Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.6
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
  79
  80struct kmem_cache *skbuff_head_cache __read_mostly;
  81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  83EXPORT_SYMBOL(sysctl_max_skb_frags);
  84
  85/**
  86 *	skb_panic - private function for out-of-line support
  87 *	@skb:	buffer
  88 *	@sz:	size
  89 *	@addr:	address
  90 *	@msg:	skb_over_panic or skb_under_panic
  91 *
  92 *	Out-of-line support for skb_put() and skb_push().
  93 *	Called via the wrapper skb_over_panic() or skb_under_panic().
  94 *	Keep out of line to prevent kernel bloat.
  95 *	__builtin_return_address is not used because it is not always reliable.
  96 */
  97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  98		      const char msg[])
  99{
 100	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 101		 msg, addr, skb->len, sz, skb->head, skb->data,
 102		 (unsigned long)skb->tail, (unsigned long)skb->end,
 103		 skb->dev ? skb->dev->name : "<NULL>");
 104	BUG();
 105}
 106
 107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 108{
 109	skb_panic(skb, sz, addr, __func__);
 110}
 111
 112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 
 113{
 114	skb_panic(skb, sz, addr, __func__);
 115}
 116
 
 
 
 
 
 
 
 
 
 
 
 
 117/*
 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 119 * the caller if emergency pfmemalloc reserves are being used. If it is and
 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 121 * may be used. Otherwise, the packet data may be discarded until enough
 122 * memory is free
 123 */
 124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 125	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 126
 127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 128			       unsigned long ip, bool *pfmemalloc)
 
 
 
 
 
 
 
 129{
 130	void *obj;
 131	bool ret_pfmemalloc = false;
 132
 133	/*
 134	 * Try a regular allocation, when that fails and we're not entitled
 135	 * to the reserves, fail.
 136	 */
 137	obj = kmalloc_node_track_caller(size,
 138					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 139					node);
 140	if (obj || !(gfp_pfmemalloc_allowed(flags)))
 141		goto out;
 142
 143	/* Try again but now we are using pfmemalloc reserves */
 144	ret_pfmemalloc = true;
 145	obj = kmalloc_node_track_caller(size, flags, node);
 146
 147out:
 148	if (pfmemalloc)
 149		*pfmemalloc = ret_pfmemalloc;
 
 
 
 
 
 150
 151	return obj;
 
 
 
 
 
 
 152}
 153
 154/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 155 *	'private' fields and also do memory statistics to find all the
 156 *	[BEEP] leaks.
 157 *
 158 */
 159
 160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 161{
 162	struct sk_buff *skb;
 163
 164	/* Get the HEAD */
 165	skb = kmem_cache_alloc_node(skbuff_head_cache,
 166				    gfp_mask & ~__GFP_DMA, node);
 167	if (!skb)
 168		goto out;
 169
 170	/*
 171	 * Only clear those fields we need to clear, not those that we will
 172	 * actually initialise below. Hence, don't put any more fields after
 173	 * the tail pointer in struct sk_buff!
 174	 */
 175	memset(skb, 0, offsetof(struct sk_buff, tail));
 176	skb->head = NULL;
 177	skb->truesize = sizeof(struct sk_buff);
 178	atomic_set(&skb->users, 1);
 179
 180	skb->mac_header = (typeof(skb->mac_header))~0U;
 181out:
 182	return skb;
 183}
 184
 185/**
 186 *	__alloc_skb	-	allocate a network buffer
 187 *	@size: size to allocate
 188 *	@gfp_mask: allocation mask
 189 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 190 *		instead of head cache and allocate a cloned (child) skb.
 191 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 192 *		allocations in case the data is required for writeback
 193 *	@node: numa node to allocate memory on
 194 *
 195 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 196 *	tail room of at least size bytes. The object has a reference count
 197 *	of one. The return is the buffer. On a failure the return is %NULL.
 198 *
 199 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 200 *	%GFP_ATOMIC.
 201 */
 202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 203			    int flags, int node)
 204{
 205	struct kmem_cache *cache;
 206	struct skb_shared_info *shinfo;
 207	struct sk_buff *skb;
 208	u8 *data;
 209	bool pfmemalloc;
 210
 211	cache = (flags & SKB_ALLOC_FCLONE)
 212		? skbuff_fclone_cache : skbuff_head_cache;
 213
 214	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 215		gfp_mask |= __GFP_MEMALLOC;
 216
 217	/* Get the HEAD */
 218	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 219	if (!skb)
 220		goto out;
 221	prefetchw(skb);
 222
 223	/* We do our best to align skb_shared_info on a separate cache
 224	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 225	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 226	 * Both skb->head and skb_shared_info are cache line aligned.
 227	 */
 228	size = SKB_DATA_ALIGN(size);
 229	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 230	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 231	if (!data)
 232		goto nodata;
 233	/* kmalloc(size) might give us more room than requested.
 234	 * Put skb_shared_info exactly at the end of allocated zone,
 235	 * to allow max possible filling before reallocation.
 236	 */
 237	size = SKB_WITH_OVERHEAD(ksize(data));
 238	prefetchw(data + size);
 239
 240	/*
 241	 * Only clear those fields we need to clear, not those that we will
 242	 * actually initialise below. Hence, don't put any more fields after
 243	 * the tail pointer in struct sk_buff!
 244	 */
 245	memset(skb, 0, offsetof(struct sk_buff, tail));
 246	/* Account for allocated memory : skb + skb->head */
 247	skb->truesize = SKB_TRUESIZE(size);
 248	skb->pfmemalloc = pfmemalloc;
 249	atomic_set(&skb->users, 1);
 250	skb->head = data;
 251	skb->data = data;
 252	skb_reset_tail_pointer(skb);
 253	skb->end = skb->tail + size;
 254	skb->mac_header = (typeof(skb->mac_header))~0U;
 255	skb->transport_header = (typeof(skb->transport_header))~0U;
 
 256
 257	/* make sure we initialize shinfo sequentially */
 258	shinfo = skb_shinfo(skb);
 259	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 260	atomic_set(&shinfo->dataref, 1);
 261	kmemcheck_annotate_variable(shinfo->destructor_arg);
 262
 263	if (flags & SKB_ALLOC_FCLONE) {
 264		struct sk_buff_fclones *fclones;
 265
 266		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 267
 268		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 
 269		skb->fclone = SKB_FCLONE_ORIG;
 270		atomic_set(&fclones->fclone_ref, 1);
 271
 272		fclones->skb2.fclone = SKB_FCLONE_CLONE;
 273		fclones->skb2.pfmemalloc = pfmemalloc;
 274	}
 275out:
 276	return skb;
 277nodata:
 278	kmem_cache_free(cache, skb);
 279	skb = NULL;
 280	goto out;
 281}
 282EXPORT_SYMBOL(__alloc_skb);
 283
 284/**
 285 * __build_skb - build a network buffer
 286 * @data: data buffer provided by caller
 287 * @frag_size: size of data, or 0 if head was kmalloced
 288 *
 289 * Allocate a new &sk_buff. Caller provides space holding head and
 290 * skb_shared_info. @data must have been allocated by kmalloc() only if
 291 * @frag_size is 0, otherwise data should come from the page allocator
 292 *  or vmalloc()
 293 * The return is the new skb buffer.
 294 * On a failure the return is %NULL, and @data is not freed.
 295 * Notes :
 296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 297 *  Driver should add room at head (NET_SKB_PAD) and
 298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 300 *  before giving packet to stack.
 301 *  RX rings only contains data buffers, not full skbs.
 302 */
 303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 304{
 305	struct skb_shared_info *shinfo;
 306	struct sk_buff *skb;
 307	unsigned int size = frag_size ? : ksize(data);
 308
 309	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 310	if (!skb)
 311		return NULL;
 312
 313	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 314
 315	memset(skb, 0, offsetof(struct sk_buff, tail));
 316	skb->truesize = SKB_TRUESIZE(size);
 
 317	atomic_set(&skb->users, 1);
 318	skb->head = data;
 319	skb->data = data;
 320	skb_reset_tail_pointer(skb);
 321	skb->end = skb->tail + size;
 322	skb->mac_header = (typeof(skb->mac_header))~0U;
 323	skb->transport_header = (typeof(skb->transport_header))~0U;
 
 324
 325	/* make sure we initialize shinfo sequentially */
 326	shinfo = skb_shinfo(skb);
 327	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 328	atomic_set(&shinfo->dataref, 1);
 329	kmemcheck_annotate_variable(shinfo->destructor_arg);
 330
 331	return skb;
 332}
 333
 334/* build_skb() is wrapper over __build_skb(), that specifically
 335 * takes care of skb->head and skb->pfmemalloc
 336 * This means that if @frag_size is not zero, then @data must be backed
 337 * by a page fragment, not kmalloc() or vmalloc()
 338 */
 339struct sk_buff *build_skb(void *data, unsigned int frag_size)
 340{
 341	struct sk_buff *skb = __build_skb(data, frag_size);
 342
 343	if (skb && frag_size) {
 344		skb->head_frag = 1;
 345		if (page_is_pfmemalloc(virt_to_head_page(data)))
 346			skb->pfmemalloc = 1;
 347	}
 348	return skb;
 349}
 350EXPORT_SYMBOL(build_skb);
 351
 352#define NAPI_SKB_CACHE_SIZE	64
 353
 354struct napi_alloc_cache {
 355	struct page_frag_cache page;
 356	size_t skb_count;
 357	void *skb_cache[NAPI_SKB_CACHE_SIZE];
 358};
 359
 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 362
 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 364{
 365	struct page_frag_cache *nc;
 366	unsigned long flags;
 367	void *data;
 368
 369	local_irq_save(flags);
 370	nc = this_cpu_ptr(&netdev_alloc_cache);
 371	data = __alloc_page_frag(nc, fragsz, gfp_mask);
 372	local_irq_restore(flags);
 373	return data;
 374}
 375
 376/**
 377 * netdev_alloc_frag - allocate a page fragment
 378 * @fragsz: fragment size
 379 *
 380 * Allocates a frag from a page for receive buffer.
 381 * Uses GFP_ATOMIC allocations.
 382 */
 383void *netdev_alloc_frag(unsigned int fragsz)
 384{
 385	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 386}
 387EXPORT_SYMBOL(netdev_alloc_frag);
 388
 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 390{
 391	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 392
 393	return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
 394}
 395
 396void *napi_alloc_frag(unsigned int fragsz)
 397{
 398	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400EXPORT_SYMBOL(napi_alloc_frag);
 401
 402/**
 403 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 404 *	@dev: network device to receive on
 405 *	@len: length to allocate
 406 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 407 *
 408 *	Allocate a new &sk_buff and assign it a usage count of one. The
 409 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
 410 *	the headroom they think they need without accounting for the
 411 *	built in space. The built in space is used for optimisations.
 412 *
 413 *	%NULL is returned if there is no free memory.
 414 */
 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 416				   gfp_t gfp_mask)
 417{
 418	struct page_frag_cache *nc;
 419	unsigned long flags;
 420	struct sk_buff *skb;
 421	bool pfmemalloc;
 422	void *data;
 423
 424	len += NET_SKB_PAD;
 425
 426	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 427	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 428		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 429		if (!skb)
 430			goto skb_fail;
 431		goto skb_success;
 432	}
 433
 434	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 435	len = SKB_DATA_ALIGN(len);
 436
 437	if (sk_memalloc_socks())
 438		gfp_mask |= __GFP_MEMALLOC;
 439
 440	local_irq_save(flags);
 441
 442	nc = this_cpu_ptr(&netdev_alloc_cache);
 443	data = __alloc_page_frag(nc, len, gfp_mask);
 444	pfmemalloc = nc->pfmemalloc;
 445
 446	local_irq_restore(flags);
 447
 448	if (unlikely(!data))
 449		return NULL;
 450
 451	skb = __build_skb(data, len);
 452	if (unlikely(!skb)) {
 453		skb_free_frag(data);
 454		return NULL;
 455	}
 456
 457	/* use OR instead of assignment to avoid clearing of bits in mask */
 458	if (pfmemalloc)
 459		skb->pfmemalloc = 1;
 460	skb->head_frag = 1;
 461
 462skb_success:
 463	skb_reserve(skb, NET_SKB_PAD);
 464	skb->dev = dev;
 465
 466skb_fail:
 467	return skb;
 468}
 469EXPORT_SYMBOL(__netdev_alloc_skb);
 470
 471/**
 472 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 473 *	@napi: napi instance this buffer was allocated for
 474 *	@len: length to allocate
 475 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 476 *
 477 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
 478 *	attempt to allocate the head from a special reserved region used
 479 *	only for NAPI Rx allocation.  By doing this we can save several
 480 *	CPU cycles by avoiding having to disable and re-enable IRQs.
 481 *
 482 *	%NULL is returned if there is no free memory.
 483 */
 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 485				 gfp_t gfp_mask)
 486{
 487	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 488	struct sk_buff *skb;
 489	void *data;
 490
 491	len += NET_SKB_PAD + NET_IP_ALIGN;
 492
 493	if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 494	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 495		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 496		if (!skb)
 497			goto skb_fail;
 498		goto skb_success;
 499	}
 500
 501	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 502	len = SKB_DATA_ALIGN(len);
 503
 504	if (sk_memalloc_socks())
 505		gfp_mask |= __GFP_MEMALLOC;
 506
 507	data = __alloc_page_frag(&nc->page, len, gfp_mask);
 508	if (unlikely(!data))
 509		return NULL;
 510
 511	skb = __build_skb(data, len);
 512	if (unlikely(!skb)) {
 513		skb_free_frag(data);
 514		return NULL;
 515	}
 516
 517	/* use OR instead of assignment to avoid clearing of bits in mask */
 518	if (nc->page.pfmemalloc)
 519		skb->pfmemalloc = 1;
 520	skb->head_frag = 1;
 521
 522skb_success:
 523	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 524	skb->dev = napi->dev;
 525
 526skb_fail:
 527	return skb;
 528}
 529EXPORT_SYMBOL(__napi_alloc_skb);
 530
 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 532		     int size, unsigned int truesize)
 533{
 534	skb_fill_page_desc(skb, i, page, off, size);
 535	skb->len += size;
 536	skb->data_len += size;
 537	skb->truesize += truesize;
 538}
 539EXPORT_SYMBOL(skb_add_rx_frag);
 540
 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 542			  unsigned int truesize)
 543{
 544	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 545
 546	skb_frag_size_add(frag, size);
 547	skb->len += size;
 548	skb->data_len += size;
 549	skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_coalesce_rx_frag);
 552
 553static void skb_drop_list(struct sk_buff **listp)
 554{
 555	kfree_skb_list(*listp);
 
 556	*listp = NULL;
 
 
 
 
 
