp_mask, bool fclone)
2171{
2172	unsigned int size = skb_headlen(skb) + headroom;
2173	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2174	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2175
2176	if (!n)
2177		goto out;
2178
2179	/* Set the data pointer */
2180	skb_reserve(n, headroom);
2181	/* Set the tail pointer and length */
2182	skb_put(n, skb_headlen(skb));
2183	/* Copy the bytes */
2184	skb_copy_from_linear_data(skb, n->data, n->len);
2185
2186	n->truesize += skb->data_len;
2187	n->data_len  = skb->data_len;
2188	n->len	     = skb->len;
2189
2190	if (skb_shinfo(skb)->nr_frags) {
2191		int i;
2192
2193		if (skb_orphan_frags(skb, gfp_mask) ||
2194		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2195			kfree_skb(n);
2196			n = NULL;
2197			goto out;
2198		}
2199		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2200			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2201			skb_frag_ref(skb, i);
2202		}
2203		skb_shinfo(n)->nr_frags = i;
2204	}
2205
2206	if (skb_has_frag_list(skb)) {
2207		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2208		skb_clone_fraglist(n);
2209	}
2210
2211	skb_copy_header(n, skb);
2212out:
2213	return n;
2214}
2215EXPORT_SYMBOL(__pskb_copy_fclone);
2216
2217/**
2218 *	pskb_expand_head - reallocate header of &sk_buff
2219 *	@skb: buffer to reallocate
2220 *	@nhead: room to add at head
2221 *	@ntail: room to add at tail
2222 *	@gfp_mask: allocation priority
2223 *
2224 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2225 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2226 *	reference count of 1. Returns zero in the case of success or error,
2227 *	if expansion failed. In the last case, &sk_buff is not changed.
2228 *
2229 *	All the pointers pointing into skb header may change and must be
2230 *	reloaded after call to this function.
2231 */
2232
2233int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2234		     gfp_t gfp_mask)
2235{
2236	unsigned int osize = skb_end_offset(skb);
2237	unsigned int size = osize + nhead + ntail;
 
2238	long off;
2239	u8 *data;
2240	int i;
2241
2242	BUG_ON(nhead < 0);
2243
2244	BUG_ON(skb_shared(skb));
 
2245
2246	skb_zcopy_downgrade_managed(skb);
2247
2248	if (skb_pfmemalloc(skb))
2249		gfp_mask |= __GFP_MEMALLOC;
2250
2251	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2252	if (!data)
2253		goto nodata;
2254	size = SKB_WITH_OVERHEAD(size);
2255
2256	/* Copy only real data... and, alas, header. This should be
2257	 * optimized for the cases when header is void.
2258	 */
2259	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2260
2261	memcpy((struct skb_shared_info *)(data + size),
2262	       skb_shinfo(skb),
2263	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2264
2265	/*
2266	 * if shinfo is shared we must drop the old head gracefully, but if it
2267	 * is not we can just drop the old head and let the existing refcount
2268	 * be since all we did is relocate the values
2269	 */
2270	if (skb_cloned(skb)) {
 
2271		if (skb_orphan_frags(skb, gfp_mask))
2272			goto nofrags;
2273		if (skb_zcopy(skb))
2274			refcount_inc(&skb_uarg(skb)->refcnt);
2275		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2276			skb_frag_ref(skb, i);
2277
2278		if (skb_has_frag_list(skb))
2279			skb_clone_fraglist(skb);
2280
2281		skb_release_data(skb, SKB_CONSUMED, false);
2282	} else {
2283		skb_free_head(skb, false);
2284	}
2285	off = (data + nhead) - skb->head;
2286
2287	skb->head     = data;
2288	skb->head_frag = 0;
2289	skb->data    += off;
2290
2291	skb_set_end_offset(skb, size);
2292#ifdef NET_SKBUFF_DATA_USES_OFFSET
 
2293	off           = nhead;
 
 
2294#endif
2295	skb->tail	      += off;
2296	skb_headers_offset_update(skb, nhead);
2297	skb->cloned   = 0;
2298	skb->hdr_len  = 0;
2299	skb->nohdr    = 0;
2300	atomic_set(&skb_shinfo(skb)->dataref, 1);
2301
2302	skb_metadata_clear(skb);
2303
2304	/* It is not generally safe to change skb->truesize.
2305	 * For the moment, we really care of rx path, or
2306	 * when skb is orphaned (not attached to a socket).
2307	 */
2308	if (!skb->sk || skb->destructor == sock_edemux)
2309		skb->truesize += size - osize;
2310
2311	return 0;
2312
2313nofrags:
2314	skb_kfree_head(data, size);
2315nodata:
2316	return -ENOMEM;
2317}
2318EXPORT_SYMBOL(pskb_expand_head);
2319
2320/* Make private copy of skb with writable head and some headroom */
2321
2322struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2323{
2324	struct sk_buff *skb2;
2325	int delta = headroom - skb_headroom(skb);
2326
2327	if (delta <= 0)
2328		skb2 = pskb_copy(skb, GFP_ATOMIC);
2329	else {
2330		skb2 = skb_clone(skb, GFP_ATOMIC);
2331		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2332					     GFP_ATOMIC)) {
2333			kfree_skb(skb2);
2334			skb2 = NULL;
2335		}
2336	}
2337	return skb2;
2338}
2339EXPORT_SYMBOL(skb_realloc_headroom);
2340
2341/* Note: We plan to rework this in linux-6.4 */
2342int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2343{
2344	unsigned int saved_end_offset, saved_truesize;
2345	struct skb_shared_info *shinfo;
2346	int res;
2347
2348	saved_end_offset = skb_end_offset(skb);
2349	saved_truesize = skb->truesize;
2350
2351	res = pskb_expand_head(skb, 0, 0, pri);
2352	if (res)
2353		return res;
2354
2355	skb->truesize = saved_truesize;
2356
2357	if (likely(skb_end_offset(skb) == saved_end_offset))
2358		return 0;
2359
2360	/* We can not change skb->end if the original or new value
2361	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2362	 */
2363	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2364	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2365		/* We think this path should not be taken.
2366		 * Add a temporary trace to warn us just in case.
2367		 */
2368		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2369			    saved_end_offset, skb_end_offset(skb));
2370		WARN_ON_ONCE(1);
2371		return 0;
2372	}
2373
2374	shinfo = skb_shinfo(skb);
2375
2376	/* We are about to change back skb->end,
2377	 * we need to move skb_shinfo() to its new location.
2378	 */
2379	memmove(skb->head + saved_end_offset,
2380		shinfo,
2381		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2382
2383	skb_set_end_offset(skb, saved_end_offset);
2384
2385	return 0;
2386}
2387
2388/**
2389 *	skb_expand_head - reallocate header of &sk_buff
2390 *	@skb: buffer to reallocate
2391 *	@headroom: needed headroom
2392 *
2393 *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2394 *	if possible; copies skb->sk to new skb as needed
2395 *	and frees original skb in case of failures.
2396 *
2397 *	It expect increased headroom and generates warning otherwise.
2398 */
2399
2400struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2401{
2402	int delta = headroom - skb_headroom(skb);
2403	int osize = skb_end_offset(skb);
2404	struct sock *sk = skb->sk;
2405
2406	if (WARN_ONCE(delta <= 0,
2407		      "%s is expecting an increase in the headroom", __func__))
2408		return skb;
2409
2410	delta = SKB_DATA_ALIGN(delta);
2411	/* pskb_expand_head() might crash, if skb is shared. */
2412	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2413		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2414
2415		if (unlikely(!nskb))
2416			goto fail;
2417
2418		if (sk)
2419			skb_set_owner_w(nskb, sk);
2420		consume_skb(skb);
2421		skb = nskb;
2422	}
2423	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2424		goto fail;
2425
2426	if (sk && is_skb_wmem(skb)) {
2427		delta = skb_end_offset(skb) - osize;
2428		refcount_add(delta, &sk->sk_wmem_alloc);
2429		skb->truesize += delta;
2430	}
2431	return skb;
2432
2433fail:
2434	kfree_skb(skb);
2435	return NULL;
2436}
2437EXPORT_SYMBOL(skb_expand_head);
2438
2439/**
2440 *	skb_copy_expand	-	copy and expand sk_buff
2441 *	@skb: buffer to copy
2442 *	@newheadroom: new free bytes at head
2443 *	@newtailroom: new free bytes at tail
2444 *	@gfp_mask: allocation priority
2445 *
2446 *	Make a copy of both an &sk_buff and its data and while doing so
2447 *	allocate additional space.
2448 *
2449 *	This is used when the caller wishes to modify the data and needs a
2450 *	private copy of the data to alter as well as more space for new fields.
2451 *	Returns %NULL on failure or the pointer to the buffer
2452 *	on success. The returned buffer has a reference count of 1.
2453 *
2454 *	You must pass %GFP_ATOMIC as the allocation priority if this function
2455 *	is called from an interrupt.
2456 */
2457struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2458				int newheadroom, int newtailroom,
2459				gfp_t gfp_mask)
2460{
2461	/*
2462	 *	Allocate the copy buffer
2463	 */
 
 
 
 
2464	int head_copy_len, head_copy_off;
2465	struct sk_buff *n;
2466	int oldheadroom;
2467
2468	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2469		return NULL;
2470
2471	oldheadroom = skb_headroom(skb);
2472	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2473			gfp_mask, skb_alloc_rx_flag(skb),
2474			NUMA_NO_NODE);
2475	if (!n)
2476		return NULL;
2477
2478	skb_reserve(n, newheadroom);
2479
2480	/* Set the tail pointer and length */
2481	skb_put(n, skb->len);
2482
2483	head_copy_len = oldheadroom;
2484	head_copy_off = 0;
2485	if (newheadroom <= head_copy_len)
2486		head_copy_len = newheadroom;
2487	else
2488		head_copy_off = newheadroom - head_copy_len;
2489
2490	/* Copy the linear header and data. */
2491	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2492			     skb->len + head_copy_len));
 
2493
2494	skb_copy_header(n, skb);
2495
2496	skb_headers_offset_update(n, newheadroom - oldheadroom);
2497
2498	return n;
2499}
2500EXPORT_SYMBOL(skb_copy_expand);
2501
2502/**
2503 *	__skb_pad		-	zero pad the tail of an skb
2504 *	@skb: buffer to pad
2505 *	@pad: space to pad
2506 *	@free_on_error: free buffer on error
2507 *
2508 *	Ensure that a buffer is followed by a padding area that is zero
2509 *	filled. Used by network drivers which may DMA or transfer data
2510 *	beyond the buffer end onto the wire.
2511 *
2512 *	May return error in out of memory cases. The skb is freed on error
2513 *	if @free_on_error is true.
2514 */
2515
2516int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2517{
2518	int err;
2519	int ntail;
2520
2521	/* If the skbuff is non linear tailroom is always zero.. */
2522	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2523		memset(skb->data+skb->len, 0, pad);
2524		return 0;
2525	}
2526
2527	ntail = skb->data_len + pad - (skb->end - skb->tail);
2528	if (likely(skb_cloned(skb) || ntail > 0)) {
2529		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2530		if (unlikely(err))
2531			goto free_skb;
2532	}
2533
2534	/* FIXME: The use of this function with non-linear skb's really needs
2535	 * to be audited.
2536	 */
2537	err = skb_linearize(skb);
2538	if (unlikely(err))
2539		goto free_skb;
2540
2541	memset(skb->data + skb->len, 0, pad);
2542	return 0;
2543
2544free_skb:
2545	if (free_on_error)
2546		kfree_skb(skb);
2547	return err;
2548}
2549EXPORT_SYMBOL(__skb_pad);
2550
2551/**
2552 *	pskb_put - add data to the tail of a potentially fragmented buffer
2553 *	@skb: start of the buffer to use
2554 *	@tail: tail fragment of the buffer to use
2555 *	@len: amount of data to add
2556 *
2557 *	This function extends the used data area of the potentially
2558 *	fragmented buffer. @tail must be the last fragment of @skb -- or
2559 *	@skb itself. If this would exceed the total buffer size the kernel
2560 *	will panic. A pointer to the first byte of the extra data is
2561 *	returned.
2562 */
2563
2564void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2565{
2566	if (tail != skb) {
2567		skb->data_len += len;
2568		skb->len += len;
2569	}
2570	return skb_put(tail, len);
2571}
2572EXPORT_SYMBOL_GPL(pskb_put);
2573
2574/**
2575 *	skb_put - add data to a buffer
2576 *	@skb: buffer to use
2577 *	@len: amount of data to add
2578 *
2579 *	This function extends the used data area of the buffer. If this would
2580 *	exceed the total buffer size the kernel will panic. A pointer to the
2581 *	first byte of the extra data is returned.
2582 */
2583void *skb_put(struct sk_buff *skb, unsigned int len)
2584{
2585	void *tmp = skb_tail_pointer(skb);
2586	SKB_LINEAR_ASSERT(skb);
2587	skb->tail += len;
2588	skb->len  += len;
2589	if (unlikely(skb->tail > skb->end))
2590		skb_over_panic(skb, len, __builtin_return_address(0));
2591	return tmp;
2592}
2593EXPORT_SYMBOL(skb_put);
2594
2595/**
2596 *	skb_push - add data to the start of a buffer
2597 *	@skb: buffer to use
2598 *	@len: amount of data to add
2599 *
2600 *	This function extends the used data area of the buffer at the buffer
2601 *	start. If this would exceed the total buffer headroom the kernel will
2602 *	panic. A pointer to the first byte of the extra data is returned.
2603 */
2604void *skb_push(struct sk_buff *skb, unsigned int len)
2605{
2606	skb->data -= len;
2607	skb->len  += len;
2608	if (unlikely(skb->data < skb->head))
2609		skb_under_panic(skb, len, __builtin_return_address(0));
2610	return skb->data;
2611}
2612EXPORT_SYMBOL(skb_push);
2613
2614/**
2615 *	skb_pull - remove data from the start of a buffer
2616 *	@skb: buffer to use
2617 *	@len: amount of data to remove
2618 *
2619 *	This function removes data from the start of a buffer, returning
2620 *	the memory to the headroom. A pointer to the next data in the buffer
2621 *	is returned. Once the data has been pulled future pushes will overwrite
2622 *	the old data.
2623 */
2624void *skb_pull(struct sk_buff *skb, unsigned int len)
2625{
2626	return skb_pull_inline(skb, len);
2627}
2628EXPORT_SYMBOL(skb_pull);
2629
2630/**
2631 *	skb_pull_data - remove data from the start of a buffer returning its
2632 *	original position.
2633 *	@skb: buffer to use
2634 *	@len: amount of data to remove
2635 *
2636 *	This function removes data from the start of a buffer, returning
2637 *	the memory to the headroom. A pointer to the original data in the buffer
2638 *	is returned after checking if there is enough data to pull. Once the
2639 *	data has been pulled future pushes will overwrite the old data.
2640 */
2641void *skb_pull_data(struct sk_buff *skb, size_t len)
2642{
2643	void *data = skb->data;
2644
2645	if (skb->len < len)
2646		return NULL;
2647
2648	skb_pull(skb, len);
2649
2650	return data;
2651}
2652EXPORT_SYMBOL(skb_pull_data);
2653
2654/**
2655 *	skb_trim - remove end from a buffer
2656 *	@skb: buffer to alter
2657 *	@len: new length
2658 *
2659 *	Cut the length of a buffer down by removing data from the tail. If
2660 *	the buffer is already under the length specified it is not modified.
2661 *	The skb must be linear.
2662 */
2663void skb_trim(struct sk_buff *skb, unsigned int len)
2664{
2665	if (skb->len > len)
2666		__skb_trim(skb, len);
2667}
2668EXPORT_SYMBOL(skb_trim);
2669
2670/* Trims skb to length len. It can change skb pointers.
2671 */
2672
2673int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2674{
2675	struct sk_buff **fragp;
2676	struct sk_buff *frag;
2677	int offset = skb_headlen(skb);
2678	int nfrags = skb_shinfo(skb)->nr_frags;
2679	int i;
2680	int err;
2681
2682	if (skb_cloned(skb) &&
2683	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2684		return err;
2685
2686	i = 0;
2687	if (offset >= len)
2688		goto drop_pages;
2689
2690	for (; i < nfrags; i++) {
2691		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2692
2693		if (end < len) {
2694			offset = end;
2695			continue;
2696		}
2697
2698		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2699
2700drop_pages:
2701		skb_shinfo(skb)->nr_frags = i;
2702
2703		for (; i < nfrags; i++)
2704			skb_frag_unref(skb, i);
2705
2706		if (skb_has_frag_list(skb))
2707			skb_drop_fraglist(skb);
2708		goto done;
2709	}
2710
2711	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2712	     fragp = &frag->next) {
2713		int end = offset + frag->len;
2714
2715		if (skb_shared(frag)) {
2716			struct sk_buff *nfrag;
2717
2718			nfrag = skb_clone(frag, GFP_ATOMIC);
2719			if (unlikely(!nfrag))
2720				return -ENOMEM;
2721
2722			nfrag->next = frag->next;
2723			consume_skb(frag);
2724			frag = nfrag;
2725			*fragp = frag;
2726		}
2727
2728		if (end < len) {
2729			offset = end;
2730			continue;
2731		}
2732
2733		if (end > len &&
2734		    unlikely((err = pskb_trim(frag, len - offset))))
2735			return err;
2736
2737		if (frag->next)
2738			skb_drop_list(&frag->next);
2739		break;
2740	}
2741
2742done:
2743	if (len > skb_headlen(skb)) {
2744		skb->data_len -= skb->len - len;
2745		skb->len       = len;
2746	} else {
2747		skb->len       = len;
2748		skb->data_len  = 0;
2749		skb_set_tail_pointer(skb, len);
2750	}
2751
2752	if (!skb->sk || skb->destructor == sock_edemux)
2753		skb_condense(skb);
2754	return 0;
2755}
2756EXPORT_SYMBOL(___pskb_trim);
2757
2758/* Note : use pskb_trim_rcsum() instead of calling this directly
2759 */
2760int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2761{
2762	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2763		int delta = skb->len - len;
2764
2765		skb->csum = csum_block_sub(skb->csum,
2766					   skb_checksum(skb, len, delta, 0),
2767					   len);
2768	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2770		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2771
2772		if (offset + sizeof(__sum16) > hdlen)
2773			return -EINVAL;
2774	}
2775	return __pskb_trim(skb, len);
2776}
2777EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2778
2779/**
2780 *	__pskb_pull_tail - advance tail of skb header
2781 *	@skb: buffer to reallocate
2782 *	@delta: number of bytes to advance tail
2783 *
2784 *	The function makes a sense only on a fragmented &sk_buff,
2785 *	it expands header moving its tail forward and copying necessary
2786 *	data from fragmented part.
2787 *
2788 *	&sk_buff MUST have reference count of 1.
2789 *
2790 *	Returns %NULL (and &sk_buff does not change) if pull failed
2791 *	or value of new tail of skb in the case of success.
2792 *
2793 *	All the pointers pointing into skb header may change and must be
2794 *	reloaded after call to this function.
2795 */
2796
2797/* Moves tail of skb head forward, copying data from fragmented part,
2798 * when it is necessary.
2799 * 1. It may fail due to malloc failure.
2800 * 2. It may change skb pointers.
2801 *
2802 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2803 */
2804void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2805{
2806	/* If skb has not enough free space at tail, get new one
2807	 * plus 128 bytes for future expansions. If we have enough
2808	 * room at tail, reallocate without expansion only if skb is cloned.
2809	 */
2810	int i, k, eat = (skb->tail + delta) - skb->end;
2811
2812	if (eat > 0 || skb_cloned(skb)) {
2813		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2814				     GFP_ATOMIC))
2815			return NULL;
2816	}
2817
2818	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2819			     skb_tail_pointer(skb), delta));
2820
2821	/* Optimization: no fragments, no reasons to preestimate
2822	 * size of pulled pages. Superb.
2823	 */
2824	if (!skb_has_frag_list(skb))
2825		goto pull_pages;
2826
2827	/* Estimate size of pulled pages. */
2828	eat = delta;
2829	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2830		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2831
2832		if (size >= eat)
2833			goto pull_pages;
2834		eat -= size;
2835	}
2836
2837	/* If we need update frag list, we are in troubles.
2838	 * Certainly, it is possible to add an offset to skb data,
2839	 * but taking into account that pulling is expected to
2840	 * be very rare operation, it is worth to fight against
2841	 * further bloating skb head and crucify ourselves here instead.
2842	 * Pure masohism, indeed. 8)8)
2843	 */
2844	if (eat) {
2845		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2846		struct sk_buff *clone = NULL;
2847		struct sk_buff *insp = NULL;
2848
2849		do {
 
