Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
 
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
  79
  80struct kmem_cache *skbuff_head_cache __read_mostly;
  81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  83EXPORT_SYMBOL(sysctl_max_skb_frags);
  84
  85/**
  86 *	skb_panic - private function for out-of-line support
  87 *	@skb:	buffer
  88 *	@sz:	size
  89 *	@addr:	address
  90 *	@msg:	skb_over_panic or skb_under_panic
  91 *
  92 *	Out-of-line support for skb_put() and skb_push().
  93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  94 *	Keep out of line to prevent kernel bloat.
  95 *	__builtin_return_address is not used because it is not always reliable.
  96 */
  97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  98		      const char msg[])
  99{
 100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 101		 msg, addr, skb->len, sz, skb->head, skb->data,
 102		 (unsigned long)skb->tail, (unsigned long)skb->end,
 103		 skb->dev ? skb->dev->name : "<NULL>");
 104	BUG();
 105}
 106
 107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 108{
 109	skb_panic(skb, sz, addr, __func__);
 110}
 111
 112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114	skb_panic(skb, sz, addr, __func__);
 115}
 116
 117/*
 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 119 * the caller if emergency pfmemalloc reserves are being used. If it is and
 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 121 * may be used. Otherwise, the packet data may be discarded until enough
 122 * memory is free
 123 */
 124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 126
 127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 128			       unsigned long ip, bool *pfmemalloc)
 129{
 130	void *obj;
 131	bool ret_pfmemalloc = false;
 132
 133	/*
 134	 * Try a regular allocation, when that fails and we're not entitled
 135	 * to the reserves, fail.
 136	 */
 137	obj = kmalloc_node_track_caller(size,
 138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 139					node);
 140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 141		goto out;
 142
 143	/* Try again but now we are using pfmemalloc reserves */
 144	ret_pfmemalloc = true;
 145	obj = kmalloc_node_track_caller(size, flags, node);
 146
 147out:
 148	if (pfmemalloc)
 149		*pfmemalloc = ret_pfmemalloc;
 150
 151	return obj;
 152}
 153
 154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 155 *	'private' fields and also do memory statistics to find all the
 156 *	[BEEP] leaks.
 157 *
 158 */
 159
 160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 161{
 162	struct sk_buff *skb;
 163
 164	/* Get the HEAD */
 165	skb = kmem_cache_alloc_node(skbuff_head_cache,
 166				    gfp_mask & ~__GFP_DMA, node);
 167	if (!skb)
 168		goto out;
 169
 170	/*
 171	 * Only clear those fields we need to clear, not those that we will
 172	 * actually initialise below. Hence, don't put any more fields after
 173	 * the tail pointer in struct sk_buff!
 174	 */
 175	memset(skb, 0, offsetof(struct sk_buff, tail));
 176	skb->head = NULL;
 177	skb->truesize = sizeof(struct sk_buff);
 178	atomic_set(&skb->users, 1);
 179
 180	skb->mac_header = (typeof(skb->mac_header))~0U;
 181out:
 182	return skb;
 183}
 184
 185/**
 186 *	__alloc_skb	-	allocate a network buffer
 187 *	@size: size to allocate
 188 *	@gfp_mask: allocation mask
 189 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 190 *		instead of head cache and allocate a cloned (child) skb.
 191 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 192 *		allocations in case the data is required for writeback
 193 *	@node: numa node to allocate memory on
 194 *
 195 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 196 *	tail room of at least size bytes. The object has a reference count
 197 *	of one. The return is the buffer. On a failure the return is %NULL.
 198 *
 199 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 200 *	%GFP_ATOMIC.
 201 */
 202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 203			    int flags, int node)
 204{
 205	struct kmem_cache *cache;
 206	struct skb_shared_info *shinfo;
 207	struct sk_buff *skb;
 208	u8 *data;
 209	bool pfmemalloc;
 210
 211	cache = (flags & SKB_ALLOC_FCLONE)
 212		? skbuff_fclone_cache : skbuff_head_cache;
 213
 214	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 215		gfp_mask |= __GFP_MEMALLOC;
 216
 217	/* Get the HEAD */
 218	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 219	if (!skb)
 220		goto out;
 221	prefetchw(skb);
 222
 223	/* We do our best to align skb_shared_info on a separate cache
 224	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 225	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 226	 * Both skb->head and skb_shared_info are cache line aligned.
 227	 */
 228	size = SKB_DATA_ALIGN(size);
 229	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 230	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 231	if (!data)
 232		goto nodata;
 233	/* kmalloc(size) might give us more room than requested.
 234	 * Put skb_shared_info exactly at the end of allocated zone,
 235	 * to allow max possible filling before reallocation.
 236	 */
 237	size = SKB_WITH_OVERHEAD(ksize(data));
 238	prefetchw(data + size);
 239
 240	/*
 241	 * Only clear those fields we need to clear, not those that we will
 242	 * actually initialise below. Hence, don't put any more fields after
 243	 * the tail pointer in struct sk_buff!
 244	 */
 245	memset(skb, 0, offsetof(struct sk_buff, tail));
 246	/* Account for allocated memory : skb + skb->head */
 247	skb->truesize = SKB_TRUESIZE(size);
 248	skb->pfmemalloc = pfmemalloc;
 249	atomic_set(&skb->users, 1);
 250	skb->head = data;
 251	skb->data = data;
 252	skb_reset_tail_pointer(skb);
 253	skb->end = skb->tail + size;
 254	skb->mac_header = (typeof(skb->mac_header))~0U;
 255	skb->transport_header = (typeof(skb->transport_header))~0U;
 256
 257	/* make sure we initialize shinfo sequentially */
 258	shinfo = skb_shinfo(skb);
 259	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 260	atomic_set(&shinfo->dataref, 1);
 261	kmemcheck_annotate_variable(shinfo->destructor_arg);
 262
 263	if (flags & SKB_ALLOC_FCLONE) {
 264		struct sk_buff_fclones *fclones;
 265
 266		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 267
 268		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 269		skb->fclone = SKB_FCLONE_ORIG;
 270		atomic_set(&fclones->fclone_ref, 1);
 271
 272		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 273		fclones->skb2.pfmemalloc = pfmemalloc;
 274	}
 275out:
 276	return skb;
 277nodata:
 278	kmem_cache_free(cache, skb);
 279	skb = NULL;
 280	goto out;
 281}
 282EXPORT_SYMBOL(__alloc_skb);
 283
 284/**
 285 * __build_skb - build a network buffer
 286 * @data: data buffer provided by caller
 287 * @frag_size: size of data, or 0 if head was kmalloced
 288 *
 289 * Allocate a new &sk_buff. Caller provides space holding head and
 290 * skb_shared_info. @data must have been allocated by kmalloc() only if
 291 * @frag_size is 0, otherwise data should come from the page allocator
 292 *  or vmalloc()
 293 * The return is the new skb buffer.
 294 * On a failure the return is %NULL, and @data is not freed.
 295 * Notes :
 296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 297 *  Driver should add room at head (NET_SKB_PAD) and
 298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 300 *  before giving packet to stack.
 301 *  RX rings only contains data buffers, not full skbs.
 302 */
 303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 304{
 305	struct skb_shared_info *shinfo;
 306	struct sk_buff *skb;
 307	unsigned int size = frag_size ? : ksize(data);
 308
 309	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 310	if (!skb)
 311		return NULL;
 312
 313	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 314
 315	memset(skb, 0, offsetof(struct sk_buff, tail));
 316	skb->truesize = SKB_TRUESIZE(size);
 317	atomic_set(&skb->users, 1);
 318	skb->head = data;
 319	skb->data = data;
 320	skb_reset_tail_pointer(skb);
 321	skb->end = skb->tail + size;
 322	skb->mac_header = (typeof(skb->mac_header))~0U;
 323	skb->transport_header = (typeof(skb->transport_header))~0U;
 324
 325	/* make sure we initialize shinfo sequentially */
 326	shinfo = skb_shinfo(skb);
 327	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 328	atomic_set(&shinfo->dataref, 1);
 329	kmemcheck_annotate_variable(shinfo->destructor_arg);
 330
 331	return skb;
 332}
 333
 334/* build_skb() is wrapper over __build_skb(), that specifically
 335 * takes care of skb->head and skb->pfmemalloc
 336 * This means that if @frag_size is not zero, then @data must be backed
 337 * by a page fragment, not kmalloc() or vmalloc()
 338 */
 339struct sk_buff *build_skb(void *data, unsigned int frag_size)
 340{
 341	struct sk_buff *skb = __build_skb(data, frag_size);
 342
 343	if (skb && frag_size) {
 344		skb->head_frag = 1;
 345		if (page_is_pfmemalloc(virt_to_head_page(data)))
 346			skb->pfmemalloc = 1;
 347	}
 348	return skb;
 349}
 350EXPORT_SYMBOL(build_skb);
 351
 352#define NAPI_SKB_CACHE_SIZE	64
 353
 354struct napi_alloc_cache {
 355	struct page_frag_cache page;
 356	size_t skb_count;
 357	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 358};
 359
 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 362
 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 364{
 365	struct page_frag_cache *nc;
 366	unsigned long flags;
 367	void *data;
 368
 369	local_irq_save(flags);
 370	nc = this_cpu_ptr(&netdev_alloc_cache);
 371	data = __alloc_page_frag(nc, fragsz, gfp_mask);
 372	local_irq_restore(flags);
 373	return data;
 374}
 375
 376/**
 377 * netdev_alloc_frag - allocate a page fragment
 378 * @fragsz: fragment size
 379 *
 380 * Allocates a frag from a page for receive buffer.
 381 * Uses GFP_ATOMIC allocations.
 382 */
 383void *netdev_alloc_frag(unsigned int fragsz)
 384{
 385	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 386}
 387EXPORT_SYMBOL(netdev_alloc_frag);
 388
 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 390{
 391	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 392
 393	return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
 394}
 395
 396void *napi_alloc_frag(unsigned int fragsz)
 397{
 398	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 399}
 400EXPORT_SYMBOL(napi_alloc_frag);
 401
 402/**
 403 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 404 *	@dev: network device to receive on
 405 *	@len: length to allocate
 406 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 407 *
 408 *	Allocate a new &sk_buff and assign it a usage count of one. The
 409 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 410 *	the headroom they think they need without accounting for the
 411 *	built in space. The built in space is used for optimisations.
 412 *
 413 *	%NULL is returned if there is no free memory.
 414 */
 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 416				   gfp_t gfp_mask)
 417{
 418	struct page_frag_cache *nc;
 419	unsigned long flags;
 420	struct sk_buff *skb;
 421	bool pfmemalloc;
 422	void *data;
 423
 424	len += NET_SKB_PAD;
 425
 426	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 427	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 428		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 429		if (!skb)
 430			goto skb_fail;
 431		goto skb_success;
 432	}
 433
 434	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 435	len = SKB_DATA_ALIGN(len);
 436
 437	if (sk_memalloc_socks())
 438		gfp_mask |= __GFP_MEMALLOC;
 439
 440	local_irq_save(flags);
 441
 442	nc = this_cpu_ptr(&netdev_alloc_cache);
 443	data = __alloc_page_frag(nc, len, gfp_mask);
 444	pfmemalloc = nc->pfmemalloc;
 445
 446	local_irq_restore(flags);
 447
 448	if (unlikely(!data))
 449		return NULL;
 450
 451	skb = __build_skb(data, len);
 452	if (unlikely(!skb)) {
 453		skb_free_frag(data);
 454		return NULL;
 455	}
 456
 457	/* use OR instead of assignment to avoid clearing of bits in mask */
 458	if (pfmemalloc)
 459		skb->pfmemalloc = 1;
 460	skb->head_frag = 1;
 461
 462skb_success:
 463	skb_reserve(skb, NET_SKB_PAD);
 464	skb->dev = dev;
 465
 466skb_fail:
 467	return skb;
 468}
 469EXPORT_SYMBOL(__netdev_alloc_skb);
 470
 471/**
 472 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 473 *	@napi: napi instance this buffer was allocated for
 474 *	@len: length to allocate
 475 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 476 *
 477 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 478 *	attempt to allocate the head from a special reserved region used
 479 *	only for NAPI Rx allocation.  By doing this we can save several
 480 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 481 *
 482 *	%NULL is returned if there is no free memory.
 483 */
 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 485				 gfp_t gfp_mask)
 486{
 487	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 488	struct sk_buff *skb;
 489	void *data;
 490
 491	len += NET_SKB_PAD + NET_IP_ALIGN;
 492
 493	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 494	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 495		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 496		if (!skb)
 497			goto skb_fail;
 498		goto skb_success;
 499	}
 500
 501	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 502	len = SKB_DATA_ALIGN(len);
 503
 504	if (sk_memalloc_socks())
 505		gfp_mask |= __GFP_MEMALLOC;
 506
 507	data = __alloc_page_frag(&nc->page, len, gfp_mask);
 508	if (unlikely(!data))
 509		return NULL;
 510
 511	skb = __build_skb(data, len);
 512	if (unlikely(!skb)) {
 513		skb_free_frag(data);
 514		return NULL;
 515	}
 516
 517	/* use OR instead of assignment to avoid clearing of bits in mask */
 518	if (nc->page.pfmemalloc)
 519		skb->pfmemalloc = 1;
 520	skb->head_frag = 1;
 521
 522skb_success:
 523	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 524	skb->dev = napi->dev;
 525
 526skb_fail:
 527	return skb;
 528}
 529EXPORT_SYMBOL(__napi_alloc_skb);
 530
 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 532		     int size, unsigned int truesize)
 533{
 534	skb_fill_page_desc(skb, i, page, off, size);
 535	skb->len += size;
 536	skb->data_len += size;
 537	skb->truesize += truesize;
 538}
 539EXPORT_SYMBOL(skb_add_rx_frag);
 540
 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 542			  unsigned int truesize)
 543{
 544	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 545
 546	skb_frag_size_add(frag, size);
 547	skb->len += size;
 548	skb->data_len += size;
 549	skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_coalesce_rx_frag);
 552
 553static void skb_drop_list(struct sk_buff **listp)
 554{
 555	kfree_skb_list(*listp);
 556	*listp = NULL;
 557}
 558
 559static inline void skb_drop_fraglist(struct sk_buff *skb)
 560{
 561	skb_drop_list(&skb_shinfo(skb)->frag_list);
 562}
 563
 564static void skb_clone_fraglist(struct sk_buff *skb)
 565{
 566	struct sk_buff *list;
 567
 568	skb_walk_frags(skb, list)
 569		skb_get(list);
 570}
 571
 572static void skb_free_head(struct sk_buff *skb)
 573{
 574	unsigned char *head = skb->head;
 575
 576	if (skb->head_frag)
 577		skb_free_frag(head);
 578	else
 579		kfree(head);
 580}
 581
 582static void skb_release_data(struct sk_buff *skb)
 583{
 584	struct skb_shared_info *shinfo = skb_shinfo(skb);
 585	int i;
 586
 587	if (skb->cloned &&
 588	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 589			      &shinfo->dataref))
 590		return;
 591
 592	for (i = 0; i < shinfo->nr_frags; i++)
 593		__skb_frag_unref(&shinfo->frags[i]);
 594
 595	/*
 596	 * If skb buf is from userspace, we need to notify the caller
 597	 * the lower device DMA has done;
 598	 */
 599	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 600		struct ubuf_info *uarg;
 601
 602		uarg = shinfo->destructor_arg;
 603		if (uarg->callback)
 604			uarg->callback(uarg, true);
 605	}
 606
 607	if (shinfo->frag_list)
 608		kfree_skb_list(shinfo->frag_list);
 609
 610	skb_free_head(skb);
 611}
 612
 613/*
 614 *	Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618	struct sk_buff_fclones *fclones;
 619
 620	switch (skb->fclone) {
 621	case SKB_FCLONE_UNAVAILABLE:
 622		kmem_cache_free(skbuff_head_cache, skb);
 623		return;
 624
 625	case SKB_FCLONE_ORIG:
 626		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628		/* We usually free the clone (TX completion) before original skb
 629		 * This test would have no chance to be true for the clone,
 630		 * while here, branch prediction will be good.
 631		 */
 632		if (atomic_read(&fclones->fclone_ref) == 1)
 633			goto fastpath;
 634		break;
 635
 636	default: /* SKB_FCLONE_CLONE */
 637		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638		break;
 639	}
 640	if (!atomic_dec_and_test(&fclones->fclone_ref))
 641		return;
 642fastpath:
 643	kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646static void skb_release_head_state(struct sk_buff *skb)
 647{
 648	skb_dst_drop(skb);
 649#ifdef CONFIG_XFRM
 650	secpath_put(skb->sp);
 651#endif
 652	if (skb->destructor) {
 653		WARN_ON(in_irq());
 654		skb->destructor(skb);
 655	}
 656#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 657	nf_conntrack_put(skb->nfct);
 658#endif
 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 660	nf_bridge_put(skb->nf_bridge);
 661#endif
 662}
 663
 664/* Free everything but the sk_buff shell. */
 665static void skb_release_all(struct sk_buff *skb)
 666{
 667	skb_release_head_state(skb);
 668	if (likely(skb->head))
 669		skb_release_data(skb);
 670}
 671
 672/**
 673 *	__kfree_skb - private function
 674 *	@skb: buffer
 675 *
 676 *	Free an sk_buff. Release anything attached to the buffer.
 677 *	Clean the state. This is an internal helper function. Users should
 678 *	always call kfree_skb
 679 */
 680
 681void __kfree_skb(struct sk_buff *skb)
 682{
 683	skb_release_all(skb);
 684	kfree_skbmem(skb);
 685}
 686EXPORT_SYMBOL(__kfree_skb);
 687
 688/**
 689 *	kfree_skb - free an sk_buff
 690 *	@skb: buffer to free
 691 *
 692 *	Drop a reference to the buffer and free it if the usage count has
 693 *	hit zero.
 694 */
 695void kfree_skb(struct sk_buff *skb)
 696{
 697	if (unlikely(!skb))
 698		return;
 699	if (likely(atomic_read(&skb->users) == 1))
 700		smp_rmb();
 701	else if (likely(!atomic_dec_and_test(&skb->users)))
 702		return;
 703	trace_kfree_skb(skb, __builtin_return_address(0));
 704	__kfree_skb(skb);
 705}
 706EXPORT_SYMBOL(kfree_skb);
 707
 708void kfree_skb_list(struct sk_buff *segs)
 709{
 710	while (segs) {
 711		struct sk_buff *next = segs->next;
 712
 713		kfree_skb(segs);
 714		segs = next;
 715	}
 716}
 717EXPORT_SYMBOL(kfree_skb_list);
 718
 719/**
 720 *	skb_tx_error - report an sk_buff xmit error
 721 *	@skb: buffer that triggered an error
 722 *
 723 *	Report xmit error if a device callback is tracking this skb.
 724 *	skb must be freed afterwards.
 725 */
 726void skb_tx_error(struct sk_buff *skb)
 727{
 728	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 729		struct ubuf_info *uarg;
 730
 731		uarg = skb_shinfo(skb)->destructor_arg;
 732		if (uarg->callback)
 733			uarg->callback(uarg, false);
 734		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 735	}
 736}
 737EXPORT_SYMBOL(skb_tx_error);
 738
 739/**
 740 *	consume_skb - free an skbuff
 741 *	@skb: buffer to free
 742 *
 743 *	Drop a ref to the buffer and free it if the usage count has hit zero
 744 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 745 *	is being dropped after a failure and notes that
 746 */
 747void consume_skb(struct sk_buff *skb)
 748{
 749	if (unlikely(!skb))
 750		return;
 751	if (likely(atomic_read(&skb->users) == 1))
 752		smp_rmb();
 753	else if (likely(!atomic_dec_and_test(&skb->users)))
 754		return;
 755	trace_consume_skb(skb);
 756	__kfree_skb(skb);
 757}
 758EXPORT_SYMBOL(consume_skb);
 759
 760void __kfree_skb_flush(void)
 761{
 762	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 763
 764	/* flush skb_cache if containing objects */
 765	if (nc->skb_count) {
 766		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 767				     nc->skb_cache);
 768		nc->skb_count = 0;
 769	}
 770}
 771
 772static inline void _kfree_skb_defer(struct sk_buff *skb)
 773{
 774	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 775
 776	/* drop skb->head and call any destructors for packet */
 777	skb_release_all(skb);
 778
 779	/* record skb to CPU local list */
 780	nc->skb_cache[nc->skb_count++] = skb;
 781
 782#ifdef CONFIG_SLUB
 783	/* SLUB writes into objects when freeing */
 784	prefetchw(skb);
 785#endif
 786
 787	/* flush skb_cache if it is filled */
 788	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 789		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 790				     nc->skb_cache);
 791		nc->skb_count = 0;
 792	}
 793}
 794void __kfree_skb_defer(struct sk_buff *skb)
 795{
 796	_kfree_skb_defer(skb);
 797}
 798
 799void napi_consume_skb(struct sk_buff *skb, int budget)
 800{
 801	if (unlikely(!skb))
 802		return;
 803
 804	/* Zero budget indicate non-NAPI context called us, like netpoll */
 805	if (unlikely(!budget)) {
 806		dev_consume_skb_any(skb);
 807		return;
 808	}
 809
 810	if (likely(atomic_read(&skb->users) == 1))
 811		smp_rmb();
 812	else if (likely(!atomic_dec_and_test(&skb->users)))
 813		return;
 814	/* if reaching here SKB is ready to free */
 815	trace_consume_skb(skb);
 816
 817	/* if SKB is a clone, don't handle this case */
 818	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 819		__kfree_skb(skb);
 820		return;
 821	}
 822
 823	_kfree_skb_defer(skb);
 824}
 825EXPORT_SYMBOL(napi_consume_skb);
 826
 827/* Make sure a field is enclosed inside headers_start/headers_end section */
 828#define CHECK_SKB_FIELD(field) \
 829	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 830		     offsetof(struct sk_buff, headers_start));	\
 831	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 832		     offsetof(struct sk_buff, headers_end));	\
 833
 834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 835{
 836	new->tstamp		= old->tstamp;
 837	/* We do not copy old->sk */
 838	new->dev		= old->dev;
 839	memcpy(new->cb, old->cb, sizeof(old->cb));
 840	skb_dst_copy(new, old);
 841#ifdef CONFIG_XFRM
 842	new->sp			= secpath_get(old->sp);
 843#endif
 844	__nf_copy(new, old, false);
 845
 846	/* Note : this field could be in headers_start/headers_end section
 847	 * It is not yet because we do not want to have a 16 bit hole
 848	 */
 849	new->queue_mapping = old->queue_mapping;
 850
 851	memcpy(&new->headers_start, &old->headers_start,
 852	       offsetof(struct sk_buff, headers_end) -
 853	       offsetof(struct sk_buff, headers_start));
 854	CHECK_SKB_FIELD(protocol);
 855	CHECK_SKB_FIELD(csum);
 856	CHECK_SKB_FIELD(hash);
 857	CHECK_SKB_FIELD(priority);
 858	CHECK_SKB_FIELD(skb_iif);
 859	CHECK_SKB_FIELD(vlan_proto);
 860	CHECK_SKB_FIELD(vlan_tci);
 861	CHECK_SKB_FIELD(transport_header);
 862	CHECK_SKB_FIELD(network_header);
 863	CHECK_SKB_FIELD(mac_header);
 864	CHECK_SKB_FIELD(inner_protocol);
 865	CHECK_SKB_FIELD(inner_transport_header);
 866	CHECK_SKB_FIELD(inner_network_header);
 867	CHECK_SKB_FIELD(inner_mac_header);
 868	CHECK_SKB_FIELD(mark);
 869#ifdef CONFIG_NETWORK_SECMARK
 870	CHECK_SKB_FIELD(secmark);
 871#endif
 872#ifdef CONFIG_NET_RX_BUSY_POLL
 873	CHECK_SKB_FIELD(napi_id);
 874#endif
 875#ifdef CONFIG_XPS
 876	CHECK_SKB_FIELD(sender_cpu);
 877#endif
 878#ifdef CONFIG_NET_SCHED
 879	CHECK_SKB_FIELD(tc_index);
 880#ifdef CONFIG_NET_CLS_ACT
 881	CHECK_SKB_FIELD(tc_verd);
 882#endif
 883#endif
 884
 885}
 886
 887/*
 888 * You should not add any new code to this function.  Add it to
 889 * __copy_skb_header above instead.
 890 */
 891static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 892{
 893#define C(x) n->x = skb->x
 894
 895	n->next = n->prev = NULL;
 896	n->sk = NULL;
 897	__copy_skb_header(n, skb);
 898
 899	C(len);
 900	C(data_len);
 901	C(mac_len);
 902	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 903	n->cloned = 1;
 904	n->nohdr = 0;
 905	n->destructor = NULL;
 906	C(tail);
 907	C(end);
 908	C(head);
 909	C(head_frag);
 910	C(data);
 911	C(truesize);
 912	atomic_set(&n->users, 1);
 913
 914	atomic_inc(&(skb_shinfo(skb)->dataref));
 915	skb->cloned = 1;
 916
 917	return n;
 918#undef C
 919}
 920
 921/**
 922 *	skb_morph	-	morph one skb into another
 923 *	@dst: the skb to receive the contents
 924 *	@src: the skb to supply the contents
 925 *
 926 *	This is identical to skb_clone except that the target skb is
 927 *	supplied by the user.
 928 *
 929 *	The target skb is returned upon exit.
 930 */
 931struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 932{
 933	skb_release_all(dst);
 934	return __skb_clone(dst, src);
 935}
 936EXPORT_SYMBOL_GPL(skb_morph);
 937
 938/**
 939 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 940 *	@skb: the skb to modify
 941 *	@gfp_mask: allocation priority
 942 *
 943 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 944 *	It will copy all frags into kernel and drop the reference
 945 *	to userspace pages.
 946 *
 947 *	If this function is called from an interrupt gfp_mask() must be
 948 *	%GFP_ATOMIC.
 949 *
 950 *	Returns 0 on success or a negative error code on failure
 951 *	to allocate kernel memory to copy to.
 952 */
 953int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 954{
 955	int i;
 956	int num_frags = skb_shinfo(skb)->nr_frags;
 957	struct page *page, *head = NULL;
 958	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 959
 960	for (i = 0; i < num_frags; i++) {
 961		u8 *vaddr;
 962		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 963
 964		page = alloc_page(gfp_mask);
 965		if (!page) {
 966			while (head) {
 967				struct page *next = (struct page *)page_private(head);
 968				put_page(head);
 969				head = next;
 970			}
 971			return -ENOMEM;
 972		}
 973		vaddr = kmap_atomic(skb_frag_page(f));
 974		memcpy(page_address(page),
 975		       vaddr + f->page_offset, skb_frag_size(f));
 976		kunmap_atomic(vaddr);
 977		set_page_private(page, (unsigned long)head);
 978		head = page;
 979	}
 980
 981	/* skb frags release userspace buffers */
 982	for (i = 0; i < num_frags; i++)
 983		skb_frag_unref(skb, i);
 984
 985	uarg->callback(uarg, false);
 986
 987	/* skb frags point to kernel buffers */
 988	for (i = num_frags - 1; i >= 0; i--) {
 989		__skb_fill_page_desc(skb, i, head, 0,
 990				     skb_shinfo(skb)->frags[i].size);
 991		head = (struct page *)page_private(head);
 992	}
 993
 994	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 995	return 0;
 996}
 997EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 998
 999/**
1000 *	skb_clone	-	duplicate an sk_buff
1001 *	@skb: buffer to clone
1002 *	@gfp_mask: allocation priority
1003 *
1004 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 *	copies share the same packet data but not structure. The new
1006 *	buffer has a reference count of 1. If the allocation fails the
1007 *	function returns %NULL otherwise the new buffer is returned.
1008 *
1009 *	If this function is called from an interrupt gfp_mask() must be
1010 *	%GFP_ATOMIC.
1011 */
1012
1013struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014{
1015	struct sk_buff_fclones *fclones = container_of(skb,
1016						       struct sk_buff_fclones,
1017						       skb1);
1018	struct sk_buff *n;
1019
1020	if (skb_orphan_frags(skb, gfp_mask))
1021		return NULL;
1022
1023	if (skb->fclone == SKB_FCLONE_ORIG &&
1024	    atomic_read(&fclones->fclone_ref) == 1) {
1025		n = &fclones->skb2;
1026		atomic_set(&fclones->fclone_ref, 2);
1027	} else {
1028		if (skb_pfmemalloc(skb))
1029			gfp_mask |= __GFP_MEMALLOC;
1030
1031		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032		if (!n)
1033			return NULL;
1034
1035		kmemcheck_annotate_bitfield(n, flags1);
1036		n->fclone = SKB_FCLONE_UNAVAILABLE;
1037	}
1038
1039	return __skb_clone(n, skb);
1040}
1041EXPORT_SYMBOL(skb_clone);
1042
1043static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044{
1045	/* Only adjust this if it actually is csum_start rather than csum */
1046	if (skb->ip_summed == CHECKSUM_PARTIAL)
1047		skb->csum_start += off;
1048	/* {transport,network,mac}_header and tail are relative to skb->head */
1049	skb->transport_header += off;
1050	skb->network_header   += off;
1051	if (skb_mac_header_was_set(skb))
1052		skb->mac_header += off;
1053	skb->inner_transport_header += off;
1054	skb->inner_network_header += off;
1055	skb->inner_mac_header += off;
1056}
1057
1058static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059{
1060	__copy_skb_header(new, old);
1061
1062	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065}
1066
1067static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068{
1069	if (skb_pfmemalloc(skb))
1070		return SKB_ALLOC_RX;
1071	return 0;
1072}
1073
1074/**
1075 *	skb_copy	-	create private copy of an sk_buff
1076 *	@skb: buffer to copy
1077 *	@gfp_mask: allocation priority
1078 *
1079 *	Make a copy of both an &sk_buff and its data. This is used when the
1080 *	caller wishes to modify the data and needs a private copy of the
1081 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1082 *	on success. The returned buffer has a reference count of 1.
1083 *
1084 *	As by-product this function converts non-linear &sk_buff to linear
1085 *	one, so that &sk_buff becomes completely private and caller is allowed
1086 *	to modify all the data of returned buffer. This means that this
1087 *	function is not recommended for use in circumstances when only
1088 *	header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092{
1093	int headerlen = skb_headroom(skb);
1094	unsigned int size = skb_end_offset(skb) + skb->data_len;
1095	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
1098	if (!n)
1099		return NULL;
1100
1101	/* Set the data pointer */
1102	skb_reserve(n, headerlen);
1103	/* Set the tail pointer and length */
1104	skb_put(n, skb->len);
1105
1106	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107		BUG();
1108
1109	copy_skb_header(n, skb);
1110	return n;
1111}
1112EXPORT_SYMBOL(skb_copy);
1113
1114/**
1115 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1116 *	@skb: buffer to copy
1117 *	@headroom: headroom of new skb
1118 *	@gfp_mask: allocation priority
1119 *	@fclone: if true allocate the copy of the skb from the fclone
1120 *	cache instead of the head cache; it is recommended to set this
1121 *	to true for the cases where the copy will likely be cloned
1122 *
1123 *	Make a copy of both an &sk_buff and part of its data, located
1124 *	in header. Fragmented data remain shared. This is used when
1125 *	the caller wishes to modify only header of &sk_buff and needs
1126 *	private copy of the header to alter. Returns %NULL on failure
1127 *	or the pointer to the buffer on success.
1128 *	The returned buffer has a reference count of 1.
1129 */
1130
1131struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132				   gfp_t gfp_mask, bool fclone)
1133{
1134	unsigned int size = skb_headlen(skb) + headroom;
1135	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138	if (!n)
1139		goto out;
1140
1141	/* Set the data pointer */
1142	skb_reserve(n, headroom);
1143	/* Set the tail pointer and length */
1144	skb_put(n, skb_headlen(skb));
1145	/* Copy the bytes */
1146	skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148	n->truesize += skb->data_len;
1149	n->data_len  = skb->data_len;
1150	n->len	     = skb->len;
1151
1152	if (skb_shinfo(skb)->nr_frags) {
1153		int i;
1154
1155		if (skb_orphan_frags(skb, gfp_mask)) {
1156			kfree_skb(n);
1157			n = NULL;
1158			goto out;
1159		}
1160		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162			skb_frag_ref(skb, i);
1163		}
1164		skb_shinfo(n)->nr_frags = i;
1165	}
1166
1167	if (skb_has_frag_list(skb)) {
1168		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169		skb_clone_fraglist(n);
1170	}
1171
1172	copy_skb_header(n, skb);
1173out:
1174	return n;
1175}
1176EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178/**
1179 *	pskb_expand_head - reallocate header of &sk_buff
1180 *	@skb: buffer to reallocate
1181 *	@nhead: room to add at head
1182 *	@ntail: room to add at tail
1183 *	@gfp_mask: allocation priority
1184 *
1185 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 *	reference count of 1. Returns zero in the case of success or error,
1188 *	if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 *	All the pointers pointing into skb header may change and must be
1191 *	reloaded after call to this function.
1192 */
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195		     gfp_t gfp_mask)
1196{
1197	int i;
1198	u8 *data;
1199	int size = nhead + skb_end_offset(skb) + ntail;
1200	long off;
1201
1202	BUG_ON(nhead < 0);
1203
1204	if (skb_shared(skb))
1205		BUG();
1206
1207	size = SKB_DATA_ALIGN(size);
1208
1209	if (skb_pfmemalloc(skb))
1210		gfp_mask |= __GFP_MEMALLOC;
1211	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212			       gfp_mask, NUMA_NO_NODE, NULL);
1213	if (!data)
1214		goto nodata;
1215	size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217	/* Copy only real data... and, alas, header. This should be
1218	 * optimized for the cases when header is void.
1219	 */
1220	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222	memcpy((struct skb_shared_info *)(data + size),
1223	       skb_shinfo(skb),
1224	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226	/*
1227	 * if shinfo is shared we must drop the old head gracefully, but if it
1228	 * is not we can just drop the old head and let the existing refcount
1229	 * be since all we did is relocate the values
1230	 */
1231	if (skb_cloned(skb)) {
1232		/* copy this zero copy skb frags */
1233		if (skb_orphan_frags(skb, gfp_mask))
1234			goto nofrags;
1235		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236			skb_frag_ref(skb, i);
1237
1238		if (skb_has_frag_list(skb))
1239			skb_clone_fraglist(skb);
1240
1241		skb_release_data(skb);
1242	} else {
1243		skb_free_head(skb);
1244	}
1245	off = (data + nhead) - skb->head;
1246
1247	skb->head     = data;
1248	skb->head_frag = 0;
1249	skb->data    += off;
1250#ifdef NET_SKBUFF_DATA_USES_OFFSET
1251	skb->end      = size;
1252	off           = nhead;
1253#else
1254	skb->end      = skb->head + size;
1255#endif
1256	skb->tail	      += off;
1257	skb_headers_offset_update(skb, nhead);
1258	skb->cloned   = 0;
1259	skb->hdr_len  = 0;
1260	skb->nohdr    = 0;
1261	atomic_set(&skb_shinfo(skb)->dataref, 1);
1262	return 0;
1263
1264nofrags:
1265	kfree(data);
1266nodata:
1267	return -ENOMEM;
1268}
1269EXPORT_SYMBOL(pskb_expand_head);
1270
1271/* Make private copy of skb with writable head and some headroom */
1272
1273struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274{
1275	struct sk_buff *skb2;
1276	int delta = headroom - skb_headroom(skb);
1277
1278	if (delta <= 0)
1279		skb2 = pskb_copy(skb, GFP_ATOMIC);
1280	else {
1281		skb2 = skb_clone(skb, GFP_ATOMIC);
1282		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283					     GFP_ATOMIC)) {
1284			kfree_skb(skb2);
1285			skb2 = NULL;
1286		}
1287	}
1288	return skb2;
1289}
1290EXPORT_SYMBOL(skb_realloc_headroom);
1291
1292/**
1293 *	skb_copy_expand	-	copy and expand sk_buff
1294 *	@skb: buffer to copy
1295 *	@newheadroom: new free bytes at head
1296 *	@newtailroom: new free bytes at tail
1297 *	@gfp_mask: allocation priority
1298 *
1299 *	Make a copy of both an &sk_buff and its data and while doing so
1300 *	allocate additional space.
1301 *
1302 *	This is used when the caller wishes to modify the data and needs a
1303 *	private copy of the data to alter as well as more space for new fields.
1304 *	Returns %NULL on failure or the pointer to the buffer