 
 557}
 558
 559static inline void skb_drop_fraglist(struct sk_buff *skb)
 560{
 561	skb_drop_list(&skb_shinfo(skb)->frag_list);
 562}
 563
 564static void skb_clone_fraglist(struct sk_buff *skb)
 565{
 566	struct sk_buff *list;
 567
 568	skb_walk_frags(skb, list)
 569		skb_get(list);
 570}
 571
 572static void skb_free_head(struct sk_buff *skb)
 573{
 574	unsigned char *head = skb->head;
 575
 576	if (skb->head_frag)
 577		skb_free_frag(head);
 578	else
 579		kfree(head);
 580}
 581
 582static void skb_release_data(struct sk_buff *skb)
 583{
 584	struct skb_shared_info *shinfo = skb_shinfo(skb);
 585	int i;
 
 
 
 
 
 
 586
 587	if (skb->cloned &&
 588	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 589			      &shinfo->dataref))
 590		return;
 
 
 591
 592	for (i = 0; i < shinfo->nr_frags; i++)
 593		__skb_frag_unref(&shinfo->frags[i]);
 
 
 594
 595	/*
 596	 * If skb buf is from userspace, we need to notify the caller
 597	 * the lower device DMA has done;
 598	 */
 599	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 600		struct ubuf_info *uarg;
 601
 602		uarg = shinfo->destructor_arg;
 603		if (uarg->callback)
 604			uarg->callback(uarg, true);
 605	}
 606
 607	if (shinfo->frag_list)
 608		kfree_skb_list(shinfo->frag_list);
 609
 610	skb_free_head(skb);
 611}
 612
 613/*
 614 *	Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618	struct sk_buff_fclones *fclones;
 
 619
 620	switch (skb->fclone) {
 621	case SKB_FCLONE_UNAVAILABLE:
 622		kmem_cache_free(skbuff_head_cache, skb);
 623		return;
 624
 625	case SKB_FCLONE_ORIG:
 626		fclones = container_of(skb, struct sk_buff_fclones, skb1);
 
 
 
 
 
 
 
 627
 628		/* We usually free the clone (TX completion) before original skb
 629		 * This test would have no chance to be true for the clone,
 630		 * while here, branch prediction will be good.
 631		 */
 632		if (atomic_read(&fclones->fclone_ref) == 1)
 633			goto fastpath;
 634		break;
 635
 636	default: /* SKB_FCLONE_CLONE */
 637		fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638		break;
 639	}
 640	if (!atomic_dec_and_test(&fclones->fclone_ref))
 641		return;
 642fastpath:
 643	kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646static void skb_release_head_state(struct sk_buff *skb)
 647{
 648	skb_dst_drop(skb);
 649#ifdef CONFIG_XFRM
 650	secpath_put(skb->sp);
 651#endif
 652	if (skb->destructor) {
 653		WARN_ON(in_irq());
 654		skb->destructor(skb);
 655	}
 656#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 657	nf_conntrack_put(skb->nfct);
 658#endif
 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 
 
 
 660	nf_bridge_put(skb->nf_bridge);
 661#endif
 
 
 
 
 
 
 
 662}
 663
 664/* Free everything but the sk_buff shell. */
 665static void skb_release_all(struct sk_buff *skb)
 666{
 667	skb_release_head_state(skb);
 668	if (likely(skb->head))
 669		skb_release_data(skb);
 670}
 671
 672/**
 673 *	__kfree_skb - private function
 674 *	@skb: buffer
 675 *
 676 *	Free an sk_buff. Release anything attached to the buffer.
 677 *	Clean the state. This is an internal helper function. Users should
 678 *	always call kfree_skb
 679 */
 680
 681void __kfree_skb(struct sk_buff *skb)
 682{
 683	skb_release_all(skb);
 684	kfree_skbmem(skb);
 685}
 686EXPORT_SYMBOL(__kfree_skb);
 687
 688/**
 689 *	kfree_skb - free an sk_buff
 690 *	@skb: buffer to free
 691 *
 692 *	Drop a reference to the buffer and free it if the usage count has
 693 *	hit zero.
 694 */
 695void kfree_skb(struct sk_buff *skb)
 696{
 697	if (unlikely(!skb))
 698		return;
 699	if (likely(atomic_read(&skb->users) == 1))
 700		smp_rmb();
 701	else if (likely(!atomic_dec_and_test(&skb->users)))
 702		return;
 703	trace_kfree_skb(skb, __builtin_return_address(0));
 704	__kfree_skb(skb);
 705}
 706EXPORT_SYMBOL(kfree_skb);
 707
 708void kfree_skb_list(struct sk_buff *segs)
 709{
 710	while (segs) {
 711		struct sk_buff *next = segs->next;
 712
 713		kfree_skb(segs);
 714		segs = next;
 715	}
 716}
 717EXPORT_SYMBOL(kfree_skb_list);
 718
 719/**
 720 *	skb_tx_error - report an sk_buff xmit error
 721 *	@skb: buffer that triggered an error
 722 *
 723 *	Report xmit error if a device callback is tracking this skb.
 724 *	skb must be freed afterwards.
 725 */
 726void skb_tx_error(struct sk_buff *skb)
 727{
 728	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 729		struct ubuf_info *uarg;
 730
 731		uarg = skb_shinfo(skb)->destructor_arg;
 732		if (uarg->callback)
 733			uarg->callback(uarg, false);
 734		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 735	}
 736}
 737EXPORT_SYMBOL(skb_tx_error);
 738
 739/**
 740 *	consume_skb - free an skbuff
 741 *	@skb: buffer to free
 742 *
 743 *	Drop a ref to the buffer and free it if the usage count has hit zero
 744 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 745 *	is being dropped after a failure and notes that
 746 */
 747void consume_skb(struct sk_buff *skb)
 748{
 749	if (unlikely(!skb))
 750		return;
 751	if (likely(atomic_read(&skb->users) == 1))
 752		smp_rmb();
 753	else if (likely(!atomic_dec_and_test(&skb->users)))
 754		return;
 755	trace_consume_skb(skb);
 756	__kfree_skb(skb);
 757}
 758EXPORT_SYMBOL(consume_skb);
 759
 760void __kfree_skb_flush(void)
 761{
 762	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 763
 764	/* flush skb_cache if containing objects */
 765	if (nc->skb_count) {
 766		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 767				     nc->skb_cache);
 768		nc->skb_count = 0;
 769	}
 770}
 771
 772static inline void _kfree_skb_defer(struct sk_buff *skb)
 773{
 774	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 775
 776	/* drop skb->head and call any destructors for packet */
 777	skb_release_all(skb);
 778
 779	/* record skb to CPU local list */
 780	nc->skb_cache[nc->skb_count++] = skb;
 781
 782#ifdef CONFIG_SLUB
 783	/* SLUB writes into objects when freeing */
 784	prefetchw(skb);
 785#endif
 786
 787	/* flush skb_cache if it is filled */
 788	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 789		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 790				     nc->skb_cache);
 791		nc->skb_count = 0;
 792	}
 793}
 794void __kfree_skb_defer(struct sk_buff *skb)
 795{
 796	_kfree_skb_defer(skb);
 797}
 
 798
 799void napi_consume_skb(struct sk_buff *skb, int budget)
 
 
 
 
 
 
 
 
 
 
 
 
 800{
 801	if (unlikely(!skb))
 802		return;
 803
 804	/* Zero budget indicate non-NAPI context called us, like netpoll */
 805	if (unlikely(!budget)) {
 806		dev_consume_skb_any(skb);
 807		return;
 808	}
 809
 810	if (likely(atomic_read(&skb->users) == 1))
 811		smp_rmb();
 812	else if (likely(!atomic_dec_and_test(&skb->users)))
 813		return;
 814	/* if reaching here SKB is ready to free */
 815	trace_consume_skb(skb);
 816
 817	/* if SKB is a clone, don't handle this case */
 818	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 819		__kfree_skb(skb);
 820		return;
 821	}
 822
 823	_kfree_skb_defer(skb);
 824}
 825EXPORT_SYMBOL(napi_consume_skb);
 826
 827/* Make sure a field is enclosed inside headers_start/headers_end section */
 828#define CHECK_SKB_FIELD(field) \
 829	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
 830		     offsetof(struct sk_buff, headers_start));	\
 831	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
 832		     offsetof(struct sk_buff, headers_end));	\
 833
 834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 835{
 836	new->tstamp		= old->tstamp;
 837	/* We do not copy old->sk */
 838	new->dev		= old->dev;
 839	memcpy(new->cb, old->cb, sizeof(old->cb));
 
 
 840	skb_dst_copy(new, old);
 
 
 
 
 841#ifdef CONFIG_XFRM
 842	new->sp			= secpath_get(old->sp);
 843#endif
 844	__nf_copy(new, old, false);
 845
 846	/* Note : this field could be in headers_start/headers_end section
 847	 * It is not yet because we do not want to have a 16 bit hole
 848	 */
 849	new->queue_mapping = old->queue_mapping;
 850
 851	memcpy(&new->headers_start, &old->headers_start,
 852	       offsetof(struct sk_buff, headers_end) -
 853	       offsetof(struct sk_buff, headers_start));
 854	CHECK_SKB_FIELD(protocol);
 855	CHECK_SKB_FIELD(csum);
 856	CHECK_SKB_FIELD(hash);
 857	CHECK_SKB_FIELD(priority);
 858	CHECK_SKB_FIELD(skb_iif);
 859	CHECK_SKB_FIELD(vlan_proto);
 860	CHECK_SKB_FIELD(vlan_tci);
 861	CHECK_SKB_FIELD(transport_header);
 862	CHECK_SKB_FIELD(network_header);
 863	CHECK_SKB_FIELD(mac_header);
 864	CHECK_SKB_FIELD(inner_protocol);
 865	CHECK_SKB_FIELD(inner_transport_header);
 866	CHECK_SKB_FIELD(inner_network_header);
 867	CHECK_SKB_FIELD(inner_mac_header);
 868	CHECK_SKB_FIELD(mark);
 869#ifdef CONFIG_NETWORK_SECMARK
 870	CHECK_SKB_FIELD(secmark);
 871#endif
 872#ifdef CONFIG_NET_RX_BUSY_POLL
 873	CHECK_SKB_FIELD(napi_id);
 874#endif
 875#ifdef CONFIG_XPS
 876	CHECK_SKB_FIELD(sender_cpu);
 
 
 
 
 877#endif
 878#ifdef CONFIG_NET_SCHED
 879	CHECK_SKB_FIELD(tc_index);
 880#ifdef CONFIG_NET_CLS_ACT
 881	CHECK_SKB_FIELD(tc_verd);
 882#endif
 883#endif
 
 884
 
 885}
 886
 887/*
 888 * You should not add any new code to this function.  Add it to
 889 * __copy_skb_header above instead.
 890 */
 891static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 892{
 893#define C(x) n->x = skb->x
 894
 895	n->next = n->prev = NULL;
 896	n->sk = NULL;
 897	__copy_skb_header(n, skb);
 898
 899	C(len);
 900	C(data_len);
 901	C(mac_len);
 902	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 903	n->cloned = 1;
 904	n->nohdr = 0;
 905	n->destructor = NULL;
 906	C(tail);
 907	C(end);
 908	C(head);
 909	C(head_frag);
 910	C(data);
 911	C(truesize);
 912	atomic_set(&n->users, 1);
 913
 914	atomic_inc(&(skb_shinfo(skb)->dataref));
 915	skb->cloned = 1;
 916
 917	return n;
 918#undef C
 919}
 920
 921/**
 922 *	skb_morph	-	morph one skb into another
 923 *	@dst: the skb to receive the contents
 924 *	@src: the skb to supply the contents
 925 *
 926 *	This is identical to skb_clone except that the target skb is
 927 *	supplied by the user.
 928 *
 929 *	The target skb is returned upon exit.
 930 */
 931struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 932{
 933	skb_release_all(dst);
 934	return __skb_clone(dst, src);
 935}
 936EXPORT_SYMBOL_GPL(skb_morph);
 937
 938/**
 939 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 940 *	@skb: the skb to modify
 941 *	@gfp_mask: allocation priority
 942 *
 943 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 944 *	It will copy all frags into kernel and drop the reference
 945 *	to userspace pages.
 946 *
 947 *	If this function is called from an interrupt gfp_mask() must be
 948 *	%GFP_ATOMIC.
 949 *
 950 *	Returns 0 on success or a negative error code on failure
 951 *	to allocate kernel memory to copy to.
 952 */
 953int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 954{
 955	int i;
 956	int num_frags = skb_shinfo(skb)->nr_frags;
 957	struct page *page, *head = NULL;
 958	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 959
 960	for (i = 0; i < num_frags; i++) {
 961		u8 *vaddr;
 962		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 963
 964		page = alloc_page(gfp_mask);
 965		if (!page) {
 966			while (head) {
 967				struct page *next = (struct page *)page_private(head);
 968				put_page(head);
 969				head = next;
 970			}
 971			return -ENOMEM;
 972		}
 973		vaddr = kmap_atomic(skb_frag_page(f));
 974		memcpy(page_address(page),
 975		       vaddr + f->page_offset, skb_frag_size(f));
 976		kunmap_atomic(vaddr);
 977		set_page_private(page, (unsigned long)head);
 978		head = page;
 979	}
 980
 981	/* skb frags release userspace buffers */
 982	for (i = 0; i < num_frags; i++)
 983		skb_frag_unref(skb, i);
 984
 985	uarg->callback(uarg, false);
 986
 987	/* skb frags point to kernel buffers */
 988	for (i = num_frags - 1; i >= 0; i--) {
 989		__skb_fill_page_desc(skb, i, head, 0,
 990				     skb_shinfo(skb)->frags[i].size);
 991		head = (struct page *)page_private(head);
 992	}
 993
 994	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 995	return 0;
 996}
 997EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 998
 999/**
1000 *	skb_clone	-	duplicate an sk_buff
1001 *	@skb: buffer to clone
1002 *	@gfp_mask: allocation priority
1003 *
1004 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 *	copies share the same packet data but not structure. The new
1006 *	buffer has a reference count of 1. If the allocation fails the
1007 *	function returns %NULL otherwise the new buffer is returned.
1008 *
1009 *	If this function is called from an interrupt gfp_mask() must be
1010 *	%GFP_ATOMIC.
1011 */
1012
1013struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014{
1015	struct sk_buff_fclones *fclones = container_of(skb,
1016						       struct sk_buff_fclones,
1017						       skb1);
1018	struct sk_buff *n;
1019
1020	if (skb_orphan_frags(skb, gfp_mask))
1021		return NULL;
 
 
1022
 
1023	if (skb->fclone == SKB_FCLONE_ORIG &&
1024	    atomic_read(&fclones->fclone_ref) == 1) {
1025		n = &fclones->skb2;
1026		atomic_set(&fclones->fclone_ref, 2);
 
