Loading...
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <asm/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __read_mostly;
81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99{
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109 skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129{
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152}
153
154/* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161{
162 struct sk_buff *skb;
163
164 /* Get the HEAD */
165 skb = kmem_cache_alloc_node(skbuff_head_cache,
166 gfp_mask & ~__GFP_DMA, node);
167 if (!skb)
168 goto out;
169
170 /*
171 * Only clear those fields we need to clear, not those that we will
172 * actually initialise below. Hence, don't put any more fields after
173 * the tail pointer in struct sk_buff!
174 */
175 memset(skb, 0, offsetof(struct sk_buff, tail));
176 skb->head = NULL;
177 skb->truesize = sizeof(struct sk_buff);
178 atomic_set(&skb->users, 1);
179
180 skb->mac_header = (typeof(skb->mac_header))~0U;
181out:
182 return skb;
183}
184
185/**
186 * __alloc_skb - allocate a network buffer
187 * @size: size to allocate
188 * @gfp_mask: allocation mask
189 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 * instead of head cache and allocate a cloned (child) skb.
191 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 * allocations in case the data is required for writeback
193 * @node: numa node to allocate memory on
194 *
195 * Allocate a new &sk_buff. The returned buffer has no headroom and a
196 * tail room of at least size bytes. The object has a reference count
197 * of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
201 */
202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 int flags, int node)
204{
205 struct kmem_cache *cache;
206 struct skb_shared_info *shinfo;
207 struct sk_buff *skb;
208 u8 *data;
209 bool pfmemalloc;
210
211 cache = (flags & SKB_ALLOC_FCLONE)
212 ? skbuff_fclone_cache : skbuff_head_cache;
213
214 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 gfp_mask |= __GFP_MEMALLOC;
216
217 /* Get the HEAD */
218 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 if (!skb)
220 goto out;
221 prefetchw(skb);
222
223 /* We do our best to align skb_shared_info on a separate cache
224 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 * Both skb->head and skb_shared_info are cache line aligned.
227 */
228 size = SKB_DATA_ALIGN(size);
229 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 if (!data)
232 goto nodata;
233 /* kmalloc(size) might give us more room than requested.
234 * Put skb_shared_info exactly at the end of allocated zone,
235 * to allow max possible filling before reallocation.
236 */
237 size = SKB_WITH_OVERHEAD(ksize(data));
238 prefetchw(data + size);
239
240 /*
241 * Only clear those fields we need to clear, not those that we will
242 * actually initialise below. Hence, don't put any more fields after
243 * the tail pointer in struct sk_buff!
244 */
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 /* Account for allocated memory : skb + skb->head */
247 skb->truesize = SKB_TRUESIZE(size);
248 skb->pfmemalloc = pfmemalloc;
249 atomic_set(&skb->users, 1);
250 skb->head = data;
251 skb->data = data;
252 skb_reset_tail_pointer(skb);
253 skb->end = skb->tail + size;
254 skb->mac_header = (typeof(skb->mac_header))~0U;
255 skb->transport_header = (typeof(skb->transport_header))~0U;
256
257 /* make sure we initialize shinfo sequentially */
258 shinfo = skb_shinfo(skb);
259 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 atomic_set(&shinfo->dataref, 1);
261 kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263 if (flags & SKB_ALLOC_FCLONE) {
264 struct sk_buff_fclones *fclones;
265
266 fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 skb->fclone = SKB_FCLONE_ORIG;
270 atomic_set(&fclones->fclone_ref, 1);
271
272 fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 fclones->skb2.pfmemalloc = pfmemalloc;
274 }
275out:
276 return skb;
277nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281}
282EXPORT_SYMBOL(__alloc_skb);
283
284/**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304{
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 atomic_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332}
333
334/* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339struct sk_buff *build_skb(void *data, unsigned int frag_size)
340{
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349}
350EXPORT_SYMBOL(build_skb);
351
352#define NAPI_SKB_CACHE_SIZE 64
353
354struct napi_alloc_cache {
355 struct page_frag_cache page;
356 size_t skb_count;
357 void *skb_cache[NAPI_SKB_CACHE_SIZE];
358};
359
360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362
363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364{
365 struct page_frag_cache *nc;
366 unsigned long flags;
367 void *data;
368
369 local_irq_save(flags);
370 nc = this_cpu_ptr(&netdev_alloc_cache);
371 data = __alloc_page_frag(nc, fragsz, gfp_mask);
372 local_irq_restore(flags);
373 return data;
374}
375
376/**
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
379 *
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
382 */
383void *netdev_alloc_frag(unsigned int fragsz)
384{
385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386}
387EXPORT_SYMBOL(netdev_alloc_frag);
388
389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390{
391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392
393 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
394}
395
396void *napi_alloc_frag(unsigned int fragsz)
397{
398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399}
400EXPORT_SYMBOL(napi_alloc_frag);
401
402/**
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 *
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
412 *
413 * %NULL is returned if there is no free memory.
414 */
415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 gfp_t gfp_mask)
417{
418 struct page_frag_cache *nc;
419 unsigned long flags;
420 struct sk_buff *skb;
421 bool pfmemalloc;
422 void *data;
423
424 len += NET_SKB_PAD;
425
426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
432 }
433
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
436
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
439
440 local_irq_save(flags);
441
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = __alloc_page_frag(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
445
446 local_irq_restore(flags);
447
448 if (unlikely(!data))
449 return NULL;
450
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
455 }
456
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
461
462skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
465
466skb_fail:
467 return skb;
468}
469EXPORT_SYMBOL(__netdev_alloc_skb);
470
471/**
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476 *
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
481 *
482 * %NULL is returned if there is no free memory.
483 */
484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
486{
487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 struct sk_buff *skb;
489 void *data;
490
491 len += NET_SKB_PAD + NET_IP_ALIGN;
492
493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 if (!skb)
497 goto skb_fail;
498 goto skb_success;
499 }
500
501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 len = SKB_DATA_ALIGN(len);
503
504 if (sk_memalloc_socks())
505 gfp_mask |= __GFP_MEMALLOC;
506
507 data = __alloc_page_frag(&nc->page, len, gfp_mask);
508 if (unlikely(!data))
509 return NULL;
510
511 skb = __build_skb(data, len);
512 if (unlikely(!skb)) {
513 skb_free_frag(data);
514 return NULL;
515 }
516
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc->page.pfmemalloc)
519 skb->pfmemalloc = 1;
520 skb->head_frag = 1;
521
522skb_success:
523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 skb->dev = napi->dev;
525
526skb_fail:
527 return skb;
528}
529EXPORT_SYMBOL(__napi_alloc_skb);
530
531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 int size, unsigned int truesize)
533{
534 skb_fill_page_desc(skb, i, page, off, size);
535 skb->len += size;
536 skb->data_len += size;
537 skb->truesize += truesize;
538}
539EXPORT_SYMBOL(skb_add_rx_frag);
540
541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 unsigned int truesize)
543{
544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545
546 skb_frag_size_add(frag, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550}
551EXPORT_SYMBOL(skb_coalesce_rx_frag);
552
553static void skb_drop_list(struct sk_buff **listp)
554{
555 kfree_skb_list(*listp);
556 *listp = NULL;
557}
558
559static inline void skb_drop_fraglist(struct sk_buff *skb)
560{
561 skb_drop_list(&skb_shinfo(skb)->frag_list);
562}
563
564static void skb_clone_fraglist(struct sk_buff *skb)
565{
566 struct sk_buff *list;
567
568 skb_walk_frags(skb, list)
569 skb_get(list);
570}
571
572static void skb_free_head(struct sk_buff *skb)
573{
574 unsigned char *head = skb->head;
575
576 if (skb->head_frag)
577 skb_free_frag(head);
578 else
579 kfree(head);
580}
581
582static void skb_release_data(struct sk_buff *skb)
583{
584 struct skb_shared_info *shinfo = skb_shinfo(skb);
585 int i;
586
587 if (skb->cloned &&
588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 &shinfo->dataref))
590 return;
591
592 for (i = 0; i < shinfo->nr_frags; i++)
593 __skb_frag_unref(&shinfo->frags[i]);
594
595 /*
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
598 */
599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 struct ubuf_info *uarg;
601
602 uarg = shinfo->destructor_arg;
603 if (uarg->callback)
604 uarg->callback(uarg, true);
605 }
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_free_head(skb);
611}
612
613/*
614 * Free an skbuff by memory without cleaning the state.
615 */
616static void kfree_skbmem(struct sk_buff *skb)
617{
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (atomic_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!atomic_dec_and_test(&fclones->fclone_ref))
641 return;
642fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644}
645
646static void skb_release_head_state(struct sk_buff *skb)
647{
648 skb_dst_drop(skb);
649#ifdef CONFIG_XFRM
650 secpath_put(skb->sp);
651#endif
652 if (skb->destructor) {
653 WARN_ON(in_irq());
654 skb->destructor(skb);
655 }
656#if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 nf_conntrack_put(skb->nfct);
658#endif
659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 nf_bridge_put(skb->nf_bridge);
661#endif
662}
663
664/* Free everything but the sk_buff shell. */
665static void skb_release_all(struct sk_buff *skb)
666{
667 skb_release_head_state(skb);
668 if (likely(skb->head))
669 skb_release_data(skb);
670}
671
672/**
673 * __kfree_skb - private function
674 * @skb: buffer
675 *
676 * Free an sk_buff. Release anything attached to the buffer.
677 * Clean the state. This is an internal helper function. Users should
678 * always call kfree_skb
679 */
680
681void __kfree_skb(struct sk_buff *skb)
682{
683 skb_release_all(skb);
684 kfree_skbmem(skb);
685}
686EXPORT_SYMBOL(__kfree_skb);
687
688/**
689 * kfree_skb - free an sk_buff
690 * @skb: buffer to free
691 *
692 * Drop a reference to the buffer and free it if the usage count has
693 * hit zero.
694 */
695void kfree_skb(struct sk_buff *skb)
696{
697 if (unlikely(!skb))
698 return;
699 if (likely(atomic_read(&skb->users) == 1))
700 smp_rmb();
701 else if (likely(!atomic_dec_and_test(&skb->users)))
702 return;
703 trace_kfree_skb(skb, __builtin_return_address(0));
704 __kfree_skb(skb);
705}
706EXPORT_SYMBOL(kfree_skb);
707
708void kfree_skb_list(struct sk_buff *segs)
709{
710 while (segs) {
711 struct sk_buff *next = segs->next;
712
713 kfree_skb(segs);
714 segs = next;
715 }
716}
717EXPORT_SYMBOL(kfree_skb_list);
718
719/**
720 * skb_tx_error - report an sk_buff xmit error
721 * @skb: buffer that triggered an error
722 *
723 * Report xmit error if a device callback is tracking this skb.
724 * skb must be freed afterwards.
725 */
726void skb_tx_error(struct sk_buff *skb)
727{
728 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 struct ubuf_info *uarg;
730
731 uarg = skb_shinfo(skb)->destructor_arg;
732 if (uarg->callback)
733 uarg->callback(uarg, false);
734 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 }
736}
737EXPORT_SYMBOL(skb_tx_error);
738
739/**
740 * consume_skb - free an skbuff
741 * @skb: buffer to free
742 *
743 * Drop a ref to the buffer and free it if the usage count has hit zero
744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
745 * is being dropped after a failure and notes that
746 */
747void consume_skb(struct sk_buff *skb)
748{
749 if (unlikely(!skb))
750 return;
751 if (likely(atomic_read(&skb->users) == 1))
752 smp_rmb();
753 else if (likely(!atomic_dec_and_test(&skb->users)))
754 return;
755 trace_consume_skb(skb);
756 __kfree_skb(skb);
757}
758EXPORT_SYMBOL(consume_skb);
759
760void __kfree_skb_flush(void)
761{
762 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763
764 /* flush skb_cache if containing objects */
765 if (nc->skb_count) {
766 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 nc->skb_cache);
768 nc->skb_count = 0;
769 }
770}
771
772static inline void _kfree_skb_defer(struct sk_buff *skb)
773{
774 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775
776 /* drop skb->head and call any destructors for packet */
777 skb_release_all(skb);
778
779 /* record skb to CPU local list */
780 nc->skb_cache[nc->skb_count++] = skb;
781
782#ifdef CONFIG_SLUB
783 /* SLUB writes into objects when freeing */
784 prefetchw(skb);
785#endif
786
787 /* flush skb_cache if it is filled */
788 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 nc->skb_cache);
791 nc->skb_count = 0;
792 }
793}
794void __kfree_skb_defer(struct sk_buff *skb)
795{
796 _kfree_skb_defer(skb);
797}
798
799void napi_consume_skb(struct sk_buff *skb, int budget)
800{
801 if (unlikely(!skb))
802 return;
803
804 /* Zero budget indicate non-NAPI context called us, like netpoll */
805 if (unlikely(!budget)) {
806 dev_consume_skb_any(skb);
807 return;
808 }
809
810 if (likely(atomic_read(&skb->users) == 1))
811 smp_rmb();
812 else if (likely(!atomic_dec_and_test(&skb->users)))
813 return;
814 /* if reaching here SKB is ready to free */
815 trace_consume_skb(skb);
816
817 /* if SKB is a clone, don't handle this case */
818 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 __kfree_skb(skb);
820 return;
821 }
822
823 _kfree_skb_defer(skb);
824}
825EXPORT_SYMBOL(napi_consume_skb);
826
827/* Make sure a field is enclosed inside headers_start/headers_end section */
828#define CHECK_SKB_FIELD(field) \
829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
830 offsetof(struct sk_buff, headers_start)); \
831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
832 offsetof(struct sk_buff, headers_end)); \
833
834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835{
836 new->tstamp = old->tstamp;
837 /* We do not copy old->sk */
838 new->dev = old->dev;
839 memcpy(new->cb, old->cb, sizeof(old->cb));
840 skb_dst_copy(new, old);
841#ifdef CONFIG_XFRM
842 new->sp = secpath_get(old->sp);
843#endif
844 __nf_copy(new, old, false);
845
846 /* Note : this field could be in headers_start/headers_end section
847 * It is not yet because we do not want to have a 16 bit hole
848 */
849 new->queue_mapping = old->queue_mapping;
850
851 memcpy(&new->headers_start, &old->headers_start,
852 offsetof(struct sk_buff, headers_end) -
853 offsetof(struct sk_buff, headers_start));
854 CHECK_SKB_FIELD(protocol);
855 CHECK_SKB_FIELD(csum);
856 CHECK_SKB_FIELD(hash);
857 CHECK_SKB_FIELD(priority);
858 CHECK_SKB_FIELD(skb_iif);
859 CHECK_SKB_FIELD(vlan_proto);
860 CHECK_SKB_FIELD(vlan_tci);
861 CHECK_SKB_FIELD(transport_header);
862 CHECK_SKB_FIELD(network_header);
863 CHECK_SKB_FIELD(mac_header);
864 CHECK_SKB_FIELD(inner_protocol);
865 CHECK_SKB_FIELD(inner_transport_header);
866 CHECK_SKB_FIELD(inner_network_header);
867 CHECK_SKB_FIELD(inner_mac_header);
868 CHECK_SKB_FIELD(mark);
869#ifdef CONFIG_NETWORK_SECMARK
870 CHECK_SKB_FIELD(secmark);
871#endif
872#ifdef CONFIG_NET_RX_BUSY_POLL
873 CHECK_SKB_FIELD(napi_id);
874#endif
875#ifdef CONFIG_XPS
876 CHECK_SKB_FIELD(sender_cpu);
877#endif
878#ifdef CONFIG_NET_SCHED
879 CHECK_SKB_FIELD(tc_index);
880#ifdef CONFIG_NET_CLS_ACT
881 CHECK_SKB_FIELD(tc_verd);
882#endif
883#endif
884
885}
886
887/*
888 * You should not add any new code to this function. Add it to
889 * __copy_skb_header above instead.
890 */
891static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
892{
893#define C(x) n->x = skb->x
894
895 n->next = n->prev = NULL;
896 n->sk = NULL;
897 __copy_skb_header(n, skb);
898
899 C(len);
900 C(data_len);
901 C(mac_len);
902 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
903 n->cloned = 1;
904 n->nohdr = 0;
905 n->destructor = NULL;
906 C(tail);
907 C(end);
908 C(head);
909 C(head_frag);
910 C(data);
911 C(truesize);
912 atomic_set(&n->users, 1);
913
914 atomic_inc(&(skb_shinfo(skb)->dataref));
915 skb->cloned = 1;
916
917 return n;
918#undef C
919}
920
921/**
922 * skb_morph - morph one skb into another
923 * @dst: the skb to receive the contents
924 * @src: the skb to supply the contents
925 *
926 * This is identical to skb_clone except that the target skb is
927 * supplied by the user.
928 *
929 * The target skb is returned upon exit.
930 */
931struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
932{
933 skb_release_all(dst);
934 return __skb_clone(dst, src);
935}
936EXPORT_SYMBOL_GPL(skb_morph);
937
938/**
939 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
940 * @skb: the skb to modify
941 * @gfp_mask: allocation priority
942 *
943 * This must be called on SKBTX_DEV_ZEROCOPY skb.
944 * It will copy all frags into kernel and drop the reference
945 * to userspace pages.
946 *
947 * If this function is called from an interrupt gfp_mask() must be
948 * %GFP_ATOMIC.
949 *
950 * Returns 0 on success or a negative error code on failure
951 * to allocate kernel memory to copy to.
952 */
953int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
954{
955 int i;
956 int num_frags = skb_shinfo(skb)->nr_frags;
957 struct page *page, *head = NULL;
958 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
959
960 for (i = 0; i < num_frags; i++) {
961 u8 *vaddr;
962 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
963
964 page = alloc_page(gfp_mask);
965 if (!page) {
966 while (head) {
967 struct page *next = (struct page *)page_private(head);
968 put_page(head);
969 head = next;
970 }
971 return -ENOMEM;
972 }
973 vaddr = kmap_atomic(skb_frag_page(f));
974 memcpy(page_address(page),
975 vaddr + f->page_offset, skb_frag_size(f));
976 kunmap_atomic(vaddr);
977 set_page_private(page, (unsigned long)head);
978 head = page;
979 }
980
981 /* skb frags release userspace buffers */
982 for (i = 0; i < num_frags; i++)
983 skb_frag_unref(skb, i);
984
985 uarg->callback(uarg, false);
986
987 /* skb frags point to kernel buffers */
988 for (i = num_frags - 1; i >= 0; i--) {
989 __skb_fill_page_desc(skb, i, head, 0,
990 skb_shinfo(skb)->frags[i].size);
991 head = (struct page *)page_private(head);
992 }
993
994 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
995 return 0;
996}
997EXPORT_SYMBOL_GPL(skb_copy_ubufs);
998
999/**
1000 * skb_clone - duplicate an sk_buff
1001 * @skb: buffer to clone
1002 * @gfp_mask: allocation priority
1003 *
1004 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 * copies share the same packet data but not structure. The new
1006 * buffer has a reference count of 1. If the allocation fails the
1007 * function returns %NULL otherwise the new buffer is returned.
1008 *
1009 * If this function is called from an interrupt gfp_mask() must be
1010 * %GFP_ATOMIC.
1011 */
1012
1013struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014{
1015 struct sk_buff_fclones *fclones = container_of(skb,
1016 struct sk_buff_fclones,
1017 skb1);
1018 struct sk_buff *n;
1019
1020 if (skb_orphan_frags(skb, gfp_mask))
1021 return NULL;
1022
1023 if (skb->fclone == SKB_FCLONE_ORIG &&
1024 atomic_read(&fclones->fclone_ref) == 1) {
1025 n = &fclones->skb2;
1026 atomic_set(&fclones->fclone_ref, 2);
1027 } else {
1028 if (skb_pfmemalloc(skb))
1029 gfp_mask |= __GFP_MEMALLOC;
1030
1031 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032 if (!n)
1033 return NULL;
1034
1035 kmemcheck_annotate_bitfield(n, flags1);
1036 n->fclone = SKB_FCLONE_UNAVAILABLE;
1037 }
1038
1039 return __skb_clone(n, skb);
1040}
1041EXPORT_SYMBOL(skb_clone);
1042
1043static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044{
1045 /* Only adjust this if it actually is csum_start rather than csum */
1046 if (skb->ip_summed == CHECKSUM_PARTIAL)
1047 skb->csum_start += off;
1048 /* {transport,network,mac}_header and tail are relative to skb->head */
1049 skb->transport_header += off;
1050 skb->network_header += off;
1051 if (skb_mac_header_was_set(skb))
1052 skb->mac_header += off;
1053 skb->inner_transport_header += off;
1054 skb->inner_network_header += off;
1055 skb->inner_mac_header += off;
1056}
1057
1058static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059{
1060 __copy_skb_header(new, old);
1061
1062 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065}
1066
1067static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068{
1069 if (skb_pfmemalloc(skb))
1070 return SKB_ALLOC_RX;
1071 return 0;
1072}
1073
1074/**
1075 * skb_copy - create private copy of an sk_buff
1076 * @skb: buffer to copy
1077 * @gfp_mask: allocation priority
1078 *
1079 * Make a copy of both an &sk_buff and its data. This is used when the
1080 * caller wishes to modify the data and needs a private copy of the
1081 * data to alter. Returns %NULL on failure or the pointer to the buffer
1082 * on success. The returned buffer has a reference count of 1.
1083 *
1084 * As by-product this function converts non-linear &sk_buff to linear
1085 * one, so that &sk_buff becomes completely private and caller is allowed
1086 * to modify all the data of returned buffer. This means that this
1087 * function is not recommended for use in circumstances when only
1088 * header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092{
1093 int headerlen = skb_headroom(skb);
1094 unsigned int size = skb_end_offset(skb) + skb->data_len;
1095 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
1098 if (!n)
1099 return NULL;
1100
1101 /* Set the data pointer */
1102 skb_reserve(n, headerlen);
1103 /* Set the tail pointer and length */
1104 skb_put(n, skb->len);
1105
1106 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107 BUG();
1108
1109 copy_skb_header(n, skb);
1110 return n;
1111}
1112EXPORT_SYMBOL(skb_copy);
1113
1114/**
1115 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1116 * @skb: buffer to copy
1117 * @headroom: headroom of new skb
1118 * @gfp_mask: allocation priority
1119 * @fclone: if true allocate the copy of the skb from the fclone
1120 * cache instead of the head cache; it is recommended to set this
1121 * to true for the cases where the copy will likely be cloned
1122 *
1123 * Make a copy of both an &sk_buff and part of its data, located
1124 * in header. Fragmented data remain shared. This is used when
1125 * the caller wishes to modify only header of &sk_buff and needs
1126 * private copy of the header to alter. Returns %NULL on failure
1127 * or the pointer to the buffer on success.
1128 * The returned buffer has a reference count of 1.
1129 */
1130
1131struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132 gfp_t gfp_mask, bool fclone)
1133{
1134 unsigned int size = skb_headlen(skb) + headroom;
1135 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138 if (!n)
1139 goto out;
1140
1141 /* Set the data pointer */
1142 skb_reserve(n, headroom);
1143 /* Set the tail pointer and length */
1144 skb_put(n, skb_headlen(skb));
1145 /* Copy the bytes */
1146 skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148 n->truesize += skb->data_len;
1149 n->data_len = skb->data_len;
1150 n->len = skb->len;
1151
1152 if (skb_shinfo(skb)->nr_frags) {
1153 int i;
1154
1155 if (skb_orphan_frags(skb, gfp_mask)) {
1156 kfree_skb(n);
1157 n = NULL;
1158 goto out;
1159 }
1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162 skb_frag_ref(skb, i);
1163 }
1164 skb_shinfo(n)->nr_frags = i;
1165 }
1166
1167 if (skb_has_frag_list(skb)) {
1168 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169 skb_clone_fraglist(n);
1170 }
1171
1172 copy_skb_header(n, skb);
1173out:
1174 return n;
1175}
1176EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178/**
1179 * pskb_expand_head - reallocate header of &sk_buff
1180 * @skb: buffer to reallocate
1181 * @nhead: room to add at head
1182 * @ntail: room to add at tail
1183 * @gfp_mask: allocation priority
1184 *
1185 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 * reference count of 1. Returns zero in the case of success or error,
1188 * if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 * All the pointers pointing into skb header may change and must be
1191 * reloaded after call to this function.
1192 */
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195 gfp_t gfp_mask)
1196{
1197 int i;
1198 u8 *data;
1199 int size = nhead + skb_end_offset(skb) + ntail;
1200 long off;
1201
1202 BUG_ON(nhead < 0);
1203
1204 if (skb_shared(skb))
1205 BUG();
1206
1207 size = SKB_DATA_ALIGN(size);
1208
1209 if (skb_pfmemalloc(skb))
1210 gfp_mask |= __GFP_MEMALLOC;
1211 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212 gfp_mask, NUMA_NO_NODE, NULL);
1213 if (!data)
1214 goto nodata;
1215 size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217 /* Copy only real data... and, alas, header. This should be
1218 * optimized for the cases when header is void.
1219 */
1220 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222 memcpy((struct skb_shared_info *)(data + size),
1223 skb_shinfo(skb),
1224 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226 /*
1227 * if shinfo is shared we must drop the old head gracefully, but if it
1228 * is not we can just drop the old head and let the existing refcount
1229 * be since all we did is relocate the values
1230 */
1231 if (skb_cloned(skb)) {
1232 /* copy this zero copy skb frags */
1233 if (skb_orphan_frags(skb, gfp_mask))
1234 goto nofrags;
1235 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236 skb_frag_ref(skb, i);
1237
1238 if (skb_has_frag_list(skb))
1239 skb_clone_fraglist(skb);
1240
1241 skb_release_data(skb);
1242 } else {
1243 skb_free_head(skb);
1244 }
1245 off = (data + nhead) - skb->head;
1246
1247 skb->head = data;
1248 skb->head_frag = 0;
1249 skb->data += off;
1250#ifdef NET_SKBUFF_DATA_USES_OFFSET
1251 skb->end = size;
1252 off = nhead;
1253#else
1254 skb->end = skb->head + size;
1255#endif
1256 skb->tail += off;
1257 skb_headers_offset_update(skb, nhead);
1258 skb->cloned = 0;
1259 skb->hdr_len = 0;
1260 skb->nohdr = 0;
1261 atomic_set(&skb_shinfo(skb)->dataref, 1);
1262 return 0;
1263
1264nofrags:
1265 kfree(data);
1266nodata:
1267 return -ENOMEM;
1268}
1269EXPORT_SYMBOL(pskb_expand_head);
1270
1271/* Make private copy of skb with writable head and some headroom */
1272
1273struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274{
1275 struct sk_buff *skb2;
1276 int delta = headroom - skb_headroom(skb);
1277
1278 if (delta <= 0)
1279 skb2 = pskb_copy(skb, GFP_ATOMIC);
1280 else {
1281 skb2 = skb_clone(skb, GFP_ATOMIC);
1282 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283 GFP_ATOMIC)) {
1284 kfree_skb(skb2);
1285 skb2 = NULL;
1286 }
1287 }
1288 return skb2;
1289}
1290EXPORT_SYMBOL(skb_realloc_headroom);
1291
1292/**
1293 * skb_copy_expand - copy and expand sk_buff
1294 * @skb: buffer to copy
1295 * @newheadroom: new free bytes at head
1296 * @newtailroom: new free bytes at tail
1297 * @gfp_mask: allocation priority
1298 *
1299 * Make a copy of both an &sk_buff and its data and while doing so
1300 * allocate additional space.
1301 *
1302 * This is used when the caller wishes to modify the data and needs a
1303 * private copy of the data to alter as well as more space for new fields.
1304 * Returns %NULL on failure or the pointer to the buffer
1305 * on success. The returned buffer has a reference count of 1.
1306 *
1307 * You must pass %GFP_ATOMIC as the allocation priority if this function
1308 * is called from an interrupt.
1309 */
1310struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311 int newheadroom, int newtailroom,
1312 gfp_t gfp_mask)
1313{
1314 /*
1315 * Allocate the copy buffer
1316 */
1317 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318 gfp_mask, skb_alloc_rx_flag(skb),
1319 NUMA_NO_NODE);
1320 int oldheadroom = skb_headroom(skb);
1321 int head_copy_len, head_copy_off;
1322
1323 if (!n)
1324 return NULL;
1325
1326 skb_reserve(n, newheadroom);
1327
1328 /* Set the tail pointer and length */
1329 skb_put(n, skb->len);
1330
1331 head_copy_len = oldheadroom;
1332 head_copy_off = 0;
1333 if (newheadroom <= head_copy_len)
1334 head_copy_len = newheadroom;
1335 else
1336 head_copy_off = newheadroom - head_copy_len;
1337
1338 /* Copy the linear header and data. */
1339 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340 skb->len + head_copy_len))
1341 BUG();
1342
1343 copy_skb_header(n, skb);
1344
1345 skb_headers_offset_update(n, newheadroom - oldheadroom);
1346
1347 return n;
1348}
1349EXPORT_SYMBOL(skb_copy_expand);
1350
1351/**
1352 * skb_pad - zero pad the tail of an skb
1353 * @skb: buffer to pad
1354 * @pad: space to pad
1355 *
1356 * Ensure that a buffer is followed by a padding area that is zero
1357 * filled. Used by network drivers which may DMA or transfer data
1358 * beyond the buffer end onto the wire.
1359 *
1360 * May return error in out of memory cases. The skb is freed on error.
1361 */
1362
1363int skb_pad(struct sk_buff *skb, int pad)
1364{
1365 int err;
1366 int ntail;
1367
1368 /* If the skbuff is non linear tailroom is always zero.. */
1369 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370 memset(skb->data+skb->len, 0, pad);
1371 return 0;
1372 }
1373
1374 ntail = skb->data_len + pad - (skb->end - skb->tail);
1375 if (likely(skb_cloned(skb) || ntail > 0)) {
1376 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377 if (unlikely(err))
1378 goto free_skb;
1379 }
1380
1381 /* FIXME: The use of this function with non-linear skb's really needs
1382 * to be audited.
1383 */
1384 err = skb_linearize(skb);
1385 if (unlikely(err))
1386 goto free_skb;
1387
1388 memset(skb->data + skb->len, 0, pad);
1389 return 0;
1390
1391free_skb:
1392 kfree_skb(skb);
1393 return err;
1394}
1395EXPORT_SYMBOL(skb_pad);
1396
1397/**
1398 * pskb_put - add data to the tail of a potentially fragmented buffer
1399 * @skb: start of the buffer to use
1400 * @tail: tail fragment of the buffer to use
1401 * @len: amount of data to add
1402 *
1403 * This function extends the used data area of the potentially
1404 * fragmented buffer. @tail must be the last fragment of @skb -- or
1405 * @skb itself. If this would exceed the total buffer size the kernel
1406 * will panic. A pointer to the first byte of the extra data is
1407 * returned.
1408 */
1409
1410unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411{
1412 if (tail != skb) {
1413 skb->data_len += len;
1414 skb->len += len;
1415 }
1416 return skb_put(tail, len);
1417}
1418EXPORT_SYMBOL_GPL(pskb_put);
1419
1420/**
1421 * skb_put - add data to a buffer
1422 * @skb: buffer to use
1423 * @len: amount of data to add
1424 *
1425 * This function extends the used data area of the buffer. If this would
1426 * exceed the total buffer size the kernel will panic. A pointer to the
1427 * first byte of the extra data is returned.
1428 */
1429unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430{
1431 unsigned char *tmp = skb_tail_pointer(skb);
1432 SKB_LINEAR_ASSERT(skb);
1433 skb->tail += len;
1434 skb->len += len;
1435 if (unlikely(skb->tail > skb->end))
1436 skb_over_panic(skb, len, __builtin_return_address(0));
1437 return tmp;
1438}
1439EXPORT_SYMBOL(skb_put);
1440
1441/**
1442 * skb_push - add data to the start of a buffer
1443 * @skb: buffer to use
1444 * @len: amount of data to add
1445 *
1446 * This function extends the used data area of the buffer at the buffer
1447 * start. If this would exceed the total buffer headroom the kernel will
1448 * panic. A pointer to the first byte of the extra data is returned.
1449 */
1450unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451{
1452 skb->data -= len;
1453 skb->len += len;
1454 if (unlikely(skb->data<skb->head))
1455 skb_under_panic(skb, len, __builtin_return_address(0));
1456 return skb->data;
1457}
1458EXPORT_SYMBOL(skb_push);
1459
1460/**
1461 * skb_pull - remove data from the start of a buffer
1462 * @skb: buffer to use
1463 * @len: amount of data to remove
1464 *
1465 * This function removes data from the start of a buffer, returning
1466 * the memory to the headroom. A pointer to the next data in the buffer
1467 * is returned. Once the data has been pulled future pushes will overwrite
1468 * the old data.
1469 */
1470unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471{
1472 return skb_pull_inline(skb, len);
1473}
1474EXPORT_SYMBOL(skb_pull);
1475
1476/**
1477 * skb_trim - remove end from a buffer
1478 * @skb: buffer to alter
1479 * @len: new length
1480 *
1481 * Cut the length of a buffer down by removing data from the tail. If
1482 * the buffer is already under the length specified it is not modified.
1483 * The skb must be linear.
1484 */
1485void skb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487 if (skb->len > len)
1488 __skb_trim(skb, len);
1489}
1490EXPORT_SYMBOL(skb_trim);
1491
1492/* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496{
1497 struct sk_buff **fragp;
1498 struct sk_buff *frag;
1499 int offset = skb_headlen(skb);
1500 int nfrags = skb_shinfo(skb)->nr_frags;
1501 int i;
1502 int err;
1503
1504 if (skb_cloned(skb) &&
1505 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506 return err;
1507
1508 i = 0;
1509 if (offset >= len)
1510 goto drop_pages;
1511
1512 for (; i < nfrags; i++) {
1513 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515 if (end < len) {
1516 offset = end;
1517 continue;
1518 }
1519
1520 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522drop_pages:
1523 skb_shinfo(skb)->nr_frags = i;
1524
1525 for (; i < nfrags; i++)
1526 skb_frag_unref(skb, i);
1527
1528 if (skb_has_frag_list(skb))
1529 skb_drop_fraglist(skb);
1530 goto done;
1531 }
1532
1533 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534 fragp = &frag->next) {
1535 int end = offset + frag->len;
1536
1537 if (skb_shared(frag)) {
1538 struct sk_buff *nfrag;
1539
1540 nfrag = skb_clone(frag, GFP_ATOMIC);
1541 if (unlikely(!nfrag))
1542 return -ENOMEM;
1543
1544 nfrag->next = frag->next;
1545 consume_skb(frag);
1546 frag = nfrag;
1547 *fragp = frag;
1548 }
1549
1550 if (end < len) {
1551 offset = end;
1552 continue;
1553 }
1554
1555 if (end > len &&
1556 unlikely((err = pskb_trim(frag, len - offset))))
1557 return err;
1558
1559 if (frag->next)
1560 skb_drop_list(&frag->next);
1561 break;
1562 }
1563
1564done:
1565 if (len > skb_headlen(skb)) {
1566 skb->data_len -= skb->len - len;
1567 skb->len = len;
1568 } else {
1569 skb->len = len;
1570 skb->data_len = 0;
1571 skb_set_tail_pointer(skb, len);
1572 }
1573
1574 return 0;
1575}
1576EXPORT_SYMBOL(___pskb_trim);
1577
1578/**
1579 * __pskb_pull_tail - advance tail of skb header
1580 * @skb: buffer to reallocate
1581 * @delta: number of bytes to advance tail
1582 *
1583 * The function makes a sense only on a fragmented &sk_buff,
1584 * it expands header moving its tail forward and copying necessary
1585 * data from fragmented part.
1586 *
1587 * &sk_buff MUST have reference count of 1.
1588 *
1589 * Returns %NULL (and &sk_buff does not change) if pull failed
1590 * or value of new tail of skb in the case of success.
1591 *
1592 * All the pointers pointing into skb header may change and must be
1593 * reloaded after call to this function.
1594 */
1595
1596/* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604{
1605 /* If skb has not enough free space at tail, get new one
1606 * plus 128 bytes for future expansions. If we have enough
1607 * room at tail, reallocate without expansion only if skb is cloned.
1608 */
1609 int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611 if (eat > 0 || skb_cloned(skb)) {
1612 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613 GFP_ATOMIC))
1614 return NULL;
1615 }
1616
1617 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618 BUG();
1619
1620 /* Optimization: no fragments, no reasons to preestimate
1621 * size of pulled pages. Superb.
1622 */
1623 if (!skb_has_frag_list(skb))
1624 goto pull_pages;
1625
1626 /* Estimate size of pulled pages. */
1627 eat = delta;
1628 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631 if (size >= eat)
1632 goto pull_pages;
1633 eat -= size;
1634 }
1635
1636 /* If we need update frag list, we are in troubles.
1637 * Certainly, it possible to add an offset to skb data,
1638 * but taking into account that pulling is expected to
1639 * be very rare operation, it is worth to fight against
1640 * further bloating skb head and crucify ourselves here instead.
1641 * Pure masohism, indeed. 8)8)
1642 */
1643 if (eat) {
1644 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645 struct sk_buff *clone = NULL;
1646 struct sk_buff *insp = NULL;
1647
1648 do {
1649 BUG_ON(!list);
1650
1651 if (list->len <= eat) {
1652 /* Eaten as whole. */
1653 eat -= list->len;
1654 list = list->next;
1655 insp = list;
1656 } else {
1657 /* Eaten partially. */
1658
1659 if (skb_shared(list)) {
1660 /* Sucks! We need to fork list. :-( */
1661 clone = skb_clone(list, GFP_ATOMIC);
1662 if (!clone)
1663 return NULL;
1664 insp = list->next;
1665 list = clone;
1666 } else {
1667 /* This may be pulled without
1668 * problems. */
1669 insp = list;
1670 }
1671 if (!pskb_pull(list, eat)) {
1672 kfree_skb(clone);
1673 return NULL;
1674 }
1675 break;
1676 }
1677 } while (eat);
1678
1679 /* Free pulled out fragments. */
1680 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681 skb_shinfo(skb)->frag_list = list->next;
1682 kfree_skb(list);
1683 }
1684 /* And insert new clone at head. */
1685 if (clone) {
1686 clone->next = list;
1687 skb_shinfo(skb)->frag_list = clone;
1688 }
1689 }
1690 /* Success! Now we may commit changes to skb data. */
1691
1692pull_pages:
1693 eat = delta;
1694 k = 0;
1695 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698 if (size <= eat) {
1699 skb_frag_unref(skb, i);
1700 eat -= size;
1701 } else {
1702 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703 if (eat) {
1704 skb_shinfo(skb)->frags[k].page_offset += eat;
1705 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706 eat = 0;
1707 }
1708 k++;
1709 }
1710 }
1711 skb_shinfo(skb)->nr_frags = k;
1712
1713 skb->tail += delta;
1714 skb->data_len -= delta;
1715
1716 return skb_tail_pointer(skb);
1717}
1718EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720/**
1721 * skb_copy_bits - copy bits from skb to kernel buffer
1722 * @skb: source skb
1723 * @offset: offset in source
1724 * @to: destination buffer
1725 * @len: number of bytes to copy
1726 *
1727 * Copy the specified number of bytes from the source skb to the
1728 * destination buffer.
1729 *
1730 * CAUTION ! :
1731 * If its prototype is ever changed,
1732 * check arch/{*}/net/{*}.S files,
1733 * since it is called from BPF assembly code.