1305 *	on success. The returned buffer has a reference count of 1.
1306 *
1307 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1308 *	is called from an interrupt.
1309 */
1310struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311				int newheadroom, int newtailroom,
1312				gfp_t gfp_mask)
1313{
1314	/*
1315	 *	Allocate the copy buffer
1316	 */
1317	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318					gfp_mask, skb_alloc_rx_flag(skb),
1319					NUMA_NO_NODE);
1320	int oldheadroom = skb_headroom(skb);
1321	int head_copy_len, head_copy_off;
1322
1323	if (!n)
1324		return NULL;
1325
1326	skb_reserve(n, newheadroom);
1327
1328	/* Set the tail pointer and length */
1329	skb_put(n, skb->len);
1330
1331	head_copy_len = oldheadroom;
1332	head_copy_off = 0;
1333	if (newheadroom <= head_copy_len)
1334		head_copy_len = newheadroom;
1335	else
1336		head_copy_off = newheadroom - head_copy_len;
1337
1338	/* Copy the linear header and data. */
1339	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340			  skb->len + head_copy_len))
1341		BUG();
1342
1343	copy_skb_header(n, skb);
1344
1345	skb_headers_offset_update(n, newheadroom - oldheadroom);
1346
1347	return n;
1348}
1349EXPORT_SYMBOL(skb_copy_expand);
1350
1351/**
1352 *	skb_pad			-	zero pad the tail of an skb
1353 *	@skb: buffer to pad
1354 *	@pad: space to pad
1355 *
1356 *	Ensure that a buffer is followed by a padding area that is zero
1357 *	filled. Used by network drivers which may DMA or transfer data
1358 *	beyond the buffer end onto the wire.
1359 *
1360 *	May return error in out of memory cases. The skb is freed on error.
1361 */
1362
1363int skb_pad(struct sk_buff *skb, int pad)
1364{
1365	int err;
1366	int ntail;
1367
1368	/* If the skbuff is non linear tailroom is always zero.. */
1369	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370		memset(skb->data+skb->len, 0, pad);
1371		return 0;
1372	}
1373
1374	ntail = skb->data_len + pad - (skb->end - skb->tail);
1375	if (likely(skb_cloned(skb) || ntail > 0)) {
1376		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377		if (unlikely(err))
1378			goto free_skb;
1379	}
1380
1381	/* FIXME: The use of this function with non-linear skb's really needs
1382	 * to be audited.
1383	 */
1384	err = skb_linearize(skb);
1385	if (unlikely(err))
1386		goto free_skb;
1387
1388	memset(skb->data + skb->len, 0, pad);
1389	return 0;
1390
1391free_skb:
1392	kfree_skb(skb);
1393	return err;
1394}
1395EXPORT_SYMBOL(skb_pad);
1396
1397/**
1398 *	pskb_put - add data to the tail of a potentially fragmented buffer
1399 *	@skb: start of the buffer to use
1400 *	@tail: tail fragment of the buffer to use
1401 *	@len: amount of data to add
1402 *
1403 *	This function extends the used data area of the potentially
1404 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1405 *	@skb itself. If this would exceed the total buffer size the kernel
1406 *	will panic. A pointer to the first byte of the extra data is
1407 *	returned.
1408 */
1409
1410unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411{
1412	if (tail != skb) {
1413		skb->data_len += len;
1414		skb->len += len;
1415	}
1416	return skb_put(tail, len);
1417}
1418EXPORT_SYMBOL_GPL(pskb_put);
1419
1420/**
1421 *	skb_put - add data to a buffer
1422 *	@skb: buffer to use
1423 *	@len: amount of data to add
1424 *
1425 *	This function extends the used data area of the buffer. If this would
1426 *	exceed the total buffer size the kernel will panic. A pointer to the
1427 *	first byte of the extra data is returned.
1428 */
1429unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430{
1431	unsigned char *tmp = skb_tail_pointer(skb);
1432	SKB_LINEAR_ASSERT(skb);
1433	skb->tail += len;
1434	skb->len  += len;
1435	if (unlikely(skb->tail > skb->end))
1436		skb_over_panic(skb, len, __builtin_return_address(0));
1437	return tmp;
1438}
1439EXPORT_SYMBOL(skb_put);
1440
1441/**
1442 *	skb_push - add data to the start of a buffer
1443 *	@skb: buffer to use
1444 *	@len: amount of data to add
1445 *
1446 *	This function extends the used data area of the buffer at the buffer
1447 *	start. If this would exceed the total buffer headroom the kernel will
1448 *	panic. A pointer to the first byte of the extra data is returned.
1449 */
1450unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451{
1452	skb->data -= len;
1453	skb->len  += len;
1454	if (unlikely(skb->data<skb->head))
1455		skb_under_panic(skb, len, __builtin_return_address(0));
1456	return skb->data;
1457}
1458EXPORT_SYMBOL(skb_push);
1459
1460/**
1461 *	skb_pull - remove data from the start of a buffer
1462 *	@skb: buffer to use
1463 *	@len: amount of data to remove
1464 *
1465 *	This function removes data from the start of a buffer, returning
1466 *	the memory to the headroom. A pointer to the next data in the buffer
1467 *	is returned. Once the data has been pulled future pushes will overwrite
1468 *	the old data.
1469 */
1470unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471{
1472	return skb_pull_inline(skb, len);
1473}
1474EXPORT_SYMBOL(skb_pull);
1475
1476/**
1477 *	skb_trim - remove end from a buffer
1478 *	@skb: buffer to alter
1479 *	@len: new length
1480 *
1481 *	Cut the length of a buffer down by removing data from the tail. If
1482 *	the buffer is already under the length specified it is not modified.
1483 *	The skb must be linear.
1484 */
1485void skb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487	if (skb->len > len)
1488		__skb_trim(skb, len);
1489}
1490EXPORT_SYMBOL(skb_trim);
1491
1492/* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496{
1497	struct sk_buff **fragp;
1498	struct sk_buff *frag;
1499	int offset = skb_headlen(skb);
1500	int nfrags = skb_shinfo(skb)->nr_frags;
1501	int i;
1502	int err;
1503
1504	if (skb_cloned(skb) &&
1505	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506		return err;
1507
1508	i = 0;
1509	if (offset >= len)
1510		goto drop_pages;
1511
1512	for (; i < nfrags; i++) {
1513		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515		if (end < len) {
1516			offset = end;
1517			continue;
1518		}
1519
1520		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522drop_pages:
1523		skb_shinfo(skb)->nr_frags = i;
1524
1525		for (; i < nfrags; i++)
1526			skb_frag_unref(skb, i);
1527
1528		if (skb_has_frag_list(skb))
1529			skb_drop_fraglist(skb);
1530		goto done;
1531	}
1532
1533	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534	     fragp = &frag->next) {
1535		int end = offset + frag->len;
1536
1537		if (skb_shared(frag)) {
1538			struct sk_buff *nfrag;
1539
1540			nfrag = skb_clone(frag, GFP_ATOMIC);
1541			if (unlikely(!nfrag))
1542				return -ENOMEM;
1543
1544			nfrag->next = frag->next;
1545			consume_skb(frag);
1546			frag = nfrag;
1547			*fragp = frag;
1548		}
1549
1550		if (end < len) {
1551			offset = end;
1552			continue;
1553		}
1554
1555		if (end > len &&
1556		    unlikely((err = pskb_trim(frag, len - offset))))
1557			return err;
1558
1559		if (frag->next)
1560			skb_drop_list(&frag->next);
1561		break;
1562	}
1563
1564done:
1565	if (len > skb_headlen(skb)) {
1566		skb->data_len -= skb->len - len;
1567		skb->len       = len;
1568	} else {
1569		skb->len       = len;
1570		skb->data_len  = 0;
1571		skb_set_tail_pointer(skb, len);
1572	}
1573
1574	return 0;
1575}
1576EXPORT_SYMBOL(___pskb_trim);
1577
1578/**
1579 *	__pskb_pull_tail - advance tail of skb header
1580 *	@skb: buffer to reallocate
1581 *	@delta: number of bytes to advance tail
1582 *
1583 *	The function makes a sense only on a fragmented &sk_buff,
1584 *	it expands header moving its tail forward and copying necessary
1585 *	data from fragmented part.
1586 *
1587 *	&sk_buff MUST have reference count of 1.
1588 *
1589 *	Returns %NULL (and &sk_buff does not change) if pull failed
1590 *	or value of new tail of skb in the case of success.
1591 *
1592 *	All the pointers pointing into skb header may change and must be
1593 *	reloaded after call to this function.
1594 */
1595
1596/* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604{
1605	/* If skb has not enough free space at tail, get new one
1606	 * plus 128 bytes for future expansions. If we have enough
1607	 * room at tail, reallocate without expansion only if skb is cloned.
1608	 */
1609	int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611	if (eat > 0 || skb_cloned(skb)) {
1612		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613				     GFP_ATOMIC))
1614			return NULL;
1615	}
1616
1617	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618		BUG();
1619
1620	/* Optimization: no fragments, no reasons to preestimate
1621	 * size of pulled pages. Superb.
1622	 */
1623	if (!skb_has_frag_list(skb))
1624		goto pull_pages;
1625
1626	/* Estimate size of pulled pages. */
1627	eat = delta;
1628	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631		if (size >= eat)
1632			goto pull_pages;
1633		eat -= size;
1634	}
1635
1636	/* If we need update frag list, we are in troubles.
1637	 * Certainly, it possible to add an offset to skb data,
1638	 * but taking into account that pulling is expected to
1639	 * be very rare operation, it is worth to fight against
1640	 * further bloating skb head and crucify ourselves here instead.
1641	 * Pure masohism, indeed. 8)8)
1642	 */
1643	if (eat) {
1644		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645		struct sk_buff *clone = NULL;
1646		struct sk_buff *insp = NULL;
1647
1648		do {
1649			BUG_ON(!list);
1650
1651			if (list->len <= eat) {
1652				/* Eaten as whole. */
1653				eat -= list->len;
1654				list = list->next;
1655				insp = list;
1656			} else {
1657				/* Eaten partially. */
1658
1659				if (skb_shared(list)) {
1660					/* Sucks! We need to fork list. :-( */
1661					clone = skb_clone(list, GFP_ATOMIC);
1662					if (!clone)
1663						return NULL;
1664					insp = list->next;
1665					list = clone;
1666				} else {
1667					/* This may be pulled without
1668					 * problems. */
1669					insp = list;
1670				}
1671				if (!pskb_pull(list, eat)) {
1672					kfree_skb(clone);
1673					return NULL;
1674				}
1675				break;
1676			}
1677		} while (eat);
1678
1679		/* Free pulled out fragments. */
1680		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681			skb_shinfo(skb)->frag_list = list->next;
1682			kfree_skb(list);
1683		}
1684		/* And insert new clone at head. */
1685		if (clone) {
1686			clone->next = list;
1687			skb_shinfo(skb)->frag_list = clone;
1688		}
1689	}
1690	/* Success! Now we may commit changes to skb data. */
1691
1692pull_pages:
1693	eat = delta;
1694	k = 0;
1695	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698		if (size <= eat) {
1699			skb_frag_unref(skb, i);
1700			eat -= size;
1701		} else {
1702			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703			if (eat) {
1704				skb_shinfo(skb)->frags[k].page_offset += eat;
1705				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706				eat = 0;
1707			}
1708			k++;
1709		}
1710	}
1711	skb_shinfo(skb)->nr_frags = k;
1712
1713	skb->tail     += delta;
1714	skb->data_len -= delta;
1715
1716	return skb_tail_pointer(skb);
1717}
1718EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720/**
1721 *	skb_copy_bits - copy bits from skb to kernel buffer
1722 *	@skb: source skb
1723 *	@offset: offset in source
1724 *	@to: destination buffer
1725 *	@len: number of bytes to copy
1726 *
1727 *	Copy the specified number of bytes from the source skb to the
1728 *	destination buffer.
1729 *
1730 *	CAUTION ! :
1731 *		If its prototype is ever changed,
1732 *		check arch/{*}/net/{*}.S files,
1733 *		since it is called from BPF assembly code.
1734 */
1735int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736{
1737	int start = skb_headlen(skb);
1738	struct sk_buff *frag_iter;
1739	int i, copy;
1740
1741	if (offset > (int)skb->len - len)
1742		goto fault;
1743
1744	/* Copy header. */
1745	if ((copy = start - offset) > 0) {
1746		if (copy > len)
1747			copy = len;
1748		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749		if ((len -= copy) == 0)
1750			return 0;
1751		offset += copy;
1752		to     += copy;
1753	}
1754
1755	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756		int end;
1757		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759		WARN_ON(start > offset + len);
1760
1761		end = start + skb_frag_size(f);
1762		if ((copy = end - offset) > 0) {
1763			u8 *vaddr;
1764
1765			if (copy > len)
1766				copy = len;
1767
1768			vaddr = kmap_atomic(skb_frag_page(f));
1769			memcpy(to,
1770			       vaddr + f->page_offset + offset - start,
1771			       copy);
1772			kunmap_atomic(vaddr);
1773
1774			if ((len -= copy) == 0)
1775				return 0;
1776			offset += copy;
1777			to     += copy;
1778		}
1779		start = end;
1780	}
1781
1782	skb_walk_frags(skb, frag_iter) {
1783		int end;
1784
1785		WARN_ON(start > offset + len);
1786
1787		end = start + frag_iter->len;
1788		if ((copy = end - offset) > 0) {
1789			if (copy > len)
1790				copy = len;
1791			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792				goto fault;
1793			if ((len -= copy) == 0)
1794				return 0;
1795			offset += copy;
1796			to     += copy;
1797		}
1798		start = end;
1799	}
1800
1801	if (!len)
1802		return 0;
1803
1804fault:
1805	return -EFAULT;
1806}
1807EXPORT_SYMBOL(skb_copy_bits);
1808
1809/*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814{
1815	put_page(spd->pages[i]);
1816}
1817
1818static struct page *linear_to_page(struct page *page, unsigned int *len,
1819				   unsigned int *offset,
1820				   struct sock *sk)
1821{
1822	struct page_frag *pfrag = sk_page_frag(sk);
1823
1824	if (!sk_page_frag_refill(sk, pfrag))
1825		return NULL;
1826
1827	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828
1829	memcpy(page_address(pfrag->page) + pfrag->offset,
1830	       page_address(page) + *offset, *len);
1831	*offset = pfrag->offset;
1832	pfrag->offset += *len;
1833
1834	return pfrag->page;
1835}
1836
1837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838			     struct page *page,
1839			     unsigned int offset)
1840{
1841	return	spd->nr_pages &&
1842		spd->pages[spd->nr_pages - 1] == page &&
1843		(spd->partial[spd->nr_pages - 1].offset +
1844		 spd->partial[spd->nr_pages - 1].len == offset);
1845}
1846
1847/*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850static bool spd_fill_page(struct splice_pipe_desc *spd,
1851			  struct pipe_inode_info *pipe, struct page *page,
1852			  unsigned int *len, unsigned int offset,
1853			  bool linear,
1854			  struct sock *sk)
1855{
1856	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857		return true;
1858
1859	if (linear) {
1860		page = linear_to_page(page, len, &offset, sk);
1861		if (!page)
1862			return true;
1863	}
1864	if (spd_can_coalesce(spd, page, offset)) {
1865		spd->partial[spd->nr_pages - 1].len += *len;
1866		return false;
1867	}
1868	get_page(page);
1869	spd->pages[spd->nr_pages] = page;
1870	spd->partial[spd->nr_pages].len = *len;
1871	spd->partial[spd->nr_pages].offset = offset;
1872	spd->nr_pages++;
1873
1874	return false;
1875}
1876
1877static bool __splice_segment(struct page *page, unsigned int poff,
1878			     unsigned int plen, unsigned int *off,
1879			     unsigned int *len,
1880			     struct splice_pipe_desc *spd, bool linear,
1881			     struct sock *sk,
1882			     struct pipe_inode_info *pipe)
1883{
1884	if (!*len)
1885		return true;
1886
1887	/* skip this segment if already processed */
1888	if (*off >= plen) {
1889		*off -= plen;
1890		return false;
1891	}
1892
1893	/* ignore any bits we already processed */
1894	poff += *off;
1895	plen -= *off;
1896	*off = 0;
1897
1898	do {
1899		unsigned int flen = min(*len, plen);
1900
1901		if (spd_fill_page(spd, pipe, page, &flen, poff,
1902				  linear, sk))
1903			return true;
1904		poff += flen;
1905		plen -= flen;
1906		*len -= flen;
1907	} while (*len && plen);
1908
1909	return false;
1910}
1911
1912/*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917			      unsigned int *offset, unsigned int *len,
1918			      struct splice_pipe_desc *spd, struct sock *sk)
1919{
1920	int seg;
1921	struct sk_buff *iter;
1922
1923	/* map the linear part :
1924	 * If skb->head_frag is set, this 'linear' part is backed by a
1925	 * fragment, and if the head is not shared with any clones then
1926	 * we can avoid a copy since we own the head portion of this page.
1927	 */
1928	if (__splice_segment(virt_to_page(skb->data),
1929			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1930			     skb_headlen(skb),
1931			     offset, len, spd,
1932			     skb_head_is_locked(skb),
1933			     sk, pipe))
1934		return true;
1935
1936	/*
1937	 * then map the fragments
1938	 */
1939	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942		if (__splice_segment(skb_frag_page(f),
1943				     f->page_offset, skb_frag_size(f),
1944				     offset, len, spd, false, sk, pipe))
1945			return true;
1946	}
1947
1948	skb_walk_frags(skb, iter) {
1949		if (*offset >= iter->len) {
1950			*offset -= iter->len;
1951			continue;
1952		}
1953		/* __skb_splice_bits() only fails if the output has no room
1954		 * left, so no point in going over the frag_list for the error
1955		 * case.
1956		 */
1957		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958			return true;
1959	}
1960
1961	return false;
1962}
1963
1964ssize_t skb_socket_splice(struct sock *sk,
1965			  struct pipe_inode_info *pipe,
1966			  struct splice_pipe_desc *spd)
1967{
1968	int ret;
1969
1970	/* Drop the socket lock, otherwise we have reverse
1971	 * locking dependencies between sk_lock and i_mutex
1972	 * here as compared to sendfile(). We enter here
1973	 * with the socket lock held, and splice_to_pipe() will
1974	 * grab the pipe inode lock. For sendfile() emulation,
1975	 * we call into ->sendpage() with the i_mutex lock held
1976	 * and networking will grab the socket lock.
1977	 */
1978	release_sock(sk);
1979	ret = splice_to_pipe(pipe, spd);
1980	lock_sock(sk);
1981
1982	return ret;
1983}
1984
1985/*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1988 */
1989int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990		    struct pipe_inode_info *pipe, unsigned int tlen,
1991		    unsigned int flags,
1992		    ssize_t (*splice_cb)(struct sock *,
1993					 struct pipe_inode_info *,
1994					 struct splice_pipe_desc *))
1995{
1996	struct partial_page partial[MAX_SKB_FRAGS];
1997	struct page *pages[MAX_SKB_FRAGS];
1998	struct splice_pipe_desc spd = {
1999		.pages = pages,
2000		.partial = partial,
2001		.nr_pages_max = MAX_SKB_FRAGS,
2002		.flags = flags,
2003		.ops = &nosteal_pipe_buf_ops,
2004		.spd_release = sock_spd_release,
2005	};
2006	int ret = 0;
2007
2008	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009
2010	if (spd.nr_pages)
2011		ret = splice_cb(sk, pipe, &spd);
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
2017/**
2018 *	skb_store_bits - store bits from kernel buffer to skb
2019 *	@skb: destination buffer
2020 *	@offset: offset in destination
2021 *	@from: source buffer
2022 *	@len: number of bytes to copy
2023 *
2024 *	Copy the specified number of bytes from the source buffer to the
2025 *	destination skb.  This function handles all the messy bits of
2026 *	traversing fragment lists and such.
2027 */
2028
2029int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030{
2031	int start = skb_headlen(skb);
2032	struct sk_buff *frag_iter;
2033	int i, copy;
2034
2035	if (offset > (int)skb->len - len)
2036		goto fault;
2037
2038	if ((copy = start - offset) > 0) {
2039		if (copy > len)
2040			copy = len;
2041		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042		if ((len -= copy) == 0)
2043			return 0;
2044		offset += copy;
2045		from += copy;
2046	}
2047
2048	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050		int end;
2051
2052		WARN_ON(start > offset + len);
2053
2054		end = start + skb_frag_size(frag);
2055		if ((copy = end - offset) > 0) {
2056			u8 *vaddr;
2057
2058			if (copy > len)
2059				copy = len;
2060
2061			vaddr = kmap_atomic(skb_frag_page(frag));
2062			memcpy(vaddr + frag->page_offset + offset - start,
2063			       from, copy);
2064			kunmap_atomic(vaddr);
2065
2066			if ((len -= copy) == 0)
2067				return 0;
2068			offset += copy;
2069			from += copy;
2070		}
2071		start = end;
2072	}
2073
2074	skb_walk_frags(skb, frag_iter) {
2075		int end;
2076
2077		WARN_ON(start > offset + len);
2078
2079		end = start + frag_iter->len;
2080		if ((copy = end - offset) > 0) {
2081			if (copy > len)
2082				copy = len;
2083			if (skb_store_bits(frag_iter, offset - start,
2084					   from, copy))
2085				goto fault;
2086			if ((len -= copy) == 0)
2087				return 0;
2088			offset += copy;
2089			from += copy;
2090		}
2091		start = end;
2092	}
2093	if (!len)
2094		return 0;
2095
2096fault:
2097	return -EFAULT;
2098}
2099EXPORT_SYMBOL(skb_store_bits);
2100
2101/* Checksum skb data. */
2102__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103		      __wsum csum, const struct skb_checksum_ops *ops)
2104{
2105	int start = skb_headlen(skb);
2106	int i, copy = start - offset;
2107	struct sk_buff *frag_iter;
2108	int pos = 0;
2109
2110	/* Checksum header. */
2111	if (copy > 0) {
2112		if (copy > len)
2113			copy = len;
2114		csum = ops->update(skb->data + offset, copy, csum);
2115		if ((len -= copy) == 0)
2116			return csum;
2117		offset += copy;
2118		pos	= copy;
2119	}
2120
2121	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122		int end;
2123		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125		WARN_ON(start > offset + len);
2126
2127		end = start + skb_frag_size(frag);
2128		if ((copy = end - offset) > 0) {
2129			__wsum csum2;
2130			u8 *vaddr;
2131
2132			if (copy > len)
2133				copy = len;
2134			vaddr = kmap_atomic(skb_frag_page(frag));
2135			csum2 = ops->update(vaddr + frag->page_offset +
2136					    offset - start, copy, 0);
2137			kunmap_atomic(vaddr);
2138			csum = ops->combine(csum, csum2, pos, copy);
2139			if (!(len -= copy))
2140				return csum;
2141			offset += copy;
2142			pos    += copy;
2143		}
2144		start = end;
2145	}
2146
2147	skb_walk_frags(skb, frag_iter) {
2148		int end;
2149
2150		WARN_ON(start > offset + len);
2151
2152		end = start + frag_iter->len;
2153		if ((copy = end - offset) > 0) {
2154			__wsum csum2;
2155			if (copy > len)
2156				copy = len;
2157			csum2 = __skb_checksum(frag_iter, offset - start,
2158					       copy, 0, ops);
2159			csum = ops->combine(csum, csum2, pos, copy);
2160			if ((len -= copy) == 0)
2161				return csum;
2162			offset += copy;
2163			pos    += copy;
2164		}
2165		start = end;
2166	}
2167	BUG_ON(len);
2168
2169	return csum;
2170}
2171EXPORT_SYMBOL(__skb_checksum);
2172
2173__wsum skb_checksum(const struct sk_buff *skb, int offset,
2174		    int len, __wsum csum)
2175{
2176	const struct skb_checksum_ops ops = {
2177		.update  = csum_partial_ext,
2178		.combine = csum_block_add_ext,
2179	};
2180
2181	return __skb_checksum(skb, offset, len, csum, &ops);
2182}
2183EXPORT_SYMBOL(skb_checksum);
2184
2185/* Both of above in one bottle. */
2186
2187__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188				    u8 *to, int len, __wsum csum)
2189{
2190	int start = skb_headlen(skb);
2191	int i, copy = start - offset;
2192	struct sk_buff *frag_iter;
2193	int pos = 0;
2194
2195	/* Copy header. */
2196	if (copy > 0) {
2197		if (copy > len)
2198			copy = len;
2199		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200						 copy, csum);
2201		if ((len -= copy) == 0)
2202			return csum;
2203		offset += copy;
2204		to     += copy;
2205		pos	= copy;
2206	}
2207
2208	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209		int end;
2210
2211		WARN_ON(start > offset + len);
2212
2213		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214		if ((copy = end - offset) > 0) {
2215			__wsum csum2;
2216			u8 *vaddr;
2217			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219			if (copy > len)
2220				copy = len;
2221			vaddr = kmap_atomic(skb_frag_page(frag));
2222			csum2 = csum_partial_copy_nocheck(vaddr +
2223							  frag->page_offset +
2224							  offset - start, to,
2225							  copy, 0);
2226			kunmap_atomic(vaddr);
2227			csum = csum_block_add(csum, csum2, pos);
2228			if (!(len -= copy))
2229				return csum;
2230			offset += copy;
2231			to     += copy;
2232			pos    += copy;
2233		}
2234		start = end;
2235	}
2236
2237	skb_walk_frags(skb, frag_iter) {
2238		__wsum csum2;
2239		int end;
2240
2241		WARN_ON(start > offset + len);
2242
2243		end = start + frag_iter->len;
2244		if ((copy = end - offset) > 0) {
2245			if (copy > len)
2246				copy = len;
2247			csum2 = skb_copy_and_csum_bits(frag_iter,
2248						       offset - start,
2249						       to, copy, 0);
2250			csum = csum_block_add(csum, csum2, pos);
2251			if ((len -= copy) == 0)
2252				return csum;
2253			offset += copy;
2254			to     += copy;
2255			pos    += copy;
2256		}
2257		start = end;
2258	}
2259	BUG_ON(len);
2260	return csum;
2261}
2262EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
2264 /**
2265 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 *	@from: source buffer
2267 *
2268 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2269 *	into skb_zerocopy().
2270 */
2271unsigned int
2272skb_zerocopy_headlen(const struct sk_buff *from)
2273{
2274	unsigned int hlen = 0;
2275
2276	if (!from->head_frag ||
2277	    skb_headlen(from) < L1_CACHE_BYTES ||
2278	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279		hlen = skb_headlen(from);
2280
2281	if (skb_has_frag_list(from))
2282		hlen = from->len;
2283
2284	return hlen;
2285}
2286EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288/**
2289 *	skb_zerocopy - Zero copy skb to skb
2290 *	@to: destination buffer
2291 *	@from: source buffer
2292 *	@len: number of bytes to copy from source buffer
2293 *	@hlen: size of linear headroom in destination buffer
2294 *
2295 *	Copies up to `len` bytes from `from` to `to` by creating references
2296 *	to the frags in the source buffer.
2297 *
2298 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 *	headroom in the `to` buffer.
2300 *
2301 *	Return value:
2302 *	0: everything is OK
2303 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306int
2307skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308{
2309	int i, j = 0;
2310	int plen = 0; /* length of skb->head fragment */
2311	int ret;
2312	struct page *page;
2313	unsigned int offset;
2314
2315	BUG_ON(!from->head_frag && !hlen);
2316
2317	/* dont bother with small payloads */
2318	if (len <= skb_tailroom(to))
2319		return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321	if (hlen) {
2322		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323		if (unlikely(ret))
2324			return ret;
2325		len -= hlen;
2326	} else {
2327		plen = min_t(int, skb_headlen(from), len);
2328		if (plen) {
2329			page = virt_to_head_page(from->head);
2330			offset = from->data - (unsigned char *)page_address(page);
2331			__skb_fill_page_desc(to, 0, page, offset, plen);
2332			get_page(page);
2333			j = 1;
2334			len -= plen;
2335		}
2336	}
2337
2338	to->truesize += len + plen;
2339	to->len += len + plen;
2340	to->data_len += len + plen;
2341
2342	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343		skb_tx_error(from);
2344		return -ENOMEM;
2345	}
2346
2347	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348		if (!len)
2349			break;
2350		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352		len -= skb_shinfo(to)->frags[j].size;
2353		skb_frag_ref(to, j);
2354		j++;
2355	}
2356	skb_shinfo(to)->nr_frags = j;
2357
2358	return 0;
2359}
2360EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363{
2364	__wsum csum;
2365	long csstart;
2366
2367	if (skb->ip_summed == CHECKSUM_PARTIAL)
2368		csstart = skb_checksum_start_offset(skb);
2369	else
2370		csstart = skb_headlen(skb);
2371
2372	BUG_ON(csstart > skb_headlen(skb));
2373
2374	skb_copy_from_linear_data(skb, to, csstart);
2375
2376	csum = 0;
2377	if (csstart != skb->len)
2378		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379					      skb->len - csstart, 0);
2380
2381	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382		long csstuff = csstart + skb->csum_offset;
2383
2384		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385	}
2386}
2387EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389/**
2390 *	skb_dequeue - remove from the head of the queue
2391 *	@list: list to dequeue from
2392 *
2393 *	Remove the head of the list. The list lock is taken so the function
2394 *	may be used safely with other locking list functions. The head item is
2395 *	returned or %NULL if the list is empty.
2396 */
2397
2398struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399{
2400	unsigned long flags;
2401	struct sk_buff *result;
2402
2403	spin_lock_irqsave(&list->lock, flags);
2404	result = __skb_dequeue(list);
2405	spin_unlock_irqrestore(&list->lock, flags);
2406	return result;
2407}
2408EXPORT_SYMBOL(skb_dequeue);
2409
2410/**
2411 *	skb_dequeue_tail - remove from the tail of the queue
2412 *	@list: list to dequeue from
2413 *
2414 *	Remove the tail of the list. The list lock is taken so the function
2415 *	may be used safely with other locking list functions. The tail item is
2416 *	returned or %NULL if the list is empty.
2417 */
2418struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420	unsigned long flags;
2421	struct sk_buff *result;
2422
2423	spin_lock_irqsave(&list->lock, flags);
2424	result = __skb_dequeue_tail(list);
2425	spin_unlock_irqrestore(&list->lock, flags);
2426	return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430/**
2431 *	skb_queue_purge - empty a list
2432 *	@list: list to empty
2433 *
2434 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 *	the list and one reference dropped. This function takes the list
2436 *	lock and is atomic with respect to other list locking functions.
2437 */
2438void skb_queue_purge(struct sk_buff_head *list)
2439{
2440	struct sk_buff *skb;
2441	while ((skb = skb_dequeue(list)) != NULL)
2442		kfree_skb(skb);
2443}
2444EXPORT_SYMBOL(skb_queue_purge);
2445
2446/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447 *	skb_queue_head - queue a buffer at the list head
2448 *	@list: list to use
2449 *	@newsk: buffer to queue
2450 *
2451 *	Queue a buffer at the start of the list. This function takes the
2452 *	list lock and can be used safely with other locking &sk_buff functions
2453 *	safely.
2454 *
2455 *	A buffer cannot be placed on two lists at the same time.
2456 */
2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458{
2459	unsigned long flags;
2460
2461	spin_lock_irqsave(&list->lock, flags);
2462	__skb_queue_head(list, newsk);
2463	spin_unlock_irqrestore(&list->lock, flags);
2464}
2465EXPORT_SYMBOL(skb_queue_head);
2466
2467/**
2468 *	skb_queue_tail - queue a buffer at the list tail
2469 *	@list: list to use
2470 *	@newsk: buffer to queue
2471 *
2472 *	Queue a buffer at the tail of the list. This function takes the
2473 *	list lock and can be used safely with other locking &sk_buff functions
2474 *	safely.
2475 *
2476 *	A buffer cannot be placed on two lists at the same time.
2477 */
2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479{
2480	unsigned long flags;
2481
2482	spin_lock_irqsave(&list->lock, flags);
2483	__skb_queue_tail(list, newsk);
2484	spin_unlock_irqrestore(&list->lock, flags);
2485}
2486EXPORT_SYMBOL(skb_queue_tail);
2487
2488/**
2489 *	skb_unlink	-	remove a buffer from a list
2490 *	@skb: buffer to remove
2491 *	@list: list to use
2492 *
2493 *	Remove a packet from a list. The list locks are taken and this
2494 *	function is atomic with respect to other list locked calls
2495 *
2496 *	You must know what list the SKB is on.
2497 */
2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499{
2500	unsigned long flags;
2501
2502	spin_lock_irqsave(&list->lock, flags);
2503	__skb_unlink(skb, list);
2504	spin_unlock_irqrestore(&list->lock, flags);
2505}
2506EXPORT_SYMBOL(skb_unlink);
2507
2508/**
2509 *	skb_append	-	append a buffer
2510 *	@old: buffer to insert after
2511 *	@newsk: buffer to insert
2512 *	@list: list to use
2513 *
2514 *	Place a packet after a given packet in a list. The list locks are taken
2515 *	and this function is atomic with respect to other list locked calls.
2516 *	A buffer cannot be placed on two lists at the same time.
2517 */
2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519{
2520	unsigned long flags;
2521
2522	spin_lock_irqsave(&list->lock, flags);
2523	__skb_queue_after(list, old, newsk);
2524	spin_unlock_irqrestore(&list->lock, flags);
2525}
2526EXPORT_SYMBOL(skb_append);
2527
2528/**
2529 *	skb_insert	-	insert a buffer
2530 *	@old: buffer to insert before
2531 *	@newsk: buffer to insert
2532 *	@list: list to use
2533 *
2534 *	Place a packet before a given packet in a list. The list locks are
2535 * 	taken and this function is atomic with respect to other list locked
2536 *	calls.
2537 *
2538 *	A buffer cannot be placed on two lists at the same time.
2539 */
2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541{
2542	unsigned long flags;
2543
2544	spin_lock_irqsave(&list->lock, flags);
2545	__skb_insert(newsk, old->prev, old, list);
2546	spin_unlock_irqrestore(&list->lock, flags);
2547}
2548EXPORT_SYMBOL(skb_insert);
2549
2550static inline void skb_split_inside_header(struct sk_buff *skb,
2551					   struct sk_buff* skb1,
2552					   const u32 len, const int pos)
2553{
2554	int i;
2555
2556	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557					 pos - len);
2558	/* And move data appendix as is. */
2559	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563	skb_shinfo(skb)->nr_frags  = 0;
2564	skb1->data_len		   = skb->data_len;
2565	skb1->len		   += skb1->data_len;
2566	skb->data_len		   = 0;
2567	skb->len		   = len;
2568	skb_set_tail_pointer(skb, len);
2569}
2570
2571static inline void skb_split_no_header(struct sk_buff *skb,
2572				       struct sk_buff* skb1,
2573				       const u32 len, int pos)
2574{
2575	int i, k = 0;
2576	const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578	skb_shinfo(skb)->nr_frags = 0;
2579	skb1->len		  = skb1->data_len = skb->len - len;
2580	skb->len		  = len;
2581	skb->data_len		  = len - pos;
2582
2583	for (i = 0; i < nfrags; i++) {
2584		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586		if (pos + size > len) {
2587			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589			if (pos < len) {
2590				/* Split frag.
2591				 * We have two variants in this case:
2592				 * 1. Move all the frag to the second
2593				 *    part, if it is possible. F.e.
2594				 *    this approach is mandatory for TUX,
2595				 *    where splitting is expensive.
2596				 * 2. Split is accurately. We make this.
2597				 */
2598				skb_frag_ref(skb, i);
2599				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602				skb_shinfo(skb)->nr_frags++;
2603			}
2604			k++;
2605		} else
2606			skb_shinfo(skb)->nr_frags++;
2607		pos += size;
2608	}
2609	skb_shinfo(skb1)->nr_frags = k;
2610}
2611
2612/**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619{
2620	int pos = skb_headlen(skb);
2621
2622	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623	if (len < pos)	/* Split line is inside header. */
2624		skb_split_inside_header(skb, skb1, len, pos);
2625	else		/* Second chunk has no header, nothing to copy. */
2626		skb_split_no_header(skb, skb1, len, pos);
2627}
2628EXPORT_SYMBOL(skb_split);
2629
2630/* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634static int skb_prepare_for_shift(struct sk_buff *skb)
2635{
2636	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637}
2638
2639/**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658{
2659	int from, to, merge, todo;
2660	struct skb_frag_struct *fragfrom, *fragto;
2661
2662	BUG_ON(shiftlen > skb->len);
2663	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
 