1027	} else {
1028		if (skb_pfmemalloc(skb))
1029			gfp_mask |= __GFP_MEMALLOC;
1030
1031		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032		if (!n)
1033			return NULL;
1034
1035		kmemcheck_annotate_bitfield(n, flags1);
 
1036		n->fclone = SKB_FCLONE_UNAVAILABLE;
1037	}
1038
1039	return __skb_clone(n, skb);
1040}
1041EXPORT_SYMBOL(skb_clone);
1042
1043static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044{
1045	/* Only adjust this if it actually is csum_start rather than csum */
1046	if (skb->ip_summed == CHECKSUM_PARTIAL)
1047		skb->csum_start += off;
1048	/* {transport,network,mac}_header and tail are relative to skb->head */
1049	skb->transport_header += off;
1050	skb->network_header   += off;
1051	if (skb_mac_header_was_set(skb))
1052		skb->mac_header += off;
1053	skb->inner_transport_header += off;
1054	skb->inner_network_header += off;
1055	skb->inner_mac_header += off;
1056}
1057
1058static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059{
 
 
 
 
 
 
 
1060	__copy_skb_header(new, old);
1061
 
 
 
 
 
 
 
1062	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065}
1066
1067static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068{
1069	if (skb_pfmemalloc(skb))
1070		return SKB_ALLOC_RX;
1071	return 0;
1072}
1073
1074/**
1075 *	skb_copy	-	create private copy of an sk_buff
1076 *	@skb: buffer to copy
1077 *	@gfp_mask: allocation priority
1078 *
1079 *	Make a copy of both an &sk_buff and its data. This is used when the
1080 *	caller wishes to modify the data and needs a private copy of the
1081 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1082 *	on success. The returned buffer has a reference count of 1.
1083 *
1084 *	As by-product this function converts non-linear &sk_buff to linear
1085 *	one, so that &sk_buff becomes completely private and caller is allowed
1086 *	to modify all the data of returned buffer. This means that this
1087 *	function is not recommended for use in circumstances when only
1088 *	header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092{
1093	int headerlen = skb_headroom(skb);
1094	unsigned int size = skb_end_offset(skb) + skb->data_len;
1095	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
1098	if (!n)
1099		return NULL;
1100
1101	/* Set the data pointer */
1102	skb_reserve(n, headerlen);
1103	/* Set the tail pointer and length */
1104	skb_put(n, skb->len);
1105
1106	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107		BUG();
1108
1109	copy_skb_header(n, skb);
1110	return n;
1111}
1112EXPORT_SYMBOL(skb_copy);
1113
1114/**
1115 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1116 *	@skb: buffer to copy
1117 *	@headroom: headroom of new skb
1118 *	@gfp_mask: allocation priority
1119 *	@fclone: if true allocate the copy of the skb from the fclone
1120 *	cache instead of the head cache; it is recommended to set this
1121 *	to true for the cases where the copy will likely be cloned
1122 *
1123 *	Make a copy of both an &sk_buff and part of its data, located
1124 *	in header. Fragmented data remain shared. This is used when
1125 *	the caller wishes to modify only header of &sk_buff and needs
1126 *	private copy of the header to alter. Returns %NULL on failure
1127 *	or the pointer to the buffer on success.
1128 *	The returned buffer has a reference count of 1.
1129 */
1130
1131struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132				   gfp_t gfp_mask, bool fclone)
1133{
1134	unsigned int size = skb_headlen(skb) + headroom;
1135	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138	if (!n)
1139		goto out;
1140
1141	/* Set the data pointer */
1142	skb_reserve(n, headroom);
1143	/* Set the tail pointer and length */
1144	skb_put(n, skb_headlen(skb));
1145	/* Copy the bytes */
1146	skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148	n->truesize += skb->data_len;
1149	n->data_len  = skb->data_len;
1150	n->len	     = skb->len;
1151
1152	if (skb_shinfo(skb)->nr_frags) {
1153		int i;
1154
1155		if (skb_orphan_frags(skb, gfp_mask)) {
1156			kfree_skb(n);
1157			n = NULL;
1158			goto out;
 
 
1159		}
1160		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162			skb_frag_ref(skb, i);
1163		}
1164		skb_shinfo(n)->nr_frags = i;
1165	}
1166
1167	if (skb_has_frag_list(skb)) {
1168		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169		skb_clone_fraglist(n);
1170	}
1171
1172	copy_skb_header(n, skb);
1173out:
1174	return n;
1175}
1176EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178/**
1179 *	pskb_expand_head - reallocate header of &sk_buff
1180 *	@skb: buffer to reallocate
1181 *	@nhead: room to add at head
1182 *	@ntail: room to add at tail
1183 *	@gfp_mask: allocation priority
1184 *
1185 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 *	reference count of 1. Returns zero in the case of success or error,
1188 *	if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 *	All the pointers pointing into skb header may change and must be
1191 *	reloaded after call to this function.
1192 */
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195		     gfp_t gfp_mask)
1196{
1197	int i;
1198	u8 *data;
1199	int size = nhead + skb_end_offset(skb) + ntail;
1200	long off;
1201
1202	BUG_ON(nhead < 0);
1203
1204	if (skb_shared(skb))
1205		BUG();
1206
1207	size = SKB_DATA_ALIGN(size);
1208
1209	if (skb_pfmemalloc(skb))
1210		gfp_mask |= __GFP_MEMALLOC;
1211	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212			       gfp_mask, NUMA_NO_NODE, NULL);
1213	if (!data)
1214		goto nodata;
1215	size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217	/* Copy only real data... and, alas, header. This should be
1218	 * optimized for the cases when header is void.
1219	 */
1220	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222	memcpy((struct skb_shared_info *)(data + size),
1223	       skb_shinfo(skb),
1224	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226	/*
1227	 * if shinfo is shared we must drop the old head gracefully, but if it
1228	 * is not we can just drop the old head and let the existing refcount
1229	 * be since all we did is relocate the values
1230	 */
1231	if (skb_cloned(skb)) {
1232		/* copy this zero copy skb frags */
1233		if (skb_orphan_frags(skb, gfp_mask))
1234			goto nofrags;
 
 
1235		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236			skb_frag_ref(skb, i);
1237
1238		if (skb_has_frag_list(skb))
1239			skb_clone_fraglist(skb);
1240
1241		skb_release_data(skb);
1242	} else {
1243		skb_free_head(skb);
1244	}
1245	off = (data + nhead) - skb->head;
1246
1247	skb->head     = data;
1248	skb->head_frag = 0;
1249	skb->data    += off;
1250#ifdef NET_SKBUFF_DATA_USES_OFFSET
1251	skb->end      = size;
1252	off           = nhead;
1253#else
1254	skb->end      = skb->head + size;
1255#endif
 
1256	skb->tail	      += off;
1257	skb_headers_offset_update(skb, nhead);
 
 
 
 
 
 
1258	skb->cloned   = 0;
1259	skb->hdr_len  = 0;
1260	skb->nohdr    = 0;
1261	atomic_set(&skb_shinfo(skb)->dataref, 1);
1262	return 0;
1263
1264nofrags:
1265	kfree(data);
1266nodata:
1267	return -ENOMEM;
1268}
1269EXPORT_SYMBOL(pskb_expand_head);
1270
1271/* Make private copy of skb with writable head and some headroom */
1272
1273struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274{
1275	struct sk_buff *skb2;
1276	int delta = headroom - skb_headroom(skb);
1277
1278	if (delta <= 0)
1279		skb2 = pskb_copy(skb, GFP_ATOMIC);
1280	else {
1281		skb2 = skb_clone(skb, GFP_ATOMIC);
1282		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283					     GFP_ATOMIC)) {
1284			kfree_skb(skb2);
1285			skb2 = NULL;
1286		}
1287	}
1288	return skb2;
1289}
1290EXPORT_SYMBOL(skb_realloc_headroom);
1291
1292/**
1293 *	skb_copy_expand	-	copy and expand sk_buff
1294 *	@skb: buffer to copy
1295 *	@newheadroom: new free bytes at head
1296 *	@newtailroom: new free bytes at tail
1297 *	@gfp_mask: allocation priority
1298 *
1299 *	Make a copy of both an &sk_buff and its data and while doing so
1300 *	allocate additional space.
1301 *
1302 *	This is used when the caller wishes to modify the data and needs a
1303 *	private copy of the data to alter as well as more space for new fields.
1304 *	Returns %NULL on failure or the pointer to the buffer
1305 *	on success. The returned buffer has a reference count of 1.
1306 *
1307 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1308 *	is called from an interrupt.
1309 */
1310struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311				int newheadroom, int newtailroom,
1312				gfp_t gfp_mask)
1313{
1314	/*
1315	 *	Allocate the copy buffer
1316	 */
1317	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318					gfp_mask, skb_alloc_rx_flag(skb),
1319					NUMA_NO_NODE);
1320	int oldheadroom = skb_headroom(skb);
1321	int head_copy_len, head_copy_off;
 
1322
1323	if (!n)
1324		return NULL;
1325
1326	skb_reserve(n, newheadroom);
1327
1328	/* Set the tail pointer and length */
1329	skb_put(n, skb->len);
1330
1331	head_copy_len = oldheadroom;
1332	head_copy_off = 0;
1333	if (newheadroom <= head_copy_len)
1334		head_copy_len = newheadroom;
1335	else
1336		head_copy_off = newheadroom - head_copy_len;
1337
1338	/* Copy the linear header and data. */
1339	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340			  skb->len + head_copy_len))
1341		BUG();
1342
1343	copy_skb_header(n, skb);
1344
1345	skb_headers_offset_update(n, newheadroom - oldheadroom);
 
 
 
 
 
 
 