1734 */
1735int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736{
1737 int start = skb_headlen(skb);
1738 struct sk_buff *frag_iter;
1739 int i, copy;
1740
1741 if (offset > (int)skb->len - len)
1742 goto fault;
1743
1744 /* Copy header. */
1745 if ((copy = start - offset) > 0) {
1746 if (copy > len)
1747 copy = len;
1748 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749 if ((len -= copy) == 0)
1750 return 0;
1751 offset += copy;
1752 to += copy;
1753 }
1754
1755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756 int end;
1757 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759 WARN_ON(start > offset + len);
1760
1761 end = start + skb_frag_size(f);
1762 if ((copy = end - offset) > 0) {
1763 u8 *vaddr;
1764
1765 if (copy > len)
1766 copy = len;
1767
1768 vaddr = kmap_atomic(skb_frag_page(f));
1769 memcpy(to,
1770 vaddr + f->page_offset + offset - start,
1771 copy);
1772 kunmap_atomic(vaddr);
1773
1774 if ((len -= copy) == 0)
1775 return 0;
1776 offset += copy;
1777 to += copy;
1778 }
1779 start = end;
1780 }
1781
1782 skb_walk_frags(skb, frag_iter) {
1783 int end;
1784
1785 WARN_ON(start > offset + len);
1786
1787 end = start + frag_iter->len;
1788 if ((copy = end - offset) > 0) {
1789 if (copy > len)
1790 copy = len;
1791 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792 goto fault;
1793 if ((len -= copy) == 0)
1794 return 0;
1795 offset += copy;
1796 to += copy;
1797 }
1798 start = end;
1799 }
1800
1801 if (!len)
1802 return 0;
1803
1804fault:
1805 return -EFAULT;
1806}
1807EXPORT_SYMBOL(skb_copy_bits);
1808
1809/*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814{
1815 put_page(spd->pages[i]);
1816}
1817
1818static struct page *linear_to_page(struct page *page, unsigned int *len,
1819 unsigned int *offset,
1820 struct sock *sk)
1821{
1822 struct page_frag *pfrag = sk_page_frag(sk);
1823
1824 if (!sk_page_frag_refill(sk, pfrag))
1825 return NULL;
1826
1827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828
1829 memcpy(page_address(pfrag->page) + pfrag->offset,
1830 page_address(page) + *offset, *len);
1831 *offset = pfrag->offset;
1832 pfrag->offset += *len;
1833
1834 return pfrag->page;
1835}
1836
1837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838 struct page *page,
1839 unsigned int offset)
1840{
1841 return spd->nr_pages &&
1842 spd->pages[spd->nr_pages - 1] == page &&
1843 (spd->partial[spd->nr_pages - 1].offset +
1844 spd->partial[spd->nr_pages - 1].len == offset);
1845}
1846
1847/*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850static bool spd_fill_page(struct splice_pipe_desc *spd,
1851 struct pipe_inode_info *pipe, struct page *page,
1852 unsigned int *len, unsigned int offset,
1853 bool linear,
1854 struct sock *sk)
1855{
1856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857 return true;
1858
1859 if (linear) {
1860 page = linear_to_page(page, len, &offset, sk);
1861 if (!page)
1862 return true;
1863 }
1864 if (spd_can_coalesce(spd, page, offset)) {
1865 spd->partial[spd->nr_pages - 1].len += *len;
1866 return false;
1867 }
1868 get_page(page);
1869 spd->pages[spd->nr_pages] = page;
1870 spd->partial[spd->nr_pages].len = *len;
1871 spd->partial[spd->nr_pages].offset = offset;
1872 spd->nr_pages++;
1873
1874 return false;
1875}
1876
1877static bool __splice_segment(struct page *page, unsigned int poff,
1878 unsigned int plen, unsigned int *off,
1879 unsigned int *len,
1880 struct splice_pipe_desc *spd, bool linear,
1881 struct sock *sk,
1882 struct pipe_inode_info *pipe)
1883{
1884 if (!*len)
1885 return true;
1886
1887 /* skip this segment if already processed */
1888 if (*off >= plen) {
1889 *off -= plen;
1890 return false;
1891 }
1892
1893 /* ignore any bits we already processed */
1894 poff += *off;
1895 plen -= *off;
1896 *off = 0;
1897
1898 do {
1899 unsigned int flen = min(*len, plen);
1900
1901 if (spd_fill_page(spd, pipe, page, &flen, poff,
1902 linear, sk))
1903 return true;
1904 poff += flen;
1905 plen -= flen;
1906 *len -= flen;
1907 } while (*len && plen);
1908
1909 return false;
1910}
1911
1912/*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917 unsigned int *offset, unsigned int *len,
1918 struct splice_pipe_desc *spd, struct sock *sk)
1919{
1920 int seg;
1921 struct sk_buff *iter;
1922
1923 /* map the linear part :
1924 * If skb->head_frag is set, this 'linear' part is backed by a
1925 * fragment, and if the head is not shared with any clones then
1926 * we can avoid a copy since we own the head portion of this page.
1927 */
1928 if (__splice_segment(virt_to_page(skb->data),
1929 (unsigned long) skb->data & (PAGE_SIZE - 1),
1930 skb_headlen(skb),
1931 offset, len, spd,
1932 skb_head_is_locked(skb),
1933 sk, pipe))
1934 return true;
1935
1936 /*
1937 * then map the fragments
1938 */
1939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942 if (__splice_segment(skb_frag_page(f),
1943 f->page_offset, skb_frag_size(f),
1944 offset, len, spd, false, sk, pipe))
1945 return true;
1946 }
1947
1948 skb_walk_frags(skb, iter) {
1949 if (*offset >= iter->len) {
1950 *offset -= iter->len;
1951 continue;
1952 }
1953 /* __skb_splice_bits() only fails if the output has no room
1954 * left, so no point in going over the frag_list for the error
1955 * case.
1956 */
1957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958 return true;
1959 }
1960
1961 return false;
1962}
1963
1964ssize_t skb_socket_splice(struct sock *sk,
1965 struct pipe_inode_info *pipe,
1966 struct splice_pipe_desc *spd)
1967{
1968 int ret;
1969
1970 /* Drop the socket lock, otherwise we have reverse
1971 * locking dependencies between sk_lock and i_mutex
1972 * here as compared to sendfile(). We enter here
1973 * with the socket lock held, and splice_to_pipe() will
1974 * grab the pipe inode lock. For sendfile() emulation,
1975 * we call into ->sendpage() with the i_mutex lock held
1976 * and networking will grab the socket lock.
1977 */
1978 release_sock(sk);
1979 ret = splice_to_pipe(pipe, spd);
1980 lock_sock(sk);
1981
1982 return ret;
1983}
1984
1985/*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1988 */
1989int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990 struct pipe_inode_info *pipe, unsigned int tlen,
1991 unsigned int flags,
1992 ssize_t (*splice_cb)(struct sock *,
1993 struct pipe_inode_info *,
1994 struct splice_pipe_desc *))
1995{
1996 struct partial_page partial[MAX_SKB_FRAGS];
1997 struct page *pages[MAX_SKB_FRAGS];
1998 struct splice_pipe_desc spd = {
1999 .pages = pages,
2000 .partial = partial,
2001 .nr_pages_max = MAX_SKB_FRAGS,
2002 .flags = flags,
2003 .ops = &nosteal_pipe_buf_ops,
2004 .spd_release = sock_spd_release,
2005 };
2006 int ret = 0;
2007
2008 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009
2010 if (spd.nr_pages)
2011 ret = splice_cb(sk, pipe, &spd);
2012
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
2017/**
2018 * skb_store_bits - store bits from kernel buffer to skb
2019 * @skb: destination buffer
2020 * @offset: offset in destination
2021 * @from: source buffer
2022 * @len: number of bytes to copy
2023 *
2024 * Copy the specified number of bytes from the source buffer to the
2025 * destination skb. This function handles all the messy bits of
2026 * traversing fragment lists and such.
2027 */
2028
2029int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030{
2031 int start = skb_headlen(skb);
2032 struct sk_buff *frag_iter;
2033 int i, copy;
2034
2035 if (offset > (int)skb->len - len)
2036 goto fault;
2037
2038 if ((copy = start - offset) > 0) {
2039 if (copy > len)
2040 copy = len;
2041 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042 if ((len -= copy) == 0)
2043 return 0;
2044 offset += copy;
2045 from += copy;
2046 }
2047
2048 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050 int end;
2051
2052 WARN_ON(start > offset + len);
2053
2054 end = start + skb_frag_size(frag);
2055 if ((copy = end - offset) > 0) {
2056 u8 *vaddr;
2057
2058 if (copy > len)
2059 copy = len;
2060
2061 vaddr = kmap_atomic(skb_frag_page(frag));
2062 memcpy(vaddr + frag->page_offset + offset - start,
2063 from, copy);
2064 kunmap_atomic(vaddr);
2065
2066 if ((len -= copy) == 0)
2067 return 0;
2068 offset += copy;
2069 from += copy;
2070 }
2071 start = end;
2072 }
2073
2074 skb_walk_frags(skb, frag_iter) {
2075 int end;
2076
2077 WARN_ON(start > offset + len);
2078
2079 end = start + frag_iter->len;
2080 if ((copy = end - offset) > 0) {
2081 if (copy > len)
2082 copy = len;
2083 if (skb_store_bits(frag_iter, offset - start,
2084 from, copy))
2085 goto fault;
2086 if ((len -= copy) == 0)
2087 return 0;
2088 offset += copy;
2089 from += copy;
2090 }
2091 start = end;
2092 }
2093 if (!len)
2094 return 0;
2095
2096fault:
2097 return -EFAULT;
2098}
2099EXPORT_SYMBOL(skb_store_bits);
2100
2101/* Checksum skb data. */
2102__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103 __wsum csum, const struct skb_checksum_ops *ops)
2104{
2105 int start = skb_headlen(skb);
2106 int i, copy = start - offset;
2107 struct sk_buff *frag_iter;
2108 int pos = 0;
2109
2110 /* Checksum header. */
2111 if (copy > 0) {
2112 if (copy > len)
2113 copy = len;
2114 csum = ops->update(skb->data + offset, copy, csum);
2115 if ((len -= copy) == 0)
2116 return csum;
2117 offset += copy;
2118 pos = copy;
2119 }
2120
2121 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122 int end;
2123 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125 WARN_ON(start > offset + len);
2126
2127 end = start + skb_frag_size(frag);
2128 if ((copy = end - offset) > 0) {
2129 __wsum csum2;
2130 u8 *vaddr;
2131
2132 if (copy > len)
2133 copy = len;
2134 vaddr = kmap_atomic(skb_frag_page(frag));
2135 csum2 = ops->update(vaddr + frag->page_offset +
2136 offset - start, copy, 0);
2137 kunmap_atomic(vaddr);
2138 csum = ops->combine(csum, csum2, pos, copy);
2139 if (!(len -= copy))
2140 return csum;
2141 offset += copy;
2142 pos += copy;
2143 }
2144 start = end;
2145 }
2146
2147 skb_walk_frags(skb, frag_iter) {
2148 int end;
2149
2150 WARN_ON(start > offset + len);
2151
2152 end = start + frag_iter->len;
2153 if ((copy = end - offset) > 0) {
2154 __wsum csum2;
2155 if (copy > len)
2156 copy = len;
2157 csum2 = __skb_checksum(frag_iter, offset - start,
2158 copy, 0, ops);
2159 csum = ops->combine(csum, csum2, pos, copy);
2160 if ((len -= copy) == 0)
2161 return csum;
2162 offset += copy;
2163 pos += copy;
2164 }
2165 start = end;
2166 }
2167 BUG_ON(len);
2168
2169 return csum;
2170}
2171EXPORT_SYMBOL(__skb_checksum);
2172
2173__wsum skb_checksum(const struct sk_buff *skb, int offset,
2174 int len, __wsum csum)
2175{
2176 const struct skb_checksum_ops ops = {
2177 .update = csum_partial_ext,
2178 .combine = csum_block_add_ext,
2179 };
2180
2181 return __skb_checksum(skb, offset, len, csum, &ops);
2182}
2183EXPORT_SYMBOL(skb_checksum);
2184
2185/* Both of above in one bottle. */
2186
2187__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188 u8 *to, int len, __wsum csum)
2189{
2190 int start = skb_headlen(skb);
2191 int i, copy = start - offset;
2192 struct sk_buff *frag_iter;
2193 int pos = 0;
2194
2195 /* Copy header. */
2196 if (copy > 0) {
2197 if (copy > len)
2198 copy = len;
2199 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200 copy, csum);
2201 if ((len -= copy) == 0)
2202 return csum;
2203 offset += copy;
2204 to += copy;
2205 pos = copy;
2206 }
2207
2208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209 int end;
2210
2211 WARN_ON(start > offset + len);
2212
2213 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214 if ((copy = end - offset) > 0) {
2215 __wsum csum2;
2216 u8 *vaddr;
2217 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219 if (copy > len)
2220 copy = len;
2221 vaddr = kmap_atomic(skb_frag_page(frag));
2222 csum2 = csum_partial_copy_nocheck(vaddr +
2223 frag->page_offset +
2224 offset - start, to,
2225 copy, 0);
2226 kunmap_atomic(vaddr);
2227 csum = csum_block_add(csum, csum2, pos);
2228 if (!(len -= copy))
2229 return csum;
2230 offset += copy;
2231 to += copy;
2232 pos += copy;
2233 }
2234 start = end;
2235 }
2236
2237 skb_walk_frags(skb, frag_iter) {
2238 __wsum csum2;
2239 int end;
2240
2241 WARN_ON(start > offset + len);
2242
2243 end = start + frag_iter->len;
2244 if ((copy = end - offset) > 0) {
2245 if (copy > len)
2246 copy = len;
2247 csum2 = skb_copy_and_csum_bits(frag_iter,
2248 offset - start,
2249 to, copy, 0);
2250 csum = csum_block_add(csum, csum2, pos);
2251 if ((len -= copy) == 0)
2252 return csum;
2253 offset += copy;
2254 to += copy;
2255 pos += copy;
2256 }
2257 start = end;
2258 }
2259 BUG_ON(len);
2260 return csum;
2261}
2262EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
2264 /**
2265 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 * @from: source buffer
2267 *
2268 * Calculates the amount of linear headroom needed in the 'to' skb passed
2269 * into skb_zerocopy().
2270 */
2271unsigned int
2272skb_zerocopy_headlen(const struct sk_buff *from)
2273{
2274 unsigned int hlen = 0;
2275
2276 if (!from->head_frag ||
2277 skb_headlen(from) < L1_CACHE_BYTES ||
2278 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279 hlen = skb_headlen(from);
2280
2281 if (skb_has_frag_list(from))
2282 hlen = from->len;
2283
2284 return hlen;
2285}
2286EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288/**
2289 * skb_zerocopy - Zero copy skb to skb
2290 * @to: destination buffer
2291 * @from: source buffer
2292 * @len: number of bytes to copy from source buffer
2293 * @hlen: size of linear headroom in destination buffer
2294 *
2295 * Copies up to `len` bytes from `from` to `to` by creating references
2296 * to the frags in the source buffer.
2297 *
2298 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 * headroom in the `to` buffer.
2300 *
2301 * Return value:
2302 * 0: everything is OK
2303 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306int
2307skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308{
2309 int i, j = 0;
2310 int plen = 0; /* length of skb->head fragment */
2311 int ret;
2312 struct page *page;
2313 unsigned int offset;
2314
2315 BUG_ON(!from->head_frag && !hlen);
2316
2317 /* dont bother with small payloads */
2318 if (len <= skb_tailroom(to))
2319 return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321 if (hlen) {
2322 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323 if (unlikely(ret))
2324 return ret;
2325 len -= hlen;
2326 } else {
2327 plen = min_t(int, skb_headlen(from), len);
2328 if (plen) {
2329 page = virt_to_head_page(from->head);
2330 offset = from->data - (unsigned char *)page_address(page);
2331 __skb_fill_page_desc(to, 0, page, offset, plen);
2332 get_page(page);
2333 j = 1;
2334 len -= plen;
2335 }
2336 }
2337
2338 to->truesize += len + plen;
2339 to->len += len + plen;
2340 to->data_len += len + plen;
2341
2342 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343 skb_tx_error(from);
2344 return -ENOMEM;
2345 }
2346
2347 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348 if (!len)
2349 break;
2350 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352 len -= skb_shinfo(to)->frags[j].size;
2353 skb_frag_ref(to, j);
2354 j++;
2355 }
2356 skb_shinfo(to)->nr_frags = j;
2357
2358 return 0;
2359}
2360EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363{
2364 __wsum csum;
2365 long csstart;
2366
2367 if (skb->ip_summed == CHECKSUM_PARTIAL)
2368 csstart = skb_checksum_start_offset(skb);
2369 else
2370 csstart = skb_headlen(skb);
2371
2372 BUG_ON(csstart > skb_headlen(skb));
2373
2374 skb_copy_from_linear_data(skb, to, csstart);
2375
2376 csum = 0;
2377 if (csstart != skb->len)
2378 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379 skb->len - csstart, 0);
2380
2381 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382 long csstuff = csstart + skb->csum_offset;
2383
2384 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385 }
2386}
2387EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389/**
2390 * skb_dequeue - remove from the head of the queue
2391 * @list: list to dequeue from
2392 *
2393 * Remove the head of the list. The list lock is taken so the function
2394 * may be used safely with other locking list functions. The head item is
2395 * returned or %NULL if the list is empty.
2396 */
2397
2398struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399{
2400 unsigned long flags;
2401 struct sk_buff *result;
2402
2403 spin_lock_irqsave(&list->lock, flags);
2404 result = __skb_dequeue(list);
2405 spin_unlock_irqrestore(&list->lock, flags);
2406 return result;
2407}
2408EXPORT_SYMBOL(skb_dequeue);
2409
2410/**
2411 * skb_dequeue_tail - remove from the tail of the queue
2412 * @list: list to dequeue from
2413 *
2414 * Remove the tail of the list. The list lock is taken so the function
2415 * may be used safely with other locking list functions. The tail item is
2416 * returned or %NULL if the list is empty.
2417 */
2418struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420 unsigned long flags;
2421 struct sk_buff *result;
2422
2423 spin_lock_irqsave(&list->lock, flags);
2424 result = __skb_dequeue_tail(list);
2425 spin_unlock_irqrestore(&list->lock, flags);
2426 return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430/**
2431 * skb_queue_purge - empty a list
2432 * @list: list to empty
2433 *
2434 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 * the list and one reference dropped. This function takes the list
2436 * lock and is atomic with respect to other list locking functions.
2437 */
2438void skb_queue_purge(struct sk_buff_head *list)
2439{
2440 struct sk_buff *skb;
2441 while ((skb = skb_dequeue(list)) != NULL)
2442 kfree_skb(skb);
2443}
2444EXPORT_SYMBOL(skb_queue_purge);
2445
2446/**
2447 * skb_queue_head - queue a buffer at the list head
2448 * @list: list to use
2449 * @newsk: buffer to queue
2450 *
2451 * Queue a buffer at the start of the list. This function takes the
2452 * list lock and can be used safely with other locking &sk_buff functions
2453 * safely.
2454 *
2455 * A buffer cannot be placed on two lists at the same time.
2456 */
2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458{
2459 unsigned long flags;
2460
2461 spin_lock_irqsave(&list->lock, flags);
2462 __skb_queue_head(list, newsk);
2463 spin_unlock_irqrestore(&list->lock, flags);
2464}
2465EXPORT_SYMBOL(skb_queue_head);
2466
2467/**
2468 * skb_queue_tail - queue a buffer at the list tail
2469 * @list: list to use
2470 * @newsk: buffer to queue
2471 *
2472 * Queue a buffer at the tail of the list. This function takes the
2473 * list lock and can be used safely with other locking &sk_buff functions
2474 * safely.
2475 *
2476 * A buffer cannot be placed on two lists at the same time.
2477 */
2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479{
2480 unsigned long flags;
2481
2482 spin_lock_irqsave(&list->lock, flags);
2483 __skb_queue_tail(list, newsk);
2484 spin_unlock_irqrestore(&list->lock, flags);
2485}
2486EXPORT_SYMBOL(skb_queue_tail);
2487
2488/**
2489 * skb_unlink - remove a buffer from a list
2490 * @skb: buffer to remove
2491 * @list: list to use
2492 *
2493 * Remove a packet from a list. The list locks are taken and this
2494 * function is atomic with respect to other list locked calls
2495 *
2496 * You must know what list the SKB is on.
2497 */
2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499{
2500 unsigned long flags;
2501
2502 spin_lock_irqsave(&list->lock, flags);
2503 __skb_unlink(skb, list);
2504 spin_unlock_irqrestore(&list->lock, flags);
2505}
2506EXPORT_SYMBOL(skb_unlink);
2507
2508/**
2509 * skb_append - append a buffer
2510 * @old: buffer to insert after
2511 * @newsk: buffer to insert
2512 * @list: list to use
2513 *
2514 * Place a packet after a given packet in a list. The list locks are taken
2515 * and this function is atomic with respect to other list locked calls.
2516 * A buffer cannot be placed on two lists at the same time.
2517 */
2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519{
2520 unsigned long flags;
2521
2522 spin_lock_irqsave(&list->lock, flags);
2523 __skb_queue_after(list, old, newsk);
2524 spin_unlock_irqrestore(&list->lock, flags);
2525}
2526EXPORT_SYMBOL(skb_append);
2527
2528/**
2529 * skb_insert - insert a buffer
2530 * @old: buffer to insert before
2531 * @newsk: buffer to insert
2532 * @list: list to use
2533 *
2534 * Place a packet before a given packet in a list. The list locks are
2535 * taken and this function is atomic with respect to other list locked
2536 * calls.
2537 *
2538 * A buffer cannot be placed on two lists at the same time.
2539 */
2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541{
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(&list->lock, flags);
2545 __skb_insert(newsk, old->prev, old, list);
2546 spin_unlock_irqrestore(&list->lock, flags);
2547}
2548EXPORT_SYMBOL(skb_insert);
2549
2550static inline void skb_split_inside_header(struct sk_buff *skb,
2551 struct sk_buff* skb1,
2552 const u32 len, const int pos)
2553{
2554 int i;
2555
2556 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557 pos - len);
2558 /* And move data appendix as is. */
2559 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563 skb_shinfo(skb)->nr_frags = 0;
2564 skb1->data_len = skb->data_len;
2565 skb1->len += skb1->data_len;
2566 skb->data_len = 0;
2567 skb->len = len;
2568 skb_set_tail_pointer(skb, len);
2569}
2570
2571static inline void skb_split_no_header(struct sk_buff *skb,
2572 struct sk_buff* skb1,
2573 const u32 len, int pos)
2574{
2575 int i, k = 0;
2576 const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578 skb_shinfo(skb)->nr_frags = 0;
2579 skb1->len = skb1->data_len = skb->len - len;
2580 skb->len = len;
2581 skb->data_len = len - pos;
2582
2583 for (i = 0; i < nfrags; i++) {
2584 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586 if (pos + size > len) {
2587 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589 if (pos < len) {
2590 /* Split frag.
2591 * We have two variants in this case:
2592 * 1. Move all the frag to the second
2593 * part, if it is possible. F.e.
2594 * this approach is mandatory for TUX,
2595 * where splitting is expensive.
2596 * 2. Split is accurately. We make this.
2597 */
2598 skb_frag_ref(skb, i);
2599 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602 skb_shinfo(skb)->nr_frags++;
2603 }
2604 k++;
2605 } else
2606 skb_shinfo(skb)->nr_frags++;
2607 pos += size;
2608 }
2609 skb_shinfo(skb1)->nr_frags = k;
2610}
2611
2612/**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619{
2620 int pos = skb_headlen(skb);
2621
2622 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623 if (len < pos) /* Split line is inside header. */
2624 skb_split_inside_header(skb, skb1, len, pos);
2625 else /* Second chunk has no header, nothing to copy. */
2626 skb_split_no_header(skb, skb1, len, pos);
2627}
2628EXPORT_SYMBOL(skb_split);
2629
2630/* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634static int skb_prepare_for_shift(struct sk_buff *skb)
2635{
2636 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637}
2638
2639/**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658{
2659 int from, to, merge, todo;
2660 struct skb_frag_struct *fragfrom, *fragto;
2661
2662 BUG_ON(shiftlen > skb->len);
2663 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2664
2665 todo = shiftlen;
2666 from = 0;
2667 to = skb_shinfo(tgt)->nr_frags;
2668 fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670 /* Actual merge is delayed until the point when we know we can
2671 * commit all, so that we don't have to undo partial changes
2672 */
2673 if (!to ||
2674 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675 fragfrom->page_offset)) {
2676 merge = -1;
2677 } else {
2678 merge = to - 1;
2679
2680 todo -= skb_frag_size(fragfrom);
2681 if (todo < 0) {
2682 if (skb_prepare_for_shift(skb) ||
2683 skb_prepare_for_shift(tgt))
2684 return 0;
2685
2686 /* All previous frag pointers might be stale! */
2687 fragfrom = &skb_shinfo(skb)->frags[from];
2688 fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690 skb_frag_size_add(fragto, shiftlen);
2691 skb_frag_size_sub(fragfrom, shiftlen);
2692 fragfrom->page_offset += shiftlen;
2693
2694 goto onlymerged;
2695 }
2696
2697 from++;
2698 }
2699
2700 /* Skip full, not-fitting skb to avoid expensive operations */
2701 if ((shiftlen == skb->len) &&
2702 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703 return 0;
2704
2705 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706 return 0;
2707
2708 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709 if (to == MAX_SKB_FRAGS)
2710 return 0;
2711
2712 fragfrom = &skb_shinfo(skb)->frags[from];
2713 fragto = &skb_shinfo(tgt)->frags[to];
2714
2715 if (todo >= skb_frag_size(fragfrom)) {
2716 *fragto = *fragfrom;
2717 todo -= skb_frag_size(fragfrom);
2718 from++;
2719 to++;
2720
2721 } else {
2722 __skb_frag_ref(fragfrom);
2723 fragto->page = fragfrom->page;
2724 fragto->page_offset = fragfrom->page_offset;
2725 skb_frag_size_set(fragto, todo);
2726
2727 fragfrom->page_offset += todo;
2728 skb_frag_size_sub(fragfrom, todo);
2729 todo = 0;
2730
2731 to++;
2732 break;
2733 }
2734 }
2735
2736 /* Ready to "commit" this state change to tgt */
2737 skb_shinfo(tgt)->nr_frags = to;
2738
2739 if (merge >= 0) {
2740 fragfrom = &skb_shinfo(skb)->frags[0];
2741 fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744 __skb_frag_unref(fragfrom);
2745 }
2746
2747 /* Reposition in the original skb */
2748 to = 0;
2749 while (from < skb_shinfo(skb)->nr_frags)
2750 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751 skb_shinfo(skb)->nr_frags = to;
2752
2753 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755onlymerged:
2756 /* Most likely the tgt won't ever need its checksum anymore, skb on
2757 * the other hand might need it if it needs to be resent
2758 */
2759 tgt->ip_summed = CHECKSUM_PARTIAL;
2760 skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762 /* Yak, is it really working this way? Some helper please? */
2763 skb->len -= shiftlen;
2764 skb->data_len -= shiftlen;
2765 skb->truesize -= shiftlen;
2766 tgt->len += shiftlen;
2767 tgt->data_len += shiftlen;
2768 tgt->truesize += shiftlen;
2769
2770 return shiftlen;
2771}
2772
2773/**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784 unsigned int to, struct skb_seq_state *st)
2785{
2786 st->lower_offset = from;
2787 st->upper_offset = to;
2788 st->root_skb = st->cur_skb = skb;
2789 st->frag_idx = st->stepped_offset = 0;
2790 st->frag_data = NULL;
2791}
2792EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794/**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 * this limitation is the cost for zerocopy sequential
2813 * reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 * at the moment, state->root_skb could be replaced with
2817 * a stack for this purpose.
2818 */
2819unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820 struct skb_seq_state *st)
2821{
2822 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823 skb_frag_t *frag;
2824
2825 if (unlikely(abs_offset >= st->upper_offset)) {
2826 if (st->frag_data) {
2827 kunmap_atomic(st->frag_data);
2828 st->frag_data = NULL;
2829 }
2830 return 0;
2831 }
2832
2833next_skb:
2834 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836 if (abs_offset < block_limit && !st->frag_data) {
2837 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838 return block_limit - abs_offset;
2839 }
2840
2841 if (st->frag_idx == 0 && !st->frag_data)
2842 st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846 block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848 if (abs_offset < block_limit) {
2849 if (!st->frag_data)
2850 st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852 *data = (u8 *) st->frag_data + frag->page_offset +
2853 (abs_offset - st->stepped_offset);
2854
2855 return block_limit - abs_offset;
2856 }
2857
2858 if (st->frag_data) {
2859 kunmap_atomic(st->frag_data);
2860 st->frag_data = NULL;
2861 }
2862
2863 st->frag_idx++;
2864 st->stepped_offset += skb_frag_size(frag);
2865 }
2866
2867 if (st->frag_data) {
2868 kunmap_atomic(st->frag_data);
2869 st->frag_data = NULL;
2870 }
2871
2872 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874 st->frag_idx = 0;
2875 goto next_skb;
2876 } else if (st->cur_skb->next) {
2877 st->cur_skb = st->cur_skb->next;
2878 st->frag_idx = 0;
2879 goto next_skb;
2880 }
2881
2882 return 0;
2883}
2884EXPORT_SYMBOL(skb_seq_read);
2885
2886/**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893void skb_abort_seq_read(struct skb_seq_state *st)
2894{
2895 if (st->frag_data)
2896 kunmap_atomic(st->frag_data);
2897}
2898EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2901
2902static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903 struct ts_config *conf,
2904 struct ts_state *state)
2905{
2906 return skb_seq_read(offset, text, TS_SKB_CB(state));
2907}
2908
2909static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910{
2911 skb_abort_seq_read(TS_SKB_CB(state));
2912}
2913
2914/**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927 unsigned int to, struct ts_config *config)
2928{
2929 struct ts_state state;
2930 unsigned int ret;
2931
2932 config->get_next_block = skb_ts_get_next_block;
2933 config->finish = skb_ts_finish;
2934
2935 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937 ret = textsearch_find(config, &state);
2938 return (ret <= to - from ? ret : UINT_MAX);
2939}
2940EXPORT_SYMBOL(skb_find_text);
2941
2942/**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2952 */
2953int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954 int (*getfrag)(void *from, char *to, int offset,
2955 int len, int odd, struct sk_buff *skb),
2956 void *from, int length)
2957{
2958 int frg_cnt = skb_shinfo(skb)->nr_frags;
2959 int copy;
2960 int offset = 0;
2961 int ret;
2962 struct page_frag *pfrag = ¤t->task_frag;
2963
2964 do {
2965 /* Return error if we don't have space for new frag */
2966 if (frg_cnt >= MAX_SKB_FRAGS)
2967 return -EMSGSIZE;
2968
2969 if (!sk_page_frag_refill(sk, pfrag))
2970 return -ENOMEM;
2971
2972 /* copy the user data to page */
2973 copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976 offset, copy, 0, skb);
2977 if (ret < 0)
2978 return -EFAULT;
2979
2980 /* copy was successful so update the size parameters */
2981 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982 copy);
2983 frg_cnt++;
2984 pfrag->offset += copy;
2985 get_page(pfrag->page);
2986
2987 skb->truesize += copy;
2988 atomic_add(copy, &sk->sk_wmem_alloc);
2989 skb->len += copy;
2990 skb->data_len += copy;
2991 offset += copy;
2992 length -= copy;
2993
2994 } while (length > 0);
2995
2996 return 0;
2997}
2998EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001 int offset, size_t size)
3002{
3003 int i = skb_shinfo(skb)->nr_frags;
3004
3005 if (skb_can_coalesce(skb, i, page, offset)) {
3006 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007 } else if (i < MAX_SKB_FRAGS) {
3008 get_page(page);
3009 skb_fill_page_desc(skb, i, page, offset, size);
3010 } else {
3011 return -EMSGSIZE;
3012 }
3013
3014 return 0;
3015}
3016EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018/**
3019 * skb_push_rcsum - push skb and update receive checksum
3020 * @skb: buffer to update
3021 * @len: length of data pulled
3022 *
3023 * This function performs an skb_push on the packet and updates
3024 * the CHECKSUM_COMPLETE checksum. It should be used on
3025 * receive path processing instead of skb_push unless you know
3026 * that the checksum difference is zero (e.g., a valid IP header)
3027 * or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030{
3031 skb_push(skb, len);
3032 skb_postpush_rcsum(skb, skb->data, len);
3033 return skb->data;
3034}
3035
3036/**
3037 * skb_pull_rcsum - pull skb and update receive checksum
3038 * @skb: buffer to update
3039 * @len: length of data pulled
3040 *
3041 * This function performs an skb_pull on the packet and updates
3042 * the CHECKSUM_COMPLETE checksum. It should be used on
3043 * receive path processing instead of skb_pull unless you know
3044 * that the checksum difference is zero (e.g., a valid IP header)
3045 * or you are setting ip_summed to CHECKSUM_NONE.
3046 */
3047unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048{
3049 unsigned char *data = skb->data;
3050
3051 BUG_ON(len > skb->len);
3052 __skb_pull(skb, len);
3053 skb_postpull_rcsum(skb, data, len);
3054 return skb->data;
3055}
3056EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057
3058/**
3059 * skb_segment - Perform protocol segmentation on skb.
3060 * @head_skb: buffer to segment
3061 * @features: features for the output path (see dev->features)
3062 *
3063 * This function performs segmentation on the given skb. It returns
3064 * a pointer to the first in a list of new skbs for the segments.
3065 * In case of error it returns ERR_PTR(err).
3066 */
3067struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068 netdev_features_t features)
3069{
3070 struct sk_buff *segs = NULL;
3071 struct sk_buff *tail = NULL;
3072 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076 struct sk_buff *frag_skb = head_skb;
3077 unsigned int offset = doffset;
3078 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3079 unsigned int headroom;
3080 unsigned int len;
3081 __be16 proto;
3082 bool csum;
3083 int sg = !!(features & NETIF_F_SG);
3084 int nfrags = skb_shinfo(head_skb)->nr_frags;
3085 int err = -ENOMEM;
3086 int i = 0;
3087 int pos;
3088 int dummy;
3089
3090 __skb_push(head_skb, doffset);
3091 proto = skb_network_protocol(head_skb, &dummy);
3092 if (unlikely(!proto))
3093 return ERR_PTR(-EINVAL);
3094
3095 csum = !!can_checksum_protocol(features, proto);
3096
3097 headroom = skb_headroom(head_skb);
3098 pos = skb_headlen(head_skb);
3099
3100 do {
3101 struct sk_buff *nskb;
3102 skb_frag_t *nskb_frag;
3103 int hsize;
3104 int size;
3105
3106 len = head_skb->len - offset;
3107 if (len > mss)
3108 len = mss;
3109
3110 hsize = skb_headlen(head_skb) - offset;
3111 if (hsize < 0)
3112 hsize = 0;
3113 if (hsize > len || !sg)
3114 hsize = len;
3115
3116 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117 (skb_headlen(list_skb) == len || sg)) {
3118 BUG_ON(skb_headlen(list_skb) > len);
3119
3120 i = 0;
3121 nfrags = skb_shinfo(list_skb)->nr_frags;
3122 frag = skb_shinfo(list_skb)->frags;
3123 frag_skb = list_skb;
3124 pos += skb_headlen(list_skb);
3125
3126 while (pos < offset + len) {
3127 BUG_ON(i >= nfrags);
3128
3129 size = skb_frag_size(frag);
3130 if (pos + size > offset + len)
3131 break;
3132
3133 i++;
3134 pos += size;
3135 frag++;
3136 }
3137
3138 nskb = skb_clone(list_skb, GFP_ATOMIC);
3139 list_skb = list_skb->next;
3140
3141 if (unlikely(!nskb))
3142 goto err;
3143
3144 if (unlikely(pskb_trim(nskb, len))) {
3145 kfree_skb(nskb);
3146 goto err;
3147 }
3148
3149 hsize = skb_end_offset(nskb);
3150 if (skb_cow_head(nskb, doffset + headroom)) {
3151 kfree_skb(nskb);
3152 goto err;
3153 }
3154
3155 nskb->truesize += skb_end_offset(nskb) - hsize;
3156 skb_release_head_state(nskb);
3157 __skb_push(nskb, doffset);
3158 } else {
3159 nskb = __alloc_skb(hsize + doffset + headroom,
3160 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161 NUMA_NO_NODE);
3162
3163 if (unlikely(!nskb))
3164 goto err;
3165
3166 skb_reserve(nskb, headroom);
3167 __skb_put(nskb, doffset);
3168 }
3169
3170 if (segs)
3171 tail->next = nskb;
3172 else
3173 segs = nskb;
3174 tail = nskb;
3175
3176 __copy_skb_header(nskb, head_skb);
3177
3178 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179 skb_reset_mac_len(nskb);
3180
3181 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182 nskb->data - tnl_hlen,
3183 doffset + tnl_hlen);
3184
3185 if (nskb->len == len + doffset)
3186 goto perform_csum_check;
3187
3188 if (!sg) {
3189 if (!nskb->remcsum_offload)
3190 nskb->ip_summed = CHECKSUM_NONE;
3191 SKB_GSO_CB(nskb)->csum =
3192 skb_copy_and_csum_bits(head_skb, offset,
3193 skb_put(nskb, len),
3194 len, 0);
3195 SKB_GSO_CB(nskb)->csum_start =
3196 skb_headroom(nskb) + doffset;
3197 continue;
3198 }
3199
3200 nskb_frag = skb_shinfo(nskb)->frags;
3201
3202 skb_copy_from_linear_data_offset(head_skb, offset,
3203 skb_put(nskb, hsize), hsize);
3204
3205 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206 SKBTX_SHARED_FRAG;
3207
3208 while (pos < offset + len) {
3209 if (i >= nfrags) {
3210 BUG_ON(skb_headlen(list_skb));
3211
3212 i = 0;
3213 nfrags = skb_shinfo(list_skb)->nr_frags;
3214 frag = skb_shinfo(list_skb)->frags;
3215 frag_skb = list_skb;
3216
3217 BUG_ON(!nfrags);
3218
3219 list_skb = list_skb->next;
3220 }
3221
3222 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223 MAX_SKB_FRAGS)) {
3224 net_warn_ratelimited(
3225 "skb_segment: too many frags: %u %u\n",
3226 pos, mss);
3227 goto err;
3228 }
3229
3230 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231 goto err;
3232
3233 *nskb_frag = *frag;
3234 __skb_frag_ref(nskb_frag);
3235 size = skb_frag_size(nskb_frag);
3236
3237 if (pos < offset) {
3238 nskb_frag->page_offset += offset - pos;
3239 skb_frag_size_sub(nskb_frag, offset - pos);
3240 }
3241
3242 skb_shinfo(nskb)->nr_frags++;
3243
3244 if (pos + size <= offset + len) {
3245 i++;
3246 frag++;
3247 pos += size;
3248 } else {
3249 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250 goto skip_fraglist;
3251 }
3252
3253 nskb_frag++;
3254 }
3255
3256skip_fraglist:
3257 nskb->data_len = len - hsize;
3258 nskb->len += nskb->data_len;
3259 nskb->truesize += nskb->data_len;
3260
3261perform_csum_check:
3262 if (!csum) {
3263 if (skb_has_shared_frag(nskb)) {
3264 err = __skb_linearize(nskb);
3265 if (err)
3266 goto err;
3267 }
3268 if (!nskb->remcsum_offload)
3269 nskb->ip_summed = CHECKSUM_NONE;
3270 SKB_GSO_CB(nskb)->csum =
3271 skb_checksum(nskb, doffset,
3272 nskb->len - doffset, 0);
3273 SKB_GSO_CB(nskb)->csum_start =
3274 skb_headroom(nskb) + doffset;
3275 }
3276 } while ((offset += len) < head_skb->len);
3277
3278 /* Some callers want to get the end of the list.
3279 * Put it in segs->prev to avoid walking the list.
3280 * (see validate_xmit_skb_list() for example)
3281 */
3282 segs->prev = tail;
3283
3284 /* Following permits correct backpressure, for protocols
3285 * using skb_set_owner_w().
3286 * Idea is to tranfert ownership from head_skb to last segment.