 
2664
2665	todo = shiftlen;
2666	from = 0;
2667	to = skb_shinfo(tgt)->nr_frags;
2668	fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670	/* Actual merge is delayed until the point when we know we can
2671	 * commit all, so that we don't have to undo partial changes
2672	 */
2673	if (!to ||
2674	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675			      fragfrom->page_offset)) {
2676		merge = -1;
2677	} else {
2678		merge = to - 1;
2679
2680		todo -= skb_frag_size(fragfrom);
2681		if (todo < 0) {
2682			if (skb_prepare_for_shift(skb) ||
2683			    skb_prepare_for_shift(tgt))
2684				return 0;
2685
2686			/* All previous frag pointers might be stale! */
2687			fragfrom = &skb_shinfo(skb)->frags[from];
2688			fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690			skb_frag_size_add(fragto, shiftlen);
2691			skb_frag_size_sub(fragfrom, shiftlen);
2692			fragfrom->page_offset += shiftlen;
2693
2694			goto onlymerged;
2695		}
2696
2697		from++;
2698	}
2699
2700	/* Skip full, not-fitting skb to avoid expensive operations */
2701	if ((shiftlen == skb->len) &&
2702	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703		return 0;
2704
2705	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706		return 0;
2707
2708	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709		if (to == MAX_SKB_FRAGS)
2710			return 0;
2711
2712		fragfrom = &skb_shinfo(skb)->frags[from];
2713		fragto = &skb_shinfo(tgt)->frags[to];
2714
2715		if (todo >= skb_frag_size(fragfrom)) {
2716			*fragto = *fragfrom;
2717			todo -= skb_frag_size(fragfrom);
2718			from++;
2719			to++;
2720
2721		} else {
2722			__skb_frag_ref(fragfrom);
2723			fragto->page = fragfrom->page;
2724			fragto->page_offset = fragfrom->page_offset;
2725			skb_frag_size_set(fragto, todo);
2726
2727			fragfrom->page_offset += todo;
2728			skb_frag_size_sub(fragfrom, todo);
2729			todo = 0;
2730
2731			to++;
2732			break;
2733		}
2734	}
2735
2736	/* Ready to "commit" this state change to tgt */
2737	skb_shinfo(tgt)->nr_frags = to;
2738
2739	if (merge >= 0) {
2740		fragfrom = &skb_shinfo(skb)->frags[0];
2741		fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744		__skb_frag_unref(fragfrom);
2745	}
2746
2747	/* Reposition in the original skb */
2748	to = 0;
2749	while (from < skb_shinfo(skb)->nr_frags)
2750		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751	skb_shinfo(skb)->nr_frags = to;
2752
2753	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755onlymerged:
2756	/* Most likely the tgt won't ever need its checksum anymore, skb on
2757	 * the other hand might need it if it needs to be resent
2758	 */
2759	tgt->ip_summed = CHECKSUM_PARTIAL;
2760	skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762	/* Yak, is it really working this way? Some helper please? */
2763	skb->len -= shiftlen;
2764	skb->data_len -= shiftlen;
2765	skb->truesize -= shiftlen;
2766	tgt->len += shiftlen;
2767	tgt->data_len += shiftlen;
2768	tgt->truesize += shiftlen;
2769
2770	return shiftlen;
2771}
2772
2773/**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784			  unsigned int to, struct skb_seq_state *st)
2785{
2786	st->lower_offset = from;
2787	st->upper_offset = to;
2788	st->root_skb = st->cur_skb = skb;
2789	st->frag_idx = st->stepped_offset = 0;
2790	st->frag_data = NULL;
2791}
2792EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794/**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 *       this limitation is the cost for zerocopy sequential
2813 *       reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 *       at the moment, state->root_skb could be replaced with
2817 *       a stack for this purpose.
2818 */
2819unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820			  struct skb_seq_state *st)
2821{
2822	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823	skb_frag_t *frag;
2824
2825	if (unlikely(abs_offset >= st->upper_offset)) {
2826		if (st->frag_data) {
2827			kunmap_atomic(st->frag_data);
2828			st->frag_data = NULL;
2829		}
2830		return 0;
2831	}
2832
2833next_skb:
2834	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836	if (abs_offset < block_limit && !st->frag_data) {
2837		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838		return block_limit - abs_offset;
2839	}
2840
2841	if (st->frag_idx == 0 && !st->frag_data)
2842		st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846		block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848		if (abs_offset < block_limit) {
2849			if (!st->frag_data)
2850				st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852			*data = (u8 *) st->frag_data + frag->page_offset +
2853				(abs_offset - st->stepped_offset);
2854
2855			return block_limit - abs_offset;
2856		}
2857
2858		if (st->frag_data) {
2859			kunmap_atomic(st->frag_data);
2860			st->frag_data = NULL;
2861		}
2862
2863		st->frag_idx++;
2864		st->stepped_offset += skb_frag_size(frag);
2865	}
2866
2867	if (st->frag_data) {
2868		kunmap_atomic(st->frag_data);
2869		st->frag_data = NULL;
2870	}
2871
2872	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874		st->frag_idx = 0;
2875		goto next_skb;
2876	} else if (st->cur_skb->next) {
2877		st->cur_skb = st->cur_skb->next;
2878		st->frag_idx = 0;
2879		goto next_skb;
2880	}
2881
2882	return 0;
2883}
2884EXPORT_SYMBOL(skb_seq_read);
2885
2886/**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893void skb_abort_seq_read(struct skb_seq_state *st)
2894{
2895	if (st->frag_data)
2896		kunmap_atomic(st->frag_data);
2897}
2898EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2901
2902static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903					  struct ts_config *conf,
2904					  struct ts_state *state)
2905{
2906	return skb_seq_read(offset, text, TS_SKB_CB(state));
2907}
2908
2909static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910{
2911	skb_abort_seq_read(TS_SKB_CB(state));
2912}
2913
2914/**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927			   unsigned int to, struct ts_config *config)
2928{
2929	struct ts_state state;
2930	unsigned int ret;
2931
2932	config->get_next_block = skb_ts_get_next_block;
2933	config->finish = skb_ts_finish;
2934
2935	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937	ret = textsearch_find(config, &state);
2938	return (ret <= to - from ? ret : UINT_MAX);
2939}
2940EXPORT_SYMBOL(skb_find_text);
2941
2942/**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock  structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2952 */
2953int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954			int (*getfrag)(void *from, char *to, int offset,
2955					int len, int odd, struct sk_buff *skb),
2956			void *from, int length)
2957{
2958	int frg_cnt = skb_shinfo(skb)->nr_frags;
2959	int copy;
2960	int offset = 0;
2961	int ret;
2962	struct page_frag *pfrag = &current->task_frag;
2963
2964	do {
2965		/* Return error if we don't have space for new frag */
2966		if (frg_cnt >= MAX_SKB_FRAGS)
2967			return -EMSGSIZE;
2968
2969		if (!sk_page_frag_refill(sk, pfrag))
2970			return -ENOMEM;
2971
2972		/* copy the user data to page */
2973		copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976			      offset, copy, 0, skb);
2977		if (ret < 0)
2978			return -EFAULT;
2979
2980		/* copy was successful so update the size parameters */
2981		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982				   copy);
2983		frg_cnt++;
2984		pfrag->offset += copy;
2985		get_page(pfrag->page);
2986
2987		skb->truesize += copy;
2988		atomic_add(copy, &sk->sk_wmem_alloc);
2989		skb->len += copy;
2990		skb->data_len += copy;
2991		offset += copy;
2992		length -= copy;
2993
2994	} while (length > 0);
2995
2996	return 0;
2997}
2998EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001			 int offset, size_t size)
3002{
3003	int i = skb_shinfo(skb)->nr_frags;
3004
3005	if (skb_can_coalesce(skb, i, page, offset)) {
3006		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007	} else if (i < MAX_SKB_FRAGS) {
3008		get_page(page);
3009		skb_fill_page_desc(skb, i, page, offset, size);
3010	} else {
3011		return -EMSGSIZE;
3012	}
3013
3014	return 0;
3015}
3016EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018/**
3019 *	skb_push_rcsum - push skb and update receive checksum
3020 *	@skb: buffer to update
3021 *	@len: length of data pulled
3022 *
3023 *	This function performs an skb_push on the packet and updates
3024 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3025 *	receive path processing instead of skb_push unless you know
3026 *	that the checksum difference is zero (e.g., a valid IP header)
3027 *	or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030{
3031	skb_push(skb, len);
3032	skb_postpush_rcsum(skb, skb->data, len);
3033	return skb->data;
3034}
3035
3036/**
3037 *	skb_pull_rcsum - pull skb and update receive checksum
3038 *	@skb: buffer to update
3039 *	@len: length of data pulled
3040 *
3041 *	This function performs an skb_pull on the packet and updates
3042 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3043 *	receive path processing instead of skb_pull unless you know
3044 *	that the checksum difference is zero (e.g., a valid IP header)
3045 *	or you are setting ip_summed to CHECKSUM_NONE.
3046 */
3047unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048{
3049	unsigned char *data = skb->data;
3050
3051	BUG_ON(len > skb->len);
3052	__skb_pull(skb, len);
3053	skb_postpull_rcsum(skb, data, len);
3054	return skb->data;
3055}
3056EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057
3058/**
3059 *	skb_segment - Perform protocol segmentation on skb.
3060 *	@head_skb: buffer to segment
3061 *	@features: features for the output path (see dev->features)
3062 *
3063 *	This function performs segmentation on the given skb.  It returns
3064 *	a pointer to the first in a list of new skbs for the segments.
3065 *	In case of error it returns ERR_PTR(err).
3066 */
3067struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068			    netdev_features_t features)
3069{
3070	struct sk_buff *segs = NULL;
3071	struct sk_buff *tail = NULL;
3072	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076	struct sk_buff *frag_skb = head_skb;
3077	unsigned int offset = doffset;
3078	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
 
3079	unsigned int headroom;
3080	unsigned int len;
3081	__be16 proto;
3082	bool csum;
3083	int sg = !!(features & NETIF_F_SG);
3084	int nfrags = skb_shinfo(head_skb)->nr_frags;
3085	int err = -ENOMEM;
3086	int i = 0;
3087	int pos;
3088	int dummy;
3089
3090	__skb_push(head_skb, doffset);
3091	proto = skb_network_protocol(head_skb, &dummy);
3092	if (unlikely(!proto))
3093		return ERR_PTR(-EINVAL);
3094
 
3095	csum = !!can_checksum_protocol(features, proto);
3096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3097	headroom = skb_headroom(head_skb);
3098	pos = skb_headlen(head_skb);
3099
3100	do {
3101		struct sk_buff *nskb;
3102		skb_frag_t *nskb_frag;
3103		int hsize;
3104		int size;
3105
3106		len = head_skb->len - offset;
3107		if (len > mss)
3108			len = mss;
 
 
 
 
3109
3110		hsize = skb_headlen(head_skb) - offset;
3111		if (hsize < 0)
3112			hsize = 0;
3113		if (hsize > len || !sg)
3114			hsize = len;
3115
3116		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117		    (skb_headlen(list_skb) == len || sg)) {
3118			BUG_ON(skb_headlen(list_skb) > len);
3119
3120			i = 0;
3121			nfrags = skb_shinfo(list_skb)->nr_frags;
3122			frag = skb_shinfo(list_skb)->frags;
3123			frag_skb = list_skb;
3124			pos += skb_headlen(list_skb);
3125
3126			while (pos < offset + len) {
3127				BUG_ON(i >= nfrags);
3128
3129				size = skb_frag_size(frag);
3130				if (pos + size > offset + len)
3131					break;
3132
3133				i++;
3134				pos += size;
3135				frag++;
3136			}
3137
3138			nskb = skb_clone(list_skb, GFP_ATOMIC);
3139			list_skb = list_skb->next;
3140
3141			if (unlikely(!nskb))
3142				goto err;
3143
3144			if (unlikely(pskb_trim(nskb, len))) {
3145				kfree_skb(nskb);
3146				goto err;
3147			}
3148
3149			hsize = skb_end_offset(nskb);
3150			if (skb_cow_head(nskb, doffset + headroom)) {
3151				kfree_skb(nskb);
3152				goto err;
3153			}
3154
3155			nskb->truesize += skb_end_offset(nskb) - hsize;
3156			skb_release_head_state(nskb);
3157			__skb_push(nskb, doffset);
3158		} else {
3159			nskb = __alloc_skb(hsize + doffset + headroom,
3160					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161					   NUMA_NO_NODE);
3162
3163			if (unlikely(!nskb))
3164				goto err;
3165
3166			skb_reserve(nskb, headroom);
3167			__skb_put(nskb, doffset);
3168		}
3169
3170		if (segs)
3171			tail->next = nskb;
3172		else
3173			segs = nskb;
3174		tail = nskb;
3175
3176		__copy_skb_header(nskb, head_skb);
3177
3178		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179		skb_reset_mac_len(nskb);
3180
3181		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182						 nskb->data - tnl_hlen,
3183						 doffset + tnl_hlen);
3184
3185		if (nskb->len == len + doffset)
3186			goto perform_csum_check;
3187
3188		if (!sg) {
3189			if (!nskb->remcsum_offload)
3190				nskb->ip_summed = CHECKSUM_NONE;
3191			SKB_GSO_CB(nskb)->csum =
3192				skb_copy_and_csum_bits(head_skb, offset,
3193						       skb_put(nskb, len),
3194						       len, 0);
3195			SKB_GSO_CB(nskb)->csum_start =
3196				skb_headroom(nskb) + doffset;
3197			continue;
3198		}
3199
3200		nskb_frag = skb_shinfo(nskb)->frags;
3201
3202		skb_copy_from_linear_data_offset(head_skb, offset,
3203						 skb_put(nskb, hsize), hsize);
3204
3205		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206			SKBTX_SHARED_FRAG;
3207
3208		while (pos < offset + len) {
3209			if (i >= nfrags) {
3210				BUG_ON(skb_headlen(list_skb));
3211
3212				i = 0;
3213				nfrags = skb_shinfo(list_skb)->nr_frags;
3214				frag = skb_shinfo(list_skb)->frags;
3215				frag_skb = list_skb;
3216
3217				BUG_ON(!nfrags);
3218
3219				list_skb = list_skb->next;
3220			}
3221
3222			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223				     MAX_SKB_FRAGS)) {
3224				net_warn_ratelimited(
3225					"skb_segment: too many frags: %u %u\n",
3226					pos, mss);
3227				goto err;
3228			}
3229
3230			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231				goto err;
3232
3233			*nskb_frag = *frag;
3234			__skb_frag_ref(nskb_frag);
3235			size = skb_frag_size(nskb_frag);
3236
3237			if (pos < offset) {
3238				nskb_frag->page_offset += offset - pos;
3239				skb_frag_size_sub(nskb_frag, offset - pos);
3240			}
3241
3242			skb_shinfo(nskb)->nr_frags++;
3243
3244			if (pos + size <= offset + len) {
3245				i++;
3246				frag++;
3247				pos += size;
3248			} else {
3249				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250				goto skip_fraglist;
3251			}
3252
3253			nskb_frag++;
3254		}
3255
3256skip_fraglist:
3257		nskb->data_len = len - hsize;
3258		nskb->len += nskb->data_len;
3259		nskb->truesize += nskb->data_len;
3260
3261perform_csum_check:
3262		if (!csum) {
3263			if (skb_has_shared_frag(nskb)) {
3264				err = __skb_linearize(nskb);
3265				if (err)
3266					goto err;
3267			}
3268			if (!nskb->remcsum_offload)
3269				nskb->ip_summed = CHECKSUM_NONE;
3270			SKB_GSO_CB(nskb)->csum =
3271				skb_checksum(nskb, doffset,
3272					     nskb->len - doffset, 0);
3273			SKB_GSO_CB(nskb)->csum_start =
3274				skb_headroom(nskb) + doffset;
3275		}
3276	} while ((offset += len) < head_skb->len);
3277
3278	/* Some callers want to get the end of the list.
3279	 * Put it in segs->prev to avoid walking the list.
3280	 * (see validate_xmit_skb_list() for example)
3281	 */
3282	segs->prev = tail;
3283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284	/* Following permits correct backpressure, for protocols
3285	 * using skb_set_owner_w().
3286	 * Idea is to tranfert ownership from head_skb to last segment.
3287	 */
3288	if (head_skb->destructor == sock_wfree) {
3289		swap(tail->truesize, head_skb->truesize);
3290		swap(tail->destructor, head_skb->destructor);
3291		swap(tail->sk, head_skb->sk);
3292	}
3293	return segs;
3294
3295err:
3296	kfree_skb_list(segs);
3297	return ERR_PTR(err);
3298}
3299EXPORT_SYMBOL_GPL(skb_segment);
3300
3301int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3302{
3303	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3304	unsigned int offset = skb_gro_offset(skb);
3305	unsigned int headlen = skb_headlen(skb);
3306	unsigned int len = skb_gro_len(skb);
3307	struct sk_buff *lp, *p = *head;
3308	unsigned int delta_truesize;
3309
3310	if (unlikely(p->len + len >= 65536))
3311		return -E2BIG;
3312
3313	lp = NAPI_GRO_CB(p)->last;
3314	pinfo = skb_shinfo(lp);
3315
3316	if (headlen <= offset) {
3317		skb_frag_t *frag;
3318		skb_frag_t *frag2;
3319		int i = skbinfo->nr_frags;
3320		int nr_frags = pinfo->nr_frags + i;
3321
3322		if (nr_frags > MAX_SKB_FRAGS)
3323			goto merge;
3324
3325		offset -= headlen;
3326		pinfo->nr_frags = nr_frags;
3327		skbinfo->nr_frags = 0;
3328
3329		frag = pinfo->frags + nr_frags;
3330		frag2 = skbinfo->frags + i;
3331		do {
3332			*--frag = *--frag2;
3333		} while (--i);
3334
3335		frag->page_offset += offset;
3336		skb_frag_size_sub(frag, offset);
3337
3338		/* all fragments truesize : remove (head size + sk_buff) */
3339		delta_truesize = skb->truesize -
3340				 SKB_TRUESIZE(skb_end_offset(skb));
3341
3342		skb->truesize -= skb->data_len;
3343		skb->len -= skb->data_len;
3344		skb->data_len = 0;
3345
3346		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3347		goto done;
3348	} else if (skb->head_frag) {
3349		int nr_frags = pinfo->nr_frags;
3350		skb_frag_t *frag = pinfo->frags + nr_frags;
3351		struct page *page = virt_to_head_page(skb->head);
3352		unsigned int first_size = headlen - offset;
3353		unsigned int first_offset;
3354
3355		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3356			goto merge;
3357
3358		first_offset = skb->data -
3359			       (unsigned char *)page_address(page) +
3360			       offset;
3361
3362		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3363
3364		frag->page.p	  = page;
3365		frag->page_offset = first_offset;
3366		skb_frag_size_set(frag, first_size);
3367
3368		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3369		/* We dont need to clear skbinfo->nr_frags here */
3370
3371		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3372		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3373		goto done;
3374	}
3375
3376merge:
3377	delta_truesize = skb->truesize;
3378	if (offset > headlen) {
3379		unsigned int eat = offset - headlen;
3380
3381		skbinfo->frags[0].page_offset += eat;
3382		skb_frag_size_sub(&skbinfo->frags[0], eat);
3383		skb->data_len -= eat;
3384		skb->len -= eat;
3385		offset = headlen;
3386	}
3387
3388	__skb_pull(skb, offset);
3389
3390	if (NAPI_GRO_CB(p)->last == p)
3391		skb_shinfo(p)->frag_list = skb;
3392	else
3393		NAPI_GRO_CB(p)->last->next = skb;
3394	NAPI_GRO_CB(p)->last = skb;
3395	__skb_header_release(skb);
3396	lp = p;
3397
3398done:
3399	NAPI_GRO_CB(p)->count++;
3400	p->data_len += len;
3401	p->truesize += delta_truesize;
3402	p->len += len;
3403	if (lp != p) {
3404		lp->data_len += len;
3405		lp->truesize += delta_truesize;
3406		lp->len += len;
3407	}
3408	NAPI_GRO_CB(skb)->same_flow = 1;
3409	return 0;
3410}
 
3411
3412void __init skb_init(void)
3413{
3414	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3415					      sizeof(struct sk_buff),
3416					      0,
3417					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3418					      NULL);
3419	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3420						sizeof(struct sk_buff_fclones),
3421						0,
3422						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3423						NULL);
3424}
3425
3426/**
3427 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428 *	@skb: Socket buffer containing the buffers to be mapped
3429 *	@sg: The scatter-gather list to map into
3430 *	@offset: The offset into the buffer's contents to start mapping
3431 *	@len: Length of buffer space to be mapped
3432 *
3433 *	Fill the specified scatter-gather list with mappings/pointers into a
3434 *	region of the buffer space attached to a socket buffer.
3435 */
3436static int
3437__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3438{
3439	int start = skb_headlen(skb);
3440	int i, copy = start - offset;
3441	struct sk_buff *frag_iter;
3442	int elt = 0;
3443
3444	if (copy > 0) {
3445		if (copy > len)
3446			copy = len;
3447		sg_set_buf(sg, skb->data + offset, copy);
3448		elt++;
3449		if ((len -= copy) == 0)
3450			return elt;
3451		offset += copy;
3452	}
3453
3454	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3455		int end;
3456
3457		WARN_ON(start > offset + len);
3458
3459		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460		if ((copy = end - offset) > 0) {
3461			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3462
3463			if (copy > len)
3464				copy = len;
3465			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3466					frag->page_offset+offset-start);
3467			elt++;
3468			if (!(len -= copy))
3469				return elt;
3470			offset += copy;
3471		}
3472		start = end;
3473	}
3474
3475	skb_walk_frags(skb, frag_iter) {
3476		int end;
3477
3478		WARN_ON(start > offset + len);
3479
3480		end = start + frag_iter->len;
3481		if ((copy = end - offset) > 0) {
3482			if (copy > len)
3483				copy = len;
3484			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3485					      copy);
3486			if ((len -= copy) == 0)
3487				return elt;
3488			offset += copy;
3489		}
3490		start = end;
3491	}
3492	BUG_ON(len);
3493	return elt;
3494}
3495
3496/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497 * sglist without mark the sg which contain last skb data as the end.
3498 * So the caller can mannipulate sg list as will when padding new data after
3499 * the first call without calling sg_unmark_end to expend sg list.
3500 *
3501 * Scenario to use skb_to_sgvec_nomark:
3502 * 1. sg_init_table
3503 * 2. skb_to_sgvec_nomark(payload1)
3504 * 3. skb_to_sgvec_nomark(payload2)
3505 *
3506 * This is equivalent to:
3507 * 1. sg_init_table
3508 * 2. skb_to_sgvec(payload1)
3509 * 3. sg_unmark_end
3510 * 4. skb_to_sgvec(payload2)
3511 *
3512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513 * is more preferable.
3514 */
3515int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3516			int offset, int len)
3517{
3518	return __skb_to_sgvec(skb, sg, offset, len);
3519}
3520EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3521
3522int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3523{
3524	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3525
3526	sg_mark_end(&sg[nsg - 1]);
3527
3528	return nsg;
3529}
3530EXPORT_SYMBOL_GPL(skb_to_sgvec);
3531
3532/**
3533 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3534 *	@skb: The socket buffer to check.
3535 *	@tailbits: Amount of trailing space to be added
3536 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3537 *
3538 *	Make sure that the data buffers attached to a socket buffer are
3539 *	writable. If they are not, private copies are made of the data buffers
3540 *	and the socket buffer is set to use these instead.
3541 *
3542 *	If @tailbits is given, make sure that there is space to write @tailbits
3543 *	bytes of data beyond current end of socket buffer.  @trailer will be
3544 *	set to point to the skb in which this space begins.
3545 *
3546 *	The number of scatterlist elements required to completely map the
3547 *	COW'd and extended socket buffer will be returned.
3548 */
3549int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3550{
3551	int copyflag;
3552	int elt;
3553	struct sk_buff *skb1, **skb_p;
3554
3555	/* If skb is cloned or its head is paged, reallocate
3556	 * head pulling out all the pages (pages are considered not writable
3557	 * at the moment even if they are anonymous).
3558	 */
3559	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3560	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3561		return -ENOMEM;
3562
3563	/* Easy case. Most of packets will go this way. */
3564	if (!skb_has_frag_list(skb)) {
3565		/* A little of trouble, not enough of space for trailer.
3566		 * This should not happen, when stack is tuned to generate
3567		 * good frames. OK, on miss we reallocate and reserve even more
3568		 * space, 128 bytes is fair. */
3569
3570		if (skb_tailroom(skb) < tailbits &&
3571		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3572			return -ENOMEM;
3573
3574		/* Voila! */
3575		*trailer = skb;
3576		return 1;
3577	}
3578
3579	/* Misery. We are in troubles, going to mincer fragments... */
3580
3581	elt = 1;
3582	skb_p = &skb_shinfo(skb)->frag_list;
3583	copyflag = 0;
3584
3585	while ((skb1 = *skb_p) != NULL) {
3586		int ntail = 0;
3587
3588		/* The fragment is partially pulled by someone,
3589		 * this can happen on input. Copy it and everything
3590		 * after it. */
3591
3592		if (skb_shared(skb1))
3593			copyflag = 1;
3594
3595		/* If the skb is the last, worry about trailer. */
3596
3597		if (skb1->next == NULL && tailbits) {
3598			if (skb_shinfo(skb1)->nr_frags ||
3599			    skb_has_frag_list(skb1) ||
3600			    skb_tailroom(skb1) < tailbits)
3601				ntail = tailbits + 128;
3602		}
3603
3604		if (copyflag ||
3605		    skb_cloned(skb1) ||
3606		    ntail ||
3607		    skb_shinfo(skb1)->nr_frags ||
3608		    skb_has_frag_list(skb1)) {
3609			struct sk_buff *skb2;
3610
3611			/* Fuck, we are miserable poor guys... */
3612			if (ntail == 0)
3613				skb2 = skb_copy(skb1, GFP_ATOMIC);
3614			else
3615				skb2 = skb_copy_expand(skb1,
3616						       skb_headroom(skb1),
3617						       ntail,
3618						       GFP_ATOMIC);
3619			if (unlikely(skb2 == NULL))
3620				return -ENOMEM;
3621
3622			if (skb1->sk)
3623				skb_set_owner_w(skb2, skb1->sk);
3624
3625			/* Looking around. Are we still alive?
3626			 * OK, link new skb, drop old one */
3627
3628			skb2->next = skb1->next;
3629			*skb_p = skb2;
3630			kfree_skb(skb1);
3631			skb1 = skb2;
3632		}
3633		elt++;
3634		*trailer = skb1;
3635		skb_p = &skb1->next;
3636	}
3637
3638	return elt;
3639}
3640EXPORT_SYMBOL_GPL(skb_cow_data);
3641
3642static void sock_rmem_free(struct sk_buff *skb)
3643{
3644	struct sock *sk = skb->sk;
3645
3646	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3647}
3648
3649/*
3650 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3651 */
3652int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3653{
3654	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3655	    (unsigned int)sk->sk_rcvbuf)
3656		return -ENOMEM;
3657
3658	skb_orphan(skb);
3659	skb->sk = sk;
3660	skb->destructor = sock_rmem_free;
3661	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3662
3663	/* before exiting rcu section, make sure dst is refcounted */
3664	skb_dst_force(skb);
3665
3666	skb_queue_tail(&sk->sk_error_queue, skb);
3667	if (!sock_flag(sk, SOCK_DEAD))
3668		sk->sk_data_ready(sk);
3669	return 0;
3670}
3671EXPORT_SYMBOL(sock_queue_err_skb);
3672
 
 
 
 
 
 
3673struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3674{
3675	struct sk_buff_head *q = &sk->sk_error_queue;
3676	struct sk_buff *skb, *skb_next;
 
3677	unsigned long flags;
3678	int err = 0;
3679
3680	spin_lock_irqsave(&q->lock, flags);
3681	skb = __skb_dequeue(q);
3682	if (skb && (skb_next = skb_peek(q)))
3683		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3684	spin_unlock_irqrestore(&q->lock, flags);
3685
3686	sk->sk_err = err;
3687	if (err)
 