 
2850			if (list->len <= eat) {
2851				/* Eaten as whole. */
2852				eat -= list->len;
2853				list = list->next;
2854				insp = list;
2855			} else {
2856				/* Eaten partially. */
2857				if (skb_is_gso(skb) && !list->head_frag &&
2858				    skb_headlen(list))
2859					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2860
2861				if (skb_shared(list)) {
2862					/* Sucks! We need to fork list. :-( */
2863					clone = skb_clone(list, GFP_ATOMIC);
2864					if (!clone)
2865						return NULL;
2866					insp = list->next;
2867					list = clone;
2868				} else {
2869					/* This may be pulled without
2870					 * problems. */
2871					insp = list;
2872				}
2873				if (!pskb_pull(list, eat)) {
2874					kfree_skb(clone);
2875					return NULL;
2876				}
2877				break;
2878			}
2879		} while (eat);
2880
2881		/* Free pulled out fragments. */
2882		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2883			skb_shinfo(skb)->frag_list = list->next;
2884			consume_skb(list);
2885		}
2886		/* And insert new clone at head. */
2887		if (clone) {
2888			clone->next = list;
2889			skb_shinfo(skb)->frag_list = clone;
2890		}
2891	}
2892	/* Success! Now we may commit changes to skb data. */
2893
2894pull_pages:
2895	eat = delta;
2896	k = 0;
2897	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2899
2900		if (size <= eat) {
2901			skb_frag_unref(skb, i);
2902			eat -= size;
2903		} else {
2904			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2905
2906			*frag = skb_shinfo(skb)->frags[i];
2907			if (eat) {
2908				skb_frag_off_add(frag, eat);
2909				skb_frag_size_sub(frag, eat);
2910				if (!i)
2911					goto end;
2912				eat = 0;
2913			}
2914			k++;
2915		}
2916	}
2917	skb_shinfo(skb)->nr_frags = k;
2918
2919end:
2920	skb->tail     += delta;
2921	skb->data_len -= delta;
2922
2923	if (!skb->data_len)
2924		skb_zcopy_clear(skb, false);
2925
2926	return skb_tail_pointer(skb);
2927}
2928EXPORT_SYMBOL(__pskb_pull_tail);
2929
2930/**
2931 *	skb_copy_bits - copy bits from skb to kernel buffer
2932 *	@skb: source skb
2933 *	@offset: offset in source
2934 *	@to: destination buffer
2935 *	@len: number of bytes to copy
2936 *
2937 *	Copy the specified number of bytes from the source skb to the
2938 *	destination buffer.
2939 *
2940 *	CAUTION ! :
2941 *		If its prototype is ever changed,
2942 *		check arch/{*}/net/{*}.S files,
2943 *		since it is called from BPF assembly code.
2944 */
2945int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2946{
2947	int start = skb_headlen(skb);
2948	struct sk_buff *frag_iter;
2949	int i, copy;
2950
2951	if (offset > (int)skb->len - len)
2952		goto fault;
2953
2954	/* Copy header. */
2955	if ((copy = start - offset) > 0) {
2956		if (copy > len)
2957			copy = len;
2958		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2959		if ((len -= copy) == 0)
2960			return 0;
2961		offset += copy;
2962		to     += copy;
2963	}
2964
2965	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2966		int end;
2967		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2968
2969		WARN_ON(start > offset + len);
2970
2971		end = start + skb_frag_size(f);
2972		if ((copy = end - offset) > 0) {
2973			u32 p_off, p_len, copied;
2974			struct page *p;
2975			u8 *vaddr;
2976
2977			if (copy > len)
2978				copy = len;
2979
2980			skb_frag_foreach_page(f,
2981					      skb_frag_off(f) + offset - start,
2982					      copy, p, p_off, p_len, copied) {
2983				vaddr = kmap_atomic(p);
2984				memcpy(to + copied, vaddr + p_off, p_len);
2985				kunmap_atomic(vaddr);
2986			}
2987
2988			if ((len -= copy) == 0)
2989				return 0;
2990			offset += copy;
2991			to     += copy;
2992		}
2993		start = end;
2994	}
2995
2996	skb_walk_frags(skb, frag_iter) {
2997		int end;
2998
2999		WARN_ON(start > offset + len);
3000
3001		end = start + frag_iter->len;
3002		if ((copy = end - offset) > 0) {
3003			if (copy > len)
3004				copy = len;
3005			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3006				goto fault;
3007			if ((len -= copy) == 0)
3008				return 0;
3009			offset += copy;
3010			to     += copy;
3011		}
3012		start = end;
3013	}
3014
3015	if (!len)
3016		return 0;
3017
3018fault:
3019	return -EFAULT;
3020}
3021EXPORT_SYMBOL(skb_copy_bits);
3022
3023/*
3024 * Callback from splice_to_pipe(), if we need to release some pages
3025 * at the end of the spd in case we error'ed out in filling the pipe.
3026 */
3027static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3028{
3029	put_page(spd->pages[i]);
3030}
3031
3032static struct page *linear_to_page(struct page *page, unsigned int *len,
3033				   unsigned int *offset,
3034				   struct sock *sk)
3035{
3036	struct page_frag *pfrag = sk_page_frag(sk);
3037
3038	if (!sk_page_frag_refill(sk, pfrag))
3039		return NULL;
3040
3041	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3042
3043	memcpy(page_address(pfrag->page) + pfrag->offset,
3044	       page_address(page) + *offset, *len);
3045	*offset = pfrag->offset;
3046	pfrag->offset += *len;
3047
3048	return pfrag->page;
3049}
3050
3051static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3052			     struct page *page,
3053			     unsigned int offset)
3054{
3055	return	spd->nr_pages &&
3056		spd->pages[spd->nr_pages - 1] == page &&
3057		(spd->partial[spd->nr_pages - 1].offset +
3058		 spd->partial[spd->nr_pages - 1].len == offset);
3059}
3060
3061/*
3062 * Fill page/offset/length into spd, if it can hold more pages.
3063 */
3064static bool spd_fill_page(struct splice_pipe_desc *spd,
3065			  struct pipe_inode_info *pipe, struct page *page,
3066			  unsigned int *len, unsigned int offset,
3067			  bool linear,
3068			  struct sock *sk)
3069{
3070	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3071		return true;
3072
3073	if (linear) {
3074		page = linear_to_page(page, len, &offset, sk);
3075		if (!page)
3076			return true;
3077	}
3078	if (spd_can_coalesce(spd, page, offset)) {
3079		spd->partial[spd->nr_pages - 1].len += *len;
3080		return false;
3081	}
3082	get_page(page);
3083	spd->pages[spd->nr_pages] = page;
3084	spd->partial[spd->nr_pages].len = *len;
3085	spd->partial[spd->nr_pages].offset = offset;
3086	spd->nr_pages++;
3087
3088	return false;
3089}
3090
3091static bool __splice_segment(struct page *page, unsigned int poff,
3092			     unsigned int plen, unsigned int *off,
3093			     unsigned int *len,
3094			     struct splice_pipe_desc *spd, bool linear,
3095			     struct sock *sk,
3096			     struct pipe_inode_info *pipe)
3097{
3098	if (!*len)
3099		return true;
3100
3101	/* skip this segment if already processed */
3102	if (*off >= plen) {
3103		*off -= plen;
3104		return false;
3105	}
3106
3107	/* ignore any bits we already processed */
3108	poff += *off;
3109	plen -= *off;
3110	*off = 0;
3111
3112	do {
3113		unsigned int flen = min(*len, plen);
3114
3115		if (spd_fill_page(spd, pipe, page, &flen, poff,
3116				  linear, sk))
3117			return true;
3118		poff += flen;
3119		plen -= flen;
3120		*len -= flen;
3121	} while (*len && plen);
3122
3123	return false;
3124}
3125
3126/*
3127 * Map linear and fragment data from the skb to spd. It reports true if the
3128 * pipe is full or if we already spliced the requested length.
3129 */
3130static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3131			      unsigned int *offset, unsigned int *len,
3132			      struct splice_pipe_desc *spd, struct sock *sk)
3133{
3134	int seg;
3135	struct sk_buff *iter;
3136
3137	/* map the linear part :
3138	 * If skb->head_frag is set, this 'linear' part is backed by a
3139	 * fragment, and if the head is not shared with any clones then
3140	 * we can avoid a copy since we own the head portion of this page.
3141	 */
3142	if (__splice_segment(virt_to_page(skb->data),
3143			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3144			     skb_headlen(skb),
3145			     offset, len, spd,
3146			     skb_head_is_locked(skb),
3147			     sk, pipe))
3148		return true;
3149
3150	/*
3151	 * then map the fragments
3152	 */
3153	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3154		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3155
3156		if (__splice_segment(skb_frag_page(f),
3157				     skb_frag_off(f), skb_frag_size(f),
3158				     offset, len, spd, false, sk, pipe))
3159			return true;
3160	}
3161
3162	skb_walk_frags(skb, iter) {
3163		if (*offset >= iter->len) {
3164			*offset -= iter->len;
3165			continue;
3166		}
3167		/* __skb_splice_bits() only fails if the output has no room
3168		 * left, so no point in going over the frag_list for the error
3169		 * case.
3170		 */
3171		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172			return true;
3173	}
3174
3175	return false;
3176}
3177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178/*
3179 * Map data from the skb to a pipe. Should handle both the linear part,
3180 * the fragments, and the frag list.
3181 */
3182int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183		    struct pipe_inode_info *pipe, unsigned int tlen,
3184		    unsigned int flags)
 
 
 
3185{
3186	struct partial_page partial[MAX_SKB_FRAGS];
3187	struct page *pages[MAX_SKB_FRAGS];
3188	struct splice_pipe_desc spd = {
3189		.pages = pages,
3190		.partial = partial,
3191		.nr_pages_max = MAX_SKB_FRAGS,
 
3192		.ops = &nosteal_pipe_buf_ops,
3193		.spd_release = sock_spd_release,
3194	};
3195	int ret = 0;
3196
3197	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198
3199	if (spd.nr_pages)
3200		ret = splice_to_pipe(pipe, &spd);
3201
3202	return ret;
3203}
3204EXPORT_SYMBOL_GPL(skb_splice_bits);
3205
3206static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207{
3208	struct socket *sock = sk->sk_socket;
3209	size_t size = msg_data_left(msg);
3210
3211	if (!sock)
3212		return -EINVAL;
3213
3214	if (!sock->ops->sendmsg_locked)
3215		return sock_no_sendmsg_locked(sk, msg, size);
3216
3217	return sock->ops->sendmsg_locked(sk, msg, size);
3218}
3219
3220static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221{
3222	struct socket *sock = sk->sk_socket;
3223
3224	if (!sock)
3225		return -EINVAL;
3226	return sock_sendmsg(sock, msg);
3227}
3228
3229typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3230static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231			   int len, sendmsg_func sendmsg)
3232{
3233	unsigned int orig_len = len;
3234	struct sk_buff *head = skb;
3235	unsigned short fragidx;
3236	int slen, ret;
3237
3238do_frag_list:
3239
3240	/* Deal with head data */
3241	while (offset < skb_headlen(skb) && len) {
3242		struct kvec kv;
3243		struct msghdr msg;
3244
3245		slen = min_t(int, len, skb_headlen(skb) - offset);
3246		kv.iov_base = skb->data + offset;
3247		kv.iov_len = slen;
3248		memset(&msg, 0, sizeof(msg));
3249		msg.msg_flags = MSG_DONTWAIT;
3250
3251		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3252		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3253				      sendmsg_unlocked, sk, &msg);
3254		if (ret <= 0)
3255			goto error;
3256
3257		offset += ret;
3258		len -= ret;
3259	}
3260
3261	/* All the data was skb head? */
3262	if (!len)
3263		goto out;
3264
3265	/* Make offset relative to start of frags */
3266	offset -= skb_headlen(skb);
3267
3268	/* Find where we are in frag list */
3269	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3271
3272		if (offset < skb_frag_size(frag))
3273			break;
3274
3275		offset -= skb_frag_size(frag);
3276	}
3277
3278	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3279		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3280
3281		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3282
3283		while (slen) {
3284			struct bio_vec bvec;
3285			struct msghdr msg = {
3286				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3287			};
3288
3289			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3290				      skb_frag_off(frag) + offset);
3291			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3292				      slen);
3293
3294			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3295					      sendmsg_unlocked, sk, &msg);
3296			if (ret <= 0)
3297				goto error;
3298
3299			len -= ret;
3300			offset += ret;
3301			slen -= ret;
3302		}
3303
3304		offset = 0;
3305	}
3306
3307	if (len) {
3308		/* Process any frag lists */
3309
3310		if (skb == head) {
3311			if (skb_has_frag_list(skb)) {
3312				skb = skb_shinfo(skb)->frag_list;
3313				goto do_frag_list;
3314			}
3315		} else if (skb->next) {
3316			skb = skb->next;
3317			goto do_frag_list;
3318		}
3319	}
3320
3321out:
3322	return orig_len - len;
3323
3324error:
3325	return orig_len == len ? ret : orig_len - len;
3326}
3327
3328/* Send skb data on a socket. Socket must be locked. */
3329int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330			 int len)
3331{
3332	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3333}
3334EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3335
3336/* Send skb data on a socket. Socket must be unlocked. */
3337int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3338{
3339	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3340}
3341
3342/**
3343 *	skb_store_bits - store bits from kernel buffer to skb
3344 *	@skb: destination buffer
3345 *	@offset: offset in destination
3346 *	@from: source buffer
3347 *	@len: number of bytes to copy
3348 *
3349 *	Copy the specified number of bytes from the source buffer to the
3350 *	destination skb.  This function handles all the messy bits of
3351 *	traversing fragment lists and such.
3352 */
3353
3354int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3355{
3356	int start = skb_headlen(skb);
3357	struct sk_buff *frag_iter;
3358	int i, copy;
3359
3360	if (offset > (int)skb->len - len)
3361		goto fault;
3362
3363	if ((copy = start - offset) > 0) {
3364		if (copy > len)
3365			copy = len;
3366		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3367		if ((len -= copy) == 0)
3368			return 0;
3369		offset += copy;
3370		from += copy;
3371	}
3372
3373	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3374		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3375		int end;
3376
3377		WARN_ON(start > offset + len);
3378
3379		end = start + skb_frag_size(frag);
3380		if ((copy = end - offset) > 0) {
3381			u32 p_off, p_len, copied;
3382			struct page *p;
3383			u8 *vaddr;
3384
3385			if (copy > len)
3386				copy = len;
3387
3388			skb_frag_foreach_page(frag,
3389					      skb_frag_off(frag) + offset - start,
3390					      copy, p, p_off, p_len, copied) {
3391				vaddr = kmap_atomic(p);
3392				memcpy(vaddr + p_off, from + copied, p_len);
3393				kunmap_atomic(vaddr);
3394			}
3395
3396			if ((len -= copy) == 0)
3397				return 0;
3398			offset += copy;
3399			from += copy;
3400		}
3401		start = end;
3402	}
3403
3404	skb_walk_frags(skb, frag_iter) {
3405		int end;
3406
3407		WARN_ON(start > offset + len);
3408
3409		end = start + frag_iter->len;
3410		if ((copy = end - offset) > 0) {
3411			if (copy > len)
3412				copy = len;
3413			if (skb_store_bits(frag_iter, offset - start,
3414					   from, copy))
3415				goto fault;
3416			if ((len -= copy) == 0)
3417				return 0;
3418			offset += copy;
3419			from += copy;
3420		}
3421		start = end;
3422	}
3423	if (!len)
3424		return 0;
3425
3426fault:
3427	return -EFAULT;
3428}
3429EXPORT_SYMBOL(skb_store_bits);
3430
3431/* Checksum skb data. */
3432__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3433		      __wsum csum, const struct skb_checksum_ops *ops)
3434{
3435	int start = skb_headlen(skb);
3436	int i, copy = start - offset;
3437	struct sk_buff *frag_iter;
3438	int pos = 0;
3439
3440	/* Checksum header. */
3441	if (copy > 0) {
3442		if (copy > len)
3443			copy = len;
3444		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3445				       skb->data + offset, copy, csum);
3446		if ((len -= copy) == 0)
3447			return csum;
3448		offset += copy;
3449		pos	= copy;
3450	}
3451
3452	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3453		int end;
3454		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3455
3456		WARN_ON(start > offset + len);
3457
3458		end = start + skb_frag_size(frag);
3459		if ((copy = end - offset) > 0) {
3460			u32 p_off, p_len, copied;
3461			struct page *p;
3462			__wsum csum2;
3463			u8 *vaddr;
3464
3465			if (copy > len)
3466				copy = len;
3467
3468			skb_frag_foreach_page(frag,
3469					      skb_frag_off(frag) + offset - start,
3470					      copy, p, p_off, p_len, copied) {
3471				vaddr = kmap_atomic(p);
3472				csum2 = INDIRECT_CALL_1(ops->update,
3473							csum_partial_ext,
3474							vaddr + p_off, p_len, 0);
3475				kunmap_atomic(vaddr);
3476				csum = INDIRECT_CALL_1(ops->combine,
3477						       csum_block_add_ext, csum,
3478						       csum2, pos, p_len);
3479				pos += p_len;
3480			}
3481
3482			if (!(len -= copy))
3483				return csum;
3484			offset += copy;
 