 
1346
1347	return n;
1348}
1349EXPORT_SYMBOL(skb_copy_expand);
1350
1351/**
1352 *	skb_pad			-	zero pad the tail of an skb
1353 *	@skb: buffer to pad
1354 *	@pad: space to pad
1355 *
1356 *	Ensure that a buffer is followed by a padding area that is zero
1357 *	filled. Used by network drivers which may DMA or transfer data
1358 *	beyond the buffer end onto the wire.
1359 *
1360 *	May return error in out of memory cases. The skb is freed on error.
1361 */
1362
1363int skb_pad(struct sk_buff *skb, int pad)
1364{
1365	int err;
1366	int ntail;
1367
1368	/* If the skbuff is non linear tailroom is always zero.. */
1369	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370		memset(skb->data+skb->len, 0, pad);
1371		return 0;
1372	}
1373
1374	ntail = skb->data_len + pad - (skb->end - skb->tail);
1375	if (likely(skb_cloned(skb) || ntail > 0)) {
1376		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377		if (unlikely(err))
1378			goto free_skb;
1379	}
1380
1381	/* FIXME: The use of this function with non-linear skb's really needs
1382	 * to be audited.
1383	 */
1384	err = skb_linearize(skb);
1385	if (unlikely(err))
1386		goto free_skb;
1387
1388	memset(skb->data + skb->len, 0, pad);
1389	return 0;
1390
1391free_skb:
1392	kfree_skb(skb);
1393	return err;
1394}
1395EXPORT_SYMBOL(skb_pad);
1396
1397/**
1398 *	pskb_put - add data to the tail of a potentially fragmented buffer
1399 *	@skb: start of the buffer to use
1400 *	@tail: tail fragment of the buffer to use
1401 *	@len: amount of data to add
1402 *
1403 *	This function extends the used data area of the potentially
1404 *	fragmented buffer. @tail must be the last fragment of @skb -- or
1405 *	@skb itself. If this would exceed the total buffer size the kernel
1406 *	will panic. A pointer to the first byte of the extra data is
1407 *	returned.
1408 */
1409
1410unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411{
1412	if (tail != skb) {
1413		skb->data_len += len;
1414		skb->len += len;
1415	}
1416	return skb_put(tail, len);
1417}
1418EXPORT_SYMBOL_GPL(pskb_put);
1419
1420/**
1421 *	skb_put - add data to a buffer
1422 *	@skb: buffer to use
1423 *	@len: amount of data to add
1424 *
1425 *	This function extends the used data area of the buffer. If this would
1426 *	exceed the total buffer size the kernel will panic. A pointer to the
1427 *	first byte of the extra data is returned.
1428 */
1429unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430{
1431	unsigned char *tmp = skb_tail_pointer(skb);
1432	SKB_LINEAR_ASSERT(skb);
1433	skb->tail += len;
1434	skb->len  += len;
1435	if (unlikely(skb->tail > skb->end))
1436		skb_over_panic(skb, len, __builtin_return_address(0));
1437	return tmp;
1438}
1439EXPORT_SYMBOL(skb_put);
1440
1441/**
1442 *	skb_push - add data to the start of a buffer
1443 *	@skb: buffer to use
1444 *	@len: amount of data to add
1445 *
1446 *	This function extends the used data area of the buffer at the buffer
1447 *	start. If this would exceed the total buffer headroom the kernel will
1448 *	panic. A pointer to the first byte of the extra data is returned.
1449 */
1450unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451{
1452	skb->data -= len;
1453	skb->len  += len;
1454	if (unlikely(skb->data<skb->head))
1455		skb_under_panic(skb, len, __builtin_return_address(0));
1456	return skb->data;
1457}
1458EXPORT_SYMBOL(skb_push);
1459
1460/**
1461 *	skb_pull - remove data from the start of a buffer
1462 *	@skb: buffer to use
1463 *	@len: amount of data to remove
1464 *
1465 *	This function removes data from the start of a buffer, returning
1466 *	the memory to the headroom. A pointer to the next data in the buffer
1467 *	is returned. Once the data has been pulled future pushes will overwrite
1468 *	the old data.
1469 */
1470unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471{
1472	return skb_pull_inline(skb, len);
1473}
1474EXPORT_SYMBOL(skb_pull);
1475
1476/**
1477 *	skb_trim - remove end from a buffer
1478 *	@skb: buffer to alter
1479 *	@len: new length
1480 *
1481 *	Cut the length of a buffer down by removing data from the tail. If
1482 *	the buffer is already under the length specified it is not modified.
1483 *	The skb must be linear.
1484 */
1485void skb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487	if (skb->len > len)
1488		__skb_trim(skb, len);
1489}
1490EXPORT_SYMBOL(skb_trim);
1491
1492/* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496{
1497	struct sk_buff **fragp;
1498	struct sk_buff *frag;
1499	int offset = skb_headlen(skb);
1500	int nfrags = skb_shinfo(skb)->nr_frags;
1501	int i;
1502	int err;
1503
1504	if (skb_cloned(skb) &&
1505	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506		return err;
1507
1508	i = 0;
1509	if (offset >= len)
1510		goto drop_pages;
1511
1512	for (; i < nfrags; i++) {
1513		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515		if (end < len) {
1516			offset = end;
1517			continue;
1518		}
1519
1520		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522drop_pages:
1523		skb_shinfo(skb)->nr_frags = i;
1524
1525		for (; i < nfrags; i++)
1526			skb_frag_unref(skb, i);
1527
1528		if (skb_has_frag_list(skb))
1529			skb_drop_fraglist(skb);
1530		goto done;
1531	}
1532
1533	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534	     fragp = &frag->next) {
1535		int end = offset + frag->len;
1536
1537		if (skb_shared(frag)) {
1538			struct sk_buff *nfrag;
1539
1540			nfrag = skb_clone(frag, GFP_ATOMIC);
1541			if (unlikely(!nfrag))
1542				return -ENOMEM;
1543
1544			nfrag->next = frag->next;
1545			consume_skb(frag);
1546			frag = nfrag;
1547			*fragp = frag;
1548		}
1549
1550		if (end < len) {
1551			offset = end;
1552			continue;
1553		}
1554
1555		if (end > len &&
1556		    unlikely((err = pskb_trim(frag, len - offset))))
1557			return err;
1558
1559		if (frag->next)
1560			skb_drop_list(&frag->next);
1561		break;
1562	}
1563
1564done:
1565	if (len > skb_headlen(skb)) {
1566		skb->data_len -= skb->len - len;
1567		skb->len       = len;
1568	} else {
1569		skb->len       = len;
1570		skb->data_len  = 0;
1571		skb_set_tail_pointer(skb, len);
1572	}
1573
1574	return 0;
1575}
1576EXPORT_SYMBOL(___pskb_trim);
1577
1578/**
1579 *	__pskb_pull_tail - advance tail of skb header
1580 *	@skb: buffer to reallocate
1581 *	@delta: number of bytes to advance tail
1582 *
1583 *	The function makes a sense only on a fragmented &sk_buff,
1584 *	it expands header moving its tail forward and copying necessary
1585 *	data from fragmented part.
1586 *
1587 *	&sk_buff MUST have reference count of 1.
1588 *
1589 *	Returns %NULL (and &sk_buff does not change) if pull failed
1590 *	or value of new tail of skb in the case of success.
1591 *
1592 *	All the pointers pointing into skb header may change and must be
1593 *	reloaded after call to this function.
1594 */
1595
1596/* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604{
1605	/* If skb has not enough free space at tail, get new one
1606	 * plus 128 bytes for future expansions. If we have enough
1607	 * room at tail, reallocate without expansion only if skb is cloned.
1608	 */
1609	int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611	if (eat > 0 || skb_cloned(skb)) {
1612		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613				     GFP_ATOMIC))
1614			return NULL;
1615	}
1616
1617	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618		BUG();
1619
1620	/* Optimization: no fragments, no reasons to preestimate
1621	 * size of pulled pages. Superb.
1622	 */
1623	if (!skb_has_frag_list(skb))
1624		goto pull_pages;
1625
1626	/* Estimate size of pulled pages. */
1627	eat = delta;
1628	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631		if (size >= eat)
1632			goto pull_pages;
1633		eat -= size;
1634	}
1635
1636	/* If we need update frag list, we are in troubles.
1637	 * Certainly, it possible to add an offset to skb data,
1638	 * but taking into account that pulling is expected to
1639	 * be very rare operation, it is worth to fight against
1640	 * further bloating skb head and crucify ourselves here instead.
1641	 * Pure masohism, indeed. 8)8)
1642	 */
1643	if (eat) {
1644		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645		struct sk_buff *clone = NULL;
1646		struct sk_buff *insp = NULL;
1647
1648		do {
1649			BUG_ON(!list);
1650
1651			if (list->len <= eat) {
1652				/* Eaten as whole. */
1653				eat -= list->len;
1654				list = list->next;
1655				insp = list;
1656			} else {
1657				/* Eaten partially. */
1658
1659				if (skb_shared(list)) {
1660					/* Sucks! We need to fork list. :-( */
1661					clone = skb_clone(list, GFP_ATOMIC);
1662					if (!clone)
1663						return NULL;
1664					insp = list->next;
1665					list = clone;
1666				} else {
1667					/* This may be pulled without
1668					 * problems. */
1669					insp = list;
1670				}
1671				if (!pskb_pull(list, eat)) {
1672					kfree_skb(clone);
1673					return NULL;
1674				}
1675				break;
1676			}
1677		} while (eat);
1678
1679		/* Free pulled out fragments. */
1680		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681			skb_shinfo(skb)->frag_list = list->next;
1682			kfree_skb(list);
1683		}
1684		/* And insert new clone at head. */
1685		if (clone) {
1686			clone->next = list;
1687			skb_shinfo(skb)->frag_list = clone;
1688		}
1689	}
1690	/* Success! Now we may commit changes to skb data. */
1691
1692pull_pages:
1693	eat = delta;
1694	k = 0;
1695	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698		if (size <= eat) {
1699			skb_frag_unref(skb, i);
1700			eat -= size;
1701		} else {
1702			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703			if (eat) {
1704				skb_shinfo(skb)->frags[k].page_offset += eat;
1705				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706				eat = 0;
1707			}
1708			k++;
1709		}
1710	}
1711	skb_shinfo(skb)->nr_frags = k;
1712
1713	skb->tail     += delta;
1714	skb->data_len -= delta;
1715
1716	return skb_tail_pointer(skb);
1717}
1718EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720/**
1721 *	skb_copy_bits - copy bits from skb to kernel buffer
1722 *	@skb: source skb
1723 *	@offset: offset in source
1724 *	@to: destination buffer
1725 *	@len: number of bytes to copy
1726 *
1727 *	Copy the specified number of bytes from the source skb to the
1728 *	destination buffer.
1729 *
1730 *	CAUTION ! :
1731 *		If its prototype is ever changed,
1732 *		check arch/{*}/net/{*}.S files,
1733 *		since it is called from BPF assembly code.
1734 */
1735int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736{
1737	int start = skb_headlen(skb);
1738	struct sk_buff *frag_iter;
1739	int i, copy;
1740
1741	if (offset > (int)skb->len - len)
1742		goto fault;
1743
1744	/* Copy header. */
1745	if ((copy = start - offset) > 0) {
1746		if (copy > len)
1747			copy = len;
1748		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749		if ((len -= copy) == 0)
1750			return 0;
1751		offset += copy;
1752		to     += copy;
1753	}
1754
1755	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756		int end;
1757		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759		WARN_ON(start > offset + len);
1760
1761		end = start + skb_frag_size(f);
1762		if ((copy = end - offset) > 0) {
1763			u8 *vaddr;
1764
1765			if (copy > len)
1766				copy = len;
1767
1768			vaddr = kmap_atomic(skb_frag_page(f));
1769			memcpy(to,
1770			       vaddr + f->page_offset + offset - start,
1771			       copy);
1772			kunmap_atomic(vaddr);
1773
1774			if ((len -= copy) == 0)
1775				return 0;
1776			offset += copy;
1777			to     += copy;
1778		}
1779		start = end;
1780	}
1781
1782	skb_walk_frags(skb, frag_iter) {
1783		int end;
1784
1785		WARN_ON(start > offset + len);
1786
1787		end = start + frag_iter->len;
1788		if ((copy = end - offset) > 0) {
1789			if (copy > len)
1790				copy = len;
1791			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792				goto fault;
1793			if ((len -= copy) == 0)
1794				return 0;
1795			offset += copy;
1796			to     += copy;
1797		}
1798		start = end;
1799	}
1800
1801	if (!len)
1802		return 0;
1803
1804fault:
1805	return -EFAULT;
1806}
1807EXPORT_SYMBOL(skb_copy_bits);
1808
1809/*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814{
1815	put_page(spd->pages[i]);
1816}
1817
1818static struct page *linear_to_page(struct page *page, unsigned int *len,
1819				   unsigned int *offset,
1820				   struct sock *sk)
1821{
1822	struct page_frag *pfrag = sk_page_frag(sk);
 
1823
1824	if (!sk_page_frag_refill(sk, pfrag))
1825		return NULL;
 
 
 
1826
1827	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
1828
1829	memcpy(page_address(pfrag->page) + pfrag->offset,
1830	       page_address(page) + *offset, *len);
1831	*offset = pfrag->offset;
1832	pfrag->offset += *len;
 
 
1833
1834	return pfrag->page;
1835}
1836
1837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838			     struct page *page,
1839			     unsigned int offset)
1840{
1841	return	spd->nr_pages &&
1842		spd->pages[spd->nr_pages - 1] == page &&
1843		(spd->partial[spd->nr_pages - 1].offset +
1844		 spd->partial[spd->nr_pages - 1].len == offset);
1845}
1846
1847/*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850static bool spd_fill_page(struct splice_pipe_desc *spd,
1851			  struct pipe_inode_info *pipe, struct page *page,
1852			  unsigned int *len, unsigned int offset,
1853			  bool linear,
1854			  struct sock *sk)
1855{
1856	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857		return true;
1858
1859	if (linear) {
1860		page = linear_to_page(page, len, &offset, sk);
1861		if (!page)
1862			return true;
1863	}
1864	if (spd_can_coalesce(spd, page, offset)) {
1865		spd->partial[spd->nr_pages - 1].len += *len;
1866		return false;
1867	}
1868	get_page(page);
1869	spd->pages[spd->nr_pages] = page;
1870	spd->partial[spd->nr_pages].len = *len;
1871	spd->partial[spd->nr_pages].offset = offset;
1872	spd->nr_pages++;
1873
1874	return false;
1875}
1876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877static bool __splice_segment(struct page *page, unsigned int poff,
1878			     unsigned int plen, unsigned int *off,
1879			     unsigned int *len,
1880			     struct splice_pipe_desc *spd, bool linear,
1881			     struct sock *sk,
1882			     struct pipe_inode_info *pipe)
1883{
1884	if (!*len)
1885		return true;
1886
1887	/* skip this segment if already processed */
1888	if (*off >= plen) {
1889		*off -= plen;
1890		return false;
1891	}
1892
1893	/* ignore any bits we already processed */
1894	poff += *off;
1895	plen -= *off;
1896	*off = 0;
 
1897
1898	do {
1899		unsigned int flen = min(*len, plen);
1900
1901		if (spd_fill_page(spd, pipe, page, &flen, poff,
1902				  linear, sk))
 
 
1903			return true;
1904		poff += flen;
1905		plen -= flen;
1906		*len -= flen;
 
1907	} while (*len && plen);
1908
1909	return false;
1910}
1911
1912/*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917			      unsigned int *offset, unsigned int *len,
1918			      struct splice_pipe_desc *spd, struct sock *sk)
1919{
1920	int seg;
1921	struct sk_buff *iter;
1922
1923	/* map the linear part :
1924	 * If skb->head_frag is set, this 'linear' part is backed by a
1925	 * fragment, and if the head is not shared with any clones then
1926	 * we can avoid a copy since we own the head portion of this page.
1927	 */
1928	if (__splice_segment(virt_to_page(skb->data),
1929			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1930			     skb_headlen(skb),
1931			     offset, len, spd,
1932			     skb_head_is_locked(skb),
1933			     sk, pipe))
1934		return true;
1935
1936	/*
1937	 * then map the fragments
1938	 */
1939	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942		if (__splice_segment(skb_frag_page(f),
1943				     f->page_offset, skb_frag_size(f),
1944				     offset, len, spd, false, sk, pipe))
1945			return true;
1946	}
1947
1948	skb_walk_frags(skb, iter) {
1949		if (*offset >= iter->len) {
1950			*offset -= iter->len;
1951			continue;
1952		}
1953		/* __skb_splice_bits() only fails if the output has no room
1954		 * left, so no point in going over the frag_list for the error
1955		 * case.
1956		 */
1957		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958			return true;
1959	}
1960
1961	return false;
1962}
1963
1964ssize_t skb_socket_splice(struct sock *sk,
1965			  struct pipe_inode_info *pipe,
1966			  struct splice_pipe_desc *spd)
1967{
1968	int ret;
1969
1970	/* Drop the socket lock, otherwise we have reverse
1971	 * locking dependencies between sk_lock and i_mutex
1972	 * here as compared to sendfile(). We enter here
1973	 * with the socket lock held, and splice_to_pipe() will
1974	 * grab the pipe inode lock. For sendfile() emulation,
1975	 * we call into ->sendpage() with the i_mutex lock held
1976	 * and networking will grab the socket lock.
1977	 */
1978	release_sock(sk);
1979	ret = splice_to_pipe(pipe, spd);
1980	lock_sock(sk);
1981
1982	return ret;
1983}
1984
1985/*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
 
 
1988 */
1989int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990		    struct pipe_inode_info *pipe, unsigned int tlen,
1991		    unsigned int flags,
1992		    ssize_t (*splice_cb)(struct sock *,
1993					 struct pipe_inode_info *,
1994					 struct splice_pipe_desc *))
1995{
1996	struct partial_page partial[MAX_SKB_FRAGS];
1997	struct page *pages[MAX_SKB_FRAGS];
1998	struct splice_pipe_desc spd = {
1999		.pages = pages,
2000		.partial = partial,
2001		.nr_pages_max = MAX_SKB_FRAGS,
2002		.flags = flags,
2003		.ops = &nosteal_pipe_buf_ops,
2004		.spd_release = sock_spd_release,
2005	};
 
 
2006	int ret = 0;
2007
2008	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009
2010	if (spd.nr_pages)
2011		ret = splice_cb(sk, pipe, &spd);
 
 
 
 
 
 
 
 
 
 
 
 
 
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
2017/**
2018 *	skb_store_bits - store bits from kernel buffer to skb
2019 *	@skb: destination buffer
2020 *	@offset: offset in destination
2021 *	@from: source buffer
2022 *	@len: number of bytes to copy
2023 *
2024 *	Copy the specified number of bytes from the source buffer to the
2025 *	destination skb.  This function handles all the messy bits of
2026 *	traversing fragment lists and such.
2027 */
2028
2029int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030{
2031	int start = skb_headlen(skb);
2032	struct sk_buff *frag_iter;
2033	int i, copy;
2034
2035	if (offset > (int)skb->len - len)
2036		goto fault;
2037
2038	if ((copy = start - offset) > 0) {
2039		if (copy > len)
2040			copy = len;
2041		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042		if ((len -= copy) == 0)
2043			return 0;
2044		offset += copy;
2045		from += copy;
2046	}
2047
2048	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050		int end;
2051
2052		WARN_ON(start > offset + len);
2053
2054		end = start + skb_frag_size(frag);
2055		if ((copy = end - offset) > 0) {
2056			u8 *vaddr;
2057
2058			if (copy > len)
2059				copy = len;
2060
2061			vaddr = kmap_atomic(skb_frag_page(frag));
2062			memcpy(vaddr + frag->page_offset + offset - start,
2063			       from, copy);
2064			kunmap_atomic(vaddr);
2065
2066			if ((len -= copy) == 0)
2067				return 0;
2068			offset += copy;
2069			from += copy;
2070		}
2071		start = end;
2072	}
2073
2074	skb_walk_frags(skb, frag_iter) {
2075		int end;
2076
2077		WARN_ON(start > offset + len);
2078
2079		end = start + frag_iter->len;
2080		if ((copy = end - offset) > 0) {
2081			if (copy > len)
2082				copy = len;
2083			if (skb_store_bits(frag_iter, offset - start,
2084					   from, copy))
2085				goto fault;
2086			if ((len -= copy) == 0)
2087				return 0;
2088			offset += copy;
2089			from += copy;
2090		}
2091		start = end;
2092	}
2093	if (!len)
2094		return 0;
2095
2096fault:
2097	return -EFAULT;
2098}
2099EXPORT_SYMBOL(skb_store_bits);
2100
2101/* Checksum skb data. */
2102__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103		      __wsum csum, const struct skb_checksum_ops *ops)
 