 
3688		sk->sk_error_report(sk);
3689
3690	return skb;
3691}
3692EXPORT_SYMBOL(sock_dequeue_err_skb);
3693
3694/**
3695 * skb_clone_sk - create clone of skb, and take reference to socket
3696 * @skb: the skb to clone
3697 *
3698 * This function creates a clone of a buffer that holds a reference on
3699 * sk_refcnt.  Buffers created via this function are meant to be
3700 * returned using sock_queue_err_skb, or free via kfree_skb.
3701 *
3702 * When passing buffers allocated with this function to sock_queue_err_skb
3703 * it is necessary to wrap the call with sock_hold/sock_put in order to
3704 * prevent the socket from being released prior to being enqueued on
3705 * the sk_error_queue.
3706 */
3707struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3708{
3709	struct sock *sk = skb->sk;
3710	struct sk_buff *clone;
3711
3712	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3713		return NULL;
3714
3715	clone = skb_clone(skb, GFP_ATOMIC);
3716	if (!clone) {
3717		sock_put(sk);
3718		return NULL;
3719	}
3720
3721	clone->sk = sk;
3722	clone->destructor = sock_efree;
3723
3724	return clone;
3725}
3726EXPORT_SYMBOL(skb_clone_sk);
3727
3728static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3729					struct sock *sk,
3730					int tstype)
3731{
3732	struct sock_exterr_skb *serr;
3733	int err;
3734
3735	serr = SKB_EXT_ERR(skb);
3736	memset(serr, 0, sizeof(*serr));
3737	serr->ee.ee_errno = ENOMSG;
3738	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3739	serr->ee.ee_info = tstype;
3740	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3741		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3742		if (sk->sk_protocol == IPPROTO_TCP &&
3743		    sk->sk_type == SOCK_STREAM)
3744			serr->ee.ee_data -= sk->sk_tskey;
3745	}
3746
3747	err = sock_queue_err_skb(sk, skb);
3748
3749	if (err)
3750		kfree_skb(skb);
3751}
3752
3753static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3754{
3755	bool ret;
3756
3757	if (likely(sysctl_tstamp_allow_data || tsonly))
3758		return true;
3759
3760	read_lock_bh(&sk->sk_callback_lock);
3761	ret = sk->sk_socket && sk->sk_socket->file &&
3762	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3763	read_unlock_bh(&sk->sk_callback_lock);
3764	return ret;
3765}
3766
3767void skb_complete_tx_timestamp(struct sk_buff *skb,
3768			       struct skb_shared_hwtstamps *hwtstamps)
3769{
3770	struct sock *sk = skb->sk;
3771
3772	if (!skb_may_tx_timestamp(sk, false))
3773		return;
3774
3775	/* take a reference to prevent skb_orphan() from freeing the socket */
3776	sock_hold(sk);
3777
3778	*skb_hwtstamps(skb) = *hwtstamps;
3779	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3780
3781	sock_put(sk);
 
3782}
3783EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3784
3785void __skb_tstamp_tx(struct sk_buff *orig_skb,
3786		     struct skb_shared_hwtstamps *hwtstamps,
3787		     struct sock *sk, int tstype)
3788{
3789	struct sk_buff *skb;
3790	bool tsonly;
3791
3792	if (!sk)
3793		return;
3794
3795	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3796	if (!skb_may_tx_timestamp(sk, tsonly))
3797		return;
3798
3799	if (tsonly)
3800		skb = alloc_skb(0, GFP_ATOMIC);
3801	else
 
 
 
 
 
 
 
3802		skb = skb_clone(orig_skb, GFP_ATOMIC);
 
3803	if (!skb)
3804		return;
3805
3806	if (tsonly) {
3807		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3808		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3809	}
3810
3811	if (hwtstamps)
3812		*skb_hwtstamps(skb) = *hwtstamps;
3813	else
3814		skb->tstamp = ktime_get_real();
3815
3816	__skb_complete_tx_timestamp(skb, sk, tstype);
3817}
3818EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3819
3820void skb_tstamp_tx(struct sk_buff *orig_skb,
3821		   struct skb_shared_hwtstamps *hwtstamps)
3822{
3823	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3824			       SCM_TSTAMP_SND);
3825}
3826EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3827
3828void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3829{
3830	struct sock *sk = skb->sk;
3831	struct sock_exterr_skb *serr;
3832	int err;
3833
3834	skb->wifi_acked_valid = 1;
3835	skb->wifi_acked = acked;
3836
3837	serr = SKB_EXT_ERR(skb);
3838	memset(serr, 0, sizeof(*serr));
3839	serr->ee.ee_errno = ENOMSG;
3840	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3841
3842	/* take a reference to prevent skb_orphan() from freeing the socket */
3843	sock_hold(sk);
3844
3845	err = sock_queue_err_skb(sk, skb);
 
 
 
3846	if (err)
3847		kfree_skb(skb);
3848
3849	sock_put(sk);
3850}
3851EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3852
3853/**
3854 * skb_partial_csum_set - set up and verify partial csum values for packet
3855 * @skb: the skb to set
3856 * @start: the number of bytes after skb->data to start checksumming.
3857 * @off: the offset from start to place the checksum.
3858 *
3859 * For untrusted partially-checksummed packets, we need to make sure the values
3860 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3861 *
3862 * This function checks and sets those values and skb->ip_summed: if this
3863 * returns false you should drop the packet.
3864 */
3865bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3866{
3867	if (unlikely(start > skb_headlen(skb)) ||
3868	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3869		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870				     start, off, skb_headlen(skb));
3871		return false;
3872	}
3873	skb->ip_summed = CHECKSUM_PARTIAL;
3874	skb->csum_start = skb_headroom(skb) + start;
3875	skb->csum_offset = off;
3876	skb_set_transport_header(skb, start);
3877	return true;
3878}
3879EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3880
3881static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3882			       unsigned int max)
3883{
3884	if (skb_headlen(skb) >= len)
3885		return 0;
3886
3887	/* If we need to pullup then pullup to the max, so we
3888	 * won't need to do it again.
3889	 */
3890	if (max > skb->len)
3891		max = skb->len;
3892
3893	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3894		return -ENOMEM;
3895
3896	if (skb_headlen(skb) < len)
3897		return -EPROTO;
3898
3899	return 0;
3900}
3901
3902#define MAX_TCP_HDR_LEN (15 * 4)
3903
3904static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3905				      typeof(IPPROTO_IP) proto,
3906				      unsigned int off)
3907{
3908	switch (proto) {
3909		int err;
3910
3911	case IPPROTO_TCP:
3912		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3913					  off + MAX_TCP_HDR_LEN);
3914		if (!err && !skb_partial_csum_set(skb, off,
3915						  offsetof(struct tcphdr,
3916							   check)))
3917			err = -EPROTO;
3918		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3919
3920	case IPPROTO_UDP:
3921		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3922					  off + sizeof(struct udphdr));
3923		if (!err && !skb_partial_csum_set(skb, off,
3924						  offsetof(struct udphdr,
3925							   check)))
3926			err = -EPROTO;
3927		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3928	}
3929
3930	return ERR_PTR(-EPROTO);
3931}
3932
3933/* This value should be large enough to cover a tagged ethernet header plus
3934 * maximally sized IP and TCP or UDP headers.
3935 */
3936#define MAX_IP_HDR_LEN 128
3937
3938static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3939{
3940	unsigned int off;
3941	bool fragment;
3942	__sum16 *csum;
3943	int err;
3944
3945	fragment = false;
3946
3947	err = skb_maybe_pull_tail(skb,
3948				  sizeof(struct iphdr),
3949				  MAX_IP_HDR_LEN);
3950	if (err < 0)
3951		goto out;
3952
3953	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3954		fragment = true;
3955
3956	off = ip_hdrlen(skb);
3957
3958	err = -EPROTO;
3959
3960	if (fragment)
3961		goto out;
3962
3963	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3964	if (IS_ERR(csum))
3965		return PTR_ERR(csum);
3966
3967	if (recalculate)
3968		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3969					   ip_hdr(skb)->daddr,
3970					   skb->len - off,
3971					   ip_hdr(skb)->protocol, 0);
3972	err = 0;
3973
3974out:
3975	return err;
3976}
3977
3978/* This value should be large enough to cover a tagged ethernet header plus
3979 * an IPv6 header, all options, and a maximal TCP or UDP header.
3980 */
3981#define MAX_IPV6_HDR_LEN 256
3982
3983#define OPT_HDR(type, skb, off) \
3984	(type *)(skb_network_header(skb) + (off))
3985
3986static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3987{
3988	int err;
3989	u8 nexthdr;
3990	unsigned int off;
3991	unsigned int len;
3992	bool fragment;
3993	bool done;
3994	__sum16 *csum;
3995
3996	fragment = false;
3997	done = false;
3998
3999	off = sizeof(struct ipv6hdr);
4000
4001	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4002	if (err < 0)
4003		goto out;
4004
4005	nexthdr = ipv6_hdr(skb)->nexthdr;
4006
4007	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4008	while (off <= len && !done) {
4009		switch (nexthdr) {
4010		case IPPROTO_DSTOPTS:
4011		case IPPROTO_HOPOPTS:
4012		case IPPROTO_ROUTING: {
4013			struct ipv6_opt_hdr *hp;
4014
4015			err = skb_maybe_pull_tail(skb,
4016						  off +
4017						  sizeof(struct ipv6_opt_hdr),
4018						  MAX_IPV6_HDR_LEN);
4019			if (err < 0)
4020				goto out;
4021
4022			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4023			nexthdr = hp->nexthdr;
4024			off += ipv6_optlen(hp);
4025			break;
4026		}
4027		case IPPROTO_AH: {
4028			struct ip_auth_hdr *hp;
4029
4030			err = skb_maybe_pull_tail(skb,
4031						  off +
4032						  sizeof(struct ip_auth_hdr),
4033						  MAX_IPV6_HDR_LEN);
4034			if (err < 0)
4035				goto out;
4036
4037			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4038			nexthdr = hp->nexthdr;
4039			off += ipv6_authlen(hp);
4040			break;
4041		}
4042		case IPPROTO_FRAGMENT: {
4043			struct frag_hdr *hp;
4044
4045			err = skb_maybe_pull_tail(skb,
4046						  off +
4047						  sizeof(struct frag_hdr),
4048						  MAX_IPV6_HDR_LEN);
4049			if (err < 0)
4050				goto out;
4051
4052			hp = OPT_HDR(struct frag_hdr, skb, off);
4053
4054			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4055				fragment = true;
4056
4057			nexthdr = hp->nexthdr;
4058			off += sizeof(struct frag_hdr);
4059			break;
4060		}
4061		default:
4062			done = true;
4063			break;
4064		}
4065	}
4066
4067	err = -EPROTO;
4068
4069	if (!done || fragment)
4070		goto out;
4071
4072	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4073	if (IS_ERR(csum))
4074		return PTR_ERR(csum);
4075
4076	if (recalculate)
4077		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4078					 &ipv6_hdr(skb)->daddr,
4079					 skb->len - off, nexthdr, 0);
4080	err = 0;
4081
4082out:
4083	return err;
4084}
4085
4086/**
4087 * skb_checksum_setup - set up partial checksum offset
4088 * @skb: the skb to set up
4089 * @recalculate: if true the pseudo-header checksum will be recalculated
4090 */
4091int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4092{
4093	int err;
4094
4095	switch (skb->protocol) {
4096	case htons(ETH_P_IP):
4097		err = skb_checksum_setup_ipv4(skb, recalculate);
4098		break;
4099
4100	case htons(ETH_P_IPV6):
4101		err = skb_checksum_setup_ipv6(skb, recalculate);
4102		break;
4103
4104	default:
4105		err = -EPROTO;
4106		break;
4107	}
4108
4109	return err;
4110}
4111EXPORT_SYMBOL(skb_checksum_setup);
4112
4113/**
4114 * skb_checksum_maybe_trim - maybe trims the given skb
4115 * @skb: the skb to check
4116 * @transport_len: the data length beyond the network header
4117 *
4118 * Checks whether the given skb has data beyond the given transport length.
4119 * If so, returns a cloned skb trimmed to this transport length.
4120 * Otherwise returns the provided skb. Returns NULL in error cases
4121 * (e.g. transport_len exceeds skb length or out-of-memory).
4122 *
4123 * Caller needs to set the skb transport header and free any returned skb if it
4124 * differs from the provided skb.
4125 */
4126static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4127					       unsigned int transport_len)
4128{
4129	struct sk_buff *skb_chk;
4130	unsigned int len = skb_transport_offset(skb) + transport_len;
4131	int ret;
4132
4133	if (skb->len < len)
4134		return NULL;
4135	else if (skb->len == len)
4136		return skb;
4137
4138	skb_chk = skb_clone(skb, GFP_ATOMIC);
4139	if (!skb_chk)
4140		return NULL;
4141
4142	ret = pskb_trim_rcsum(skb_chk, len);
4143	if (ret) {
4144		kfree_skb(skb_chk);
4145		return NULL;
4146	}
4147
4148	return skb_chk;
4149}
4150
4151/**
4152 * skb_checksum_trimmed - validate checksum of an skb
4153 * @skb: the skb to check
4154 * @transport_len: the data length beyond the network header
4155 * @skb_chkf: checksum function to use
4156 *
4157 * Applies the given checksum function skb_chkf to the provided skb.
4158 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4159 *
4160 * If the skb has data beyond the given transport length, then a
4161 * trimmed & cloned skb is checked and returned.
4162 *
4163 * Caller needs to set the skb transport header and free any returned skb if it
4164 * differs from the provided skb.
4165 */
4166struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4167				     unsigned int transport_len,
4168				     __sum16(*skb_chkf)(struct sk_buff *skb))
4169{
4170	struct sk_buff *skb_chk;
4171	unsigned int offset = skb_transport_offset(skb);
4172	__sum16 ret;
4173
4174	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4175	if (!skb_chk)
4176		goto err;
4177
4178	if (!pskb_may_pull(skb_chk, offset))
4179		goto err;
4180
4181	skb_pull_rcsum(skb_chk, offset);
4182	ret = skb_chkf(skb_chk);
4183	skb_push_rcsum(skb_chk, offset);
4184
4185	if (ret)
4186		goto err;
4187
4188	return skb_chk;
4189
4190err:
4191	if (skb_chk && skb_chk != skb)
4192		kfree_skb(skb_chk);
4193
4194	return NULL;
4195
4196}
4197EXPORT_SYMBOL(skb_checksum_trimmed);
4198
4199void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4200{
4201	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4202			     skb->dev->name);
4203}
4204EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4205
4206void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4207{
4208	if (head_stolen) {
4209		skb_release_head_state(skb);
4210		kmem_cache_free(skbuff_head_cache, skb);
4211	} else {
4212		__kfree_skb(skb);
4213	}
4214}
4215EXPORT_SYMBOL(kfree_skb_partial);
4216
4217/**
4218 * skb_try_coalesce - try to merge skb to prior one
4219 * @to: prior buffer
4220 * @from: buffer to add
4221 * @fragstolen: pointer to boolean
4222 * @delta_truesize: how much more was allocated than was requested
4223 */
4224bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4225		      bool *fragstolen, int *delta_truesize)
4226{
4227	int i, delta, len = from->len;
4228
4229	*fragstolen = false;
4230
4231	if (skb_cloned(to))
4232		return false;
4233
4234	if (len <= skb_tailroom(to)) {
4235		if (len)
4236			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4237		*delta_truesize = 0;
4238		return true;
4239	}
4240
4241	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4242		return false;
4243
4244	if (skb_headlen(from) != 0) {
4245		struct page *page;
4246		unsigned int offset;
4247
4248		if (skb_shinfo(to)->nr_frags +
4249		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4250			return false;
4251
4252		if (skb_head_is_locked(from))
4253			return false;
4254
4255		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4256
4257		page = virt_to_head_page(from->head);
4258		offset = from->data - (unsigned char *)page_address(page);
4259
4260		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4261				   page, offset, skb_headlen(from));
4262		*fragstolen = true;
4263	} else {
4264		if (skb_shinfo(to)->nr_frags +
4265		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4266			return false;
4267
4268		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4269	}
4270
4271	WARN_ON_ONCE(delta < len);
4272
4273	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4274	       skb_shinfo(from)->frags,
4275	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4276	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4277
4278	if (!skb_cloned(from))
4279		skb_shinfo(from)->nr_frags = 0;
4280
4281	/* if the skb is not cloned this does nothing
4282	 * since we set nr_frags to 0.
4283	 */
4284	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4285		skb_frag_ref(from, i);
4286
4287	to->truesize += delta;
4288	to->len += len;
4289	to->data_len += len;
4290
4291	*delta_truesize = delta;
4292	return true;
4293}
4294EXPORT_SYMBOL(skb_try_coalesce);
4295
4296/**
4297 * skb_scrub_packet - scrub an skb
4298 *
4299 * @skb: buffer to clean
4300 * @xnet: packet is crossing netns
4301 *
4302 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303 * into/from a tunnel. Some information have to be cleared during these
4304 * operations.
4305 * skb_scrub_packet can also be used to clean a skb before injecting it in
4306 * another namespace (@xnet == true). We have to clear all information in the
4307 * skb that could impact namespace isolation.
4308 */
4309void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4310{
4311	skb->tstamp.tv64 = 0;
4312	skb->pkt_type = PACKET_HOST;
4313	skb->skb_iif = 0;
4314	skb->ignore_df = 0;
4315	skb_dst_drop(skb);
4316	secpath_reset(skb);
4317	nf_reset(skb);
4318	nf_reset_trace(skb);
4319
4320	if (!xnet)
4321		return;
4322
4323	skb_orphan(skb);
4324	skb->mark = 0;
4325}
4326EXPORT_SYMBOL_GPL(skb_scrub_packet);
4327
4328/**
4329 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4330 *
4331 * @skb: GSO skb
4332 *
4333 * skb_gso_transport_seglen is used to determine the real size of the
4334 * individual segments, including Layer4 headers (TCP/UDP).
4335 *
4336 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4337 */
4338unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4339{
4340	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4341	unsigned int thlen = 0;
4342
4343	if (skb->encapsulation) {
4344		thlen = skb_inner_transport_header(skb) -
4345			skb_transport_header(skb);
4346
4347		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4348			thlen += inner_tcp_hdrlen(skb);
4349	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4350		thlen = tcp_hdrlen(skb);
 
 
4351	}
4352	/* UFO sets gso_size to the size of the fragmentation
4353	 * payload, i.e. the size of the L4 (UDP) header is already
4354	 * accounted for.
4355	 */
4356	return thlen + shinfo->gso_size;
4357}
4358EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4360static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4361{
4362	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4363		kfree_skb(skb);
4364		return NULL;
4365	}
4366
4367	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4368		2 * ETH_ALEN);
4369	skb->mac_header += VLAN_HLEN;
4370	return skb;
4371}
4372
4373struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4374{
4375	struct vlan_hdr *vhdr;
4376	u16 vlan_tci;
4377
4378	if (unlikely(skb_vlan_tag_present(skb))) {
4379		/* vlan_tci is already set-up so leave this for another time */
4380		return skb;
4381	}
4382
4383	skb = skb_share_check(skb, GFP_ATOMIC);
4384	if (unlikely(!skb))
4385		goto err_free;
4386
4387	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4388		goto err_free;
4389
4390	vhdr = (struct vlan_hdr *)skb->data;
4391	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4392	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4393
4394	skb_pull_rcsum(skb, VLAN_HLEN);
4395	vlan_set_encap_proto(skb, vhdr);
4396
4397	skb = skb_reorder_vlan_header(skb);
4398	if (unlikely(!skb))
4399		goto err_free;
4400
4401	skb_reset_network_header(skb);
4402	skb_reset_transport_header(skb);
4403	skb_reset_mac_len(skb);
4404
4405	return skb;
4406
4407err_free:
4408	kfree_skb(skb);
4409	return NULL;
4410}
4411EXPORT_SYMBOL(skb_vlan_untag);
4412
4413int skb_ensure_writable(struct sk_buff *skb, int write_len)
4414{
4415	if (!pskb_may_pull(skb, write_len))
4416		return -ENOMEM;
4417
4418	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4419		return 0;
4420
4421	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422}
4423EXPORT_SYMBOL(skb_ensure_writable);
4424
4425/* remove VLAN header from packet and update csum accordingly. */
4426static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
 
 
4427{
4428	struct vlan_hdr *vhdr;
4429	unsigned int offset = skb->data - skb_mac_header(skb);
4430	int err;
4431
4432	__skb_push(skb, offset);
 
 
 
 
 
4433	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4434	if (unlikely(err))
4435		goto pull;
4436
4437	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4438
4439	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4440	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4441
4442	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4443	__skb_pull(skb, VLAN_HLEN);
4444
4445	vlan_set_encap_proto(skb, vhdr);
4446	skb->mac_header += VLAN_HLEN;
4447
4448	if (skb_network_offset(skb) < ETH_HLEN)
4449		skb_set_network_header(skb, ETH_HLEN);
4450
4451	skb_reset_mac_len(skb);
4452pull:
4453	__skb_pull(skb, offset);
4454
4455	return err;
4456}
 
4457
 
 
 
4458int skb_vlan_pop(struct sk_buff *skb)
4459{
4460	u16 vlan_tci;
4461	__be16 vlan_proto;
4462	int err;
4463
4464	if (likely(skb_vlan_tag_present(skb))) {
4465		skb->vlan_tci = 0;
4466	} else {
4467		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4468			      skb->protocol != htons(ETH_P_8021AD)) ||
4469			     skb->len < VLAN_ETH_HLEN))
4470			return 0;
4471
4472		err = __skb_vlan_pop(skb, &vlan_tci);
4473		if (err)
4474			return err;
4475	}
4476	/* move next vlan tag to hw accel tag */
4477	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4478		    skb->protocol != htons(ETH_P_8021AD)) ||
4479		   skb->len < VLAN_ETH_HLEN))
4480		return 0;
4481
4482	vlan_proto = skb->protocol;
4483	err = __skb_vlan_pop(skb, &vlan_tci);
4484	if (unlikely(err))
4485		return err;
4486
4487	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4488	return 0;
4489}
4490EXPORT_SYMBOL(skb_vlan_pop);
4491
 
 
 
4492int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4493{
4494	if (skb_vlan_tag_present(skb)) {
4495		unsigned int offset = skb->data - skb_mac_header(skb);
4496		int err;
4497
4498		/* __vlan_insert_tag expect skb->data pointing to mac header.
4499		 * So change skb->data before calling it and change back to
4500		 * original position later
4501		 */
4502		__skb_push(skb, offset);
 