3485		}
3486		start = end;
3487	}
3488
3489	skb_walk_frags(skb, frag_iter) {
3490		int end;
3491
3492		WARN_ON(start > offset + len);
3493
3494		end = start + frag_iter->len;
3495		if ((copy = end - offset) > 0) {
3496			__wsum csum2;
3497			if (copy > len)
3498				copy = len;
3499			csum2 = __skb_checksum(frag_iter, offset - start,
3500					       copy, 0, ops);
3501			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3502					       csum, csum2, pos, copy);
3503			if ((len -= copy) == 0)
3504				return csum;
3505			offset += copy;
3506			pos    += copy;
3507		}
3508		start = end;
3509	}
3510	BUG_ON(len);
3511
3512	return csum;
3513}
3514EXPORT_SYMBOL(__skb_checksum);
3515
3516__wsum skb_checksum(const struct sk_buff *skb, int offset,
3517		    int len, __wsum csum)
3518{
3519	const struct skb_checksum_ops ops = {
3520		.update  = csum_partial_ext,
3521		.combine = csum_block_add_ext,
3522	};
3523
3524	return __skb_checksum(skb, offset, len, csum, &ops);
3525}
3526EXPORT_SYMBOL(skb_checksum);
3527
3528/* Both of above in one bottle. */
3529
3530__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531				    u8 *to, int len)
3532{
3533	int start = skb_headlen(skb);
3534	int i, copy = start - offset;
3535	struct sk_buff *frag_iter;
3536	int pos = 0;
3537	__wsum csum = 0;
3538
3539	/* Copy header. */
3540	if (copy > 0) {
3541		if (copy > len)
3542			copy = len;
3543		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544						 copy);
3545		if ((len -= copy) == 0)
3546			return csum;
3547		offset += copy;
3548		to     += copy;
3549		pos	= copy;
3550	}
3551
3552	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3553		int end;
3554
3555		WARN_ON(start > offset + len);
3556
3557		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3558		if ((copy = end - offset) > 0) {
3559			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3560			u32 p_off, p_len, copied;
3561			struct page *p;
3562			__wsum csum2;
3563			u8 *vaddr;
 
3564
3565			if (copy > len)
3566				copy = len;
3567
3568			skb_frag_foreach_page(frag,
3569					      skb_frag_off(frag) + offset - start,
3570					      copy, p, p_off, p_len, copied) {
3571				vaddr = kmap_atomic(p);
3572				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3573								  to + copied,
3574								  p_len);
3575				kunmap_atomic(vaddr);
3576				csum = csum_block_add(csum, csum2, pos);
3577				pos += p_len;
3578			}
3579
3580			if (!(len -= copy))
3581				return csum;
3582			offset += copy;
3583			to     += copy;
 
3584		}
3585		start = end;
3586	}
3587
3588	skb_walk_frags(skb, frag_iter) {
3589		__wsum csum2;
3590		int end;
3591
3592		WARN_ON(start > offset + len);
3593
3594		end = start + frag_iter->len;
3595		if ((copy = end - offset) > 0) {
3596			if (copy > len)
3597				copy = len;
3598			csum2 = skb_copy_and_csum_bits(frag_iter,
3599						       offset - start,
3600						       to, copy);
3601			csum = csum_block_add(csum, csum2, pos);
3602			if ((len -= copy) == 0)
3603				return csum;
3604			offset += copy;
3605			to     += copy;
3606			pos    += copy;
3607		}
3608		start = end;
3609	}
3610	BUG_ON(len);
3611	return csum;
3612}
3613EXPORT_SYMBOL(skb_copy_and_csum_bits);
3614
3615__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3616{
3617	__sum16 sum;
3618
3619	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3620	/* See comments in __skb_checksum_complete(). */
3621	if (likely(!sum)) {
3622		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3623		    !skb->csum_complete_sw)
3624			netdev_rx_csum_fault(skb->dev, skb);
3625	}
3626	if (!skb_shared(skb))
3627		skb->csum_valid = !sum;
3628	return sum;
3629}
3630EXPORT_SYMBOL(__skb_checksum_complete_head);
3631
3632/* This function assumes skb->csum already holds pseudo header's checksum,
3633 * which has been changed from the hardware checksum, for example, by
3634 * __skb_checksum_validate_complete(). And, the original skb->csum must
3635 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3636 *
3637 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3638 * zero. The new checksum is stored back into skb->csum unless the skb is
3639 * shared.
3640 */
3641__sum16 __skb_checksum_complete(struct sk_buff *skb)
3642{
3643	__wsum csum;
3644	__sum16 sum;
3645
3646	csum = skb_checksum(skb, 0, skb->len, 0);
3647
3648	sum = csum_fold(csum_add(skb->csum, csum));
3649	/* This check is inverted, because we already knew the hardware
3650	 * checksum is invalid before calling this function. So, if the
3651	 * re-computed checksum is valid instead, then we have a mismatch
3652	 * between the original skb->csum and skb_checksum(). This means either
3653	 * the original hardware checksum is incorrect or we screw up skb->csum
3654	 * when moving skb->data around.
3655	 */
3656	if (likely(!sum)) {
3657		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3658		    !skb->csum_complete_sw)
3659			netdev_rx_csum_fault(skb->dev, skb);
3660	}
3661
3662	if (!skb_shared(skb)) {
3663		/* Save full packet checksum */
3664		skb->csum = csum;
3665		skb->ip_summed = CHECKSUM_COMPLETE;
3666		skb->csum_complete_sw = 1;
3667		skb->csum_valid = !sum;
3668	}
3669
3670	return sum;
3671}
3672EXPORT_SYMBOL(__skb_checksum_complete);
3673
3674static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3675{
3676	net_warn_ratelimited(
3677		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3678		__func__);
3679	return 0;
3680}
3681
3682static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3683				       int offset, int len)
3684{
3685	net_warn_ratelimited(
3686		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3687		__func__);
3688	return 0;
3689}
3690
3691static const struct skb_checksum_ops default_crc32c_ops = {
3692	.update  = warn_crc32c_csum_update,
3693	.combine = warn_crc32c_csum_combine,
3694};
3695
3696const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3697	&default_crc32c_ops;
3698EXPORT_SYMBOL(crc32c_csum_stub);
3699
3700 /**
3701 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3702 *	@from: source buffer
3703 *
3704 *	Calculates the amount of linear headroom needed in the 'to' skb passed
3705 *	into skb_zerocopy().
3706 */
3707unsigned int
3708skb_zerocopy_headlen(const struct sk_buff *from)
3709{
3710	unsigned int hlen = 0;
3711
3712	if (!from->head_frag ||
3713	    skb_headlen(from) < L1_CACHE_BYTES ||
3714	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3715		hlen = skb_headlen(from);
3716		if (!hlen)
3717			hlen = from->len;
3718	}
3719
3720	if (skb_has_frag_list(from))
3721		hlen = from->len;
3722
3723	return hlen;
3724}
3725EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3726
3727/**
3728 *	skb_zerocopy - Zero copy skb to skb
3729 *	@to: destination buffer
3730 *	@from: source buffer
3731 *	@len: number of bytes to copy from source buffer
3732 *	@hlen: size of linear headroom in destination buffer
3733 *
3734 *	Copies up to `len` bytes from `from` to `to` by creating references
3735 *	to the frags in the source buffer.
3736 *
3737 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3738 *	headroom in the `to` buffer.
3739 *
3740 *	Return value:
3741 *	0: everything is OK
3742 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3743 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3744 */
3745int
3746skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3747{
3748	int i, j = 0;
3749	int plen = 0; /* length of skb->head fragment */
3750	int ret;
3751	struct page *page;
3752	unsigned int offset;
3753
3754	BUG_ON(!from->head_frag && !hlen);
3755
3756	/* dont bother with small payloads */
3757	if (len <= skb_tailroom(to))
3758		return skb_copy_bits(from, 0, skb_put(to, len), len);
3759
3760	if (hlen) {
3761		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3762		if (unlikely(ret))
3763			return ret;
3764		len -= hlen;
3765	} else {
3766		plen = min_t(int, skb_headlen(from), len);
3767		if (plen) {
3768			page = virt_to_head_page(from->head);
3769			offset = from->data - (unsigned char *)page_address(page);
3770			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3771					       offset, plen);
3772			get_page(page);
3773			j = 1;
3774			len -= plen;
3775		}
3776	}
3777
3778	skb_len_add(to, len + plen);
 
 
3779
3780	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3781		skb_tx_error(from);
3782		return -ENOMEM;
3783	}
3784	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3785
3786	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3787		int size;
3788
3789		if (!len)
3790			break;
3791		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3792		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3793					len);
3794		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3795		len -= size;
3796		skb_frag_ref(to, j);
3797		j++;
3798	}
3799	skb_shinfo(to)->nr_frags = j;
3800
3801	return 0;
3802}
3803EXPORT_SYMBOL_GPL(skb_zerocopy);
3804
3805void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3806{
3807	__wsum csum;
3808	long csstart;
3809
3810	if (skb->ip_summed == CHECKSUM_PARTIAL)
3811		csstart = skb_checksum_start_offset(skb);
3812	else
3813		csstart = skb_headlen(skb);
3814
3815	BUG_ON(csstart > skb_headlen(skb));
3816
3817	skb_copy_from_linear_data(skb, to, csstart);
3818
3819	csum = 0;
3820	if (csstart != skb->len)
3821		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3822					      skb->len - csstart);
3823
3824	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3825		long csstuff = csstart + skb->csum_offset;
3826
3827		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3828	}
3829}
3830EXPORT_SYMBOL(skb_copy_and_csum_dev);
3831
3832/**
3833 *	skb_dequeue - remove from the head of the queue
3834 *	@list: list to dequeue from
3835 *
3836 *	Remove the head of the list. The list lock is taken so the function
3837 *	may be used safely with other locking list functions. The head item is
3838 *	returned or %NULL if the list is empty.
3839 */
3840
3841struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3842{
3843	unsigned long flags;
3844	struct sk_buff *result;
3845
3846	spin_lock_irqsave(&list->lock, flags);
3847	result = __skb_dequeue(list);
3848	spin_unlock_irqrestore(&list->lock, flags);
3849	return result;
3850}
3851EXPORT_SYMBOL(skb_dequeue);
3852
3853/**
3854 *	skb_dequeue_tail - remove from the tail of the queue
3855 *	@list: list to dequeue from
3856 *
3857 *	Remove the tail of the list. The list lock is taken so the function
3858 *	may be used safely with other locking list functions. The tail item is
3859 *	returned or %NULL if the list is empty.
3860 */
3861struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3862{
3863	unsigned long flags;
3864	struct sk_buff *result;
3865
3866	spin_lock_irqsave(&list->lock, flags);
3867	result = __skb_dequeue_tail(list);
3868	spin_unlock_irqrestore(&list->lock, flags);
3869	return result;
3870}
3871EXPORT_SYMBOL(skb_dequeue_tail);
3872
3873/**
3874 *	skb_queue_purge_reason - empty a list
3875 *	@list: list to empty
3876 *	@reason: drop reason
3877 *
3878 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3879 *	the list and one reference dropped. This function takes the list
3880 *	lock and is atomic with respect to other list locking functions.
3881 */
3882void skb_queue_purge_reason(struct sk_buff_head *list,
3883			    enum skb_drop_reason reason)
3884{
3885	struct sk_buff_head tmp;
3886	unsigned long flags;
3887
3888	if (skb_queue_empty_lockless(list))
3889		return;
3890
3891	__skb_queue_head_init(&tmp);
3892
3893	spin_lock_irqsave(&list->lock, flags);
3894	skb_queue_splice_init(list, &tmp);
3895	spin_unlock_irqrestore(&list->lock, flags);
3896
3897	__skb_queue_purge_reason(&tmp, reason);
3898}
3899EXPORT_SYMBOL(skb_queue_purge_reason);
3900
3901/**
3902 *	skb_rbtree_purge - empty a skb rbtree
3903 *	@root: root of the rbtree to empty
3904 *	Return value: the sum of truesizes of all purged skbs.
3905 *
3906 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3907 *	the list and one reference dropped. This function does not take
3908 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3909 *	out-of-order queue is protected by the socket lock).
3910 */
3911unsigned int skb_rbtree_purge(struct rb_root *root)
3912{
3913	struct rb_node *p = rb_first(root);
3914	unsigned int sum = 0;
3915
3916	while (p) {
3917		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3918
3919		p = rb_next(p);
3920		rb_erase(&skb->rbnode, root);
3921		sum += skb->truesize;
3922		kfree_skb(skb);
3923	}
3924	return sum;
3925}
3926
3927void skb_errqueue_purge(struct sk_buff_head *list)
3928{
3929	struct sk_buff *skb, *next;
3930	struct sk_buff_head kill;
3931	unsigned long flags;
3932
3933	__skb_queue_head_init(&kill);
3934
3935	spin_lock_irqsave(&list->lock, flags);
3936	skb_queue_walk_safe(list, skb, next) {
3937		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3938		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3939			continue;
3940		__skb_unlink(skb, list);
3941		__skb_queue_tail(&kill, skb);
3942	}
3943	spin_unlock_irqrestore(&list->lock, flags);
3944	__skb_queue_purge(&kill);
3945}
3946EXPORT_SYMBOL(skb_errqueue_purge);
3947
3948/**
3949 *	skb_queue_head - queue a buffer at the list head
3950 *	@list: list to use
3951 *	@newsk: buffer to queue
3952 *
3953 *	Queue a buffer at the start of the list. This function takes the
3954 *	list lock and can be used safely with other locking &sk_buff functions
3955 *	safely.
3956 *
3957 *	A buffer cannot be placed on two lists at the same time.
3958 */
3959void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3960{
3961	unsigned long flags;
3962
3963	spin_lock_irqsave(&list->lock, flags);
3964	__skb_queue_head(list, newsk);
3965	spin_unlock_irqrestore(&list->lock, flags);
3966}
3967EXPORT_SYMBOL(skb_queue_head);
3968
3969/**
3970 *	skb_queue_tail - queue a buffer at the list tail
3971 *	@list: list to use
3972 *	@newsk: buffer to queue
3973 *
3974 *	Queue a buffer at the tail of the list. This function takes the
3975 *	list lock and can be used safely with other locking &sk_buff functions
3976 *	safely.
3977 *
3978 *	A buffer cannot be placed on two lists at the same time.
3979 */
3980void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3981{
3982	unsigned long flags;
3983
3984	spin_lock_irqsave(&list->lock, flags);
3985	__skb_queue_tail(list, newsk);
3986	spin_unlock_irqrestore(&list->lock, flags);
3987}
3988EXPORT_SYMBOL(skb_queue_tail);
3989
3990/**
3991 *	skb_unlink	-	remove a buffer from a list
3992 *	@skb: buffer to remove
3993 *	@list: list to use
3994 *
3995 *	Remove a packet from a list. The list locks are taken and this
3996 *	function is atomic with respect to other list locked calls
3997 *
3998 *	You must know what list the SKB is on.
3999 */
4000void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4001{
4002	unsigned long flags;
4003
4004	spin_lock_irqsave(&list->lock, flags);
4005	__skb_unlink(skb, list);
4006	spin_unlock_irqrestore(&list->lock, flags);
4007}
4008EXPORT_SYMBOL(skb_unlink);
4009
4010/**
4011 *	skb_append	-	append a buffer
4012 *	@old: buffer to insert after
4013 *	@newsk: buffer to insert
4014 *	@list: list to use
4015 *
4016 *	Place a packet after a given packet in a list. The list locks are taken
4017 *	and this function is atomic with respect to other list locked calls.
4018 *	A buffer cannot be placed on two lists at the same time.
4019 */
4020void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4021{
4022	unsigned long flags;
4023
4024	spin_lock_irqsave(&list->lock, flags);
4025	__skb_queue_after(list, old, newsk);
4026	spin_unlock_irqrestore(&list->lock, flags);
4027}
4028EXPORT_SYMBOL(skb_append);
4029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4030static inline void skb_split_inside_header(struct sk_buff *skb,
4031					   struct sk_buff* skb1,
4032					   const u32 len, const int pos)
4033{
4034	int i;
4035
4036	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4037					 pos - len);
4038	/* And move data appendix as is. */
4039	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4040		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4041
4042	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4043	skb_shinfo(skb)->nr_frags  = 0;
4044	skb1->data_len		   = skb->data_len;
4045	skb1->len		   += skb1->data_len;
4046	skb->data_len		   = 0;
4047	skb->len		   = len;
4048	skb_set_tail_pointer(skb, len);
4049}
4050
4051static inline void skb_split_no_header(struct sk_buff *skb,
4052				       struct sk_buff* skb1,
4053				       const u32 len, int pos)
4054{
4055	int i, k = 0;
4056	const int nfrags = skb_shinfo(skb)->nr_frags;
4057
4058	skb_shinfo(skb)->nr_frags = 0;
4059	skb1->len		  = skb1->data_len = skb->len - len;
4060	skb->len		  = len;
4061	skb->data_len		  = len - pos;
4062
4063	for (i = 0; i < nfrags; i++) {
4064		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4065
4066		if (pos + size > len) {
4067			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4068
4069			if (pos < len) {
4070				/* Split frag.
4071				 * We have two variants in this case:
4072				 * 1. Move all the frag to the second
4073				 *    part, if it is possible. F.e.
4074				 *    this approach is mandatory for TUX,
4075				 *    where splitting is expensive.
4076				 * 2. Split is accurately. We make this.
4077				 */
4078				skb_frag_ref(skb, i);
4079				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4080				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4081				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4082				skb_shinfo(skb)->nr_frags++;
4083			}
4084			k++;
4085		} else
4086			skb_shinfo(skb)->nr_frags++;
4087		pos += size;
4088	}
4089	skb_shinfo(skb1)->nr_frags = k;
4090}
4091
4092/**
4093 * skb_split - Split fragmented skb to two parts at length len.
4094 * @skb: the buffer to split
4095 * @skb1: the buffer to receive the second part
4096 * @len: new length for skb
4097 */
4098void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4099{
4100	int pos = skb_headlen(skb);
4101	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4102
4103	skb_zcopy_downgrade_managed(skb);
4104
4105	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4106	skb_zerocopy_clone(skb1, skb, 0);
4107	if (len < pos)	/* Split line is inside header. */
4108		skb_split_inside_header(skb, skb1, len, pos);
4109	else		/* Second chunk has no header, nothing to copy. */
4110		skb_split_no_header(skb, skb1, len, pos);
4111}
4112EXPORT_SYMBOL(skb_split);
4113
4114/* Shifting from/to a cloned skb is a no-go.
4115 *
4116 * Caller cannot keep skb_shinfo related pointers past calling here!
4117 */
4118static int skb_prepare_for_shift(struct sk_buff *skb)
4119{
4120	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4121}
4122
4123/**
4124 * skb_shift - Shifts paged data partially from skb to another
4125 * @tgt: buffer into which tail data gets added
4126 * @skb: buffer from which the paged data comes from
4127 * @shiftlen: shift up to this many bytes
4128 *
4129 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4130 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4131 * It's up to caller to free skb if everything was shifted.
4132 *
4133 * If @tgt runs out of frags, the whole operation is aborted.
4134 *
4135 * Skb cannot include anything else but paged data while tgt is allowed
4136 * to have non-paged data as well.
4137 *
4138 * TODO: full sized shift could be optimized but that would need
4139 * specialized skb free'er to handle frags without up-to-date nr_frags.
4140 */
4141int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4142{
4143	int from, to, merge, todo;
4144	skb_frag_t *fragfrom, *fragto;
4145
4146	BUG_ON(shiftlen > skb->len);
4147
4148	if (skb_headlen(skb))
4149		return 0;
4150	if (skb_zcopy(tgt) || skb_zcopy(skb))
4151		return 0;
4152
4153	todo = shiftlen;
4154	from = 0;
4155	to = skb_shinfo(tgt)->nr_frags;
4156	fragfrom = &skb_shinfo(skb)->frags[from];
4157
4158	/* Actual merge is delayed until the point when we know we can
4159	 * commit all, so that we don't have to undo partial changes
4160	 */
4161	if (!to ||
4162	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4163			      skb_frag_off(fragfrom))) {
4164		merge = -1;
4165	} else {
4166		merge = to - 1;
4167
4168		todo -= skb_frag_size(fragfrom);
4169		if (todo < 0) {
4170			if (skb_prepare_for_shift(skb) ||
4171			    skb_prepare_for_shift(tgt))
4172				return 0;
4173
4174			/* All previous frag pointers might be stale! */
4175			fragfrom = &skb_shinfo(skb)->frags[from];
4176			fragto = &skb_shinfo(tgt)->frags[merge];
4177
4178			skb_frag_size_add(fragto, shiftlen);
4179			skb_frag_size_sub(fragfrom, shiftlen);
4180			skb_frag_off_add(fragfrom, shiftlen);
4181
4182			goto onlymerged;
4183		}
4184
4185		from++;
4186	}
4187
4188	/* Skip full, not-fitting skb to avoid expensive operations */
4189	if ((shiftlen == skb->len) &&
4190	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4191		return 0;
4192
4193	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4194		return 0;
4195
4196	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4197		if (to == MAX_SKB_FRAGS)
4198			return 0;
4199
4200		fragfrom = &skb_shinfo(skb)->frags[from];
4201		fragto = &skb_shinfo(tgt)->frags[to];
4202
4203		if (todo >= skb_frag_size(fragfrom)) {
4204			*fragto = *fragfrom;
4205			todo -= skb_frag_size(fragfrom);
4206			from++;
4207			to++;
4208
4209		} else {
4210			__skb_frag_ref(fragfrom);
4211			skb_frag_page_copy(fragto, fragfrom);
4212			skb_frag_off_copy(fragto, fragfrom);
4213			skb_frag_size_set(fragto, todo);
4214
4215			skb_frag_off_add(fragfrom, todo);
4216			skb_frag_size_sub(fragfrom, todo);
4217			todo = 0;
4218
4219			to++;
4220			break;
4221		}
4222	}
4223
4224	/* Ready to "commit" this state change to tgt */
4225	skb_shinfo(tgt)->nr_frags = to;
4226
4227	if (merge >= 0) {
4228		fragfrom = &skb_shinfo(skb)->frags[0];
4229		fragto = &skb_shinfo(tgt)->frags[merge];
4230
4231		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4232		__skb_frag_unref(fragfrom, skb->pp_recycle);
4233	}
4234
4235	/* Reposition in the original skb */
4236	to = 0;
4237	while (from < skb_shinfo(skb)->nr_frags)
4238		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4239	skb_shinfo(skb)->nr_frags = to;
4240
4241	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4242
4243onlymerged:
4244	/* Most likely the tgt won't ever need its checksum anymore, skb on
4245	 * the other hand might need it if it needs to be resent
4246	 */
4247	tgt->ip_summed = CHECKSUM_PARTIAL;
4248	skb->ip_summed = CHECKSUM_PARTIAL;
4249
4250	skb_len_add(skb, -shiftlen);
4251	skb_len_add(tgt, shiftlen);
 