2104{
2105	int start = skb_headlen(skb);
2106	int i, copy = start - offset;
2107	struct sk_buff *frag_iter;
2108	int pos = 0;
2109
2110	/* Checksum header. */
2111	if (copy > 0) {
2112		if (copy > len)
2113			copy = len;
2114		csum = ops->update(skb->data + offset, copy, csum);
2115		if ((len -= copy) == 0)
2116			return csum;
2117		offset += copy;
2118		pos	= copy;
2119	}
2120
2121	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122		int end;
2123		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125		WARN_ON(start > offset + len);
2126
2127		end = start + skb_frag_size(frag);
2128		if ((copy = end - offset) > 0) {
2129			__wsum csum2;
2130			u8 *vaddr;
2131
2132			if (copy > len)
2133				copy = len;
2134			vaddr = kmap_atomic(skb_frag_page(frag));
2135			csum2 = ops->update(vaddr + frag->page_offset +
2136					    offset - start, copy, 0);
2137			kunmap_atomic(vaddr);
2138			csum = ops->combine(csum, csum2, pos, copy);
2139			if (!(len -= copy))
2140				return csum;
2141			offset += copy;
2142			pos    += copy;
2143		}
2144		start = end;
2145	}
2146
2147	skb_walk_frags(skb, frag_iter) {
2148		int end;
2149
2150		WARN_ON(start > offset + len);
2151
2152		end = start + frag_iter->len;
2153		if ((copy = end - offset) > 0) {
2154			__wsum csum2;
2155			if (copy > len)
2156				copy = len;
2157			csum2 = __skb_checksum(frag_iter, offset - start,
2158					       copy, 0, ops);
2159			csum = ops->combine(csum, csum2, pos, copy);
2160			if ((len -= copy) == 0)
2161				return csum;
2162			offset += copy;
2163			pos    += copy;
2164		}
2165		start = end;
2166	}
2167	BUG_ON(len);
2168
2169	return csum;
2170}
2171EXPORT_SYMBOL(__skb_checksum);
2172
2173__wsum skb_checksum(const struct sk_buff *skb, int offset,
2174		    int len, __wsum csum)
2175{
2176	const struct skb_checksum_ops ops = {
2177		.update  = csum_partial_ext,
2178		.combine = csum_block_add_ext,
2179	};
2180
2181	return __skb_checksum(skb, offset, len, csum, &ops);
2182}
2183EXPORT_SYMBOL(skb_checksum);
2184
2185/* Both of above in one bottle. */
2186
2187__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188				    u8 *to, int len, __wsum csum)
2189{
2190	int start = skb_headlen(skb);
2191	int i, copy = start - offset;
2192	struct sk_buff *frag_iter;
2193	int pos = 0;
2194
2195	/* Copy header. */
2196	if (copy > 0) {
2197		if (copy > len)
2198			copy = len;
2199		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200						 copy, csum);
2201		if ((len -= copy) == 0)
2202			return csum;
2203		offset += copy;
2204		to     += copy;
2205		pos	= copy;
2206	}
2207
2208	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209		int end;
2210
2211		WARN_ON(start > offset + len);
2212
2213		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214		if ((copy = end - offset) > 0) {
2215			__wsum csum2;
2216			u8 *vaddr;
2217			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219			if (copy > len)
2220				copy = len;
2221			vaddr = kmap_atomic(skb_frag_page(frag));
2222			csum2 = csum_partial_copy_nocheck(vaddr +
2223							  frag->page_offset +
2224							  offset - start, to,
2225							  copy, 0);
2226			kunmap_atomic(vaddr);
2227			csum = csum_block_add(csum, csum2, pos);
2228			if (!(len -= copy))
2229				return csum;
2230			offset += copy;
2231			to     += copy;
2232			pos    += copy;
2233		}
2234		start = end;
2235	}
2236
2237	skb_walk_frags(skb, frag_iter) {
2238		__wsum csum2;
2239		int end;
2240
2241		WARN_ON(start > offset + len);
2242
2243		end = start + frag_iter->len;
2244		if ((copy = end - offset) > 0) {
2245			if (copy > len)
2246				copy = len;
2247			csum2 = skb_copy_and_csum_bits(frag_iter,
2248						       offset - start,
2249						       to, copy, 0);
2250			csum = csum_block_add(csum, csum2, pos);
2251			if ((len -= copy) == 0)
2252				return csum;
2253			offset += copy;
2254			to     += copy;
2255			pos    += copy;
2256		}
2257		start = end;
2258	}
2259	BUG_ON(len);
2260	return csum;
2261}
2262EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
2264 /**
2265 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 *	@from: source buffer
2267 *
2268 *	Calculates the amount of linear headroom needed in the 'to' skb passed
2269 *	into skb_zerocopy().
2270 */
2271unsigned int
2272skb_zerocopy_headlen(const struct sk_buff *from)
2273{
2274	unsigned int hlen = 0;
2275
2276	if (!from->head_frag ||
2277	    skb_headlen(from) < L1_CACHE_BYTES ||
2278	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279		hlen = skb_headlen(from);
2280
2281	if (skb_has_frag_list(from))
2282		hlen = from->len;
2283
2284	return hlen;
2285}
2286EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288/**
2289 *	skb_zerocopy - Zero copy skb to skb
2290 *	@to: destination buffer
2291 *	@from: source buffer
2292 *	@len: number of bytes to copy from source buffer
2293 *	@hlen: size of linear headroom in destination buffer
2294 *
2295 *	Copies up to `len` bytes from `from` to `to` by creating references
2296 *	to the frags in the source buffer.
2297 *
2298 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 *	headroom in the `to` buffer.
2300 *
2301 *	Return value:
2302 *	0: everything is OK
2303 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306int
2307skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308{
2309	int i, j = 0;
2310	int plen = 0; /* length of skb->head fragment */
2311	int ret;
2312	struct page *page;
2313	unsigned int offset;
2314
2315	BUG_ON(!from->head_frag && !hlen);
2316
2317	/* dont bother with small payloads */
2318	if (len <= skb_tailroom(to))
2319		return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321	if (hlen) {
2322		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323		if (unlikely(ret))
2324			return ret;
2325		len -= hlen;
2326	} else {
2327		plen = min_t(int, skb_headlen(from), len);
2328		if (plen) {
2329			page = virt_to_head_page(from->head);
2330			offset = from->data - (unsigned char *)page_address(page);
2331			__skb_fill_page_desc(to, 0, page, offset, plen);
2332			get_page(page);
2333			j = 1;
2334			len -= plen;
2335		}
2336	}
2337
2338	to->truesize += len + plen;
2339	to->len += len + plen;
2340	to->data_len += len + plen;
2341
2342	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343		skb_tx_error(from);
2344		return -ENOMEM;
2345	}
2346
2347	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348		if (!len)
2349			break;
2350		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352		len -= skb_shinfo(to)->frags[j].size;
2353		skb_frag_ref(to, j);
2354		j++;
2355	}
2356	skb_shinfo(to)->nr_frags = j;
2357
2358	return 0;
2359}
2360EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363{
2364	__wsum csum;
2365	long csstart;
2366
2367	if (skb->ip_summed == CHECKSUM_PARTIAL)
2368		csstart = skb_checksum_start_offset(skb);
2369	else
2370		csstart = skb_headlen(skb);
2371
2372	BUG_ON(csstart > skb_headlen(skb));
2373
2374	skb_copy_from_linear_data(skb, to, csstart);
2375
2376	csum = 0;
2377	if (csstart != skb->len)
2378		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379					      skb->len - csstart, 0);
2380
2381	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382		long csstuff = csstart + skb->csum_offset;
2383
2384		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385	}
2386}
2387EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389/**
2390 *	skb_dequeue - remove from the head of the queue
2391 *	@list: list to dequeue from
2392 *
2393 *	Remove the head of the list. The list lock is taken so the function
2394 *	may be used safely with other locking list functions. The head item is
2395 *	returned or %NULL if the list is empty.
2396 */
2397
2398struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399{
2400	unsigned long flags;
2401	struct sk_buff *result;
2402
2403	spin_lock_irqsave(&list->lock, flags);
2404	result = __skb_dequeue(list);
2405	spin_unlock_irqrestore(&list->lock, flags);
2406	return result;
2407}
2408EXPORT_SYMBOL(skb_dequeue);
2409
2410/**
2411 *	skb_dequeue_tail - remove from the tail of the queue
2412 *	@list: list to dequeue from
2413 *
2414 *	Remove the tail of the list. The list lock is taken so the function
2415 *	may be used safely with other locking list functions. The tail item is
2416 *	returned or %NULL if the list is empty.
2417 */
2418struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420	unsigned long flags;
2421	struct sk_buff *result;
2422
2423	spin_lock_irqsave(&list->lock, flags);
2424	result = __skb_dequeue_tail(list);
2425	spin_unlock_irqrestore(&list->lock, flags);
2426	return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430/**
2431 *	skb_queue_purge - empty a list
2432 *	@list: list to empty
2433 *
2434 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 *	the list and one reference dropped. This function takes the list
2436 *	lock and is atomic with respect to other list locking functions.
2437 */
2438void skb_queue_purge(struct sk_buff_head *list)
2439{
2440	struct sk_buff *skb;
2441	while ((skb = skb_dequeue(list)) != NULL)
2442		kfree_skb(skb);
2443}
2444EXPORT_SYMBOL(skb_queue_purge);
2445
2446/**
2447 *	skb_queue_head - queue a buffer at the list head
2448 *	@list: list to use
2449 *	@newsk: buffer to queue
2450 *
2451 *	Queue a buffer at the start of the list. This function takes the
2452 *	list lock and can be used safely with other locking &sk_buff functions
2453 *	safely.
2454 *
2455 *	A buffer cannot be placed on two lists at the same time.
2456 */
2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458{
2459	unsigned long flags;
2460
2461	spin_lock_irqsave(&list->lock, flags);
2462	__skb_queue_head(list, newsk);
2463	spin_unlock_irqrestore(&list->lock, flags);
2464}
2465EXPORT_SYMBOL(skb_queue_head);
2466
2467/**
2468 *	skb_queue_tail - queue a buffer at the list tail
2469 *	@list: list to use
2470 *	@newsk: buffer to queue
2471 *
2472 *	Queue a buffer at the tail of the list. This function takes the
2473 *	list lock and can be used safely with other locking &sk_buff functions
2474 *	safely.
2475 *
2476 *	A buffer cannot be placed on two lists at the same time.
2477 */
2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479{
2480	unsigned long flags;
2481
2482	spin_lock_irqsave(&list->lock, flags);
2483	__skb_queue_tail(list, newsk);
2484	spin_unlock_irqrestore(&list->lock, flags);
2485}
2486EXPORT_SYMBOL(skb_queue_tail);
2487
2488/**
2489 *	skb_unlink	-	remove a buffer from a list
2490 *	@skb: buffer to remove
2491 *	@list: list to use
2492 *
2493 *	Remove a packet from a list. The list locks are taken and this
2494 *	function is atomic with respect to other list locked calls
2495 *
2496 *	You must know what list the SKB is on.
2497 */
2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499{
2500	unsigned long flags;
2501
2502	spin_lock_irqsave(&list->lock, flags);
2503	__skb_unlink(skb, list);
2504	spin_unlock_irqrestore(&list->lock, flags);
2505}
2506EXPORT_SYMBOL(skb_unlink);
2507
2508/**
2509 *	skb_append	-	append a buffer
2510 *	@old: buffer to insert after
2511 *	@newsk: buffer to insert
2512 *	@list: list to use
2513 *
2514 *	Place a packet after a given packet in a list. The list locks are taken
2515 *	and this function is atomic with respect to other list locked calls.
2516 *	A buffer cannot be placed on two lists at the same time.
2517 */
2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519{
2520	unsigned long flags;
2521
2522	spin_lock_irqsave(&list->lock, flags);
2523	__skb_queue_after(list, old, newsk);
2524	spin_unlock_irqrestore(&list->lock, flags);
2525}
2526EXPORT_SYMBOL(skb_append);
2527
2528/**
2529 *	skb_insert	-	insert a buffer
2530 *	@old: buffer to insert before
2531 *	@newsk: buffer to insert
2532 *	@list: list to use
2533 *
2534 *	Place a packet before a given packet in a list. The list locks are
2535 * 	taken and this function is atomic with respect to other list locked
2536 *	calls.
2537 *
2538 *	A buffer cannot be placed on two lists at the same time.
2539 */
2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541{
2542	unsigned long flags;
2543
2544	spin_lock_irqsave(&list->lock, flags);
2545	__skb_insert(newsk, old->prev, old, list);
2546	spin_unlock_irqrestore(&list->lock, flags);
2547}
2548EXPORT_SYMBOL(skb_insert);
2549
2550static inline void skb_split_inside_header(struct sk_buff *skb,
2551					   struct sk_buff* skb1,
2552					   const u32 len, const int pos)
2553{
2554	int i;
2555
2556	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557					 pos - len);
2558	/* And move data appendix as is. */
2559	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563	skb_shinfo(skb)->nr_frags  = 0;
2564	skb1->data_len		   = skb->data_len;
2565	skb1->len		   += skb1->data_len;
2566	skb->data_len		   = 0;
2567	skb->len		   = len;
2568	skb_set_tail_pointer(skb, len);
2569}
2570
2571static inline void skb_split_no_header(struct sk_buff *skb,
2572				       struct sk_buff* skb1,
2573				       const u32 len, int pos)
2574{
2575	int i, k = 0;
2576	const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578	skb_shinfo(skb)->nr_frags = 0;
2579	skb1->len		  = skb1->data_len = skb->len - len;
2580	skb->len		  = len;
2581	skb->data_len		  = len - pos;
2582
2583	for (i = 0; i < nfrags; i++) {
2584		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586		if (pos + size > len) {
2587			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589			if (pos < len) {
2590				/* Split frag.
2591				 * We have two variants in this case:
2592				 * 1. Move all the frag to the second
2593				 *    part, if it is possible. F.e.
2594				 *    this approach is mandatory for TUX,
2595				 *    where splitting is expensive.
2596				 * 2. Split is accurately. We make this.
2597				 */
2598				skb_frag_ref(skb, i);
2599				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602				skb_shinfo(skb)->nr_frags++;
2603			}
2604			k++;
2605		} else
2606			skb_shinfo(skb)->nr_frags++;
2607		pos += size;
2608	}
2609	skb_shinfo(skb1)->nr_frags = k;
2610}
2611
2612/**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619{
2620	int pos = skb_headlen(skb);
2621
2622	skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623	if (len < pos)	/* Split line is inside header. */
2624		skb_split_inside_header(skb, skb1, len, pos);
2625	else		/* Second chunk has no header, nothing to copy. */
2626		skb_split_no_header(skb, skb1, len, pos);
2627}
2628EXPORT_SYMBOL(skb_split);
2629
2630/* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634static int skb_prepare_for_shift(struct sk_buff *skb)
2635{
2636	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637}
2638
2639/**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658{
2659	int from, to, merge, todo;
2660	struct skb_frag_struct *fragfrom, *fragto;
2661
2662	BUG_ON(shiftlen > skb->len);
2663	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2664
2665	todo = shiftlen;
2666	from = 0;
2667	to = skb_shinfo(tgt)->nr_frags;
2668	fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670	/* Actual merge is delayed until the point when we know we can
2671	 * commit all, so that we don't have to undo partial changes
2672	 */
2673	if (!to ||
2674	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675			      fragfrom->page_offset)) {
2676		merge = -1;
2677	} else {
2678		merge = to - 1;
2679
2680		todo -= skb_frag_size(fragfrom);
2681		if (todo < 0) {
2682			if (skb_prepare_for_shift(skb) ||
2683			    skb_prepare_for_shift(tgt))
2684				return 0;
2685
2686			/* All previous frag pointers might be stale! */
2687			fragfrom = &skb_shinfo(skb)->frags[from];
2688			fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690			skb_frag_size_add(fragto, shiftlen);
2691			skb_frag_size_sub(fragfrom, shiftlen);
2692			fragfrom->page_offset += shiftlen;
2693
2694			goto onlymerged;
2695		}
2696
2697		from++;
2698	}
2699
2700	/* Skip full, not-fitting skb to avoid expensive operations */
2701	if ((shiftlen == skb->len) &&
2702	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703		return 0;
2704
2705	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706		return 0;
2707
2708	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709		if (to == MAX_SKB_FRAGS)
2710			return 0;
2711
2712		fragfrom = &skb_shinfo(skb)->frags[from];
2713		fragto = &skb_shinfo(tgt)->frags[to];
2714
2715		if (todo >= skb_frag_size(fragfrom)) {
2716			*fragto = *fragfrom;
2717			todo -= skb_frag_size(fragfrom);
2718			from++;
2719			to++;
2720
2721		} else {
2722			__skb_frag_ref(fragfrom);
2723			fragto->page = fragfrom->page;
2724			fragto->page_offset = fragfrom->page_offset;
2725			skb_frag_size_set(fragto, todo);
2726
2727			fragfrom->page_offset += todo;
2728			skb_frag_size_sub(fragfrom, todo);
2729			todo = 0;
2730
2731			to++;
2732			break;
2733		}
2734	}
2735
2736	/* Ready to "commit" this state change to tgt */
2737	skb_shinfo(tgt)->nr_frags = to;
2738
2739	if (merge >= 0) {
2740		fragfrom = &skb_shinfo(skb)->frags[0];
2741		fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744		__skb_frag_unref(fragfrom);
2745	}
2746
2747	/* Reposition in the original skb */
2748	to = 0;
2749	while (from < skb_shinfo(skb)->nr_frags)
2750		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751	skb_shinfo(skb)->nr_frags = to;
2752
2753	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755onlymerged:
2756	/* Most likely the tgt won't ever need its checksum anymore, skb on
2757	 * the other hand might need it if it needs to be resent
2758	 */
2759	tgt->ip_summed = CHECKSUM_PARTIAL;
2760	skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762	/* Yak, is it really working this way? Some helper please? */
2763	skb->len -= shiftlen;
2764	skb->data_len -= shiftlen;
2765	skb->truesize -= shiftlen;
2766	tgt->len += shiftlen;
2767	tgt->data_len += shiftlen;
2768	tgt->truesize += shiftlen;
2769
2770	return shiftlen;
2771}
2772
2773/**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784			  unsigned int to, struct skb_seq_state *st)
2785{
2786	st->lower_offset = from;
2787	st->upper_offset = to;
2788	st->root_skb = st->cur_skb = skb;
2789	st->frag_idx = st->stepped_offset = 0;
2790	st->frag_data = NULL;
2791}
2792EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794/**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 *       this limitation is the cost for zerocopy sequential
2813 *       reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 *       at the moment, state->root_skb could be replaced with
2817 *       a stack for this purpose.
2818 */
2819unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820			  struct skb_seq_state *st)
2821{
2822	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823	skb_frag_t *frag;
2824
2825	if (unlikely(abs_offset >= st->upper_offset)) {
2826		if (st->frag_data) {
2827			kunmap_atomic(st->frag_data);
2828			st->frag_data = NULL;
2829		}
2830		return 0;
2831	}
2832
2833next_skb:
2834	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836	if (abs_offset < block_limit && !st->frag_data) {
2837		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838		return block_limit - abs_offset;
2839	}
2840
2841	if (st->frag_idx == 0 && !st->frag_data)
2842		st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846		block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848		if (abs_offset < block_limit) {
2849			if (!st->frag_data)
2850				st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852			*data = (u8 *) st->frag_data + frag->page_offset +
2853				(abs_offset - st->stepped_offset);
2854
2855			return block_limit - abs_offset;
2856		}
2857
2858		if (st->frag_data) {
2859			kunmap_atomic(st->frag_data);
2860			st->frag_data = NULL;
2861		}
2862
2863		st->frag_idx++;
2864		st->stepped_offset += skb_frag_size(frag);
2865	}
2866
2867	if (st->frag_data) {
2868		kunmap_atomic(st->frag_data);
2869		st->frag_data = NULL;
2870	}
2871
2872	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874		st->frag_idx = 0;
2875		goto next_skb;
2876	} else if (st->cur_skb->next) {
2877		st->cur_skb = st->cur_skb->next;
2878		st->frag_idx = 0;
2879		goto next_skb;
2880	}
2881
2882	return 0;
2883}
2884EXPORT_SYMBOL(skb_seq_read);
2885
2886/**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893void skb_abort_seq_read(struct skb_seq_state *st)
2894{
2895	if (st->frag_data)
2896		kunmap_atomic(st->frag_data);
2897}
2898EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2901
2902static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903					  struct ts_config *conf,
2904					  struct ts_state *state)
2905{
2906	return skb_seq_read(offset, text, TS_SKB_CB(state));
2907}
2908
2909static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910{
2911	skb_abort_seq_read(TS_SKB_CB(state));
2912}
2913
2914/**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
 