4503		err = __vlan_insert_tag(skb, skb->vlan_proto,
4504					skb_vlan_tag_get(skb));
4505		if (err) {
4506			__skb_pull(skb, offset);
4507			return err;
4508		}
4509
4510		skb->protocol = skb->vlan_proto;
4511		skb->mac_len += VLAN_HLEN;
4512
4513		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4514		__skb_pull(skb, offset);
4515	}
4516	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4517	return 0;
4518}
4519EXPORT_SYMBOL(skb_vlan_push);
4520
4521/**
4522 * alloc_skb_with_frags - allocate skb with page frags
4523 *
4524 * @header_len: size of linear part
4525 * @data_len: needed length in frags
4526 * @max_page_order: max page order desired.
4527 * @errcode: pointer to error code if any
4528 * @gfp_mask: allocation mask
4529 *
4530 * This can be used to allocate a paged skb, given a maximal order for frags.
4531 */
4532struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4533				     unsigned long data_len,
4534				     int max_page_order,
4535				     int *errcode,
4536				     gfp_t gfp_mask)
4537{
4538	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4539	unsigned long chunk;
4540	struct sk_buff *skb;
4541	struct page *page;
4542	gfp_t gfp_head;
4543	int i;
4544
4545	*errcode = -EMSGSIZE;
4546	/* Note this test could be relaxed, if we succeed to allocate
4547	 * high order pages...
4548	 */
4549	if (npages > MAX_SKB_FRAGS)
4550		return NULL;
4551
4552	gfp_head = gfp_mask;
4553	if (gfp_head & __GFP_DIRECT_RECLAIM)
4554		gfp_head |= __GFP_REPEAT;
4555
4556	*errcode = -ENOBUFS;
4557	skb = alloc_skb(header_len, gfp_head);
4558	if (!skb)
4559		return NULL;
4560
4561	skb->truesize += npages << PAGE_SHIFT;
4562
4563	for (i = 0; npages > 0; i++) {
4564		int order = max_page_order;
4565
4566		while (order) {
4567			if (npages >= 1 << order) {
4568				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4569						   __GFP_COMP |
4570						   __GFP_NOWARN |
4571						   __GFP_NORETRY,
4572						   order);
4573				if (page)
4574					goto fill_page;
4575				/* Do not retry other high order allocations */
4576				order = 1;
4577				max_page_order = 0;
4578			}
4579			order--;
4580		}
4581		page = alloc_page(gfp_mask);
4582		if (!page)
4583			goto failure;
4584fill_page:
4585		chunk = min_t(unsigned long, data_len,
4586			      PAGE_SIZE << order);
4587		skb_fill_page_desc(skb, i, page, 0, chunk);
4588		data_len -= chunk;
4589		npages -= 1 << order;
4590	}
4591	return skb;
4592
4593failure:
4594	kfree_skb(skb);
4595	return NULL;
4596}
4597EXPORT_SYMBOL(alloc_skb_with_frags);
v4.10.11
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/sctp.h>
  53#include <linux/netdevice.h>
  54#ifdef CONFIG_NET_CLS_ACT
  55#include <net/pkt_sched.h>
  56#endif
  57#include <linux/string.h>
  58#include <linux/skbuff.h>
  59#include <linux/splice.h>
  60#include <linux/cache.h>
  61#include <linux/rtnetlink.h>
  62#include <linux/init.h>
  63#include <linux/scatterlist.h>
  64#include <linux/errqueue.h>
  65#include <linux/prefetch.h>
  66#include <linux/if_vlan.h>
  67
  68#include <net/protocol.h>
  69#include <net/dst.h>
  70#include <net/sock.h>
  71#include <net/checksum.h>
  72#include <net/ip6_checksum.h>
  73#include <net/xfrm.h>
  74
  75#include <linux/uaccess.h>
  76#include <trace/events/skb.h>
  77#include <linux/highmem.h>
  78#include <linux/capability.h>
  79#include <linux/user_namespace.h>
  80
  81struct kmem_cache *skbuff_head_cache __read_mostly;
  82static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  83int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  84EXPORT_SYMBOL(sysctl_max_skb_frags);
  85
  86/**
  87 *	skb_panic - private function for out-of-line support
  88 *	@skb:	buffer
  89 *	@sz:	size
  90 *	@addr:	address
  91 *	@msg:	skb_over_panic or skb_under_panic
  92 *
  93 *	Out-of-line support for skb_put() and skb_push().
  94 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  95 *	Keep out of line to prevent kernel bloat.
  96 *	__builtin_return_address is not used because it is not always reliable.
  97 */
  98static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  99		      const char msg[])
 100{
 101	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 102		 msg, addr, skb->len, sz, skb->head, skb->data,
 103		 (unsigned long)skb->tail, (unsigned long)skb->end,
 104		 skb->dev ? skb->dev->name : "<NULL>");
 105	BUG();
 106}
 107
 108static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 109{
 110	skb_panic(skb, sz, addr, __func__);
 111}
 112
 113static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 114{
 115	skb_panic(skb, sz, addr, __func__);
 116}
 117
 118/*
 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 120 * the caller if emergency pfmemalloc reserves are being used. If it is and
 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 122 * may be used. Otherwise, the packet data may be discarded until enough
 123 * memory is free
 124 */
 125#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 126	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 127
 128static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 129			       unsigned long ip, bool *pfmemalloc)
 130{
 131	void *obj;
 132	bool ret_pfmemalloc = false;
 133
 134	/*
 135	 * Try a regular allocation, when that fails and we're not entitled
 136	 * to the reserves, fail.
 137	 */
 138	obj = kmalloc_node_track_caller(size,
 139					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 140					node);
 141	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 142		goto out;
 143
 144	/* Try again but now we are using pfmemalloc reserves */
 145	ret_pfmemalloc = true;
 146	obj = kmalloc_node_track_caller(size, flags, node);
 147
 148out:
 149	if (pfmemalloc)
 150		*pfmemalloc = ret_pfmemalloc;
 151
 152	return obj;
 153}
 154
 155/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 156 *	'private' fields and also do memory statistics to find all the
 157 *	[BEEP] leaks.
 158 *
 159 */
 160
 161struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 162{
 163	struct sk_buff *skb;
 164
 165	/* Get the HEAD */
 166	skb = kmem_cache_alloc_node(skbuff_head_cache,
 167				    gfp_mask & ~__GFP_DMA, node);
 168	if (!skb)
 169		goto out;
 170
 171	/*
 172	 * Only clear those fields we need to clear, not those that we will
 173	 * actually initialise below. Hence, don't put any more fields after
 174	 * the tail pointer in struct sk_buff!
 175	 */
 176	memset(skb, 0, offsetof(struct sk_buff, tail));
 177	skb->head = NULL;
 178	skb->truesize = sizeof(struct sk_buff);
 179	atomic_set(&skb->users, 1);
 180
 181	skb->mac_header = (typeof(skb->mac_header))~0U;
 182out:
 183	return skb;
 184}
 185
 186/**
 187 *	__alloc_skb	-	allocate a network buffer
 188 *	@size: size to allocate
 189 *	@gfp_mask: allocation mask
 190 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 191 *		instead of head cache and allocate a cloned (child) skb.
 192 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 193 *		allocations in case the data is required for writeback
 194 *	@node: numa node to allocate memory on
 195 *
 196 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 197 *	tail room of at least size bytes. The object has a reference count
 198 *	of one. The return is the buffer. On a failure the return is %NULL.
 199 *
 200 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 201 *	%GFP_ATOMIC.
 202 */
 203struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 204			    int flags, int node)
 205{
 206	struct kmem_cache *cache;
 207	struct skb_shared_info *shinfo;
 208	struct sk_buff *skb;
 209	u8 *data;
 210	bool pfmemalloc;
 211
 212	cache = (flags & SKB_ALLOC_FCLONE)
 213		? skbuff_fclone_cache : skbuff_head_cache;
 214
 215	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 216		gfp_mask |= __GFP_MEMALLOC;
 217
 218	/* Get the HEAD */
 219	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 220	if (!skb)
 221		goto out;
 222	prefetchw(skb);
 223
 224	/* We do our best to align skb_shared_info on a separate cache
 225	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 226	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 227	 * Both skb->head and skb_shared_info are cache line aligned.
 228	 */
 229	size = SKB_DATA_ALIGN(size);
 230	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 231	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 232	if (!data)
 233		goto nodata;
 234	/* kmalloc(size) might give us more room than requested.
 235	 * Put skb_shared_info exactly at the end of allocated zone,
 236	 * to allow max possible filling before reallocation.
 237	 */
 238	size = SKB_WITH_OVERHEAD(ksize(data));
 239	prefetchw(data + size);
 240
 241	/*
 242	 * Only clear those fields we need to clear, not those that we will
 243	 * actually initialise below. Hence, don't put any more fields after
 244	 * the tail pointer in struct sk_buff!
 245	 */
 246	memset(skb, 0, offsetof(struct sk_buff, tail));
 247	/* Account for allocated memory : skb + skb->head */
 248	skb->truesize = SKB_TRUESIZE(size);
 249	skb->pfmemalloc = pfmemalloc;
 250	atomic_set(&skb->users, 1);
 251	skb->head = data;
 252	skb->data = data;
 253	skb_reset_tail_pointer(skb);
 254	skb->end = skb->tail + size;
 255	skb->mac_header = (typeof(skb->mac_header))~0U;
 256	skb->transport_header = (typeof(skb->transport_header))~0U;
 257
 258	/* make sure we initialize shinfo sequentially */
 259	shinfo = skb_shinfo(skb);
 260	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 261	atomic_set(&shinfo->dataref, 1);
 262	kmemcheck_annotate_variable(shinfo->destructor_arg);
 263
 264	if (flags & SKB_ALLOC_FCLONE) {
 265		struct sk_buff_fclones *fclones;
 266
 267		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 268
 269		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 270		skb->fclone = SKB_FCLONE_ORIG;
 271		atomic_set(&fclones->fclone_ref, 1);
 272
 273		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 274		fclones->skb2.pfmemalloc = pfmemalloc;
 275	}
 276out:
 277	return skb;
 278nodata:
 279	kmem_cache_free(cache, skb);
 280	skb = NULL;
 281	goto out;
 282}
 283EXPORT_SYMBOL(__alloc_skb);
 284
 285/**
 286 * __build_skb - build a network buffer
 287 * @data: data buffer provided by caller
 288 * @frag_size: size of data, or 0 if head was kmalloced
 289 *
 290 * Allocate a new &sk_buff. Caller provides space holding head and
 291 * skb_shared_info. @data must have been allocated by kmalloc() only if
 292 * @frag_size is 0, otherwise data should come from the page allocator
 293 *  or vmalloc()
 294 * The return is the new skb buffer.
 295 * On a failure the return is %NULL, and @data is not freed.
 296 * Notes :
 297 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 298 *  Driver should add room at head (NET_SKB_PAD) and
 299 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 300 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 301 *  before giving packet to stack.
 302 *  RX rings only contains data buffers, not full skbs.
 303 */
 304struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 305{
 306	struct skb_shared_info *shinfo;
 307	struct sk_buff *skb;
 308	unsigned int size = frag_size ? : ksize(data);
 309
 310	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 311	if (!skb)
 312		return NULL;
 313
 314	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 315
 316	memset(skb, 0, offsetof(struct sk_buff, tail));
 317	skb->truesize = SKB_TRUESIZE(size);
 318	atomic_set(&skb->users, 1);
 319	skb->head = data;
 320	skb->data = data;
 321	skb_reset_tail_pointer(skb);
 322	skb->end = skb->tail + size;
 323	skb->mac_header = (typeof(skb->mac_header))~0U;
 324	skb->transport_header = (typeof(skb->transport_header))~0U;
 325
 326	/* make sure we initialize shinfo sequentially */
 327	shinfo = skb_shinfo(skb);
 328	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 329	atomic_set(&shinfo->dataref, 1);
 330	kmemcheck_annotate_variable(shinfo->destructor_arg);
 331
 332	return skb;
 333}
 334
 335/* build_skb() is wrapper over __build_skb(), that specifically
 336 * takes care of skb->head and skb->pfmemalloc
 337 * This means that if @frag_size is not zero, then @data must be backed
 338 * by a page fragment, not kmalloc() or vmalloc()
 339 */
 340struct sk_buff *build_skb(void *data, unsigned int frag_size)
 341{
 342	struct sk_buff *skb = __build_skb(data, frag_size);
 343
 344	if (skb && frag_size) {
 345		skb->head_frag = 1;
 346		if (page_is_pfmemalloc(virt_to_head_page(data)))
 347			skb->pfmemalloc = 1;
 348	}
 349	return skb;
 350}
 351EXPORT_SYMBOL(build_skb);
 352
 353#define NAPI_SKB_CACHE_SIZE	64
 354
 355struct napi_alloc_cache {
 356	struct page_frag_cache page;
 357	unsigned int skb_count;
 358	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 359};
 360
 361static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 362static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 363
 364static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 365{
 366	struct page_frag_cache *nc;
 367	unsigned long flags;
 368	void *data;
 369
 370	local_irq_save(flags);
 371	nc = this_cpu_ptr(&netdev_alloc_cache);
 372	data = page_frag_alloc(nc, fragsz, gfp_mask);
 373	local_irq_restore(flags);
 374	return data;
 375}
 376
 377/**
 378 * netdev_alloc_frag - allocate a page fragment
 379 * @fragsz: fragment size
 380 *
 381 * Allocates a frag from a page for receive buffer.
 382 * Uses GFP_ATOMIC allocations.
 383 */
 384void *netdev_alloc_frag(unsigned int fragsz)
 385{
 386	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 387}
 388EXPORT_SYMBOL(netdev_alloc_frag);
 389
 390static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 391{
 392	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 393
 394	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 395}
 396
 397void *napi_alloc_frag(unsigned int fragsz)
 398{
 399	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 400}
 401EXPORT_SYMBOL(napi_alloc_frag);
 402
 403/**
 404 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 405 *	@dev: network device to receive on
 406 *	@len: length to allocate
 407 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 408 *
 409 *	Allocate a new &sk_buff and assign it a usage count of one. The
 410 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 411 *	the headroom they think they need without accounting for the
 412 *	built in space. The built in space is used for optimisations.
 413 *
 414 *	%NULL is returned if there is no free memory.
 415 */
 416struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 417				   gfp_t gfp_mask)
 418{
 419	struct page_frag_cache *nc;
 420	unsigned long flags;
 421	struct sk_buff *skb;
 422	bool pfmemalloc;
 423	void *data;
 424
 425	len += NET_SKB_PAD;
 426
 427	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 428	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 429		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 430		if (!skb)
 431			goto skb_fail;
 432		goto skb_success;
 433	}
 434
 435	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 436	len = SKB_DATA_ALIGN(len);
 437
 438	if (sk_memalloc_socks())
 439		gfp_mask |= __GFP_MEMALLOC;
 440
 441	local_irq_save(flags);
 442
 443	nc = this_cpu_ptr(&netdev_alloc_cache);
 444	data = page_frag_alloc(nc, len, gfp_mask);
 445	pfmemalloc = nc->pfmemalloc;
 446
 447	local_irq_restore(flags);
 448
 449	if (unlikely(!data))
 450		return NULL;
 451
 452	skb = __build_skb(data, len);
 453	if (unlikely(!skb)) {
 454		skb_free_frag(data);
 455		return NULL;
 456	}
 457
 458	/* use OR instead of assignment to avoid clearing of bits in mask */
 459	if (pfmemalloc)
 460		skb->pfmemalloc = 1;
 461	skb->head_frag = 1;
 462
 463skb_success:
 464	skb_reserve(skb, NET_SKB_PAD);
 465	skb->dev = dev;
 466
 467skb_fail:
 468	return skb;
 469}
 470EXPORT_SYMBOL(__netdev_alloc_skb);
 471
 472/**
 473 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 474 *	@napi: napi instance this buffer was allocated for
 475 *	@len: length to allocate
 476 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 477 *
 478 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 479 *	attempt to allocate the head from a special reserved region used
 480 *	only for NAPI Rx allocation.  By doing this we can save several
 481 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 482 *
 483 *	%NULL is returned if there is no free memory.
 484 */
 485struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 486				 gfp_t gfp_mask)
 487{
 488	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 489	struct sk_buff *skb;
 490	void *data;
 491
 492	len += NET_SKB_PAD + NET_IP_ALIGN;
 493
 494	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 495	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 496		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 497		if (!skb)
 498			goto skb_fail;
 499		goto skb_success;
 500	}
 501
 502	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 503	len = SKB_DATA_ALIGN(len);
 504
 505	if (sk_memalloc_socks())
 506		gfp_mask |= __GFP_MEMALLOC;
 507
 508	data = page_frag_alloc(&nc->page, len, gfp_mask);
 509	if (unlikely(!data))
 510		return NULL;
 511
 512	skb = __build_skb(data, len);
 513	if (unlikely(!skb)) {
 514		skb_free_frag(data);
 515		return NULL;
 516	}
 517
 518	/* use OR instead of assignment to avoid clearing of bits in mask */
 519	if (nc->page.pfmemalloc)
 520		skb->pfmemalloc = 1;
 521	skb->head_frag = 1;
 522
 523skb_success:
 524	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 525	skb->dev = napi->dev;
 526
 527skb_fail:
 528	return skb;
 529}
 530EXPORT_SYMBOL(__napi_alloc_skb);
 531
 532void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 533		     int size, unsigned int truesize)
 534{
 535	skb_fill_page_desc(skb, i, page, off, size);
 536	skb->len += size;
 537	skb->data_len += size;
 538	skb->truesize += truesize;
 539}
 540EXPORT_SYMBOL(skb_add_rx_frag);
 541
 542void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 543			  unsigned int truesize)
 544{
 545	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 546
 547	skb_frag_size_add(frag, size);
 548	skb->len += size;
 549	skb->data_len += size;
 550	skb->truesize += truesize;
 551}
 552EXPORT_SYMBOL(skb_coalesce_rx_frag);
 553
 554static void skb_drop_list(struct sk_buff **listp)
 555{
 556	kfree_skb_list(*listp);
 557	*listp = NULL;
 558}
 559
 560static inline void skb_drop_fraglist(struct sk_buff *skb)
 561{
 562	skb_drop_list(&skb_shinfo(skb)->frag_list);
 563}
 564
 565static void skb_clone_fraglist(struct sk_buff *skb)
 566{
 567	struct sk_buff *list;
 568
 569	skb_walk_frags(skb, list)
 570		skb_get(list);
 571}
 572
 573static void skb_free_head(struct sk_buff *skb)
 574{
 575	unsigned char *head = skb->head;
 576
 577	if (skb->head_frag)
 578		skb_free_frag(head);
 579	else
 580		kfree(head);
 581}
 582
 583static void skb_release_data(struct sk_buff *skb)
 584{
 585	struct skb_shared_info *shinfo = skb_shinfo(skb);
 586	int i;
 587
 588	if (skb->cloned &&
 589	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 590			      &shinfo->dataref))
 591		return;
 592
 593	for (i = 0; i < shinfo->nr_frags; i++)
 594		__skb_frag_unref(&shinfo->frags[i]);
 595
 596	/*
 597	 * If skb buf is from userspace, we need to notify the caller
 598	 * the lower device DMA has done;
 599	 */
 600	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 601		struct ubuf_info *uarg;
 602
 603		uarg = shinfo->destructor_arg;
 604		if (uarg->callback)
 605			uarg->callback(uarg, true);
 606	}
 607
 608	if (shinfo->frag_list)
 609		kfree_skb_list(shinfo->frag_list);
 610
 611	skb_free_head(skb);
 612}
 613
 614/*
 615 *	Free an skbuff by memory without cleaning the state.
 616 */
 617static void kfree_skbmem(struct sk_buff *skb)
 618{
 619	struct sk_buff_fclones *fclones;
 620
 621	switch (skb->fclone) {
 622	case SKB_FCLONE_UNAVAILABLE:
 623		kmem_cache_free(skbuff_head_cache, skb);
 624		return;
 625
 626	case SKB_FCLONE_ORIG:
 627		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 628
 629		/* We usually free the clone (TX completion) before original skb
 630		 * This test would have no chance to be true for the clone,
 631		 * while here, branch prediction will be good.
 632		 */
 633		if (atomic_read(&fclones->fclone_ref) == 1)
 634			goto fastpath;
 635		break;
 636
 637	default: /* SKB_FCLONE_CLONE */
 638		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 639		break;
 640	}
 641	if (!atomic_dec_and_test(&fclones->fclone_ref))
 642		return;
 643fastpath:
 644	kmem_cache_free(skbuff_fclone_cache, fclones);
 645}
 646
 647static void skb_release_head_state(struct sk_buff *skb)
 648{
 649	skb_dst_drop(skb);
 650#ifdef CONFIG_XFRM
 651	secpath_put(skb->sp);
 652#endif
 653	if (skb->destructor) {
 654		WARN_ON(in_irq());
 655		skb->destructor(skb);
 656	}
 657#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 658	nf_conntrack_put(skb->nfct);
 659#endif
 660#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 661	nf_bridge_put(skb->nf_bridge);
 662#endif
 663}
 664
 665/* Free everything but the sk_buff shell. */
 666static void skb_release_all(struct sk_buff *skb)
 667{
 668	skb_release_head_state(skb);
 669	if (likely(skb->head))
 670		skb_release_data(skb);
 671}
 672
 673/**
 674 *	__kfree_skb - private function
 675 *	@skb: buffer
 676 *
 677 *	Free an sk_buff. Release anything attached to the buffer.
 678 *	Clean the state. This is an internal helper function. Users should
 679 *	always call kfree_skb
 680 */
 681
 682void __kfree_skb(struct sk_buff *skb)
 683{
 684	skb_release_all(skb);
 685	kfree_skbmem(skb);
 686}
 687EXPORT_SYMBOL(__kfree_skb);
 688
 689/**
 690 *	kfree_skb - free an sk_buff
 691 *	@skb: buffer to free
 692 *
 693 *	Drop a reference to the buffer and free it if the usage count has
 694 *	hit zero.
 695 */
 696void kfree_skb(struct sk_buff *skb)
 697{
 698	if (unlikely(!skb))
 699		return;
 700	if (likely(atomic_read(&skb->users) == 1))
 701		smp_rmb();
 702	else if (likely(!atomic_dec_and_test(&skb->users)))
 703		return;
 704	trace_kfree_skb(skb, __builtin_return_address(0));
 705	__kfree_skb(skb);
 706}
 707EXPORT_SYMBOL(kfree_skb);
 708
 709void kfree_skb_list(struct sk_buff *segs)
 710{
 711	while (segs) {
 712		struct sk_buff *next = segs->next;
 713
 714		kfree_skb(segs);
 715		segs = next;
 716	}
 717}
 718EXPORT_SYMBOL(kfree_skb_list);
 719
 720/**
 721 *	skb_tx_error - report an sk_buff xmit error
 722 *	@skb: buffer that triggered an error
 723 *
 724 *	Report xmit error if a device callback is tracking this skb.
 725 *	skb must be freed afterwards.
 726 */
 727void skb_tx_error(struct sk_buff *skb)
 728{
 729	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 730		struct ubuf_info *uarg;
 731
 732		uarg = skb_shinfo(skb)->destructor_arg;
 733		if (uarg->callback)
 734			uarg->callback(uarg, false);
 735		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 736	}
 737}
 738EXPORT_SYMBOL(skb_tx_error);
 739
 740/**
 741 *	consume_skb - free an skbuff
 742 *	@skb: buffer to free
 743 *
 744 *	Drop a ref to the buffer and free it if the usage count has hit zero
 745 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 746 *	is being dropped after a failure and notes that
 747 */
 748void consume_skb(struct sk_buff *skb)
 749{
 750	if (unlikely(!skb))
 751		return;
 752	if (likely(atomic_read(&skb->users) == 1))
 753		smp_rmb();
 754	else if (likely(!atomic_dec_and_test(&skb->users)))
 755		return;
 756	trace_consume_skb(skb);
 757	__kfree_skb(skb);
 758}
 759EXPORT_SYMBOL(consume_skb);
 760
 761void __kfree_skb_flush(void)
 762{
 763	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 764
 765	/* flush skb_cache if containing objects */
 766	if (nc->skb_count) {
 767		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 768				     nc->skb_cache);
 769		nc->skb_count = 0;
 770	}
 771}
 772
 773static inline void _kfree_skb_defer(struct sk_buff *skb)
 774{
 775	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 776
 777	/* drop skb->head and call any destructors for packet */
 778	skb_release_all(skb);
 779
 780	/* record skb to CPU local list */
 781	nc->skb_cache[nc->skb_count++] = skb;
 782
 783#ifdef CONFIG_SLUB
 784	/* SLUB writes into objects when freeing */
 785	prefetchw(skb);
 786#endif
 787
 788	/* flush skb_cache if it is filled */
 789	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 790		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 791				     nc->skb_cache);
 792		nc->skb_count = 0;
 793	}
 794}
 795void __kfree_skb_defer(struct sk_buff *skb)
 796{
 797	_kfree_skb_defer(skb);
 798}
 799
 800void napi_consume_skb(struct sk_buff *skb, int budget)
 801{
 802	if (unlikely(!skb))
 803		return;
 804
 805	/* Zero budget indicate non-NAPI context called us, like netpoll */
 806	if (unlikely(!budget)) {
 807		dev_consume_skb_any(skb);
 808		return;
 809	}
 810
 811	if (likely(atomic_read(&skb->users) == 1))
 812		smp_rmb();
 813	else if (likely(!atomic_dec_and_test(&skb->users)))
 814		return;
 815	/* if reaching here SKB is ready to free */
 816	trace_consume_skb(skb);
 817
 818	/* if SKB is a clone, don't handle this case */
 819	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 820		__kfree_skb(skb);
 821		return;
 822	}
 823
 824	_kfree_skb_defer(skb);
 825}
 826EXPORT_SYMBOL(napi_consume_skb);
 827
 828/* Make sure a field is enclosed inside headers_start/headers_end section */
 829#define CHECK_SKB_FIELD(field) \
 830	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 831		     offsetof(struct sk_buff, headers_start));	\
 832	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 833		     offsetof(struct sk_buff, headers_end));	\
 834
 835static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 836{
 837	new->tstamp		= old->tstamp;
 838	/* We do not copy old->sk */
 839	new->dev		= old->dev;
 840	memcpy(new->cb, old->cb, sizeof(old->cb));
 841	skb_dst_copy(new, old);
 842#ifdef CONFIG_XFRM
 843	new->sp			= secpath_get(old->sp);
 844#endif
 845	__nf_copy(new, old, false);
 846
 847	/* Note : this field could be in headers_start/headers_end section
 848	 * It is not yet because we do not want to have a 16 bit hole
 849	 */
 850	new->queue_mapping = old->queue_mapping;
 851
 852	memcpy(&new->headers_start, &old->headers_start,
 853	       offsetof(struct sk_buff, headers_end) -
 854	       offsetof(struct sk_buff, headers_start));
 855	CHECK_SKB_FIELD(protocol);
 856	CHECK_SKB_FIELD(csum);
 857	CHECK_SKB_FIELD(hash);
 858	CHECK_SKB_FIELD(priority);
 859	CHECK_SKB_FIELD(skb_iif);
 860	CHECK_SKB_FIELD(vlan_proto);
 861	CHECK_SKB_FIELD(vlan_tci);
 862	CHECK_SKB_FIELD(transport_header);
 863	CHECK_SKB_FIELD(network_header);
 864	CHECK_SKB_FIELD(mac_header);
 865	CHECK_SKB_FIELD(inner_protocol);
 866	CHECK_SKB_FIELD(inner_transport_header);
 867	CHECK_SKB_FIELD(inner_network_header);
 868	CHECK_SKB_FIELD(inner_mac_header);
 869	CHECK_SKB_FIELD(mark);
 870#ifdef CONFIG_NETWORK_SECMARK
 871	CHECK_SKB_FIELD(secmark);
 872#endif
 873#ifdef CONFIG_NET_RX_BUSY_POLL
 874	CHECK_SKB_FIELD(napi_id);
 875#endif
 876#ifdef CONFIG_XPS
 877	CHECK_SKB_FIELD(sender_cpu);
 878#endif
 879#ifdef CONFIG_NET_SCHED
 880	CHECK_SKB_FIELD(tc_index);
 881#ifdef CONFIG_NET_CLS_ACT
 882	CHECK_SKB_FIELD(tc_verd);
 883#endif
 884#endif
 885
 886}
 887
 888/*
 889 * You should not add any new code to this function.  Add it to
 890 * __copy_skb_header above instead.
 891 */
 892static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 893{
 894#define C(x) n->x = skb->x
 895
 896	n->next = n->prev = NULL;
 897	n->sk = NULL;
 898	__copy_skb_header(n, skb);
 899
 900	C(len);
 901	C(data_len);
 902	C(mac_len);
 903	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 904	n->cloned = 1;
 905	n->nohdr = 0;
 906	n->destructor = NULL;
 907	C(tail);
 908	C(end);
 909	C(head);
 910	C(head_frag);
 911	C(data);
 912	C(truesize);
 913	atomic_set(&n->users, 1);
 914
 915	atomic_inc(&(skb_shinfo(skb)->dataref));
 916	skb->cloned = 1;
 917
 918	return n;
 919#undef C
 920}
 921
 922/**
 923 *	skb_morph	-	morph one skb into another
 924 *	@dst: the skb to receive the contents
 925 *	@src: the skb to supply the contents
 926 *
 927 *	This is identical to skb_clone except that the target skb is
 928 *	supplied by the user.
 929 *
 930 *	The target skb is returned upon exit.
 931 */
 932struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 933{
 934	skb_release_all(dst);
 935	return __skb_clone(dst, src);
 936}
 937EXPORT_SYMBOL_GPL(skb_morph);
 938
 939/**
 940 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 941 *	@skb: the skb to modify
 942 *	@gfp_mask: allocation priority
 943 *
 944 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 945 *	It will copy all frags into kernel and drop the reference
 946 *	to userspace pages.
 947 *
 948 *	If this function is called from an interrupt gfp_mask() must be
 949 *	%GFP_ATOMIC.
 950 *
 951 *	Returns 0 on success or a negative error code on failure
 952 *	to allocate kernel memory to copy to.
 953 */
 954int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 955{
 956	int i;
 957	int num_frags = skb_shinfo(skb)->nr_frags;
 958	struct page *page, *head = NULL;
 959	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 960
 961	for (i = 0; i < num_frags; i++) {
 962		u8 *vaddr;
 963		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 964
 965		page = alloc_page(gfp_mask);
 966		if (!page) {
 967			while (head) {
 968				struct page *next = (struct page *)page_private(head);
 969				put_page(head);
 970				head = next;
 971			}
 972			return -ENOMEM;
 973		}
 974		vaddr = kmap_atomic(skb_frag_page(f));
 975		memcpy(page_address(page),
 976		       vaddr + f->page_offset, skb_frag_size(f));
 977		kunmap_atomic(vaddr);
 978		set_page_private(page, (unsigned long)head);
 979		head = page;
 980	}
 981
 982	/* skb frags release userspace buffers */
 983	for (i = 0; i < num_frags; i++)
 984		skb_frag_unref(skb, i);
 985
 986	uarg->callback(uarg, false);
 987
 988	/* skb frags point to kernel buffers */
 989	for (i = num_frags - 1; i >= 0; i--) {
 990		__skb_fill_page_desc(skb, i, head, 0,
 991				     skb_shinfo(skb)->frags[i].size);
 992		head = (struct page *)page_private(head);
 993	}
 994
 995	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 996	return 0;
 997}
 998EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 999
1000/**
1001 *	skb_clone	-	duplicate an sk_buff
1002 *	@skb: buffer to clone
1003 *	@gfp_mask: allocation priority
1004 *
1005 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 *	copies share the same packet data but not structure. The new
1007 *	buffer has a reference count of 1. If the allocation fails the
1008 *	function returns %NULL otherwise the new buffer is returned.
1009 *
1010 *	If this function is called from an interrupt gfp_mask() must be
1011 *	%GFP_ATOMIC.
1012 */
1013
1014struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015{
1016	struct sk_buff_fclones *fclones = container_of(skb,
1017						       struct sk_buff_fclones,
1018						       skb1);
1019	struct sk_buff *n;
1020
1021	if (skb_orphan_frags(skb, gfp_mask))
1022		return NULL;
1023
1024	if (skb->fclone == SKB_FCLONE_ORIG &&
1025	    atomic_read(&fclones->fclone_ref) == 1) {
1026		n = &fclones->skb2;
1027		atomic_set(&fclones->fclone_ref, 2);
1028	} else {
1029		if (skb_pfmemalloc(skb))
1030			gfp_mask |= __GFP_MEMALLOC;
1031
1032		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033		if (!n)
1034			return NULL;
1035
1036		kmemcheck_annotate_bitfield(n, flags1);
1037		n->fclone = SKB_FCLONE_UNAVAILABLE;
1038	}
1039
1040	return __skb_clone(n, skb);
1041}
1042EXPORT_SYMBOL(skb_clone);
1043
1044static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045{
1046	/* Only adjust this if it actually is csum_start rather than csum */
1047	if (skb->ip_summed == CHECKSUM_PARTIAL)
1048		skb->csum_start += off;
1049	/* {transport,network,mac}_header and tail are relative to skb->head */
1050	skb->transport_header += off;
1051	skb->network_header   += off;
1052	if (skb_mac_header_was_set(skb))
1053		skb->mac_header += off;
1054	skb->inner_transport_header += off;
1055	skb->inner_network_header += off;
1056	skb->inner_mac_header += off;
1057}
1058
1059static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060{
1061	__copy_skb_header(new, old);
1062
1063	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066}
1067
1068static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069{
1070	if (skb_pfmemalloc(skb))
1071		return SKB_ALLOC_RX;
1072	return 0;
1073}
1074
1075/**
1076 *	skb_copy	-	create private copy of an sk_buff
1077 *	@skb: buffer to copy
1078 *	@gfp_mask: allocation priority
1079 *
1080 *	Make a copy of both an &sk_buff and its data. This is used when the
1081 *	caller wishes to modify the data and needs a private copy of the
1082 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1083 *	on success. The returned buffer has a reference count of 1.
1084 *
1085 *	As by-product this function converts non-linear &sk_buff to linear
1086 *	one, so that &sk_buff becomes completely private and caller is allowed
1087 *	to modify all the data of returned buffer. This means that this
1088 *	function is not recommended for use in circumstances when only
1089 *	header is going to be modified. Use pskb_copy() instead.
1090 */
1091
1092struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093{
1094	int headerlen = skb_headroom(skb);
1095	unsigned int size = skb_end_offset(skb) + skb->data_len;
1096	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098
1099	if (!n)
1100		return NULL;
1101
1102	/* Set the data pointer */
1103	skb_reserve(n, headerlen);
1104	/* Set the tail pointer and length */
1105	skb_put(n, skb->len);
1106
1107	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108		BUG();
1109
1110	copy_skb_header(n, skb);
1111	return n;
1112}
1113EXPORT_SYMBOL(skb_copy);
1114
1115/**
1116 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1117 *	@skb: buffer to copy
1118 *	@headroom: headroom of new skb
1119 *	@gfp_mask: allocation priority
1120 *	@fclone: if true allocate the copy of the skb from the fclone
1121 *	cache instead of the head cache; it is recommended to set this
1122 *	to true for the cases where the copy will likely be cloned
1123 *
1124 *	Make a copy of both an &sk_buff and part of its data, located
1125 *	in header. Fragmented data remain shared. This is used when
1126 *	the caller wishes to modify only header of &sk_buff and needs
1127 *	private copy of the header to alter. Returns %NULL on failure
1128 *	or the pointer to the buffer on success.
1129 *	The returned buffer has a reference count of 1.
1130 */
1131
1132struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133				   gfp_t gfp_mask, bool fclone)
1134{
1135	unsigned int size = skb_headlen(skb) + headroom;
1136	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138
1139	if (!n)
1140		goto out;
1141
1142	/* Set the data pointer */
1143	skb_reserve(n, headroom);
1144	/* Set the tail pointer and length */
1145	skb_put(n, skb_headlen(skb));
1146	/* Copy the bytes */
1147	skb_copy_from_linear_data(skb, n->data, n->len);
1148
1149	n->truesize += skb->data_len;
1150	n->data_len  = skb->data_len;
1151	n->len	     = skb->len;
1152
1153	if (skb_shinfo(skb)->nr_frags) {
1154		int i;
1155
1156		if (skb_orphan_frags(skb, gfp_mask)) {
1157			kfree_skb(n);
1158			n = NULL;
1159			goto out;
1160		}
1161		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163			skb_frag_ref(skb, i);
1164		}
1165		skb_shinfo(n)->nr_frags = i;
1166	}
1167
1168	if (skb_has_frag_list(skb)) {
1169		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170		skb_clone_fraglist(n);
1171	}
1172
1173	copy_skb_header(n, skb);
1174out:
1175	return n;
1176}
1177EXPORT_SYMBOL(__pskb_copy_fclone);
1178
1179/**
1180 *	pskb_expand_head - reallocate header of &sk_buff
1181 *	@skb: buffer to reallocate
1182 *	@nhead: room to add at head
1183 *	@ntail: room to add at tail
1184 *	@gfp_mask: allocation priority
1185 *
1186 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 *	reference count of 1. Returns zero in the case of success or error,
1189 *	if expansion failed. In the last case, &sk_buff is not changed.
1190 *
1191 *	All the pointers pointing into skb header may change and must be
1192 *	reloaded after call to this function.
1193 */
1194
1195int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196		     gfp_t gfp_mask)
1197{
1198	int i;
1199	u8 *data;
1200	int size = nhead + skb_end_offset(skb) + ntail;
1201	long off;
1202
1203	BUG_ON(nhead < 0);
1204
1205	if (skb_shared(skb))
1206		BUG();
1207
1208	size = SKB_DATA_ALIGN(size);
1209
1210	if (skb_pfmemalloc(skb))
1211		gfp_mask |= __GFP_MEMALLOC;
1212	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213			       gfp_mask, NUMA_NO_NODE, NULL);
1214	if (!data)
1215		goto nodata;
1216	size = SKB_WITH_OVERHEAD(ksize(data));
1217
1218	/* Copy only real data... and, alas, header. This should be
1219	 * optimized for the cases when header is void.
1220	 */
1221	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222
1223	memcpy((struct skb_shared_info *)(data + size),
1224	       skb_shinfo(skb),
1225	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226
1227	/*
1228	 * if shinfo is shared we must drop the old head gracefully, but if it
1229	 * is not we can just drop the old head and let the existing refcount
1230	 * be since all we did is relocate the values
1231	 */
1232	if (skb_cloned(skb)) {
1233		/* copy this zero copy skb frags */
1234		if (skb_orphan_frags(skb, gfp_mask))
1235			goto nofrags;
1236		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237			skb_frag_ref(skb, i);
1238
1239		if (skb_has_frag_list(skb))
1240			skb_clone_fraglist(skb);
1241
1242		skb_release_data(skb);
1243	} else {
1244		skb_free_head(skb);
1245	}
1246	off = (data + nhead) - skb->head;
1247
1248	skb->head     = data;
1249	skb->head_frag = 0;
1250	skb->data    += off;
1251#ifdef NET_SKBUFF_DATA_USES_OFFSET
1252	skb->end      = size;
1253	off           = nhead;
1254#else
1255	skb->end      = skb->head + size;
1256#endif
1257	skb->tail	      += off;
1258	skb_headers_offset_update(skb, nhead);
1259	skb->cloned   = 0;
1260	skb->hdr_len  = 0;
1261	skb->nohdr    = 0;
1262	atomic_set(&skb_shinfo(skb)->dataref, 1);
1263	return 0;
1264
1265nofrags:
1266	kfree(data);
1267nodata:
1268	return -ENOMEM;
1269}
1270EXPORT_SYMBOL(pskb_expand_head);
1271
1272/* Make private copy of skb with writable head and some headroom */
1273
1274struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275{
1276	struct sk_buff *skb2;
1277	int delta = headroom - skb_headroom(skb);
1278
1279	if (delta <= 0)
1280		skb2 = pskb_copy(skb, GFP_ATOMIC);
1281	else {
1282		skb2 = skb_clone(skb, GFP_ATOMIC);
1283		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284					     GFP_ATOMIC)) {
1285			kfree_skb(skb2);
1286			skb2 = NULL;
1287		}
1288	}
1289	return skb2;
1290}
1291EXPORT_SYMBOL(skb_realloc_headroom);
1292
1293/**
1294 *	skb_copy_expand	-	copy and expand sk_buff
1295 *	@skb: buffer to copy
1296 *	@newheadroom: new free bytes at head
1297 *	@newtailroom: new free bytes at tail
1298 *	@gfp_mask: allocation priority
1299 *
1300 *	Make a copy of both an &sk_buff and its data and while doing so
1301 *	allocate additional space.
1302 *
1303 *	This is used when the caller wishes to modify the data and needs a
1304 *	private copy of the data to alter as well as more space for new fields.
1305 *	Returns %NULL on failure or the pointer to the buffer
1306 *	on success. The returned buffer has a reference count of 1.
1307 *
1308 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1309 *	is called from an interrupt.
1310 */
1311struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312				int newheadroom, int newtailroom,
1313				gfp_t gfp_mask)
1314{
1315	/*
1316	 *	Allocate the copy buffer
1317	 */
1318	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319					gfp_mask, skb_alloc_rx_flag(skb),
1320					NUMA_NO_NODE);
1321	int oldheadroom = skb_headroom(skb);
1322	int head_copy_len, head_copy_off;
1323
1324	if (!n)
1325		return NULL;
1326
1327	skb_reserve(n, newheadroom);
1328
1329	/* Set the tail pointer and length */
1330	skb_put(n, skb->len);
1331
1332	head_copy_len = oldheadroom;
1333	head_copy_off = 0;
1334	if (newheadroom <= head_copy_len)
1335		head_copy_len = newheadroom;
1336	else
1337		head_copy_off = newheadroom - head_copy_len;
1338
1339	/* Copy the linear header and data. */
1340	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341			  skb->len + head_copy_len))
1342		BUG();
1343
1344	copy_skb_header(n, skb);
1345
1346	skb_headers_offset_update(n, newheadroom - oldheadroom);
1347
1348	return n;
1349}
1350EXPORT_SYMBOL(skb_copy_expand);
1351
1352/**
1353 *	skb_pad			-	zero pad the tail of an skb
1354 *	@skb: buffer to pad
1355 *	@pad: space to pad
1356 *
1357 *	Ensure that a buffer is followed by a padding area that is zero
1358 *	filled. Used by network drivers which may DMA or transfer data
1359 *	beyond the buffer end onto the wire.
1360 *
1361 *	May return error in out of memory cases. The skb is freed on error.
1362 */
1363
1364int skb_pad(struct sk_buff *skb, int pad)
1365{
1366	int err;
1367	int ntail;
1368
1369	/* If the skbuff is non linear tailroom is always zero.. */
1370	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371		memset(skb->data+skb->len, 0, pad);
1372		return 0;
1373	}
1374
1375	ntail = skb->data_len + pad - (skb->end - skb->tail);
1376	if (likely(skb_cloned(skb) || ntail > 0)) {
1377		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378		if (unlikely(err))
1379			goto free_skb;
1380	}
1381
1382	/* FIXME: The use of this function with non-linear skb's really needs
1383	 * to be audited.
1384	 */
1385	err = skb_linearize(skb);
1386	if (unlikely(err))
1387		goto free_skb;
1388
1389	memset(skb->data + skb->len, 0, pad);
1390	return 0;
1391
1392free_skb:
1393	kfree_skb(skb);
1394	return err;
1395}
1396EXPORT_SYMBOL(skb_pad);
1397
1398/**
1399 *	pskb_put - add data to the tail of a potentially fragmented buffer
1400 *	@skb: start of the buffer to use
1401 *	@tail: tail fragment of the buffer to use
1402 *	@len: amount of data to add
1403 *
1404 *	This function extends the used data area of the potentially
1405 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1406 *	@skb itself. If this would exceed the total buffer size the kernel
1407 *	will panic. A pointer to the first byte of the extra data is
1408 *	returned.
1409 */
1410
1411unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412{
1413	if (tail != skb) {
1414		skb->data_len += len;
1415		skb->len += len;
1416	}
1417	return skb_put(tail, len);
1418}
1419EXPORT_SYMBOL_GPL(pskb_put);
1420
1421/**
1422 *	skb_put - add data to a buffer
1423 *	@skb: buffer to use
1424 *	@len: amount of data to add
1425 *
1426 *	This function extends the used data area of the buffer. If this would
1427 *	exceed the total buffer size the kernel will panic. A pointer to the
1428 *	first byte of the extra data is returned.
1429 */
1430unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431{
1432	unsigned char *tmp = skb_tail_pointer(skb);
1433	SKB_LINEAR_ASSERT(skb);
1434	skb->tail += len;
1435	skb->len  += len;
1436	if (unlikely(skb->tail > skb->end))
1437		skb_over_panic(skb, len, __builtin_return_address(0));
1438	return tmp;
1439}
1440EXPORT_SYMBOL(skb_put);
1441
1442/**
1443 *	skb_push - add data to the start of a buffer
1444 *	@skb: buffer to use
1445 *	@len: amount of data to add
1446 *
1447 *	This function extends the used data area of the buffer at the buffer
1448 *	start. If this would exceed the total buffer headroom the kernel will
1449 *	panic. A pointer to the first byte of the extra data is returned.
1450 */
1451unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452{
1453	skb->data -= len;
1454	skb->len  += len;
1455	if (unlikely(skb->data<skb->head))
1456		skb_under_panic(skb, len, __builtin_return_address(0));
1457	return skb->data;
1458}
1459EXPORT_SYMBOL(skb_push);
1460
1461/**
1462 *	skb_pull - remove data from the start of a buffer
1463 *	@skb: buffer to use
1464 *	@len: amount of data to remove
1465 *
1466 *	This function removes data from the start of a buffer, returning
1467 *	the memory to the headroom. A pointer to the next data in the buffer
1468 *	is returned. Once the data has been pulled future pushes will overwrite
1469 *	the old data.
1470 */
1471unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472{
1473	return skb_pull_inline(skb, len);
1474}
1475EXPORT_SYMBOL(skb_pull);
1476
1477/**
1478 *	skb_trim - remove end from a buffer
1479 *	@skb: buffer to alter
1480 *	@len: new length
1481 *
1482 *	Cut the length of a buffer down by removing data from the tail. If
1483 *	the buffer is already under the length specified it is not modified.
1484 *	The skb must be linear.
1485 */
1486void skb_trim(struct sk_buff *skb, unsigned int len)
1487{
1488	if (skb->len > len)
1489		__skb_trim(skb, len);
1490}
1491EXPORT_SYMBOL(skb_trim);
1492
1493/* Trims skb to length len. It can change skb pointers.
1494 */
1495
1496int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497{
1498	struct sk_buff **fragp;
1499	struct sk_buff *frag;
1500	int offset = skb_headlen(skb);
1501	int nfrags = skb_shinfo(skb)->nr_frags;
1502	int i;
1503	int err;
1504
1505	if (skb_cloned(skb) &&
1506	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507		return err;
1508
1509	i = 0;
1510	if (offset >= len)
1511		goto drop_pages;
1512
1513	for (; i < nfrags; i++) {
1514		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515
1516		if (end < len) {
1517			offset = end;
1518			continue;
1519		}
1520
1521		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522
1523drop_pages:
1524		skb_shinfo(skb)->nr_frags = i;
1525
1526		for (; i < nfrags; i++)
1527			skb_frag_unref(skb, i);
1528
1529		if (skb_has_frag_list(skb))
1530			skb_drop_fraglist(skb);
1531		goto done;
1532	}
1533
1534	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535	     fragp = &frag->next) {
1536		int end = offset + frag->len;
1537
1538		if (skb_shared(frag)) {
1539			struct sk_buff *nfrag;
1540
1541			nfrag = skb_clone(frag, GFP_ATOMIC);
1542			if (unlikely(!nfrag))
1543				return -ENOMEM;
1544
1545			nfrag->next = frag->next;
1546			consume_skb(frag);
1547			frag = nfrag;
1548			*fragp = frag;
1549		}
1550
1551		if (end < len) {
1552			offset = end;
1553			continue;
1554		}
1555
1556		if (end > len &&
1557		    unlikely((err = pskb_trim(frag, len - offset))))
1558			return err;
1559
1560		if (frag->next)
1561			skb_drop_list(&frag->next);
1562		break;
1563	}
1564
1565done:
1566	if (len > skb_headlen(skb)) {
1567		skb->data_len -= skb->len - len;
1568		skb->len       = len;
1569	} else {
1570		skb->len       = len;
1571		skb->data_len  = 0;
1572		skb_set_tail_pointer(skb, len);
1573	}
1574
1575	return 0;
1576}
1577EXPORT_SYMBOL(___pskb_trim);
1578
1579/**
1580 *	__pskb_pull_tail - advance tail of skb header
1581 *	@skb: buffer to reallocate
1582 *	@delta: number of bytes to advance tail
1583 *
1584 *	The function makes a sense only on a fragmented &sk_buff,
1585 *	it expands header moving its tail forward and copying necessary
1586 *	data from fragmented part.
1587 *
1588 *	&sk_buff MUST have reference count of 1.
1589 *
1590 *	Returns %NULL (and &sk_buff does not change) if pull failed
1591 *	or value of new tail of skb in the case of success.
1592 *
1593 *	All the pointers pointing into skb header may change and must be
1594 *	reloaded after call to this function.
1595 */
1596
1597/* Moves tail of skb head forward, copying data from fragmented part,
1598 * when it is necessary.
1599 * 1. It may fail due to malloc failure.
1600 * 2. It may change skb pointers.
1601 *
1602 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603 */
1604unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1605{
1606	/* If skb has not enough free space at tail, get new one
1607	 * plus 128 bytes for future expansions. If we have enough
1608	 * room at tail, reallocate without expansion only if skb is cloned.
1609	 */
1610	int i, k, eat = (skb->tail + delta) - skb->end;
1611
1612	if (eat > 0 || skb_cloned(skb)) {
1613		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1614				     GFP_ATOMIC))
1615			return NULL;
1616	}
1617
1618	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1619		BUG();
1620
1621	/* Optimization: no fragments, no reasons to preestimate
1622	 * size of pulled pages. Superb.
1623	 */
1624	if (!skb_has_frag_list(skb))
1625		goto pull_pages;
1626
1627	/* Estimate size of pulled pages. */
1628	eat = delta;
1629	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1631
1632		if (size >= eat)
1633			goto pull_pages;
1634		eat -= size;
1635	}
1636
1637	/* If we need update frag list, we are in troubles.
1638	 * Certainly, it possible to add an offset to skb data,
1639	 * but taking into account that pulling is expected to
1640	 * be very rare operation, it is worth to fight against
1641	 * further bloating skb head and crucify ourselves here instead.
1642	 * Pure masohism, indeed. 8)8)
1643	 */
1644	if (eat) {
1645		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646		struct sk_buff *clone = NULL;
1647		struct sk_buff *insp = NULL;
1648
1649		do {
1650			BUG_ON(!list);
1651
1652			if (list->len <= eat) {
1653				/* Eaten as whole. */
1654				eat -= list->len;
1655				list = list->next;
1656				insp = list;
1657			} else {
1658				/* Eaten partially. */
1659
1660				if (skb_shared(list)) {
1661					/* Sucks! We need to fork list. :-( */
1662					clone = skb_clone(list, GFP_ATOMIC);
1663					if (!clone)
1664						return NULL;
1665					insp = list->next;
1666					list = clone;
1667				} else {
1668					/* This may be pulled without
1669					 * problems. */
1670					insp = list;
1671				}
1672				if (!pskb_pull(list, eat)) {
1673					kfree_skb(clone);
1674					return NULL;
1675				}
1676				break;
1677			}
1678		} while (eat);
1679
1680		/* Free pulled out fragments. */
1681		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682			skb_shinfo(skb)->frag_list = list->next;
1683			kfree_skb(list);
1684		}
1685		/* And insert new clone at head. */
1686		if (clone) {
1687			clone->next = list;
1688			skb_shinfo(skb)->frag_list = clone;
1689		}
1690	}
1691	/* Success! Now we may commit changes to skb data. */
1692
1693pull_pages:
1694	eat = delta;
1695	k = 0;
1696	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698
1699		if (size <= eat) {
1700			skb_frag_unref(skb, i);
1701			eat -= size;
1702		} else {
1703			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1704			if (eat) {
1705				skb_shinfo(skb)->frags[k].page_offset += eat;
1706				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1707				eat = 0;
1708			}
1709			k++;
1710		}
1711	}
1712	skb_shinfo(skb)->nr_frags = k;
1713
1714	skb->tail     += delta;
1715	skb->data_len -= delta;
1716
1717	return skb_tail_pointer(skb);
1718}
1719EXPORT_SYMBOL(__pskb_pull_tail);
1720
1721/**
1722 *	skb_copy_bits - copy bits from skb to kernel buffer
1723 *	@skb: source skb
1724 *	@offset: offset in source
1725 *	@to: destination buffer
1726 *	@len: number of bytes to copy
1727 *
1728 *	Copy the specified number of bytes from the source skb to the
1729 *	destination buffer.
1730 *
1731 *	CAUTION ! :
1732 *		If its prototype is ever changed,
1733 *		check arch/{*}/net/{*}.S files,
1734 *		since it is called from BPF assembly code.
1735 */
1736int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1737{
1738	int start = skb_headlen(skb);
1739	struct sk_buff *frag_iter;
1740	int i, copy;
1741
1742	if (offset > (int)skb->len - len)
1743		goto fault;
1744
1745	/* Copy header. */
1746	if ((copy = start - offset) > 0) {
1747		if (copy > len)
1748			copy = len;
1749		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750		if ((len -= copy) == 0)
1751			return 0;
1752		offset += copy;
1753		to     += copy;
1754	}
1755
1756	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757		int end;
1758		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1759
1760		WARN_ON(start > offset + len);
1761
1762		end = start + skb_frag_size(f);
1763		if ((copy = end - offset) > 0) {
1764			u8 *vaddr;
1765
1766			if (copy > len)
1767				copy = len;
1768
1769			vaddr = kmap_atomic(skb_frag_page(f));
1770			memcpy(to,
1771			       vaddr + f->page_offset + offset - start,
1772			       copy);
1773			kunmap_atomic(vaddr);
1774
1775			if ((len -= copy) == 0)
1776				return 0;
1777			offset += copy;
1778			to     += copy;
1779		}
1780		start = end;
1781	}
1782
1783	skb_walk_frags(skb, frag_iter) {
1784		int end;
1785
1786		WARN_ON(start > offset + len);
1787
1788		end = start + frag_iter->len;
1789		if ((copy = end - offset) > 0) {
1790			if (copy > len)
1791				copy = len;
1792			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1793				goto fault;
1794			if ((len -= copy) == 0)
1795				return 0;
1796			offset += copy;
1797			to     += copy;
1798		}
1799		start = end;
1800	}
1801
1802	if (!len)
1803		return 0;
1804
1805fault:
1806	return -EFAULT;
1807}
1808EXPORT_SYMBOL(skb_copy_bits);
1809
1810/*
1811 * Callback from splice_to_pipe(), if we need to release some pages
1812 * at the end of the spd in case we error'ed out in filling the pipe.
1813 */
1814static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1815{
1816	put_page(spd->pages[i]);
1817}
1818
1819static struct page *linear_to_page(struct page *page, unsigned int *len,
1820				   unsigned int *offset,
1821				   struct sock *sk)
1822{
1823	struct page_frag *pfrag = sk_page_frag(sk);
1824
1825	if (!sk_page_frag_refill(sk, pfrag))
1826		return NULL;
1827
1828	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1829
1830	memcpy(page_address(pfrag->page) + pfrag->offset,
1831	       page_address(page) + *offset, *len);
1832	*offset = pfrag->offset;
1833	pfrag->offset += *len;
1834
1835	return pfrag->page;
1836}
1837
1838static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1839			     struct page *page,
1840			     unsigned int offset)
1841{
1842	return	spd->nr_pages &&
1843		spd->pages[spd->nr_pages - 1] == page &&
1844		(spd->partial[spd->nr_pages - 1].offset +
1845		 spd->partial[spd->nr_pages - 1].len == offset);
1846}
1847
1848/*
1849 * Fill page/offset/length into spd, if it can hold more pages.
1850 */
1851static bool spd_fill_page(struct splice_pipe_desc *spd,
1852			  struct pipe_inode_info *pipe, struct page *page,
1853			  unsigned int *len, unsigned int offset,
1854			  bool linear,
1855			  struct sock *sk)
1856{
1857	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858		return true;
1859
1860	if (linear) {
1861		page = linear_to_page(page, len, &offset, sk);
1862		if (!page)
1863			return true;
1864	}
1865	if (spd_can_coalesce(spd, page, offset)) {
1866		spd->partial[spd->nr_pages - 1].len += *len;
1867		return false;
1868	}
1869	get_page(page);
1870	spd->pages[spd->nr_pages] = page;
1871	spd->partial[spd->nr_pages].len = *len;
1872	spd->partial[spd->nr_pages].offset = offset;
1873	spd->nr_pages++;
1874
1875	return false;
1876}
1877
1878static bool __splice_segment(struct page *page, unsigned int poff,
1879			     unsigned int plen, unsigned int *off,
1880			     unsigned int *len,
1881			     struct splice_pipe_desc *spd, bool linear,
1882			     struct sock *sk,
1883			     struct pipe_inode_info *pipe)
1884{
1885	if (!*len)
1886		return true;
1887
1888	/* skip this segment if already processed */
1889	if (*off >= plen) {
1890		*off -= plen;
1891		return false;
1892	}
1893
1894	/* ignore any bits we already processed */
1895	poff += *off;
1896	plen -= *off;
1897	*off = 0;
1898
1899	do {
1900		unsigned int flen = min(*len, plen);
1901
1902		if (spd_fill_page(spd, pipe, page, &flen, poff,
1903				  linear, sk))
1904			return true;
1905		poff += flen;
1906		plen -= flen;
1907		*len -= flen;
1908	} while (*len && plen);
1909
1910	return false;
1911}
1912
1913/*
1914 * Map linear and fragment data from the skb to spd. It reports true if the
1915 * pipe is full or if we already spliced the requested length.
1916 */
1917static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918			      unsigned int *offset, unsigned int *len,
1919			      struct splice_pipe_desc *spd, struct sock *sk)
1920{
1921	int seg;
1922	struct sk_buff *iter;
1923
1924	/* map the linear part :
1925	 * If skb->head_frag is set, this 'linear' part is backed by a
1926	 * fragment, and if the head is not shared with any clones then
1927	 * we can avoid a copy since we own the head portion of this page.
1928	 */
1929	if (__splice_segment(virt_to_page(skb->data),
1930			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1931			     skb_headlen(skb),
1932			     offset, len, spd,
1933			     skb_head_is_locked(skb),
1934			     sk, pipe))
1935		return true;
1936
1937	/*
1938	 * then map the fragments
1939	 */
1940	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1942
1943		if (__splice_segment(skb_frag_page(f),
1944				     f->page_offset, skb_frag_size(f),
1945				     offset, len, spd, false, sk, pipe))
1946			return true;
1947	}
1948
1949	skb_walk_frags(skb, iter) {
1950		if (*offset >= iter->len) {
1951			*offset -= iter->len;
1952			continue;
1953		}
1954		/* __skb_splice_bits() only fails if the output has no room
1955		 * left, so no point in going over the frag_list for the error
1956		 * case.
1957		 */
1958		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1959			return true;
1960	}
1961
1962	return false;
1963}
1964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965/*
1966 * Map data from the skb to a pipe. Should handle both the linear part,
1967 * the fragments, and the frag list.
1968 */
1969int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1970		    struct pipe_inode_info *pipe, unsigned int tlen,
1971		    unsigned int flags)
 