3287 */
3288 if (head_skb->destructor == sock_wfree) {
3289 swap(tail->truesize, head_skb->truesize);
3290 swap(tail->destructor, head_skb->destructor);
3291 swap(tail->sk, head_skb->sk);
3292 }
3293 return segs;
3294
3295err:
3296 kfree_skb_list(segs);
3297 return ERR_PTR(err);
3298}
3299EXPORT_SYMBOL_GPL(skb_segment);
3300
3301int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3302{
3303 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3304 unsigned int offset = skb_gro_offset(skb);
3305 unsigned int headlen = skb_headlen(skb);
3306 unsigned int len = skb_gro_len(skb);
3307 struct sk_buff *lp, *p = *head;
3308 unsigned int delta_truesize;
3309
3310 if (unlikely(p->len + len >= 65536))
3311 return -E2BIG;
3312
3313 lp = NAPI_GRO_CB(p)->last;
3314 pinfo = skb_shinfo(lp);
3315
3316 if (headlen <= offset) {
3317 skb_frag_t *frag;
3318 skb_frag_t *frag2;
3319 int i = skbinfo->nr_frags;
3320 int nr_frags = pinfo->nr_frags + i;
3321
3322 if (nr_frags > MAX_SKB_FRAGS)
3323 goto merge;
3324
3325 offset -= headlen;
3326 pinfo->nr_frags = nr_frags;
3327 skbinfo->nr_frags = 0;
3328
3329 frag = pinfo->frags + nr_frags;
3330 frag2 = skbinfo->frags + i;
3331 do {
3332 *--frag = *--frag2;
3333 } while (--i);
3334
3335 frag->page_offset += offset;
3336 skb_frag_size_sub(frag, offset);
3337
3338 /* all fragments truesize : remove (head size + sk_buff) */
3339 delta_truesize = skb->truesize -
3340 SKB_TRUESIZE(skb_end_offset(skb));
3341
3342 skb->truesize -= skb->data_len;
3343 skb->len -= skb->data_len;
3344 skb->data_len = 0;
3345
3346 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3347 goto done;
3348 } else if (skb->head_frag) {
3349 int nr_frags = pinfo->nr_frags;
3350 skb_frag_t *frag = pinfo->frags + nr_frags;
3351 struct page *page = virt_to_head_page(skb->head);
3352 unsigned int first_size = headlen - offset;
3353 unsigned int first_offset;
3354
3355 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3356 goto merge;
3357
3358 first_offset = skb->data -
3359 (unsigned char *)page_address(page) +
3360 offset;
3361
3362 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3363
3364 frag->page.p = page;
3365 frag->page_offset = first_offset;
3366 skb_frag_size_set(frag, first_size);
3367
3368 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3369 /* We dont need to clear skbinfo->nr_frags here */
3370
3371 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3372 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3373 goto done;
3374 }
3375
3376merge:
3377 delta_truesize = skb->truesize;
3378 if (offset > headlen) {
3379 unsigned int eat = offset - headlen;
3380
3381 skbinfo->frags[0].page_offset += eat;
3382 skb_frag_size_sub(&skbinfo->frags[0], eat);
3383 skb->data_len -= eat;
3384 skb->len -= eat;
3385 offset = headlen;
3386 }
3387
3388 __skb_pull(skb, offset);
3389
3390 if (NAPI_GRO_CB(p)->last == p)
3391 skb_shinfo(p)->frag_list = skb;
3392 else
3393 NAPI_GRO_CB(p)->last->next = skb;
3394 NAPI_GRO_CB(p)->last = skb;
3395 __skb_header_release(skb);
3396 lp = p;
3397
3398done:
3399 NAPI_GRO_CB(p)->count++;
3400 p->data_len += len;
3401 p->truesize += delta_truesize;
3402 p->len += len;
3403 if (lp != p) {
3404 lp->data_len += len;
3405 lp->truesize += delta_truesize;
3406 lp->len += len;
3407 }
3408 NAPI_GRO_CB(skb)->same_flow = 1;
3409 return 0;
3410}
3411
3412void __init skb_init(void)
3413{
3414 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3415 sizeof(struct sk_buff),
3416 0,
3417 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3418 NULL);
3419 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3420 sizeof(struct sk_buff_fclones),
3421 0,
3422 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3423 NULL);
3424}
3425
3426/**
3427 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428 * @skb: Socket buffer containing the buffers to be mapped
3429 * @sg: The scatter-gather list to map into
3430 * @offset: The offset into the buffer's contents to start mapping
3431 * @len: Length of buffer space to be mapped
3432 *
3433 * Fill the specified scatter-gather list with mappings/pointers into a
3434 * region of the buffer space attached to a socket buffer.
3435 */
3436static int
3437__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3438{
3439 int start = skb_headlen(skb);
3440 int i, copy = start - offset;
3441 struct sk_buff *frag_iter;
3442 int elt = 0;
3443
3444 if (copy > 0) {
3445 if (copy > len)
3446 copy = len;
3447 sg_set_buf(sg, skb->data + offset, copy);
3448 elt++;
3449 if ((len -= copy) == 0)
3450 return elt;
3451 offset += copy;
3452 }
3453
3454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3455 int end;
3456
3457 WARN_ON(start > offset + len);
3458
3459 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460 if ((copy = end - offset) > 0) {
3461 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3462
3463 if (copy > len)
3464 copy = len;
3465 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3466 frag->page_offset+offset-start);
3467 elt++;
3468 if (!(len -= copy))
3469 return elt;
3470 offset += copy;
3471 }
3472 start = end;
3473 }
3474
3475 skb_walk_frags(skb, frag_iter) {
3476 int end;
3477
3478 WARN_ON(start > offset + len);
3479
3480 end = start + frag_iter->len;
3481 if ((copy = end - offset) > 0) {
3482 if (copy > len)
3483 copy = len;
3484 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3485 copy);
3486 if ((len -= copy) == 0)
3487 return elt;
3488 offset += copy;
3489 }
3490 start = end;
3491 }
3492 BUG_ON(len);
3493 return elt;
3494}
3495
3496/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497 * sglist without mark the sg which contain last skb data as the end.
3498 * So the caller can mannipulate sg list as will when padding new data after
3499 * the first call without calling sg_unmark_end to expend sg list.
3500 *
3501 * Scenario to use skb_to_sgvec_nomark:
3502 * 1. sg_init_table
3503 * 2. skb_to_sgvec_nomark(payload1)
3504 * 3. skb_to_sgvec_nomark(payload2)
3505 *
3506 * This is equivalent to:
3507 * 1. sg_init_table
3508 * 2. skb_to_sgvec(payload1)
3509 * 3. sg_unmark_end
3510 * 4. skb_to_sgvec(payload2)
3511 *
3512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513 * is more preferable.
3514 */
3515int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3516 int offset, int len)
3517{
3518 return __skb_to_sgvec(skb, sg, offset, len);
3519}
3520EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3521
3522int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3523{
3524 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3525
3526 sg_mark_end(&sg[nsg - 1]);
3527
3528 return nsg;
3529}
3530EXPORT_SYMBOL_GPL(skb_to_sgvec);
3531
3532/**
3533 * skb_cow_data - Check that a socket buffer's data buffers are writable
3534 * @skb: The socket buffer to check.
3535 * @tailbits: Amount of trailing space to be added
3536 * @trailer: Returned pointer to the skb where the @tailbits space begins
3537 *
3538 * Make sure that the data buffers attached to a socket buffer are
3539 * writable. If they are not, private copies are made of the data buffers
3540 * and the socket buffer is set to use these instead.
3541 *
3542 * If @tailbits is given, make sure that there is space to write @tailbits
3543 * bytes of data beyond current end of socket buffer. @trailer will be
3544 * set to point to the skb in which this space begins.
3545 *
3546 * The number of scatterlist elements required to completely map the
3547 * COW'd and extended socket buffer will be returned.
3548 */
3549int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3550{
3551 int copyflag;
3552 int elt;
3553 struct sk_buff *skb1, **skb_p;
3554
3555 /* If skb is cloned or its head is paged, reallocate
3556 * head pulling out all the pages (pages are considered not writable
3557 * at the moment even if they are anonymous).
3558 */
3559 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3560 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3561 return -ENOMEM;
3562
3563 /* Easy case. Most of packets will go this way. */
3564 if (!skb_has_frag_list(skb)) {
3565 /* A little of trouble, not enough of space for trailer.
3566 * This should not happen, when stack is tuned to generate
3567 * good frames. OK, on miss we reallocate and reserve even more
3568 * space, 128 bytes is fair. */
3569
3570 if (skb_tailroom(skb) < tailbits &&
3571 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3572 return -ENOMEM;
3573
3574 /* Voila! */
3575 *trailer = skb;
3576 return 1;
3577 }
3578
3579 /* Misery. We are in troubles, going to mincer fragments... */
3580
3581 elt = 1;
3582 skb_p = &skb_shinfo(skb)->frag_list;
3583 copyflag = 0;
3584
3585 while ((skb1 = *skb_p) != NULL) {
3586 int ntail = 0;
3587
3588 /* The fragment is partially pulled by someone,
3589 * this can happen on input. Copy it and everything
3590 * after it. */
3591
3592 if (skb_shared(skb1))
3593 copyflag = 1;
3594
3595 /* If the skb is the last, worry about trailer. */
3596
3597 if (skb1->next == NULL && tailbits) {
3598 if (skb_shinfo(skb1)->nr_frags ||
3599 skb_has_frag_list(skb1) ||
3600 skb_tailroom(skb1) < tailbits)
3601 ntail = tailbits + 128;
3602 }
3603
3604 if (copyflag ||
3605 skb_cloned(skb1) ||
3606 ntail ||
3607 skb_shinfo(skb1)->nr_frags ||
3608 skb_has_frag_list(skb1)) {
3609 struct sk_buff *skb2;
3610
3611 /* Fuck, we are miserable poor guys... */
3612 if (ntail == 0)
3613 skb2 = skb_copy(skb1, GFP_ATOMIC);
3614 else
3615 skb2 = skb_copy_expand(skb1,
3616 skb_headroom(skb1),
3617 ntail,
3618 GFP_ATOMIC);
3619 if (unlikely(skb2 == NULL))
3620 return -ENOMEM;
3621
3622 if (skb1->sk)
3623 skb_set_owner_w(skb2, skb1->sk);
3624
3625 /* Looking around. Are we still alive?
3626 * OK, link new skb, drop old one */
3627
3628 skb2->next = skb1->next;
3629 *skb_p = skb2;
3630 kfree_skb(skb1);
3631 skb1 = skb2;
3632 }
3633 elt++;
3634 *trailer = skb1;
3635 skb_p = &skb1->next;
3636 }
3637
3638 return elt;
3639}
3640EXPORT_SYMBOL_GPL(skb_cow_data);
3641
3642static void sock_rmem_free(struct sk_buff *skb)
3643{
3644 struct sock *sk = skb->sk;
3645
3646 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3647}
3648
3649/*
3650 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3651 */
3652int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3653{
3654 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3655 (unsigned int)sk->sk_rcvbuf)
3656 return -ENOMEM;
3657
3658 skb_orphan(skb);
3659 skb->sk = sk;
3660 skb->destructor = sock_rmem_free;
3661 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3662
3663 /* before exiting rcu section, make sure dst is refcounted */
3664 skb_dst_force(skb);
3665
3666 skb_queue_tail(&sk->sk_error_queue, skb);
3667 if (!sock_flag(sk, SOCK_DEAD))
3668 sk->sk_data_ready(sk);
3669 return 0;
3670}
3671EXPORT_SYMBOL(sock_queue_err_skb);
3672
3673struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3674{
3675 struct sk_buff_head *q = &sk->sk_error_queue;
3676 struct sk_buff *skb, *skb_next;
3677 unsigned long flags;
3678 int err = 0;
3679
3680 spin_lock_irqsave(&q->lock, flags);
3681 skb = __skb_dequeue(q);
3682 if (skb && (skb_next = skb_peek(q)))
3683 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3684 spin_unlock_irqrestore(&q->lock, flags);
3685
3686 sk->sk_err = err;
3687 if (err)
3688 sk->sk_error_report(sk);
3689
3690 return skb;
3691}
3692EXPORT_SYMBOL(sock_dequeue_err_skb);
3693
3694/**
3695 * skb_clone_sk - create clone of skb, and take reference to socket
3696 * @skb: the skb to clone
3697 *
3698 * This function creates a clone of a buffer that holds a reference on
3699 * sk_refcnt. Buffers created via this function are meant to be
3700 * returned using sock_queue_err_skb, or free via kfree_skb.
3701 *
3702 * When passing buffers allocated with this function to sock_queue_err_skb
3703 * it is necessary to wrap the call with sock_hold/sock_put in order to
3704 * prevent the socket from being released prior to being enqueued on
3705 * the sk_error_queue.
3706 */
3707struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3708{
3709 struct sock *sk = skb->sk;
3710 struct sk_buff *clone;
3711
3712 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3713 return NULL;
3714
3715 clone = skb_clone(skb, GFP_ATOMIC);
3716 if (!clone) {
3717 sock_put(sk);
3718 return NULL;
3719 }
3720
3721 clone->sk = sk;
3722 clone->destructor = sock_efree;
3723
3724 return clone;
3725}
3726EXPORT_SYMBOL(skb_clone_sk);
3727
3728static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3729 struct sock *sk,
3730 int tstype)
3731{
3732 struct sock_exterr_skb *serr;
3733 int err;
3734
3735 serr = SKB_EXT_ERR(skb);
3736 memset(serr, 0, sizeof(*serr));
3737 serr->ee.ee_errno = ENOMSG;
3738 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3739 serr->ee.ee_info = tstype;
3740 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3741 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3742 if (sk->sk_protocol == IPPROTO_TCP &&
3743 sk->sk_type == SOCK_STREAM)
3744 serr->ee.ee_data -= sk->sk_tskey;
3745 }
3746
3747 err = sock_queue_err_skb(sk, skb);
3748
3749 if (err)
3750 kfree_skb(skb);
3751}
3752
3753static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3754{
3755 bool ret;
3756
3757 if (likely(sysctl_tstamp_allow_data || tsonly))
3758 return true;
3759
3760 read_lock_bh(&sk->sk_callback_lock);
3761 ret = sk->sk_socket && sk->sk_socket->file &&
3762 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3763 read_unlock_bh(&sk->sk_callback_lock);
3764 return ret;
3765}
3766
3767void skb_complete_tx_timestamp(struct sk_buff *skb,
3768 struct skb_shared_hwtstamps *hwtstamps)
3769{
3770 struct sock *sk = skb->sk;
3771
3772 if (!skb_may_tx_timestamp(sk, false))
3773 return;
3774
3775 /* take a reference to prevent skb_orphan() from freeing the socket */
3776 sock_hold(sk);
3777
3778 *skb_hwtstamps(skb) = *hwtstamps;
3779 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3780
3781 sock_put(sk);
3782}
3783EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3784
3785void __skb_tstamp_tx(struct sk_buff *orig_skb,
3786 struct skb_shared_hwtstamps *hwtstamps,
3787 struct sock *sk, int tstype)
3788{
3789 struct sk_buff *skb;
3790 bool tsonly;
3791
3792 if (!sk)
3793 return;
3794
3795 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3796 if (!skb_may_tx_timestamp(sk, tsonly))
3797 return;
3798
3799 if (tsonly)
3800 skb = alloc_skb(0, GFP_ATOMIC);
3801 else
3802 skb = skb_clone(orig_skb, GFP_ATOMIC);
3803 if (!skb)
3804 return;
3805
3806 if (tsonly) {
3807 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3808 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3809 }
3810
3811 if (hwtstamps)
3812 *skb_hwtstamps(skb) = *hwtstamps;
3813 else
3814 skb->tstamp = ktime_get_real();
3815
3816 __skb_complete_tx_timestamp(skb, sk, tstype);
3817}
3818EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3819
3820void skb_tstamp_tx(struct sk_buff *orig_skb,
3821 struct skb_shared_hwtstamps *hwtstamps)
3822{
3823 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3824 SCM_TSTAMP_SND);
3825}
3826EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3827
3828void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3829{
3830 struct sock *sk = skb->sk;
3831 struct sock_exterr_skb *serr;
3832 int err;
3833
3834 skb->wifi_acked_valid = 1;
3835 skb->wifi_acked = acked;
3836
3837 serr = SKB_EXT_ERR(skb);
3838 memset(serr, 0, sizeof(*serr));
3839 serr->ee.ee_errno = ENOMSG;
3840 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3841
3842 /* take a reference to prevent skb_orphan() from freeing the socket */
3843 sock_hold(sk);
3844
3845 err = sock_queue_err_skb(sk, skb);
3846 if (err)
3847 kfree_skb(skb);
3848
3849 sock_put(sk);
3850}
3851EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3852
3853/**
3854 * skb_partial_csum_set - set up and verify partial csum values for packet
3855 * @skb: the skb to set
3856 * @start: the number of bytes after skb->data to start checksumming.
3857 * @off: the offset from start to place the checksum.
3858 *
3859 * For untrusted partially-checksummed packets, we need to make sure the values
3860 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3861 *
3862 * This function checks and sets those values and skb->ip_summed: if this
3863 * returns false you should drop the packet.
3864 */
3865bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3866{
3867 if (unlikely(start > skb_headlen(skb)) ||
3868 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3869 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870 start, off, skb_headlen(skb));
3871 return false;
3872 }
3873 skb->ip_summed = CHECKSUM_PARTIAL;
3874 skb->csum_start = skb_headroom(skb) + start;
3875 skb->csum_offset = off;
3876 skb_set_transport_header(skb, start);
3877 return true;
3878}
3879EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3880
3881static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3882 unsigned int max)
3883{
3884 if (skb_headlen(skb) >= len)
3885 return 0;
3886
3887 /* If we need to pullup then pullup to the max, so we
3888 * won't need to do it again.
3889 */
3890 if (max > skb->len)
3891 max = skb->len;
3892
3893 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3894 return -ENOMEM;
3895
3896 if (skb_headlen(skb) < len)
3897 return -EPROTO;
3898
3899 return 0;
3900}
3901
3902#define MAX_TCP_HDR_LEN (15 * 4)
3903
3904static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3905 typeof(IPPROTO_IP) proto,
3906 unsigned int off)
3907{
3908 switch (proto) {
3909 int err;
3910
3911 case IPPROTO_TCP:
3912 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3913 off + MAX_TCP_HDR_LEN);
3914 if (!err && !skb_partial_csum_set(skb, off,
3915 offsetof(struct tcphdr,
3916 check)))
3917 err = -EPROTO;
3918 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3919
3920 case IPPROTO_UDP:
3921 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3922 off + sizeof(struct udphdr));
3923 if (!err && !skb_partial_csum_set(skb, off,
3924 offsetof(struct udphdr,
3925 check)))
3926 err = -EPROTO;
3927 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3928 }
3929
3930 return ERR_PTR(-EPROTO);
3931}
3932
3933/* This value should be large enough to cover a tagged ethernet header plus
3934 * maximally sized IP and TCP or UDP headers.
3935 */
3936#define MAX_IP_HDR_LEN 128
3937
3938static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3939{
3940 unsigned int off;
3941 bool fragment;
3942 __sum16 *csum;
3943 int err;
3944
3945 fragment = false;
3946
3947 err = skb_maybe_pull_tail(skb,
3948 sizeof(struct iphdr),
3949 MAX_IP_HDR_LEN);
3950 if (err < 0)
3951 goto out;
3952
3953 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3954 fragment = true;
3955
3956 off = ip_hdrlen(skb);
3957
3958 err = -EPROTO;
3959
3960 if (fragment)
3961 goto out;
3962
3963 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3964 if (IS_ERR(csum))
3965 return PTR_ERR(csum);
3966
3967 if (recalculate)
3968 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3969 ip_hdr(skb)->daddr,
3970 skb->len - off,
3971 ip_hdr(skb)->protocol, 0);
3972 err = 0;
3973
3974out:
3975 return err;
3976}
3977
3978/* This value should be large enough to cover a tagged ethernet header plus
3979 * an IPv6 header, all options, and a maximal TCP or UDP header.
3980 */
3981#define MAX_IPV6_HDR_LEN 256
3982
3983#define OPT_HDR(type, skb, off) \
3984 (type *)(skb_network_header(skb) + (off))
3985
3986static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3987{
3988 int err;
3989 u8 nexthdr;
3990 unsigned int off;
3991 unsigned int len;
3992 bool fragment;
3993 bool done;
3994 __sum16 *csum;
3995
3996 fragment = false;
3997 done = false;
3998
3999 off = sizeof(struct ipv6hdr);
4000
4001 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4002 if (err < 0)
4003 goto out;
4004
4005 nexthdr = ipv6_hdr(skb)->nexthdr;
4006
4007 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4008 while (off <= len && !done) {
4009 switch (nexthdr) {
4010 case IPPROTO_DSTOPTS:
4011 case IPPROTO_HOPOPTS:
4012 case IPPROTO_ROUTING: {
4013 struct ipv6_opt_hdr *hp;
4014
4015 err = skb_maybe_pull_tail(skb,
4016 off +
4017 sizeof(struct ipv6_opt_hdr),
4018 MAX_IPV6_HDR_LEN);
4019 if (err < 0)
4020 goto out;
4021
4022 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4023 nexthdr = hp->nexthdr;
4024 off += ipv6_optlen(hp);
4025 break;
4026 }
4027 case IPPROTO_AH: {
4028 struct ip_auth_hdr *hp;
4029
4030 err = skb_maybe_pull_tail(skb,
4031 off +
4032 sizeof(struct ip_auth_hdr),
4033 MAX_IPV6_HDR_LEN);
4034 if (err < 0)
4035 goto out;
4036
4037 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4038 nexthdr = hp->nexthdr;
4039 off += ipv6_authlen(hp);
4040 break;
4041 }
4042 case IPPROTO_FRAGMENT: {
4043 struct frag_hdr *hp;
4044
4045 err = skb_maybe_pull_tail(skb,
4046 off +
4047 sizeof(struct frag_hdr),
4048 MAX_IPV6_HDR_LEN);
4049 if (err < 0)
4050 goto out;
4051
4052 hp = OPT_HDR(struct frag_hdr, skb, off);
4053
4054 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4055 fragment = true;
4056
4057 nexthdr = hp->nexthdr;
4058 off += sizeof(struct frag_hdr);
4059 break;
4060 }
4061 default:
4062 done = true;
4063 break;
4064 }
4065 }
4066
4067 err = -EPROTO;
4068
4069 if (!done || fragment)
4070 goto out;
4071
4072 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4073 if (IS_ERR(csum))
4074 return PTR_ERR(csum);
4075
4076 if (recalculate)
4077 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4078 &ipv6_hdr(skb)->daddr,
4079 skb->len - off, nexthdr, 0);
4080 err = 0;
4081
4082out:
4083 return err;
4084}
4085
4086/**
4087 * skb_checksum_setup - set up partial checksum offset
4088 * @skb: the skb to set up
4089 * @recalculate: if true the pseudo-header checksum will be recalculated
4090 */
4091int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4092{
4093 int err;
4094
4095 switch (skb->protocol) {
4096 case htons(ETH_P_IP):
4097 err = skb_checksum_setup_ipv4(skb, recalculate);
4098 break;
4099
4100 case htons(ETH_P_IPV6):
4101 err = skb_checksum_setup_ipv6(skb, recalculate);
4102 break;
4103
4104 default:
4105 err = -EPROTO;
4106 break;
4107 }
4108
4109 return err;
4110}
4111EXPORT_SYMBOL(skb_checksum_setup);
4112
4113/**
4114 * skb_checksum_maybe_trim - maybe trims the given skb
4115 * @skb: the skb to check
4116 * @transport_len: the data length beyond the network header
4117 *
4118 * Checks whether the given skb has data beyond the given transport length.
4119 * If so, returns a cloned skb trimmed to this transport length.
4120 * Otherwise returns the provided skb. Returns NULL in error cases
4121 * (e.g. transport_len exceeds skb length or out-of-memory).
4122 *
4123 * Caller needs to set the skb transport header and free any returned skb if it
4124 * differs from the provided skb.
4125 */
4126static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4127 unsigned int transport_len)
4128{
4129 struct sk_buff *skb_chk;
4130 unsigned int len = skb_transport_offset(skb) + transport_len;
4131 int ret;
4132
4133 if (skb->len < len)
4134 return NULL;
4135 else if (skb->len == len)
4136 return skb;
4137
4138 skb_chk = skb_clone(skb, GFP_ATOMIC);
4139 if (!skb_chk)
4140 return NULL;
4141
4142 ret = pskb_trim_rcsum(skb_chk, len);
4143 if (ret) {
4144 kfree_skb(skb_chk);
4145 return NULL;
4146 }
4147
4148 return skb_chk;
4149}
4150
4151/**
4152 * skb_checksum_trimmed - validate checksum of an skb
4153 * @skb: the skb to check
4154 * @transport_len: the data length beyond the network header
4155 * @skb_chkf: checksum function to use
4156 *
4157 * Applies the given checksum function skb_chkf to the provided skb.
4158 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4159 *
4160 * If the skb has data beyond the given transport length, then a
4161 * trimmed & cloned skb is checked and returned.
4162 *
4163 * Caller needs to set the skb transport header and free any returned skb if it
4164 * differs from the provided skb.
4165 */
4166struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4167 unsigned int transport_len,
4168 __sum16(*skb_chkf)(struct sk_buff *skb))
4169{
4170 struct sk_buff *skb_chk;
4171 unsigned int offset = skb_transport_offset(skb);
4172 __sum16 ret;
4173
4174 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4175 if (!skb_chk)
4176 goto err;
4177
4178 if (!pskb_may_pull(skb_chk, offset))
4179 goto err;
4180
4181 skb_pull_rcsum(skb_chk, offset);
4182 ret = skb_chkf(skb_chk);
4183 skb_push_rcsum(skb_chk, offset);
4184
4185 if (ret)
4186 goto err;
4187
4188 return skb_chk;
4189
4190err:
4191 if (skb_chk && skb_chk != skb)
4192 kfree_skb(skb_chk);
4193
4194 return NULL;
4195
4196}
4197EXPORT_SYMBOL(skb_checksum_trimmed);
4198
4199void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4200{
4201 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4202 skb->dev->name);
4203}
4204EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4205
4206void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4207{
4208 if (head_stolen) {
4209 skb_release_head_state(skb);
4210 kmem_cache_free(skbuff_head_cache, skb);
4211 } else {
4212 __kfree_skb(skb);
4213 }
4214}
4215EXPORT_SYMBOL(kfree_skb_partial);
4216
4217/**
4218 * skb_try_coalesce - try to merge skb to prior one
4219 * @to: prior buffer
4220 * @from: buffer to add
4221 * @fragstolen: pointer to boolean
4222 * @delta_truesize: how much more was allocated than was requested
4223 */
4224bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4225 bool *fragstolen, int *delta_truesize)
4226{
4227 int i, delta, len = from->len;
4228
4229 *fragstolen = false;
4230
4231 if (skb_cloned(to))
4232 return false;
4233
4234 if (len <= skb_tailroom(to)) {
4235 if (len)
4236 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4237 *delta_truesize = 0;
4238 return true;
4239 }
4240
4241 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4242 return false;
4243
4244 if (skb_headlen(from) != 0) {
4245 struct page *page;
4246 unsigned int offset;
4247
4248 if (skb_shinfo(to)->nr_frags +
4249 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4250 return false;
4251
4252 if (skb_head_is_locked(from))
4253 return false;
4254
4255 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4256
4257 page = virt_to_head_page(from->head);
4258 offset = from->data - (unsigned char *)page_address(page);
4259
4260 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4261 page, offset, skb_headlen(from));
4262 *fragstolen = true;
4263 } else {
4264 if (skb_shinfo(to)->nr_frags +
4265 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4266 return false;
4267
4268 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4269 }
4270
4271 WARN_ON_ONCE(delta < len);
4272
4273 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4274 skb_shinfo(from)->frags,
4275 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4276 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4277
4278 if (!skb_cloned(from))
4279 skb_shinfo(from)->nr_frags = 0;
4280
4281 /* if the skb is not cloned this does nothing
4282 * since we set nr_frags to 0.
4283 */
4284 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4285 skb_frag_ref(from, i);
4286
4287 to->truesize += delta;
4288 to->len += len;
4289 to->data_len += len;
4290
4291 *delta_truesize = delta;
4292 return true;
4293}
4294EXPORT_SYMBOL(skb_try_coalesce);
4295
4296/**
4297 * skb_scrub_packet - scrub an skb
4298 *
4299 * @skb: buffer to clean
4300 * @xnet: packet is crossing netns
4301 *
4302 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303 * into/from a tunnel. Some information have to be cleared during these
4304 * operations.
4305 * skb_scrub_packet can also be used to clean a skb before injecting it in
4306 * another namespace (@xnet == true). We have to clear all information in the
4307 * skb that could impact namespace isolation.
4308 */
4309void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4310{
4311 skb->tstamp.tv64 = 0;
4312 skb->pkt_type = PACKET_HOST;
4313 skb->skb_iif = 0;
4314 skb->ignore_df = 0;
4315 skb_dst_drop(skb);
4316 secpath_reset(skb);
4317 nf_reset(skb);
4318 nf_reset_trace(skb);
4319
4320 if (!xnet)
4321 return;
4322
4323 skb_orphan(skb);
4324 skb->mark = 0;
4325}
4326EXPORT_SYMBOL_GPL(skb_scrub_packet);
4327
4328/**
4329 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4330 *
4331 * @skb: GSO skb
4332 *
4333 * skb_gso_transport_seglen is used to determine the real size of the
4334 * individual segments, including Layer4 headers (TCP/UDP).
4335 *
4336 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4337 */
4338unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4339{
4340 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4341 unsigned int thlen = 0;
4342
4343 if (skb->encapsulation) {
4344 thlen = skb_inner_transport_header(skb) -
4345 skb_transport_header(skb);
4346
4347 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4348 thlen += inner_tcp_hdrlen(skb);
4349 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4350 thlen = tcp_hdrlen(skb);
4351 }
4352 /* UFO sets gso_size to the size of the fragmentation
4353 * payload, i.e. the size of the L4 (UDP) header is already
4354 * accounted for.
4355 */
4356 return thlen + shinfo->gso_size;
4357}
4358EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4359
4360static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4361{
4362 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4363 kfree_skb(skb);
4364 return NULL;
4365 }
4366
4367 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4368 2 * ETH_ALEN);
4369 skb->mac_header += VLAN_HLEN;
4370 return skb;
4371}
4372
4373struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4374{
4375 struct vlan_hdr *vhdr;
4376 u16 vlan_tci;
4377
4378 if (unlikely(skb_vlan_tag_present(skb))) {
4379 /* vlan_tci is already set-up so leave this for another time */
4380 return skb;
4381 }
4382
4383 skb = skb_share_check(skb, GFP_ATOMIC);
4384 if (unlikely(!skb))
4385 goto err_free;
4386
4387 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4388 goto err_free;
4389
4390 vhdr = (struct vlan_hdr *)skb->data;
4391 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4392 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4393
4394 skb_pull_rcsum(skb, VLAN_HLEN);
4395 vlan_set_encap_proto(skb, vhdr);
4396
4397 skb = skb_reorder_vlan_header(skb);
4398 if (unlikely(!skb))
4399 goto err_free;
4400
4401 skb_reset_network_header(skb);
4402 skb_reset_transport_header(skb);
4403 skb_reset_mac_len(skb);
4404
4405 return skb;
4406
4407err_free:
4408 kfree_skb(skb);
4409 return NULL;
4410}
4411EXPORT_SYMBOL(skb_vlan_untag);
4412
4413int skb_ensure_writable(struct sk_buff *skb, int write_len)
4414{
4415 if (!pskb_may_pull(skb, write_len))
4416 return -ENOMEM;
4417
4418 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4419 return 0;
4420
4421 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422}
4423EXPORT_SYMBOL(skb_ensure_writable);
4424
4425/* remove VLAN header from packet and update csum accordingly. */
4426static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4427{
4428 struct vlan_hdr *vhdr;
4429 unsigned int offset = skb->data - skb_mac_header(skb);
4430 int err;
4431
4432 __skb_push(skb, offset);
4433 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4434 if (unlikely(err))
4435 goto pull;
4436
4437 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4438
4439 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4440 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4441
4442 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4443 __skb_pull(skb, VLAN_HLEN);
4444
4445 vlan_set_encap_proto(skb, vhdr);
4446 skb->mac_header += VLAN_HLEN;
4447
4448 if (skb_network_offset(skb) < ETH_HLEN)
4449 skb_set_network_header(skb, ETH_HLEN);
4450
4451 skb_reset_mac_len(skb);
4452pull:
4453 __skb_pull(skb, offset);
4454
4455 return err;
4456}
4457
4458int skb_vlan_pop(struct sk_buff *skb)
4459{
4460 u16 vlan_tci;
4461 __be16 vlan_proto;
4462 int err;
4463
4464 if (likely(skb_vlan_tag_present(skb))) {
4465 skb->vlan_tci = 0;
4466 } else {
4467 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4468 skb->protocol != htons(ETH_P_8021AD)) ||
4469 skb->len < VLAN_ETH_HLEN))
4470 return 0;
4471
4472 err = __skb_vlan_pop(skb, &vlan_tci);
4473 if (err)
4474 return err;
4475 }
4476 /* move next vlan tag to hw accel tag */
4477 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4478 skb->protocol != htons(ETH_P_8021AD)) ||
4479 skb->len < VLAN_ETH_HLEN))
4480 return 0;
4481
4482 vlan_proto = skb->protocol;
4483 err = __skb_vlan_pop(skb, &vlan_tci);
4484 if (unlikely(err))
4485 return err;
4486
4487 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4488 return 0;
4489}
4490EXPORT_SYMBOL(skb_vlan_pop);
4491
4492int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4493{
4494 if (skb_vlan_tag_present(skb)) {
4495 unsigned int offset = skb->data - skb_mac_header(skb);
4496 int err;
4497
4498 /* __vlan_insert_tag expect skb->data pointing to mac header.
4499 * So change skb->data before calling it and change back to
4500 * original position later
4501 */
4502 __skb_push(skb, offset);
4503 err = __vlan_insert_tag(skb, skb->vlan_proto,
4504 skb_vlan_tag_get(skb));
4505 if (err) {
4506 __skb_pull(skb, offset);
4507 return err;
4508 }
4509
4510 skb->protocol = skb->vlan_proto;
4511 skb->mac_len += VLAN_HLEN;
4512
4513 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4514 __skb_pull(skb, offset);
4515 }
4516 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4517 return 0;
4518}
4519EXPORT_SYMBOL(skb_vlan_push);
4520
4521/**
4522 * alloc_skb_with_frags - allocate skb with page frags
4523 *
4524 * @header_len: size of linear part
4525 * @data_len: needed length in frags
4526 * @max_page_order: max page order desired.
4527 * @errcode: pointer to error code if any
4528 * @gfp_mask: allocation mask
4529 *
4530 * This can be used to allocate a paged skb, given a maximal order for frags.
4531 */
4532struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4533 unsigned long data_len,
4534 int max_page_order,
4535 int *errcode,
4536 gfp_t gfp_mask)
4537{
4538 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4539 unsigned long chunk;
4540 struct sk_buff *skb;
4541 struct page *page;
4542 gfp_t gfp_head;
4543 int i;
4544
4545 *errcode = -EMSGSIZE;
4546 /* Note this test could be relaxed, if we succeed to allocate
4547 * high order pages...
4548 */
4549 if (npages > MAX_SKB_FRAGS)
4550 return NULL;
4551
4552 gfp_head = gfp_mask;
4553 if (gfp_head & __GFP_DIRECT_RECLAIM)
4554 gfp_head |= __GFP_REPEAT;
4555
4556 *errcode = -ENOBUFS;
4557 skb = alloc_skb(header_len, gfp_head);
4558 if (!skb)
4559 return NULL;
4560
4561 skb->truesize += npages << PAGE_SHIFT;
4562
4563 for (i = 0; npages > 0; i++) {
4564 int order = max_page_order;
4565
4566 while (order) {
4567 if (npages >= 1 << order) {
4568 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4569 __GFP_COMP |
4570 __GFP_NOWARN |
4571 __GFP_NORETRY,
4572 order);
4573 if (page)
4574 goto fill_page;
4575 /* Do not retry other high order allocations */
4576 order = 1;
4577 max_page_order = 0;
4578 }
4579 order--;
4580 }
4581 page = alloc_page(gfp_mask);
4582 if (!page)
4583 goto failure;
4584fill_page:
4585 chunk = min_t(unsigned long, data_len,
4586 PAGE_SIZE << order);
4587 skb_fill_page_desc(skb, i, page, 0, chunk);
4588 data_len -= chunk;
4589 npages -= 1 << order;
4590 }
4591 return skb;
4592
4593failure:
4594 kfree_skb(skb);
4595 return NULL;
4596}
4597EXPORT_SYMBOL(alloc_skb_with_frags);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/hotdata.h>
73#include <net/ip6_checksum.h>
74#include <net/xfrm.h>
75#include <net/mpls.h>
76#include <net/mptcp.h>
77#include <net/mctp.h>
78#include <net/page_pool/helpers.h>
79#include <net/dropreason.h>
80
81#include <linux/uaccess.h>
82#include <trace/events/skb.h>
83#include <linux/highmem.h>
84#include <linux/capability.h>
85#include <linux/user_namespace.h>
86#include <linux/indirect_call_wrapper.h>
87#include <linux/textsearch.h>
88
89#include "dev.h"
90#include "sock_destructor.h"
91
92#ifdef CONFIG_SKB_EXTENSIONS
93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94#endif
95
96#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
97
98/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
99 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
100 * size, and we can differentiate heads from skb_small_head_cache
101 * vs system slabs by looking at their size (skb_end_offset()).
102 */
103#define SKB_SMALL_HEAD_CACHE_SIZE \
104 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
105 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
106 SKB_SMALL_HEAD_SIZE)
107
108#define SKB_SMALL_HEAD_HEADROOM \
109 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
110
111int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
112EXPORT_SYMBOL(sysctl_max_skb_frags);
113
114/* kcm_write_msgs() relies on casting paged frags to bio_vec to use
115 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
116 * netmem is a page.
117 */
118static_assert(offsetof(struct bio_vec, bv_page) ==
119 offsetof(skb_frag_t, netmem));
120static_assert(sizeof_field(struct bio_vec, bv_page) ==
121 sizeof_field(skb_frag_t, netmem));
122
123static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
124static_assert(sizeof_field(struct bio_vec, bv_len) ==
125 sizeof_field(skb_frag_t, len));
126
127static_assert(offsetof(struct bio_vec, bv_offset) ==
128 offsetof(skb_frag_t, offset));
129static_assert(sizeof_field(struct bio_vec, bv_offset) ==
130 sizeof_field(skb_frag_t, offset));
131
132#undef FN
133#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
134static const char * const drop_reasons[] = {
135 [SKB_CONSUMED] = "CONSUMED",
136 DEFINE_DROP_REASON(FN, FN)
137};
138
139static const struct drop_reason_list drop_reasons_core = {
140 .reasons = drop_reasons,
141 .n_reasons = ARRAY_SIZE(drop_reasons),
142};
143
144const struct drop_reason_list __rcu *
145drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
146 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
147};
148EXPORT_SYMBOL(drop_reasons_by_subsys);
149
150/**
151 * drop_reasons_register_subsys - register another drop reason subsystem
152 * @subsys: the subsystem to register, must not be the core
153 * @list: the list of drop reasons within the subsystem, must point to
154 * a statically initialized list
155 */
156void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
157 const struct drop_reason_list *list)
158{
159 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
160 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
161 "invalid subsystem %d\n", subsys))
162 return;
163
164 /* must point to statically allocated memory, so INIT is OK */
165 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
166}
167EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
168
169/**
170 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
171 * @subsys: the subsystem to remove, must not be the core
172 *
173 * Note: This will synchronize_rcu() to ensure no users when it returns.
174 */
175void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
176{
177 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
178 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
179 "invalid subsystem %d\n", subsys))
180 return;
181
182 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
183
184 synchronize_rcu();
185}
186EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
187
188/**
189 * skb_panic - private function for out-of-line support
190 * @skb: buffer
191 * @sz: size
192 * @addr: address
193 * @msg: skb_over_panic or skb_under_panic
194 *
195 * Out-of-line support for skb_put() and skb_push().