 
 
 
 
4252
4253	return shiftlen;
4254}
4255
4256/**
4257 * skb_prepare_seq_read - Prepare a sequential read of skb data
4258 * @skb: the buffer to read
4259 * @from: lower offset of data to be read
4260 * @to: upper offset of data to be read
4261 * @st: state variable
4262 *
4263 * Initializes the specified state variable. Must be called before
4264 * invoking skb_seq_read() for the first time.
4265 */
4266void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4267			  unsigned int to, struct skb_seq_state *st)
4268{
4269	st->lower_offset = from;
4270	st->upper_offset = to;
4271	st->root_skb = st->cur_skb = skb;
4272	st->frag_idx = st->stepped_offset = 0;
4273	st->frag_data = NULL;
4274	st->frag_off = 0;
4275}
4276EXPORT_SYMBOL(skb_prepare_seq_read);
4277
4278/**
4279 * skb_seq_read - Sequentially read skb data
4280 * @consumed: number of bytes consumed by the caller so far
4281 * @data: destination pointer for data to be returned
4282 * @st: state variable
4283 *
4284 * Reads a block of skb data at @consumed relative to the
4285 * lower offset specified to skb_prepare_seq_read(). Assigns
4286 * the head of the data block to @data and returns the length
4287 * of the block or 0 if the end of the skb data or the upper
4288 * offset has been reached.
4289 *
4290 * The caller is not required to consume all of the data
4291 * returned, i.e. @consumed is typically set to the number
4292 * of bytes already consumed and the next call to
4293 * skb_seq_read() will return the remaining part of the block.
4294 *
4295 * Note 1: The size of each block of data returned can be arbitrary,
4296 *       this limitation is the cost for zerocopy sequential
4297 *       reads of potentially non linear data.
4298 *
4299 * Note 2: Fragment lists within fragments are not implemented
4300 *       at the moment, state->root_skb could be replaced with
4301 *       a stack for this purpose.
4302 */
4303unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4304			  struct skb_seq_state *st)
4305{
4306	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4307	skb_frag_t *frag;
4308
4309	if (unlikely(abs_offset >= st->upper_offset)) {
4310		if (st->frag_data) {
4311			kunmap_atomic(st->frag_data);
4312			st->frag_data = NULL;
4313		}
4314		return 0;
4315	}
4316
4317next_skb:
4318	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4319
4320	if (abs_offset < block_limit && !st->frag_data) {
4321		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4322		return block_limit - abs_offset;
4323	}
4324
4325	if (st->frag_idx == 0 && !st->frag_data)
4326		st->stepped_offset += skb_headlen(st->cur_skb);
4327
4328	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4329		unsigned int pg_idx, pg_off, pg_sz;
4330
4331		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
 
4332
4333		pg_idx = 0;
4334		pg_off = skb_frag_off(frag);
4335		pg_sz = skb_frag_size(frag);
4336
4337		if (skb_frag_must_loop(skb_frag_page(frag))) {
4338			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4339			pg_off = offset_in_page(pg_off + st->frag_off);
4340			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4341						    PAGE_SIZE - pg_off);
4342		}
4343
4344		block_limit = pg_sz + st->stepped_offset;
4345		if (abs_offset < block_limit) {
4346			if (!st->frag_data)
4347				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4348
4349			*data = (u8 *)st->frag_data + pg_off +
4350				(abs_offset - st->stepped_offset);
4351
4352			return block_limit - abs_offset;
4353		}
4354
4355		if (st->frag_data) {
4356			kunmap_atomic(st->frag_data);
4357			st->frag_data = NULL;
4358		}
4359
4360		st->stepped_offset += pg_sz;
4361		st->frag_off += pg_sz;
4362		if (st->frag_off == skb_frag_size(frag)) {
4363			st->frag_off = 0;
4364			st->frag_idx++;
4365		}
4366	}
4367
4368	if (st->frag_data) {
4369		kunmap_atomic(st->frag_data);
4370		st->frag_data = NULL;
4371	}
4372
4373	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4374		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4375		st->frag_idx = 0;
4376		goto next_skb;
4377	} else if (st->cur_skb->next) {
4378		st->cur_skb = st->cur_skb->next;
4379		st->frag_idx = 0;
4380		goto next_skb;
4381	}
4382
4383	return 0;
4384}
4385EXPORT_SYMBOL(skb_seq_read);
4386
4387/**
4388 * skb_abort_seq_read - Abort a sequential read of skb data
4389 * @st: state variable
4390 *
4391 * Must be called if skb_seq_read() was not called until it
4392 * returned 0.
4393 */
4394void skb_abort_seq_read(struct skb_seq_state *st)
4395{
4396	if (st->frag_data)
4397		kunmap_atomic(st->frag_data);
4398}
4399EXPORT_SYMBOL(skb_abort_seq_read);
4400
4401#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4402
4403static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4404					  struct ts_config *conf,
4405					  struct ts_state *state)
4406{
4407	return skb_seq_read(offset, text, TS_SKB_CB(state));
4408}
4409
4410static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4411{
4412	skb_abort_seq_read(TS_SKB_CB(state));
4413}
4414
4415/**
4416 * skb_find_text - Find a text pattern in skb data
4417 * @skb: the buffer to look in
4418 * @from: search offset
4419 * @to: search limit
4420 * @config: textsearch configuration
4421 *
4422 * Finds a pattern in the skb data according to the specified
4423 * textsearch configuration. Use textsearch_next() to retrieve
4424 * subsequent occurrences of the pattern. Returns the offset
4425 * to the first occurrence or UINT_MAX if no match was found.
4426 */
4427unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4428			   unsigned int to, struct ts_config *config)
4429{
4430	unsigned int patlen = config->ops->get_pattern_len(config);
4431	struct ts_state state;
4432	unsigned int ret;
4433
4434	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4435
4436	config->get_next_block = skb_ts_get_next_block;
4437	config->finish = skb_ts_finish;
4438
4439	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4440
4441	ret = textsearch_find(config, &state);
4442	return (ret + patlen <= to - from ? ret : UINT_MAX);
4443}
4444EXPORT_SYMBOL(skb_find_text);
4445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4446int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4447			 int offset, size_t size, size_t max_frags)
4448{
4449	int i = skb_shinfo(skb)->nr_frags;
4450
4451	if (skb_can_coalesce(skb, i, page, offset)) {
4452		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4453	} else if (i < max_frags) {
4454		skb_zcopy_downgrade_managed(skb);
4455		get_page(page);
4456		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4457	} else {
4458		return -EMSGSIZE;
4459	}
4460
4461	return 0;
4462}
4463EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4464
4465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4466 *	skb_pull_rcsum - pull skb and update receive checksum
4467 *	@skb: buffer to update
4468 *	@len: length of data pulled
4469 *
4470 *	This function performs an skb_pull on the packet and updates
4471 *	the CHECKSUM_COMPLETE checksum.  It should be used on
4472 *	receive path processing instead of skb_pull unless you know
4473 *	that the checksum difference is zero (e.g., a valid IP header)
4474 *	or you are setting ip_summed to CHECKSUM_NONE.
4475 */
4476void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4477{
4478	unsigned char *data = skb->data;
4479
4480	BUG_ON(len > skb->len);
4481	__skb_pull(skb, len);
4482	skb_postpull_rcsum(skb, data, len);
4483	return skb->data;
4484}
4485EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4486
4487static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4488{
4489	skb_frag_t head_frag;
4490	struct page *page;
4491
4492	page = virt_to_head_page(frag_skb->head);
4493	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4494				(unsigned char *)page_address(page),
4495				skb_headlen(frag_skb));
4496	return head_frag;
4497}
4498
4499struct sk_buff *skb_segment_list(struct sk_buff *skb,
4500				 netdev_features_t features,
4501				 unsigned int offset)
4502{
4503	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4504	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4505	unsigned int delta_truesize = 0;
4506	unsigned int delta_len = 0;
4507	struct sk_buff *tail = NULL;
4508	struct sk_buff *nskb, *tmp;
4509	int len_diff, err;
4510
4511	skb_push(skb, -skb_network_offset(skb) + offset);
4512
4513	/* Ensure the head is writeable before touching the shared info */
4514	err = skb_unclone(skb, GFP_ATOMIC);
4515	if (err)
4516		goto err_linearize;
4517
4518	skb_shinfo(skb)->frag_list = NULL;
4519
4520	while (list_skb) {
4521		nskb = list_skb;
4522		list_skb = list_skb->next;
4523
4524		err = 0;
4525		delta_truesize += nskb->truesize;
4526		if (skb_shared(nskb)) {
4527			tmp = skb_clone(nskb, GFP_ATOMIC);
4528			if (tmp) {
4529				consume_skb(nskb);
4530				nskb = tmp;
4531				err = skb_unclone(nskb, GFP_ATOMIC);
4532			} else {
4533				err = -ENOMEM;
4534			}
4535		}
4536
4537		if (!tail)
4538			skb->next = nskb;
4539		else
4540			tail->next = nskb;
4541
4542		if (unlikely(err)) {
4543			nskb->next = list_skb;
4544			goto err_linearize;
4545		}
4546
4547		tail = nskb;
4548
4549		delta_len += nskb->len;
4550
4551		skb_push(nskb, -skb_network_offset(nskb) + offset);
4552
4553		skb_release_head_state(nskb);
4554		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4555		__copy_skb_header(nskb, skb);
4556
4557		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4558		nskb->transport_header += len_diff;
4559		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4560						 nskb->data - tnl_hlen,
4561						 offset + tnl_hlen);
4562
4563		if (skb_needs_linearize(nskb, features) &&
4564		    __skb_linearize(nskb))
4565			goto err_linearize;
4566	}
4567
4568	skb->truesize = skb->truesize - delta_truesize;
4569	skb->data_len = skb->data_len - delta_len;
4570	skb->len = skb->len - delta_len;
4571
4572	skb_gso_reset(skb);
4573
4574	skb->prev = tail;
4575
4576	if (skb_needs_linearize(skb, features) &&
4577	    __skb_linearize(skb))
4578		goto err_linearize;
4579
4580	skb_get(skb);
4581
4582	return skb;
4583
4584err_linearize:
4585	kfree_skb_list(skb->next);
4586	skb->next = NULL;
4587	return ERR_PTR(-ENOMEM);
4588}
4589EXPORT_SYMBOL_GPL(skb_segment_list);
4590
4591/**
4592 *	skb_segment - Perform protocol segmentation on skb.
4593 *	@head_skb: buffer to segment
4594 *	@features: features for the output path (see dev->features)
4595 *
4596 *	This function performs segmentation on the given skb.  It returns
4597 *	a pointer to the first in a list of new skbs for the segments.
4598 *	In case of error it returns ERR_PTR(err).
4599 */
4600struct sk_buff *skb_segment(struct sk_buff *head_skb,
4601			    netdev_features_t features)
4602{
4603	struct sk_buff *segs = NULL;
4604	struct sk_buff *tail = NULL;
4605	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
 
4606	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4607	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
 
4608	unsigned int offset = doffset;
4609	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4610	unsigned int partial_segs = 0;
4611	unsigned int headroom;
4612	unsigned int len = head_skb->len;
4613	struct sk_buff *frag_skb;
4614	skb_frag_t *frag;
4615	__be16 proto;
4616	bool csum, sg;
 