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927			   unsigned int to, struct ts_config *config)
 
2928{
2929	struct ts_state state;
2930	unsigned int ret;
2931
2932	config->get_next_block = skb_ts_get_next_block;
2933	config->finish = skb_ts_finish;
2934
2935	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937	ret = textsearch_find(config, &state);
2938	return (ret <= to - from ? ret : UINT_MAX);
2939}
2940EXPORT_SYMBOL(skb_find_text);
2941
2942/**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock  structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2952 */
2953int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954			int (*getfrag)(void *from, char *to, int offset,
2955					int len, int odd, struct sk_buff *skb),
2956			void *from, int length)
2957{
2958	int frg_cnt = skb_shinfo(skb)->nr_frags;
2959	int copy;
 
 
2960	int offset = 0;
2961	int ret;
2962	struct page_frag *pfrag = &current->task_frag;
2963
2964	do {
2965		/* Return error if we don't have space for new frag */
 
2966		if (frg_cnt >= MAX_SKB_FRAGS)
2967			return -EMSGSIZE;
 
 
 
2968
2969		if (!sk_page_frag_refill(sk, pfrag))
 
 
 
2970			return -ENOMEM;
2971
 
 
 
 
 
 
 
 
 
2972		/* copy the user data to page */
2973		copy = min_t(int, length, pfrag->size - pfrag->offset);
 
2974
2975		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976			      offset, copy, 0, skb);
2977		if (ret < 0)
2978			return -EFAULT;
2979
2980		/* copy was successful so update the size parameters */
2981		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982				   copy);
2983		frg_cnt++;
2984		pfrag->offset += copy;
2985		get_page(pfrag->page);
2986
2987		skb->truesize += copy;
2988		atomic_add(copy, &sk->sk_wmem_alloc);
2989		skb->len += copy;
2990		skb->data_len += copy;
2991		offset += copy;
2992		length -= copy;
2993
2994	} while (length > 0);
2995
2996	return 0;
2997}
2998EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001			 int offset, size_t size)
3002{
3003	int i = skb_shinfo(skb)->nr_frags;
3004
3005	if (skb_can_coalesce(skb, i, page, offset)) {
3006		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007	} else if (i < MAX_SKB_FRAGS) {
3008		get_page(page);
3009		skb_fill_page_desc(skb, i, page, offset, size);
3010	} else {
3011		return -EMSGSIZE;
3012	}
3013
3014	return 0;
3015}
3016EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018/**
3019 *	skb_push_rcsum - push skb and update receive checksum
3020 *	@skb: buffer to update
3021 *	@len: length of data pulled
3022 *
3023 *	This function performs an skb_push on the packet and updates
3024 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3025 *	receive path processing instead of skb_push unless you know
3026 *	that the checksum difference is zero (e.g., a valid IP header)
3027 *	or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030{
3031	skb_push(skb, len);
3032	skb_postpush_rcsum(skb, skb->data, len);
3033	return skb->data;
3034}
3035
3036/**
3037 *	skb_pull_rcsum - pull skb and update receive checksum
3038 *	@skb: buffer to update
3039 *	@len: length of data pulled
3040 *
3041 *	This function performs an skb_pull on the packet and updates
3042 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3043 *	receive path processing instead of skb_pull unless you know
3044 *	that the checksum difference is zero (e.g., a valid IP header)
3045 *	or you are setting ip_summed to CHECKSUM_NONE.
3046 */
3047unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048{
3049	unsigned char *data = skb->data;
3050
3051	BUG_ON(len > skb->len);
3052	__skb_pull(skb, len);
3053	skb_postpull_rcsum(skb, data, len);
3054	return skb->data;
 
3055}
3056EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057
3058/**
3059 *	skb_segment - Perform protocol segmentation on skb.
3060 *	@head_skb: buffer to segment
3061 *	@features: features for the output path (see dev->features)
3062 *
3063 *	This function performs segmentation on the given skb.  It returns
3064 *	a pointer to the first in a list of new skbs for the segments.
3065 *	In case of error it returns ERR_PTR(err).
3066 */
3067struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068			    netdev_features_t features)
3069{
3070	struct sk_buff *segs = NULL;
3071	struct sk_buff *tail = NULL;
3072	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076	struct sk_buff *frag_skb = head_skb;
3077	unsigned int offset = doffset;
3078	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3079	unsigned int headroom;
3080	unsigned int len;
3081	__be16 proto;
3082	bool csum;
3083	int sg = !!(features & NETIF_F_SG);
3084	int nfrags = skb_shinfo(head_skb)->nr_frags;
3085	int err = -ENOMEM;
3086	int i = 0;
3087	int pos;
3088	int dummy;
3089
3090	__skb_push(head_skb, doffset);
3091	proto = skb_network_protocol(head_skb, &dummy);
3092	if (unlikely(!proto))
3093		return ERR_PTR(-EINVAL);
3094
3095	csum = !!can_checksum_protocol(features, proto);
3096
3097	headroom = skb_headroom(head_skb);
3098	pos = skb_headlen(head_skb);
 
3099
3100	do {
3101		struct sk_buff *nskb;
3102		skb_frag_t *nskb_frag;
3103		int hsize;
3104		int size;
3105
3106		len = head_skb->len - offset;
3107		if (len > mss)
3108			len = mss;
3109
3110		hsize = skb_headlen(head_skb) - offset;
3111		if (hsize < 0)
3112			hsize = 0;
3113		if (hsize > len || !sg)
3114			hsize = len;
3115
3116		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3117		    (skb_headlen(list_skb) == len || sg)) {
3118			BUG_ON(skb_headlen(list_skb) > len);
3119
3120			i = 0;
3121			nfrags = skb_shinfo(list_skb)->nr_frags;
3122			frag = skb_shinfo(list_skb)->frags;
3123			frag_skb = list_skb;
3124			pos += skb_headlen(list_skb);
3125
3126			while (pos < offset + len) {
3127				BUG_ON(i >= nfrags);
3128
3129				size = skb_frag_size(frag);
3130				if (pos + size > offset + len)
3131					break;
3132
3133				i++;
3134				pos += size;
3135				frag++;
3136			}
3137
3138			nskb = skb_clone(list_skb, GFP_ATOMIC);
3139			list_skb = list_skb->next;
 
3140
3141			if (unlikely(!nskb))
3142				goto err;
3143
3144			if (unlikely(pskb_trim(nskb, len))) {
3145				kfree_skb(nskb);
3146				goto err;
3147			}
3148
3149			hsize = skb_end_offset(nskb);
3150			if (skb_cow_head(nskb, doffset + headroom)) {
3151				kfree_skb(nskb);
3152				goto err;
3153			}
3154
3155			nskb->truesize += skb_end_offset(nskb) - hsize;
3156			skb_release_head_state(nskb);
3157			__skb_push(nskb, doffset);
3158		} else {
3159			nskb = __alloc_skb(hsize + doffset + headroom,
3160					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3161					   NUMA_NO_NODE);
3162
3163			if (unlikely(!nskb))
3164				goto err;
3165
3166			skb_reserve(nskb, headroom);
3167			__skb_put(nskb, doffset);
3168		}
3169
3170		if (segs)
3171			tail->next = nskb;
3172		else
3173			segs = nskb;
3174		tail = nskb;
3175
3176		__copy_skb_header(nskb, head_skb);
 
3177
3178		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3179		skb_reset_mac_len(nskb);
 
 
 
 
 
 
 