196 * Called via the wrapper skb_over_panic() or skb_under_panic().
197 * Keep out of line to prevent kernel bloat.
198 * __builtin_return_address is not used because it is not always reliable.
199 */
200static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
201 const char msg[])
202{
203 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
204 msg, addr, skb->len, sz, skb->head, skb->data,
205 (unsigned long)skb->tail, (unsigned long)skb->end,
206 skb->dev ? skb->dev->name : "<NULL>");
207 BUG();
208}
209
210static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
211{
212 skb_panic(skb, sz, addr, __func__);
213}
214
215static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
216{
217 skb_panic(skb, sz, addr, __func__);
218}
219
220#define NAPI_SKB_CACHE_SIZE 64
221#define NAPI_SKB_CACHE_BULK 16
222#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
223
224#if PAGE_SIZE == SZ_4K
225
226#define NAPI_HAS_SMALL_PAGE_FRAG 1
227#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
228
229/* specialized page frag allocator using a single order 0 page
230 * and slicing it into 1K sized fragment. Constrained to systems
231 * with a very limited amount of 1K fragments fitting a single
232 * page - to avoid excessive truesize underestimation
233 */
234
235struct page_frag_1k {
236 void *va;
237 u16 offset;
238 bool pfmemalloc;
239};
240
241static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
242{
243 struct page *page;
244 int offset;
245
246 offset = nc->offset - SZ_1K;
247 if (likely(offset >= 0))
248 goto use_frag;
249
250 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
251 if (!page)
252 return NULL;
253
254 nc->va = page_address(page);
255 nc->pfmemalloc = page_is_pfmemalloc(page);
256 offset = PAGE_SIZE - SZ_1K;
257 page_ref_add(page, offset / SZ_1K);
258
259use_frag:
260 nc->offset = offset;
261 return nc->va + offset;
262}
263#else
264
265/* the small page is actually unused in this build; add dummy helpers
266 * to please the compiler and avoid later preprocessor's conditionals
267 */
268#define NAPI_HAS_SMALL_PAGE_FRAG 0
269#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
270
271struct page_frag_1k {
272};
273
274static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
275{
276 return NULL;
277}
278
279#endif
280
281struct napi_alloc_cache {
282 struct page_frag_cache page;
283 struct page_frag_1k page_small;
284 unsigned int skb_count;
285 void *skb_cache[NAPI_SKB_CACHE_SIZE];
286};
287
288static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
290
291/* Double check that napi_get_frags() allocates skbs with
292 * skb->head being backed by slab, not a page fragment.
293 * This is to make sure bug fixed in 3226b158e67c
294 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
295 * does not accidentally come back.
296 */
297void napi_get_frags_check(struct napi_struct *napi)
298{
299 struct sk_buff *skb;
300
301 local_bh_disable();
302 skb = napi_get_frags(napi);
303 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
304 napi_free_frags(napi);
305 local_bh_enable();
306}
307
308void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
309{
310 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
311
312 fragsz = SKB_DATA_ALIGN(fragsz);
313
314 return __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
315 align_mask);
316}
317EXPORT_SYMBOL(__napi_alloc_frag_align);
318
319void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
320{
321 void *data;
322
323 fragsz = SKB_DATA_ALIGN(fragsz);
324 if (in_hardirq() || irqs_disabled()) {
325 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
326
327 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
328 align_mask);
329 } else {
330 struct napi_alloc_cache *nc;
331
332 local_bh_disable();
333 nc = this_cpu_ptr(&napi_alloc_cache);
334 data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
335 align_mask);
336 local_bh_enable();
337 }
338 return data;
339}
340EXPORT_SYMBOL(__netdev_alloc_frag_align);
341
342static struct sk_buff *napi_skb_cache_get(void)
343{
344 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
345 struct sk_buff *skb;
346
347 if (unlikely(!nc->skb_count)) {
348 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
349 GFP_ATOMIC,
350 NAPI_SKB_CACHE_BULK,
351 nc->skb_cache);
352 if (unlikely(!nc->skb_count))
353 return NULL;
354 }
355
356 skb = nc->skb_cache[--nc->skb_count];
357 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
358
359 return skb;
360}
361
362static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
363 unsigned int size)
364{
365 struct skb_shared_info *shinfo;
366
367 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
368
369 /* Assumes caller memset cleared SKB */
370 skb->truesize = SKB_TRUESIZE(size);
371 refcount_set(&skb->users, 1);
372 skb->head = data;
373 skb->data = data;
374 skb_reset_tail_pointer(skb);
375 skb_set_end_offset(skb, size);
376 skb->mac_header = (typeof(skb->mac_header))~0U;
377 skb->transport_header = (typeof(skb->transport_header))~0U;
378 skb->alloc_cpu = raw_smp_processor_id();
379 /* make sure we initialize shinfo sequentially */
380 shinfo = skb_shinfo(skb);
381 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
382 atomic_set(&shinfo->dataref, 1);
383
384 skb_set_kcov_handle(skb, kcov_common_handle());
385}
386
387static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
388 unsigned int *size)
389{
390 void *resized;
391
392 /* Must find the allocation size (and grow it to match). */
393 *size = ksize(data);
394 /* krealloc() will immediately return "data" when
395 * "ksize(data)" is requested: it is the existing upper
396 * bounds. As a result, GFP_ATOMIC will be ignored. Note
397 * that this "new" pointer needs to be passed back to the
398 * caller for use so the __alloc_size hinting will be
399 * tracked correctly.
400 */
401 resized = krealloc(data, *size, GFP_ATOMIC);
402 WARN_ON_ONCE(resized != data);
403 return resized;
404}
405
406/* build_skb() variant which can operate on slab buffers.
407 * Note that this should be used sparingly as slab buffers
408 * cannot be combined efficiently by GRO!
409 */
410struct sk_buff *slab_build_skb(void *data)
411{
412 struct sk_buff *skb;
413 unsigned int size;
414
415 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
416 if (unlikely(!skb))
417 return NULL;
418
419 memset(skb, 0, offsetof(struct sk_buff, tail));
420 data = __slab_build_skb(skb, data, &size);
421 __finalize_skb_around(skb, data, size);
422
423 return skb;
424}
425EXPORT_SYMBOL(slab_build_skb);
426
427/* Caller must provide SKB that is memset cleared */
428static void __build_skb_around(struct sk_buff *skb, void *data,
429 unsigned int frag_size)
430{
431 unsigned int size = frag_size;
432
433 /* frag_size == 0 is considered deprecated now. Callers
434 * using slab buffer should use slab_build_skb() instead.
435 */
436 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
437 data = __slab_build_skb(skb, data, &size);
438
439 __finalize_skb_around(skb, data, size);
440}
441
442/**
443 * __build_skb - build a network buffer
444 * @data: data buffer provided by caller
445 * @frag_size: size of data (must not be 0)
446 *
447 * Allocate a new &sk_buff. Caller provides space holding head and
448 * skb_shared_info. @data must have been allocated from the page
449 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
450 * allocation is deprecated, and callers should use slab_build_skb()
451 * instead.)
452 * The return is the new skb buffer.
453 * On a failure the return is %NULL, and @data is not freed.
454 * Notes :
455 * Before IO, driver allocates only data buffer where NIC put incoming frame
456 * Driver should add room at head (NET_SKB_PAD) and
457 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
458 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
459 * before giving packet to stack.
460 * RX rings only contains data buffers, not full skbs.
461 */
462struct sk_buff *__build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb;
465
466 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
467 if (unlikely(!skb))
468 return NULL;
469
470 memset(skb, 0, offsetof(struct sk_buff, tail));
471 __build_skb_around(skb, data, frag_size);
472
473 return skb;
474}
475
476/* build_skb() is wrapper over __build_skb(), that specifically
477 * takes care of skb->head and skb->pfmemalloc
478 */
479struct sk_buff *build_skb(void *data, unsigned int frag_size)
480{
481 struct sk_buff *skb = __build_skb(data, frag_size);
482
483 if (likely(skb && frag_size)) {
484 skb->head_frag = 1;
485 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 }
487 return skb;
488}
489EXPORT_SYMBOL(build_skb);
490
491/**
492 * build_skb_around - build a network buffer around provided skb
493 * @skb: sk_buff provide by caller, must be memset cleared
494 * @data: data buffer provided by caller
495 * @frag_size: size of data
496 */
497struct sk_buff *build_skb_around(struct sk_buff *skb,
498 void *data, unsigned int frag_size)
499{
500 if (unlikely(!skb))
501 return NULL;
502
503 __build_skb_around(skb, data, frag_size);
504
505 if (frag_size) {
506 skb->head_frag = 1;
507 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 }
509 return skb;
510}
511EXPORT_SYMBOL(build_skb_around);
512
513/**
514 * __napi_build_skb - build a network buffer
515 * @data: data buffer provided by caller
516 * @frag_size: size of data
517 *
518 * Version of __build_skb() that uses NAPI percpu caches to obtain
519 * skbuff_head instead of inplace allocation.
520 *
521 * Returns a new &sk_buff on success, %NULL on allocation failure.
522 */
523static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524{
525 struct sk_buff *skb;
526
527 skb = napi_skb_cache_get();
528 if (unlikely(!skb))
529 return NULL;
530
531 memset(skb, 0, offsetof(struct sk_buff, tail));
532 __build_skb_around(skb, data, frag_size);
533
534 return skb;
535}
536
537/**
538 * napi_build_skb - build a network buffer
539 * @data: data buffer provided by caller
540 * @frag_size: size of data
541 *
542 * Version of __napi_build_skb() that takes care of skb->head_frag
543 * and skb->pfmemalloc when the data is a page or page fragment.
544 *
545 * Returns a new &sk_buff on success, %NULL on allocation failure.
546 */
547struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548{
549 struct sk_buff *skb = __napi_build_skb(data, frag_size);
550
551 if (likely(skb) && frag_size) {
552 skb->head_frag = 1;
553 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 }
555
556 return skb;
557}
558EXPORT_SYMBOL(napi_build_skb);
559
560/*
561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562 * the caller if emergency pfmemalloc reserves are being used. If it is and
563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564 * may be used. Otherwise, the packet data may be discarded until enough
565 * memory is free
566 */
567static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 bool *pfmemalloc)
569{
570 bool ret_pfmemalloc = false;
571 size_t obj_size;
572 void *obj;
573
574 obj_size = SKB_HEAD_ALIGN(*size);
575 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 node);
580 *size = SKB_SMALL_HEAD_CACHE_SIZE;
581 if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 goto out;
583 /* Try again but now we are using pfmemalloc reserves */
584 ret_pfmemalloc = true;
585 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 goto out;
587 }
588
589 obj_size = kmalloc_size_roundup(obj_size);
590 /* The following cast might truncate high-order bits of obj_size, this
591 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 */
593 *size = (unsigned int)obj_size;
594
595 /*
596 * Try a regular allocation, when that fails and we're not entitled
597 * to the reserves, fail.
598 */
599 obj = kmalloc_node_track_caller(obj_size,
600 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 node);
602 if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 goto out;
604
605 /* Try again but now we are using pfmemalloc reserves */
606 ret_pfmemalloc = true;
607 obj = kmalloc_node_track_caller(obj_size, flags, node);
608
609out:
610 if (pfmemalloc)
611 *pfmemalloc = ret_pfmemalloc;
612
613 return obj;
614}
615
616/* Allocate a new skbuff. We do this ourselves so we can fill in a few
617 * 'private' fields and also do memory statistics to find all the
618 * [BEEP] leaks.
619 *
620 */
621
622/**
623 * __alloc_skb - allocate a network buffer
624 * @size: size to allocate
625 * @gfp_mask: allocation mask
626 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627 * instead of head cache and allocate a cloned (child) skb.
628 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629 * allocations in case the data is required for writeback
630 * @node: numa node to allocate memory on
631 *
632 * Allocate a new &sk_buff. The returned buffer has no headroom and a
633 * tail room of at least size bytes. The object has a reference count
634 * of one. The return is the buffer. On a failure the return is %NULL.
635 *
636 * Buffers may only be allocated from interrupts using a @gfp_mask of
637 * %GFP_ATOMIC.
638 */
639struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 int flags, int node)
641{
642 struct kmem_cache *cache;
643 struct sk_buff *skb;
644 bool pfmemalloc;
645 u8 *data;
646
647 cache = (flags & SKB_ALLOC_FCLONE)
648 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649
650 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 gfp_mask |= __GFP_MEMALLOC;
652
653 /* Get the HEAD */
654 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 skb = napi_skb_cache_get();
657 else
658 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 if (unlikely(!skb))
660 return NULL;
661 prefetchw(skb);
662
663 /* We do our best to align skb_shared_info on a separate cache
664 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 * Both skb->head and skb_shared_info are cache line aligned.
667 */
668 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 if (unlikely(!data))
670 goto nodata;
671 /* kmalloc_size_roundup() might give us more room than requested.
672 * Put skb_shared_info exactly at the end of allocated zone,
673 * to allow max possible filling before reallocation.
674 */
675 prefetchw(data + SKB_WITH_OVERHEAD(size));
676
677 /*
678 * Only clear those fields we need to clear, not those that we will
679 * actually initialise below. Hence, don't put any more fields after
680 * the tail pointer in struct sk_buff!
681 */
682 memset(skb, 0, offsetof(struct sk_buff, tail));
683 __build_skb_around(skb, data, size);
684 skb->pfmemalloc = pfmemalloc;
685
686 if (flags & SKB_ALLOC_FCLONE) {
687 struct sk_buff_fclones *fclones;
688
689 fclones = container_of(skb, struct sk_buff_fclones, skb1);
690
691 skb->fclone = SKB_FCLONE_ORIG;
692 refcount_set(&fclones->fclone_ref, 1);
693 }
694
695 return skb;
696
697nodata:
698 kmem_cache_free(cache, skb);
699 return NULL;
700}
701EXPORT_SYMBOL(__alloc_skb);
702
703/**
704 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
705 * @dev: network device to receive on
706 * @len: length to allocate
707 * @gfp_mask: get_free_pages mask, passed to alloc_skb
708 *
709 * Allocate a new &sk_buff and assign it a usage count of one. The
710 * buffer has NET_SKB_PAD headroom built in. Users should allocate
711 * the headroom they think they need without accounting for the
712 * built in space. The built in space is used for optimisations.
713 *
714 * %NULL is returned if there is no free memory.
715 */
716struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 gfp_t gfp_mask)
718{
719 struct page_frag_cache *nc;
720 struct sk_buff *skb;
721 bool pfmemalloc;
722 void *data;
723
724 len += NET_SKB_PAD;
725
726 /* If requested length is either too small or too big,
727 * we use kmalloc() for skb->head allocation.
728 */
729 if (len <= SKB_WITH_OVERHEAD(1024) ||
730 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 if (!skb)
734 goto skb_fail;
735 goto skb_success;
736 }
737
738 len = SKB_HEAD_ALIGN(len);
739
740 if (sk_memalloc_socks())
741 gfp_mask |= __GFP_MEMALLOC;
742
743 if (in_hardirq() || irqs_disabled()) {
744 nc = this_cpu_ptr(&netdev_alloc_cache);
745 data = page_frag_alloc(nc, len, gfp_mask);
746 pfmemalloc = nc->pfmemalloc;
747 } else {
748 local_bh_disable();
749 nc = this_cpu_ptr(&napi_alloc_cache.page);
750 data = page_frag_alloc(nc, len, gfp_mask);
751 pfmemalloc = nc->pfmemalloc;
752 local_bh_enable();
753 }
754
755 if (unlikely(!data))
756 return NULL;
757
758 skb = __build_skb(data, len);
759 if (unlikely(!skb)) {
760 skb_free_frag(data);
761 return NULL;
762 }
763
764 if (pfmemalloc)
765 skb->pfmemalloc = 1;
766 skb->head_frag = 1;
767
768skb_success:
769 skb_reserve(skb, NET_SKB_PAD);
770 skb->dev = dev;
771
772skb_fail:
773 return skb;
774}
775EXPORT_SYMBOL(__netdev_alloc_skb);
776
777/**
778 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
779 * @napi: napi instance this buffer was allocated for
780 * @len: length to allocate
781 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
782 *
783 * Allocate a new sk_buff for use in NAPI receive. This buffer will
784 * attempt to allocate the head from a special reserved region used
785 * only for NAPI Rx allocation. By doing this we can save several
786 * CPU cycles by avoiding having to disable and re-enable IRQs.
787 *
788 * %NULL is returned if there is no free memory.
789 */
790struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
791 gfp_t gfp_mask)
792{
793 struct napi_alloc_cache *nc;
794 struct sk_buff *skb;
795 bool pfmemalloc;
796 void *data;
797
798 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
799 len += NET_SKB_PAD + NET_IP_ALIGN;
800
801 /* If requested length is either too small or too big,
802 * we use kmalloc() for skb->head allocation.
803 * When the small frag allocator is available, prefer it over kmalloc
804 * for small fragments
805 */
806 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
807 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
808 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
809 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
810 NUMA_NO_NODE);
811 if (!skb)
812 goto skb_fail;
813 goto skb_success;
814 }
815
816 nc = this_cpu_ptr(&napi_alloc_cache);
817
818 if (sk_memalloc_socks())
819 gfp_mask |= __GFP_MEMALLOC;
820
821 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
822 /* we are artificially inflating the allocation size, but
823 * that is not as bad as it may look like, as:
824 * - 'len' less than GRO_MAX_HEAD makes little sense
825 * - On most systems, larger 'len' values lead to fragment
826 * size above 512 bytes
827 * - kmalloc would use the kmalloc-1k slab for such values
828 * - Builds with smaller GRO_MAX_HEAD will very likely do
829 * little networking, as that implies no WiFi and no
830 * tunnels support, and 32 bits arches.
831 */
832 len = SZ_1K;
833
834 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
835 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
836 } else {
837 len = SKB_HEAD_ALIGN(len);
838
839 data = page_frag_alloc(&nc->page, len, gfp_mask);
840 pfmemalloc = nc->page.pfmemalloc;
841 }
842
843 if (unlikely(!data))
844 return NULL;
845
846 skb = __napi_build_skb(data, len);
847 if (unlikely(!skb)) {
848 skb_free_frag(data);
849 return NULL;
850 }
851
852 if (pfmemalloc)
853 skb->pfmemalloc = 1;
854 skb->head_frag = 1;
855
856skb_success:
857 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
858 skb->dev = napi->dev;
859
860skb_fail:
861 return skb;
862}
863EXPORT_SYMBOL(__napi_alloc_skb);
864
865void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
866 int off, int size, unsigned int truesize)
867{
868 DEBUG_NET_WARN_ON_ONCE(size > truesize);
869
870 skb_fill_netmem_desc(skb, i, netmem, off, size);
871 skb->len += size;
872 skb->data_len += size;
873 skb->truesize += truesize;
874}
875EXPORT_SYMBOL(skb_add_rx_frag_netmem);
876
877void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
878 unsigned int truesize)
879{
880 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
881
882 DEBUG_NET_WARN_ON_ONCE(size > truesize);
883
884 skb_frag_size_add(frag, size);
885 skb->len += size;
886 skb->data_len += size;
887 skb->truesize += truesize;
888}
889EXPORT_SYMBOL(skb_coalesce_rx_frag);
890
891static void skb_drop_list(struct sk_buff **listp)
892{
893 kfree_skb_list(*listp);
894 *listp = NULL;
895}
896
897static inline void skb_drop_fraglist(struct sk_buff *skb)
898{
899 skb_drop_list(&skb_shinfo(skb)->frag_list);
900}
901
902static void skb_clone_fraglist(struct sk_buff *skb)
903{
904 struct sk_buff *list;
905
906 skb_walk_frags(skb, list)
907 skb_get(list);
908}
909
910static bool is_pp_page(struct page *page)
911{
912 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
913}
914
915int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
916 unsigned int headroom)
917{
918#if IS_ENABLED(CONFIG_PAGE_POOL)
919 u32 size, truesize, len, max_head_size, off;
920 struct sk_buff *skb = *pskb, *nskb;
921 int err, i, head_off;
922 void *data;
923
924 /* XDP does not support fraglist so we need to linearize
925 * the skb.
926 */
927 if (skb_has_frag_list(skb))
928 return -EOPNOTSUPP;
929
930 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
931 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
932 return -ENOMEM;
933
934 size = min_t(u32, skb->len, max_head_size);
935 truesize = SKB_HEAD_ALIGN(size) + headroom;
936 data = page_pool_dev_alloc_va(pool, &truesize);
937 if (!data)
938 return -ENOMEM;
939
940 nskb = napi_build_skb(data, truesize);
941 if (!nskb) {
942 page_pool_free_va(pool, data, true);
943 return -ENOMEM;
944 }
945
946 skb_reserve(nskb, headroom);
947 skb_copy_header(nskb, skb);
948 skb_mark_for_recycle(nskb);
949
950 err = skb_copy_bits(skb, 0, nskb->data, size);
951 if (err) {
952 consume_skb(nskb);
953 return err;
954 }
955 skb_put(nskb, size);
956
957 head_off = skb_headroom(nskb) - skb_headroom(skb);
958 skb_headers_offset_update(nskb, head_off);
959
960 off = size;
961 len = skb->len - off;
962 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
963 struct page *page;
964 u32 page_off;
965
966 size = min_t(u32, len, PAGE_SIZE);
967 truesize = size;
968
969 page = page_pool_dev_alloc(pool, &page_off, &truesize);
970 if (!page) {
971 consume_skb(nskb);
972 return -ENOMEM;
973 }
974
975 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
976 err = skb_copy_bits(skb, off, page_address(page) + page_off,
977 size);
978 if (err) {
979 consume_skb(nskb);
980 return err;
981 }
982
983 len -= size;
984 off += size;
985 }
986
987 consume_skb(skb);
988 *pskb = nskb;
989
990 return 0;
991#else
992 return -EOPNOTSUPP;
993#endif
994}
995EXPORT_SYMBOL(skb_pp_cow_data);
996
997int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
998 struct bpf_prog *prog)
999{
1000 if (!prog->aux->xdp_has_frags)
1001 return -EINVAL;
1002
1003 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1004}
1005EXPORT_SYMBOL(skb_cow_data_for_xdp);
1006
1007#if IS_ENABLED(CONFIG_PAGE_POOL)
1008bool napi_pp_put_page(struct page *page, bool napi_safe)
1009{
1010 bool allow_direct = false;
1011 struct page_pool *pp;
1012
1013 page = compound_head(page);
1014
1015 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1016 * in order to preserve any existing bits, such as bit 0 for the
1017 * head page of compound page and bit 1 for pfmemalloc page, so
1018 * mask those bits for freeing side when doing below checking,
1019 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1020 * to avoid recycling the pfmemalloc page.
1021 */
1022 if (unlikely(!is_pp_page(page)))
1023 return false;
1024
1025 pp = page->pp;
1026
1027 /* Allow direct recycle if we have reasons to believe that we are
1028 * in the same context as the consumer would run, so there's
1029 * no possible race.
1030 * __page_pool_put_page() makes sure we're not in hardirq context
1031 * and interrupts are enabled prior to accessing the cache.
1032 */
1033 if (napi_safe || in_softirq()) {
1034 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
1035 unsigned int cpuid = smp_processor_id();
1036
1037 allow_direct = napi && READ_ONCE(napi->list_owner) == cpuid;
1038 allow_direct |= READ_ONCE(pp->cpuid) == cpuid;
1039 }
1040
1041 /* Driver set this to memory recycling info. Reset it on recycle.
1042 * This will *not* work for NIC using a split-page memory model.
1043 * The page will be returned to the pool here regardless of the
1044 * 'flipped' fragment being in use or not.
1045 */
1046 page_pool_put_full_page(pp, page, allow_direct);
1047
1048 return true;
1049}
1050EXPORT_SYMBOL(napi_pp_put_page);
1051#endif
1052
1053static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
1054{
1055 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1056 return false;
1057 return napi_pp_put_page(virt_to_page(data), napi_safe);
1058}
1059
1060/**
1061 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1062 * @skb: page pool aware skb
1063 *
1064 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1065 * intended to gain fragment references only for page pool aware skbs,
1066 * i.e. when skb->pp_recycle is true, and not for fragments in a
1067 * non-pp-recycling skb. It has a fallback to increase references on normal
1068 * pages, as page pool aware skbs may also have normal page fragments.
1069 */
1070static int skb_pp_frag_ref(struct sk_buff *skb)
1071{
1072 struct skb_shared_info *shinfo;
1073 struct page *head_page;
1074 int i;
1075
1076 if (!skb->pp_recycle)
1077 return -EINVAL;
1078
1079 shinfo = skb_shinfo(skb);
1080
1081 for (i = 0; i < shinfo->nr_frags; i++) {
1082 head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1083 if (likely(is_pp_page(head_page)))
1084 page_pool_ref_page(head_page);
1085 else
1086 page_ref_inc(head_page);
1087 }
1088 return 0;
1089}
1090
1091static void skb_kfree_head(void *head, unsigned int end_offset)
1092{
1093 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1094 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1095 else
1096 kfree(head);
1097}
1098
1099static void skb_free_head(struct sk_buff *skb, bool napi_safe)
1100{
1101 unsigned char *head = skb->head;
1102
1103 if (skb->head_frag) {
1104 if (skb_pp_recycle(skb, head, napi_safe))
1105 return;
1106 skb_free_frag(head);
1107 } else {
1108 skb_kfree_head(head, skb_end_offset(skb));
1109 }
1110}
1111
1112static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1113 bool napi_safe)
1114{
1115 struct skb_shared_info *shinfo = skb_shinfo(skb);
1116 int i;
1117
1118 if (!skb_data_unref(skb, shinfo))
1119 goto exit;
1120
1121 if (skb_zcopy(skb)) {
1122 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1123
1124 skb_zcopy_clear(skb, true);
1125 if (skip_unref)
1126 goto free_head;
1127 }
1128
1129 for (i = 0; i < shinfo->nr_frags; i++)
1130 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1131
1132free_head:
1133 if (shinfo->frag_list)
1134 kfree_skb_list_reason(shinfo->frag_list, reason);
1135
1136 skb_free_head(skb, napi_safe);
1137exit:
1138 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1139 * bit is only set on the head though, so in order to avoid races
1140 * while trying to recycle fragments on __skb_frag_unref() we need
1141 * to make one SKB responsible for triggering the recycle path.
1142 * So disable the recycling bit if an SKB is cloned and we have
1143 * additional references to the fragmented part of the SKB.
1144 * Eventually the last SKB will have the recycling bit set and it's
1145 * dataref set to 0, which will trigger the recycling
1146 */
1147 skb->pp_recycle = 0;
1148}
1149
1150/*
1151 * Free an skbuff by memory without cleaning the state.
1152 */
1153static void kfree_skbmem(struct sk_buff *skb)
1154{
1155 struct sk_buff_fclones *fclones;
1156
1157 switch (skb->fclone) {
1158 case SKB_FCLONE_UNAVAILABLE:
1159 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1160 return;
1161
1162 case SKB_FCLONE_ORIG:
1163 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1164
1165 /* We usually free the clone (TX completion) before original skb
1166 * This test would have no chance to be true for the clone,
1167 * while here, branch prediction will be good.
1168 */
1169 if (refcount_read(&fclones->fclone_ref) == 1)
1170 goto fastpath;
1171 break;
1172
1173 default: /* SKB_FCLONE_CLONE */
1174 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1175 break;
1176 }
1177 if (!refcount_dec_and_test(&fclones->fclone_ref))
1178 return;
1179fastpath:
1180 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1181}
1182
1183void skb_release_head_state(struct sk_buff *skb)
1184{
1185 skb_dst_drop(skb);
1186 if (skb->destructor) {
1187 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1188 skb->destructor(skb);
1189 }
1190#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1191 nf_conntrack_put(skb_nfct(skb));
1192#endif
1193 skb_ext_put(skb);
1194}
1195
1196/* Free everything but the sk_buff shell. */
1197static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1198 bool napi_safe)
1199{
1200 skb_release_head_state(skb);
1201 if (likely(skb->head))
1202 skb_release_data(skb, reason, napi_safe);
1203}
1204
1205/**
1206 * __kfree_skb - private function
1207 * @skb: buffer
1208 *
1209 * Free an sk_buff. Release anything attached to the buffer.
1210 * Clean the state. This is an internal helper function. Users should
1211 * always call kfree_skb
1212 */
1213
1214void __kfree_skb(struct sk_buff *skb)
1215{
1216 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1217 kfree_skbmem(skb);
1218}
1219EXPORT_SYMBOL(__kfree_skb);
1220
1221static __always_inline
1222bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1223{
1224 if (unlikely(!skb_unref(skb)))
1225 return false;
1226
1227 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1228 u32_get_bits(reason,
1229 SKB_DROP_REASON_SUBSYS_MASK) >=
1230 SKB_DROP_REASON_SUBSYS_NUM);
1231
1232 if (reason == SKB_CONSUMED)
1233 trace_consume_skb(skb, __builtin_return_address(0));
1234 else
1235 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1236 return true;
1237}
1238
1239/**
1240 * kfree_skb_reason - free an sk_buff with special reason
1241 * @skb: buffer to free
1242 * @reason: reason why this skb is dropped
1243 *
1244 * Drop a reference to the buffer and free it if the usage count has
1245 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1246 * tracepoint.
1247 */
1248void __fix_address
1249kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1250{
1251 if (__kfree_skb_reason(skb, reason))
1252 __kfree_skb(skb);
1253}
1254EXPORT_SYMBOL(kfree_skb_reason);
1255
1256#define KFREE_SKB_BULK_SIZE 16
1257
1258struct skb_free_array {
1259 unsigned int skb_count;
1260 void *skb_array[KFREE_SKB_BULK_SIZE];
1261};
1262
1263static void kfree_skb_add_bulk(struct sk_buff *skb,
1264 struct skb_free_array *sa,
1265 enum skb_drop_reason reason)
1266{
1267 /* if SKB is a clone, don't handle this case */
1268 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1269 __kfree_skb(skb);
1270 return;
1271 }
1272
1273 skb_release_all(skb, reason, false);
1274 sa->skb_array[sa->skb_count++] = skb;
1275
1276 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1277 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1278 sa->skb_array);
1279 sa->skb_count = 0;
1280 }
1281}
1282
1283void __fix_address
1284kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1285{
1286 struct skb_free_array sa;
1287
1288 sa.skb_count = 0;
1289
1290 while (segs) {
1291 struct sk_buff *next = segs->next;
1292
1293 if (__kfree_skb_reason(segs, reason)) {
1294 skb_poison_list(segs);
1295 kfree_skb_add_bulk(segs, &sa, reason);
1296 }
1297
1298 segs = next;
1299 }
1300
1301 if (sa.skb_count)
1302 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1303}
1304EXPORT_SYMBOL(kfree_skb_list_reason);
1305
1306/* Dump skb information and contents.
1307 *
1308 * Must only be called from net_ratelimit()-ed paths.
1309 *
1310 * Dumps whole packets if full_pkt, only headers otherwise.
1311 */
1312void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1313{
1314 struct skb_shared_info *sh = skb_shinfo(skb);
1315 struct net_device *dev = skb->dev;
1316 struct sock *sk = skb->sk;
1317 struct sk_buff *list_skb;
1318 bool has_mac, has_trans;
1319 int headroom, tailroom;
1320 int i, len, seg_len;
1321
1322 if (full_pkt)
1323 len = skb->len;
1324 else
1325 len = min_t(int, skb->len, MAX_HEADER + 128);
1326
1327 headroom = skb_headroom(skb);
1328 tailroom = skb_tailroom(skb);
1329
1330 has_mac = skb_mac_header_was_set(skb);
1331 has_trans = skb_transport_header_was_set(skb);
1332
1333 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1334 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1335 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1336 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1337 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1338 level, skb->len, headroom, skb_headlen(skb), tailroom,
1339 has_mac ? skb->mac_header : -1,
1340 has_mac ? skb_mac_header_len(skb) : -1,
1341 skb->network_header,
1342 has_trans ? skb_network_header_len(skb) : -1,
1343 has_trans ? skb->transport_header : -1,
1344 sh->tx_flags, sh->nr_frags,
1345 sh->gso_size, sh->gso_type, sh->gso_segs,
1346 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1347 skb->csum_valid, skb->csum_level,
1348 skb->hash, skb->sw_hash, skb->l4_hash,
1349 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1350
1351 if (dev)
1352 printk("%sdev name=%s feat=%pNF\n",
1353 level, dev->name, &dev->features);
1354 if (sk)
1355 printk("%ssk family=%hu type=%u proto=%u\n",
1356 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1357
1358 if (full_pkt && headroom)
1359 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1360 16, 1, skb->head, headroom, false);
1361
1362 seg_len = min_t(int, skb_headlen(skb), len);
1363 if (seg_len)
1364 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1365 16, 1, skb->data, seg_len, false);
1366 len -= seg_len;
1367
1368 if (full_pkt && tailroom)
1369 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1370 16, 1, skb_tail_pointer(skb), tailroom, false);
1371
1372 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1373 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1374 u32 p_off, p_len, copied;
1375 struct page *p;
1376 u8 *vaddr;
1377
1378 skb_frag_foreach_page(frag, skb_frag_off(frag),
1379 skb_frag_size(frag), p, p_off, p_len,
1380 copied) {
1381 seg_len = min_t(int, p_len, len);
1382 vaddr = kmap_atomic(p);
1383 print_hex_dump(level, "skb frag: ",
1384 DUMP_PREFIX_OFFSET,
1385 16, 1, vaddr + p_off, seg_len, false);
1386 kunmap_atomic(vaddr);
1387 len -= seg_len;
1388 if (!len)
1389 break;
1390 }
1391 }
1392
1393 if (full_pkt && skb_has_frag_list(skb)) {
1394 printk("skb fraglist:\n");
1395 skb_walk_frags(skb, list_skb)
1396 skb_dump(level, list_skb, true);
1397 }
1398}
1399EXPORT_SYMBOL(skb_dump);
1400
1401/**
1402 * skb_tx_error - report an sk_buff xmit error
1403 * @skb: buffer that triggered an error
1404 *
1405 * Report xmit error if a device callback is tracking this skb.
1406 * skb must be freed afterwards.
1407 */
1408void skb_tx_error(struct sk_buff *skb)
1409{
1410 if (skb) {
1411 skb_zcopy_downgrade_managed(skb);
1412 skb_zcopy_clear(skb, true);
1413 }
1414}
1415EXPORT_SYMBOL(skb_tx_error);
1416
1417#ifdef CONFIG_TRACEPOINTS
1418/**
1419 * consume_skb - free an skbuff
1420 * @skb: buffer to free
1421 *
1422 * Drop a ref to the buffer and free it if the usage count has hit zero
1423 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1424 * is being dropped after a failure and notes that
1425 */
1426void consume_skb(struct sk_buff *skb)
1427{
1428 if (!skb_unref(skb))
1429 return;
1430
1431 trace_consume_skb(skb, __builtin_return_address(0));
1432 __kfree_skb(skb);
1433}
1434EXPORT_SYMBOL(consume_skb);
1435#endif
1436
1437/**
1438 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1439 * @skb: buffer to free
1440 *
1441 * Alike consume_skb(), but this variant assumes that this is the last
1442 * skb reference and all the head states have been already dropped
1443 */
1444void __consume_stateless_skb(struct sk_buff *skb)
1445{
1446 trace_consume_skb(skb, __builtin_return_address(0));
1447 skb_release_data(skb, SKB_CONSUMED, false);
1448 kfree_skbmem(skb);
1449}
1450
1451static void napi_skb_cache_put(struct sk_buff *skb)
1452{
1453 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1454 u32 i;
1455
1456 if (!kasan_mempool_poison_object(skb))
1457 return;
1458
1459 nc->skb_cache[nc->skb_count++] = skb;
1460
1461 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1462 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1463 kasan_mempool_unpoison_object(nc->skb_cache[i],
1464 kmem_cache_size(net_hotdata.skbuff_cache));
1465
1466 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1467 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1468 nc->skb_count = NAPI_SKB_CACHE_HALF;
1469 }
1470}
1471
1472void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473{
1474 skb_release_all(skb, reason, true);
1475 napi_skb_cache_put(skb);
1476}
1477
1478void napi_skb_free_stolen_head(struct sk_buff *skb)
1479{
1480 if (unlikely(skb->slow_gro)) {
1481 nf_reset_ct(skb);
1482 skb_dst_drop(skb);
1483 skb_ext_put(skb);
1484 skb_orphan(skb);
1485 skb->slow_gro = 0;
1486 }
1487 napi_skb_cache_put(skb);
1488}
1489
1490void napi_consume_skb(struct sk_buff *skb, int budget)
1491{
1492 /* Zero budget indicate non-NAPI context called us, like netpoll */
1493 if (unlikely(!budget)) {
1494 dev_consume_skb_any(skb);
1495 return;
1496 }
1497
1498 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499
1500 if (!skb_unref(skb))
1501 return;
1502
1503 /* if reaching here SKB is ready to free */
1504 trace_consume_skb(skb, __builtin_return_address(0));
1505
1506 /* if SKB is a clone, don't handle this case */
1507 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1508 __kfree_skb(skb);
1509 return;
1510 }
1511
1512 skb_release_all(skb, SKB_CONSUMED, !!budget);
1513 napi_skb_cache_put(skb);
1514}
1515EXPORT_SYMBOL(napi_consume_skb);
1516
1517/* Make sure a field is contained by headers group */
1518#define CHECK_SKB_FIELD(field) \
1519 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1520 offsetof(struct sk_buff, headers.field)); \
1521
1522static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1523{
1524 new->tstamp = old->tstamp;
1525 /* We do not copy old->sk */
1526 new->dev = old->dev;
1527 memcpy(new->cb, old->cb, sizeof(old->cb));
1528 skb_dst_copy(new, old);
1529 __skb_ext_copy(new, old);
1530 __nf_copy(new, old, false);
1531
1532 /* Note : this field could be in the headers group.
1533 * It is not yet because we do not want to have a 16 bit hole
1534 */
1535 new->queue_mapping = old->queue_mapping;
1536
1537 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1538 CHECK_SKB_FIELD(protocol);
1539 CHECK_SKB_FIELD(csum);
1540 CHECK_SKB_FIELD(hash);
1541 CHECK_SKB_FIELD(priority);
1542 CHECK_SKB_FIELD(skb_iif);
1543 CHECK_SKB_FIELD(vlan_proto);
1544 CHECK_SKB_FIELD(vlan_tci);
1545 CHECK_SKB_FIELD(transport_header);
1546 CHECK_SKB_FIELD(network_header);
1547 CHECK_SKB_FIELD(mac_header);
1548 CHECK_SKB_FIELD(inner_protocol);
1549 CHECK_SKB_FIELD(inner_transport_header);
1550 CHECK_SKB_FIELD(inner_network_header);
1551 CHECK_SKB_FIELD(inner_mac_header);
1552 CHECK_SKB_FIELD(mark);
1553#ifdef CONFIG_NETWORK_SECMARK
1554 CHECK_SKB_FIELD(secmark);
1555#endif
1556#ifdef CONFIG_NET_RX_BUSY_POLL
1557 CHECK_SKB_FIELD(napi_id);
1558#endif
1559 CHECK_SKB_FIELD(alloc_cpu);
1560#ifdef CONFIG_XPS
1561 CHECK_SKB_FIELD(sender_cpu);
1562#endif
1563#ifdef CONFIG_NET_SCHED
1564 CHECK_SKB_FIELD(tc_index);
1565#endif
1566
1567}
1568
1569/*
1570 * You should not add any new code to this function. Add it to
1571 * __copy_skb_header above instead.