 
4617	int err = -ENOMEM;
4618	int i = 0;
4619	int nfrags, pos;
4620
4621	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4622	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4623		struct sk_buff *check_skb;
4624
4625		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4626			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4627				/* gso_size is untrusted, and we have a frag_list with
4628				 * a linear non head_frag item.
4629				 *
4630				 * If head_skb's headlen does not fit requested gso_size,
4631				 * it means that the frag_list members do NOT terminate
4632				 * on exact gso_size boundaries. Hence we cannot perform
4633				 * skb_frag_t page sharing. Therefore we must fallback to
4634				 * copying the frag_list skbs; we do so by disabling SG.
4635				 */
4636				features &= ~NETIF_F_SG;
4637				break;
4638			}
4639		}
4640	}
4641
4642	__skb_push(head_skb, doffset);
4643	proto = skb_network_protocol(head_skb, NULL);
4644	if (unlikely(!proto))
4645		return ERR_PTR(-EINVAL);
4646
4647	sg = !!(features & NETIF_F_SG);
4648	csum = !!can_checksum_protocol(features, proto);
4649
4650	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4651		if (!(features & NETIF_F_GSO_PARTIAL)) {
4652			struct sk_buff *iter;
4653			unsigned int frag_len;
4654
4655			if (!list_skb ||
4656			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4657				goto normal;
4658
4659			/* If we get here then all the required
4660			 * GSO features except frag_list are supported.
4661			 * Try to split the SKB to multiple GSO SKBs
4662			 * with no frag_list.
4663			 * Currently we can do that only when the buffers don't
4664			 * have a linear part and all the buffers except
4665			 * the last are of the same length.
4666			 */
4667			frag_len = list_skb->len;
4668			skb_walk_frags(head_skb, iter) {
4669				if (frag_len != iter->len && iter->next)
4670					goto normal;
4671				if (skb_headlen(iter) && !iter->head_frag)
4672					goto normal;
4673
4674				len -= iter->len;
4675			}
4676
4677			if (len != frag_len)
4678				goto normal;
4679		}
4680
4681		/* GSO partial only requires that we trim off any excess that
4682		 * doesn't fit into an MSS sized block, so take care of that
4683		 * now.
4684		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4685		 */
4686		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4687		if (partial_segs > 1)
4688			mss *= partial_segs;
4689		else
4690			partial_segs = 0;
4691	}
4692
4693normal:
4694	headroom = skb_headroom(head_skb);
4695	pos = skb_headlen(head_skb);
4696
4697	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4698		return ERR_PTR(-ENOMEM);
4699
4700	nfrags = skb_shinfo(head_skb)->nr_frags;
4701	frag = skb_shinfo(head_skb)->frags;
4702	frag_skb = head_skb;
4703
4704	do {
4705		struct sk_buff *nskb;
4706		skb_frag_t *nskb_frag;
4707		int hsize;
4708		int size;
4709
4710		if (unlikely(mss == GSO_BY_FRAGS)) {
4711			len = list_skb->len;
4712		} else {
4713			len = head_skb->len - offset;
4714			if (len > mss)
4715				len = mss;
4716		}
4717
4718		hsize = skb_headlen(head_skb) - offset;
 
 
 
 
4719
4720		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4721		    (skb_headlen(list_skb) == len || sg)) {
4722			BUG_ON(skb_headlen(list_skb) > len);
4723
4724			nskb = skb_clone(list_skb, GFP_ATOMIC);
4725			if (unlikely(!nskb))
4726				goto err;
4727
4728			i = 0;
4729			nfrags = skb_shinfo(list_skb)->nr_frags;
4730			frag = skb_shinfo(list_skb)->frags;
4731			frag_skb = list_skb;
4732			pos += skb_headlen(list_skb);
4733
4734			while (pos < offset + len) {
4735				BUG_ON(i >= nfrags);
4736
4737				size = skb_frag_size(frag);
4738				if (pos + size > offset + len)
4739					break;
4740
4741				i++;
4742				pos += size;
4743				frag++;
4744			}
4745
 
4746			list_skb = list_skb->next;
4747
 
 
 
4748			if (unlikely(pskb_trim(nskb, len))) {
4749				kfree_skb(nskb);
4750				goto err;
4751			}
4752
4753			hsize = skb_end_offset(nskb);
4754			if (skb_cow_head(nskb, doffset + headroom)) {
4755				kfree_skb(nskb);
4756				goto err;
4757			}
4758
4759			nskb->truesize += skb_end_offset(nskb) - hsize;
4760			skb_release_head_state(nskb);
4761			__skb_push(nskb, doffset);
4762		} else {
4763			if (hsize < 0)
4764				hsize = 0;
4765			if (hsize > len || !sg)
4766				hsize = len;
4767
4768			nskb = __alloc_skb(hsize + doffset + headroom,
4769					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4770					   NUMA_NO_NODE);
4771
4772			if (unlikely(!nskb))
4773				goto err;
4774
4775			skb_reserve(nskb, headroom);
4776			__skb_put(nskb, doffset);
4777		}
4778
4779		if (segs)
4780			tail->next = nskb;
4781		else
4782			segs = nskb;
4783		tail = nskb;
4784
4785		__copy_skb_header(nskb, head_skb);
4786
4787		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4788		skb_reset_mac_len(nskb);
4789
4790		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4791						 nskb->data - tnl_hlen,
4792						 doffset + tnl_hlen);
4793
4794		if (nskb->len == len + doffset)
4795			goto perform_csum_check;
4796
4797		if (!sg) {
4798			if (!csum) {
4799				if (!nskb->remcsum_offload)
4800					nskb->ip_summed = CHECKSUM_NONE;
4801				SKB_GSO_CB(nskb)->csum =
4802					skb_copy_and_csum_bits(head_skb, offset,
4803							       skb_put(nskb,
4804								       len),
4805							       len);
4806				SKB_GSO_CB(nskb)->csum_start =
4807					skb_headroom(nskb) + doffset;
4808			} else {
4809				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4810					goto err;
4811			}
4812			continue;
4813		}
4814
4815		nskb_frag = skb_shinfo(nskb)->frags;
4816
4817		skb_copy_from_linear_data_offset(head_skb, offset,
4818						 skb_put(nskb, hsize), hsize);
4819
4820		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4821					   SKBFL_SHARED_FRAG;
4822
4823		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4824			goto err;
4825
4826		while (pos < offset + len) {
4827			if (i >= nfrags) {
4828				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4829				    skb_zerocopy_clone(nskb, list_skb,
4830						       GFP_ATOMIC))
4831					goto err;
4832
4833				i = 0;
4834				nfrags = skb_shinfo(list_skb)->nr_frags;
4835				frag = skb_shinfo(list_skb)->frags;
4836				frag_skb = list_skb;
4837				if (!skb_headlen(list_skb)) {
4838					BUG_ON(!nfrags);
4839				} else {
4840					BUG_ON(!list_skb->head_frag);
4841
4842					/* to make room for head_frag. */
4843					i--;
4844					frag--;
4845				}
4846
4847				list_skb = list_skb->next;
4848			}
4849
4850			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4851				     MAX_SKB_FRAGS)) {
4852				net_warn_ratelimited(
4853					"skb_segment: too many frags: %u %u\n",
4854					pos, mss);
4855				err = -EINVAL;
4856				goto err;
4857			}
4858
4859			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
 
 
 
4860			__skb_frag_ref(nskb_frag);
4861			size = skb_frag_size(nskb_frag);
4862
4863			if (pos < offset) {
4864				skb_frag_off_add(nskb_frag, offset - pos);
4865				skb_frag_size_sub(nskb_frag, offset - pos);
4866			}
4867
4868			skb_shinfo(nskb)->nr_frags++;
4869
4870			if (pos + size <= offset + len) {
4871				i++;
4872				frag++;
4873				pos += size;
4874			} else {
4875				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4876				goto skip_fraglist;
4877			}
4878
4879			nskb_frag++;
4880		}
4881
4882skip_fraglist:
4883		nskb->data_len = len - hsize;
4884		nskb->len += nskb->data_len;
4885		nskb->truesize += nskb->data_len;
4886
4887perform_csum_check:
4888		if (!csum) {
4889			if (skb_has_shared_frag(nskb) &&
4890			    __skb_linearize(nskb))
4891				goto err;
4892
 
4893			if (!nskb->remcsum_offload)
4894				nskb->ip_summed = CHECKSUM_NONE;
4895			SKB_GSO_CB(nskb)->csum =
4896				skb_checksum(nskb, doffset,
4897					     nskb->len - doffset, 0);
4898			SKB_GSO_CB(nskb)->csum_start =
4899				skb_headroom(nskb) + doffset;
4900		}
4901	} while ((offset += len) < head_skb->len);
4902
4903	/* Some callers want to get the end of the list.
4904	 * Put it in segs->prev to avoid walking the list.
4905	 * (see validate_xmit_skb_list() for example)
4906	 */
4907	segs->prev = tail;
4908
4909	if (partial_segs) {
4910		struct sk_buff *iter;
4911		int type = skb_shinfo(head_skb)->gso_type;
4912		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4913
4914		/* Update type to add partial and then remove dodgy if set */
4915		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4916		type &= ~SKB_GSO_DODGY;
4917
4918		/* Update GSO info and prepare to start updating headers on
4919		 * our way back down the stack of protocols.
4920		 */
4921		for (iter = segs; iter; iter = iter->next) {
4922			skb_shinfo(iter)->gso_size = gso_size;
4923			skb_shinfo(iter)->gso_segs = partial_segs;
4924			skb_shinfo(iter)->gso_type = type;
4925			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4926		}
4927
4928		if (tail->len - doffset <= gso_size)
4929			skb_shinfo(tail)->gso_size = 0;
4930		else if (tail != segs)
4931			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4932	}
4933
4934	/* Following permits correct backpressure, for protocols
4935	 * using skb_set_owner_w().
4936	 * Idea is to tranfert ownership from head_skb to last segment.
4937	 */
4938	if (head_skb->destructor == sock_wfree) {
4939		swap(tail->truesize, head_skb->truesize);
4940		swap(tail->destructor, head_skb->destructor);
4941		swap(tail->sk, head_skb->sk);
4942	}
4943	return segs;
4944
4945err:
4946	kfree_skb_list(segs);
4947	return ERR_PTR(err);
4948}
4949EXPORT_SYMBOL_GPL(skb_segment);
4950
4951#ifdef CONFIG_SKB_EXTENSIONS
4952#define SKB_EXT_ALIGN_VALUE	8
4953#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4954
4955static const u8 skb_ext_type_len[] = {
4956#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4957	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4958#endif
4959#ifdef CONFIG_XFRM
4960	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4961#endif
4962#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4963	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4964#endif
4965#if IS_ENABLED(CONFIG_MPTCP)
4966	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4967#endif
4968#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4969	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4970#endif
4971};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4972
4973static __always_inline unsigned int skb_ext_total_length(void)
4974{
4975	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4976	int i;
4977
4978	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4979		l += skb_ext_type_len[i];
 
 
 
 
 
 
 
 
 
4980
4981	return l;
4982}
4983
4984static void skb_extensions_init(void)
4985{
4986	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4987#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4988	BUILD_BUG_ON(skb_ext_total_length() > 255);
4989#endif
 
4990
4991	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4992					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4993					     0,
4994					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4995					     NULL);
 
 
 
 
 
 
 
4996}
4997#else
4998static void skb_extensions_init(void) {}
4999#endif
5000
5001/* The SKB kmem_cache slab is critical for network performance.  Never
5002 * merge/alias the slab with similar sized objects.  This avoids fragmentation
5003 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5004 */
5005#ifndef CONFIG_SLUB_TINY
5006#define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5007#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5008#define FLAG_SKB_NO_MERGE	0
5009#endif
5010
5011void __init skb_init(void)
5012{
5013	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5014					      sizeof(struct sk_buff),
5015					      0,
5016					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5017						FLAG_SKB_NO_MERGE,
5018					      offsetof(struct sk_buff, cb),
5019					      sizeof_field(struct sk_buff, cb),
5020					      NULL);
5021	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5022						sizeof(struct sk_buff_fclones),
5023						0,
5024						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5025						NULL);
5026	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5027	 * struct skb_shared_info is located at the end of skb->head,
5028	 * and should not be copied to/from user.
5029	 */
5030	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5031						SKB_SMALL_HEAD_CACHE_SIZE,
5032						0,
5033						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5034						0,
5035						SKB_SMALL_HEAD_HEADROOM,
5036						NULL);
5037	skb_extensions_init();
5038}
5039
 
 
 
 
 
 
 
 
 
 
5040static int
5041__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5042	       unsigned int recursion_level)
5043{
5044	int start = skb_headlen(skb);
5045	int i, copy = start - offset;
5046	struct sk_buff *frag_iter;
5047	int elt = 0;
5048
5049	if (unlikely(recursion_level >= 24))
5050		return -EMSGSIZE;
5051
5052	if (copy > 0) {
5053		if (copy > len)
5054			copy = len;
5055		sg_set_buf(sg, skb->data + offset, copy);
5056		elt++;
5057		if ((len -= copy) == 0)
5058			return elt;
5059		offset += copy;
5060	}
5061
5062	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5063		int end;
5064
5065		WARN_ON(start > offset + len);
5066
5067		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5068		if ((copy = end - offset) > 0) {
5069			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5070			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5071				return -EMSGSIZE;
5072
5073			if (copy > len)
5074				copy = len;
5075			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5076				    skb_frag_off(frag) + offset - start);
5077			elt++;
5078			if (!(len -= copy))
5079				return elt;
5080			offset += copy;
5081		}
5082		start = end;
5083	}
5084
5085	skb_walk_frags(skb, frag_iter) {
5086		int end, ret;
5087
5088		WARN_ON(start > offset + len);
5089
5090		end = start + frag_iter->len;
5091		if ((copy = end - offset) > 0) {
5092			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5093				return -EMSGSIZE;
5094
5095			if (copy > len)
5096				copy = len;
5097			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5098					      copy, recursion_level + 1);
5099			if (unlikely(ret < 0))
5100				return ret;
5101			elt += ret;
5102			if ((len -= copy) == 0)
5103				return elt;
5104			offset += copy;
5105		}
5106		start = end;
5107	}
5108	BUG_ON(len);
5109	return elt;
5110}
5111
5112/**
5113 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5114 *	@skb: Socket buffer containing the buffers to be mapped
5115 *	@sg: The scatter-gather list to map into
5116 *	@offset: The offset into the buffer's contents to start mapping
5117 *	@len: Length of buffer space to be mapped
5118 *
5119 *	Fill the specified scatter-gather list with mappings/pointers into a
5120 *	region of the buffer space attached to a socket buffer. Returns either
5121 *	the number of scatterlist items used, or -EMSGSIZE if the contents
5122 *	could not fit.
5123 */
5124int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5125{
5126	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5127
5128	if (nsg <= 0)
5129		return nsg;
5130
5131	sg_mark_end(&sg[nsg - 1]);
5132
5133	return nsg;
5134}
5135EXPORT_SYMBOL_GPL(skb_to_sgvec);
5136
5137/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5138 * sglist without mark the sg which contain last skb data as the end.
5139 * So the caller can mannipulate sg list as will when padding new data after
5140 * the first call without calling sg_unmark_end to expend sg list.
5141 *
5142 * Scenario to use skb_to_sgvec_nomark:
5143 * 1. sg_init_table
5144 * 2. skb_to_sgvec_nomark(payload1)
5145 * 3. skb_to_sgvec_nomark(payload2)
5146 *
5147 * This is equivalent to:
5148 * 1. sg_init_table
5149 * 2. skb_to_sgvec(payload1)
5150 * 3. sg_unmark_end
5151 * 4. skb_to_sgvec(payload2)
5152 *
5153 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5154 * is more preferable.
5155 */
5156int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5157			int offset, int len)
5158{
5159	return __skb_to_sgvec(skb, sg, offset, len, 0);
5160}
5161EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5162
 
 
 
5163
 
 
 
 
 