3180
3181		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3182						 nskb->data - tnl_hlen,
3183						 doffset + tnl_hlen);
3184
3185		if (nskb->len == len + doffset)
3186			goto perform_csum_check;
3187
3188		if (!sg) {
3189			if (!nskb->remcsum_offload)
3190				nskb->ip_summed = CHECKSUM_NONE;
3191			SKB_GSO_CB(nskb)->csum =
3192				skb_copy_and_csum_bits(head_skb, offset,
3193						       skb_put(nskb, len),
3194						       len, 0);
3195			SKB_GSO_CB(nskb)->csum_start =
3196				skb_headroom(nskb) + doffset;
3197			continue;
3198		}
3199
3200		nskb_frag = skb_shinfo(nskb)->frags;
3201
3202		skb_copy_from_linear_data_offset(head_skb, offset,
3203						 skb_put(nskb, hsize), hsize);
3204
3205		skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3206			SKBTX_SHARED_FRAG;
3207
3208		while (pos < offset + len) {
3209			if (i >= nfrags) {
3210				BUG_ON(skb_headlen(list_skb));
3211
3212				i = 0;
3213				nfrags = skb_shinfo(list_skb)->nr_frags;
3214				frag = skb_shinfo(list_skb)->frags;
3215				frag_skb = list_skb;
3216
3217				BUG_ON(!nfrags);
3218
3219				list_skb = list_skb->next;
3220			}
3221
3222			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3223				     MAX_SKB_FRAGS)) {
3224				net_warn_ratelimited(
3225					"skb_segment: too many frags: %u %u\n",
3226					pos, mss);
3227				goto err;
3228			}
3229
3230			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3231				goto err;
3232
3233			*nskb_frag = *frag;
3234			__skb_frag_ref(nskb_frag);
3235			size = skb_frag_size(nskb_frag);
3236
3237			if (pos < offset) {
3238				nskb_frag->page_offset += offset - pos;
3239				skb_frag_size_sub(nskb_frag, offset - pos);
3240			}
3241
3242			skb_shinfo(nskb)->nr_frags++;
3243
3244			if (pos + size <= offset + len) {
3245				i++;
3246				frag++;
3247				pos += size;
3248			} else {
3249				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3250				goto skip_fraglist;
3251			}
3252
3253			nskb_frag++;
3254		}
3255
3256skip_fraglist:
3257		nskb->data_len = len - hsize;
3258		nskb->len += nskb->data_len;
3259		nskb->truesize += nskb->data_len;
 
 
 
3260
3261perform_csum_check:
3262		if (!csum) {
3263			if (skb_has_shared_frag(nskb)) {
3264				err = __skb_linearize(nskb);
3265				if (err)
3266					goto err;
3267			}
3268			if (!nskb->remcsum_offload)
3269				nskb->ip_summed = CHECKSUM_NONE;
3270			SKB_GSO_CB(nskb)->csum =
3271				skb_checksum(nskb, doffset,
3272					     nskb->len - doffset, 0);
3273			SKB_GSO_CB(nskb)->csum_start =
3274				skb_headroom(nskb) + doffset;
3275		}
3276	} while ((offset += len) < head_skb->len);
3277
3278	/* Some callers want to get the end of the list.
3279	 * Put it in segs->prev to avoid walking the list.
3280	 * (see validate_xmit_skb_list() for example)
3281	 */
3282	segs->prev = tail;
3283
3284	/* Following permits correct backpressure, for protocols
3285	 * using skb_set_owner_w().
3286	 * Idea is to tranfert ownership from head_skb to last segment.
3287	 */
3288	if (head_skb->destructor == sock_wfree) {
3289		swap(tail->truesize, head_skb->truesize);
3290		swap(tail->destructor, head_skb->destructor);
3291		swap(tail->sk, head_skb->sk);
3292	}
3293	return segs;
3294
3295err:
3296	kfree_skb_list(segs);
 
 
 
3297	return ERR_PTR(err);
3298}
3299EXPORT_SYMBOL_GPL(skb_segment);
3300
3301int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3302{
3303	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
 
 
 
 
 
3304	unsigned int offset = skb_gro_offset(skb);
3305	unsigned int headlen = skb_headlen(skb);
3306	unsigned int len = skb_gro_len(skb);
3307	struct sk_buff *lp, *p = *head;
3308	unsigned int delta_truesize;
3309
3310	if (unlikely(p->len + len >= 65536))
3311		return -E2BIG;
3312
3313	lp = NAPI_GRO_CB(p)->last;
3314	pinfo = skb_shinfo(lp);
3315
3316	if (headlen <= offset) {
3317		skb_frag_t *frag;
3318		skb_frag_t *frag2;
3319		int i = skbinfo->nr_frags;
3320		int nr_frags = pinfo->nr_frags + i;
3321
 
 
3322		if (nr_frags > MAX_SKB_FRAGS)
3323			goto merge;
3324
3325		offset -= headlen;
3326		pinfo->nr_frags = nr_frags;
3327		skbinfo->nr_frags = 0;
3328
3329		frag = pinfo->frags + nr_frags;
3330		frag2 = skbinfo->frags + i;
3331		do {
3332			*--frag = *--frag2;
3333		} while (--i);
3334
3335		frag->page_offset += offset;
3336		skb_frag_size_sub(frag, offset);
3337
3338		/* all fragments truesize : remove (head size + sk_buff) */
3339		delta_truesize = skb->truesize -
3340				 SKB_TRUESIZE(skb_end_offset(skb));
3341
3342		skb->truesize -= skb->data_len;
3343		skb->len -= skb->data_len;
3344		skb->data_len = 0;
3345
3346		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3347		goto done;
3348	} else if (skb->head_frag) {
3349		int nr_frags = pinfo->nr_frags;
3350		skb_frag_t *frag = pinfo->frags + nr_frags;
3351		struct page *page = virt_to_head_page(skb->head);
3352		unsigned int first_size = headlen - offset;
3353		unsigned int first_offset;
3354
3355		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3356			goto merge;
3357
3358		first_offset = skb->data -
3359			       (unsigned char *)page_address(page) +
3360			       offset;
3361
3362		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3363
3364		frag->page.p	  = page;
3365		frag->page_offset = first_offset;
3366		skb_frag_size_set(frag, first_size);
3367
3368		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3369		/* We dont need to clear skbinfo->nr_frags here */
3370
3371		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3372		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3373		goto done;
3374	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375
3376merge:
3377	delta_truesize = skb->truesize;
3378	if (offset > headlen) {
3379		unsigned int eat = offset - headlen;
3380
3381		skbinfo->frags[0].page_offset += eat;
3382		skb_frag_size_sub(&skbinfo->frags[0], eat);
3383		skb->data_len -= eat;
3384		skb->len -= eat;
3385		offset = headlen;
3386	}
3387
3388	__skb_pull(skb, offset);
3389
3390	if (NAPI_GRO_CB(p)->last == p)
3391		skb_shinfo(p)->frag_list = skb;
3392	else
3393		NAPI_GRO_CB(p)->last->next = skb;
3394	NAPI_GRO_CB(p)->last = skb;
3395	__skb_header_release(skb);
3396	lp = p;
3397
3398done:
3399	NAPI_GRO_CB(p)->count++;
3400	p->data_len += len;
3401	p->truesize += delta_truesize;
3402	p->len += len;
3403	if (lp != p) {
3404		lp->data_len += len;
3405		lp->truesize += delta_truesize;
3406		lp->len += len;
3407	}
3408	NAPI_GRO_CB(skb)->same_flow = 1;
3409	return 0;
3410}
 
3411
3412void __init skb_init(void)
3413{
3414	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3415					      sizeof(struct sk_buff),
3416					      0,
3417					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3418					      NULL);
3419	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3420						sizeof(struct sk_buff_fclones),
 
3421						0,
3422						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3423						NULL);
3424}
3425
3426/**
3427 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3428 *	@skb: Socket buffer containing the buffers to be mapped
3429 *	@sg: The scatter-gather list to map into
3430 *	@offset: The offset into the buffer's contents to start mapping
3431 *	@len: Length of buffer space to be mapped
3432 *
3433 *	Fill the specified scatter-gather list with mappings/pointers into a
3434 *	region of the buffer space attached to a socket buffer.
3435 */
3436static int
3437__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3438{
3439	int start = skb_headlen(skb);
3440	int i, copy = start - offset;
3441	struct sk_buff *frag_iter;
3442	int elt = 0;
3443
3444	if (copy > 0) {
3445		if (copy > len)
3446			copy = len;
3447		sg_set_buf(sg, skb->data + offset, copy);
3448		elt++;
3449		if ((len -= copy) == 0)
3450			return elt;
3451		offset += copy;
3452	}
3453
3454	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3455		int end;
3456
3457		WARN_ON(start > offset + len);
3458
3459		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460		if ((copy = end - offset) > 0) {
3461			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3462
3463			if (copy > len)
3464				copy = len;
3465			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3466					frag->page_offset+offset-start);
3467			elt++;
3468			if (!(len -= copy))
3469				return elt;
3470			offset += copy;
3471		}
3472		start = end;
3473	}
3474
3475	skb_walk_frags(skb, frag_iter) {
3476		int end;
3477
3478		WARN_ON(start > offset + len);
3479
3480		end = start + frag_iter->len;
3481		if ((copy = end - offset) > 0) {
3482			if (copy > len)
3483				copy = len;
3484			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3485					      copy);
3486			if ((len -= copy) == 0)
3487				return elt;
3488			offset += copy;
3489		}
3490		start = end;
3491	}
3492	BUG_ON(len);
3493	return elt;
3494}
3495
3496/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3497 * sglist without mark the sg which contain last skb data as the end.
3498 * So the caller can mannipulate sg list as will when padding new data after
3499 * the first call without calling sg_unmark_end to expend sg list.
3500 *
3501 * Scenario to use skb_to_sgvec_nomark:
3502 * 1. sg_init_table
3503 * 2. skb_to_sgvec_nomark(payload1)
3504 * 3. skb_to_sgvec_nomark(payload2)
3505 *
3506 * This is equivalent to:
3507 * 1. sg_init_table
3508 * 2. skb_to_sgvec(payload1)
3509 * 3. sg_unmark_end
3510 * 4. skb_to_sgvec(payload2)
3511 *
3512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3513 * is more preferable.
3514 */
3515int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3516			int offset, int len)
3517{
3518	return __skb_to_sgvec(skb, sg, offset, len);
3519}
3520EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3521
3522int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3523{
3524	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3525
3526	sg_mark_end(&sg[nsg - 1]);
3527
3528	return nsg;
3529}
3530EXPORT_SYMBOL_GPL(skb_to_sgvec);
3531
3532/**
3533 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3534 *	@skb: The socket buffer to check.
3535 *	@tailbits: Amount of trailing space to be added
3536 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3537 *
3538 *	Make sure that the data buffers attached to a socket buffer are
3539 *	writable. If they are not, private copies are made of the data buffers
3540 *	and the socket buffer is set to use these instead.
3541 *
3542 *	If @tailbits is given, make sure that there is space to write @tailbits
3543 *	bytes of data beyond current end of socket buffer.  @trailer will be
3544 *	set to point to the skb in which this space begins.
3545 *
3546 *	The number of scatterlist elements required to completely map the
3547 *	COW'd and extended socket buffer will be returned.
3548 */
3549int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3550{
3551	int copyflag;
3552	int elt;
3553	struct sk_buff *skb1, **skb_p;
3554
3555	/* If skb is cloned or its head is paged, reallocate
3556	 * head pulling out all the pages (pages are considered not writable
3557	 * at the moment even if they are anonymous).
3558	 */
3559	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3560	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3561		return -ENOMEM;
3562
3563	/* Easy case. Most of packets will go this way. */
3564	if (!skb_has_frag_list(skb)) {
3565		/* A little of trouble, not enough of space for trailer.
3566		 * This should not happen, when stack is tuned to generate
3567		 * good frames. OK, on miss we reallocate and reserve even more
3568		 * space, 128 bytes is fair. */
3569
3570		if (skb_tailroom(skb) < tailbits &&
3571		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3572			return -ENOMEM;
3573
3574		/* Voila! */
3575		*trailer = skb;
3576		return 1;
3577	}
3578
3579	/* Misery. We are in troubles, going to mincer fragments... */
3580
3581	elt = 1;
3582	skb_p = &skb_shinfo(skb)->frag_list;
3583	copyflag = 0;
3584
3585	while ((skb1 = *skb_p) != NULL) {
3586		int ntail = 0;
3587
3588		/* The fragment is partially pulled by someone,
3589		 * this can happen on input. Copy it and everything
3590		 * after it. */
3591
3592		if (skb_shared(skb1))
3593			copyflag = 1;
3594
3595		/* If the skb is the last, worry about trailer. */
3596
3597		if (skb1->next == NULL && tailbits) {
3598			if (skb_shinfo(skb1)->nr_frags ||
3599			    skb_has_frag_list(skb1) ||
3600			    skb_tailroom(skb1) < tailbits)
3601				ntail = tailbits + 128;
3602		}
3603
3604		if (copyflag ||
3605		    skb_cloned(skb1) ||
3606		    ntail ||
3607		    skb_shinfo(skb1)->nr_frags ||
3608		    skb_has_frag_list(skb1)) {
3609			struct sk_buff *skb2;
3610
3611			/* Fuck, we are miserable poor guys... */
3612			if (ntail == 0)
3613				skb2 = skb_copy(skb1, GFP_ATOMIC);
3614			else
3615				skb2 = skb_copy_expand(skb1,
3616						       skb_headroom(skb1),
3617						       ntail,
3618						       GFP_ATOMIC);
3619			if (unlikely(skb2 == NULL))
3620				return -ENOMEM;
3621
3622			if (skb1->sk)
3623				skb_set_owner_w(skb2, skb1->sk);
3624
3625			/* Looking around. Are we still alive?
3626			 * OK, link new skb, drop old one */
3627
3628			skb2->next = skb1->next;
3629			*skb_p = skb2;
3630			kfree_skb(skb1);
3631			skb1 = skb2;
3632		}
3633		elt++;
3634		*trailer = skb1;
3635		skb_p = &skb1->next;
3636	}
3637
3638	return elt;
3639}
3640EXPORT_SYMBOL_GPL(skb_cow_data);
3641
3642static void sock_rmem_free(struct sk_buff *skb)
3643{
3644	struct sock *sk = skb->sk;
3645
3646	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3647}
3648
3649/*
3650 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3651 */
3652int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3653{
 
 
3654	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3655	    (unsigned int)sk->sk_rcvbuf)
3656		return -ENOMEM;
3657
3658	skb_orphan(skb);
3659	skb->sk = sk;
3660	skb->destructor = sock_rmem_free;
3661	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3662
3663	/* before exiting rcu section, make sure dst is refcounted */
3664	skb_dst_force(skb);
3665
3666	skb_queue_tail(&sk->sk_error_queue, skb);
3667	if (!sock_flag(sk, SOCK_DEAD))
3668		sk->sk_data_ready(sk);
3669	return 0;
3670}
3671EXPORT_SYMBOL(sock_queue_err_skb);
3672
3673struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
 