1572 */
1573static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1574{
1575#define C(x) n->x = skb->x
1576
1577 n->next = n->prev = NULL;
1578 n->sk = NULL;
1579 __copy_skb_header(n, skb);
1580
1581 C(len);
1582 C(data_len);
1583 C(mac_len);
1584 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1585 n->cloned = 1;
1586 n->nohdr = 0;
1587 n->peeked = 0;
1588 C(pfmemalloc);
1589 C(pp_recycle);
1590 n->destructor = NULL;
1591 C(tail);
1592 C(end);
1593 C(head);
1594 C(head_frag);
1595 C(data);
1596 C(truesize);
1597 refcount_set(&n->users, 1);
1598
1599 atomic_inc(&(skb_shinfo(skb)->dataref));
1600 skb->cloned = 1;
1601
1602 return n;
1603#undef C
1604}
1605
1606/**
1607 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1608 * @first: first sk_buff of the msg
1609 */
1610struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1611{
1612 struct sk_buff *n;
1613
1614 n = alloc_skb(0, GFP_ATOMIC);
1615 if (!n)
1616 return NULL;
1617
1618 n->len = first->len;
1619 n->data_len = first->len;
1620 n->truesize = first->truesize;
1621
1622 skb_shinfo(n)->frag_list = first;
1623
1624 __copy_skb_header(n, first);
1625 n->destructor = NULL;
1626
1627 return n;
1628}
1629EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1630
1631/**
1632 * skb_morph - morph one skb into another
1633 * @dst: the skb to receive the contents
1634 * @src: the skb to supply the contents
1635 *
1636 * This is identical to skb_clone except that the target skb is
1637 * supplied by the user.
1638 *
1639 * The target skb is returned upon exit.
1640 */
1641struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1642{
1643 skb_release_all(dst, SKB_CONSUMED, false);
1644 return __skb_clone(dst, src);
1645}
1646EXPORT_SYMBOL_GPL(skb_morph);
1647
1648int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1649{
1650 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1651 struct user_struct *user;
1652
1653 if (capable(CAP_IPC_LOCK) || !size)
1654 return 0;
1655
1656 rlim = rlimit(RLIMIT_MEMLOCK);
1657 if (rlim == RLIM_INFINITY)
1658 return 0;
1659
1660 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1661 max_pg = rlim >> PAGE_SHIFT;
1662 user = mmp->user ? : current_user();
1663
1664 old_pg = atomic_long_read(&user->locked_vm);
1665 do {
1666 new_pg = old_pg + num_pg;
1667 if (new_pg > max_pg)
1668 return -ENOBUFS;
1669 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1670
1671 if (!mmp->user) {
1672 mmp->user = get_uid(user);
1673 mmp->num_pg = num_pg;
1674 } else {
1675 mmp->num_pg += num_pg;
1676 }
1677
1678 return 0;
1679}
1680EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1681
1682void mm_unaccount_pinned_pages(struct mmpin *mmp)
1683{
1684 if (mmp->user) {
1685 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1686 free_uid(mmp->user);
1687 }
1688}
1689EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1690
1691static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1692{
1693 struct ubuf_info_msgzc *uarg;
1694 struct sk_buff *skb;
1695
1696 WARN_ON_ONCE(!in_task());
1697
1698 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1699 if (!skb)
1700 return NULL;
1701
1702 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1703 uarg = (void *)skb->cb;
1704 uarg->mmp.user = NULL;
1705
1706 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1707 kfree_skb(skb);
1708 return NULL;
1709 }
1710
1711 uarg->ubuf.callback = msg_zerocopy_callback;
1712 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1713 uarg->len = 1;
1714 uarg->bytelen = size;
1715 uarg->zerocopy = 1;
1716 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1717 refcount_set(&uarg->ubuf.refcnt, 1);
1718 sock_hold(sk);
1719
1720 return &uarg->ubuf;
1721}
1722
1723static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1724{
1725 return container_of((void *)uarg, struct sk_buff, cb);
1726}
1727
1728struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1729 struct ubuf_info *uarg)
1730{
1731 if (uarg) {
1732 struct ubuf_info_msgzc *uarg_zc;
1733 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1734 u32 bytelen, next;
1735
1736 /* there might be non MSG_ZEROCOPY users */
1737 if (uarg->callback != msg_zerocopy_callback)
1738 return NULL;
1739
1740 /* realloc only when socket is locked (TCP, UDP cork),
1741 * so uarg->len and sk_zckey access is serialized
1742 */
1743 if (!sock_owned_by_user(sk)) {
1744 WARN_ON_ONCE(1);
1745 return NULL;
1746 }
1747
1748 uarg_zc = uarg_to_msgzc(uarg);
1749 bytelen = uarg_zc->bytelen + size;
1750 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1751 /* TCP can create new skb to attach new uarg */
1752 if (sk->sk_type == SOCK_STREAM)
1753 goto new_alloc;
1754 return NULL;
1755 }
1756
1757 next = (u32)atomic_read(&sk->sk_zckey);
1758 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1759 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1760 return NULL;
1761 uarg_zc->len++;
1762 uarg_zc->bytelen = bytelen;
1763 atomic_set(&sk->sk_zckey, ++next);
1764
1765 /* no extra ref when appending to datagram (MSG_MORE) */
1766 if (sk->sk_type == SOCK_STREAM)
1767 net_zcopy_get(uarg);
1768
1769 return uarg;
1770 }
1771 }
1772
1773new_alloc:
1774 return msg_zerocopy_alloc(sk, size);
1775}
1776EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1777
1778static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1779{
1780 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1781 u32 old_lo, old_hi;
1782 u64 sum_len;
1783
1784 old_lo = serr->ee.ee_info;
1785 old_hi = serr->ee.ee_data;
1786 sum_len = old_hi - old_lo + 1ULL + len;
1787
1788 if (sum_len >= (1ULL << 32))
1789 return false;
1790
1791 if (lo != old_hi + 1)
1792 return false;
1793
1794 serr->ee.ee_data += len;
1795 return true;
1796}
1797
1798static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1799{
1800 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1801 struct sock_exterr_skb *serr;
1802 struct sock *sk = skb->sk;
1803 struct sk_buff_head *q;
1804 unsigned long flags;
1805 bool is_zerocopy;
1806 u32 lo, hi;
1807 u16 len;
1808
1809 mm_unaccount_pinned_pages(&uarg->mmp);
1810
1811 /* if !len, there was only 1 call, and it was aborted
1812 * so do not queue a completion notification
1813 */
1814 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1815 goto release;
1816
1817 len = uarg->len;
1818 lo = uarg->id;
1819 hi = uarg->id + len - 1;
1820 is_zerocopy = uarg->zerocopy;
1821
1822 serr = SKB_EXT_ERR(skb);
1823 memset(serr, 0, sizeof(*serr));
1824 serr->ee.ee_errno = 0;
1825 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1826 serr->ee.ee_data = hi;
1827 serr->ee.ee_info = lo;
1828 if (!is_zerocopy)
1829 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1830
1831 q = &sk->sk_error_queue;
1832 spin_lock_irqsave(&q->lock, flags);
1833 tail = skb_peek_tail(q);
1834 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1835 !skb_zerocopy_notify_extend(tail, lo, len)) {
1836 __skb_queue_tail(q, skb);
1837 skb = NULL;
1838 }
1839 spin_unlock_irqrestore(&q->lock, flags);
1840
1841 sk_error_report(sk);
1842
1843release:
1844 consume_skb(skb);
1845 sock_put(sk);
1846}
1847
1848void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1849 bool success)
1850{
1851 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1852
1853 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1854
1855 if (refcount_dec_and_test(&uarg->refcnt))
1856 __msg_zerocopy_callback(uarg_zc);
1857}
1858EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1859
1860void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861{
1862 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1863
1864 atomic_dec(&sk->sk_zckey);
1865 uarg_to_msgzc(uarg)->len--;
1866
1867 if (have_uref)
1868 msg_zerocopy_callback(NULL, uarg, true);
1869}
1870EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1871
1872int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873 struct msghdr *msg, int len,
1874 struct ubuf_info *uarg)
1875{
1876 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1877 int err, orig_len = skb->len;
1878
1879 /* An skb can only point to one uarg. This edge case happens when
1880 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1881 */
1882 if (orig_uarg && uarg != orig_uarg)
1883 return -EEXIST;
1884
1885 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1886 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1887 struct sock *save_sk = skb->sk;
1888
1889 /* Streams do not free skb on error. Reset to prev state. */
1890 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1891 skb->sk = sk;
1892 ___pskb_trim(skb, orig_len);
1893 skb->sk = save_sk;
1894 return err;
1895 }
1896
1897 skb_zcopy_set(skb, uarg, NULL);
1898 return skb->len - orig_len;
1899}
1900EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1901
1902void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1903{
1904 int i;
1905
1906 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1908 skb_frag_ref(skb, i);
1909}
1910EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1911
1912static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1913 gfp_t gfp_mask)
1914{
1915 if (skb_zcopy(orig)) {
1916 if (skb_zcopy(nskb)) {
1917 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1918 if (!gfp_mask) {
1919 WARN_ON_ONCE(1);
1920 return -ENOMEM;
1921 }
1922 if (skb_uarg(nskb) == skb_uarg(orig))
1923 return 0;
1924 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1925 return -EIO;
1926 }
1927 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1928 }
1929 return 0;
1930}
1931
1932/**
1933 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1934 * @skb: the skb to modify
1935 * @gfp_mask: allocation priority
1936 *
1937 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1938 * It will copy all frags into kernel and drop the reference
1939 * to userspace pages.
1940 *
1941 * If this function is called from an interrupt gfp_mask() must be
1942 * %GFP_ATOMIC.
1943 *
1944 * Returns 0 on success or a negative error code on failure
1945 * to allocate kernel memory to copy to.
1946 */
1947int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1948{
1949 int num_frags = skb_shinfo(skb)->nr_frags;
1950 struct page *page, *head = NULL;
1951 int i, order, psize, new_frags;
1952 u32 d_off;
1953
1954 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1955 return -EINVAL;
1956
1957 if (!num_frags)
1958 goto release;
1959
1960 /* We might have to allocate high order pages, so compute what minimum
1961 * page order is needed.
1962 */
1963 order = 0;
1964 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1965 order++;
1966 psize = (PAGE_SIZE << order);
1967
1968 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1969 for (i = 0; i < new_frags; i++) {
1970 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1971 if (!page) {
1972 while (head) {
1973 struct page *next = (struct page *)page_private(head);
1974 put_page(head);
1975 head = next;
1976 }
1977 return -ENOMEM;
1978 }
1979 set_page_private(page, (unsigned long)head);
1980 head = page;
1981 }
1982
1983 page = head;
1984 d_off = 0;
1985 for (i = 0; i < num_frags; i++) {
1986 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1987 u32 p_off, p_len, copied;
1988 struct page *p;
1989 u8 *vaddr;
1990
1991 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1992 p, p_off, p_len, copied) {
1993 u32 copy, done = 0;
1994 vaddr = kmap_atomic(p);
1995
1996 while (done < p_len) {
1997 if (d_off == psize) {
1998 d_off = 0;
1999 page = (struct page *)page_private(page);
2000 }
2001 copy = min_t(u32, psize - d_off, p_len - done);
2002 memcpy(page_address(page) + d_off,
2003 vaddr + p_off + done, copy);
2004 done += copy;
2005 d_off += copy;
2006 }
2007 kunmap_atomic(vaddr);
2008 }
2009 }
2010
2011 /* skb frags release userspace buffers */
2012 for (i = 0; i < num_frags; i++)
2013 skb_frag_unref(skb, i);
2014
2015 /* skb frags point to kernel buffers */
2016 for (i = 0; i < new_frags - 1; i++) {
2017 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2018 head = (struct page *)page_private(head);
2019 }
2020 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2021 d_off);
2022 skb_shinfo(skb)->nr_frags = new_frags;
2023
2024release:
2025 skb_zcopy_clear(skb, false);
2026 return 0;
2027}
2028EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2029
2030/**
2031 * skb_clone - duplicate an sk_buff
2032 * @skb: buffer to clone
2033 * @gfp_mask: allocation priority
2034 *
2035 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
2036 * copies share the same packet data but not structure. The new
2037 * buffer has a reference count of 1. If the allocation fails the
2038 * function returns %NULL otherwise the new buffer is returned.
2039 *
2040 * If this function is called from an interrupt gfp_mask() must be
2041 * %GFP_ATOMIC.
2042 */
2043
2044struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2045{
2046 struct sk_buff_fclones *fclones = container_of(skb,
2047 struct sk_buff_fclones,
2048 skb1);
2049 struct sk_buff *n;
2050
2051 if (skb_orphan_frags(skb, gfp_mask))
2052 return NULL;
2053
2054 if (skb->fclone == SKB_FCLONE_ORIG &&
2055 refcount_read(&fclones->fclone_ref) == 1) {
2056 n = &fclones->skb2;
2057 refcount_set(&fclones->fclone_ref, 2);
2058 n->fclone = SKB_FCLONE_CLONE;
2059 } else {
2060 if (skb_pfmemalloc(skb))
2061 gfp_mask |= __GFP_MEMALLOC;
2062
2063 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2064 if (!n)
2065 return NULL;
2066
2067 n->fclone = SKB_FCLONE_UNAVAILABLE;
2068 }
2069
2070 return __skb_clone(n, skb);
2071}
2072EXPORT_SYMBOL(skb_clone);
2073
2074void skb_headers_offset_update(struct sk_buff *skb, int off)
2075{
2076 /* Only adjust this if it actually is csum_start rather than csum */
2077 if (skb->ip_summed == CHECKSUM_PARTIAL)
2078 skb->csum_start += off;
2079 /* {transport,network,mac}_header and tail are relative to skb->head */
2080 skb->transport_header += off;
2081 skb->network_header += off;
2082 if (skb_mac_header_was_set(skb))
2083 skb->mac_header += off;
2084 skb->inner_transport_header += off;
2085 skb->inner_network_header += off;
2086 skb->inner_mac_header += off;
2087}
2088EXPORT_SYMBOL(skb_headers_offset_update);
2089
2090void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2091{
2092 __copy_skb_header(new, old);
2093
2094 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2095 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2096 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2097}
2098EXPORT_SYMBOL(skb_copy_header);
2099
2100static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2101{
2102 if (skb_pfmemalloc(skb))
2103 return SKB_ALLOC_RX;
2104 return 0;
2105}
2106
2107/**
2108 * skb_copy - create private copy of an sk_buff
2109 * @skb: buffer to copy
2110 * @gfp_mask: allocation priority
2111 *
2112 * Make a copy of both an &sk_buff and its data. This is used when the
2113 * caller wishes to modify the data and needs a private copy of the
2114 * data to alter. Returns %NULL on failure or the pointer to the buffer
2115 * on success. The returned buffer has a reference count of 1.
2116 *
2117 * As by-product this function converts non-linear &sk_buff to linear
2118 * one, so that &sk_buff becomes completely private and caller is allowed
2119 * to modify all the data of returned buffer. This means that this
2120 * function is not recommended for use in circumstances when only
2121 * header is going to be modified. Use pskb_copy() instead.
2122 */
2123
2124struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2125{
2126 struct sk_buff *n;
2127 unsigned int size;
2128 int headerlen;
2129
2130 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2131 return NULL;
2132
2133 headerlen = skb_headroom(skb);
2134 size = skb_end_offset(skb) + skb->data_len;
2135 n = __alloc_skb(size, gfp_mask,
2136 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2137 if (!n)
2138 return NULL;
2139
2140 /* Set the data pointer */
2141 skb_reserve(n, headerlen);
2142 /* Set the tail pointer and length */
2143 skb_put(n, skb->len);
2144
2145 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2146
2147 skb_copy_header(n, skb);
2148 return n;
2149}
2150EXPORT_SYMBOL(skb_copy);
2151
2152/**
2153 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2154 * @skb: buffer to copy
2155 * @headroom: headroom of new skb
2156 * @gfp_mask: allocation priority
2157 * @fclone: if true allocate the copy of the skb from the fclone
2158 * cache instead of the head cache; it is recommended to set this
2159 * to true for the cases where the copy will likely be cloned
2160 *
2161 * Make a copy of both an &sk_buff and part of its data, located
2162 * in header. Fragmented data remain shared. This is used when
2163 * the caller wishes to modify only header of &sk_buff and needs
2164 * private copy of the header to alter. Returns %NULL on failure
2165 * or the pointer to the buffer on success.
2166 * The returned buffer has a reference count of 1.
2167 */
2168
2169struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2170 gfp_t gfp_mask, bool fclone)
2171{
2172 unsigned int size = skb_headlen(skb) + headroom;
2173 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2174 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2175
2176 if (!n)
2177 goto out;
2178
2179 /* Set the data pointer */
2180 skb_reserve(n, headroom);
2181 /* Set the tail pointer and length */
2182 skb_put(n, skb_headlen(skb));
2183 /* Copy the bytes */
2184 skb_copy_from_linear_data(skb, n->data, n->len);
2185
2186 n->truesize += skb->data_len;
2187 n->data_len = skb->data_len;
2188 n->len = skb->len;
2189
2190 if (skb_shinfo(skb)->nr_frags) {
2191 int i;
2192
2193 if (skb_orphan_frags(skb, gfp_mask) ||
2194 skb_zerocopy_clone(n, skb, gfp_mask)) {
2195 kfree_skb(n);
2196 n = NULL;
2197 goto out;
2198 }
2199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2200 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2201 skb_frag_ref(skb, i);
2202 }
2203 skb_shinfo(n)->nr_frags = i;
2204 }
2205
2206 if (skb_has_frag_list(skb)) {
2207 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2208 skb_clone_fraglist(n);
2209 }
2210
2211 skb_copy_header(n, skb);
2212out:
2213 return n;
2214}
2215EXPORT_SYMBOL(__pskb_copy_fclone);
2216
2217/**
2218 * pskb_expand_head - reallocate header of &sk_buff
2219 * @skb: buffer to reallocate
2220 * @nhead: room to add at head
2221 * @ntail: room to add at tail
2222 * @gfp_mask: allocation priority
2223 *
2224 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2225 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2226 * reference count of 1. Returns zero in the case of success or error,
2227 * if expansion failed. In the last case, &sk_buff is not changed.
2228 *
2229 * All the pointers pointing into skb header may change and must be
2230 * reloaded after call to this function.
2231 */
2232
2233int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2234 gfp_t gfp_mask)
2235{
2236 unsigned int osize = skb_end_offset(skb);
2237 unsigned int size = osize + nhead + ntail;
2238 long off;
2239 u8 *data;
2240 int i;
2241
2242 BUG_ON(nhead < 0);
2243
2244 BUG_ON(skb_shared(skb));
2245
2246 skb_zcopy_downgrade_managed(skb);
2247
2248 if (skb_pfmemalloc(skb))
2249 gfp_mask |= __GFP_MEMALLOC;
2250
2251 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2252 if (!data)
2253 goto nodata;
2254 size = SKB_WITH_OVERHEAD(size);
2255
2256 /* Copy only real data... and, alas, header. This should be
2257 * optimized for the cases when header is void.
2258 */
2259 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2260
2261 memcpy((struct skb_shared_info *)(data + size),
2262 skb_shinfo(skb),
2263 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2264
2265 /*
2266 * if shinfo is shared we must drop the old head gracefully, but if it
2267 * is not we can just drop the old head and let the existing refcount
2268 * be since all we did is relocate the values
2269 */
2270 if (skb_cloned(skb)) {
2271 if (skb_orphan_frags(skb, gfp_mask))
2272 goto nofrags;
2273 if (skb_zcopy(skb))
2274 refcount_inc(&skb_uarg(skb)->refcnt);
2275 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2276 skb_frag_ref(skb, i);
2277
2278 if (skb_has_frag_list(skb))
2279 skb_clone_fraglist(skb);
2280
2281 skb_release_data(skb, SKB_CONSUMED, false);
2282 } else {
2283 skb_free_head(skb, false);
2284 }
2285 off = (data + nhead) - skb->head;
2286
2287 skb->head = data;
2288 skb->head_frag = 0;
2289 skb->data += off;
2290
2291 skb_set_end_offset(skb, size);
2292#ifdef NET_SKBUFF_DATA_USES_OFFSET
2293 off = nhead;
2294#endif
2295 skb->tail += off;
2296 skb_headers_offset_update(skb, nhead);
2297 skb->cloned = 0;
2298 skb->hdr_len = 0;
2299 skb->nohdr = 0;
2300 atomic_set(&skb_shinfo(skb)->dataref, 1);
2301
2302 skb_metadata_clear(skb);
2303
2304 /* It is not generally safe to change skb->truesize.
2305 * For the moment, we really care of rx path, or
2306 * when skb is orphaned (not attached to a socket).
2307 */
2308 if (!skb->sk || skb->destructor == sock_edemux)
2309 skb->truesize += size - osize;
2310
2311 return 0;
2312
2313nofrags:
2314 skb_kfree_head(data, size);
2315nodata:
2316 return -ENOMEM;
2317}
2318EXPORT_SYMBOL(pskb_expand_head);
2319
2320/* Make private copy of skb with writable head and some headroom */
2321
2322struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2323{
2324 struct sk_buff *skb2;
2325 int delta = headroom - skb_headroom(skb);
2326
2327 if (delta <= 0)
2328 skb2 = pskb_copy(skb, GFP_ATOMIC);
2329 else {
2330 skb2 = skb_clone(skb, GFP_ATOMIC);
2331 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2332 GFP_ATOMIC)) {
2333 kfree_skb(skb2);
2334 skb2 = NULL;
2335 }
2336 }
2337 return skb2;
2338}
2339EXPORT_SYMBOL(skb_realloc_headroom);
2340
2341/* Note: We plan to rework this in linux-6.4 */
2342int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2343{
2344 unsigned int saved_end_offset, saved_truesize;
2345 struct skb_shared_info *shinfo;
2346 int res;
2347
2348 saved_end_offset = skb_end_offset(skb);
2349 saved_truesize = skb->truesize;
2350
2351 res = pskb_expand_head(skb, 0, 0, pri);
2352 if (res)
2353 return res;
2354
2355 skb->truesize = saved_truesize;
2356
2357 if (likely(skb_end_offset(skb) == saved_end_offset))
2358 return 0;
2359
2360 /* We can not change skb->end if the original or new value
2361 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2362 */
2363 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2364 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2365 /* We think this path should not be taken.
2366 * Add a temporary trace to warn us just in case.
2367 */
2368 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2369 saved_end_offset, skb_end_offset(skb));
2370 WARN_ON_ONCE(1);
2371 return 0;
2372 }
2373
2374 shinfo = skb_shinfo(skb);
2375
2376 /* We are about to change back skb->end,
2377 * we need to move skb_shinfo() to its new location.
2378 */
2379 memmove(skb->head + saved_end_offset,
2380 shinfo,
2381 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2382
2383 skb_set_end_offset(skb, saved_end_offset);
2384
2385 return 0;
2386}
2387
2388/**
2389 * skb_expand_head - reallocate header of &sk_buff
2390 * @skb: buffer to reallocate
2391 * @headroom: needed headroom
2392 *
2393 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2394 * if possible; copies skb->sk to new skb as needed
2395 * and frees original skb in case of failures.
2396 *
2397 * It expect increased headroom and generates warning otherwise.
2398 */
2399
2400struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2401{
2402 int delta = headroom - skb_headroom(skb);
2403 int osize = skb_end_offset(skb);
2404 struct sock *sk = skb->sk;
2405
2406 if (WARN_ONCE(delta <= 0,
2407 "%s is expecting an increase in the headroom", __func__))
2408 return skb;
2409
2410 delta = SKB_DATA_ALIGN(delta);
2411 /* pskb_expand_head() might crash, if skb is shared. */
2412 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2413 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2414
2415 if (unlikely(!nskb))
2416 goto fail;
2417
2418 if (sk)
2419 skb_set_owner_w(nskb, sk);
2420 consume_skb(skb);
2421 skb = nskb;
2422 }
2423 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2424 goto fail;
2425
2426 if (sk && is_skb_wmem(skb)) {
2427 delta = skb_end_offset(skb) - osize;
2428 refcount_add(delta, &sk->sk_wmem_alloc);
2429 skb->truesize += delta;
2430 }
2431 return skb;
2432
2433fail:
2434 kfree_skb(skb);
2435 return NULL;
2436}
2437EXPORT_SYMBOL(skb_expand_head);
2438
2439/**
2440 * skb_copy_expand - copy and expand sk_buff
2441 * @skb: buffer to copy
2442 * @newheadroom: new free bytes at head
2443 * @newtailroom: new free bytes at tail
2444 * @gfp_mask: allocation priority
2445 *
2446 * Make a copy of both an &sk_buff and its data and while doing so
2447 * allocate additional space.
2448 *
2449 * This is used when the caller wishes to modify the data and needs a
2450 * private copy of the data to alter as well as more space for new fields.
2451 * Returns %NULL on failure or the pointer to the buffer
2452 * on success. The returned buffer has a reference count of 1.
2453 *
2454 * You must pass %GFP_ATOMIC as the allocation priority if this function
2455 * is called from an interrupt.
2456 */
2457struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2458 int newheadroom, int newtailroom,
2459 gfp_t gfp_mask)
2460{
2461 /*
2462 * Allocate the copy buffer
2463 */
2464 int head_copy_len, head_copy_off;
2465 struct sk_buff *n;
2466 int oldheadroom;
2467
2468 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2469 return NULL;
2470
2471 oldheadroom = skb_headroom(skb);
2472 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2473 gfp_mask, skb_alloc_rx_flag(skb),
2474 NUMA_NO_NODE);
2475 if (!n)
2476 return NULL;
2477
2478 skb_reserve(n, newheadroom);
2479
2480 /* Set the tail pointer and length */
2481 skb_put(n, skb->len);
2482
2483 head_copy_len = oldheadroom;
2484 head_copy_off = 0;
2485 if (newheadroom <= head_copy_len)
2486 head_copy_len = newheadroom;
2487 else
2488 head_copy_off = newheadroom - head_copy_len;
2489
2490 /* Copy the linear header and data. */
2491 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2492 skb->len + head_copy_len));
2493
2494 skb_copy_header(n, skb);
2495
2496 skb_headers_offset_update(n, newheadroom - oldheadroom);
2497
2498 return n;
2499}
2500EXPORT_SYMBOL(skb_copy_expand);
2501
2502/**
2503 * __skb_pad - zero pad the tail of an skb
2504 * @skb: buffer to pad
2505 * @pad: space to pad
2506 * @free_on_error: free buffer on error
2507 *
2508 * Ensure that a buffer is followed by a padding area that is zero
2509 * filled. Used by network drivers which may DMA or transfer data
2510 * beyond the buffer end onto the wire.
2511 *
2512 * May return error in out of memory cases. The skb is freed on error
2513 * if @free_on_error is true.
2514 */
2515
2516int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2517{
2518 int err;
2519 int ntail;
2520
2521 /* If the skbuff is non linear tailroom is always zero.. */
2522 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2523 memset(skb->data+skb->len, 0, pad);
2524 return 0;
2525 }
2526
2527 ntail = skb->data_len + pad - (skb->end - skb->tail);
2528 if (likely(skb_cloned(skb) || ntail > 0)) {
2529 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2530 if (unlikely(err))
2531 goto free_skb;
2532 }
2533
2534 /* FIXME: The use of this function with non-linear skb's really needs
2535 * to be audited.
2536 */
2537 err = skb_linearize(skb);
2538 if (unlikely(err))
2539 goto free_skb;
2540
2541 memset(skb->data + skb->len, 0, pad);
2542 return 0;
2543
2544free_skb:
2545 if (free_on_error)
2546 kfree_skb(skb);
2547 return err;
2548}
2549EXPORT_SYMBOL(__skb_pad);
2550
2551/**
2552 * pskb_put - add data to the tail of a potentially fragmented buffer
2553 * @skb: start of the buffer to use
2554 * @tail: tail fragment of the buffer to use
2555 * @len: amount of data to add
2556 *
2557 * This function extends the used data area of the potentially
2558 * fragmented buffer. @tail must be the last fragment of @skb -- or
2559 * @skb itself. If this would exceed the total buffer size the kernel
2560 * will panic. A pointer to the first byte of the extra data is
2561 * returned.
2562 */
2563
2564void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2565{
2566 if (tail != skb) {
2567 skb->data_len += len;
2568 skb->len += len;
2569 }
2570 return skb_put(tail, len);
2571}
2572EXPORT_SYMBOL_GPL(pskb_put);
2573
2574/**
2575 * skb_put - add data to a buffer
2576 * @skb: buffer to use
2577 * @len: amount of data to add
2578 *
2579 * This function extends the used data area of the buffer. If this would
2580 * exceed the total buffer size the kernel will panic. A pointer to the
2581 * first byte of the extra data is returned.
2582 */
2583void *skb_put(struct sk_buff *skb, unsigned int len)
2584{
2585 void *tmp = skb_tail_pointer(skb);
2586 SKB_LINEAR_ASSERT(skb);
2587 skb->tail += len;
2588 skb->len += len;
2589 if (unlikely(skb->tail > skb->end))
2590 skb_over_panic(skb, len, __builtin_return_address(0));
2591 return tmp;
2592}
2593EXPORT_SYMBOL(skb_put);
2594
2595/**
2596 * skb_push - add data to the start of a buffer
2597 * @skb: buffer to use
2598 * @len: amount of data to add
2599 *
2600 * This function extends the used data area of the buffer at the buffer
2601 * start. If this would exceed the total buffer headroom the kernel will
2602 * panic. A pointer to the first byte of the extra data is returned.
2603 */
2604void *skb_push(struct sk_buff *skb, unsigned int len)
2605{
2606 skb->data -= len;
2607 skb->len += len;
2608 if (unlikely(skb->data < skb->head))
2609 skb_under_panic(skb, len, __builtin_return_address(0));
2610 return skb->data;
2611}
2612EXPORT_SYMBOL(skb_push);
2613
2614/**
2615 * skb_pull - remove data from the start of a buffer
2616 * @skb: buffer to use
2617 * @len: amount of data to remove
2618 *
2619 * This function removes data from the start of a buffer, returning
2620 * the memory to the headroom. A pointer to the next data in the buffer
2621 * is returned. Once the data has been pulled future pushes will overwrite
2622 * the old data.
2623 */
2624void *skb_pull(struct sk_buff *skb, unsigned int len)
2625{
2626 return skb_pull_inline(skb, len);
2627}
2628EXPORT_SYMBOL(skb_pull);
2629
2630/**
2631 * skb_pull_data - remove data from the start of a buffer returning its
2632 * original position.
2633 * @skb: buffer to use
2634 * @len: amount of data to remove
2635 *
2636 * This function removes data from the start of a buffer, returning
2637 * the memory to the headroom. A pointer to the original data in the buffer
2638 * is returned after checking if there is enough data to pull. Once the
2639 * data has been pulled future pushes will overwrite the old data.
2640 */
2641void *skb_pull_data(struct sk_buff *skb, size_t len)
2642{
2643 void *data = skb->data;
2644
2645 if (skb->len < len)
2646 return NULL;
2647
2648 skb_pull(skb, len);
2649
2650 return data;
2651}
2652EXPORT_SYMBOL(skb_pull_data);
2653
2654/**
2655 * skb_trim - remove end from a buffer
2656 * @skb: buffer to alter
2657 * @len: new length
2658 *
2659 * Cut the length of a buffer down by removing data from the tail. If
2660 * the buffer is already under the length specified it is not modified.
2661 * The skb must be linear.
2662 */
2663void skb_trim(struct sk_buff *skb, unsigned int len)
2664{
2665 if (skb->len > len)
2666 __skb_trim(skb, len);
2667}
2668EXPORT_SYMBOL(skb_trim);
2669
2670/* Trims skb to length len. It can change skb pointers.
2671 */
2672
2673int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2674{
2675 struct sk_buff **fragp;
2676 struct sk_buff *frag;
2677 int offset = skb_headlen(skb);
2678 int nfrags = skb_shinfo(skb)->nr_frags;
2679 int i;
2680 int err;
2681
2682 if (skb_cloned(skb) &&
2683 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2684 return err;
2685
2686 i = 0;
2687 if (offset >= len)
2688 goto drop_pages;
2689
2690 for (; i < nfrags; i++) {
2691 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2692
2693 if (end < len) {
2694 offset = end;
2695 continue;
2696 }
2697
2698 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2699
2700drop_pages:
2701 skb_shinfo(skb)->nr_frags = i;
2702
2703 for (; i < nfrags; i++)
2704 skb_frag_unref(skb, i);
2705
2706 if (skb_has_frag_list(skb))
2707 skb_drop_fraglist(skb);
2708 goto done;
2709 }
2710
2711 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2712 fragp = &frag->next) {
2713 int end = offset + frag->len;
2714
2715 if (skb_shared(frag)) {
2716 struct sk_buff *nfrag;
2717
2718 nfrag = skb_clone(frag, GFP_ATOMIC);
2719 if (unlikely(!nfrag))
2720 return -ENOMEM;
2721
2722 nfrag->next = frag->next;
2723 consume_skb(frag);
2724 frag = nfrag;
2725 *fragp = frag;
2726 }
2727
2728 if (end < len) {
2729 offset = end;
2730 continue;
2731 }
2732
2733 if (end > len &&
2734 unlikely((err = pskb_trim(frag, len - offset))))
2735 return err;
2736
2737 if (frag->next)
2738 skb_drop_list(&frag->next);
2739 break;
2740 }
2741
2742done:
2743 if (len > skb_headlen(skb)) {
2744 skb->data_len -= skb->len - len;
2745 skb->len = len;
2746 } else {
2747 skb->len = len;
2748 skb->data_len = 0;
2749 skb_set_tail_pointer(skb, len);
2750 }
2751
2752 if (!skb->sk || skb->destructor == sock_edemux)
2753 skb_condense(skb);
2754 return 0;
2755}
2756EXPORT_SYMBOL(___pskb_trim);
2757
2758/* Note : use pskb_trim_rcsum() instead of calling this directly
2759 */
2760int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2761{
2762 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2763 int delta = skb->len - len;
2764
2765 skb->csum = csum_block_sub(skb->csum,
2766 skb_checksum(skb, len, delta, 0),
2767 len);
2768 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2770 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2771
2772 if (offset + sizeof(__sum16) > hdlen)
2773 return -EINVAL;
2774 }
2775 return __pskb_trim(skb, len);
2776}
2777EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2778
2779/**
2780 * __pskb_pull_tail - advance tail of skb header
2781 * @skb: buffer to reallocate
2782 * @delta: number of bytes to advance tail
2783 *
2784 * The function makes a sense only on a fragmented &sk_buff,
2785 * it expands header moving its tail forward and copying necessary
2786 * data from fragmented part.
2787 *
2788 * &sk_buff MUST have reference count of 1.
2789 *
2790 * Returns %NULL (and &sk_buff does not change) if pull failed
2791 * or value of new tail of skb in the case of success.
2792 *
2793 * All the pointers pointing into skb header may change and must be
2794 * reloaded after call to this function.
2795 */
2796
2797/* Moves tail of skb head forward, copying data from fragmented part,
2798 * when it is necessary.
2799 * 1. It may fail due to malloc failure.
2800 * 2. It may change skb pointers.
2801 *
2802 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2803 */
2804void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2805{
2806 /* If skb has not enough free space at tail, get new one
2807 * plus 128 bytes for future expansions. If we have enough
2808 * room at tail, reallocate without expansion only if skb is cloned.
2809 */
2810 int i, k, eat = (skb->tail + delta) - skb->end;
2811
2812 if (eat > 0 || skb_cloned(skb)) {
2813 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2814 GFP_ATOMIC))
2815 return NULL;
2816 }
2817
2818 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2819 skb_tail_pointer(skb), delta));
2820
2821 /* Optimization: no fragments, no reasons to preestimate
2822 * size of pulled pages. Superb.
2823 */
2824 if (!skb_has_frag_list(skb))
2825 goto pull_pages;
2826
2827 /* Estimate size of pulled pages. */
2828 eat = delta;
2829 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2830 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2831
2832 if (size >= eat)
2833 goto pull_pages;
2834 eat -= size;
2835 }
2836
2837 /* If we need update frag list, we are in troubles.
2838 * Certainly, it is possible to add an offset to skb data,
2839 * but taking into account that pulling is expected to
2840 * be very rare operation, it is worth to fight against
2841 * further bloating skb head and crucify ourselves here instead.
2842 * Pure masohism, indeed. 8)8)
2843 */
2844 if (eat) {
2845 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2846 struct sk_buff *clone = NULL;
2847 struct sk_buff *insp = NULL;
2848
2849 do {
2850 if (list->len <= eat) {
2851 /* Eaten as whole. */
2852 eat -= list->len;
2853 list = list->next;
2854 insp = list;
2855 } else {
2856 /* Eaten partially. */
2857 if (skb_is_gso(skb) && !list->head_frag &&
2858 skb_headlen(list))
2859 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2860
2861 if (skb_shared(list)) {
2862 /* Sucks! We need to fork list. :-( */
2863 clone = skb_clone(list, GFP_ATOMIC);
2864 if (!clone)
2865 return NULL;
2866 insp = list->next;
2867 list = clone;
2868 } else {
2869 /* This may be pulled without
2870 * problems. */
2871 insp = list;
2872 }
2873 if (!pskb_pull(list, eat)) {
2874 kfree_skb(clone);
2875 return NULL;
2876 }
2877 break;
2878 }
2879 } while (eat);
2880
2881 /* Free pulled out fragments. */
2882 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2883 skb_shinfo(skb)->frag_list = list->next;
2884 consume_skb(list);
2885 }
2886 /* And insert new clone at head. */
2887 if (clone) {
2888 clone->next = list;
2889 skb_shinfo(skb)->frag_list = clone;
2890 }
2891 }
2892 /* Success! Now we may commit changes to skb data. */
2893
2894pull_pages:
2895 eat = delta;
2896 k = 0;
2897 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2899
2900 if (size <= eat) {
2901 skb_frag_unref(skb, i);
2902 eat -= size;
2903 } else {
2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2905
2906 *frag = skb_shinfo(skb)->frags[i];
2907 if (eat) {
2908 skb_frag_off_add(frag, eat);
2909 skb_frag_size_sub(frag, eat);
2910 if (!i)
2911 goto end;
2912 eat = 0;
2913 }
2914 k++;
2915 }
2916 }
2917 skb_shinfo(skb)->nr_frags = k;
2918
2919end:
2920 skb->tail += delta;
2921 skb->data_len -= delta;
2922
2923 if (!skb->data_len)
2924 skb_zcopy_clear(skb, false);
2925
2926 return skb_tail_pointer(skb);
2927}
2928EXPORT_SYMBOL(__pskb_pull_tail);
2929
2930/**
2931 * skb_copy_bits - copy bits from skb to kernel buffer
2932 * @skb: source skb
2933 * @offset: offset in source
2934 * @to: destination buffer
2935 * @len: number of bytes to copy
2936 *
2937 * Copy the specified number of bytes from the source skb to the
2938 * destination buffer.
2939 *
2940 * CAUTION ! :
2941 * If its prototype is ever changed,
2942 * check arch/{*}/net/{*}.S files,
2943 * since it is called from BPF assembly code.