5164
5165/**
5166 *	skb_cow_data - Check that a socket buffer's data buffers are writable
5167 *	@skb: The socket buffer to check.
5168 *	@tailbits: Amount of trailing space to be added
5169 *	@trailer: Returned pointer to the skb where the @tailbits space begins
5170 *
5171 *	Make sure that the data buffers attached to a socket buffer are
5172 *	writable. If they are not, private copies are made of the data buffers
5173 *	and the socket buffer is set to use these instead.
5174 *
5175 *	If @tailbits is given, make sure that there is space to write @tailbits
5176 *	bytes of data beyond current end of socket buffer.  @trailer will be
5177 *	set to point to the skb in which this space begins.
5178 *
5179 *	The number of scatterlist elements required to completely map the
5180 *	COW'd and extended socket buffer will be returned.
5181 */
5182int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5183{
5184	int copyflag;
5185	int elt;
5186	struct sk_buff *skb1, **skb_p;
5187
5188	/* If skb is cloned or its head is paged, reallocate
5189	 * head pulling out all the pages (pages are considered not writable
5190	 * at the moment even if they are anonymous).
5191	 */
5192	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5193	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5194		return -ENOMEM;
5195
5196	/* Easy case. Most of packets will go this way. */
5197	if (!skb_has_frag_list(skb)) {
5198		/* A little of trouble, not enough of space for trailer.
5199		 * This should not happen, when stack is tuned to generate
5200		 * good frames. OK, on miss we reallocate and reserve even more
5201		 * space, 128 bytes is fair. */
5202
5203		if (skb_tailroom(skb) < tailbits &&
5204		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5205			return -ENOMEM;
5206
5207		/* Voila! */
5208		*trailer = skb;
5209		return 1;
5210	}
5211
5212	/* Misery. We are in troubles, going to mincer fragments... */
5213
5214	elt = 1;
5215	skb_p = &skb_shinfo(skb)->frag_list;
5216	copyflag = 0;
5217
5218	while ((skb1 = *skb_p) != NULL) {
5219		int ntail = 0;
5220
5221		/* The fragment is partially pulled by someone,
5222		 * this can happen on input. Copy it and everything
5223		 * after it. */
5224
5225		if (skb_shared(skb1))
5226			copyflag = 1;
5227
5228		/* If the skb is the last, worry about trailer. */
5229
5230		if (skb1->next == NULL && tailbits) {
5231			if (skb_shinfo(skb1)->nr_frags ||
5232			    skb_has_frag_list(skb1) ||
5233			    skb_tailroom(skb1) < tailbits)
5234				ntail = tailbits + 128;
5235		}
5236
5237		if (copyflag ||
5238		    skb_cloned(skb1) ||
5239		    ntail ||
5240		    skb_shinfo(skb1)->nr_frags ||
5241		    skb_has_frag_list(skb1)) {
5242			struct sk_buff *skb2;
5243
5244			/* Fuck, we are miserable poor guys... */
5245			if (ntail == 0)
5246				skb2 = skb_copy(skb1, GFP_ATOMIC);
5247			else
5248				skb2 = skb_copy_expand(skb1,
5249						       skb_headroom(skb1),
5250						       ntail,
5251						       GFP_ATOMIC);
5252			if (unlikely(skb2 == NULL))
5253				return -ENOMEM;
5254
5255			if (skb1->sk)
5256				skb_set_owner_w(skb2, skb1->sk);
5257
5258			/* Looking around. Are we still alive?
5259			 * OK, link new skb, drop old one */
5260
5261			skb2->next = skb1->next;
5262			*skb_p = skb2;
5263			kfree_skb(skb1);
5264			skb1 = skb2;
5265		}
5266		elt++;
5267		*trailer = skb1;
5268		skb_p = &skb1->next;
5269	}
5270
5271	return elt;
5272}
5273EXPORT_SYMBOL_GPL(skb_cow_data);
5274
5275static void sock_rmem_free(struct sk_buff *skb)
5276{
5277	struct sock *sk = skb->sk;
5278
5279	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5280}
5281
5282static void skb_set_err_queue(struct sk_buff *skb)
5283{
5284	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5285	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5286	 */
5287	skb->pkt_type = PACKET_OUTGOING;
5288	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5289}
5290
5291/*
5292 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5293 */
5294int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5295{
5296	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5297	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5298		return -ENOMEM;
5299
5300	skb_orphan(skb);
5301	skb->sk = sk;
5302	skb->destructor = sock_rmem_free;
5303	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5304	skb_set_err_queue(skb);
5305
5306	/* before exiting rcu section, make sure dst is refcounted */
5307	skb_dst_force(skb);
5308
5309	skb_queue_tail(&sk->sk_error_queue, skb);
5310	if (!sock_flag(sk, SOCK_DEAD))
5311		sk_error_report(sk);
5312	return 0;
5313}
5314EXPORT_SYMBOL(sock_queue_err_skb);
5315
5316static bool is_icmp_err_skb(const struct sk_buff *skb)
5317{
5318	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5319		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5320}
5321
5322struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5323{
5324	struct sk_buff_head *q = &sk->sk_error_queue;
5325	struct sk_buff *skb, *skb_next = NULL;
5326	bool icmp_next = false;
5327	unsigned long flags;
5328
5329	if (skb_queue_empty_lockless(q))
5330		return NULL;
5331
5332	spin_lock_irqsave(&q->lock, flags);
5333	skb = __skb_dequeue(q);
5334	if (skb && (skb_next = skb_peek(q))) {
5335		icmp_next = is_icmp_err_skb(skb_next);
5336		if (icmp_next)
5337			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5338	}
5339	spin_unlock_irqrestore(&q->lock, flags);
5340
5341	if (is_icmp_err_skb(skb) && !icmp_next)
5342		sk->sk_err = 0;
5343
5344	if (skb_next)
5345		sk_error_report(sk);
5346
5347	return skb;
5348}
5349EXPORT_SYMBOL(sock_dequeue_err_skb);
5350
5351/**
5352 * skb_clone_sk - create clone of skb, and take reference to socket
5353 * @skb: the skb to clone
5354 *
5355 * This function creates a clone of a buffer that holds a reference on
5356 * sk_refcnt.  Buffers created via this function are meant to be
5357 * returned using sock_queue_err_skb, or free via kfree_skb.
5358 *
5359 * When passing buffers allocated with this function to sock_queue_err_skb
5360 * it is necessary to wrap the call with sock_hold/sock_put in order to
5361 * prevent the socket from being released prior to being enqueued on
5362 * the sk_error_queue.
5363 */
5364struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5365{
5366	struct sock *sk = skb->sk;
5367	struct sk_buff *clone;
5368
5369	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5370		return NULL;
5371
5372	clone = skb_clone(skb, GFP_ATOMIC);
5373	if (!clone) {
5374		sock_put(sk);
5375		return NULL;
5376	}
5377
5378	clone->sk = sk;
5379	clone->destructor = sock_efree;
5380
5381	return clone;
5382}
5383EXPORT_SYMBOL(skb_clone_sk);
5384
5385static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5386					struct sock *sk,
5387					int tstype,
5388					bool opt_stats)
5389{
5390	struct sock_exterr_skb *serr;
5391	int err;
5392
5393	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5394
5395	serr = SKB_EXT_ERR(skb);
5396	memset(serr, 0, sizeof(*serr));
5397	serr->ee.ee_errno = ENOMSG;
5398	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5399	serr->ee.ee_info = tstype;
5400	serr->opt_stats = opt_stats;
5401	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5402	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5403		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5404		if (sk_is_tcp(sk))
5405			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
 
5406	}
5407
5408	err = sock_queue_err_skb(sk, skb);
5409
5410	if (err)
5411		kfree_skb(skb);
5412}
5413
5414static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5415{
5416	bool ret;
5417
5418	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5419		return true;
5420
5421	read_lock_bh(&sk->sk_callback_lock);
5422	ret = sk->sk_socket && sk->sk_socket->file &&
5423	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5424	read_unlock_bh(&sk->sk_callback_lock);
5425	return ret;
5426}
5427
5428void skb_complete_tx_timestamp(struct sk_buff *skb,
5429			       struct skb_shared_hwtstamps *hwtstamps)
5430{
5431	struct sock *sk = skb->sk;
5432
5433	if (!skb_may_tx_timestamp(sk, false))
5434		goto err;
 
 
 
5435
5436	/* Take a reference to prevent skb_orphan() from freeing the socket,
5437	 * but only if the socket refcount is not zero.
5438	 */
5439	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5440		*skb_hwtstamps(skb) = *hwtstamps;
5441		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5442		sock_put(sk);
5443		return;
5444	}
5445
5446err:
5447	kfree_skb(skb);
5448}
5449EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5450
5451void __skb_tstamp_tx(struct sk_buff *orig_skb,
5452		     const struct sk_buff *ack_skb,
5453		     struct skb_shared_hwtstamps *hwtstamps,
5454		     struct sock *sk, int tstype)
5455{
5456	struct sk_buff *skb;
5457	bool tsonly, opt_stats = false;
5458	u32 tsflags;
5459
5460	if (!sk)
5461		return;
5462
5463	tsflags = READ_ONCE(sk->sk_tsflags);
5464	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5465	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5466		return;
5467
5468	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5469	if (!skb_may_tx_timestamp(sk, tsonly))
5470		return;
5471
5472	if (tsonly) {
5473#ifdef CONFIG_INET
5474		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5475		    sk_is_tcp(sk)) {
5476			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5477							     ack_skb);
5478			opt_stats = true;
5479		} else
5480#endif
5481			skb = alloc_skb(0, GFP_ATOMIC);
5482	} else {
5483		skb = skb_clone(orig_skb, GFP_ATOMIC);
5484
5485		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5486			kfree_skb(skb);
5487			return;
5488		}
5489	}
5490	if (!skb)
5491		return;
5492
5493	if (tsonly) {
5494		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5495					     SKBTX_ANY_TSTAMP;
5496		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5497	}
5498
5499	if (hwtstamps)
5500		*skb_hwtstamps(skb) = *hwtstamps;
5501	else
5502		__net_timestamp(skb);
5503
5504	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5505}
5506EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5507
5508void skb_tstamp_tx(struct sk_buff *orig_skb,
5509		   struct skb_shared_hwtstamps *hwtstamps)
5510{
5511	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5512			       SCM_TSTAMP_SND);
5513}
5514EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5515
5516#ifdef CONFIG_WIRELESS
5517void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5518{
5519	struct sock *sk = skb->sk;
5520	struct sock_exterr_skb *serr;
5521	int err = 1;
5522
5523	skb->wifi_acked_valid = 1;
5524	skb->wifi_acked = acked;
5525
5526	serr = SKB_EXT_ERR(skb);
5527	memset(serr, 0, sizeof(*serr));
5528	serr->ee.ee_errno = ENOMSG;
5529	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5530
5531	/* Take a reference to prevent skb_orphan() from freeing the socket,
5532	 * but only if the socket refcount is not zero.
5533	 */
5534	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5535		err = sock_queue_err_skb(sk, skb);
5536		sock_put(sk);
5537	}
5538	if (err)
5539		kfree_skb(skb);
 
 
5540}
5541EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5542#endif /* CONFIG_WIRELESS */
5543
5544/**
5545 * skb_partial_csum_set - set up and verify partial csum values for packet
5546 * @skb: the skb to set
5547 * @start: the number of bytes after skb->data to start checksumming.
5548 * @off: the offset from start to place the checksum.
5549 *
5550 * For untrusted partially-checksummed packets, we need to make sure the values
5551 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5552 *
5553 * This function checks and sets those values and skb->ip_summed: if this
5554 * returns false you should drop the packet.
5555 */
5556bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5557{
5558	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5559	u32 csum_start = skb_headroom(skb) + (u32)start;
5560
5561	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5562		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5563				     start, off, skb_headroom(skb), skb_headlen(skb));
5564		return false;
5565	}
5566	skb->ip_summed = CHECKSUM_PARTIAL;
5567	skb->csum_start = csum_start;
5568	skb->csum_offset = off;
5569	skb->transport_header = csum_start;
5570	return true;
5571}
5572EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5573
5574static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5575			       unsigned int max)
5576{
5577	if (skb_headlen(skb) >= len)
5578		return 0;
5579
5580	/* If we need to pullup then pullup to the max, so we
5581	 * won't need to do it again.
5582	 */
5583	if (max > skb->len)
5584		max = skb->len;
5585
5586	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5587		return -ENOMEM;
5588
5589	if (skb_headlen(skb) < len)
5590		return -EPROTO;
5591
5592	return 0;
5593}
5594
5595#define MAX_TCP_HDR_LEN (15 * 4)
5596
5597static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5598				      typeof(IPPROTO_IP) proto,
5599				      unsigned int off)
5600{
5601	int err;
 
5602
5603	switch (proto) {
5604	case IPPROTO_TCP:
5605		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5606					  off + MAX_TCP_HDR_LEN);
5607		if (!err && !skb_partial_csum_set(skb, off,
5608						  offsetof(struct tcphdr,
5609							   check)))
5610			err = -EPROTO;
5611		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5612
5613	case IPPROTO_UDP:
5614		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5615					  off + sizeof(struct udphdr));
5616		if (!err && !skb_partial_csum_set(skb, off,
5617						  offsetof(struct udphdr,
5618							   check)))
5619			err = -EPROTO;
5620		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5621	}
5622
5623	return ERR_PTR(-EPROTO);
5624}
5625
5626/* This value should be large enough to cover a tagged ethernet header plus
5627 * maximally sized IP and TCP or UDP headers.
5628 */
5629#define MAX_IP_HDR_LEN 128
5630
5631static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5632{
5633	unsigned int off;
5634	bool fragment;
5635	__sum16 *csum;
5636	int err;
5637
5638	fragment = false;
5639
5640	err = skb_maybe_pull_tail(skb,
5641				  sizeof(struct iphdr),
5642				  MAX_IP_HDR_LEN);
5643	if (err < 0)
5644		goto out;
5645
5646	if (ip_is_fragment(ip_hdr(skb)))
5647		fragment = true;
5648
5649	off = ip_hdrlen(skb);
5650
5651	err = -EPROTO;
5652
5653	if (fragment)
5654		goto out;
5655
5656	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5657	if (IS_ERR(csum))
5658		return PTR_ERR(csum);
5659
5660	if (recalculate)
5661		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5662					   ip_hdr(skb)->daddr,
5663					   skb->len - off,
5664					   ip_hdr(skb)->protocol, 0);
5665	err = 0;
5666
5667out:
5668	return err;
5669}
5670
5671/* This value should be large enough to cover a tagged ethernet header plus
5672 * an IPv6 header, all options, and a maximal TCP or UDP header.
5673 */
5674#define MAX_IPV6_HDR_LEN 256
5675
5676#define OPT_HDR(type, skb, off) \
5677	(type *)(skb_network_header(skb) + (off))
5678
5679static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5680{
5681	int err;
5682	u8 nexthdr;
5683	unsigned int off;
5684	unsigned int len;
5685	bool fragment;
5686	bool done;
5687	__sum16 *csum;
5688
5689	fragment = false;
5690	done = false;
5691
5692	off = sizeof(struct ipv6hdr);
5693
5694	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5695	if (err < 0)
5696		goto out;
5697
5698	nexthdr = ipv6_hdr(skb)->nexthdr;
5699
5700	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5701	while (off <= len && !done) {
5702		switch (nexthdr) {
5703		case IPPROTO_DSTOPTS:
5704		case IPPROTO_HOPOPTS:
5705		case IPPROTO_ROUTING: {
5706			struct ipv6_opt_hdr *hp;
5707
5708			err = skb_maybe_pull_tail(skb,
5709						  off +
5710						  sizeof(struct ipv6_opt_hdr),
5711						  MAX_IPV6_HDR_LEN);
5712			if (err < 0)
5713				goto out;
5714
5715			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5716			nexthdr = hp->nexthdr;
5717			off += ipv6_optlen(hp);
5718			break;
5719		}
5720		case IPPROTO_AH: {
5721			struct ip_auth_hdr *hp;
5722
5723			err = skb_maybe_pull_tail(skb,
5724						  off +
5725						  sizeof(struct ip_auth_hdr),
5726						  MAX_IPV6_HDR_LEN);
5727			if (err < 0)
5728				goto out;
5729
5730			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5731			nexthdr = hp->nexthdr;
5732			off += ipv6_authlen(hp);
5733			break;
5734		}
5735		case IPPROTO_FRAGMENT: {
5736			struct frag_hdr *hp;
5737
5738			err = skb_maybe_pull_tail(skb,
5739						  off +
5740						  sizeof(struct frag_hdr),
5741						  MAX_IPV6_HDR_LEN);
5742			if (err < 0)
5743				goto out;
5744
5745			hp = OPT_HDR(struct frag_hdr, skb, off);
5746
5747			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5748				fragment = true;
5749
5750			nexthdr = hp->nexthdr;
5751			off += sizeof(struct frag_hdr);
5752			break;
5753		}
5754		default:
5755			done = true;
5756			break;
5757		}
5758	}
5759
5760	err = -EPROTO;
5761
5762	if (!done || fragment)
5763		goto out;
5764
5765	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5766	if (IS_ERR(csum))
5767		return PTR_ERR(csum);
5768
5769	if (recalculate)
5770		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5771					 &ipv6_hdr(skb)->daddr,
5772					 skb->len - off, nexthdr, 0);
5773	err = 0;
5774
5775out:
5776	return err;
5777}
5778
5779/**
5780 * skb_checksum_setup - set up partial checksum offset
5781 * @skb: the skb to set up
5782 * @recalculate: if true the pseudo-header checksum will be recalculated
5783 */
5784int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5785{
5786	int err;
5787
5788	switch (skb->protocol) {
5789	case htons(ETH_P_IP):
5790		err = skb_checksum_setup_ipv4(skb, recalculate);
5791		break;
5792
5793	case htons(ETH_P_IPV6):
5794		err = skb_checksum_setup_ipv6(skb, recalculate);
5795		break;
5796
5797	default:
5798		err = -EPROTO;
5799		break;
5800	}
5801
5802	return err;
5803}
5804EXPORT_SYMBOL(skb_checksum_setup);
5805
5806/**
5807 * skb_checksum_maybe_trim - maybe trims the given skb
5808 * @skb: the skb to check
5809 * @transport_len: the data length beyond the network header
5810 *
5811 * Checks whether the given skb has data beyond the given transport length.
5812 * If so, returns a cloned skb trimmed to this transport length.
5813 * Otherwise returns the provided skb. Returns NULL in error cases
5814 * (e.g. transport_len exceeds skb length or out-of-memory).
5815 *
5816 * Caller needs to set the skb transport header and free any returned skb if it
5817 * differs from the provided skb.
5818 */
5819static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5820					       unsigned int transport_len)
5821{
5822	struct sk_buff *skb_chk;
5823	unsigned int len = skb_transport_offset(skb) + transport_len;
5824	int ret;
5825
5826	if (skb->len < len)
5827		return NULL;
5828	else if (skb->len == len)
5829		return skb;
5830
5831	skb_chk = skb_clone(skb, GFP_ATOMIC);
5832	if (!skb_chk)
5833		return NULL;
5834
5835	ret = pskb_trim_rcsum(skb_chk, len);
5836	if (ret) {
5837		kfree_skb(skb_chk);
5838		return NULL;
5839	}
5840
5841	return skb_chk;
5842}
5843
5844/**
5845 * skb_checksum_trimmed - validate checksum of an skb
5846 * @skb: the skb to check
5847 * @transport_len: the data length beyond the network header
5848 * @skb_chkf: checksum function to use
5849 *
5850 * Applies the given checksum function skb_chkf to the provided skb.
5851 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5852 *
5853 * If the skb has data beyond the given transport length, then a
5854 * trimmed & cloned skb is checked and returned.
5855 *
5856 * Caller needs to set the skb transport header and free any returned skb if it
5857 * differs from the provided skb.
5858 */
5859struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5860				     unsigned int transport_len,
5861				     __sum16(*skb_chkf)(struct sk_buff *skb))
5862{
5863	struct sk_buff *skb_chk;
5864	unsigned int offset = skb_transport_offset(skb);
5865	__sum16 ret;
5866
5867	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5868	if (!skb_chk)
5869		goto err;
5870
5871	if (!pskb_may_pull(skb_chk, offset))
5872		goto err;
5873
5874	skb_pull_rcsum(skb_chk, offset);
5875	ret = skb_chkf(skb_chk);
5876	skb_push_rcsum(skb_chk, offset);
5877
5878	if (ret)
5879		goto err;
5880
5881	return skb_chk;
5882
5883err:
5884	if (skb_chk && skb_chk != skb)
5885		kfree_skb(skb_chk);
5886
5887	return NULL;
5888
5889}
5890EXPORT_SYMBOL(skb_checksum_trimmed);
5891
5892void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5893{
5894	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5895			     skb->dev->name);
5896}
5897EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5898
5899void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5900{
5901	if (head_stolen) {
5902		skb_release_head_state(skb);
5903		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5904	} else {
5905		__kfree_skb(skb);
5906	}
5907}
5908EXPORT_SYMBOL(kfree_skb_partial);
5909
5910/**
5911 * skb_try_coalesce - try to merge skb to prior one
5912 * @to: prior buffer
5913 * @from: buffer to add
5914 * @fragstolen: pointer to boolean
5915 * @delta_truesize: how much more was allocated than was requested
5916 */
5917bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5918		      bool *fragstolen, int *delta_truesize)
5919{
5920	struct skb_shared_info *to_shinfo, *from_shinfo;
5921	int i, delta, len = from->len;
5922
5923	*fragstolen = false;
5924
5925	if (skb_cloned(to))
5926		return false;
5927
5928	/* In general, avoid mixing page_pool and non-page_pool allocated
5929	 * pages within the same SKB. In theory we could take full
5930	 * references if @from is cloned and !@to->pp_recycle but its
5931	 * tricky (due to potential race with the clone disappearing) and
5932	 * rare, so not worth dealing with.
5933	 */
5934	if (to->pp_recycle != from->pp_recycle)
5935		return false;
5936
5937	if (len <= skb_tailroom(to)) {
5938		if (len)
5939			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5940		*delta_truesize = 0;
5941		return true;
5942	}
5943
5944	to_shinfo = skb_shinfo(to);
5945	from_shinfo = skb_shinfo(from);
5946	if (to_shinfo->frag_list || from_shinfo->frag_list)
5947		return false;
5948	if (skb_zcopy(to) || skb_zcopy(from))
5949		return false;
5950
5951	if (skb_headlen(from) != 0) {
5952		struct page *page;
5953		unsigned int offset;
5954
5955		if (to_shinfo->nr_frags +
5956		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5957			return false;
5958
5959		if (skb_head_is_locked(from))
5960			return false;
5961
5962		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5963
5964		page = virt_to_head_page(from->head);
5965		offset = from->data - (unsigned char *)page_address(page);
5966
5967		skb_fill_page_desc(to, to_shinfo->nr_frags,
5968				   page, offset, skb_headlen(from));
5969		*fragstolen = true;
5970	} else {
5971		if (to_shinfo->nr_frags +
5972		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5973			return false;
5974
5975		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5976	}
5977
5978	WARN_ON_ONCE(delta < len);
5979
5980	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5981	       from_shinfo->frags,
5982	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5983	to_shinfo->nr_frags += from_shinfo->nr_frags;
5984
5985	if (!skb_cloned(from))
5986		from_shinfo->nr_frags = 0;
5987
5988	/* if the skb is not cloned this does nothing
5989	 * since we set nr_frags to 0.
5990	 */
5991	if (skb_pp_frag_ref(from)) {
5992		for (i = 0; i < from_shinfo->nr_frags; i++)
5993			__skb_frag_ref(&from_shinfo->frags[i]);
5994	}
5995
5996	to->truesize += delta;
5997	to->len += len;
5998	to->data_len += len;
5999
6000	*delta_truesize = delta;
6001	return true;
6002}
6003EXPORT_SYMBOL(skb_try_coalesce);
6004
6005/**
6006 * skb_scrub_packet - scrub an skb
6007 *
6008 * @skb: buffer to clean
6009 * @xnet: packet is crossing netns
6010 *
6011 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6012 * into/from a tunnel. Some information have to be cleared during these
6013 * operations.
6014 * skb_scrub_packet can also be used to clean a skb before injecting it in
6015 * another namespace (@xnet == true). We have to clear all information in the
6016 * skb that could impact namespace isolation.
6017 */
6018void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6019{
 