 
 
1972{
1973	struct partial_page partial[MAX_SKB_FRAGS];
1974	struct page *pages[MAX_SKB_FRAGS];
1975	struct splice_pipe_desc spd = {
1976		.pages = pages,
1977		.partial = partial,
1978		.nr_pages_max = MAX_SKB_FRAGS,
1979		.flags = flags,
1980		.ops = &nosteal_pipe_buf_ops,
1981		.spd_release = sock_spd_release,
1982	};
1983	int ret = 0;
1984
1985	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1986
1987	if (spd.nr_pages)
1988		ret = splice_to_pipe(pipe, &spd);
1989
1990	return ret;
1991}
1992EXPORT_SYMBOL_GPL(skb_splice_bits);
1993
1994/**
1995 *	skb_store_bits - store bits from kernel buffer to skb
1996 *	@skb: destination buffer
1997 *	@offset: offset in destination
1998 *	@from: source buffer
1999 *	@len: number of bytes to copy
2000 *
2001 *	Copy the specified number of bytes from the source buffer to the
2002 *	destination skb.  This function handles all the messy bits of
2003 *	traversing fragment lists and such.
2004 */
2005
2006int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2007{
2008	int start = skb_headlen(skb);
2009	struct sk_buff *frag_iter;
2010	int i, copy;
2011
2012	if (offset > (int)skb->len - len)
2013		goto fault;
2014
2015	if ((copy = start - offset) > 0) {
2016		if (copy > len)
2017			copy = len;
2018		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2019		if ((len -= copy) == 0)
2020			return 0;
2021		offset += copy;
2022		from += copy;
2023	}
2024
2025	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2027		int end;
2028
2029		WARN_ON(start > offset + len);
2030
2031		end = start + skb_frag_size(frag);
2032		if ((copy = end - offset) > 0) {
2033			u8 *vaddr;
2034
2035			if (copy > len)
2036				copy = len;
2037
2038			vaddr = kmap_atomic(skb_frag_page(frag));
2039			memcpy(vaddr + frag->page_offset + offset - start,
2040			       from, copy);
2041			kunmap_atomic(vaddr);
2042
2043			if ((len -= copy) == 0)
2044				return 0;
2045			offset += copy;
2046			from += copy;
2047		}
2048		start = end;
2049	}
2050
2051	skb_walk_frags(skb, frag_iter) {
2052		int end;
2053
2054		WARN_ON(start > offset + len);
2055
2056		end = start + frag_iter->len;
2057		if ((copy = end - offset) > 0) {
2058			if (copy > len)
2059				copy = len;
2060			if (skb_store_bits(frag_iter, offset - start,
2061					   from, copy))
2062				goto fault;
2063			if ((len -= copy) == 0)
2064				return 0;
2065			offset += copy;
2066			from += copy;
2067		}
2068		start = end;
2069	}
2070	if (!len)
2071		return 0;
2072
2073fault:
2074	return -EFAULT;
2075}
2076EXPORT_SYMBOL(skb_store_bits);
2077
2078/* Checksum skb data. */
2079__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2080		      __wsum csum, const struct skb_checksum_ops *ops)
2081{
2082	int start = skb_headlen(skb);
2083	int i, copy = start - offset;
2084	struct sk_buff *frag_iter;
2085	int pos = 0;
2086
2087	/* Checksum header. */
2088	if (copy > 0) {
2089		if (copy > len)
2090			copy = len;
2091		csum = ops->update(skb->data + offset, copy, csum);
2092		if ((len -= copy) == 0)
2093			return csum;
2094		offset += copy;
2095		pos	= copy;
2096	}
2097
2098	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2099		int end;
2100		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2101
2102		WARN_ON(start > offset + len);
2103
2104		end = start + skb_frag_size(frag);
2105		if ((copy = end - offset) > 0) {
2106			__wsum csum2;
2107			u8 *vaddr;
2108
2109			if (copy > len)
2110				copy = len;
2111			vaddr = kmap_atomic(skb_frag_page(frag));
2112			csum2 = ops->update(vaddr + frag->page_offset +
2113					    offset - start, copy, 0);
2114			kunmap_atomic(vaddr);
2115			csum = ops->combine(csum, csum2, pos, copy);
2116			if (!(len -= copy))
2117				return csum;
2118			offset += copy;
2119			pos    += copy;
2120		}
2121		start = end;
2122	}
2123
2124	skb_walk_frags(skb, frag_iter) {
2125		int end;
2126
2127		WARN_ON(start > offset + len);
2128
2129		end = start + frag_iter->len;
2130		if ((copy = end - offset) > 0) {
2131			__wsum csum2;
2132			if (copy > len)
2133				copy = len;
2134			csum2 = __skb_checksum(frag_iter, offset - start,
2135					       copy, 0, ops);
2136			csum = ops->combine(csum, csum2, pos, copy);
2137			if ((len -= copy) == 0)
2138				return csum;
2139			offset += copy;
2140			pos    += copy;
2141		}
2142		start = end;
2143	}
2144	BUG_ON(len);
2145
2146	return csum;
2147}
2148EXPORT_SYMBOL(__skb_checksum);
2149
2150__wsum skb_checksum(const struct sk_buff *skb, int offset,
2151		    int len, __wsum csum)
2152{
2153	const struct skb_checksum_ops ops = {
2154		.update  = csum_partial_ext,
2155		.combine = csum_block_add_ext,
2156	};
2157
2158	return __skb_checksum(skb, offset, len, csum, &ops);
2159}
2160EXPORT_SYMBOL(skb_checksum);
2161
2162/* Both of above in one bottle. */
2163
2164__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2165				    u8 *to, int len, __wsum csum)
2166{
2167	int start = skb_headlen(skb);
2168	int i, copy = start - offset;
2169	struct sk_buff *frag_iter;
2170	int pos = 0;
2171
2172	/* Copy header. */
2173	if (copy > 0) {
2174		if (copy > len)
2175			copy = len;
2176		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2177						 copy, csum);
2178		if ((len -= copy) == 0)
2179			return csum;
2180		offset += copy;
2181		to     += copy;
2182		pos	= copy;
2183	}
2184
2185	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2186		int end;
2187
2188		WARN_ON(start > offset + len);
2189
2190		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2191		if ((copy = end - offset) > 0) {
2192			__wsum csum2;
2193			u8 *vaddr;
2194			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2195
2196			if (copy > len)
2197				copy = len;
2198			vaddr = kmap_atomic(skb_frag_page(frag));
2199			csum2 = csum_partial_copy_nocheck(vaddr +
2200							  frag->page_offset +
2201							  offset - start, to,
2202							  copy, 0);
2203			kunmap_atomic(vaddr);
2204			csum = csum_block_add(csum, csum2, pos);
2205			if (!(len -= copy))
2206				return csum;
2207			offset += copy;
2208			to     += copy;
2209			pos    += copy;
2210		}
2211		start = end;
2212	}
2213
2214	skb_walk_frags(skb, frag_iter) {
2215		__wsum csum2;
2216		int end;
2217
2218		WARN_ON(start > offset + len);
2219
2220		end = start + frag_iter->len;
2221		if ((copy = end - offset) > 0) {
2222			if (copy > len)
2223				copy = len;
2224			csum2 = skb_copy_and_csum_bits(frag_iter,
2225						       offset - start,
2226						       to, copy, 0);
2227			csum = csum_block_add(csum, csum2, pos);
2228			if ((len -= copy) == 0)
2229				return csum;
2230			offset += copy;
2231			to     += copy;
2232			pos    += copy;
2233		}
2234		start = end;
2235	}
2236	BUG_ON(len);
2237	return csum;
2238}
2239EXPORT_SYMBOL(skb_copy_and_csum_bits);
2240
2241 /**
2242 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2243 *	@from: source buffer
2244 *
2245 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2246 *	into skb_zerocopy().
2247 */
2248unsigned int
2249skb_zerocopy_headlen(const struct sk_buff *from)
2250{
2251	unsigned int hlen = 0;
2252
2253	if (!from->head_frag ||
2254	    skb_headlen(from) < L1_CACHE_BYTES ||
2255	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2256		hlen = skb_headlen(from);
2257
2258	if (skb_has_frag_list(from))
2259		hlen = from->len;
2260
2261	return hlen;
2262}
2263EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2264
2265/**
2266 *	skb_zerocopy - Zero copy skb to skb
2267 *	@to: destination buffer
2268 *	@from: source buffer
2269 *	@len: number of bytes to copy from source buffer
2270 *	@hlen: size of linear headroom in destination buffer
2271 *
2272 *	Copies up to `len` bytes from `from` to `to` by creating references
2273 *	to the frags in the source buffer.
2274 *
2275 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2276 *	headroom in the `to` buffer.
2277 *
2278 *	Return value:
2279 *	0: everything is OK
2280 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2281 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2282 */
2283int
2284skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2285{
2286	int i, j = 0;
2287	int plen = 0; /* length of skb->head fragment */
2288	int ret;
2289	struct page *page;
2290	unsigned int offset;
2291
2292	BUG_ON(!from->head_frag && !hlen);
2293
2294	/* dont bother with small payloads */
2295	if (len <= skb_tailroom(to))
2296		return skb_copy_bits(from, 0, skb_put(to, len), len);
2297
2298	if (hlen) {
2299		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2300		if (unlikely(ret))
2301			return ret;
2302		len -= hlen;
2303	} else {
2304		plen = min_t(int, skb_headlen(from), len);
2305		if (plen) {
2306			page = virt_to_head_page(from->head);
2307			offset = from->data - (unsigned char *)page_address(page);
2308			__skb_fill_page_desc(to, 0, page, offset, plen);
2309			get_page(page);
2310			j = 1;
2311			len -= plen;
2312		}
2313	}
2314
2315	to->truesize += len + plen;
2316	to->len += len + plen;
2317	to->data_len += len + plen;
2318
2319	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2320		skb_tx_error(from);
2321		return -ENOMEM;
2322	}
2323
2324	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2325		if (!len)
2326			break;
2327		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2328		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2329		len -= skb_shinfo(to)->frags[j].size;
2330		skb_frag_ref(to, j);
2331		j++;
2332	}
2333	skb_shinfo(to)->nr_frags = j;
2334
2335	return 0;
2336}
2337EXPORT_SYMBOL_GPL(skb_zerocopy);
2338
2339void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2340{
2341	__wsum csum;
2342	long csstart;
2343
2344	if (skb->ip_summed == CHECKSUM_PARTIAL)
2345		csstart = skb_checksum_start_offset(skb);
2346	else
2347		csstart = skb_headlen(skb);
2348
2349	BUG_ON(csstart > skb_headlen(skb));
2350
2351	skb_copy_from_linear_data(skb, to, csstart);
2352
2353	csum = 0;
2354	if (csstart != skb->len)
2355		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2356					      skb->len - csstart, 0);
2357
2358	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2359		long csstuff = csstart + skb->csum_offset;
2360
2361		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2362	}
2363}
2364EXPORT_SYMBOL(skb_copy_and_csum_dev);
2365
2366/**
2367 *	skb_dequeue - remove from the head of the queue
2368 *	@list: list to dequeue from
2369 *
2370 *	Remove the head of the list. The list lock is taken so the function
2371 *	may be used safely with other locking list functions. The head item is
2372 *	returned or %NULL if the list is empty.
2373 */
2374
2375struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2376{
2377	unsigned long flags;
2378	struct sk_buff *result;
2379
2380	spin_lock_irqsave(&list->lock, flags);
2381	result = __skb_dequeue(list);
2382	spin_unlock_irqrestore(&list->lock, flags);
2383	return result;
2384}
2385EXPORT_SYMBOL(skb_dequeue);
2386
2387/**
2388 *	skb_dequeue_tail - remove from the tail of the queue
2389 *	@list: list to dequeue from
2390 *
2391 *	Remove the tail of the list. The list lock is taken so the function
2392 *	may be used safely with other locking list functions. The tail item is
2393 *	returned or %NULL if the list is empty.
2394 */
2395struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2396{
2397	unsigned long flags;
2398	struct sk_buff *result;
2399
2400	spin_lock_irqsave(&list->lock, flags);
2401	result = __skb_dequeue_tail(list);
2402	spin_unlock_irqrestore(&list->lock, flags);
2403	return result;
2404}
2405EXPORT_SYMBOL(skb_dequeue_tail);
2406
2407/**
2408 *	skb_queue_purge - empty a list
2409 *	@list: list to empty
2410 *
2411 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2412 *	the list and one reference dropped. This function takes the list
2413 *	lock and is atomic with respect to other list locking functions.
2414 */
2415void skb_queue_purge(struct sk_buff_head *list)
2416{
2417	struct sk_buff *skb;
2418	while ((skb = skb_dequeue(list)) != NULL)
2419		kfree_skb(skb);
2420}
2421EXPORT_SYMBOL(skb_queue_purge);
2422
2423/**
2424 *	skb_rbtree_purge - empty a skb rbtree
2425 *	@root: root of the rbtree to empty
2426 *
2427 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2428 *	the list and one reference dropped. This function does not take
2429 *	any lock. Synchronization should be handled by the caller (e.g., TCP
2430 *	out-of-order queue is protected by the socket lock).
2431 */
2432void skb_rbtree_purge(struct rb_root *root)
2433{
2434	struct sk_buff *skb, *next;
2435
2436	rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2437		kfree_skb(skb);
2438
2439	*root = RB_ROOT;
2440}
2441
2442/**
2443 *	skb_queue_head - queue a buffer at the list head
2444 *	@list: list to use
2445 *	@newsk: buffer to queue
2446 *
2447 *	Queue a buffer at the start of the list. This function takes the
2448 *	list lock and can be used safely with other locking &sk_buff functions
2449 *	safely.
2450 *
2451 *	A buffer cannot be placed on two lists at the same time.
2452 */
2453void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2454{
2455	unsigned long flags;
2456
2457	spin_lock_irqsave(&list->lock, flags);
2458	__skb_queue_head(list, newsk);
2459	spin_unlock_irqrestore(&list->lock, flags);
2460}
2461EXPORT_SYMBOL(skb_queue_head);
2462
2463/**
2464 *	skb_queue_tail - queue a buffer at the list tail
2465 *	@list: list to use
2466 *	@newsk: buffer to queue
2467 *
2468 *	Queue a buffer at the tail of the list. This function takes the
2469 *	list lock and can be used safely with other locking &sk_buff functions
2470 *	safely.
2471 *
2472 *	A buffer cannot be placed on two lists at the same time.
2473 */
2474void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2475{
2476	unsigned long flags;
2477
2478	spin_lock_irqsave(&list->lock, flags);
2479	__skb_queue_tail(list, newsk);
2480	spin_unlock_irqrestore(&list->lock, flags);
2481}
2482EXPORT_SYMBOL(skb_queue_tail);
2483
2484/**
2485 *	skb_unlink	-	remove a buffer from a list
2486 *	@skb: buffer to remove
2487 *	@list: list to use
2488 *
2489 *	Remove a packet from a list. The list locks are taken and this
2490 *	function is atomic with respect to other list locked calls
2491 *
2492 *	You must know what list the SKB is on.
2493 */
2494void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2495{
2496	unsigned long flags;
2497
2498	spin_lock_irqsave(&list->lock, flags);
2499	__skb_unlink(skb, list);
2500	spin_unlock_irqrestore(&list->lock, flags);
2501}
2502EXPORT_SYMBOL(skb_unlink);
2503
2504/**
2505 *	skb_append	-	append a buffer
2506 *	@old: buffer to insert after
2507 *	@newsk: buffer to insert
2508 *	@list: list to use
2509 *
2510 *	Place a packet after a given packet in a list. The list locks are taken
2511 *	and this function is atomic with respect to other list locked calls.
2512 *	A buffer cannot be placed on two lists at the same time.
2513 */
2514void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2515{
2516	unsigned long flags;
2517
2518	spin_lock_irqsave(&list->lock, flags);
2519	__skb_queue_after(list, old, newsk);
2520	spin_unlock_irqrestore(&list->lock, flags);
2521}
2522EXPORT_SYMBOL(skb_append);
2523
2524/**
2525 *	skb_insert	-	insert a buffer
2526 *	@old: buffer to insert before
2527 *	@newsk: buffer to insert
2528 *	@list: list to use
2529 *
2530 *	Place a packet before a given packet in a list. The list locks are
2531 * 	taken and this function is atomic with respect to other list locked
2532 *	calls.
2533 *
2534 *	A buffer cannot be placed on two lists at the same time.
2535 */
2536void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2537{
2538	unsigned long flags;
2539
2540	spin_lock_irqsave(&list->lock, flags);
2541	__skb_insert(newsk, old->prev, old, list);
2542	spin_unlock_irqrestore(&list->lock, flags);
2543}
2544EXPORT_SYMBOL(skb_insert);
2545
2546static inline void skb_split_inside_header(struct sk_buff *skb,
2547					   struct sk_buff* skb1,
2548					   const u32 len, const int pos)
2549{
2550	int i;
2551
2552	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2553					 pos - len);
2554	/* And move data appendix as is. */
2555	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2556		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2557
2558	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2559	skb_shinfo(skb)->nr_frags  = 0;
2560	skb1->data_len		   = skb->data_len;
2561	skb1->len		   += skb1->data_len;
2562	skb->data_len		   = 0;
2563	skb->len		   = len;
2564	skb_set_tail_pointer(skb, len);
2565}
2566
2567static inline void skb_split_no_header(struct sk_buff *skb,
2568				       struct sk_buff* skb1,
2569				       const u32 len, int pos)
2570{
2571	int i, k = 0;
2572	const int nfrags = skb_shinfo(skb)->nr_frags;
2573
2574	skb_shinfo(skb)->nr_frags = 0;
2575	skb1->len		  = skb1->data_len = skb->len - len;
2576	skb->len		  = len;
2577	skb->data_len		  = len - pos;
2578
2579	for (i = 0; i < nfrags; i++) {
2580		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2581
2582		if (pos + size > len) {
2583			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2584
2585			if (pos < len) {
2586				/* Split frag.
2587				 * We have two variants in this case:
2588				 * 1. Move all the frag to the second
2589				 *    part, if it is possible. F.e.
2590				 *    this approach is mandatory for TUX,
2591				 *    where splitting is expensive.
2592				 * 2. Split is accurately. We make this.
2593				 */
2594				skb_frag_ref(skb, i);
2595				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2596				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2597				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2598				skb_shinfo(skb)->nr_frags++;
2599			}
2600			k++;
2601		} else
2602			skb_shinfo(skb)->nr_frags++;
2603		pos += size;
2604	}
2605	skb_shinfo(skb1)->nr_frags = k;
2606}
2607
2608/**
2609 * skb_split - Split fragmented skb to two parts at length len.
2610 * @skb: the buffer to split
2611 * @skb1: the buffer to receive the second part
2612 * @len: new length for skb
2613 */
2614void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2615{
2616	int pos = skb_headlen(skb);
2617
2618	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2619	if (len < pos)	/* Split line is inside header. */
2620		skb_split_inside_header(skb, skb1, len, pos);
2621	else		/* Second chunk has no header, nothing to copy. */
2622		skb_split_no_header(skb, skb1, len, pos);
2623}
2624EXPORT_SYMBOL(skb_split);
2625
2626/* Shifting from/to a cloned skb is a no-go.
2627 *
2628 * Caller cannot keep skb_shinfo related pointers past calling here!
2629 */
2630static int skb_prepare_for_shift(struct sk_buff *skb)
2631{
2632	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2633}
2634
2635/**
2636 * skb_shift - Shifts paged data partially from skb to another
2637 * @tgt: buffer into which tail data gets added
2638 * @skb: buffer from which the paged data comes from
2639 * @shiftlen: shift up to this many bytes
2640 *
2641 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2642 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2643 * It's up to caller to free skb if everything was shifted.
2644 *
2645 * If @tgt runs out of frags, the whole operation is aborted.
2646 *
2647 * Skb cannot include anything else but paged data while tgt is allowed
2648 * to have non-paged data as well.
2649 *
2650 * TODO: full sized shift could be optimized but that would need
2651 * specialized skb free'er to handle frags without up-to-date nr_frags.
2652 */
2653int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2654{
2655	int from, to, merge, todo;
2656	struct skb_frag_struct *fragfrom, *fragto;
2657
2658	BUG_ON(shiftlen > skb->len);
2659
2660	if (skb_headlen(skb))
2661		return 0;
2662
2663	todo = shiftlen;
2664	from = 0;
2665	to = skb_shinfo(tgt)->nr_frags;
2666	fragfrom = &skb_shinfo(skb)->frags[from];
2667
2668	/* Actual merge is delayed until the point when we know we can
2669	 * commit all, so that we don't have to undo partial changes
2670	 */
2671	if (!to ||
2672	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2673			      fragfrom->page_offset)) {
2674		merge = -1;
2675	} else {
2676		merge = to - 1;
2677
2678		todo -= skb_frag_size(fragfrom);
2679		if (todo < 0) {
2680			if (skb_prepare_for_shift(skb) ||
2681			    skb_prepare_for_shift(tgt))
2682				return 0;
2683
2684			/* All previous frag pointers might be stale! */
2685			fragfrom = &skb_shinfo(skb)->frags[from];
2686			fragto = &skb_shinfo(tgt)->frags[merge];
2687
2688			skb_frag_size_add(fragto, shiftlen);
2689			skb_frag_size_sub(fragfrom, shiftlen);
2690			fragfrom->page_offset += shiftlen;
2691
2692			goto onlymerged;
2693		}
2694
2695		from++;
2696	}
2697
2698	/* Skip full, not-fitting skb to avoid expensive operations */
2699	if ((shiftlen == skb->len) &&
2700	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2701		return 0;
2702
2703	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2704		return 0;
2705
2706	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2707		if (to == MAX_SKB_FRAGS)
2708			return 0;
2709
2710		fragfrom = &skb_shinfo(skb)->frags[from];
2711		fragto = &skb_shinfo(tgt)->frags[to];
2712
2713		if (todo >= skb_frag_size(fragfrom)) {
2714			*fragto = *fragfrom;
2715			todo -= skb_frag_size(fragfrom);
2716			from++;
2717			to++;
2718
2719		} else {
2720			__skb_frag_ref(fragfrom);
2721			fragto->page = fragfrom->page;
2722			fragto->page_offset = fragfrom->page_offset;
2723			skb_frag_size_set(fragto, todo);
2724
2725			fragfrom->page_offset += todo;
2726			skb_frag_size_sub(fragfrom, todo);
2727			todo = 0;
2728
2729			to++;
2730			break;
2731		}
2732	}
2733
2734	/* Ready to "commit" this state change to tgt */
2735	skb_shinfo(tgt)->nr_frags = to;
2736
2737	if (merge >= 0) {
2738		fragfrom = &skb_shinfo(skb)->frags[0];
2739		fragto = &skb_shinfo(tgt)->frags[merge];
2740
2741		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2742		__skb_frag_unref(fragfrom);
2743	}
2744
2745	/* Reposition in the original skb */
2746	to = 0;
2747	while (from < skb_shinfo(skb)->nr_frags)
2748		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2749	skb_shinfo(skb)->nr_frags = to;
2750
2751	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2752
2753onlymerged:
2754	/* Most likely the tgt won't ever need its checksum anymore, skb on
2755	 * the other hand might need it if it needs to be resent
2756	 */
2757	tgt->ip_summed = CHECKSUM_PARTIAL;
2758	skb->ip_summed = CHECKSUM_PARTIAL;
2759
2760	/* Yak, is it really working this way? Some helper please? */
2761	skb->len -= shiftlen;
2762	skb->data_len -= shiftlen;
2763	skb->truesize -= shiftlen;
2764	tgt->len += shiftlen;
2765	tgt->data_len += shiftlen;
2766	tgt->truesize += shiftlen;
2767
2768	return shiftlen;
2769}
2770
2771/**
2772 * skb_prepare_seq_read - Prepare a sequential read of skb data
2773 * @skb: the buffer to read
2774 * @from: lower offset of data to be read
2775 * @to: upper offset of data to be read
2776 * @st: state variable
2777 *
2778 * Initializes the specified state variable. Must be called before
2779 * invoking skb_seq_read() for the first time.
2780 */
2781void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2782			  unsigned int to, struct skb_seq_state *st)
2783{
2784	st->lower_offset = from;
2785	st->upper_offset = to;
2786	st->root_skb = st->cur_skb = skb;
2787	st->frag_idx = st->stepped_offset = 0;
2788	st->frag_data = NULL;
2789}
2790EXPORT_SYMBOL(skb_prepare_seq_read);
2791
2792/**
2793 * skb_seq_read - Sequentially read skb data
2794 * @consumed: number of bytes consumed by the caller so far
2795 * @data: destination pointer for data to be returned
2796 * @st: state variable
2797 *
2798 * Reads a block of skb data at @consumed relative to the
2799 * lower offset specified to skb_prepare_seq_read(). Assigns
2800 * the head of the data block to @data and returns the length
2801 * of the block or 0 if the end of the skb data or the upper
2802 * offset has been reached.
2803 *
2804 * The caller is not required to consume all of the data
2805 * returned, i.e. @consumed is typically set to the number
2806 * of bytes already consumed and the next call to
2807 * skb_seq_read() will return the remaining part of the block.
2808 *
2809 * Note 1: The size of each block of data returned can be arbitrary,
2810 *       this limitation is the cost for zerocopy sequential
2811 *       reads of potentially non linear data.
2812 *
2813 * Note 2: Fragment lists within fragments are not implemented
2814 *       at the moment, state->root_skb could be replaced with
2815 *       a stack for this purpose.
2816 */
2817unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2818			  struct skb_seq_state *st)
2819{
2820	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2821	skb_frag_t *frag;
2822
2823	if (unlikely(abs_offset >= st->upper_offset)) {
2824		if (st->frag_data) {
2825			kunmap_atomic(st->frag_data);
2826			st->frag_data = NULL;
2827		}
2828		return 0;
2829	}
2830
2831next_skb:
2832	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2833
2834	if (abs_offset < block_limit && !st->frag_data) {
2835		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2836		return block_limit - abs_offset;
2837	}
2838
2839	if (st->frag_idx == 0 && !st->frag_data)
2840		st->stepped_offset += skb_headlen(st->cur_skb);
2841
2842	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2843		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2844		block_limit = skb_frag_size(frag) + st->stepped_offset;
2845
2846		if (abs_offset < block_limit) {
2847			if (!st->frag_data)
2848				st->frag_data = kmap_atomic(skb_frag_page(frag));
2849
2850			*data = (u8 *) st->frag_data + frag->page_offset +
2851				(abs_offset - st->stepped_offset);
2852
2853			return block_limit - abs_offset;
2854		}
2855
2856		if (st->frag_data) {
2857			kunmap_atomic(st->frag_data);
2858			st->frag_data = NULL;
2859		}
2860
2861		st->frag_idx++;
2862		st->stepped_offset += skb_frag_size(frag);
2863	}
2864
2865	if (st->frag_data) {
2866		kunmap_atomic(st->frag_data);
2867		st->frag_data = NULL;
2868	}
2869
2870	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2871		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2872		st->frag_idx = 0;
2873		goto next_skb;
2874	} else if (st->cur_skb->next) {
2875		st->cur_skb = st->cur_skb->next;
2876		st->frag_idx = 0;
2877		goto next_skb;
2878	}
2879
2880	return 0;
2881}
2882EXPORT_SYMBOL(skb_seq_read);
2883
2884/**
2885 * skb_abort_seq_read - Abort a sequential read of skb data
2886 * @st: state variable
2887 *
2888 * Must be called if skb_seq_read() was not called until it
2889 * returned 0.
2890 */
2891void skb_abort_seq_read(struct skb_seq_state *st)
2892{
2893	if (st->frag_data)
2894		kunmap_atomic(st->frag_data);
2895}
2896EXPORT_SYMBOL(skb_abort_seq_read);
2897
2898#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2899
2900static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2901					  struct ts_config *conf,
2902					  struct ts_state *state)
2903{
2904	return skb_seq_read(offset, text, TS_SKB_CB(state));
2905}
2906
2907static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2908{
2909	skb_abort_seq_read(TS_SKB_CB(state));
2910}
2911
2912/**
2913 * skb_find_text - Find a text pattern in skb data
2914 * @skb: the buffer to look in
2915 * @from: search offset
2916 * @to: search limit
2917 * @config: textsearch configuration
2918 *
2919 * Finds a pattern in the skb data according to the specified
2920 * textsearch configuration. Use textsearch_next() to retrieve
2921 * subsequent occurrences of the pattern. Returns the offset
2922 * to the first occurrence or UINT_MAX if no match was found.
2923 */
2924unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2925			   unsigned int to, struct ts_config *config)
2926{
2927	struct ts_state state;
2928	unsigned int ret;
2929
2930	config->get_next_block = skb_ts_get_next_block;
2931	config->finish = skb_ts_finish;
2932
2933	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2934
2935	ret = textsearch_find(config, &state);
2936	return (ret <= to - from ? ret : UINT_MAX);
2937}
2938EXPORT_SYMBOL(skb_find_text);
2939
2940/**
2941 * skb_append_datato_frags - append the user data to a skb
2942 * @sk: sock  structure
2943 * @skb: skb structure to be appended with user data.
2944 * @getfrag: call back function to be used for getting the user data
2945 * @from: pointer to user message iov
2946 * @length: length of the iov message
2947 *
2948 * Description: This procedure append the user data in the fragment part
2949 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2950 */
2951int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2952			int (*getfrag)(void *from, char *to, int offset,
2953					int len, int odd, struct sk_buff *skb),
2954			void *from, int length)
2955{
2956	int frg_cnt = skb_shinfo(skb)->nr_frags;
2957	int copy;
2958	int offset = 0;
2959	int ret;
2960	struct page_frag *pfrag = &current->task_frag;
2961
2962	do {
2963		/* Return error if we don't have space for new frag */
2964		if (frg_cnt >= MAX_SKB_FRAGS)
2965			return -EMSGSIZE;
2966
2967		if (!sk_page_frag_refill(sk, pfrag))
2968			return -ENOMEM;
2969
2970		/* copy the user data to page */
2971		copy = min_t(int, length, pfrag->size - pfrag->offset);
2972
2973		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2974			      offset, copy, 0, skb);
2975		if (ret < 0)
2976			return -EFAULT;
2977
2978		/* copy was successful so update the size parameters */
2979		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2980				   copy);
2981		frg_cnt++;
2982		pfrag->offset += copy;
2983		get_page(pfrag->page);
2984
2985		skb->truesize += copy;
2986		atomic_add(copy, &sk->sk_wmem_alloc);
2987		skb->len += copy;
2988		skb->data_len += copy;
2989		offset += copy;
2990		length -= copy;
2991
2992	} while (length > 0);
2993
2994	return 0;
2995}
2996EXPORT_SYMBOL(skb_append_datato_frags);
2997
2998int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2999			 int offset, size_t size)
3000{
3001	int i = skb_shinfo(skb)->nr_frags;
3002
3003	if (skb_can_coalesce(skb, i, page, offset)) {
3004		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3005	} else if (i < MAX_SKB_FRAGS) {
3006		get_page(page);
3007		skb_fill_page_desc(skb, i, page, offset, size);
3008	} else {
3009		return -EMSGSIZE;
3010	}
3011
3012	return 0;
3013}
3014EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3015
3016/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017 *	skb_pull_rcsum - pull skb and update receive checksum
3018 *	@skb: buffer to update
3019 *	@len: length of data pulled
3020 *
3021 *	This function performs an skb_pull on the packet and updates
3022 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3023 *	receive path processing instead of skb_pull unless you know
3024 *	that the checksum difference is zero (e.g., a valid IP header)
3025 *	or you are setting ip_summed to CHECKSUM_NONE.
3026 */
3027unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3028{
3029	unsigned char *data = skb->data;
3030
3031	BUG_ON(len > skb->len);
3032	__skb_pull(skb, len);
3033	skb_postpull_rcsum(skb, data, len);
3034	return skb->data;
3035}
3036EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3037
3038/**
3039 *	skb_segment - Perform protocol segmentation on skb.
3040 *	@head_skb: buffer to segment
3041 *	@features: features for the output path (see dev->features)
3042 *
3043 *	This function performs segmentation on the given skb.  It returns
3044 *	a pointer to the first in a list of new skbs for the segments.
3045 *	In case of error it returns ERR_PTR(err).
3046 */
3047struct sk_buff *skb_segment(struct sk_buff *head_skb,
3048			    netdev_features_t features)
3049{
3050	struct sk_buff *segs = NULL;
3051	struct sk_buff *tail = NULL;
3052	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3053	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3054	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3055	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3056	struct sk_buff *frag_skb = head_skb;
3057	unsigned int offset = doffset;
3058	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3059	unsigned int partial_segs = 0;
3060	unsigned int headroom;
3061	unsigned int len = head_skb->len;
3062	__be16 proto;
3063	bool csum, sg;
 