2944 */
2945int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2946{
2947 int start = skb_headlen(skb);
2948 struct sk_buff *frag_iter;
2949 int i, copy;
2950
2951 if (offset > (int)skb->len - len)
2952 goto fault;
2953
2954 /* Copy header. */
2955 if ((copy = start - offset) > 0) {
2956 if (copy > len)
2957 copy = len;
2958 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2959 if ((len -= copy) == 0)
2960 return 0;
2961 offset += copy;
2962 to += copy;
2963 }
2964
2965 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2966 int end;
2967 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2968
2969 WARN_ON(start > offset + len);
2970
2971 end = start + skb_frag_size(f);
2972 if ((copy = end - offset) > 0) {
2973 u32 p_off, p_len, copied;
2974 struct page *p;
2975 u8 *vaddr;
2976
2977 if (copy > len)
2978 copy = len;
2979
2980 skb_frag_foreach_page(f,
2981 skb_frag_off(f) + offset - start,
2982 copy, p, p_off, p_len, copied) {
2983 vaddr = kmap_atomic(p);
2984 memcpy(to + copied, vaddr + p_off, p_len);
2985 kunmap_atomic(vaddr);
2986 }
2987
2988 if ((len -= copy) == 0)
2989 return 0;
2990 offset += copy;
2991 to += copy;
2992 }
2993 start = end;
2994 }
2995
2996 skb_walk_frags(skb, frag_iter) {
2997 int end;
2998
2999 WARN_ON(start > offset + len);
3000
3001 end = start + frag_iter->len;
3002 if ((copy = end - offset) > 0) {
3003 if (copy > len)
3004 copy = len;
3005 if (skb_copy_bits(frag_iter, offset - start, to, copy))
3006 goto fault;
3007 if ((len -= copy) == 0)
3008 return 0;
3009 offset += copy;
3010 to += copy;
3011 }
3012 start = end;
3013 }
3014
3015 if (!len)
3016 return 0;
3017
3018fault:
3019 return -EFAULT;
3020}
3021EXPORT_SYMBOL(skb_copy_bits);
3022
3023/*
3024 * Callback from splice_to_pipe(), if we need to release some pages
3025 * at the end of the spd in case we error'ed out in filling the pipe.
3026 */
3027static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3028{
3029 put_page(spd->pages[i]);
3030}
3031
3032static struct page *linear_to_page(struct page *page, unsigned int *len,
3033 unsigned int *offset,
3034 struct sock *sk)
3035{
3036 struct page_frag *pfrag = sk_page_frag(sk);
3037
3038 if (!sk_page_frag_refill(sk, pfrag))
3039 return NULL;
3040
3041 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3042
3043 memcpy(page_address(pfrag->page) + pfrag->offset,
3044 page_address(page) + *offset, *len);
3045 *offset = pfrag->offset;
3046 pfrag->offset += *len;
3047
3048 return pfrag->page;
3049}
3050
3051static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3052 struct page *page,
3053 unsigned int offset)
3054{
3055 return spd->nr_pages &&
3056 spd->pages[spd->nr_pages - 1] == page &&
3057 (spd->partial[spd->nr_pages - 1].offset +
3058 spd->partial[spd->nr_pages - 1].len == offset);
3059}
3060
3061/*
3062 * Fill page/offset/length into spd, if it can hold more pages.
3063 */
3064static bool spd_fill_page(struct splice_pipe_desc *spd,
3065 struct pipe_inode_info *pipe, struct page *page,
3066 unsigned int *len, unsigned int offset,
3067 bool linear,
3068 struct sock *sk)
3069{
3070 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3071 return true;
3072
3073 if (linear) {
3074 page = linear_to_page(page, len, &offset, sk);
3075 if (!page)
3076 return true;
3077 }
3078 if (spd_can_coalesce(spd, page, offset)) {
3079 spd->partial[spd->nr_pages - 1].len += *len;
3080 return false;
3081 }
3082 get_page(page);
3083 spd->pages[spd->nr_pages] = page;
3084 spd->partial[spd->nr_pages].len = *len;
3085 spd->partial[spd->nr_pages].offset = offset;
3086 spd->nr_pages++;
3087
3088 return false;
3089}
3090
3091static bool __splice_segment(struct page *page, unsigned int poff,
3092 unsigned int plen, unsigned int *off,
3093 unsigned int *len,
3094 struct splice_pipe_desc *spd, bool linear,
3095 struct sock *sk,
3096 struct pipe_inode_info *pipe)
3097{
3098 if (!*len)
3099 return true;
3100
3101 /* skip this segment if already processed */
3102 if (*off >= plen) {
3103 *off -= plen;
3104 return false;
3105 }
3106
3107 /* ignore any bits we already processed */
3108 poff += *off;
3109 plen -= *off;
3110 *off = 0;
3111
3112 do {
3113 unsigned int flen = min(*len, plen);
3114
3115 if (spd_fill_page(spd, pipe, page, &flen, poff,
3116 linear, sk))
3117 return true;
3118 poff += flen;
3119 plen -= flen;
3120 *len -= flen;
3121 } while (*len && plen);
3122
3123 return false;
3124}
3125
3126/*
3127 * Map linear and fragment data from the skb to spd. It reports true if the
3128 * pipe is full or if we already spliced the requested length.
3129 */
3130static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3131 unsigned int *offset, unsigned int *len,
3132 struct splice_pipe_desc *spd, struct sock *sk)
3133{
3134 int seg;
3135 struct sk_buff *iter;
3136
3137 /* map the linear part :
3138 * If skb->head_frag is set, this 'linear' part is backed by a
3139 * fragment, and if the head is not shared with any clones then
3140 * we can avoid a copy since we own the head portion of this page.
3141 */
3142 if (__splice_segment(virt_to_page(skb->data),
3143 (unsigned long) skb->data & (PAGE_SIZE - 1),
3144 skb_headlen(skb),
3145 offset, len, spd,
3146 skb_head_is_locked(skb),
3147 sk, pipe))
3148 return true;
3149
3150 /*
3151 * then map the fragments
3152 */
3153 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3154 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3155
3156 if (__splice_segment(skb_frag_page(f),
3157 skb_frag_off(f), skb_frag_size(f),
3158 offset, len, spd, false, sk, pipe))
3159 return true;
3160 }
3161
3162 skb_walk_frags(skb, iter) {
3163 if (*offset >= iter->len) {
3164 *offset -= iter->len;
3165 continue;
3166 }
3167 /* __skb_splice_bits() only fails if the output has no room
3168 * left, so no point in going over the frag_list for the error
3169 * case.
3170 */
3171 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3172 return true;
3173 }
3174
3175 return false;
3176}
3177
3178/*
3179 * Map data from the skb to a pipe. Should handle both the linear part,
3180 * the fragments, and the frag list.
3181 */
3182int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3183 struct pipe_inode_info *pipe, unsigned int tlen,
3184 unsigned int flags)
3185{
3186 struct partial_page partial[MAX_SKB_FRAGS];
3187 struct page *pages[MAX_SKB_FRAGS];
3188 struct splice_pipe_desc spd = {
3189 .pages = pages,
3190 .partial = partial,
3191 .nr_pages_max = MAX_SKB_FRAGS,
3192 .ops = &nosteal_pipe_buf_ops,
3193 .spd_release = sock_spd_release,
3194 };
3195 int ret = 0;
3196
3197 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3198
3199 if (spd.nr_pages)
3200 ret = splice_to_pipe(pipe, &spd);
3201
3202 return ret;
3203}
3204EXPORT_SYMBOL_GPL(skb_splice_bits);
3205
3206static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3207{
3208 struct socket *sock = sk->sk_socket;
3209 size_t size = msg_data_left(msg);
3210
3211 if (!sock)
3212 return -EINVAL;
3213
3214 if (!sock->ops->sendmsg_locked)
3215 return sock_no_sendmsg_locked(sk, msg, size);
3216
3217 return sock->ops->sendmsg_locked(sk, msg, size);
3218}
3219
3220static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3221{
3222 struct socket *sock = sk->sk_socket;
3223
3224 if (!sock)
3225 return -EINVAL;
3226 return sock_sendmsg(sock, msg);
3227}
3228
3229typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3230static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3231 int len, sendmsg_func sendmsg)
3232{
3233 unsigned int orig_len = len;
3234 struct sk_buff *head = skb;
3235 unsigned short fragidx;
3236 int slen, ret;
3237
3238do_frag_list:
3239
3240 /* Deal with head data */
3241 while (offset < skb_headlen(skb) && len) {
3242 struct kvec kv;
3243 struct msghdr msg;
3244
3245 slen = min_t(int, len, skb_headlen(skb) - offset);
3246 kv.iov_base = skb->data + offset;
3247 kv.iov_len = slen;
3248 memset(&msg, 0, sizeof(msg));
3249 msg.msg_flags = MSG_DONTWAIT;
3250
3251 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3252 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3253 sendmsg_unlocked, sk, &msg);
3254 if (ret <= 0)
3255 goto error;
3256
3257 offset += ret;
3258 len -= ret;
3259 }
3260
3261 /* All the data was skb head? */
3262 if (!len)
3263 goto out;
3264
3265 /* Make offset relative to start of frags */
3266 offset -= skb_headlen(skb);
3267
3268 /* Find where we are in frag list */
3269 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3270 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3271
3272 if (offset < skb_frag_size(frag))
3273 break;
3274
3275 offset -= skb_frag_size(frag);
3276 }
3277
3278 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3279 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3280
3281 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3282
3283 while (slen) {
3284 struct bio_vec bvec;
3285 struct msghdr msg = {
3286 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3287 };
3288
3289 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3290 skb_frag_off(frag) + offset);
3291 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3292 slen);
3293
3294 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3295 sendmsg_unlocked, sk, &msg);
3296 if (ret <= 0)
3297 goto error;
3298
3299 len -= ret;
3300 offset += ret;
3301 slen -= ret;
3302 }
3303
3304 offset = 0;
3305 }
3306
3307 if (len) {
3308 /* Process any frag lists */
3309
3310 if (skb == head) {
3311 if (skb_has_frag_list(skb)) {
3312 skb = skb_shinfo(skb)->frag_list;
3313 goto do_frag_list;
3314 }
3315 } else if (skb->next) {
3316 skb = skb->next;
3317 goto do_frag_list;
3318 }
3319 }
3320
3321out:
3322 return orig_len - len;
3323
3324error:
3325 return orig_len == len ? ret : orig_len - len;
3326}
3327
3328/* Send skb data on a socket. Socket must be locked. */
3329int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3330 int len)
3331{
3332 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3333}
3334EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3335
3336/* Send skb data on a socket. Socket must be unlocked. */
3337int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3338{
3339 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3340}
3341
3342/**
3343 * skb_store_bits - store bits from kernel buffer to skb
3344 * @skb: destination buffer
3345 * @offset: offset in destination
3346 * @from: source buffer
3347 * @len: number of bytes to copy
3348 *
3349 * Copy the specified number of bytes from the source buffer to the
3350 * destination skb. This function handles all the messy bits of
3351 * traversing fragment lists and such.
3352 */
3353
3354int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3355{
3356 int start = skb_headlen(skb);
3357 struct sk_buff *frag_iter;
3358 int i, copy;
3359
3360 if (offset > (int)skb->len - len)
3361 goto fault;
3362
3363 if ((copy = start - offset) > 0) {
3364 if (copy > len)
3365 copy = len;
3366 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3367 if ((len -= copy) == 0)
3368 return 0;
3369 offset += copy;
3370 from += copy;
3371 }
3372
3373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3374 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3375 int end;
3376
3377 WARN_ON(start > offset + len);
3378
3379 end = start + skb_frag_size(frag);
3380 if ((copy = end - offset) > 0) {
3381 u32 p_off, p_len, copied;
3382 struct page *p;
3383 u8 *vaddr;
3384
3385 if (copy > len)
3386 copy = len;
3387
3388 skb_frag_foreach_page(frag,
3389 skb_frag_off(frag) + offset - start,
3390 copy, p, p_off, p_len, copied) {
3391 vaddr = kmap_atomic(p);
3392 memcpy(vaddr + p_off, from + copied, p_len);
3393 kunmap_atomic(vaddr);
3394 }
3395
3396 if ((len -= copy) == 0)
3397 return 0;
3398 offset += copy;
3399 from += copy;
3400 }
3401 start = end;
3402 }
3403
3404 skb_walk_frags(skb, frag_iter) {
3405 int end;
3406
3407 WARN_ON(start > offset + len);
3408
3409 end = start + frag_iter->len;
3410 if ((copy = end - offset) > 0) {
3411 if (copy > len)
3412 copy = len;
3413 if (skb_store_bits(frag_iter, offset - start,
3414 from, copy))
3415 goto fault;
3416 if ((len -= copy) == 0)
3417 return 0;
3418 offset += copy;
3419 from += copy;
3420 }
3421 start = end;
3422 }
3423 if (!len)
3424 return 0;
3425
3426fault:
3427 return -EFAULT;
3428}
3429EXPORT_SYMBOL(skb_store_bits);
3430
3431/* Checksum skb data. */
3432__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3433 __wsum csum, const struct skb_checksum_ops *ops)
3434{
3435 int start = skb_headlen(skb);
3436 int i, copy = start - offset;
3437 struct sk_buff *frag_iter;
3438 int pos = 0;
3439
3440 /* Checksum header. */
3441 if (copy > 0) {
3442 if (copy > len)
3443 copy = len;
3444 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3445 skb->data + offset, copy, csum);
3446 if ((len -= copy) == 0)
3447 return csum;
3448 offset += copy;
3449 pos = copy;
3450 }
3451
3452 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3453 int end;
3454 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3455
3456 WARN_ON(start > offset + len);
3457
3458 end = start + skb_frag_size(frag);
3459 if ((copy = end - offset) > 0) {
3460 u32 p_off, p_len, copied;
3461 struct page *p;
3462 __wsum csum2;
3463 u8 *vaddr;
3464
3465 if (copy > len)
3466 copy = len;
3467
3468 skb_frag_foreach_page(frag,
3469 skb_frag_off(frag) + offset - start,
3470 copy, p, p_off, p_len, copied) {
3471 vaddr = kmap_atomic(p);
3472 csum2 = INDIRECT_CALL_1(ops->update,
3473 csum_partial_ext,
3474 vaddr + p_off, p_len, 0);
3475 kunmap_atomic(vaddr);
3476 csum = INDIRECT_CALL_1(ops->combine,
3477 csum_block_add_ext, csum,
3478 csum2, pos, p_len);
3479 pos += p_len;
3480 }
3481
3482 if (!(len -= copy))
3483 return csum;
3484 offset += copy;
3485 }
3486 start = end;
3487 }
3488
3489 skb_walk_frags(skb, frag_iter) {
3490 int end;
3491
3492 WARN_ON(start > offset + len);
3493
3494 end = start + frag_iter->len;
3495 if ((copy = end - offset) > 0) {
3496 __wsum csum2;
3497 if (copy > len)
3498 copy = len;
3499 csum2 = __skb_checksum(frag_iter, offset - start,
3500 copy, 0, ops);
3501 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3502 csum, csum2, pos, copy);
3503 if ((len -= copy) == 0)
3504 return csum;
3505 offset += copy;
3506 pos += copy;
3507 }
3508 start = end;
3509 }
3510 BUG_ON(len);
3511
3512 return csum;
3513}
3514EXPORT_SYMBOL(__skb_checksum);
3515
3516__wsum skb_checksum(const struct sk_buff *skb, int offset,
3517 int len, __wsum csum)
3518{
3519 const struct skb_checksum_ops ops = {
3520 .update = csum_partial_ext,
3521 .combine = csum_block_add_ext,
3522 };
3523
3524 return __skb_checksum(skb, offset, len, csum, &ops);
3525}
3526EXPORT_SYMBOL(skb_checksum);
3527
3528/* Both of above in one bottle. */
3529
3530__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3531 u8 *to, int len)
3532{
3533 int start = skb_headlen(skb);
3534 int i, copy = start - offset;
3535 struct sk_buff *frag_iter;
3536 int pos = 0;
3537 __wsum csum = 0;
3538
3539 /* Copy header. */
3540 if (copy > 0) {
3541 if (copy > len)
3542 copy = len;
3543 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3544 copy);
3545 if ((len -= copy) == 0)
3546 return csum;
3547 offset += copy;
3548 to += copy;
3549 pos = copy;
3550 }
3551
3552 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3553 int end;
3554
3555 WARN_ON(start > offset + len);
3556
3557 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3558 if ((copy = end - offset) > 0) {
3559 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3560 u32 p_off, p_len, copied;
3561 struct page *p;
3562 __wsum csum2;
3563 u8 *vaddr;
3564
3565 if (copy > len)
3566 copy = len;
3567
3568 skb_frag_foreach_page(frag,
3569 skb_frag_off(frag) + offset - start,
3570 copy, p, p_off, p_len, copied) {
3571 vaddr = kmap_atomic(p);
3572 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3573 to + copied,
3574 p_len);
3575 kunmap_atomic(vaddr);
3576 csum = csum_block_add(csum, csum2, pos);
3577 pos += p_len;
3578 }
3579
3580 if (!(len -= copy))
3581 return csum;
3582 offset += copy;
3583 to += copy;
3584 }
3585 start = end;
3586 }
3587
3588 skb_walk_frags(skb, frag_iter) {
3589 __wsum csum2;
3590 int end;
3591
3592 WARN_ON(start > offset + len);
3593
3594 end = start + frag_iter->len;
3595 if ((copy = end - offset) > 0) {
3596 if (copy > len)
3597 copy = len;
3598 csum2 = skb_copy_and_csum_bits(frag_iter,
3599 offset - start,
3600 to, copy);
3601 csum = csum_block_add(csum, csum2, pos);
3602 if ((len -= copy) == 0)
3603 return csum;
3604 offset += copy;
3605 to += copy;
3606 pos += copy;
3607 }
3608 start = end;
3609 }
3610 BUG_ON(len);
3611 return csum;
3612}
3613EXPORT_SYMBOL(skb_copy_and_csum_bits);
3614
3615__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3616{
3617 __sum16 sum;
3618
3619 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3620 /* See comments in __skb_checksum_complete(). */
3621 if (likely(!sum)) {
3622 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3623 !skb->csum_complete_sw)
3624 netdev_rx_csum_fault(skb->dev, skb);
3625 }
3626 if (!skb_shared(skb))
3627 skb->csum_valid = !sum;
3628 return sum;
3629}
3630EXPORT_SYMBOL(__skb_checksum_complete_head);
3631
3632/* This function assumes skb->csum already holds pseudo header's checksum,
3633 * which has been changed from the hardware checksum, for example, by
3634 * __skb_checksum_validate_complete(). And, the original skb->csum must
3635 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3636 *
3637 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3638 * zero. The new checksum is stored back into skb->csum unless the skb is
3639 * shared.
3640 */
3641__sum16 __skb_checksum_complete(struct sk_buff *skb)
3642{
3643 __wsum csum;
3644 __sum16 sum;
3645
3646 csum = skb_checksum(skb, 0, skb->len, 0);
3647
3648 sum = csum_fold(csum_add(skb->csum, csum));
3649 /* This check is inverted, because we already knew the hardware
3650 * checksum is invalid before calling this function. So, if the
3651 * re-computed checksum is valid instead, then we have a mismatch
3652 * between the original skb->csum and skb_checksum(). This means either
3653 * the original hardware checksum is incorrect or we screw up skb->csum
3654 * when moving skb->data around.
3655 */
3656 if (likely(!sum)) {
3657 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3658 !skb->csum_complete_sw)
3659 netdev_rx_csum_fault(skb->dev, skb);
3660 }
3661
3662 if (!skb_shared(skb)) {
3663 /* Save full packet checksum */
3664 skb->csum = csum;
3665 skb->ip_summed = CHECKSUM_COMPLETE;
3666 skb->csum_complete_sw = 1;
3667 skb->csum_valid = !sum;
3668 }
3669
3670 return sum;
3671}
3672EXPORT_SYMBOL(__skb_checksum_complete);
3673
3674static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3675{
3676 net_warn_ratelimited(
3677 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3678 __func__);
3679 return 0;
3680}
3681
3682static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3683 int offset, int len)
3684{
3685 net_warn_ratelimited(
3686 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3687 __func__);
3688 return 0;
3689}
3690
3691static const struct skb_checksum_ops default_crc32c_ops = {
3692 .update = warn_crc32c_csum_update,
3693 .combine = warn_crc32c_csum_combine,
3694};
3695
3696const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3697 &default_crc32c_ops;
3698EXPORT_SYMBOL(crc32c_csum_stub);
3699
3700 /**
3701 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3702 * @from: source buffer
3703 *
3704 * Calculates the amount of linear headroom needed in the 'to' skb passed
3705 * into skb_zerocopy().
3706 */
3707unsigned int
3708skb_zerocopy_headlen(const struct sk_buff *from)
3709{
3710 unsigned int hlen = 0;
3711
3712 if (!from->head_frag ||
3713 skb_headlen(from) < L1_CACHE_BYTES ||
3714 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3715 hlen = skb_headlen(from);
3716 if (!hlen)
3717 hlen = from->len;
3718 }
3719
3720 if (skb_has_frag_list(from))
3721 hlen = from->len;
3722
3723 return hlen;
3724}
3725EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3726
3727/**
3728 * skb_zerocopy - Zero copy skb to skb
3729 * @to: destination buffer
3730 * @from: source buffer
3731 * @len: number of bytes to copy from source buffer
3732 * @hlen: size of linear headroom in destination buffer
3733 *
3734 * Copies up to `len` bytes from `from` to `to` by creating references
3735 * to the frags in the source buffer.
3736 *
3737 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3738 * headroom in the `to` buffer.
3739 *
3740 * Return value:
3741 * 0: everything is OK
3742 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3743 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3744 */
3745int
3746skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3747{
3748 int i, j = 0;
3749 int plen = 0; /* length of skb->head fragment */
3750 int ret;
3751 struct page *page;
3752 unsigned int offset;
3753
3754 BUG_ON(!from->head_frag && !hlen);
3755
3756 /* dont bother with small payloads */
3757 if (len <= skb_tailroom(to))
3758 return skb_copy_bits(from, 0, skb_put(to, len), len);
3759
3760 if (hlen) {
3761 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3762 if (unlikely(ret))
3763 return ret;
3764 len -= hlen;
3765 } else {
3766 plen = min_t(int, skb_headlen(from), len);
3767 if (plen) {
3768 page = virt_to_head_page(from->head);
3769 offset = from->data - (unsigned char *)page_address(page);
3770 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3771 offset, plen);
3772 get_page(page);
3773 j = 1;
3774 len -= plen;
3775 }
3776 }
3777
3778 skb_len_add(to, len + plen);
3779
3780 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3781 skb_tx_error(from);
3782 return -ENOMEM;
3783 }
3784 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3785
3786 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3787 int size;
3788
3789 if (!len)
3790 break;
3791 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3792 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3793 len);
3794 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3795 len -= size;
3796 skb_frag_ref(to, j);
3797 j++;
3798 }
3799 skb_shinfo(to)->nr_frags = j;
3800
3801 return 0;
3802}
3803EXPORT_SYMBOL_GPL(skb_zerocopy);
3804
3805void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3806{
3807 __wsum csum;
3808 long csstart;
3809
3810 if (skb->ip_summed == CHECKSUM_PARTIAL)
3811 csstart = skb_checksum_start_offset(skb);
3812 else
3813 csstart = skb_headlen(skb);
3814
3815 BUG_ON(csstart > skb_headlen(skb));
3816
3817 skb_copy_from_linear_data(skb, to, csstart);
3818
3819 csum = 0;
3820 if (csstart != skb->len)
3821 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3822 skb->len - csstart);
3823
3824 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3825 long csstuff = csstart + skb->csum_offset;
3826
3827 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3828 }
3829}
3830EXPORT_SYMBOL(skb_copy_and_csum_dev);
3831
3832/**
3833 * skb_dequeue - remove from the head of the queue
3834 * @list: list to dequeue from
3835 *
3836 * Remove the head of the list. The list lock is taken so the function
3837 * may be used safely with other locking list functions. The head item is
3838 * returned or %NULL if the list is empty.
3839 */
3840
3841struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3842{
3843 unsigned long flags;
3844 struct sk_buff *result;
3845
3846 spin_lock_irqsave(&list->lock, flags);
3847 result = __skb_dequeue(list);
3848 spin_unlock_irqrestore(&list->lock, flags);
3849 return result;
3850}
3851EXPORT_SYMBOL(skb_dequeue);
3852
3853/**
3854 * skb_dequeue_tail - remove from the tail of the queue
3855 * @list: list to dequeue from
3856 *
3857 * Remove the tail of the list. The list lock is taken so the function
3858 * may be used safely with other locking list functions. The tail item is
3859 * returned or %NULL if the list is empty.
3860 */
3861struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3862{
3863 unsigned long flags;
3864 struct sk_buff *result;
3865
3866 spin_lock_irqsave(&list->lock, flags);
3867 result = __skb_dequeue_tail(list);
3868 spin_unlock_irqrestore(&list->lock, flags);
3869 return result;
3870}
3871EXPORT_SYMBOL(skb_dequeue_tail);
3872
3873/**
3874 * skb_queue_purge_reason - empty a list
3875 * @list: list to empty
3876 * @reason: drop reason
3877 *
3878 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3879 * the list and one reference dropped. This function takes the list
3880 * lock and is atomic with respect to other list locking functions.
3881 */
3882void skb_queue_purge_reason(struct sk_buff_head *list,
3883 enum skb_drop_reason reason)
3884{
3885 struct sk_buff_head tmp;
3886 unsigned long flags;
3887
3888 if (skb_queue_empty_lockless(list))
3889 return;
3890
3891 __skb_queue_head_init(&tmp);
3892
3893 spin_lock_irqsave(&list->lock, flags);
3894 skb_queue_splice_init(list, &tmp);
3895 spin_unlock_irqrestore(&list->lock, flags);
3896
3897 __skb_queue_purge_reason(&tmp, reason);
3898}
3899EXPORT_SYMBOL(skb_queue_purge_reason);
3900
3901/**
3902 * skb_rbtree_purge - empty a skb rbtree
3903 * @root: root of the rbtree to empty
3904 * Return value: the sum of truesizes of all purged skbs.
3905 *
3906 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3907 * the list and one reference dropped. This function does not take
3908 * any lock. Synchronization should be handled by the caller (e.g., TCP
3909 * out-of-order queue is protected by the socket lock).
3910 */
3911unsigned int skb_rbtree_purge(struct rb_root *root)
3912{
3913 struct rb_node *p = rb_first(root);
3914 unsigned int sum = 0;
3915
3916 while (p) {
3917 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3918
3919 p = rb_next(p);
3920 rb_erase(&skb->rbnode, root);
3921 sum += skb->truesize;
3922 kfree_skb(skb);
3923 }
3924 return sum;
3925}
3926
3927void skb_errqueue_purge(struct sk_buff_head *list)
3928{
3929 struct sk_buff *skb, *next;
3930 struct sk_buff_head kill;
3931 unsigned long flags;
3932
3933 __skb_queue_head_init(&kill);
3934
3935 spin_lock_irqsave(&list->lock, flags);
3936 skb_queue_walk_safe(list, skb, next) {
3937 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3938 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3939 continue;
3940 __skb_unlink(skb, list);
3941 __skb_queue_tail(&kill, skb);
3942 }
3943 spin_unlock_irqrestore(&list->lock, flags);
3944 __skb_queue_purge(&kill);
3945}
3946EXPORT_SYMBOL(skb_errqueue_purge);
3947
3948/**
3949 * skb_queue_head - queue a buffer at the list head
3950 * @list: list to use
3951 * @newsk: buffer to queue
3952 *
3953 * Queue a buffer at the start of the list. This function takes the
3954 * list lock and can be used safely with other locking &sk_buff functions
3955 * safely.
3956 *
3957 * A buffer cannot be placed on two lists at the same time.
3958 */
3959void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3960{
3961 unsigned long flags;
3962
3963 spin_lock_irqsave(&list->lock, flags);
3964 __skb_queue_head(list, newsk);
3965 spin_unlock_irqrestore(&list->lock, flags);
3966}
3967EXPORT_SYMBOL(skb_queue_head);
3968
3969/**
3970 * skb_queue_tail - queue a buffer at the list tail
3971 * @list: list to use
3972 * @newsk: buffer to queue
3973 *
3974 * Queue a buffer at the tail of the list. This function takes the
3975 * list lock and can be used safely with other locking &sk_buff functions
3976 * safely.
3977 *
3978 * A buffer cannot be placed on two lists at the same time.
3979 */
3980void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3981{
3982 unsigned long flags;
3983
3984 spin_lock_irqsave(&list->lock, flags);
3985 __skb_queue_tail(list, newsk);
3986 spin_unlock_irqrestore(&list->lock, flags);
3987}
3988EXPORT_SYMBOL(skb_queue_tail);
3989
3990/**
3991 * skb_unlink - remove a buffer from a list
3992 * @skb: buffer to remove
3993 * @list: list to use
3994 *
3995 * Remove a packet from a list. The list locks are taken and this
3996 * function is atomic with respect to other list locked calls
3997 *
3998 * You must know what list the SKB is on.
3999 */
4000void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4001{
4002 unsigned long flags;
4003
4004 spin_lock_irqsave(&list->lock, flags);
4005 __skb_unlink(skb, list);
4006 spin_unlock_irqrestore(&list->lock, flags);
4007}
4008EXPORT_SYMBOL(skb_unlink);
4009
4010/**
4011 * skb_append - append a buffer
4012 * @old: buffer to insert after
4013 * @newsk: buffer to insert
4014 * @list: list to use
4015 *
4016 * Place a packet after a given packet in a list. The list locks are taken
4017 * and this function is atomic with respect to other list locked calls.
4018 * A buffer cannot be placed on two lists at the same time.
4019 */
4020void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4021{
4022 unsigned long flags;
4023
4024 spin_lock_irqsave(&list->lock, flags);
4025 __skb_queue_after(list, old, newsk);
4026 spin_unlock_irqrestore(&list->lock, flags);
4027}
4028EXPORT_SYMBOL(skb_append);
4029
4030static inline void skb_split_inside_header(struct sk_buff *skb,
4031 struct sk_buff* skb1,
4032 const u32 len, const int pos)
4033{
4034 int i;
4035
4036 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4037 pos - len);
4038 /* And move data appendix as is. */
4039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4040 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4041
4042 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4043 skb_shinfo(skb)->nr_frags = 0;
4044 skb1->data_len = skb->data_len;
4045 skb1->len += skb1->data_len;
4046 skb->data_len = 0;
4047 skb->len = len;
4048 skb_set_tail_pointer(skb, len);
4049}
4050
4051static inline void skb_split_no_header(struct sk_buff *skb,
4052 struct sk_buff* skb1,
4053 const u32 len, int pos)
4054{
4055 int i, k = 0;
4056 const int nfrags = skb_shinfo(skb)->nr_frags;
4057
4058 skb_shinfo(skb)->nr_frags = 0;
4059 skb1->len = skb1->data_len = skb->len - len;
4060 skb->len = len;
4061 skb->data_len = len - pos;
4062
4063 for (i = 0; i < nfrags; i++) {
4064 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4065
4066 if (pos + size > len) {
4067 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4068
4069 if (pos < len) {
4070 /* Split frag.
4071 * We have two variants in this case:
4072 * 1. Move all the frag to the second
4073 * part, if it is possible. F.e.
4074 * this approach is mandatory for TUX,
4075 * where splitting is expensive.
4076 * 2. Split is accurately. We make this.
4077 */
4078 skb_frag_ref(skb, i);
4079 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4080 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4081 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4082 skb_shinfo(skb)->nr_frags++;
4083 }
4084 k++;
4085 } else
4086 skb_shinfo(skb)->nr_frags++;
4087 pos += size;
4088 }
4089 skb_shinfo(skb1)->nr_frags = k;
4090}
4091
4092/**
4093 * skb_split - Split fragmented skb to two parts at length len.
4094 * @skb: the buffer to split
4095 * @skb1: the buffer to receive the second part
4096 * @len: new length for skb
4097 */
4098void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4099{
4100 int pos = skb_headlen(skb);
4101 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4102
4103 skb_zcopy_downgrade_managed(skb);
4104
4105 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4106 skb_zerocopy_clone(skb1, skb, 0);
4107 if (len < pos) /* Split line is inside header. */
4108 skb_split_inside_header(skb, skb1, len, pos);
4109 else /* Second chunk has no header, nothing to copy. */
4110 skb_split_no_header(skb, skb1, len, pos);
4111}
4112EXPORT_SYMBOL(skb_split);
4113
4114/* Shifting from/to a cloned skb is a no-go.
4115 *
4116 * Caller cannot keep skb_shinfo related pointers past calling here!
4117 */
4118static int skb_prepare_for_shift(struct sk_buff *skb)
4119{
4120 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4121}
4122
4123/**
4124 * skb_shift - Shifts paged data partially from skb to another
4125 * @tgt: buffer into which tail data gets added
4126 * @skb: buffer from which the paged data comes from
4127 * @shiftlen: shift up to this many bytes
4128 *
4129 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4130 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4131 * It's up to caller to free skb if everything was shifted.
4132 *
4133 * If @tgt runs out of frags, the whole operation is aborted.
4134 *
4135 * Skb cannot include anything else but paged data while tgt is allowed
4136 * to have non-paged data as well.
4137 *
4138 * TODO: full sized shift could be optimized but that would need
4139 * specialized skb free'er to handle frags without up-to-date nr_frags.
4140 */
4141int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4142{
4143 int from, to, merge, todo;
4144 skb_frag_t *fragfrom, *fragto;
4145
4146 BUG_ON(shiftlen > skb->len);
4147
4148 if (skb_headlen(skb))
4149 return 0;
4150 if (skb_zcopy(tgt) || skb_zcopy(skb))
4151 return 0;
4152
4153 todo = shiftlen;
4154 from = 0;
4155 to = skb_shinfo(tgt)->nr_frags;
4156 fragfrom = &skb_shinfo(skb)->frags[from];
4157
4158 /* Actual merge is delayed until the point when we know we can
4159 * commit all, so that we don't have to undo partial changes
4160 */
4161 if (!to ||
4162 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4163 skb_frag_off(fragfrom))) {
4164 merge = -1;
4165 } else {
4166 merge = to - 1;
4167
4168 todo -= skb_frag_size(fragfrom);
4169 if (todo < 0) {
4170 if (skb_prepare_for_shift(skb) ||
4171 skb_prepare_for_shift(tgt))
4172 return 0;
4173
4174 /* All previous frag pointers might be stale! */
4175 fragfrom = &skb_shinfo(skb)->frags[from];
4176 fragto = &skb_shinfo(tgt)->frags[merge];
4177
4178 skb_frag_size_add(fragto, shiftlen);
4179 skb_frag_size_sub(fragfrom, shiftlen);
4180 skb_frag_off_add(fragfrom, shiftlen);
4181
4182 goto onlymerged;
4183 }
4184
4185 from++;
4186 }
4187
4188 /* Skip full, not-fitting skb to avoid expensive operations */
4189 if ((shiftlen == skb->len) &&
4190 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4191 return 0;
4192
4193 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4194 return 0;
4195
4196 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4197 if (to == MAX_SKB_FRAGS)
4198 return 0;
4199
4200 fragfrom = &skb_shinfo(skb)->frags[from];
4201 fragto = &skb_shinfo(tgt)->frags[to];
4202
4203 if (todo >= skb_frag_size(fragfrom)) {
4204 *fragto = *fragfrom;
4205 todo -= skb_frag_size(fragfrom);
4206 from++;
4207 to++;
4208
4209 } else {
4210 __skb_frag_ref(fragfrom);
4211 skb_frag_page_copy(fragto, fragfrom);
4212 skb_frag_off_copy(fragto, fragfrom);
4213 skb_frag_size_set(fragto, todo);
4214
4215 skb_frag_off_add(fragfrom, todo);
4216 skb_frag_size_sub(fragfrom, todo);
4217 todo = 0;
4218
4219 to++;
4220 break;
4221 }
4222 }
4223
4224 /* Ready to "commit" this state change to tgt */
4225 skb_shinfo(tgt)->nr_frags = to;
4226
4227 if (merge >= 0) {
4228 fragfrom = &skb_shinfo(skb)->frags[0];
4229 fragto = &skb_shinfo(tgt)->frags[merge];
4230
4231 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4232 __skb_frag_unref(fragfrom, skb->pp_recycle);
4233 }
4234
4235 /* Reposition in the original skb */
4236 to = 0;
4237 while (from < skb_shinfo(skb)->nr_frags)
4238 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4239 skb_shinfo(skb)->nr_frags = to;
4240
4241 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4242
4243onlymerged:
4244 /* Most likely the tgt won't ever need its checksum anymore, skb on
4245 * the other hand might need it if it needs to be resent
4246 */
4247 tgt->ip_summed = CHECKSUM_PARTIAL;
4248 skb->ip_summed = CHECKSUM_PARTIAL;
4249
4250 skb_len_add(skb, -shiftlen);
4251 skb_len_add(tgt, shiftlen);
4252
4253 return shiftlen;
4254}
4255
4256/**
4257 * skb_prepare_seq_read - Prepare a sequential read of skb data
4258 * @skb: the buffer to read
4259 * @from: lower offset of data to be read
4260 * @to: upper offset of data to be read
4261 * @st: state variable
4262 *
4263 * Initializes the specified state variable. Must be called before
4264 * invoking skb_seq_read() for the first time.
4265 */
4266void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4267 unsigned int to, struct skb_seq_state *st)
4268{
4269 st->lower_offset = from;
4270 st->upper_offset = to;
4271 st->root_skb = st->cur_skb = skb;
4272 st->frag_idx = st->stepped_offset = 0;
4273 st->frag_data = NULL;
4274 st->frag_off = 0;
4275}
4276EXPORT_SYMBOL(skb_prepare_seq_read);
4277
4278/**
4279 * skb_seq_read - Sequentially read skb data
4280 * @consumed: number of bytes consumed by the caller so far
4281 * @data: destination pointer for data to be returned
4282 * @st: state variable
4283 *
4284 * Reads a block of skb data at @consumed relative to the
4285 * lower offset specified to skb_prepare_seq_read(). Assigns
4286 * the head of the data block to @data and returns the length
4287 * of the block or 0 if the end of the skb data or the upper
4288 * offset has been reached.
4289 *
4290 * The caller is not required to consume all of the data
4291 * returned, i.e. @consumed is typically set to the number
4292 * of bytes already consumed and the next call to
4293 * skb_seq_read() will return the remaining part of the block.
4294 *
4295 * Note 1: The size of each block of data returned can be arbitrary,
4296 * this limitation is the cost for zerocopy sequential
4297 * reads of potentially non linear data.
4298 *
4299 * Note 2: Fragment lists within fragments are not implemented
4300 * at the moment, state->root_skb could be replaced with
4301 * a stack for this purpose.
4302 */
4303unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4304 struct skb_seq_state *st)
4305{
4306 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4307 skb_frag_t *frag;
4308
4309 if (unlikely(abs_offset >= st->upper_offset)) {
4310 if (st->frag_data) {
4311 kunmap_atomic(st->frag_data);
4312 st->frag_data = NULL;
4313 }
4314 return 0;
4315 }
4316
4317next_skb:
4318 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4319
4320 if (abs_offset < block_limit && !st->frag_data) {
4321 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4322 return block_limit - abs_offset;
4323 }
4324
4325 if (st->frag_idx == 0 && !st->frag_data)
4326 st->stepped_offset += skb_headlen(st->cur_skb);
4327
4328 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4329 unsigned int pg_idx, pg_off, pg_sz;
4330
4331 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4332
4333 pg_idx = 0;
4334 pg_off = skb_frag_off(frag);
4335 pg_sz = skb_frag_size(frag);
4336
4337 if (skb_frag_must_loop(skb_frag_page(frag))) {
4338 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4339 pg_off = offset_in_page(pg_off + st->frag_off);
4340 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4341 PAGE_SIZE - pg_off);
4342 }
4343
4344 block_limit = pg_sz + st->stepped_offset;
4345 if (abs_offset < block_limit) {
4346 if (!st->frag_data)
4347 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4348
4349 *data = (u8 *)st->frag_data + pg_off +
4350 (abs_offset - st->stepped_offset);
4351
4352 return block_limit - abs_offset;
4353 }
4354
4355 if (st->frag_data) {
4356 kunmap_atomic(st->frag_data);
4357 st->frag_data = NULL;
4358 }
4359
4360 st->stepped_offset += pg_sz;
4361 st->frag_off += pg_sz;
4362 if (st->frag_off == skb_frag_size(frag)) {
4363 st->frag_off = 0;
4364 st->frag_idx++;
4365 }
4366 }
4367
4368 if (st->frag_data) {
4369 kunmap_atomic(st->frag_data);
4370 st->frag_data = NULL;
4371 }
4372
4373 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4374 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4375 st->frag_idx = 0;
4376 goto next_skb;
4377 } else if (st->cur_skb->next) {
4378 st->cur_skb = st->cur_skb->next;
4379 st->frag_idx = 0;
4380 goto next_skb;
4381 }
4382
4383 return 0;
4384}
4385EXPORT_SYMBOL(skb_seq_read);
4386
4387/**
4388 * skb_abort_seq_read - Abort a sequential read of skb data
4389 * @st: state variable
4390 *
4391 * Must be called if skb_seq_read() was not called until it
4392 * returned 0.