6020	skb->pkt_type = PACKET_HOST;
6021	skb->skb_iif = 0;
6022	skb->ignore_df = 0;
6023	skb_dst_drop(skb);
6024	skb_ext_reset(skb);
6025	nf_reset_ct(skb);
6026	nf_reset_trace(skb);
6027
6028#ifdef CONFIG_NET_SWITCHDEV
6029	skb->offload_fwd_mark = 0;
6030	skb->offload_l3_fwd_mark = 0;
6031#endif
6032
6033	if (!xnet)
6034		return;
6035
6036	ipvs_reset(skb);
6037	skb->mark = 0;
6038	skb_clear_tstamp(skb);
6039}
6040EXPORT_SYMBOL_GPL(skb_scrub_packet);
6041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6043{
6044	int mac_len, meta_len;
6045	void *meta;
6046
6047	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6048		kfree_skb(skb);
6049		return NULL;
6050	}
6051
6052	mac_len = skb->data - skb_mac_header(skb);
6053	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6054		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6055			mac_len - VLAN_HLEN - ETH_TLEN);
6056	}
6057
6058	meta_len = skb_metadata_len(skb);
6059	if (meta_len) {
6060		meta = skb_metadata_end(skb) - meta_len;
6061		memmove(meta + VLAN_HLEN, meta, meta_len);
6062	}
6063
6064	skb->mac_header += VLAN_HLEN;
6065	return skb;
6066}
6067
6068struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6069{
6070	struct vlan_hdr *vhdr;
6071	u16 vlan_tci;
6072
6073	if (unlikely(skb_vlan_tag_present(skb))) {
6074		/* vlan_tci is already set-up so leave this for another time */
6075		return skb;
6076	}
6077
6078	skb = skb_share_check(skb, GFP_ATOMIC);
6079	if (unlikely(!skb))
6080		goto err_free;
6081	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6082	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6083		goto err_free;
6084
6085	vhdr = (struct vlan_hdr *)skb->data;
6086	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6087	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6088
6089	skb_pull_rcsum(skb, VLAN_HLEN);
6090	vlan_set_encap_proto(skb, vhdr);
6091
6092	skb = skb_reorder_vlan_header(skb);
6093	if (unlikely(!skb))
6094		goto err_free;
6095
6096	skb_reset_network_header(skb);
6097	if (!skb_transport_header_was_set(skb))
6098		skb_reset_transport_header(skb);
6099	skb_reset_mac_len(skb);
6100
6101	return skb;
6102
6103err_free:
6104	kfree_skb(skb);
6105	return NULL;
6106}
6107EXPORT_SYMBOL(skb_vlan_untag);
6108
6109int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6110{
6111	if (!pskb_may_pull(skb, write_len))
6112		return -ENOMEM;
6113
6114	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6115		return 0;
6116
6117	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6118}
6119EXPORT_SYMBOL(skb_ensure_writable);
6120
6121int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
 
6122{
6123	int needed_headroom = dev->needed_headroom;
6124	int needed_tailroom = dev->needed_tailroom;
6125
6126	/* For tail taggers, we need to pad short frames ourselves, to ensure
6127	 * that the tail tag does not fail at its role of being at the end of
6128	 * the packet, once the conduit interface pads the frame. Account for
6129	 * that pad length here, and pad later.
6130	 */
6131	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6132		needed_tailroom += ETH_ZLEN - skb->len;
6133	/* skb_headroom() returns unsigned int... */
6134	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6135	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6136
6137	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6138		/* No reallocation needed, yay! */
6139		return 0;
6140
6141	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6142				GFP_ATOMIC);
6143}
6144EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6145
6146/* remove VLAN header from packet and update csum accordingly.
6147 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6148 */
6149int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6150{
6151	int offset = skb->data - skb_mac_header(skb);
6152	int err;
6153
6154	if (WARN_ONCE(offset,
6155		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6156		      offset)) {
6157		return -EINVAL;
6158	}
6159
6160	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6161	if (unlikely(err))
6162		return err;
6163
6164	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6165
6166	vlan_remove_tag(skb, vlan_tci);
 
 
 
 
6167
 
6168	skb->mac_header += VLAN_HLEN;
6169
6170	if (skb_network_offset(skb) < ETH_HLEN)
6171		skb_set_network_header(skb, ETH_HLEN);
6172
6173	skb_reset_mac_len(skb);
 
 
6174
6175	return err;
6176}
6177EXPORT_SYMBOL(__skb_vlan_pop);
6178
6179/* Pop a vlan tag either from hwaccel or from payload.
6180 * Expects skb->data at mac header.
6181 */
6182int skb_vlan_pop(struct sk_buff *skb)
6183{
6184	u16 vlan_tci;
6185	__be16 vlan_proto;
6186	int err;
6187
6188	if (likely(skb_vlan_tag_present(skb))) {
6189		__vlan_hwaccel_clear_tag(skb);
6190	} else {
6191		if (unlikely(!eth_type_vlan(skb->protocol)))
 
 
6192			return 0;
6193
6194		err = __skb_vlan_pop(skb, &vlan_tci);
6195		if (err)
6196			return err;
6197	}
6198	/* move next vlan tag to hw accel tag */
6199	if (likely(!eth_type_vlan(skb->protocol)))
 
 
6200		return 0;
6201
6202	vlan_proto = skb->protocol;
6203	err = __skb_vlan_pop(skb, &vlan_tci);
6204	if (unlikely(err))
6205		return err;
6206
6207	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6208	return 0;
6209}
6210EXPORT_SYMBOL(skb_vlan_pop);
6211
6212/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6213 * Expects skb->data at mac header.
6214 */
6215int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6216{
6217	if (skb_vlan_tag_present(skb)) {
6218		int offset = skb->data - skb_mac_header(skb);
6219		int err;
6220
6221		if (WARN_ONCE(offset,
6222			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6223			      offset)) {
6224			return -EINVAL;
6225		}
6226
6227		err = __vlan_insert_tag(skb, skb->vlan_proto,
6228					skb_vlan_tag_get(skb));
6229		if (err)
 
6230			return err;
 
6231
6232		skb->protocol = skb->vlan_proto;
6233		skb->mac_len += VLAN_HLEN;
6234
6235		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
 
6236	}
6237	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6238	return 0;
6239}
6240EXPORT_SYMBOL(skb_vlan_push);
6241
6242/**
6243 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6244 *
6245 * @skb: Socket buffer to modify
6246 *
6247 * Drop the Ethernet header of @skb.
6248 *
6249 * Expects that skb->data points to the mac header and that no VLAN tags are
6250 * present.
6251 *
6252 * Returns 0 on success, -errno otherwise.
6253 */
6254int skb_eth_pop(struct sk_buff *skb)
6255{
6256	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6257	    skb_network_offset(skb) < ETH_HLEN)
6258		return -EPROTO;
6259
6260	skb_pull_rcsum(skb, ETH_HLEN);
6261	skb_reset_mac_header(skb);
6262	skb_reset_mac_len(skb);
6263
6264	return 0;
6265}
6266EXPORT_SYMBOL(skb_eth_pop);
6267
6268/**
6269 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6270 *
6271 * @skb: Socket buffer to modify
6272 * @dst: Destination MAC address of the new header
6273 * @src: Source MAC address of the new header
6274 *
6275 * Prepend @skb with a new Ethernet header.
6276 *
6277 * Expects that skb->data points to the mac header, which must be empty.
6278 *
6279 * Returns 0 on success, -errno otherwise.
6280 */
6281int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6282		 const unsigned char *src)
6283{
6284	struct ethhdr *eth;
6285	int err;
6286
6287	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6288		return -EPROTO;
6289
6290	err = skb_cow_head(skb, sizeof(*eth));
6291	if (err < 0)
6292		return err;
6293
6294	skb_push(skb, sizeof(*eth));
6295	skb_reset_mac_header(skb);
6296	skb_reset_mac_len(skb);
6297
6298	eth = eth_hdr(skb);
6299	ether_addr_copy(eth->h_dest, dst);
6300	ether_addr_copy(eth->h_source, src);
6301	eth->h_proto = skb->protocol;
6302
6303	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6304
6305	return 0;
6306}
6307EXPORT_SYMBOL(skb_eth_push);
6308
6309/* Update the ethertype of hdr and the skb csum value if required. */
6310static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6311			     __be16 ethertype)
6312{
6313	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6314		__be16 diff[] = { ~hdr->h_proto, ethertype };
6315
6316		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6317	}
6318
6319	hdr->h_proto = ethertype;
6320}
6321
6322/**
6323 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6324 *                   the packet
6325 *
6326 * @skb: buffer
6327 * @mpls_lse: MPLS label stack entry to push
6328 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6329 * @mac_len: length of the MAC header
6330 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6331 *            ethernet
6332 *
6333 * Expects skb->data at mac header.
6334 *
6335 * Returns 0 on success, -errno otherwise.
6336 */
6337int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6338		  int mac_len, bool ethernet)
6339{
6340	struct mpls_shim_hdr *lse;
6341	int err;
6342
6343	if (unlikely(!eth_p_mpls(mpls_proto)))
6344		return -EINVAL;
6345
6346	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6347	if (skb->encapsulation)
6348		return -EINVAL;
6349
6350	err = skb_cow_head(skb, MPLS_HLEN);
6351	if (unlikely(err))
6352		return err;
6353
6354	if (!skb->inner_protocol) {
6355		skb_set_inner_network_header(skb, skb_network_offset(skb));
6356		skb_set_inner_protocol(skb, skb->protocol);
6357	}
6358
6359	skb_push(skb, MPLS_HLEN);
6360	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6361		mac_len);
6362	skb_reset_mac_header(skb);
6363	skb_set_network_header(skb, mac_len);
6364	skb_reset_mac_len(skb);
6365
6366	lse = mpls_hdr(skb);
6367	lse->label_stack_entry = mpls_lse;
6368	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6369
6370	if (ethernet && mac_len >= ETH_HLEN)
6371		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6372	skb->protocol = mpls_proto;
6373
6374	return 0;
6375}
6376EXPORT_SYMBOL_GPL(skb_mpls_push);
6377
6378/**
6379 * skb_mpls_pop() - pop the outermost MPLS header
6380 *
6381 * @skb: buffer
6382 * @next_proto: ethertype of header after popped MPLS header
6383 * @mac_len: length of the MAC header
6384 * @ethernet: flag to indicate if the packet is ethernet
6385 *
6386 * Expects skb->data at mac header.
6387 *
6388 * Returns 0 on success, -errno otherwise.
6389 */
6390int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6391		 bool ethernet)
6392{
6393	int err;
6394
6395	if (unlikely(!eth_p_mpls(skb->protocol)))
6396		return 0;
6397
6398	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6399	if (unlikely(err))
6400		return err;
6401
6402	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6403	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6404		mac_len);
6405
6406	__skb_pull(skb, MPLS_HLEN);
6407	skb_reset_mac_header(skb);
6408	skb_set_network_header(skb, mac_len);
6409
6410	if (ethernet && mac_len >= ETH_HLEN) {
6411		struct ethhdr *hdr;
6412
6413		/* use mpls_hdr() to get ethertype to account for VLANs. */
6414		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6415		skb_mod_eth_type(skb, hdr, next_proto);
6416	}
6417	skb->protocol = next_proto;
6418
6419	return 0;
6420}
6421EXPORT_SYMBOL_GPL(skb_mpls_pop);
6422
6423/**
6424 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6425 *
6426 * @skb: buffer
6427 * @mpls_lse: new MPLS label stack entry to update to
6428 *
6429 * Expects skb->data at mac header.
6430 *
6431 * Returns 0 on success, -errno otherwise.
6432 */
6433int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6434{
6435	int err;
6436
6437	if (unlikely(!eth_p_mpls(skb->protocol)))
6438		return -EINVAL;
6439
6440	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6441	if (unlikely(err))
6442		return err;
6443
6444	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6445		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6446
6447		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6448	}
6449
6450	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6451
6452	return 0;
6453}
6454EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6455
6456/**
6457 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6458 *
6459 * @skb: buffer
6460 *
6461 * Expects skb->data at mac header.
6462 *
6463 * Returns 0 on success, -errno otherwise.
6464 */
6465int skb_mpls_dec_ttl(struct sk_buff *skb)
6466{
6467	u32 lse;
6468	u8 ttl;
6469
6470	if (unlikely(!eth_p_mpls(skb->protocol)))
6471		return -EINVAL;
6472
6473	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6474		return -ENOMEM;
6475
6476	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6477	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6478	if (!--ttl)
6479		return -EINVAL;
6480
6481	lse &= ~MPLS_LS_TTL_MASK;
6482	lse |= ttl << MPLS_LS_TTL_SHIFT;
6483
6484	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6485}
6486EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6487
6488/**
6489 * alloc_skb_with_frags - allocate skb with page frags
6490 *
6491 * @header_len: size of linear part
6492 * @data_len: needed length in frags
6493 * @order: max page order desired.
6494 * @errcode: pointer to error code if any
6495 * @gfp_mask: allocation mask
6496 *
6497 * This can be used to allocate a paged skb, given a maximal order for frags.
6498 */
6499struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6500				     unsigned long data_len,
6501				     int order,
6502				     int *errcode,
6503				     gfp_t gfp_mask)
6504{
 
6505	unsigned long chunk;
6506	struct sk_buff *skb;
6507	struct page *page;
6508	int nr_frags = 0;
 
6509
6510	*errcode = -EMSGSIZE;
6511	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
 
 
 
6512		return NULL;
6513
 
 
 
 
6514	*errcode = -ENOBUFS;
6515	skb = alloc_skb(header_len, gfp_mask);
6516	if (!skb)
6517		return NULL;
6518
6519	while (data_len) {
6520		if (nr_frags == MAX_SKB_FRAGS - 1)
6521			goto failure;
6522		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6523			order--;
6524
6525		if (order) {
6526			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6527					   __GFP_COMP |
6528					   __GFP_NOWARN,
6529					   order);
6530			if (!page) {
6531				order--;
6532				continue;
 
 
 
 
6533			}
6534		} else {
6535			page = alloc_page(gfp_mask);
6536			if (!page)
6537				goto failure;
6538		}
 
 
 
 
6539		chunk = min_t(unsigned long, data_len,
6540			      PAGE_SIZE << order);
6541		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6542		nr_frags++;
6543		skb->truesize += (PAGE_SIZE << order);
6544		data_len -= chunk;
 