3064	int nfrags = skb_shinfo(head_skb)->nr_frags;
3065	int err = -ENOMEM;
3066	int i = 0;
3067	int pos;
3068	int dummy;
3069
3070	__skb_push(head_skb, doffset);
3071	proto = skb_network_protocol(head_skb, &dummy);
3072	if (unlikely(!proto))
3073		return ERR_PTR(-EINVAL);
3074
3075	sg = !!(features & NETIF_F_SG);
3076	csum = !!can_checksum_protocol(features, proto);
3077
3078	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3079		if (!(features & NETIF_F_GSO_PARTIAL)) {
3080			struct sk_buff *iter;
3081
3082			if (!list_skb ||
3083			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3084				goto normal;
3085
3086			/* Split the buffer at the frag_list pointer.
3087			 * This is based on the assumption that all
3088			 * buffers in the chain excluding the last
3089			 * containing the same amount of data.
3090			 */
3091			skb_walk_frags(head_skb, iter) {
3092				if (skb_headlen(iter))
3093					goto normal;
3094
3095				len -= iter->len;
3096			}
3097		}
3098
3099		/* GSO partial only requires that we trim off any excess that
3100		 * doesn't fit into an MSS sized block, so take care of that
3101		 * now.
3102		 */
3103		partial_segs = len / mss;
3104		if (partial_segs > 1)
3105			mss *= partial_segs;
3106		else
3107			partial_segs = 0;
3108	}
3109
3110normal:
3111	headroom = skb_headroom(head_skb);
3112	pos = skb_headlen(head_skb);
3113
3114	do {
3115		struct sk_buff *nskb;
3116		skb_frag_t *nskb_frag;
3117		int hsize;
3118		int size;
3119
3120		if (unlikely(mss == GSO_BY_FRAGS)) {
3121			len = list_skb->len;
3122		} else {
3123			len = head_skb->len - offset;
3124			if (len > mss)
3125				len = mss;
3126		}
3127
3128		hsize = skb_headlen(head_skb) - offset;
3129		if (hsize < 0)
3130			hsize = 0;
3131		if (hsize > len || !sg)
3132			hsize = len;
3133
3134		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3135		    (skb_headlen(list_skb) == len || sg)) {
3136			BUG_ON(skb_headlen(list_skb) > len);
3137
3138			i = 0;
3139			nfrags = skb_shinfo(list_skb)->nr_frags;
3140			frag = skb_shinfo(list_skb)->frags;
3141			frag_skb = list_skb;
3142			pos += skb_headlen(list_skb);
3143
3144			while (pos < offset + len) {
3145				BUG_ON(i >= nfrags);
3146
3147				size = skb_frag_size(frag);
3148				if (pos + size > offset + len)
3149					break;
3150
3151				i++;
3152				pos += size;
3153				frag++;
3154			}
3155
3156			nskb = skb_clone(list_skb, GFP_ATOMIC);
3157			list_skb = list_skb->next;
3158
3159			if (unlikely(!nskb))
3160				goto err;
3161
3162			if (unlikely(pskb_trim(nskb, len))) {
3163				kfree_skb(nskb);
3164				goto err;
3165			}
3166
3167			hsize = skb_end_offset(nskb);
3168			if (skb_cow_head(nskb, doffset + headroom)) {
3169				kfree_skb(nskb);
3170				goto err;
3171			}
3172
3173			nskb->truesize += skb_end_offset(nskb) - hsize;
3174			skb_release_head_state(nskb);
3175			__skb_push(nskb, doffset);
3176		} else {
3177			nskb = __alloc_skb(hsize + doffset + headroom,
3178					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3179					   NUMA_NO_NODE);
3180
3181			if (unlikely(!nskb))
3182				goto err;
3183
3184			skb_reserve(nskb, headroom);
3185			__skb_put(nskb, doffset);
3186		}
3187
3188		if (segs)
3189			tail->next = nskb;
3190		else
3191			segs = nskb;
3192		tail = nskb;
3193
3194		__copy_skb_header(nskb, head_skb);
3195
3196		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3197		skb_reset_mac_len(nskb);
3198
3199		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3200						 nskb->data - tnl_hlen,
3201						 doffset + tnl_hlen);
3202
3203		if (nskb->len == len + doffset)
3204			goto perform_csum_check;
3205
3206		if (!sg) {
3207			if (!nskb->remcsum_offload)
3208				nskb->ip_summed = CHECKSUM_NONE;
3209			SKB_GSO_CB(nskb)->csum =
3210				skb_copy_and_csum_bits(head_skb, offset,
3211						       skb_put(nskb, len),
3212						       len, 0);
3213			SKB_GSO_CB(nskb)->csum_start =
3214				skb_headroom(nskb) + doffset;
3215			continue;
3216		}
3217
3218		nskb_frag = skb_shinfo(nskb)->frags;
3219
3220		skb_copy_from_linear_data_offset(head_skb, offset,
3221						 skb_put(nskb, hsize), hsize);
3222
3223		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3224			SKBTX_SHARED_FRAG;
3225
3226		while (pos < offset + len) {
3227			if (i >= nfrags) {
3228				BUG_ON(skb_headlen(list_skb));
3229
3230				i = 0;
3231				nfrags = skb_shinfo(list_skb)->nr_frags;
3232				frag = skb_shinfo(list_skb)->frags;
3233				frag_skb = list_skb;
3234
3235				BUG_ON(!nfrags);
3236
3237				list_skb = list_skb->next;
3238			}
3239
3240			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3241				     MAX_SKB_FRAGS)) {
3242				net_warn_ratelimited(
3243					"skb_segment: too many frags: %u %u\n",
3244					pos, mss);
3245				goto err;
3246			}
3247
3248			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3249				goto err;
3250
3251			*nskb_frag = *frag;
3252			__skb_frag_ref(nskb_frag);
3253			size = skb_frag_size(nskb_frag);
3254
3255			if (pos < offset) {
3256				nskb_frag->page_offset += offset - pos;
3257				skb_frag_size_sub(nskb_frag, offset - pos);
3258			}
3259
3260			skb_shinfo(nskb)->nr_frags++;
3261
3262			if (pos + size <= offset + len) {
3263				i++;
3264				frag++;
3265				pos += size;
3266			} else {
3267				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3268				goto skip_fraglist;
3269			}
3270
3271			nskb_frag++;
3272		}
3273
3274skip_fraglist:
3275		nskb->data_len = len - hsize;
3276		nskb->len += nskb->data_len;
3277		nskb->truesize += nskb->data_len;
3278
3279perform_csum_check:
3280		if (!csum) {
3281			if (skb_has_shared_frag(nskb)) {
3282				err = __skb_linearize(nskb);
3283				if (err)
3284					goto err;
3285			}
3286			if (!nskb->remcsum_offload)
3287				nskb->ip_summed = CHECKSUM_NONE;
3288			SKB_GSO_CB(nskb)->csum =
3289				skb_checksum(nskb, doffset,
3290					     nskb->len - doffset, 0);
3291			SKB_GSO_CB(nskb)->csum_start =
3292				skb_headroom(nskb) + doffset;
3293		}
3294	} while ((offset += len) < head_skb->len);
3295
3296	/* Some callers want to get the end of the list.
3297	 * Put it in segs->prev to avoid walking the list.
3298	 * (see validate_xmit_skb_list() for example)
3299	 */
3300	segs->prev = tail;
3301
3302	if (partial_segs) {
3303		struct sk_buff *iter;
3304		int type = skb_shinfo(head_skb)->gso_type;
3305		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3306
3307		/* Update type to add partial and then remove dodgy if set */
3308		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3309		type &= ~SKB_GSO_DODGY;
3310
3311		/* Update GSO info and prepare to start updating headers on
3312		 * our way back down the stack of protocols.
3313		 */
3314		for (iter = segs; iter; iter = iter->next) {
3315			skb_shinfo(iter)->gso_size = gso_size;
3316			skb_shinfo(iter)->gso_segs = partial_segs;
3317			skb_shinfo(iter)->gso_type = type;
3318			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3319		}
3320
3321		if (tail->len - doffset <= gso_size)
3322			skb_shinfo(tail)->gso_size = 0;
3323		else if (tail != segs)
3324			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3325	}
3326
3327	/* Following permits correct backpressure, for protocols
3328	 * using skb_set_owner_w().
3329	 * Idea is to tranfert ownership from head_skb to last segment.
3330	 */
3331	if (head_skb->destructor == sock_wfree) {
3332		swap(tail->truesize, head_skb->truesize);
3333		swap(tail->destructor, head_skb->destructor);
3334		swap(tail->sk, head_skb->sk);
3335	}
3336	return segs;
3337
3338err:
3339	kfree_skb_list(segs);
3340	return ERR_PTR(err);
3341}
3342EXPORT_SYMBOL_GPL(skb_segment);
3343
3344int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3345{
3346	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3347	unsigned int offset = skb_gro_offset(skb);
3348	unsigned int headlen = skb_headlen(skb);
3349	unsigned int len = skb_gro_len(skb);
3350	struct sk_buff *lp, *p = *head;
3351	unsigned int delta_truesize;
3352
3353	if (unlikely(p->len + len >= 65536))
3354		return -E2BIG;
3355
3356	lp = NAPI_GRO_CB(p)->last;
3357	pinfo = skb_shinfo(lp);
3358
3359	if (headlen <= offset) {
3360		skb_frag_t *frag;
3361		skb_frag_t *frag2;
3362		int i = skbinfo->nr_frags;
3363		int nr_frags = pinfo->nr_frags + i;
3364
3365		if (nr_frags > MAX_SKB_FRAGS)
3366			goto merge;
3367
3368		offset -= headlen;
3369		pinfo->nr_frags = nr_frags;
3370		skbinfo->nr_frags = 0;
3371
3372		frag = pinfo->frags + nr_frags;
3373		frag2 = skbinfo->frags + i;
3374		do {
3375			*--frag = *--frag2;
3376		} while (--i);
3377
3378		frag->page_offset += offset;
3379		skb_frag_size_sub(frag, offset);
3380
3381		/* all fragments truesize : remove (head size + sk_buff) */
3382		delta_truesize = skb->truesize -
3383				 SKB_TRUESIZE(skb_end_offset(skb));
3384
3385		skb->truesize -= skb->data_len;
3386		skb->len -= skb->data_len;
3387		skb->data_len = 0;
3388
3389		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3390		goto done;
3391	} else if (skb->head_frag) {
3392		int nr_frags = pinfo->nr_frags;
3393		skb_frag_t *frag = pinfo->frags + nr_frags;
3394		struct page *page = virt_to_head_page(skb->head);
3395		unsigned int first_size = headlen - offset;
3396		unsigned int first_offset;
3397
3398		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3399			goto merge;
3400
3401		first_offset = skb->data -
3402			       (unsigned char *)page_address(page) +
3403			       offset;
3404
3405		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3406
3407		frag->page.p	  = page;
3408		frag->page_offset = first_offset;
3409		skb_frag_size_set(frag, first_size);
3410
3411		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3412		/* We dont need to clear skbinfo->nr_frags here */
3413
3414		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3415		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3416		goto done;
3417	}
3418
3419merge:
3420	delta_truesize = skb->truesize;
3421	if (offset > headlen) {
3422		unsigned int eat = offset - headlen;
3423
3424		skbinfo->frags[0].page_offset += eat;
3425		skb_frag_size_sub(&skbinfo->frags[0], eat);
3426		skb->data_len -= eat;
3427		skb->len -= eat;
3428		offset = headlen;
3429	}
3430
3431	__skb_pull(skb, offset);
3432
3433	if (NAPI_GRO_CB(p)->last == p)
3434		skb_shinfo(p)->frag_list = skb;
3435	else
3436		NAPI_GRO_CB(p)->last->next = skb;
3437	NAPI_GRO_CB(p)->last = skb;
3438	__skb_header_release(skb);
3439	lp = p;
3440
3441done:
3442	NAPI_GRO_CB(p)->count++;
3443	p->data_len += len;
3444	p->truesize += delta_truesize;
3445	p->len += len;
3446	if (lp != p) {
3447		lp->data_len += len;
3448		lp->truesize += delta_truesize;
3449		lp->len += len;
3450	}
3451	NAPI_GRO_CB(skb)->same_flow = 1;
3452	return 0;
3453}
3454EXPORT_SYMBOL_GPL(skb_gro_receive);
3455
3456void __init skb_init(void)
3457{
3458	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3459					      sizeof(struct sk_buff),
3460					      0,
3461					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3462					      NULL);
3463	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3464						sizeof(struct sk_buff_fclones),
3465						0,
3466						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3467						NULL);
3468}
3469
3470/**
3471 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3472 *	@skb: Socket buffer containing the buffers to be mapped
3473 *	@sg: The scatter-gather list to map into
3474 *	@offset: The offset into the buffer's contents to start mapping
3475 *	@len: Length of buffer space to be mapped
3476 *
3477 *	Fill the specified scatter-gather list with mappings/pointers into a
3478 *	region of the buffer space attached to a socket buffer.
3479 */
3480static int
3481__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3482{
3483	int start = skb_headlen(skb);
3484	int i, copy = start - offset;
3485	struct sk_buff *frag_iter;
3486	int elt = 0;
3487
3488	if (copy > 0) {
3489		if (copy > len)
3490			copy = len;
3491		sg_set_buf(sg, skb->data + offset, copy);
3492		elt++;
3493		if ((len -= copy) == 0)
3494			return elt;
3495		offset += copy;
3496	}
3497
3498	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3499		int end;
3500
3501		WARN_ON(start > offset + len);
3502
3503		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3504		if ((copy = end - offset) > 0) {
3505			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3506
3507			if (copy > len)
3508				copy = len;
3509			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3510					frag->page_offset+offset-start);
3511			elt++;
3512			if (!(len -= copy))
3513				return elt;
3514			offset += copy;
3515		}
3516		start = end;
3517	}
3518
3519	skb_walk_frags(skb, frag_iter) {
3520		int end;
3521
3522		WARN_ON(start > offset + len);
3523
3524		end = start + frag_iter->len;
3525		if ((copy = end - offset) > 0) {
3526			if (copy > len)
3527				copy = len;
3528			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3529					      copy);
3530			if ((len -= copy) == 0)
3531				return elt;
3532			offset += copy;
3533		}
3534		start = end;
3535	}
3536	BUG_ON(len);
3537	return elt;
3538}
3539
3540/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3541 * sglist without mark the sg which contain last skb data as the end.
3542 * So the caller can mannipulate sg list as will when padding new data after
3543 * the first call without calling sg_unmark_end to expend sg list.
3544 *
3545 * Scenario to use skb_to_sgvec_nomark:
3546 * 1. sg_init_table
3547 * 2. skb_to_sgvec_nomark(payload1)
3548 * 3. skb_to_sgvec_nomark(payload2)
3549 *
3550 * This is equivalent to:
3551 * 1. sg_init_table
3552 * 2. skb_to_sgvec(payload1)
3553 * 3. sg_unmark_end
3554 * 4. skb_to_sgvec(payload2)
3555 *
3556 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3557 * is more preferable.
3558 */
3559int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3560			int offset, int len)
3561{
3562	return __skb_to_sgvec(skb, sg, offset, len);
3563}
3564EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3565
3566int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3567{
3568	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3569
3570	sg_mark_end(&sg[nsg - 1]);
3571
3572	return nsg;
3573}
3574EXPORT_SYMBOL_GPL(skb_to_sgvec);
3575
3576/**
3577 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3578 *	@skb: The socket buffer to check.
3579 *	@tailbits: Amount of trailing space to be added
3580 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3581 *
3582 *	Make sure that the data buffers attached to a socket buffer are
3583 *	writable. If they are not, private copies are made of the data buffers
3584 *	and the socket buffer is set to use these instead.
3585 *
3586 *	If @tailbits is given, make sure that there is space to write @tailbits
3587 *	bytes of data beyond current end of socket buffer.  @trailer will be
3588 *	set to point to the skb in which this space begins.
3589 *
3590 *	The number of scatterlist elements required to completely map the
3591 *	COW'd and extended socket buffer will be returned.
3592 */
3593int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3594{
3595	int copyflag;
3596	int elt;
3597	struct sk_buff *skb1, **skb_p;
3598
3599	/* If skb is cloned or its head is paged, reallocate
3600	 * head pulling out all the pages (pages are considered not writable
3601	 * at the moment even if they are anonymous).
3602	 */
3603	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3604	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3605		return -ENOMEM;
3606
3607	/* Easy case. Most of packets will go this way. */
3608	if (!skb_has_frag_list(skb)) {
3609		/* A little of trouble, not enough of space for trailer.
3610		 * This should not happen, when stack is tuned to generate
3611		 * good frames. OK, on miss we reallocate and reserve even more
3612		 * space, 128 bytes is fair. */
3613
3614		if (skb_tailroom(skb) < tailbits &&
3615		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3616			return -ENOMEM;
3617
3618		/* Voila! */
3619		*trailer = skb;
3620		return 1;
3621	}
3622
3623	/* Misery. We are in troubles, going to mincer fragments... */
3624
3625	elt = 1;
3626	skb_p = &skb_shinfo(skb)->frag_list;
3627	copyflag = 0;
3628
3629	while ((skb1 = *skb_p) != NULL) {
3630		int ntail = 0;
3631
3632		/* The fragment is partially pulled by someone,
3633		 * this can happen on input. Copy it and everything
3634		 * after it. */
3635
3636		if (skb_shared(skb1))
3637			copyflag = 1;
3638
3639		/* If the skb is the last, worry about trailer. */
3640
3641		if (skb1->next == NULL && tailbits) {
3642			if (skb_shinfo(skb1)->nr_frags ||
3643			    skb_has_frag_list(skb1) ||
3644			    skb_tailroom(skb1) < tailbits)
3645				ntail = tailbits + 128;
3646		}
3647
3648		if (copyflag ||
3649		    skb_cloned(skb1) ||
3650		    ntail ||
3651		    skb_shinfo(skb1)->nr_frags ||
3652		    skb_has_frag_list(skb1)) {
3653			struct sk_buff *skb2;
3654
3655			/* Fuck, we are miserable poor guys... */
3656			if (ntail == 0)
3657				skb2 = skb_copy(skb1, GFP_ATOMIC);
3658			else
3659				skb2 = skb_copy_expand(skb1,
3660						       skb_headroom(skb1),
3661						       ntail,
3662						       GFP_ATOMIC);
3663			if (unlikely(skb2 == NULL))
3664				return -ENOMEM;
3665
3666			if (skb1->sk)
3667				skb_set_owner_w(skb2, skb1->sk);
3668
3669			/* Looking around. Are we still alive?
3670			 * OK, link new skb, drop old one */
3671
3672			skb2->next = skb1->next;
3673			*skb_p = skb2;
3674			kfree_skb(skb1);
3675			skb1 = skb2;
3676		}
3677		elt++;
3678		*trailer = skb1;
3679		skb_p = &skb1->next;
3680	}
3681
3682	return elt;
3683}
3684EXPORT_SYMBOL_GPL(skb_cow_data);
3685
3686static void sock_rmem_free(struct sk_buff *skb)
3687{
3688	struct sock *sk = skb->sk;
3689
3690	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3691}
3692
3693/*
3694 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3695 */
3696int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3697{
3698	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3699	    (unsigned int)sk->sk_rcvbuf)
3700		return -ENOMEM;
3701
3702	skb_orphan(skb);
3703	skb->sk = sk;
3704	skb->destructor = sock_rmem_free;
3705	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3706
3707	/* before exiting rcu section, make sure dst is refcounted */
3708	skb_dst_force(skb);
3709
3710	skb_queue_tail(&sk->sk_error_queue, skb);
3711	if (!sock_flag(sk, SOCK_DEAD))
3712		sk->sk_data_ready(sk);
3713	return 0;
3714}
3715EXPORT_SYMBOL(sock_queue_err_skb);
3716
3717static bool is_icmp_err_skb(const struct sk_buff *skb)
3718{
3719	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3720		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3721}
3722
3723struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3724{
3725	struct sk_buff_head *q = &sk->sk_error_queue;
3726	struct sk_buff *skb, *skb_next = NULL;
3727	bool icmp_next = false;
3728	unsigned long flags;
 