4393 */
4394void skb_abort_seq_read(struct skb_seq_state *st)
4395{
4396 if (st->frag_data)
4397 kunmap_atomic(st->frag_data);
4398}
4399EXPORT_SYMBOL(skb_abort_seq_read);
4400
4401#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4402
4403static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4404 struct ts_config *conf,
4405 struct ts_state *state)
4406{
4407 return skb_seq_read(offset, text, TS_SKB_CB(state));
4408}
4409
4410static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4411{
4412 skb_abort_seq_read(TS_SKB_CB(state));
4413}
4414
4415/**
4416 * skb_find_text - Find a text pattern in skb data
4417 * @skb: the buffer to look in
4418 * @from: search offset
4419 * @to: search limit
4420 * @config: textsearch configuration
4421 *
4422 * Finds a pattern in the skb data according to the specified
4423 * textsearch configuration. Use textsearch_next() to retrieve
4424 * subsequent occurrences of the pattern. Returns the offset
4425 * to the first occurrence or UINT_MAX if no match was found.
4426 */
4427unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4428 unsigned int to, struct ts_config *config)
4429{
4430 unsigned int patlen = config->ops->get_pattern_len(config);
4431 struct ts_state state;
4432 unsigned int ret;
4433
4434 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4435
4436 config->get_next_block = skb_ts_get_next_block;
4437 config->finish = skb_ts_finish;
4438
4439 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4440
4441 ret = textsearch_find(config, &state);
4442 return (ret + patlen <= to - from ? ret : UINT_MAX);
4443}
4444EXPORT_SYMBOL(skb_find_text);
4445
4446int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4447 int offset, size_t size, size_t max_frags)
4448{
4449 int i = skb_shinfo(skb)->nr_frags;
4450
4451 if (skb_can_coalesce(skb, i, page, offset)) {
4452 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4453 } else if (i < max_frags) {
4454 skb_zcopy_downgrade_managed(skb);
4455 get_page(page);
4456 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4457 } else {
4458 return -EMSGSIZE;
4459 }
4460
4461 return 0;
4462}
4463EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4464
4465/**
4466 * skb_pull_rcsum - pull skb and update receive checksum
4467 * @skb: buffer to update
4468 * @len: length of data pulled
4469 *
4470 * This function performs an skb_pull on the packet and updates
4471 * the CHECKSUM_COMPLETE checksum. It should be used on
4472 * receive path processing instead of skb_pull unless you know
4473 * that the checksum difference is zero (e.g., a valid IP header)
4474 * or you are setting ip_summed to CHECKSUM_NONE.
4475 */
4476void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4477{
4478 unsigned char *data = skb->data;
4479
4480 BUG_ON(len > skb->len);
4481 __skb_pull(skb, len);
4482 skb_postpull_rcsum(skb, data, len);
4483 return skb->data;
4484}
4485EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4486
4487static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4488{
4489 skb_frag_t head_frag;
4490 struct page *page;
4491
4492 page = virt_to_head_page(frag_skb->head);
4493 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4494 (unsigned char *)page_address(page),
4495 skb_headlen(frag_skb));
4496 return head_frag;
4497}
4498
4499struct sk_buff *skb_segment_list(struct sk_buff *skb,
4500 netdev_features_t features,
4501 unsigned int offset)
4502{
4503 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4504 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4505 unsigned int delta_truesize = 0;
4506 unsigned int delta_len = 0;
4507 struct sk_buff *tail = NULL;
4508 struct sk_buff *nskb, *tmp;
4509 int len_diff, err;
4510
4511 skb_push(skb, -skb_network_offset(skb) + offset);
4512
4513 /* Ensure the head is writeable before touching the shared info */
4514 err = skb_unclone(skb, GFP_ATOMIC);
4515 if (err)
4516 goto err_linearize;
4517
4518 skb_shinfo(skb)->frag_list = NULL;
4519
4520 while (list_skb) {
4521 nskb = list_skb;
4522 list_skb = list_skb->next;
4523
4524 err = 0;
4525 delta_truesize += nskb->truesize;
4526 if (skb_shared(nskb)) {
4527 tmp = skb_clone(nskb, GFP_ATOMIC);
4528 if (tmp) {
4529 consume_skb(nskb);
4530 nskb = tmp;
4531 err = skb_unclone(nskb, GFP_ATOMIC);
4532 } else {
4533 err = -ENOMEM;
4534 }
4535 }
4536
4537 if (!tail)
4538 skb->next = nskb;
4539 else
4540 tail->next = nskb;
4541
4542 if (unlikely(err)) {
4543 nskb->next = list_skb;
4544 goto err_linearize;
4545 }
4546
4547 tail = nskb;
4548
4549 delta_len += nskb->len;
4550
4551 skb_push(nskb, -skb_network_offset(nskb) + offset);
4552
4553 skb_release_head_state(nskb);
4554 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4555 __copy_skb_header(nskb, skb);
4556
4557 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4558 nskb->transport_header += len_diff;
4559 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4560 nskb->data - tnl_hlen,
4561 offset + tnl_hlen);
4562
4563 if (skb_needs_linearize(nskb, features) &&
4564 __skb_linearize(nskb))
4565 goto err_linearize;
4566 }
4567
4568 skb->truesize = skb->truesize - delta_truesize;
4569 skb->data_len = skb->data_len - delta_len;
4570 skb->len = skb->len - delta_len;
4571
4572 skb_gso_reset(skb);
4573
4574 skb->prev = tail;
4575
4576 if (skb_needs_linearize(skb, features) &&
4577 __skb_linearize(skb))
4578 goto err_linearize;
4579
4580 skb_get(skb);
4581
4582 return skb;
4583
4584err_linearize:
4585 kfree_skb_list(skb->next);
4586 skb->next = NULL;
4587 return ERR_PTR(-ENOMEM);
4588}
4589EXPORT_SYMBOL_GPL(skb_segment_list);
4590
4591/**
4592 * skb_segment - Perform protocol segmentation on skb.
4593 * @head_skb: buffer to segment
4594 * @features: features for the output path (see dev->features)
4595 *
4596 * This function performs segmentation on the given skb. It returns
4597 * a pointer to the first in a list of new skbs for the segments.
4598 * In case of error it returns ERR_PTR(err).
4599 */
4600struct sk_buff *skb_segment(struct sk_buff *head_skb,
4601 netdev_features_t features)
4602{
4603 struct sk_buff *segs = NULL;
4604 struct sk_buff *tail = NULL;
4605 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4606 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4607 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4608 unsigned int offset = doffset;
4609 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4610 unsigned int partial_segs = 0;
4611 unsigned int headroom;
4612 unsigned int len = head_skb->len;
4613 struct sk_buff *frag_skb;
4614 skb_frag_t *frag;
4615 __be16 proto;
4616 bool csum, sg;
4617 int err = -ENOMEM;
4618 int i = 0;
4619 int nfrags, pos;
4620
4621 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4622 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4623 struct sk_buff *check_skb;
4624
4625 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4626 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4627 /* gso_size is untrusted, and we have a frag_list with
4628 * a linear non head_frag item.
4629 *
4630 * If head_skb's headlen does not fit requested gso_size,
4631 * it means that the frag_list members do NOT terminate
4632 * on exact gso_size boundaries. Hence we cannot perform
4633 * skb_frag_t page sharing. Therefore we must fallback to
4634 * copying the frag_list skbs; we do so by disabling SG.
4635 */
4636 features &= ~NETIF_F_SG;
4637 break;
4638 }
4639 }
4640 }
4641
4642 __skb_push(head_skb, doffset);
4643 proto = skb_network_protocol(head_skb, NULL);
4644 if (unlikely(!proto))
4645 return ERR_PTR(-EINVAL);
4646
4647 sg = !!(features & NETIF_F_SG);
4648 csum = !!can_checksum_protocol(features, proto);
4649
4650 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4651 if (!(features & NETIF_F_GSO_PARTIAL)) {
4652 struct sk_buff *iter;
4653 unsigned int frag_len;
4654
4655 if (!list_skb ||
4656 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4657 goto normal;
4658
4659 /* If we get here then all the required
4660 * GSO features except frag_list are supported.
4661 * Try to split the SKB to multiple GSO SKBs
4662 * with no frag_list.
4663 * Currently we can do that only when the buffers don't
4664 * have a linear part and all the buffers except
4665 * the last are of the same length.
4666 */
4667 frag_len = list_skb->len;
4668 skb_walk_frags(head_skb, iter) {
4669 if (frag_len != iter->len && iter->next)
4670 goto normal;
4671 if (skb_headlen(iter) && !iter->head_frag)
4672 goto normal;
4673
4674 len -= iter->len;
4675 }
4676
4677 if (len != frag_len)
4678 goto normal;
4679 }
4680
4681 /* GSO partial only requires that we trim off any excess that
4682 * doesn't fit into an MSS sized block, so take care of that
4683 * now.
4684 * Cap len to not accidentally hit GSO_BY_FRAGS.
4685 */
4686 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4687 if (partial_segs > 1)
4688 mss *= partial_segs;
4689 else
4690 partial_segs = 0;
4691 }
4692
4693normal:
4694 headroom = skb_headroom(head_skb);
4695 pos = skb_headlen(head_skb);
4696
4697 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4698 return ERR_PTR(-ENOMEM);
4699
4700 nfrags = skb_shinfo(head_skb)->nr_frags;
4701 frag = skb_shinfo(head_skb)->frags;
4702 frag_skb = head_skb;
4703
4704 do {
4705 struct sk_buff *nskb;
4706 skb_frag_t *nskb_frag;
4707 int hsize;
4708 int size;
4709
4710 if (unlikely(mss == GSO_BY_FRAGS)) {
4711 len = list_skb->len;
4712 } else {
4713 len = head_skb->len - offset;
4714 if (len > mss)
4715 len = mss;
4716 }
4717
4718 hsize = skb_headlen(head_skb) - offset;
4719
4720 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4721 (skb_headlen(list_skb) == len || sg)) {
4722 BUG_ON(skb_headlen(list_skb) > len);
4723
4724 nskb = skb_clone(list_skb, GFP_ATOMIC);
4725 if (unlikely(!nskb))
4726 goto err;
4727
4728 i = 0;
4729 nfrags = skb_shinfo(list_skb)->nr_frags;
4730 frag = skb_shinfo(list_skb)->frags;
4731 frag_skb = list_skb;
4732 pos += skb_headlen(list_skb);
4733
4734 while (pos < offset + len) {
4735 BUG_ON(i >= nfrags);
4736
4737 size = skb_frag_size(frag);
4738 if (pos + size > offset + len)
4739 break;
4740
4741 i++;
4742 pos += size;
4743 frag++;
4744 }
4745
4746 list_skb = list_skb->next;
4747
4748 if (unlikely(pskb_trim(nskb, len))) {
4749 kfree_skb(nskb);
4750 goto err;
4751 }
4752
4753 hsize = skb_end_offset(nskb);
4754 if (skb_cow_head(nskb, doffset + headroom)) {
4755 kfree_skb(nskb);
4756 goto err;
4757 }
4758
4759 nskb->truesize += skb_end_offset(nskb) - hsize;
4760 skb_release_head_state(nskb);
4761 __skb_push(nskb, doffset);
4762 } else {
4763 if (hsize < 0)
4764 hsize = 0;
4765 if (hsize > len || !sg)
4766 hsize = len;
4767
4768 nskb = __alloc_skb(hsize + doffset + headroom,
4769 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4770 NUMA_NO_NODE);
4771
4772 if (unlikely(!nskb))
4773 goto err;
4774
4775 skb_reserve(nskb, headroom);
4776 __skb_put(nskb, doffset);
4777 }
4778
4779 if (segs)
4780 tail->next = nskb;
4781 else
4782 segs = nskb;
4783 tail = nskb;
4784
4785 __copy_skb_header(nskb, head_skb);
4786
4787 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4788 skb_reset_mac_len(nskb);
4789
4790 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4791 nskb->data - tnl_hlen,
4792 doffset + tnl_hlen);
4793
4794 if (nskb->len == len + doffset)
4795 goto perform_csum_check;
4796
4797 if (!sg) {
4798 if (!csum) {
4799 if (!nskb->remcsum_offload)
4800 nskb->ip_summed = CHECKSUM_NONE;
4801 SKB_GSO_CB(nskb)->csum =
4802 skb_copy_and_csum_bits(head_skb, offset,
4803 skb_put(nskb,
4804 len),
4805 len);
4806 SKB_GSO_CB(nskb)->csum_start =
4807 skb_headroom(nskb) + doffset;
4808 } else {
4809 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4810 goto err;
4811 }
4812 continue;
4813 }
4814
4815 nskb_frag = skb_shinfo(nskb)->frags;
4816
4817 skb_copy_from_linear_data_offset(head_skb, offset,
4818 skb_put(nskb, hsize), hsize);
4819
4820 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4821 SKBFL_SHARED_FRAG;
4822
4823 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4824 goto err;
4825
4826 while (pos < offset + len) {
4827 if (i >= nfrags) {
4828 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4829 skb_zerocopy_clone(nskb, list_skb,
4830 GFP_ATOMIC))
4831 goto err;
4832
4833 i = 0;
4834 nfrags = skb_shinfo(list_skb)->nr_frags;
4835 frag = skb_shinfo(list_skb)->frags;
4836 frag_skb = list_skb;
4837 if (!skb_headlen(list_skb)) {
4838 BUG_ON(!nfrags);
4839 } else {
4840 BUG_ON(!list_skb->head_frag);
4841
4842 /* to make room for head_frag. */
4843 i--;
4844 frag--;
4845 }
4846
4847 list_skb = list_skb->next;
4848 }
4849
4850 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4851 MAX_SKB_FRAGS)) {
4852 net_warn_ratelimited(
4853 "skb_segment: too many frags: %u %u\n",
4854 pos, mss);
4855 err = -EINVAL;
4856 goto err;
4857 }
4858
4859 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4860 __skb_frag_ref(nskb_frag);
4861 size = skb_frag_size(nskb_frag);
4862
4863 if (pos < offset) {
4864 skb_frag_off_add(nskb_frag, offset - pos);
4865 skb_frag_size_sub(nskb_frag, offset - pos);
4866 }
4867
4868 skb_shinfo(nskb)->nr_frags++;
4869
4870 if (pos + size <= offset + len) {
4871 i++;
4872 frag++;
4873 pos += size;
4874 } else {
4875 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4876 goto skip_fraglist;
4877 }
4878
4879 nskb_frag++;
4880 }
4881
4882skip_fraglist:
4883 nskb->data_len = len - hsize;
4884 nskb->len += nskb->data_len;
4885 nskb->truesize += nskb->data_len;
4886
4887perform_csum_check:
4888 if (!csum) {
4889 if (skb_has_shared_frag(nskb) &&
4890 __skb_linearize(nskb))
4891 goto err;
4892
4893 if (!nskb->remcsum_offload)
4894 nskb->ip_summed = CHECKSUM_NONE;
4895 SKB_GSO_CB(nskb)->csum =
4896 skb_checksum(nskb, doffset,
4897 nskb->len - doffset, 0);
4898 SKB_GSO_CB(nskb)->csum_start =
4899 skb_headroom(nskb) + doffset;
4900 }
4901 } while ((offset += len) < head_skb->len);
4902
4903 /* Some callers want to get the end of the list.
4904 * Put it in segs->prev to avoid walking the list.
4905 * (see validate_xmit_skb_list() for example)
4906 */
4907 segs->prev = tail;
4908
4909 if (partial_segs) {
4910 struct sk_buff *iter;
4911 int type = skb_shinfo(head_skb)->gso_type;
4912 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4913
4914 /* Update type to add partial and then remove dodgy if set */
4915 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4916 type &= ~SKB_GSO_DODGY;
4917
4918 /* Update GSO info and prepare to start updating headers on
4919 * our way back down the stack of protocols.
4920 */
4921 for (iter = segs; iter; iter = iter->next) {
4922 skb_shinfo(iter)->gso_size = gso_size;
4923 skb_shinfo(iter)->gso_segs = partial_segs;
4924 skb_shinfo(iter)->gso_type = type;
4925 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4926 }
4927
4928 if (tail->len - doffset <= gso_size)
4929 skb_shinfo(tail)->gso_size = 0;
4930 else if (tail != segs)
4931 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4932 }
4933
4934 /* Following permits correct backpressure, for protocols
4935 * using skb_set_owner_w().
4936 * Idea is to tranfert ownership from head_skb to last segment.
4937 */
4938 if (head_skb->destructor == sock_wfree) {
4939 swap(tail->truesize, head_skb->truesize);
4940 swap(tail->destructor, head_skb->destructor);
4941 swap(tail->sk, head_skb->sk);
4942 }
4943 return segs;
4944
4945err:
4946 kfree_skb_list(segs);
4947 return ERR_PTR(err);
4948}
4949EXPORT_SYMBOL_GPL(skb_segment);
4950
4951#ifdef CONFIG_SKB_EXTENSIONS
4952#define SKB_EXT_ALIGN_VALUE 8
4953#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4954
4955static const u8 skb_ext_type_len[] = {
4956#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4957 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4958#endif
4959#ifdef CONFIG_XFRM
4960 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4961#endif
4962#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4963 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4964#endif
4965#if IS_ENABLED(CONFIG_MPTCP)
4966 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4967#endif
4968#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4969 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4970#endif
4971};
4972
4973static __always_inline unsigned int skb_ext_total_length(void)
4974{
4975 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4976 int i;
4977
4978 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4979 l += skb_ext_type_len[i];
4980
4981 return l;
4982}
4983
4984static void skb_extensions_init(void)
4985{
4986 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4987#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4988 BUILD_BUG_ON(skb_ext_total_length() > 255);
4989#endif
4990
4991 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4992 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4993 0,
4994 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4995 NULL);
4996}
4997#else
4998static void skb_extensions_init(void) {}
4999#endif
5000
5001/* The SKB kmem_cache slab is critical for network performance. Never
5002 * merge/alias the slab with similar sized objects. This avoids fragmentation
5003 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5004 */
5005#ifndef CONFIG_SLUB_TINY
5006#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5007#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5008#define FLAG_SKB_NO_MERGE 0
5009#endif
5010
5011void __init skb_init(void)
5012{
5013 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5014 sizeof(struct sk_buff),
5015 0,
5016 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5017 FLAG_SKB_NO_MERGE,
5018 offsetof(struct sk_buff, cb),
5019 sizeof_field(struct sk_buff, cb),
5020 NULL);
5021 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5022 sizeof(struct sk_buff_fclones),
5023 0,
5024 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5025 NULL);
5026 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5027 * struct skb_shared_info is located at the end of skb->head,
5028 * and should not be copied to/from user.
5029 */
5030 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5031 SKB_SMALL_HEAD_CACHE_SIZE,
5032 0,
5033 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5034 0,
5035 SKB_SMALL_HEAD_HEADROOM,
5036 NULL);
5037 skb_extensions_init();
5038}
5039
5040static int
5041__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5042 unsigned int recursion_level)
5043{
5044 int start = skb_headlen(skb);
5045 int i, copy = start - offset;
5046 struct sk_buff *frag_iter;
5047 int elt = 0;
5048
5049 if (unlikely(recursion_level >= 24))
5050 return -EMSGSIZE;
5051
5052 if (copy > 0) {
5053 if (copy > len)
5054 copy = len;
5055 sg_set_buf(sg, skb->data + offset, copy);
5056 elt++;
5057 if ((len -= copy) == 0)
5058 return elt;
5059 offset += copy;
5060 }
5061
5062 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5063 int end;
5064
5065 WARN_ON(start > offset + len);
5066
5067 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5068 if ((copy = end - offset) > 0) {
5069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5070 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5071 return -EMSGSIZE;
5072
5073 if (copy > len)
5074 copy = len;
5075 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5076 skb_frag_off(frag) + offset - start);
5077 elt++;
5078 if (!(len -= copy))
5079 return elt;
5080 offset += copy;
5081 }
5082 start = end;
5083 }
5084
5085 skb_walk_frags(skb, frag_iter) {
5086 int end, ret;
5087
5088 WARN_ON(start > offset + len);
5089
5090 end = start + frag_iter->len;
5091 if ((copy = end - offset) > 0) {
5092 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5093 return -EMSGSIZE;
5094
5095 if (copy > len)
5096 copy = len;
5097 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5098 copy, recursion_level + 1);
5099 if (unlikely(ret < 0))
5100 return ret;
5101 elt += ret;
5102 if ((len -= copy) == 0)
5103 return elt;
5104 offset += copy;
5105 }
5106 start = end;
5107 }
5108 BUG_ON(len);
5109 return elt;
5110}
5111
5112/**
5113 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5114 * @skb: Socket buffer containing the buffers to be mapped
5115 * @sg: The scatter-gather list to map into
5116 * @offset: The offset into the buffer's contents to start mapping
5117 * @len: Length of buffer space to be mapped
5118 *
5119 * Fill the specified scatter-gather list with mappings/pointers into a
5120 * region of the buffer space attached to a socket buffer. Returns either
5121 * the number of scatterlist items used, or -EMSGSIZE if the contents
5122 * could not fit.
5123 */
5124int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5125{
5126 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5127
5128 if (nsg <= 0)
5129 return nsg;
5130
5131 sg_mark_end(&sg[nsg - 1]);
5132
5133 return nsg;
5134}
5135EXPORT_SYMBOL_GPL(skb_to_sgvec);
5136
5137/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5138 * sglist without mark the sg which contain last skb data as the end.
5139 * So the caller can mannipulate sg list as will when padding new data after
5140 * the first call without calling sg_unmark_end to expend sg list.
5141 *
5142 * Scenario to use skb_to_sgvec_nomark:
5143 * 1. sg_init_table
5144 * 2. skb_to_sgvec_nomark(payload1)
5145 * 3. skb_to_sgvec_nomark(payload2)
5146 *
5147 * This is equivalent to:
5148 * 1. sg_init_table
5149 * 2. skb_to_sgvec(payload1)
5150 * 3. sg_unmark_end
5151 * 4. skb_to_sgvec(payload2)
5152 *
5153 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5154 * is more preferable.
5155 */
5156int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5157 int offset, int len)
5158{
5159 return __skb_to_sgvec(skb, sg, offset, len, 0);
5160}
5161EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5162
5163
5164
5165/**
5166 * skb_cow_data - Check that a socket buffer's data buffers are writable
5167 * @skb: The socket buffer to check.
5168 * @tailbits: Amount of trailing space to be added
5169 * @trailer: Returned pointer to the skb where the @tailbits space begins
5170 *
5171 * Make sure that the data buffers attached to a socket buffer are
5172 * writable. If they are not, private copies are made of the data buffers
5173 * and the socket buffer is set to use these instead.
5174 *
5175 * If @tailbits is given, make sure that there is space to write @tailbits
5176 * bytes of data beyond current end of socket buffer. @trailer will be
5177 * set to point to the skb in which this space begins.
5178 *
5179 * The number of scatterlist elements required to completely map the
5180 * COW'd and extended socket buffer will be returned.
5181 */
5182int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5183{
5184 int copyflag;
5185 int elt;
5186 struct sk_buff *skb1, **skb_p;
5187
5188 /* If skb is cloned or its head is paged, reallocate
5189 * head pulling out all the pages (pages are considered not writable
5190 * at the moment even if they are anonymous).
5191 */
5192 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5193 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5194 return -ENOMEM;
5195
5196 /* Easy case. Most of packets will go this way. */
5197 if (!skb_has_frag_list(skb)) {
5198 /* A little of trouble, not enough of space for trailer.
5199 * This should not happen, when stack is tuned to generate
5200 * good frames. OK, on miss we reallocate and reserve even more
5201 * space, 128 bytes is fair. */
5202
5203 if (skb_tailroom(skb) < tailbits &&
5204 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5205 return -ENOMEM;
5206
5207 /* Voila! */
5208 *trailer = skb;
5209 return 1;
5210 }
5211
5212 /* Misery. We are in troubles, going to mincer fragments... */
5213
5214 elt = 1;
5215 skb_p = &skb_shinfo(skb)->frag_list;
5216 copyflag = 0;
5217
5218 while ((skb1 = *skb_p) != NULL) {
5219 int ntail = 0;
5220
5221 /* The fragment is partially pulled by someone,
5222 * this can happen on input. Copy it and everything
5223 * after it. */
5224
5225 if (skb_shared(skb1))
5226 copyflag = 1;
5227
5228 /* If the skb is the last, worry about trailer. */
5229
5230 if (skb1->next == NULL && tailbits) {
5231 if (skb_shinfo(skb1)->nr_frags ||
5232 skb_has_frag_list(skb1) ||
5233 skb_tailroom(skb1) < tailbits)
5234 ntail = tailbits + 128;
5235 }
5236
5237 if (copyflag ||
5238 skb_cloned(skb1) ||
5239 ntail ||
5240 skb_shinfo(skb1)->nr_frags ||
5241 skb_has_frag_list(skb1)) {
5242 struct sk_buff *skb2;
5243
5244 /* Fuck, we are miserable poor guys... */
5245 if (ntail == 0)
5246 skb2 = skb_copy(skb1, GFP_ATOMIC);
5247 else
5248 skb2 = skb_copy_expand(skb1,
5249 skb_headroom(skb1),
5250 ntail,
5251 GFP_ATOMIC);
5252 if (unlikely(skb2 == NULL))
5253 return -ENOMEM;
5254
5255 if (skb1->sk)
5256 skb_set_owner_w(skb2, skb1->sk);
5257
5258 /* Looking around. Are we still alive?
5259 * OK, link new skb, drop old one */
5260
5261 skb2->next = skb1->next;
5262 *skb_p = skb2;
5263 kfree_skb(skb1);
5264 skb1 = skb2;
5265 }
5266 elt++;
5267 *trailer = skb1;
5268 skb_p = &skb1->next;
5269 }
5270
5271 return elt;
5272}
5273EXPORT_SYMBOL_GPL(skb_cow_data);
5274
5275static void sock_rmem_free(struct sk_buff *skb)
5276{
5277 struct sock *sk = skb->sk;
5278
5279 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5280}
5281
5282static void skb_set_err_queue(struct sk_buff *skb)
5283{
5284 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5285 * So, it is safe to (mis)use it to mark skbs on the error queue.
5286 */
5287 skb->pkt_type = PACKET_OUTGOING;
5288 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5289}
5290
5291/*
5292 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5293 */
5294int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5295{
5296 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5297 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5298 return -ENOMEM;
5299
5300 skb_orphan(skb);
5301 skb->sk = sk;
5302 skb->destructor = sock_rmem_free;
5303 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5304 skb_set_err_queue(skb);
5305
5306 /* before exiting rcu section, make sure dst is refcounted */
5307 skb_dst_force(skb);
5308
5309 skb_queue_tail(&sk->sk_error_queue, skb);
5310 if (!sock_flag(sk, SOCK_DEAD))
5311 sk_error_report(sk);
5312 return 0;
5313}
5314EXPORT_SYMBOL(sock_queue_err_skb);
5315
5316static bool is_icmp_err_skb(const struct sk_buff *skb)
5317{
5318 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5319 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5320}
5321
5322struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5323{
5324 struct sk_buff_head *q = &sk->sk_error_queue;
5325 struct sk_buff *skb, *skb_next = NULL;
5326 bool icmp_next = false;
5327 unsigned long flags;
5328
5329 if (skb_queue_empty_lockless(q))
5330 return NULL;
5331
5332 spin_lock_irqsave(&q->lock, flags);
5333 skb = __skb_dequeue(q);
5334 if (skb && (skb_next = skb_peek(q))) {
5335 icmp_next = is_icmp_err_skb(skb_next);
5336 if (icmp_next)
5337 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5338 }
5339 spin_unlock_irqrestore(&q->lock, flags);
5340
5341 if (is_icmp_err_skb(skb) && !icmp_next)
5342 sk->sk_err = 0;
5343
5344 if (skb_next)
5345 sk_error_report(sk);
5346
5347 return skb;
5348}
5349EXPORT_SYMBOL(sock_dequeue_err_skb);
5350
5351/**
5352 * skb_clone_sk - create clone of skb, and take reference to socket
5353 * @skb: the skb to clone
5354 *
5355 * This function creates a clone of a buffer that holds a reference on
5356 * sk_refcnt. Buffers created via this function are meant to be
5357 * returned using sock_queue_err_skb, or free via kfree_skb.
5358 *
5359 * When passing buffers allocated with this function to sock_queue_err_skb
5360 * it is necessary to wrap the call with sock_hold/sock_put in order to
5361 * prevent the socket from being released prior to being enqueued on
5362 * the sk_error_queue.
5363 */
5364struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5365{
5366 struct sock *sk = skb->sk;
5367 struct sk_buff *clone;
5368
5369 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5370 return NULL;
5371
5372 clone = skb_clone(skb, GFP_ATOMIC);
5373 if (!clone) {
5374 sock_put(sk);
5375 return NULL;
5376 }
5377
5378 clone->sk = sk;
5379 clone->destructor = sock_efree;
5380
5381 return clone;
5382}
5383EXPORT_SYMBOL(skb_clone_sk);
5384
5385static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5386 struct sock *sk,
5387 int tstype,
5388 bool opt_stats)
5389{
5390 struct sock_exterr_skb *serr;
5391 int err;
5392
5393 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5394
5395 serr = SKB_EXT_ERR(skb);
5396 memset(serr, 0, sizeof(*serr));
5397 serr->ee.ee_errno = ENOMSG;
5398 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5399 serr->ee.ee_info = tstype;
5400 serr->opt_stats = opt_stats;
5401 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5402 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5403 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5404 if (sk_is_tcp(sk))
5405 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5406 }
5407
5408 err = sock_queue_err_skb(sk, skb);
5409
5410 if (err)
5411 kfree_skb(skb);
5412}
5413
5414static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5415{
5416 bool ret;
5417
5418 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5419 return true;
5420
5421 read_lock_bh(&sk->sk_callback_lock);
5422 ret = sk->sk_socket && sk->sk_socket->file &&
5423 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5424 read_unlock_bh(&sk->sk_callback_lock);
5425 return ret;
5426}
5427
5428void skb_complete_tx_timestamp(struct sk_buff *skb,
5429 struct skb_shared_hwtstamps *hwtstamps)
5430{
5431 struct sock *sk = skb->sk;
5432
5433 if (!skb_may_tx_timestamp(sk, false))
5434 goto err;
5435
5436 /* Take a reference to prevent skb_orphan() from freeing the socket,
5437 * but only if the socket refcount is not zero.
5438 */
5439 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5440 *skb_hwtstamps(skb) = *hwtstamps;
5441 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5442 sock_put(sk);
5443 return;
5444 }
5445
5446err:
5447 kfree_skb(skb);
5448}
5449EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5450
5451void __skb_tstamp_tx(struct sk_buff *orig_skb,
5452 const struct sk_buff *ack_skb,
5453 struct skb_shared_hwtstamps *hwtstamps,
5454 struct sock *sk, int tstype)
5455{
5456 struct sk_buff *skb;
5457 bool tsonly, opt_stats = false;
5458 u32 tsflags;
5459
5460 if (!sk)
5461 return;
5462
5463 tsflags = READ_ONCE(sk->sk_tsflags);
5464 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5465 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5466 return;
5467
5468 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5469 if (!skb_may_tx_timestamp(sk, tsonly))
5470 return;
5471
5472 if (tsonly) {
5473#ifdef CONFIG_INET
5474 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5475 sk_is_tcp(sk)) {
5476 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5477 ack_skb);
5478 opt_stats = true;
5479 } else
5480#endif
5481 skb = alloc_skb(0, GFP_ATOMIC);
5482 } else {
5483 skb = skb_clone(orig_skb, GFP_ATOMIC);
5484
5485 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5486 kfree_skb(skb);
5487 return;
5488 }
5489 }
5490 if (!skb)
5491 return;
5492
5493 if (tsonly) {
5494 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5495 SKBTX_ANY_TSTAMP;
5496 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5497 }
5498
5499 if (hwtstamps)
5500 *skb_hwtstamps(skb) = *hwtstamps;
5501 else
5502 __net_timestamp(skb);
5503
5504 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5505}
5506EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5507
5508void skb_tstamp_tx(struct sk_buff *orig_skb,
5509 struct skb_shared_hwtstamps *hwtstamps)
5510{
5511 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5512 SCM_TSTAMP_SND);
5513}
5514EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5515
5516#ifdef CONFIG_WIRELESS
5517void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5518{
5519 struct sock *sk = skb->sk;
5520 struct sock_exterr_skb *serr;
5521 int err = 1;
5522
5523 skb->wifi_acked_valid = 1;
5524 skb->wifi_acked = acked;
5525
5526 serr = SKB_EXT_ERR(skb);
5527 memset(serr, 0, sizeof(*serr));
5528 serr->ee.ee_errno = ENOMSG;
5529 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5530
5531 /* Take a reference to prevent skb_orphan() from freeing the socket,
5532 * but only if the socket refcount is not zero.
5533 */
5534 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5535 err = sock_queue_err_skb(sk, skb);
5536 sock_put(sk);
5537 }
5538 if (err)
5539 kfree_skb(skb);
5540}
5541EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5542#endif /* CONFIG_WIRELESS */
5543
5544/**
5545 * skb_partial_csum_set - set up and verify partial csum values for packet
5546 * @skb: the skb to set
5547 * @start: the number of bytes after skb->data to start checksumming.
5548 * @off: the offset from start to place the checksum.
5549 *
5550 * For untrusted partially-checksummed packets, we need to make sure the values
5551 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5552 *
5553 * This function checks and sets those values and skb->ip_summed: if this
5554 * returns false you should drop the packet.
5555 */
5556bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5557{
5558 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5559 u32 csum_start = skb_headroom(skb) + (u32)start;
5560
5561 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5562 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5563 start, off, skb_headroom(skb), skb_headlen(skb));
5564 return false;
5565 }
5566 skb->ip_summed = CHECKSUM_PARTIAL;
5567 skb->csum_start = csum_start;
5568 skb->csum_offset = off;
5569 skb->transport_header = csum_start;
5570 return true;
5571}
5572EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5573
5574static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5575 unsigned int max)
5576{
5577 if (skb_headlen(skb) >= len)
5578 return 0;
5579
5580 /* If we need to pullup then pullup to the max, so we
5581 * won't need to do it again.
5582 */
5583 if (max > skb->len)
5584 max = skb->len;
5585
5586 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5587 return -ENOMEM;
5588
5589 if (skb_headlen(skb) < len)
5590 return -EPROTO;
5591
5592 return 0;
5593}
5594
5595#define MAX_TCP_HDR_LEN (15 * 4)
5596
5597static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5598 typeof(IPPROTO_IP) proto,
5599 unsigned int off)
5600{
5601 int err;
5602
5603 switch (proto) {
5604 case IPPROTO_TCP:
5605 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5606 off + MAX_TCP_HDR_LEN);
5607 if (!err && !skb_partial_csum_set(skb, off,
5608 offsetof(struct tcphdr,
5609 check)))
5610 err = -EPROTO;
5611 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5612
5613 case IPPROTO_UDP:
5614 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5615 off + sizeof(struct udphdr));
5616 if (!err && !skb_partial_csum_set(skb, off,
5617 offsetof(struct udphdr,
5618 check)))
5619 err = -EPROTO;
5620 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5621 }
5622
5623 return ERR_PTR(-EPROTO);
5624}
5625
5626/* This value should be large enough to cover a tagged ethernet header plus
5627 * maximally sized IP and TCP or UDP headers.
5628 */
5629#define MAX_IP_HDR_LEN 128
5630
5631static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5632{
5633 unsigned int off;
5634 bool fragment;
5635 __sum16 *csum;
5636 int err;
5637
5638 fragment = false;
5639
5640 err = skb_maybe_pull_tail(skb,
5641 sizeof(struct iphdr),
5642 MAX_IP_HDR_LEN);
5643 if (err < 0)
5644 goto out;
5645
5646 if (ip_is_fragment(ip_hdr(skb)))
5647 fragment = true;
5648
5649 off = ip_hdrlen(skb);
5650
5651 err = -EPROTO;
5652
5653 if (fragment)
5654 goto out;
5655
5656 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5657 if (IS_ERR(csum))
5658 return PTR_ERR(csum);
5659
5660 if (recalculate)
5661 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5662 ip_hdr(skb)->daddr,
5663 skb->len - off,
5664 ip_hdr(skb)->protocol, 0);
5665 err = 0;
5666
5667out:
5668 return err;
5669}
5670
5671/* This value should be large enough to cover a tagged ethernet header plus
5672 * an IPv6 header, all options, and a maximal TCP or UDP header.
5673 */
5674#define MAX_IPV6_HDR_LEN 256
5675
5676#define OPT_HDR(type, skb, off) \
5677 (type *)(skb_network_header(skb) + (off))
5678
5679static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5680{
5681 int err;
5682 u8 nexthdr;
5683 unsigned int off;
5684 unsigned int len;
5685 bool fragment;
5686 bool done;
5687 __sum16 *csum;
5688
5689 fragment = false;
5690 done = false;
5691
5692 off = sizeof(struct ipv6hdr);
5693
5694 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5695 if (err < 0)
5696 goto out;
5697
5698 nexthdr = ipv6_hdr(skb)->nexthdr;
5699
5700 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5701 while (off <= len && !done) {
5702 switch (nexthdr) {
5703 case IPPROTO_DSTOPTS:
5704 case IPPROTO_HOPOPTS:
5705 case IPPROTO_ROUTING: {
5706 struct ipv6_opt_hdr *hp;
5707
5708 err = skb_maybe_pull_tail(skb,
5709 off +
5710 sizeof(struct ipv6_opt_hdr),
5711 MAX_IPV6_HDR_LEN);
5712 if (err < 0)
5713 goto out;
5714
5715 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5716 nexthdr = hp->nexthdr;
5717 off += ipv6_optlen(hp);
5718 break;
5719 }
5720 case IPPROTO_AH: {
5721 struct ip_auth_hdr *hp;
5722
5723 err = skb_maybe_pull_tail(skb,
5724 off +
5725 sizeof(struct ip_auth_hdr),
5726 MAX_IPV6_HDR_LEN);
5727 if (err < 0)
5728 goto out;
5729
5730 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5731 nexthdr = hp->nexthdr;
5732 off += ipv6_authlen(hp);
5733 break;
5734 }
5735 case IPPROTO_FRAGMENT: {
5736 struct frag_hdr *hp;
5737
5738 err = skb_maybe_pull_tail(skb,
5739 off +
5740 sizeof(struct frag_hdr),
5741 MAX_IPV6_HDR_LEN);
5742 if (err < 0)
5743 goto out;
5744
5745 hp = OPT_HDR(struct frag_hdr, skb, off);
5746
5747 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5748 fragment = true;
5749
5750 nexthdr = hp->nexthdr;
5751 off += sizeof(struct frag_hdr);
5752 break;
5753 }
5754 default:
5755 done = true;
5756 break;
5757 }
5758 }
5759
5760 err = -EPROTO;
5761
5762 if (!done || fragment)
5763 goto out;
5764
5765 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5766 if (IS_ERR(csum))
5767 return PTR_ERR(csum);
5768
5769 if (recalculate)
5770 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5771 &ipv6_hdr(skb)->daddr,
5772 skb->len - off, nexthdr, 0);
5773 err = 0;
5774
5775out:
5776 return err;
5777}
5778
5779/**
5780 * skb_checksum_setup - set up partial checksum offset
5781 * @skb: the skb to set up
5782 * @recalculate: if true the pseudo-header checksum will be recalculated
5783 */
5784int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5785{
5786 int err;
5787
5788 switch (skb->protocol) {
5789 case htons(ETH_P_IP):
5790 err = skb_checksum_setup_ipv4(skb, recalculate);
5791 break;
5792
5793 case htons(ETH_P_IPV6):
5794 err = skb_checksum_setup_ipv6(skb, recalculate);
5795 break;
5796
5797 default:
5798 err = -EPROTO;
5799 break;
5800 }
5801
5802 return err;
5803}
5804EXPORT_SYMBOL(skb_checksum_setup);
5805
5806/**
5807 * skb_checksum_maybe_trim - maybe trims the given skb
5808 * @skb: the skb to check
5809 * @transport_len: the data length beyond the network header
5810 *
5811 * Checks whether the given skb has data beyond the given transport length.