6545	}
6546	return skb;
6547
6548failure:
6549	kfree_skb(skb);
6550	return NULL;
6551}
6552EXPORT_SYMBOL(alloc_skb_with_frags);
6553
6554/* carve out the first off bytes from skb when off < headlen */
6555static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6556				    const int headlen, gfp_t gfp_mask)
6557{
6558	int i;
6559	unsigned int size = skb_end_offset(skb);
6560	int new_hlen = headlen - off;
6561	u8 *data;
6562
6563	if (skb_pfmemalloc(skb))
6564		gfp_mask |= __GFP_MEMALLOC;
6565
6566	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6567	if (!data)
6568		return -ENOMEM;
6569	size = SKB_WITH_OVERHEAD(size);
6570
6571	/* Copy real data, and all frags */
6572	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6573	skb->len -= off;
6574
6575	memcpy((struct skb_shared_info *)(data + size),
6576	       skb_shinfo(skb),
6577	       offsetof(struct skb_shared_info,
6578			frags[skb_shinfo(skb)->nr_frags]));
6579	if (skb_cloned(skb)) {
6580		/* drop the old head gracefully */
6581		if (skb_orphan_frags(skb, gfp_mask)) {
6582			skb_kfree_head(data, size);
6583			return -ENOMEM;
6584		}
6585		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6586			skb_frag_ref(skb, i);
6587		if (skb_has_frag_list(skb))
6588			skb_clone_fraglist(skb);
6589		skb_release_data(skb, SKB_CONSUMED, false);
6590	} else {
6591		/* we can reuse existing recount- all we did was
6592		 * relocate values
6593		 */
6594		skb_free_head(skb, false);
6595	}
6596
6597	skb->head = data;
6598	skb->data = data;
6599	skb->head_frag = 0;
6600	skb_set_end_offset(skb, size);
6601	skb_set_tail_pointer(skb, skb_headlen(skb));
6602	skb_headers_offset_update(skb, 0);
6603	skb->cloned = 0;
6604	skb->hdr_len = 0;
6605	skb->nohdr = 0;
6606	atomic_set(&skb_shinfo(skb)->dataref, 1);
6607
6608	return 0;
6609}
6610
6611static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6612
6613/* carve out the first eat bytes from skb's frag_list. May recurse into
6614 * pskb_carve()
6615 */
6616static int pskb_carve_frag_list(struct sk_buff *skb,
6617				struct skb_shared_info *shinfo, int eat,
6618				gfp_t gfp_mask)
6619{
6620	struct sk_buff *list = shinfo->frag_list;
6621	struct sk_buff *clone = NULL;
6622	struct sk_buff *insp = NULL;
6623
6624	do {
6625		if (!list) {
6626			pr_err("Not enough bytes to eat. Want %d\n", eat);
6627			return -EFAULT;
6628		}
6629		if (list->len <= eat) {
6630			/* Eaten as whole. */
6631			eat -= list->len;
6632			list = list->next;
6633			insp = list;
6634		} else {
6635			/* Eaten partially. */
6636			if (skb_shared(list)) {
6637				clone = skb_clone(list, gfp_mask);
6638				if (!clone)
6639					return -ENOMEM;
6640				insp = list->next;
6641				list = clone;
6642			} else {
6643				/* This may be pulled without problems. */
6644				insp = list;
6645			}
6646			if (pskb_carve(list, eat, gfp_mask) < 0) {
6647				kfree_skb(clone);
6648				return -ENOMEM;
6649			}
6650			break;
6651		}
6652	} while (eat);
6653
6654	/* Free pulled out fragments. */
6655	while ((list = shinfo->frag_list) != insp) {
6656		shinfo->frag_list = list->next;
6657		consume_skb(list);
6658	}
6659	/* And insert new clone at head. */
6660	if (clone) {
6661		clone->next = list;
6662		shinfo->frag_list = clone;
6663	}
6664	return 0;
6665}
6666
6667/* carve off first len bytes from skb. Split line (off) is in the
6668 * non-linear part of skb
6669 */
6670static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6671				       int pos, gfp_t gfp_mask)
6672{
6673	int i, k = 0;
6674	unsigned int size = skb_end_offset(skb);
6675	u8 *data;
6676	const int nfrags = skb_shinfo(skb)->nr_frags;
6677	struct skb_shared_info *shinfo;
6678
6679	if (skb_pfmemalloc(skb))
6680		gfp_mask |= __GFP_MEMALLOC;
6681
6682	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6683	if (!data)
6684		return -ENOMEM;
6685	size = SKB_WITH_OVERHEAD(size);
6686
6687	memcpy((struct skb_shared_info *)(data + size),
6688	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6689	if (skb_orphan_frags(skb, gfp_mask)) {
6690		skb_kfree_head(data, size);
6691		return -ENOMEM;
6692	}
6693	shinfo = (struct skb_shared_info *)(data + size);
6694	for (i = 0; i < nfrags; i++) {
6695		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6696
6697		if (pos + fsize > off) {
6698			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6699
6700			if (pos < off) {
6701				/* Split frag.
6702				 * We have two variants in this case:
6703				 * 1. Move all the frag to the second
6704				 *    part, if it is possible. F.e.
6705				 *    this approach is mandatory for TUX,
6706				 *    where splitting is expensive.
6707				 * 2. Split is accurately. We make this.
6708				 */
6709				skb_frag_off_add(&shinfo->frags[0], off - pos);
6710				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6711			}
6712			skb_frag_ref(skb, i);
6713			k++;
6714		}
6715		pos += fsize;
6716	}
6717	shinfo->nr_frags = k;
6718	if (skb_has_frag_list(skb))
6719		skb_clone_fraglist(skb);
6720
6721	/* split line is in frag list */
6722	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6723		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6724		if (skb_has_frag_list(skb))
6725			kfree_skb_list(skb_shinfo(skb)->frag_list);
6726		skb_kfree_head(data, size);
6727		return -ENOMEM;
6728	}
6729	skb_release_data(skb, SKB_CONSUMED, false);
6730
6731	skb->head = data;
6732	skb->head_frag = 0;
6733	skb->data = data;
6734	skb_set_end_offset(skb, size);
6735	skb_reset_tail_pointer(skb);
6736	skb_headers_offset_update(skb, 0);
6737	skb->cloned   = 0;
6738	skb->hdr_len  = 0;
6739	skb->nohdr    = 0;
6740	skb->len -= off;
6741	skb->data_len = skb->len;
6742	atomic_set(&skb_shinfo(skb)->dataref, 1);
6743	return 0;
6744}
6745
6746/* remove len bytes from the beginning of the skb */
6747static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6748{
6749	int headlen = skb_headlen(skb);
6750
6751	if (len < headlen)
6752		return pskb_carve_inside_header(skb, len, headlen, gfp);
6753	else
6754		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6755}
6756
6757/* Extract to_copy bytes starting at off from skb, and return this in
6758 * a new skb
6759 */
6760struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6761			     int to_copy, gfp_t gfp)
6762{
6763	struct sk_buff  *clone = skb_clone(skb, gfp);
6764
6765	if (!clone)
6766		return NULL;
6767
6768	if (pskb_carve(clone, off, gfp) < 0 ||
6769	    pskb_trim(clone, to_copy)) {
6770		kfree_skb(clone);
6771		return NULL;
6772	}
6773	return clone;
6774}
6775EXPORT_SYMBOL(pskb_extract);
6776
6777/**
6778 * skb_condense - try to get rid of fragments/frag_list if possible
6779 * @skb: buffer
6780 *
6781 * Can be used to save memory before skb is added to a busy queue.
6782 * If packet has bytes in frags and enough tail room in skb->head,
6783 * pull all of them, so that we can free the frags right now and adjust
6784 * truesize.
6785 * Notes:
6786 *	We do not reallocate skb->head thus can not fail.
6787 *	Caller must re-evaluate skb->truesize if needed.
6788 */
6789void skb_condense(struct sk_buff *skb)
6790{
6791	if (skb->data_len) {
6792		if (skb->data_len > skb->end - skb->tail ||
6793		    skb_cloned(skb))
6794			return;
6795
6796		/* Nice, we can free page frag(s) right now */
6797		__pskb_pull_tail(skb, skb->data_len);
6798	}
6799	/* At this point, skb->truesize might be over estimated,
6800	 * because skb had a fragment, and fragments do not tell
6801	 * their truesize.
6802	 * When we pulled its content into skb->head, fragment
6803	 * was freed, but __pskb_pull_tail() could not possibly
6804	 * adjust skb->truesize, not knowing the frag truesize.
6805	 */
6806	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6807}
6808EXPORT_SYMBOL(skb_condense);
6809
6810#ifdef CONFIG_SKB_EXTENSIONS
6811static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6812{
6813	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6814}
6815
6816/**
6817 * __skb_ext_alloc - allocate a new skb extensions storage
6818 *
6819 * @flags: See kmalloc().
6820 *
6821 * Returns the newly allocated pointer. The pointer can later attached to a
6822 * skb via __skb_ext_set().
6823 * Note: caller must handle the skb_ext as an opaque data.
6824 */
6825struct skb_ext *__skb_ext_alloc(gfp_t flags)
6826{
6827	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6828
6829	if (new) {
6830		memset(new->offset, 0, sizeof(new->offset));
6831		refcount_set(&new->refcnt, 1);
6832	}
6833
6834	return new;
6835}
6836
6837static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6838					 unsigned int old_active)
6839{
6840	struct skb_ext *new;
6841
6842	if (refcount_read(&old->refcnt) == 1)
6843		return old;
6844
6845	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6846	if (!new)
6847		return NULL;
6848
6849	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6850	refcount_set(&new->refcnt, 1);
6851
6852#ifdef CONFIG_XFRM
6853	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6854		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6855		unsigned int i;
6856
6857		for (i = 0; i < sp->len; i++)
6858			xfrm_state_hold(sp->xvec[i]);
6859	}
6860#endif
6861#ifdef CONFIG_MCTP_FLOWS
6862	if (old_active & (1 << SKB_EXT_MCTP)) {
6863		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6864
6865		if (flow->key)
6866			refcount_inc(&flow->key->refs);
6867	}
6868#endif
6869	__skb_ext_put(old);
6870	return new;
6871}
6872
6873/**
6874 * __skb_ext_set - attach the specified extension storage to this skb
6875 * @skb: buffer
6876 * @id: extension id
6877 * @ext: extension storage previously allocated via __skb_ext_alloc()
6878 *
6879 * Existing extensions, if any, are cleared.
6880 *
6881 * Returns the pointer to the extension.
6882 */
6883void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6884		    struct skb_ext *ext)
6885{
6886	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6887
6888	skb_ext_put(skb);
6889	newlen = newoff + skb_ext_type_len[id];
6890	ext->chunks = newlen;
6891	ext->offset[id] = newoff;
6892	skb->extensions = ext;
6893	skb->active_extensions = 1 << id;
6894	return skb_ext_get_ptr(ext, id);
6895}
6896
6897/**
6898 * skb_ext_add - allocate space for given extension, COW if needed
6899 * @skb: buffer
6900 * @id: extension to allocate space for
6901 *
6902 * Allocates enough space for the given extension.
6903 * If the extension is already present, a pointer to that extension
6904 * is returned.
6905 *
6906 * If the skb was cloned, COW applies and the returned memory can be
6907 * modified without changing the extension space of clones buffers.
6908 *
6909 * Returns pointer to the extension or NULL on allocation failure.
6910 */
6911void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6912{
6913	struct skb_ext *new, *old = NULL;
6914	unsigned int newlen, newoff;
6915
6916	if (skb->active_extensions) {
6917		old = skb->extensions;
6918
6919		new = skb_ext_maybe_cow(old, skb->active_extensions);
6920		if (!new)
6921			return NULL;
6922
6923		if (__skb_ext_exist(new, id))
6924			goto set_active;
6925
6926		newoff = new->chunks;
6927	} else {
6928		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6929
6930		new = __skb_ext_alloc(GFP_ATOMIC);
6931		if (!new)
6932			return NULL;
6933	}
6934
6935	newlen = newoff + skb_ext_type_len[id];
6936	new->chunks = newlen;
6937	new->offset[id] = newoff;
6938set_active:
6939	skb->slow_gro = 1;
6940	skb->extensions = new;
6941	skb->active_extensions |= 1 << id;
6942	return skb_ext_get_ptr(new, id);
6943}
6944EXPORT_SYMBOL(skb_ext_add);
6945
6946#ifdef CONFIG_XFRM
6947static void skb_ext_put_sp(struct sec_path *sp)
6948{
6949	unsigned int i;
6950
6951	for (i = 0; i < sp->len; i++)
6952		xfrm_state_put(sp->xvec[i]);
6953}
6954#endif
6955
6956#ifdef CONFIG_MCTP_FLOWS
6957static void skb_ext_put_mctp(struct mctp_flow *flow)
6958{
6959	if (flow->key)
6960		mctp_key_unref(flow->key);
6961}
6962#endif
6963
6964void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6965{
6966	struct skb_ext *ext = skb->extensions;
6967
6968	skb->active_extensions &= ~(1 << id);
6969	if (skb->active_extensions == 0) {
6970		skb->extensions = NULL;
6971		__skb_ext_put(ext);
6972#ifdef CONFIG_XFRM
6973	} else if (id == SKB_EXT_SEC_PATH &&
6974		   refcount_read(&ext->refcnt) == 1) {
6975		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6976
6977		skb_ext_put_sp(sp);
6978		sp->len = 0;
6979#endif
6980	}
6981}
6982EXPORT_SYMBOL(__skb_ext_del);
6983
6984void __skb_ext_put(struct skb_ext *ext)
6985{
6986	/* If this is last clone, nothing can increment
6987	 * it after check passes.  Avoids one atomic op.
6988	 */
6989	if (refcount_read(&ext->refcnt) == 1)
6990		goto free_now;
6991
6992	if (!refcount_dec_and_test(&ext->refcnt))
6993		return;
6994free_now:
6995#ifdef CONFIG_XFRM
6996	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6997		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6998#endif
6999#ifdef CONFIG_MCTP_FLOWS
7000	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7001		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7002#endif
7003
7004	kmem_cache_free(skbuff_ext_cache, ext);
7005}
7006EXPORT_SYMBOL(__skb_ext_put);
7007#endif /* CONFIG_SKB_EXTENSIONS */
7008
7009/**
7010 * skb_attempt_defer_free - queue skb for remote freeing
7011 * @skb: buffer
7012 *
7013 * Put @skb in a per-cpu list, using the cpu which
7014 * allocated the skb/pages to reduce false sharing
7015 * and memory zone spinlock contention.
7016 */
7017void skb_attempt_defer_free(struct sk_buff *skb)
7018{
7019	int cpu = skb->alloc_cpu;
7020	struct softnet_data *sd;
7021	unsigned int defer_max;
7022	bool kick;
7023
7024	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7025	    !cpu_online(cpu) ||
7026	    cpu == raw_smp_processor_id()) {
7027nodefer:	__kfree_skb(skb);
7028		return;
7029	}
7030
7031	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7032	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7033
7034	sd = &per_cpu(softnet_data, cpu);
7035	defer_max = READ_ONCE(sysctl_skb_defer_max);
7036	if (READ_ONCE(sd->defer_count) >= defer_max)
7037		goto nodefer;
7038
7039	spin_lock_bh(&sd->defer_lock);
7040	/* Send an IPI every time queue reaches half capacity. */
7041	kick = sd->defer_count == (defer_max >> 1);
7042	/* Paired with the READ_ONCE() few lines above */
7043	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7044
7045	skb->next = sd->defer_list;
7046	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7047	WRITE_ONCE(sd->defer_list, skb);
7048	spin_unlock_bh(&sd->defer_lock);
7049
7050	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7051	 * if we are unlucky enough (this seems very unlikely).
7052	 */
7053	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7054		smp_call_function_single_async(cpu, &sd->defer_csd);
7055}
7056
7057static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7058				 size_t offset, size_t len)
7059{
7060	const char *kaddr;
7061	__wsum csum;
7062
7063	kaddr = kmap_local_page(page);
7064	csum = csum_partial(kaddr + offset, len, 0);
7065	kunmap_local(kaddr);
7066	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7067}
7068
7069/**
7070 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7071 * @skb: The buffer to add pages to
7072 * @iter: Iterator representing the pages to be added
7073 * @maxsize: Maximum amount of pages to be added
7074 * @gfp: Allocation flags
7075 *
7076 * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7077 * extracts pages from an iterator and adds them to the socket buffer if
7078 * possible, copying them to fragments if not possible (such as if they're slab
7079 * pages).
7080 *
7081 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7082 * insufficient space in the buffer to transfer anything.
7083 */
7084ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7085			     ssize_t maxsize, gfp_t gfp)
7086{
7087	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7088	struct page *pages[8], **ppages = pages;
7089	ssize_t spliced = 0, ret = 0;
7090	unsigned int i;
7091
7092	while (iter->count > 0) {
7093		ssize_t space, nr, len;
7094		size_t off;
7095
7096		ret = -EMSGSIZE;
7097		space = frag_limit - skb_shinfo(skb)->nr_frags;
7098		if (space < 0)
7099			break;
7100
7101		/* We might be able to coalesce without increasing nr_frags */
7102		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7103
7104		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7105		if (len <= 0) {
7106			ret = len ?: -EIO;
7107			break;
7108		}
7109
7110		i = 0;
7111		do {
7112			struct page *page = pages[i++];
7113			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7114
7115			ret = -EIO;
7116			if (WARN_ON_ONCE(!sendpage_ok(page)))
7117				goto out;
7118
7119			ret = skb_append_pagefrags(skb, page, off, part,
7120						   frag_limit);
7121			if (ret < 0) {
7122				iov_iter_revert(iter, len);
7123				goto out;
7124			}
7125
7126			if (skb->ip_summed == CHECKSUM_NONE)
7127				skb_splice_csum_page(skb, page, off, part);
7128
7129			off = 0;
7130			spliced += part;
7131			maxsize -= part;
7132			len -= part;
7133		} while (len > 0);
7134
7135		if (maxsize <= 0)
7136			break;
7137	}
7138
7139out:
7140	skb_len_add(skb, spliced);
7141	return spliced ?: ret;
7142}
7143EXPORT_SYMBOL(skb_splice_from_iter);
7144
7145static __always_inline
7146size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7147			     size_t len, void *to, void *priv2)
7148{
7149	__wsum *csum = priv2;
7150	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7151
7152	*csum = csum_block_add(*csum, next, progress);
7153	return 0;
7154}
7155
7156static __always_inline
7157size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7158				size_t len, void *to, void *priv2)
7159{
7160	__wsum next, *csum = priv2;
7161
7162	next = csum_and_copy_from_user(iter_from, to + progress, len);
7163	*csum = csum_block_add(*csum, next, progress);
7164	return next ? 0 : len;
7165}
7166
7167bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7168				  __wsum *csum, struct iov_iter *i)
7169{
7170	size_t copied;
7171
7172	if (WARN_ON_ONCE(!i->data_source))
7173		return false;
7174	copied = iterate_and_advance2(i, bytes, addr, csum,
7175				      copy_from_user_iter_csum,
7176				      memcpy_from_iter_csum);
7177	if (likely(copied == bytes))
7178		return true;
7179	iov_iter_revert(i, copied);
7180	return false;
7181}
7182EXPORT_SYMBOL(csum_and_copy_from_iter_full);