3729
3730	spin_lock_irqsave(&q->lock, flags);
3731	skb = __skb_dequeue(q);
3732	if (skb && (skb_next = skb_peek(q)))
3733		icmp_next = is_icmp_err_skb(skb_next);
3734	spin_unlock_irqrestore(&q->lock, flags);
3735
3736	if (is_icmp_err_skb(skb) && !icmp_next)
3737		sk->sk_err = 0;
3738
3739	if (skb_next)
3740		sk->sk_error_report(sk);
3741
3742	return skb;
3743}
3744EXPORT_SYMBOL(sock_dequeue_err_skb);
3745
3746/**
3747 * skb_clone_sk - create clone of skb, and take reference to socket
3748 * @skb: the skb to clone
3749 *
3750 * This function creates a clone of a buffer that holds a reference on
3751 * sk_refcnt.  Buffers created via this function are meant to be
3752 * returned using sock_queue_err_skb, or free via kfree_skb.
3753 *
3754 * When passing buffers allocated with this function to sock_queue_err_skb
3755 * it is necessary to wrap the call with sock_hold/sock_put in order to
3756 * prevent the socket from being released prior to being enqueued on
3757 * the sk_error_queue.
3758 */
3759struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3760{
3761	struct sock *sk = skb->sk;
3762	struct sk_buff *clone;
3763
3764	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3765		return NULL;
3766
3767	clone = skb_clone(skb, GFP_ATOMIC);
3768	if (!clone) {
3769		sock_put(sk);
3770		return NULL;
3771	}
3772
3773	clone->sk = sk;
3774	clone->destructor = sock_efree;
3775
3776	return clone;
3777}
3778EXPORT_SYMBOL(skb_clone_sk);
3779
3780static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3781					struct sock *sk,
3782					int tstype)
3783{
3784	struct sock_exterr_skb *serr;
3785	int err;
3786
3787	serr = SKB_EXT_ERR(skb);
3788	memset(serr, 0, sizeof(*serr));
3789	serr->ee.ee_errno = ENOMSG;
3790	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3791	serr->ee.ee_info = tstype;
3792	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3793		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3794		if (sk->sk_protocol == IPPROTO_TCP &&
3795		    sk->sk_type == SOCK_STREAM)
3796			serr->ee.ee_data -= sk->sk_tskey;
3797	}
3798
3799	err = sock_queue_err_skb(sk, skb);
3800
3801	if (err)
3802		kfree_skb(skb);
3803}
3804
3805static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3806{
3807	bool ret;
3808
3809	if (likely(sysctl_tstamp_allow_data || tsonly))
3810		return true;
3811
3812	read_lock_bh(&sk->sk_callback_lock);
3813	ret = sk->sk_socket && sk->sk_socket->file &&
3814	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3815	read_unlock_bh(&sk->sk_callback_lock);
3816	return ret;
3817}
3818
3819void skb_complete_tx_timestamp(struct sk_buff *skb,
3820			       struct skb_shared_hwtstamps *hwtstamps)
3821{
3822	struct sock *sk = skb->sk;
3823
3824	if (!skb_may_tx_timestamp(sk, false))
3825		return;
3826
3827	/* Take a reference to prevent skb_orphan() from freeing the socket,
3828	 * but only if the socket refcount is not zero.
3829	 */
3830	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3831		*skb_hwtstamps(skb) = *hwtstamps;
3832		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3833		sock_put(sk);
3834	}
3835}
3836EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3837
3838void __skb_tstamp_tx(struct sk_buff *orig_skb,
3839		     struct skb_shared_hwtstamps *hwtstamps,
3840		     struct sock *sk, int tstype)
3841{
3842	struct sk_buff *skb;
3843	bool tsonly;
3844
3845	if (!sk)
3846		return;
3847
3848	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3849	if (!skb_may_tx_timestamp(sk, tsonly))
3850		return;
3851
3852	if (tsonly) {
3853#ifdef CONFIG_INET
3854		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3855		    sk->sk_protocol == IPPROTO_TCP &&
3856		    sk->sk_type == SOCK_STREAM)
3857			skb = tcp_get_timestamping_opt_stats(sk);
3858		else
3859#endif
3860			skb = alloc_skb(0, GFP_ATOMIC);
3861	} else {
3862		skb = skb_clone(orig_skb, GFP_ATOMIC);
3863	}
3864	if (!skb)
3865		return;
3866
3867	if (tsonly) {
3868		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3869		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3870	}
3871
3872	if (hwtstamps)
3873		*skb_hwtstamps(skb) = *hwtstamps;
3874	else
3875		skb->tstamp = ktime_get_real();
3876
3877	__skb_complete_tx_timestamp(skb, sk, tstype);
3878}
3879EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3880
3881void skb_tstamp_tx(struct sk_buff *orig_skb,
3882		   struct skb_shared_hwtstamps *hwtstamps)
3883{
3884	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3885			       SCM_TSTAMP_SND);
3886}
3887EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3888
3889void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3890{
3891	struct sock *sk = skb->sk;
3892	struct sock_exterr_skb *serr;
3893	int err = 1;
3894
3895	skb->wifi_acked_valid = 1;
3896	skb->wifi_acked = acked;
3897
3898	serr = SKB_EXT_ERR(skb);
3899	memset(serr, 0, sizeof(*serr));
3900	serr->ee.ee_errno = ENOMSG;
3901	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3902
3903	/* Take a reference to prevent skb_orphan() from freeing the socket,
3904	 * but only if the socket refcount is not zero.
3905	 */
3906	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3907		err = sock_queue_err_skb(sk, skb);
3908		sock_put(sk);
3909	}
3910	if (err)
3911		kfree_skb(skb);
 
 
3912}
3913EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3914
3915/**
3916 * skb_partial_csum_set - set up and verify partial csum values for packet
3917 * @skb: the skb to set
3918 * @start: the number of bytes after skb->data to start checksumming.
3919 * @off: the offset from start to place the checksum.
3920 *
3921 * For untrusted partially-checksummed packets, we need to make sure the values
3922 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3923 *
3924 * This function checks and sets those values and skb->ip_summed: if this
3925 * returns false you should drop the packet.
3926 */
3927bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3928{
3929	if (unlikely(start > skb_headlen(skb)) ||
3930	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3931		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3932				     start, off, skb_headlen(skb));
3933		return false;
3934	}
3935	skb->ip_summed = CHECKSUM_PARTIAL;
3936	skb->csum_start = skb_headroom(skb) + start;
3937	skb->csum_offset = off;
3938	skb_set_transport_header(skb, start);
3939	return true;
3940}
3941EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3942
3943static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3944			       unsigned int max)
3945{
3946	if (skb_headlen(skb) >= len)
3947		return 0;
3948
3949	/* If we need to pullup then pullup to the max, so we
3950	 * won't need to do it again.
3951	 */
3952	if (max > skb->len)
3953		max = skb->len;
3954
3955	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3956		return -ENOMEM;
3957
3958	if (skb_headlen(skb) < len)
3959		return -EPROTO;
3960
3961	return 0;
3962}
3963
3964#define MAX_TCP_HDR_LEN (15 * 4)
3965
3966static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3967				      typeof(IPPROTO_IP) proto,
3968				      unsigned int off)
3969{
3970	switch (proto) {
3971		int err;
3972
3973	case IPPROTO_TCP:
3974		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3975					  off + MAX_TCP_HDR_LEN);
3976		if (!err && !skb_partial_csum_set(skb, off,
3977						  offsetof(struct tcphdr,
3978							   check)))
3979			err = -EPROTO;
3980		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3981
3982	case IPPROTO_UDP:
3983		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3984					  off + sizeof(struct udphdr));
3985		if (!err && !skb_partial_csum_set(skb, off,
3986						  offsetof(struct udphdr,
3987							   check)))
3988			err = -EPROTO;
3989		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3990	}
3991
3992	return ERR_PTR(-EPROTO);
3993}
3994
3995/* This value should be large enough to cover a tagged ethernet header plus
3996 * maximally sized IP and TCP or UDP headers.
3997 */
3998#define MAX_IP_HDR_LEN 128
3999
4000static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4001{
4002	unsigned int off;
4003	bool fragment;
4004	__sum16 *csum;
4005	int err;
4006
4007	fragment = false;
4008
4009	err = skb_maybe_pull_tail(skb,
4010				  sizeof(struct iphdr),
4011				  MAX_IP_HDR_LEN);
4012	if (err < 0)
4013		goto out;
4014
4015	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4016		fragment = true;
4017
4018	off = ip_hdrlen(skb);
4019
4020	err = -EPROTO;
4021
4022	if (fragment)
4023		goto out;
4024
4025	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4026	if (IS_ERR(csum))
4027		return PTR_ERR(csum);
4028
4029	if (recalculate)
4030		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4031					   ip_hdr(skb)->daddr,
4032					   skb->len - off,
4033					   ip_hdr(skb)->protocol, 0);
4034	err = 0;
4035
4036out:
4037	return err;
4038}
4039
4040/* This value should be large enough to cover a tagged ethernet header plus
4041 * an IPv6 header, all options, and a maximal TCP or UDP header.
4042 */
4043#define MAX_IPV6_HDR_LEN 256
4044
4045#define OPT_HDR(type, skb, off) \
4046	(type *)(skb_network_header(skb) + (off))
4047
4048static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4049{
4050	int err;
4051	u8 nexthdr;
4052	unsigned int off;
4053	unsigned int len;
4054	bool fragment;
4055	bool done;
4056	__sum16 *csum;
4057
4058	fragment = false;
4059	done = false;
4060
4061	off = sizeof(struct ipv6hdr);
4062
4063	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4064	if (err < 0)
4065		goto out;
4066
4067	nexthdr = ipv6_hdr(skb)->nexthdr;
4068
4069	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4070	while (off <= len && !done) {
4071		switch (nexthdr) {
4072		case IPPROTO_DSTOPTS:
4073		case IPPROTO_HOPOPTS:
4074		case IPPROTO_ROUTING: {
4075			struct ipv6_opt_hdr *hp;
4076
4077			err = skb_maybe_pull_tail(skb,
4078						  off +
4079						  sizeof(struct ipv6_opt_hdr),
4080						  MAX_IPV6_HDR_LEN);
4081			if (err < 0)
4082				goto out;
4083
4084			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4085			nexthdr = hp->nexthdr;
4086			off += ipv6_optlen(hp);
4087			break;
4088		}
4089		case IPPROTO_AH: {
4090			struct ip_auth_hdr *hp;
4091
4092			err = skb_maybe_pull_tail(skb,
4093						  off +
4094						  sizeof(struct ip_auth_hdr),
4095						  MAX_IPV6_HDR_LEN);
4096			if (err < 0)
4097				goto out;
4098
4099			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4100			nexthdr = hp->nexthdr;
4101			off += ipv6_authlen(hp);
4102			break;
4103		}
4104		case IPPROTO_FRAGMENT: {
4105			struct frag_hdr *hp;
4106
4107			err = skb_maybe_pull_tail(skb,
4108						  off +
4109						  sizeof(struct frag_hdr),
4110						  MAX_IPV6_HDR_LEN);
4111			if (err < 0)
4112				goto out;
4113
4114			hp = OPT_HDR(struct frag_hdr, skb, off);
4115
4116			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4117				fragment = true;
4118
4119			nexthdr = hp->nexthdr;
4120			off += sizeof(struct frag_hdr);
4121			break;
4122		}
4123		default:
4124			done = true;
4125			break;
4126		}
4127	}
4128
4129	err = -EPROTO;
4130
4131	if (!done || fragment)
4132		goto out;
4133
4134	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4135	if (IS_ERR(csum))
4136		return PTR_ERR(csum);
4137
4138	if (recalculate)
4139		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4140					 &ipv6_hdr(skb)->daddr,
4141					 skb->len - off, nexthdr, 0);
4142	err = 0;
4143
4144out:
4145	return err;
4146}
4147
4148/**
4149 * skb_checksum_setup - set up partial checksum offset
4150 * @skb: the skb to set up
4151 * @recalculate: if true the pseudo-header checksum will be recalculated
4152 */
4153int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4154{
4155	int err;
4156
4157	switch (skb->protocol) {
4158	case htons(ETH_P_IP):
4159		err = skb_checksum_setup_ipv4(skb, recalculate);
4160		break;
4161
4162	case htons(ETH_P_IPV6):
4163		err = skb_checksum_setup_ipv6(skb, recalculate);
4164		break;
4165
4166	default:
4167		err = -EPROTO;
4168		break;
4169	}
4170
4171	return err;
4172}
4173EXPORT_SYMBOL(skb_checksum_setup);
4174
4175/**
4176 * skb_checksum_maybe_trim - maybe trims the given skb
4177 * @skb: the skb to check
4178 * @transport_len: the data length beyond the network header
4179 *
4180 * Checks whether the given skb has data beyond the given transport length.
4181 * If so, returns a cloned skb trimmed to this transport length.
4182 * Otherwise returns the provided skb. Returns NULL in error cases
4183 * (e.g. transport_len exceeds skb length or out-of-memory).
4184 *
4185 * Caller needs to set the skb transport header and free any returned skb if it
4186 * differs from the provided skb.
4187 */
4188static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4189					       unsigned int transport_len)
4190{
4191	struct sk_buff *skb_chk;
4192	unsigned int len = skb_transport_offset(skb) + transport_len;
4193	int ret;
4194
4195	if (skb->len < len)
4196		return NULL;
4197	else if (skb->len == len)
4198		return skb;
4199
4200	skb_chk = skb_clone(skb, GFP_ATOMIC);
4201	if (!skb_chk)
4202		return NULL;
4203
4204	ret = pskb_trim_rcsum(skb_chk, len);
4205	if (ret) {
4206		kfree_skb(skb_chk);
4207		return NULL;
4208	}
4209
4210	return skb_chk;
4211}
4212
4213/**
4214 * skb_checksum_trimmed - validate checksum of an skb
4215 * @skb: the skb to check
4216 * @transport_len: the data length beyond the network header
4217 * @skb_chkf: checksum function to use
4218 *
4219 * Applies the given checksum function skb_chkf to the provided skb.
4220 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4221 *
4222 * If the skb has data beyond the given transport length, then a
4223 * trimmed & cloned skb is checked and returned.
4224 *
4225 * Caller needs to set the skb transport header and free any returned skb if it
4226 * differs from the provided skb.
4227 */
4228struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4229				     unsigned int transport_len,
4230				     __sum16(*skb_chkf)(struct sk_buff *skb))
4231{
4232	struct sk_buff *skb_chk;
4233	unsigned int offset = skb_transport_offset(skb);
4234	__sum16 ret;
4235
4236	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4237	if (!skb_chk)
4238		goto err;
4239
4240	if (!pskb_may_pull(skb_chk, offset))
4241		goto err;
4242
4243	skb_pull_rcsum(skb_chk, offset);
4244	ret = skb_chkf(skb_chk);
4245	skb_push_rcsum(skb_chk, offset);
4246
4247	if (ret)
4248		goto err;
4249
4250	return skb_chk;
4251
4252err:
4253	if (skb_chk && skb_chk != skb)
4254		kfree_skb(skb_chk);
4255
4256	return NULL;
4257
4258}
4259EXPORT_SYMBOL(skb_checksum_trimmed);
4260
4261void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4262{
4263	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4264			     skb->dev->name);
4265}
4266EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4267
4268void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4269{
4270	if (head_stolen) {
4271		skb_release_head_state(skb);
4272		kmem_cache_free(skbuff_head_cache, skb);
4273	} else {
4274		__kfree_skb(skb);
4275	}
4276}
4277EXPORT_SYMBOL(kfree_skb_partial);
4278
4279/**
4280 * skb_try_coalesce - try to merge skb to prior one
4281 * @to: prior buffer
4282 * @from: buffer to add
4283 * @fragstolen: pointer to boolean
4284 * @delta_truesize: how much more was allocated than was requested
4285 */
4286bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4287		      bool *fragstolen, int *delta_truesize)
4288{
4289	int i, delta, len = from->len;
4290
4291	*fragstolen = false;
4292
4293	if (skb_cloned(to))
4294		return false;
4295
4296	if (len <= skb_tailroom(to)) {
4297		if (len)
4298			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4299		*delta_truesize = 0;
4300		return true;
4301	}
4302
4303	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4304		return false;
4305
4306	if (skb_headlen(from) != 0) {
4307		struct page *page;
4308		unsigned int offset;
4309
4310		if (skb_shinfo(to)->nr_frags +
4311		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4312			return false;
4313
4314		if (skb_head_is_locked(from))
4315			return false;
4316
4317		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4318
4319		page = virt_to_head_page(from->head);
4320		offset = from->data - (unsigned char *)page_address(page);
4321
4322		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4323				   page, offset, skb_headlen(from));
4324		*fragstolen = true;
4325	} else {
4326		if (skb_shinfo(to)->nr_frags +
4327		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4328			return false;
4329
4330		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4331	}
4332
4333	WARN_ON_ONCE(delta < len);
4334
4335	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4336	       skb_shinfo(from)->frags,
4337	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4338	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4339
4340	if (!skb_cloned(from))
4341		skb_shinfo(from)->nr_frags = 0;
4342
4343	/* if the skb is not cloned this does nothing
4344	 * since we set nr_frags to 0.
4345	 */
4346	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4347		skb_frag_ref(from, i);
4348
4349	to->truesize += delta;
4350	to->len += len;
4351	to->data_len += len;
4352
4353	*delta_truesize = delta;
4354	return true;
4355}
4356EXPORT_SYMBOL(skb_try_coalesce);
4357
4358/**
4359 * skb_scrub_packet - scrub an skb
4360 *
4361 * @skb: buffer to clean
4362 * @xnet: packet is crossing netns
4363 *
4364 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4365 * into/from a tunnel. Some information have to be cleared during these
4366 * operations.
4367 * skb_scrub_packet can also be used to clean a skb before injecting it in
4368 * another namespace (@xnet == true). We have to clear all information in the
4369 * skb that could impact namespace isolation.
4370 */
4371void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4372{
4373	skb->tstamp = 0;
4374	skb->pkt_type = PACKET_HOST;
4375	skb->skb_iif = 0;
4376	skb->ignore_df = 0;
4377	skb_dst_drop(skb);
4378	secpath_reset(skb);
4379	nf_reset(skb);
4380	nf_reset_trace(skb);
4381
4382	if (!xnet)
4383		return;
4384
4385	skb_orphan(skb);
4386	skb->mark = 0;
4387}
4388EXPORT_SYMBOL_GPL(skb_scrub_packet);
4389
4390/**
4391 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4392 *
4393 * @skb: GSO skb
4394 *
4395 * skb_gso_transport_seglen is used to determine the real size of the
4396 * individual segments, including Layer4 headers (TCP/UDP).
4397 *
4398 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4399 */
4400unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4401{
4402	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4403	unsigned int thlen = 0;
4404
4405	if (skb->encapsulation) {
4406		thlen = skb_inner_transport_header(skb) -
4407			skb_transport_header(skb);
4408
4409		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4410			thlen += inner_tcp_hdrlen(skb);
4411	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4412		thlen = tcp_hdrlen(skb);
4413	} else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4414		thlen = sizeof(struct sctphdr);
4415	}
4416	/* UFO sets gso_size to the size of the fragmentation
4417	 * payload, i.e. the size of the L4 (UDP) header is already
4418	 * accounted for.
4419	 */
4420	return thlen + shinfo->gso_size;
4421}
4422EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4423
4424/**
4425 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4426 *
4427 * @skb: GSO skb
4428 * @mtu: MTU to validate against
4429 *
4430 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4431 * once split.
4432 */
4433bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4434{
4435	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4436	const struct sk_buff *iter;
4437	unsigned int hlen;
4438
4439	hlen = skb_gso_network_seglen(skb);
4440
4441	if (shinfo->gso_size != GSO_BY_FRAGS)
4442		return hlen <= mtu;
4443
4444	/* Undo this so we can re-use header sizes */
4445	hlen -= GSO_BY_FRAGS;
4446
4447	skb_walk_frags(skb, iter) {
4448		if (hlen + skb_headlen(iter) > mtu)
4449			return false;
4450	}
4451
4452	return true;
4453}
4454EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4455
4456static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4457{
4458	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4459		kfree_skb(skb);
4460		return NULL;
4461	}
4462
4463	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4464		2 * ETH_ALEN);
4465	skb->mac_header += VLAN_HLEN;
4466	return skb;
4467}
4468
4469struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4470{
4471	struct vlan_hdr *vhdr;
4472	u16 vlan_tci;
4473
4474	if (unlikely(skb_vlan_tag_present(skb))) {
4475		/* vlan_tci is already set-up so leave this for another time */
4476		return skb;
4477	}
4478
4479	skb = skb_share_check(skb, GFP_ATOMIC);
4480	if (unlikely(!skb))
4481		goto err_free;
4482
4483	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4484		goto err_free;
4485
4486	vhdr = (struct vlan_hdr *)skb->data;
4487	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4488	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4489
4490	skb_pull_rcsum(skb, VLAN_HLEN);
4491	vlan_set_encap_proto(skb, vhdr);
4492
4493	skb = skb_reorder_vlan_header(skb);
4494	if (unlikely(!skb))
4495		goto err_free;
4496
4497	skb_reset_network_header(skb);
4498	skb_reset_transport_header(skb);
4499	skb_reset_mac_len(skb);
4500
4501	return skb;
4502
4503err_free:
4504	kfree_skb(skb);
4505	return NULL;
4506}
4507EXPORT_SYMBOL(skb_vlan_untag);
4508
4509int skb_ensure_writable(struct sk_buff *skb, int write_len)
4510{
4511	if (!pskb_may_pull(skb, write_len))
4512		return -ENOMEM;
4513
4514	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4515		return 0;
4516
4517	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4518}
4519EXPORT_SYMBOL(skb_ensure_writable);
4520
4521/* remove VLAN header from packet and update csum accordingly.
4522 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4523 */
4524int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4525{
4526	struct vlan_hdr *vhdr;
4527	int offset = skb->data - skb_mac_header(skb);
4528	int err;
4529
4530	if (WARN_ONCE(offset,
4531		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4532		      offset)) {
4533		return -EINVAL;
4534	}
4535
4536	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4537	if (unlikely(err))
4538		return err;
4539
4540	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4541
4542	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4543	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4544
4545	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4546	__skb_pull(skb, VLAN_HLEN);
4547
4548	vlan_set_encap_proto(skb, vhdr);
4549	skb->mac_header += VLAN_HLEN;
4550
4551	if (skb_network_offset(skb) < ETH_HLEN)
4552		skb_set_network_header(skb, ETH_HLEN);
4553
4554	skb_reset_mac_len(skb);
 
 
4555
4556	return err;
4557}
4558EXPORT_SYMBOL(__skb_vlan_pop);
4559
4560/* Pop a vlan tag either from hwaccel or from payload.
4561 * Expects skb->data at mac header.
4562 */
4563int skb_vlan_pop(struct sk_buff *skb)
4564{
4565	u16 vlan_tci;
4566	__be16 vlan_proto;
4567	int err;
4568
4569	if (likely(skb_vlan_tag_present(skb))) {
4570		skb->vlan_tci = 0;
4571	} else {
4572		if (unlikely(!eth_type_vlan(skb->protocol)))
 
 
4573			return 0;
4574
4575		err = __skb_vlan_pop(skb, &vlan_tci);
4576		if (err)
4577			return err;
4578	}
4579	/* move next vlan tag to hw accel tag */
4580	if (likely(!eth_type_vlan(skb->protocol)))
 
 
4581		return 0;
4582
4583	vlan_proto = skb->protocol;
4584	err = __skb_vlan_pop(skb, &vlan_tci);
4585	if (unlikely(err))
4586		return err;
4587
4588	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4589	return 0;
4590}
4591EXPORT_SYMBOL(skb_vlan_pop);
4592
4593/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4594 * Expects skb->data at mac header.
4595 */
4596int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4597{
4598	if (skb_vlan_tag_present(skb)) {
4599		int offset = skb->data - skb_mac_header(skb);
4600		int err;
4601
4602		if (WARN_ONCE(offset,
4603			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4604			      offset)) {
4605			return -EINVAL;
4606		}
4607
4608		err = __vlan_insert_tag(skb, skb->vlan_proto,
4609					skb_vlan_tag_get(skb));
4610		if (err)
 
4611			return err;
 
4612
4613		skb->protocol = skb->vlan_proto;
4614		skb->mac_len += VLAN_HLEN;
4615
4616		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
 
4617	}
4618	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4619	return 0;
4620}
4621EXPORT_SYMBOL(skb_vlan_push);
4622
4623/**
4624 * alloc_skb_with_frags - allocate skb with page frags
4625 *
4626 * @header_len: size of linear part
4627 * @data_len: needed length in frags
4628 * @max_page_order: max page order desired.
4629 * @errcode: pointer to error code if any
4630 * @gfp_mask: allocation mask
4631 *
4632 * This can be used to allocate a paged skb, given a maximal order for frags.
4633 */
4634struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4635				     unsigned long data_len,
4636				     int max_page_order,
4637				     int *errcode,
4638				     gfp_t gfp_mask)
4639{
4640	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4641	unsigned long chunk;
4642	struct sk_buff *skb;
4643	struct page *page;
4644	gfp_t gfp_head;
4645	int i;
4646
4647	*errcode = -EMSGSIZE;
4648	/* Note this test could be relaxed, if we succeed to allocate
4649	 * high order pages...
4650	 */
4651	if (npages > MAX_SKB_FRAGS)
4652		return NULL;
4653
4654	gfp_head = gfp_mask;
4655	if (gfp_head & __GFP_DIRECT_RECLAIM)
4656		gfp_head |= __GFP_REPEAT;
4657
4658	*errcode = -ENOBUFS;
4659	skb = alloc_skb(header_len, gfp_head);
4660	if (!skb)
4661		return NULL;
4662
4663	skb->truesize += npages << PAGE_SHIFT;
4664
4665	for (i = 0; npages > 0; i++) {
4666		int order = max_page_order;
4667
4668		while (order) {
4669			if (npages >= 1 << order) {
4670				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4671						   __GFP_COMP |
4672						   __GFP_NOWARN |
4673						   __GFP_NORETRY,
4674						   order);
4675				if (page)
4676					goto fill_page;
4677				/* Do not retry other high order allocations */
4678				order = 1;
4679				max_page_order = 0;
4680			}
4681			order--;
4682		}
4683		page = alloc_page(gfp_mask);
4684		if (!page)
4685			goto failure;
4686fill_page:
4687		chunk = min_t(unsigned long, data_len,
4688			      PAGE_SIZE << order);
4689		skb_fill_page_desc(skb, i, page, 0, chunk);
4690		data_len -= chunk;
4691		npages -= 1 << order;
4692	}
4693	return skb;
4694
4695failure:
4696	kfree_skb(skb);
4697	return NULL;
4698}
4699EXPORT_SYMBOL(alloc_skb_with_frags);
4700
4701/* carve out the first off bytes from skb when off < headlen */
4702static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4703				    const int headlen, gfp_t gfp_mask)
4704{
4705	int i;
4706	int size = skb_end_offset(skb);
4707	int new_hlen = headlen - off;
4708	u8 *data;
4709
4710	size = SKB_DATA_ALIGN(size);
4711
4712	if (skb_pfmemalloc(skb))
4713		gfp_mask |= __GFP_MEMALLOC;
4714	data = kmalloc_reserve(size +
4715			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4716			       gfp_mask, NUMA_NO_NODE, NULL);
4717	if (!data)
4718		return -ENOMEM;
4719
4720	size = SKB_WITH_OVERHEAD(ksize(data));
4721
4722	/* Copy real data, and all frags */
4723	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4724	skb->len -= off;
4725
4726	memcpy((struct skb_shared_info *)(data + size),
4727	       skb_shinfo(skb),
4728	       offsetof(struct skb_shared_info,
4729			frags[skb_shinfo(skb)->nr_frags]));
4730	if (skb_cloned(skb)) {
4731		/* drop the old head gracefully */
4732		if (skb_orphan_frags(skb, gfp_mask)) {
4733			kfree(data);
4734			return -ENOMEM;
4735		}
4736		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4737			skb_frag_ref(skb, i);
4738		if (skb_has_frag_list(skb))
4739			skb_clone_fraglist(skb);
4740		skb_release_data(skb);
4741	} else {
4742		/* we can reuse existing recount- all we did was
4743		 * relocate values
4744		 */
4745		skb_free_head(skb);
4746	}
4747
4748	skb->head = data;
4749	skb->data = data;
4750	skb->head_frag = 0;
4751#ifdef NET_SKBUFF_DATA_USES_OFFSET
4752	skb->end = size;
4753#else
4754	skb->end = skb->head + size;
4755#endif
4756	skb_set_tail_pointer(skb, skb_headlen(skb));
4757	skb_headers_offset_update(skb, 0);
4758	skb->cloned = 0;
4759	skb->hdr_len = 0;
4760	skb->nohdr = 0;
4761	atomic_set(&skb_shinfo(skb)->dataref, 1);
4762
4763	return 0;
4764}
4765
4766static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4767
4768/* carve out the first eat bytes from skb's frag_list. May recurse into
4769 * pskb_carve()
4770 */
4771static int pskb_carve_frag_list(struct sk_buff *skb,
4772				struct skb_shared_info *shinfo, int eat,
4773				gfp_t gfp_mask)
4774{
4775	struct sk_buff *list = shinfo->frag_list;
4776	struct sk_buff *clone = NULL;
4777	struct sk_buff *insp = NULL;
4778
4779	do {
4780		if (!list) {
4781			pr_err("Not enough bytes to eat. Want %d\n", eat);
4782			return -EFAULT;
4783		}
4784		if (list->len <= eat) {
4785			/* Eaten as whole. */
4786			eat -= list->len;
4787			list = list->next;
4788			insp = list;
4789		} else {
4790			/* Eaten partially. */
4791			if (skb_shared(list)) {
4792				clone = skb_clone(list, gfp_mask);
4793				if (!clone)
4794					return -ENOMEM;
4795				insp = list->next;
4796				list = clone;
4797			} else {
4798				/* This may be pulled without problems. */
4799				insp = list;
4800			}
4801			if (pskb_carve(list, eat, gfp_mask) < 0) {
4802				kfree_skb(clone);
4803				return -ENOMEM;
4804			}
4805			break;
4806		}
4807	} while (eat);
4808
4809	/* Free pulled out fragments. */
4810	while ((list = shinfo->frag_list) != insp) {
4811		shinfo->frag_list = list->next;
4812		kfree_skb(list);
4813	}
4814	/* And insert new clone at head. */
4815	if (clone) {
4816		clone->next = list;
4817		shinfo->frag_list = clone;
4818	}
4819	return 0;
4820}
4821
4822/* carve off first len bytes from skb. Split line (off) is in the
4823 * non-linear part of skb
4824 */
4825static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4826				       int pos, gfp_t gfp_mask)
4827{
4828	int i, k = 0;
4829	int size = skb_end_offset(skb);
4830	u8 *data;
4831	const int nfrags = skb_shinfo(skb)->nr_frags;
4832	struct skb_shared_info *shinfo;
4833
4834	size = SKB_DATA_ALIGN(size);
4835
4836	if (skb_pfmemalloc(skb))
4837		gfp_mask |= __GFP_MEMALLOC;
4838	data = kmalloc_reserve(size +
4839			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4840			       gfp_mask, NUMA_NO_NODE, NULL);
4841	if (!data)
4842		return -ENOMEM;
4843
4844	size = SKB_WITH_OVERHEAD(ksize(data));
4845
4846	memcpy((struct skb_shared_info *)(data + size),
4847	       skb_shinfo(skb), offsetof(struct skb_shared_info,
4848					 frags[skb_shinfo(skb)->nr_frags]));
4849	if (skb_orphan_frags(skb, gfp_mask)) {
4850		kfree(data);
4851		return -ENOMEM;
4852	}
4853	shinfo = (struct skb_shared_info *)(data + size);
4854	for (i = 0; i < nfrags; i++) {
4855		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4856
4857		if (pos + fsize > off) {
4858			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4859
4860			if (pos < off) {
4861				/* Split frag.
4862				 * We have two variants in this case:
4863				 * 1. Move all the frag to the second
4864				 *    part, if it is possible. F.e.
4865				 *    this approach is mandatory for TUX,
4866				 *    where splitting is expensive.
4867				 * 2. Split is accurately. We make this.
4868				 */
4869				shinfo->frags[0].page_offset += off - pos;
4870				skb_frag_size_sub(&shinfo->frags[0], off - pos);
4871			}
4872			skb_frag_ref(skb, i);
4873			k++;
4874		}
4875		pos += fsize;
4876	}
4877	shinfo->nr_frags = k;
4878	if (skb_has_frag_list(skb))
4879		skb_clone_fraglist(skb);
4880
4881	if (k == 0) {
4882		/* split line is in frag list */
4883		pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4884	}
4885	skb_release_data(skb);
4886
4887	skb->head = data;
4888	skb->head_frag = 0;
4889	skb->data = data;
4890#ifdef NET_SKBUFF_DATA_USES_OFFSET
4891	skb->end = size;
4892#else
4893	skb->end = skb->head + size;
4894#endif
4895	skb_reset_tail_pointer(skb);
4896	skb_headers_offset_update(skb, 0);
4897	skb->cloned   = 0;
4898	skb->hdr_len  = 0;
4899	skb->nohdr    = 0;
4900	skb->len -= off;
4901	skb->data_len = skb->len;
4902	atomic_set(&skb_shinfo(skb)->dataref, 1);
4903	return 0;
4904}
4905
4906/* remove len bytes from the beginning of the skb */
4907static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4908{
4909	int headlen = skb_headlen(skb);
4910
4911	if (len < headlen)
4912		return pskb_carve_inside_header(skb, len, headlen, gfp);
4913	else
4914		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4915}
4916
4917/* Extract to_copy bytes starting at off from skb, and return this in
4918 * a new skb
4919 */
4920struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4921			     int to_copy, gfp_t gfp)
4922{
4923	struct sk_buff  *clone = skb_clone(skb, gfp);
4924
4925	if (!clone)
4926		return NULL;
4927
4928	if (pskb_carve(clone, off, gfp) < 0 ||
4929	    pskb_trim(clone, to_copy)) {
4930		kfree_skb(clone);
4931		return NULL;
4932	}
4933	return clone;
4934}
4935EXPORT_SYMBOL(pskb_extract);
4936
4937/**
4938 * skb_condense - try to get rid of fragments/frag_list if possible
4939 * @skb: buffer
4940 *
4941 * Can be used to save memory before skb is added to a busy queue.
4942 * If packet has bytes in frags and enough tail room in skb->head,
4943 * pull all of them, so that we can free the frags right now and adjust
4944 * truesize.
4945 * Notes:
4946 *	We do not reallocate skb->head thus can not fail.
4947 *	Caller must re-evaluate skb->truesize if needed.
4948 */
4949void skb_condense(struct sk_buff *skb)
4950{
4951	if (skb->data_len) {
4952		if (skb->data_len > skb->end - skb->tail ||
4953		    skb_cloned(skb))
4954			return;
4955
4956		/* Nice, we can free page frag(s) right now */
4957		__pskb_pull_tail(skb, skb->data_len);
4958	}
4959	/* At this point, skb->truesize might be over estimated,
4960	 * because skb had a fragment, and fragments do not tell
4961	 * their truesize.
4962	 * When we pulled its content into skb->head, fragment
4963	 * was freed, but __pskb_pull_tail() could not possibly
4964	 * adjust skb->truesize, not knowing the frag truesize.
4965	 */
4966	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4967}