5812 * If so, returns a cloned skb trimmed to this transport length.
5813 * Otherwise returns the provided skb. Returns NULL in error cases
5814 * (e.g. transport_len exceeds skb length or out-of-memory).
5815 *
5816 * Caller needs to set the skb transport header and free any returned skb if it
5817 * differs from the provided skb.
5818 */
5819static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5820 unsigned int transport_len)
5821{
5822 struct sk_buff *skb_chk;
5823 unsigned int len = skb_transport_offset(skb) + transport_len;
5824 int ret;
5825
5826 if (skb->len < len)
5827 return NULL;
5828 else if (skb->len == len)
5829 return skb;
5830
5831 skb_chk = skb_clone(skb, GFP_ATOMIC);
5832 if (!skb_chk)
5833 return NULL;
5834
5835 ret = pskb_trim_rcsum(skb_chk, len);
5836 if (ret) {
5837 kfree_skb(skb_chk);
5838 return NULL;
5839 }
5840
5841 return skb_chk;
5842}
5843
5844/**
5845 * skb_checksum_trimmed - validate checksum of an skb
5846 * @skb: the skb to check
5847 * @transport_len: the data length beyond the network header
5848 * @skb_chkf: checksum function to use
5849 *
5850 * Applies the given checksum function skb_chkf to the provided skb.
5851 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5852 *
5853 * If the skb has data beyond the given transport length, then a
5854 * trimmed & cloned skb is checked and returned.
5855 *
5856 * Caller needs to set the skb transport header and free any returned skb if it
5857 * differs from the provided skb.
5858 */
5859struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5860 unsigned int transport_len,
5861 __sum16(*skb_chkf)(struct sk_buff *skb))
5862{
5863 struct sk_buff *skb_chk;
5864 unsigned int offset = skb_transport_offset(skb);
5865 __sum16 ret;
5866
5867 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5868 if (!skb_chk)
5869 goto err;
5870
5871 if (!pskb_may_pull(skb_chk, offset))
5872 goto err;
5873
5874 skb_pull_rcsum(skb_chk, offset);
5875 ret = skb_chkf(skb_chk);
5876 skb_push_rcsum(skb_chk, offset);
5877
5878 if (ret)
5879 goto err;
5880
5881 return skb_chk;
5882
5883err:
5884 if (skb_chk && skb_chk != skb)
5885 kfree_skb(skb_chk);
5886
5887 return NULL;
5888
5889}
5890EXPORT_SYMBOL(skb_checksum_trimmed);
5891
5892void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5893{
5894 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5895 skb->dev->name);
5896}
5897EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5898
5899void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5900{
5901 if (head_stolen) {
5902 skb_release_head_state(skb);
5903 kmem_cache_free(net_hotdata.skbuff_cache, skb);
5904 } else {
5905 __kfree_skb(skb);
5906 }
5907}
5908EXPORT_SYMBOL(kfree_skb_partial);
5909
5910/**
5911 * skb_try_coalesce - try to merge skb to prior one
5912 * @to: prior buffer
5913 * @from: buffer to add
5914 * @fragstolen: pointer to boolean
5915 * @delta_truesize: how much more was allocated than was requested
5916 */
5917bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5918 bool *fragstolen, int *delta_truesize)
5919{
5920 struct skb_shared_info *to_shinfo, *from_shinfo;
5921 int i, delta, len = from->len;
5922
5923 *fragstolen = false;
5924
5925 if (skb_cloned(to))
5926 return false;
5927
5928 /* In general, avoid mixing page_pool and non-page_pool allocated
5929 * pages within the same SKB. In theory we could take full
5930 * references if @from is cloned and !@to->pp_recycle but its
5931 * tricky (due to potential race with the clone disappearing) and
5932 * rare, so not worth dealing with.
5933 */
5934 if (to->pp_recycle != from->pp_recycle)
5935 return false;
5936
5937 if (len <= skb_tailroom(to)) {
5938 if (len)
5939 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5940 *delta_truesize = 0;
5941 return true;
5942 }
5943
5944 to_shinfo = skb_shinfo(to);
5945 from_shinfo = skb_shinfo(from);
5946 if (to_shinfo->frag_list || from_shinfo->frag_list)
5947 return false;
5948 if (skb_zcopy(to) || skb_zcopy(from))
5949 return false;
5950
5951 if (skb_headlen(from) != 0) {
5952 struct page *page;
5953 unsigned int offset;
5954
5955 if (to_shinfo->nr_frags +
5956 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5957 return false;
5958
5959 if (skb_head_is_locked(from))
5960 return false;
5961
5962 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5963
5964 page = virt_to_head_page(from->head);
5965 offset = from->data - (unsigned char *)page_address(page);
5966
5967 skb_fill_page_desc(to, to_shinfo->nr_frags,
5968 page, offset, skb_headlen(from));
5969 *fragstolen = true;
5970 } else {
5971 if (to_shinfo->nr_frags +
5972 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5973 return false;
5974
5975 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5976 }
5977
5978 WARN_ON_ONCE(delta < len);
5979
5980 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5981 from_shinfo->frags,
5982 from_shinfo->nr_frags * sizeof(skb_frag_t));
5983 to_shinfo->nr_frags += from_shinfo->nr_frags;
5984
5985 if (!skb_cloned(from))
5986 from_shinfo->nr_frags = 0;
5987
5988 /* if the skb is not cloned this does nothing
5989 * since we set nr_frags to 0.
5990 */
5991 if (skb_pp_frag_ref(from)) {
5992 for (i = 0; i < from_shinfo->nr_frags; i++)
5993 __skb_frag_ref(&from_shinfo->frags[i]);
5994 }
5995
5996 to->truesize += delta;
5997 to->len += len;
5998 to->data_len += len;
5999
6000 *delta_truesize = delta;
6001 return true;
6002}
6003EXPORT_SYMBOL(skb_try_coalesce);
6004
6005/**
6006 * skb_scrub_packet - scrub an skb
6007 *
6008 * @skb: buffer to clean
6009 * @xnet: packet is crossing netns
6010 *
6011 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6012 * into/from a tunnel. Some information have to be cleared during these
6013 * operations.
6014 * skb_scrub_packet can also be used to clean a skb before injecting it in
6015 * another namespace (@xnet == true). We have to clear all information in the
6016 * skb that could impact namespace isolation.
6017 */
6018void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6019{
6020 skb->pkt_type = PACKET_HOST;
6021 skb->skb_iif = 0;
6022 skb->ignore_df = 0;
6023 skb_dst_drop(skb);
6024 skb_ext_reset(skb);
6025 nf_reset_ct(skb);
6026 nf_reset_trace(skb);
6027
6028#ifdef CONFIG_NET_SWITCHDEV
6029 skb->offload_fwd_mark = 0;
6030 skb->offload_l3_fwd_mark = 0;
6031#endif
6032
6033 if (!xnet)
6034 return;
6035
6036 ipvs_reset(skb);
6037 skb->mark = 0;
6038 skb_clear_tstamp(skb);
6039}
6040EXPORT_SYMBOL_GPL(skb_scrub_packet);
6041
6042static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6043{
6044 int mac_len, meta_len;
6045 void *meta;
6046
6047 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6048 kfree_skb(skb);
6049 return NULL;
6050 }
6051
6052 mac_len = skb->data - skb_mac_header(skb);
6053 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6054 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6055 mac_len - VLAN_HLEN - ETH_TLEN);
6056 }
6057
6058 meta_len = skb_metadata_len(skb);
6059 if (meta_len) {
6060 meta = skb_metadata_end(skb) - meta_len;
6061 memmove(meta + VLAN_HLEN, meta, meta_len);
6062 }
6063
6064 skb->mac_header += VLAN_HLEN;
6065 return skb;
6066}
6067
6068struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6069{
6070 struct vlan_hdr *vhdr;
6071 u16 vlan_tci;
6072
6073 if (unlikely(skb_vlan_tag_present(skb))) {
6074 /* vlan_tci is already set-up so leave this for another time */
6075 return skb;
6076 }
6077
6078 skb = skb_share_check(skb, GFP_ATOMIC);
6079 if (unlikely(!skb))
6080 goto err_free;
6081 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6082 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6083 goto err_free;
6084
6085 vhdr = (struct vlan_hdr *)skb->data;
6086 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6087 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6088
6089 skb_pull_rcsum(skb, VLAN_HLEN);
6090 vlan_set_encap_proto(skb, vhdr);
6091
6092 skb = skb_reorder_vlan_header(skb);
6093 if (unlikely(!skb))
6094 goto err_free;
6095
6096 skb_reset_network_header(skb);
6097 if (!skb_transport_header_was_set(skb))
6098 skb_reset_transport_header(skb);
6099 skb_reset_mac_len(skb);
6100
6101 return skb;
6102
6103err_free:
6104 kfree_skb(skb);
6105 return NULL;
6106}
6107EXPORT_SYMBOL(skb_vlan_untag);
6108
6109int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6110{
6111 if (!pskb_may_pull(skb, write_len))
6112 return -ENOMEM;
6113
6114 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6115 return 0;
6116
6117 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6118}
6119EXPORT_SYMBOL(skb_ensure_writable);
6120
6121int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6122{
6123 int needed_headroom = dev->needed_headroom;
6124 int needed_tailroom = dev->needed_tailroom;
6125
6126 /* For tail taggers, we need to pad short frames ourselves, to ensure
6127 * that the tail tag does not fail at its role of being at the end of
6128 * the packet, once the conduit interface pads the frame. Account for
6129 * that pad length here, and pad later.
6130 */
6131 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6132 needed_tailroom += ETH_ZLEN - skb->len;
6133 /* skb_headroom() returns unsigned int... */
6134 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6135 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6136
6137 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6138 /* No reallocation needed, yay! */
6139 return 0;
6140
6141 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6142 GFP_ATOMIC);
6143}
6144EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6145
6146/* remove VLAN header from packet and update csum accordingly.
6147 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6148 */
6149int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6150{
6151 int offset = skb->data - skb_mac_header(skb);
6152 int err;
6153
6154 if (WARN_ONCE(offset,
6155 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6156 offset)) {
6157 return -EINVAL;
6158 }
6159
6160 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6161 if (unlikely(err))
6162 return err;
6163
6164 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6165
6166 vlan_remove_tag(skb, vlan_tci);
6167
6168 skb->mac_header += VLAN_HLEN;
6169
6170 if (skb_network_offset(skb) < ETH_HLEN)
6171 skb_set_network_header(skb, ETH_HLEN);
6172
6173 skb_reset_mac_len(skb);
6174
6175 return err;
6176}
6177EXPORT_SYMBOL(__skb_vlan_pop);
6178
6179/* Pop a vlan tag either from hwaccel or from payload.
6180 * Expects skb->data at mac header.
6181 */
6182int skb_vlan_pop(struct sk_buff *skb)
6183{
6184 u16 vlan_tci;
6185 __be16 vlan_proto;
6186 int err;
6187
6188 if (likely(skb_vlan_tag_present(skb))) {
6189 __vlan_hwaccel_clear_tag(skb);
6190 } else {
6191 if (unlikely(!eth_type_vlan(skb->protocol)))
6192 return 0;
6193
6194 err = __skb_vlan_pop(skb, &vlan_tci);
6195 if (err)
6196 return err;
6197 }
6198 /* move next vlan tag to hw accel tag */
6199 if (likely(!eth_type_vlan(skb->protocol)))
6200 return 0;
6201
6202 vlan_proto = skb->protocol;
6203 err = __skb_vlan_pop(skb, &vlan_tci);
6204 if (unlikely(err))
6205 return err;
6206
6207 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6208 return 0;
6209}
6210EXPORT_SYMBOL(skb_vlan_pop);
6211
6212/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6213 * Expects skb->data at mac header.
6214 */
6215int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6216{
6217 if (skb_vlan_tag_present(skb)) {
6218 int offset = skb->data - skb_mac_header(skb);
6219 int err;
6220
6221 if (WARN_ONCE(offset,
6222 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6223 offset)) {
6224 return -EINVAL;
6225 }
6226
6227 err = __vlan_insert_tag(skb, skb->vlan_proto,
6228 skb_vlan_tag_get(skb));
6229 if (err)
6230 return err;
6231
6232 skb->protocol = skb->vlan_proto;
6233 skb->mac_len += VLAN_HLEN;
6234
6235 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6236 }
6237 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6238 return 0;
6239}
6240EXPORT_SYMBOL(skb_vlan_push);
6241
6242/**
6243 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6244 *
6245 * @skb: Socket buffer to modify
6246 *
6247 * Drop the Ethernet header of @skb.
6248 *
6249 * Expects that skb->data points to the mac header and that no VLAN tags are
6250 * present.
6251 *
6252 * Returns 0 on success, -errno otherwise.
6253 */
6254int skb_eth_pop(struct sk_buff *skb)
6255{
6256 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6257 skb_network_offset(skb) < ETH_HLEN)
6258 return -EPROTO;
6259
6260 skb_pull_rcsum(skb, ETH_HLEN);
6261 skb_reset_mac_header(skb);
6262 skb_reset_mac_len(skb);
6263
6264 return 0;
6265}
6266EXPORT_SYMBOL(skb_eth_pop);
6267
6268/**
6269 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6270 *
6271 * @skb: Socket buffer to modify
6272 * @dst: Destination MAC address of the new header
6273 * @src: Source MAC address of the new header
6274 *
6275 * Prepend @skb with a new Ethernet header.
6276 *
6277 * Expects that skb->data points to the mac header, which must be empty.
6278 *
6279 * Returns 0 on success, -errno otherwise.
6280 */
6281int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6282 const unsigned char *src)
6283{
6284 struct ethhdr *eth;
6285 int err;
6286
6287 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6288 return -EPROTO;
6289
6290 err = skb_cow_head(skb, sizeof(*eth));
6291 if (err < 0)
6292 return err;
6293
6294 skb_push(skb, sizeof(*eth));
6295 skb_reset_mac_header(skb);
6296 skb_reset_mac_len(skb);
6297
6298 eth = eth_hdr(skb);
6299 ether_addr_copy(eth->h_dest, dst);
6300 ether_addr_copy(eth->h_source, src);
6301 eth->h_proto = skb->protocol;
6302
6303 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6304
6305 return 0;
6306}
6307EXPORT_SYMBOL(skb_eth_push);
6308
6309/* Update the ethertype of hdr and the skb csum value if required. */
6310static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6311 __be16 ethertype)
6312{
6313 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6314 __be16 diff[] = { ~hdr->h_proto, ethertype };
6315
6316 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6317 }
6318
6319 hdr->h_proto = ethertype;
6320}
6321
6322/**
6323 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6324 * the packet
6325 *
6326 * @skb: buffer
6327 * @mpls_lse: MPLS label stack entry to push
6328 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6329 * @mac_len: length of the MAC header
6330 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6331 * ethernet
6332 *
6333 * Expects skb->data at mac header.
6334 *
6335 * Returns 0 on success, -errno otherwise.
6336 */
6337int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6338 int mac_len, bool ethernet)
6339{
6340 struct mpls_shim_hdr *lse;
6341 int err;
6342
6343 if (unlikely(!eth_p_mpls(mpls_proto)))
6344 return -EINVAL;
6345
6346 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6347 if (skb->encapsulation)
6348 return -EINVAL;
6349
6350 err = skb_cow_head(skb, MPLS_HLEN);
6351 if (unlikely(err))
6352 return err;
6353
6354 if (!skb->inner_protocol) {
6355 skb_set_inner_network_header(skb, skb_network_offset(skb));
6356 skb_set_inner_protocol(skb, skb->protocol);
6357 }
6358
6359 skb_push(skb, MPLS_HLEN);
6360 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6361 mac_len);
6362 skb_reset_mac_header(skb);
6363 skb_set_network_header(skb, mac_len);
6364 skb_reset_mac_len(skb);
6365
6366 lse = mpls_hdr(skb);
6367 lse->label_stack_entry = mpls_lse;
6368 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6369
6370 if (ethernet && mac_len >= ETH_HLEN)
6371 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6372 skb->protocol = mpls_proto;
6373
6374 return 0;
6375}
6376EXPORT_SYMBOL_GPL(skb_mpls_push);
6377
6378/**
6379 * skb_mpls_pop() - pop the outermost MPLS header
6380 *
6381 * @skb: buffer
6382 * @next_proto: ethertype of header after popped MPLS header
6383 * @mac_len: length of the MAC header
6384 * @ethernet: flag to indicate if the packet is ethernet
6385 *
6386 * Expects skb->data at mac header.
6387 *
6388 * Returns 0 on success, -errno otherwise.
6389 */
6390int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6391 bool ethernet)
6392{
6393 int err;
6394
6395 if (unlikely(!eth_p_mpls(skb->protocol)))
6396 return 0;
6397
6398 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6399 if (unlikely(err))
6400 return err;
6401
6402 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6403 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6404 mac_len);
6405
6406 __skb_pull(skb, MPLS_HLEN);
6407 skb_reset_mac_header(skb);
6408 skb_set_network_header(skb, mac_len);
6409
6410 if (ethernet && mac_len >= ETH_HLEN) {
6411 struct ethhdr *hdr;
6412
6413 /* use mpls_hdr() to get ethertype to account for VLANs. */
6414 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6415 skb_mod_eth_type(skb, hdr, next_proto);
6416 }
6417 skb->protocol = next_proto;
6418
6419 return 0;
6420}
6421EXPORT_SYMBOL_GPL(skb_mpls_pop);
6422
6423/**
6424 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6425 *
6426 * @skb: buffer
6427 * @mpls_lse: new MPLS label stack entry to update to
6428 *
6429 * Expects skb->data at mac header.
6430 *
6431 * Returns 0 on success, -errno otherwise.
6432 */
6433int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6434{
6435 int err;
6436
6437 if (unlikely(!eth_p_mpls(skb->protocol)))
6438 return -EINVAL;
6439
6440 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6441 if (unlikely(err))
6442 return err;
6443
6444 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6445 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6446
6447 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6448 }
6449
6450 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6451
6452 return 0;
6453}
6454EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6455
6456/**
6457 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6458 *
6459 * @skb: buffer
6460 *
6461 * Expects skb->data at mac header.
6462 *
6463 * Returns 0 on success, -errno otherwise.
6464 */
6465int skb_mpls_dec_ttl(struct sk_buff *skb)
6466{
6467 u32 lse;
6468 u8 ttl;
6469
6470 if (unlikely(!eth_p_mpls(skb->protocol)))
6471 return -EINVAL;
6472
6473 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6474 return -ENOMEM;
6475
6476 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6477 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6478 if (!--ttl)
6479 return -EINVAL;
6480
6481 lse &= ~MPLS_LS_TTL_MASK;
6482 lse |= ttl << MPLS_LS_TTL_SHIFT;
6483
6484 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6485}
6486EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6487
6488/**
6489 * alloc_skb_with_frags - allocate skb with page frags
6490 *
6491 * @header_len: size of linear part
6492 * @data_len: needed length in frags
6493 * @order: max page order desired.
6494 * @errcode: pointer to error code if any
6495 * @gfp_mask: allocation mask
6496 *
6497 * This can be used to allocate a paged skb, given a maximal order for frags.
6498 */
6499struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6500 unsigned long data_len,
6501 int order,
6502 int *errcode,
6503 gfp_t gfp_mask)
6504{
6505 unsigned long chunk;
6506 struct sk_buff *skb;
6507 struct page *page;
6508 int nr_frags = 0;
6509
6510 *errcode = -EMSGSIZE;
6511 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6512 return NULL;
6513
6514 *errcode = -ENOBUFS;
6515 skb = alloc_skb(header_len, gfp_mask);
6516 if (!skb)
6517 return NULL;
6518
6519 while (data_len) {
6520 if (nr_frags == MAX_SKB_FRAGS - 1)
6521 goto failure;
6522 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6523 order--;
6524
6525 if (order) {
6526 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6527 __GFP_COMP |
6528 __GFP_NOWARN,
6529 order);
6530 if (!page) {
6531 order--;
6532 continue;
6533 }
6534 } else {
6535 page = alloc_page(gfp_mask);
6536 if (!page)
6537 goto failure;
6538 }
6539 chunk = min_t(unsigned long, data_len,
6540 PAGE_SIZE << order);
6541 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6542 nr_frags++;
6543 skb->truesize += (PAGE_SIZE << order);
6544 data_len -= chunk;
6545 }
6546 return skb;
6547
6548failure:
6549 kfree_skb(skb);
6550 return NULL;
6551}
6552EXPORT_SYMBOL(alloc_skb_with_frags);
6553
6554/* carve out the first off bytes from skb when off < headlen */
6555static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6556 const int headlen, gfp_t gfp_mask)
6557{
6558 int i;
6559 unsigned int size = skb_end_offset(skb);
6560 int new_hlen = headlen - off;
6561 u8 *data;
6562
6563 if (skb_pfmemalloc(skb))
6564 gfp_mask |= __GFP_MEMALLOC;
6565
6566 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6567 if (!data)
6568 return -ENOMEM;
6569 size = SKB_WITH_OVERHEAD(size);
6570
6571 /* Copy real data, and all frags */
6572 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6573 skb->len -= off;
6574
6575 memcpy((struct skb_shared_info *)(data + size),
6576 skb_shinfo(skb),
6577 offsetof(struct skb_shared_info,
6578 frags[skb_shinfo(skb)->nr_frags]));
6579 if (skb_cloned(skb)) {
6580 /* drop the old head gracefully */
6581 if (skb_orphan_frags(skb, gfp_mask)) {
6582 skb_kfree_head(data, size);
6583 return -ENOMEM;
6584 }
6585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6586 skb_frag_ref(skb, i);
6587 if (skb_has_frag_list(skb))
6588 skb_clone_fraglist(skb);
6589 skb_release_data(skb, SKB_CONSUMED, false);
6590 } else {
6591 /* we can reuse existing recount- all we did was
6592 * relocate values
6593 */
6594 skb_free_head(skb, false);
6595 }
6596
6597 skb->head = data;
6598 skb->data = data;
6599 skb->head_frag = 0;
6600 skb_set_end_offset(skb, size);
6601 skb_set_tail_pointer(skb, skb_headlen(skb));
6602 skb_headers_offset_update(skb, 0);
6603 skb->cloned = 0;
6604 skb->hdr_len = 0;
6605 skb->nohdr = 0;
6606 atomic_set(&skb_shinfo(skb)->dataref, 1);
6607
6608 return 0;
6609}
6610
6611static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6612
6613/* carve out the first eat bytes from skb's frag_list. May recurse into
6614 * pskb_carve()
6615 */
6616static int pskb_carve_frag_list(struct sk_buff *skb,
6617 struct skb_shared_info *shinfo, int eat,
6618 gfp_t gfp_mask)
6619{
6620 struct sk_buff *list = shinfo->frag_list;
6621 struct sk_buff *clone = NULL;
6622 struct sk_buff *insp = NULL;
6623
6624 do {
6625 if (!list) {
6626 pr_err("Not enough bytes to eat. Want %d\n", eat);
6627 return -EFAULT;
6628 }
6629 if (list->len <= eat) {
6630 /* Eaten as whole. */
6631 eat -= list->len;
6632 list = list->next;
6633 insp = list;
6634 } else {
6635 /* Eaten partially. */
6636 if (skb_shared(list)) {
6637 clone = skb_clone(list, gfp_mask);
6638 if (!clone)
6639 return -ENOMEM;
6640 insp = list->next;
6641 list = clone;
6642 } else {
6643 /* This may be pulled without problems. */
6644 insp = list;
6645 }
6646 if (pskb_carve(list, eat, gfp_mask) < 0) {
6647 kfree_skb(clone);
6648 return -ENOMEM;
6649 }
6650 break;
6651 }
6652 } while (eat);
6653
6654 /* Free pulled out fragments. */
6655 while ((list = shinfo->frag_list) != insp) {
6656 shinfo->frag_list = list->next;
6657 consume_skb(list);
6658 }
6659 /* And insert new clone at head. */
6660 if (clone) {
6661 clone->next = list;
6662 shinfo->frag_list = clone;
6663 }
6664 return 0;
6665}
6666
6667/* carve off first len bytes from skb. Split line (off) is in the
6668 * non-linear part of skb
6669 */
6670static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6671 int pos, gfp_t gfp_mask)
6672{
6673 int i, k = 0;
6674 unsigned int size = skb_end_offset(skb);
6675 u8 *data;
6676 const int nfrags = skb_shinfo(skb)->nr_frags;
6677 struct skb_shared_info *shinfo;
6678
6679 if (skb_pfmemalloc(skb))
6680 gfp_mask |= __GFP_MEMALLOC;
6681
6682 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6683 if (!data)
6684 return -ENOMEM;
6685 size = SKB_WITH_OVERHEAD(size);
6686
6687 memcpy((struct skb_shared_info *)(data + size),
6688 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6689 if (skb_orphan_frags(skb, gfp_mask)) {
6690 skb_kfree_head(data, size);
6691 return -ENOMEM;
6692 }
6693 shinfo = (struct skb_shared_info *)(data + size);
6694 for (i = 0; i < nfrags; i++) {
6695 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6696
6697 if (pos + fsize > off) {
6698 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6699
6700 if (pos < off) {
6701 /* Split frag.
6702 * We have two variants in this case:
6703 * 1. Move all the frag to the second
6704 * part, if it is possible. F.e.
6705 * this approach is mandatory for TUX,
6706 * where splitting is expensive.
6707 * 2. Split is accurately. We make this.
6708 */
6709 skb_frag_off_add(&shinfo->frags[0], off - pos);
6710 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6711 }
6712 skb_frag_ref(skb, i);
6713 k++;
6714 }
6715 pos += fsize;
6716 }
6717 shinfo->nr_frags = k;
6718 if (skb_has_frag_list(skb))
6719 skb_clone_fraglist(skb);
6720
6721 /* split line is in frag list */
6722 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6723 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6724 if (skb_has_frag_list(skb))
6725 kfree_skb_list(skb_shinfo(skb)->frag_list);
6726 skb_kfree_head(data, size);
6727 return -ENOMEM;
6728 }
6729 skb_release_data(skb, SKB_CONSUMED, false);
6730
6731 skb->head = data;
6732 skb->head_frag = 0;
6733 skb->data = data;
6734 skb_set_end_offset(skb, size);
6735 skb_reset_tail_pointer(skb);
6736 skb_headers_offset_update(skb, 0);
6737 skb->cloned = 0;
6738 skb->hdr_len = 0;
6739 skb->nohdr = 0;
6740 skb->len -= off;
6741 skb->data_len = skb->len;
6742 atomic_set(&skb_shinfo(skb)->dataref, 1);
6743 return 0;
6744}
6745
6746/* remove len bytes from the beginning of the skb */
6747static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6748{
6749 int headlen = skb_headlen(skb);
6750
6751 if (len < headlen)
6752 return pskb_carve_inside_header(skb, len, headlen, gfp);
6753 else
6754 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6755}
6756
6757/* Extract to_copy bytes starting at off from skb, and return this in
6758 * a new skb
6759 */
6760struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6761 int to_copy, gfp_t gfp)
6762{
6763 struct sk_buff *clone = skb_clone(skb, gfp);
6764
6765 if (!clone)
6766 return NULL;
6767
6768 if (pskb_carve(clone, off, gfp) < 0 ||
6769 pskb_trim(clone, to_copy)) {
6770 kfree_skb(clone);
6771 return NULL;
6772 }
6773 return clone;
6774}
6775EXPORT_SYMBOL(pskb_extract);
6776
6777/**
6778 * skb_condense - try to get rid of fragments/frag_list if possible
6779 * @skb: buffer
6780 *
6781 * Can be used to save memory before skb is added to a busy queue.
6782 * If packet has bytes in frags and enough tail room in skb->head,
6783 * pull all of them, so that we can free the frags right now and adjust
6784 * truesize.
6785 * Notes:
6786 * We do not reallocate skb->head thus can not fail.
6787 * Caller must re-evaluate skb->truesize if needed.
6788 */
6789void skb_condense(struct sk_buff *skb)
6790{
6791 if (skb->data_len) {
6792 if (skb->data_len > skb->end - skb->tail ||
6793 skb_cloned(skb))
6794 return;
6795
6796 /* Nice, we can free page frag(s) right now */
6797 __pskb_pull_tail(skb, skb->data_len);
6798 }
6799 /* At this point, skb->truesize might be over estimated,
6800 * because skb had a fragment, and fragments do not tell
6801 * their truesize.
6802 * When we pulled its content into skb->head, fragment
6803 * was freed, but __pskb_pull_tail() could not possibly
6804 * adjust skb->truesize, not knowing the frag truesize.
6805 */
6806 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6807}
6808EXPORT_SYMBOL(skb_condense);
6809
6810#ifdef CONFIG_SKB_EXTENSIONS
6811static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6812{
6813 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6814}
6815
6816/**
6817 * __skb_ext_alloc - allocate a new skb extensions storage
6818 *
6819 * @flags: See kmalloc().
6820 *
6821 * Returns the newly allocated pointer. The pointer can later attached to a
6822 * skb via __skb_ext_set().
6823 * Note: caller must handle the skb_ext as an opaque data.
6824 */
6825struct skb_ext *__skb_ext_alloc(gfp_t flags)
6826{
6827 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6828
6829 if (new) {
6830 memset(new->offset, 0, sizeof(new->offset));
6831 refcount_set(&new->refcnt, 1);
6832 }
6833
6834 return new;
6835}
6836
6837static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6838 unsigned int old_active)
6839{
6840 struct skb_ext *new;
6841
6842 if (refcount_read(&old->refcnt) == 1)
6843 return old;
6844
6845 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6846 if (!new)
6847 return NULL;
6848
6849 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6850 refcount_set(&new->refcnt, 1);
6851
6852#ifdef CONFIG_XFRM
6853 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6854 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6855 unsigned int i;
6856
6857 for (i = 0; i < sp->len; i++)
6858 xfrm_state_hold(sp->xvec[i]);
6859 }
6860#endif
6861#ifdef CONFIG_MCTP_FLOWS
6862 if (old_active & (1 << SKB_EXT_MCTP)) {
6863 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6864
6865 if (flow->key)
6866 refcount_inc(&flow->key->refs);
6867 }
6868#endif
6869 __skb_ext_put(old);
6870 return new;
6871}
6872
6873/**
6874 * __skb_ext_set - attach the specified extension storage to this skb
6875 * @skb: buffer
6876 * @id: extension id
6877 * @ext: extension storage previously allocated via __skb_ext_alloc()
6878 *
6879 * Existing extensions, if any, are cleared.
6880 *
6881 * Returns the pointer to the extension.
6882 */
6883void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6884 struct skb_ext *ext)
6885{
6886 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6887
6888 skb_ext_put(skb);
6889 newlen = newoff + skb_ext_type_len[id];
6890 ext->chunks = newlen;
6891 ext->offset[id] = newoff;
6892 skb->extensions = ext;
6893 skb->active_extensions = 1 << id;
6894 return skb_ext_get_ptr(ext, id);
6895}
6896
6897/**
6898 * skb_ext_add - allocate space for given extension, COW if needed
6899 * @skb: buffer
6900 * @id: extension to allocate space for
6901 *
6902 * Allocates enough space for the given extension.
6903 * If the extension is already present, a pointer to that extension
6904 * is returned.
6905 *
6906 * If the skb was cloned, COW applies and the returned memory can be
6907 * modified without changing the extension space of clones buffers.
6908 *
6909 * Returns pointer to the extension or NULL on allocation failure.
6910 */
6911void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6912{
6913 struct skb_ext *new, *old = NULL;
6914 unsigned int newlen, newoff;
6915
6916 if (skb->active_extensions) {
6917 old = skb->extensions;
6918
6919 new = skb_ext_maybe_cow(old, skb->active_extensions);
6920 if (!new)
6921 return NULL;
6922
6923 if (__skb_ext_exist(new, id))
6924 goto set_active;
6925
6926 newoff = new->chunks;
6927 } else {
6928 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6929
6930 new = __skb_ext_alloc(GFP_ATOMIC);
6931 if (!new)
6932 return NULL;
6933 }
6934
6935 newlen = newoff + skb_ext_type_len[id];
6936 new->chunks = newlen;
6937 new->offset[id] = newoff;
6938set_active:
6939 skb->slow_gro = 1;
6940 skb->extensions = new;
6941 skb->active_extensions |= 1 << id;
6942 return skb_ext_get_ptr(new, id);
6943}
6944EXPORT_SYMBOL(skb_ext_add);
6945
6946#ifdef CONFIG_XFRM
6947static void skb_ext_put_sp(struct sec_path *sp)
6948{
6949 unsigned int i;
6950
6951 for (i = 0; i < sp->len; i++)
6952 xfrm_state_put(sp->xvec[i]);
6953}
6954#endif
6955
6956#ifdef CONFIG_MCTP_FLOWS
6957static void skb_ext_put_mctp(struct mctp_flow *flow)
6958{
6959 if (flow->key)
6960 mctp_key_unref(flow->key);
6961}
6962#endif
6963
6964void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6965{
6966 struct skb_ext *ext = skb->extensions;
6967
6968 skb->active_extensions &= ~(1 << id);
6969 if (skb->active_extensions == 0) {
6970 skb->extensions = NULL;
6971 __skb_ext_put(ext);
6972#ifdef CONFIG_XFRM
6973 } else if (id == SKB_EXT_SEC_PATH &&
6974 refcount_read(&ext->refcnt) == 1) {
6975 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6976
6977 skb_ext_put_sp(sp);
6978 sp->len = 0;
6979#endif
6980 }
6981}
6982EXPORT_SYMBOL(__skb_ext_del);
6983
6984void __skb_ext_put(struct skb_ext *ext)
6985{
6986 /* If this is last clone, nothing can increment
6987 * it after check passes. Avoids one atomic op.
6988 */
6989 if (refcount_read(&ext->refcnt) == 1)
6990 goto free_now;
6991
6992 if (!refcount_dec_and_test(&ext->refcnt))
6993 return;
6994free_now:
6995#ifdef CONFIG_XFRM
6996 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6997 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6998#endif
6999#ifdef CONFIG_MCTP_FLOWS
7000 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7001 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7002#endif
7003
7004 kmem_cache_free(skbuff_ext_cache, ext);
7005}
7006EXPORT_SYMBOL(__skb_ext_put);
7007#endif /* CONFIG_SKB_EXTENSIONS */
7008
7009/**
7010 * skb_attempt_defer_free - queue skb for remote freeing
7011 * @skb: buffer
7012 *
7013 * Put @skb in a per-cpu list, using the cpu which
7014 * allocated the skb/pages to reduce false sharing
7015 * and memory zone spinlock contention.
7016 */
7017void skb_attempt_defer_free(struct sk_buff *skb)
7018{
7019 int cpu = skb->alloc_cpu;
7020 struct softnet_data *sd;
7021 unsigned int defer_max;
7022 bool kick;
7023
7024 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7025 !cpu_online(cpu) ||
7026 cpu == raw_smp_processor_id()) {
7027nodefer: __kfree_skb(skb);
7028 return;
7029 }
7030
7031 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7032 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7033
7034 sd = &per_cpu(softnet_data, cpu);
7035 defer_max = READ_ONCE(sysctl_skb_defer_max);
7036 if (READ_ONCE(sd->defer_count) >= defer_max)
7037 goto nodefer;
7038
7039 spin_lock_bh(&sd->defer_lock);
7040 /* Send an IPI every time queue reaches half capacity. */
7041 kick = sd->defer_count == (defer_max >> 1);
7042 /* Paired with the READ_ONCE() few lines above */
7043 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7044
7045 skb->next = sd->defer_list;
7046 /* Paired with READ_ONCE() in skb_defer_free_flush() */
7047 WRITE_ONCE(sd->defer_list, skb);
7048 spin_unlock_bh(&sd->defer_lock);
7049
7050 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7051 * if we are unlucky enough (this seems very unlikely).
7052 */
7053 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
7054 smp_call_function_single_async(cpu, &sd->defer_csd);
7055}
7056
7057static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7058 size_t offset, size_t len)
7059{
7060 const char *kaddr;
7061 __wsum csum;
7062
7063 kaddr = kmap_local_page(page);
7064 csum = csum_partial(kaddr + offset, len, 0);
7065 kunmap_local(kaddr);
7066 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7067}
7068
7069/**
7070 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7071 * @skb: The buffer to add pages to
7072 * @iter: Iterator representing the pages to be added
7073 * @maxsize: Maximum amount of pages to be added
7074 * @gfp: Allocation flags
7075 *
7076 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7077 * extracts pages from an iterator and adds them to the socket buffer if
7078 * possible, copying them to fragments if not possible (such as if they're slab
7079 * pages).
7080 *
7081 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7082 * insufficient space in the buffer to transfer anything.
7083 */
7084ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7085 ssize_t maxsize, gfp_t gfp)
7086{
7087 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
7088 struct page *pages[8], **ppages = pages;
7089 ssize_t spliced = 0, ret = 0;
7090 unsigned int i;
7091
7092 while (iter->count > 0) {
7093 ssize_t space, nr, len;
7094 size_t off;
7095
7096 ret = -EMSGSIZE;
7097 space = frag_limit - skb_shinfo(skb)->nr_frags;
7098 if (space < 0)
7099 break;
7100
7101 /* We might be able to coalesce without increasing nr_frags */
7102 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7103
7104 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7105 if (len <= 0) {
7106 ret = len ?: -EIO;
7107 break;
7108 }
7109
7110 i = 0;
7111 do {
7112 struct page *page = pages[i++];
7113 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7114
7115 ret = -EIO;
7116 if (WARN_ON_ONCE(!sendpage_ok(page)))
7117 goto out;
7118
7119 ret = skb_append_pagefrags(skb, page, off, part,
7120 frag_limit);
7121 if (ret < 0) {
7122 iov_iter_revert(iter, len);
7123 goto out;
7124 }
7125
7126 if (skb->ip_summed == CHECKSUM_NONE)
7127 skb_splice_csum_page(skb, page, off, part);
7128
7129 off = 0;
7130 spliced += part;
7131 maxsize -= part;
7132 len -= part;
7133 } while (len > 0);
7134
7135 if (maxsize <= 0)
7136 break;
7137 }
7138
7139out:
7140 skb_len_add(skb, spliced);
7141 return spliced ?: ret;
7142}
7143EXPORT_SYMBOL(skb_splice_from_iter);
7144
7145static __always_inline
7146size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7147 size_t len, void *to, void *priv2)
7148{
7149 __wsum *csum = priv2;
7150 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7151
7152 *csum = csum_block_add(*csum, next, progress);
7153 return 0;
7154}
7155
7156static __always_inline
7157size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7158 size_t len, void *to, void *priv2)
7159{
7160 __wsum next, *csum = priv2;
7161
7162 next = csum_and_copy_from_user(iter_from, to + progress, len);
7163 *csum = csum_block_add(*csum, next, progress);
7164 return next ? 0 : len;
7165}
7166
7167bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7168 __wsum *csum, struct iov_iter *i)
7169{
7170 size_t copied;
7171
7172 if (WARN_ON_ONCE(!i->data_source))
7173 return false;
7174 copied = iterate_and_advance2(i, bytes, addr, csum,
7175 copy_from_user_iter_csum,
7176 memcpy_from_iter_csum);
7177 if (likely(copied == bytes))
7178 return true;
7179 iov_iter_revert(i, copied);
7180 return false;
7181}
7182EXPORT_SYMBOL(csum_and_copy_from_iter_full);