3674{
3675	struct sk_buff_head *q = &sk->sk_error_queue;
3676	struct sk_buff *skb, *skb_next;
3677	unsigned long flags;
3678	int err = 0;
3679
3680	spin_lock_irqsave(&q->lock, flags);
3681	skb = __skb_dequeue(q);
3682	if (skb && (skb_next = skb_peek(q)))
3683		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3684	spin_unlock_irqrestore(&q->lock, flags);
3685
3686	sk->sk_err = err;
3687	if (err)
3688		sk->sk_error_report(sk);
3689
3690	return skb;
3691}
3692EXPORT_SYMBOL(sock_dequeue_err_skb);
3693
3694/**
3695 * skb_clone_sk - create clone of skb, and take reference to socket
3696 * @skb: the skb to clone
3697 *
3698 * This function creates a clone of a buffer that holds a reference on
3699 * sk_refcnt.  Buffers created via this function are meant to be
3700 * returned using sock_queue_err_skb, or free via kfree_skb.
3701 *
3702 * When passing buffers allocated with this function to sock_queue_err_skb
3703 * it is necessary to wrap the call with sock_hold/sock_put in order to
3704 * prevent the socket from being released prior to being enqueued on
3705 * the sk_error_queue.
3706 */
3707struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3708{
3709	struct sock *sk = skb->sk;
3710	struct sk_buff *clone;
3711
3712	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3713		return NULL;
 
3714
3715	clone = skb_clone(skb, GFP_ATOMIC);
3716	if (!clone) {
3717		sock_put(sk);
3718		return NULL;
 
 
 
 
 
 
3719	}
3720
3721	clone->sk = sk;
3722	clone->destructor = sock_efree;
3723
3724	return clone;
3725}
3726EXPORT_SYMBOL(skb_clone_sk);
3727
3728static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3729					struct sock *sk,
3730					int tstype)
3731{
3732	struct sock_exterr_skb *serr;
3733	int err;
3734
3735	serr = SKB_EXT_ERR(skb);
3736	memset(serr, 0, sizeof(*serr));
3737	serr->ee.ee_errno = ENOMSG;
3738	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3739	serr->ee.ee_info = tstype;
3740	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3741		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3742		if (sk->sk_protocol == IPPROTO_TCP &&
3743		    sk->sk_type == SOCK_STREAM)
3744			serr->ee.ee_data -= sk->sk_tskey;
3745	}
3746
3747	err = sock_queue_err_skb(sk, skb);
3748
3749	if (err)
3750		kfree_skb(skb);
3751}
3752
3753static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3754{
3755	bool ret;
3756
3757	if (likely(sysctl_tstamp_allow_data || tsonly))
3758		return true;
3759
3760	read_lock_bh(&sk->sk_callback_lock);
3761	ret = sk->sk_socket && sk->sk_socket->file &&
3762	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3763	read_unlock_bh(&sk->sk_callback_lock);
3764	return ret;
3765}
3766
3767void skb_complete_tx_timestamp(struct sk_buff *skb,
3768			       struct skb_shared_hwtstamps *hwtstamps)
3769{
3770	struct sock *sk = skb->sk;
3771
3772	if (!skb_may_tx_timestamp(sk, false))
3773		return;
3774
3775	/* take a reference to prevent skb_orphan() from freeing the socket */
3776	sock_hold(sk);
3777
3778	*skb_hwtstamps(skb) = *hwtstamps;
3779	__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3780
3781	sock_put(sk);
3782}
3783EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3784
3785void __skb_tstamp_tx(struct sk_buff *orig_skb,
3786		     struct skb_shared_hwtstamps *hwtstamps,
3787		     struct sock *sk, int tstype)
3788{
3789	struct sk_buff *skb;
3790	bool tsonly;
3791
3792	if (!sk)
3793		return;
3794
3795	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3796	if (!skb_may_tx_timestamp(sk, tsonly))
3797		return;
3798
3799	if (tsonly)
3800		skb = alloc_skb(0, GFP_ATOMIC);
3801	else
3802		skb = skb_clone(orig_skb, GFP_ATOMIC);
3803	if (!skb)
3804		return;
3805
3806	if (tsonly) {
3807		skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3808		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3809	}
3810
3811	if (hwtstamps)
3812		*skb_hwtstamps(skb) = *hwtstamps;
3813	else
3814		skb->tstamp = ktime_get_real();
3815
3816	__skb_complete_tx_timestamp(skb, sk, tstype);
3817}
3818EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3819
3820void skb_tstamp_tx(struct sk_buff *orig_skb,
3821		   struct skb_shared_hwtstamps *hwtstamps)
3822{
3823	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3824			       SCM_TSTAMP_SND);
3825}
3826EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3827
3828void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3829{
3830	struct sock *sk = skb->sk;
3831	struct sock_exterr_skb *serr;
3832	int err;
3833
3834	skb->wifi_acked_valid = 1;
3835	skb->wifi_acked = acked;
3836
3837	serr = SKB_EXT_ERR(skb);
3838	memset(serr, 0, sizeof(*serr));
3839	serr->ee.ee_errno = ENOMSG;
3840	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3841
3842	/* take a reference to prevent skb_orphan() from freeing the socket */
3843	sock_hold(sk);
3844
3845	err = sock_queue_err_skb(sk, skb);
3846	if (err)
3847		kfree_skb(skb);
3848
3849	sock_put(sk);
3850}
3851EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3852
 
3853/**
3854 * skb_partial_csum_set - set up and verify partial csum values for packet
3855 * @skb: the skb to set
3856 * @start: the number of bytes after skb->data to start checksumming.
3857 * @off: the offset from start to place the checksum.
3858 *
3859 * For untrusted partially-checksummed packets, we need to make sure the values
3860 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3861 *
3862 * This function checks and sets those values and skb->ip_summed: if this
3863 * returns false you should drop the packet.
3864 */
3865bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3866{
3867	if (unlikely(start > skb_headlen(skb)) ||
3868	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3869		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3870				     start, off, skb_headlen(skb));
3871		return false;
3872	}
3873	skb->ip_summed = CHECKSUM_PARTIAL;
3874	skb->csum_start = skb_headroom(skb) + start;
3875	skb->csum_offset = off;
3876	skb_set_transport_header(skb, start);
3877	return true;
3878}
3879EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3880
3881static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3882			       unsigned int max)
3883{
3884	if (skb_headlen(skb) >= len)
3885		return 0;
3886
3887	/* If we need to pullup then pullup to the max, so we
3888	 * won't need to do it again.
3889	 */
3890	if (max > skb->len)
3891		max = skb->len;
3892
3893	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3894		return -ENOMEM;
3895
3896	if (skb_headlen(skb) < len)
3897		return -EPROTO;
3898
3899	return 0;
3900}
3901
3902#define MAX_TCP_HDR_LEN (15 * 4)
3903
3904static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3905				      typeof(IPPROTO_IP) proto,
3906				      unsigned int off)
3907{
3908	switch (proto) {
3909		int err;
3910
3911	case IPPROTO_TCP:
3912		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3913					  off + MAX_TCP_HDR_LEN);
3914		if (!err && !skb_partial_csum_set(skb, off,
3915						  offsetof(struct tcphdr,
3916							   check)))
3917			err = -EPROTO;
3918		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3919
3920	case IPPROTO_UDP:
3921		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3922					  off + sizeof(struct udphdr));
3923		if (!err && !skb_partial_csum_set(skb, off,
3924						  offsetof(struct udphdr,
3925							   check)))
3926			err = -EPROTO;
3927		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3928	}
3929
3930	return ERR_PTR(-EPROTO);
3931}
3932
3933/* This value should be large enough to cover a tagged ethernet header plus
3934 * maximally sized IP and TCP or UDP headers.
3935 */
3936#define MAX_IP_HDR_LEN 128
3937
3938static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3939{
3940	unsigned int off;
3941	bool fragment;
3942	__sum16 *csum;
3943	int err;
3944
3945	fragment = false;
3946
3947	err = skb_maybe_pull_tail(skb,
3948				  sizeof(struct iphdr),
3949				  MAX_IP_HDR_LEN);
3950	if (err < 0)
3951		goto out;
3952
3953	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3954		fragment = true;
3955
3956	off = ip_hdrlen(skb);
3957
3958	err = -EPROTO;
3959
3960	if (fragment)
3961		goto out;
3962
3963	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3964	if (IS_ERR(csum))
3965		return PTR_ERR(csum);
3966
3967	if (recalculate)
3968		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3969					   ip_hdr(skb)->daddr,
3970					   skb->len - off,
3971					   ip_hdr(skb)->protocol, 0);
3972	err = 0;
3973
3974out:
3975	return err;
3976}
3977
3978/* This value should be large enough to cover a tagged ethernet header plus
3979 * an IPv6 header, all options, and a maximal TCP or UDP header.
3980 */
3981#define MAX_IPV6_HDR_LEN 256
3982
3983#define OPT_HDR(type, skb, off) \
3984	(type *)(skb_network_header(skb) + (off))
3985
3986static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3987{
3988	int err;
3989	u8 nexthdr;
3990	unsigned int off;
3991	unsigned int len;
3992	bool fragment;
3993	bool done;
3994	__sum16 *csum;
3995
3996	fragment = false;
3997	done = false;
3998
3999	off = sizeof(struct ipv6hdr);
4000
4001	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4002	if (err < 0)
4003		goto out;
4004
4005	nexthdr = ipv6_hdr(skb)->nexthdr;
4006
4007	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4008	while (off <= len && !done) {
4009		switch (nexthdr) {
4010		case IPPROTO_DSTOPTS:
4011		case IPPROTO_HOPOPTS:
4012		case IPPROTO_ROUTING: {
4013			struct ipv6_opt_hdr *hp;
4014
4015			err = skb_maybe_pull_tail(skb,
4016						  off +
4017						  sizeof(struct ipv6_opt_hdr),
4018						  MAX_IPV6_HDR_LEN);
4019			if (err < 0)
4020				goto out;
4021
4022			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4023			nexthdr = hp->nexthdr;
4024			off += ipv6_optlen(hp);
4025			break;
4026		}
4027		case IPPROTO_AH: {
4028			struct ip_auth_hdr *hp;
4029
4030			err = skb_maybe_pull_tail(skb,
4031						  off +
4032						  sizeof(struct ip_auth_hdr),
4033						  MAX_IPV6_HDR_LEN);
4034			if (err < 0)
4035				goto out;
4036
4037			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4038			nexthdr = hp->nexthdr;
4039			off += ipv6_authlen(hp);
4040			break;
4041		}
4042		case IPPROTO_FRAGMENT: {
4043			struct frag_hdr *hp;
4044
4045			err = skb_maybe_pull_tail(skb,
4046						  off +
4047						  sizeof(struct frag_hdr),
4048						  MAX_IPV6_HDR_LEN);
4049			if (err < 0)
4050				goto out;
4051
4052			hp = OPT_HDR(struct frag_hdr, skb, off);
4053
4054			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4055				fragment = true;
4056
4057			nexthdr = hp->nexthdr;
4058			off += sizeof(struct frag_hdr);
4059			break;
4060		}
4061		default:
4062			done = true;
4063			break;
4064		}
4065	}
4066
4067	err = -EPROTO;
4068
4069	if (!done || fragment)
4070		goto out;
4071
4072	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4073	if (IS_ERR(csum))
4074		return PTR_ERR(csum);
4075
4076	if (recalculate)
4077		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4078					 &ipv6_hdr(skb)->daddr,
4079					 skb->len - off, nexthdr, 0);
4080	err = 0;
4081
4082out:
4083	return err;
4084}
4085
4086/**
4087 * skb_checksum_setup - set up partial checksum offset
4088 * @skb: the skb to set up
4089 * @recalculate: if true the pseudo-header checksum will be recalculated
4090 */
4091int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4092{
4093	int err;
4094
4095	switch (skb->protocol) {
4096	case htons(ETH_P_IP):
4097		err = skb_checksum_setup_ipv4(skb, recalculate);
4098		break;
4099
4100	case htons(ETH_P_IPV6):
4101		err = skb_checksum_setup_ipv6(skb, recalculate);
4102		break;
4103
4104	default:
4105		err = -EPROTO;
4106		break;
4107	}
4108
4109	return err;
4110}
4111EXPORT_SYMBOL(skb_checksum_setup);
4112
4113/**
4114 * skb_checksum_maybe_trim - maybe trims the given skb
4115 * @skb: the skb to check
4116 * @transport_len: the data length beyond the network header
4117 *
4118 * Checks whether the given skb has data beyond the given transport length.
4119 * If so, returns a cloned skb trimmed to this transport length.
4120 * Otherwise returns the provided skb. Returns NULL in error cases
4121 * (e.g. transport_len exceeds skb length or out-of-memory).
4122 *
4123 * Caller needs to set the skb transport header and free any returned skb if it
4124 * differs from the provided skb.
4125 */
4126static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4127					       unsigned int transport_len)
4128{
4129	struct sk_buff *skb_chk;
4130	unsigned int len = skb_transport_offset(skb) + transport_len;
4131	int ret;
4132
4133	if (skb->len < len)
4134		return NULL;
4135	else if (skb->len == len)
4136		return skb;
4137
4138	skb_chk = skb_clone(skb, GFP_ATOMIC);
4139	if (!skb_chk)
4140		return NULL;
4141
4142	ret = pskb_trim_rcsum(skb_chk, len);
4143	if (ret) {
4144		kfree_skb(skb_chk);
4145		return NULL;
4146	}
4147
4148	return skb_chk;
4149}
4150
4151/**
4152 * skb_checksum_trimmed - validate checksum of an skb
4153 * @skb: the skb to check
4154 * @transport_len: the data length beyond the network header
4155 * @skb_chkf: checksum function to use
4156 *
4157 * Applies the given checksum function skb_chkf to the provided skb.
4158 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4159 *
4160 * If the skb has data beyond the given transport length, then a
4161 * trimmed & cloned skb is checked and returned.
4162 *
4163 * Caller needs to set the skb transport header and free any returned skb if it
4164 * differs from the provided skb.
4165 */
4166struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4167				     unsigned int transport_len,
4168				     __sum16(*skb_chkf)(struct sk_buff *skb))
4169{
4170	struct sk_buff *skb_chk;
4171	unsigned int offset = skb_transport_offset(skb);
4172	__sum16 ret;
4173
4174	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4175	if (!skb_chk)
4176		goto err;
4177
4178	if (!pskb_may_pull(skb_chk, offset))
4179		goto err;
4180
4181	skb_pull_rcsum(skb_chk, offset);
4182	ret = skb_chkf(skb_chk);
4183	skb_push_rcsum(skb_chk, offset);
4184
4185	if (ret)
4186		goto err;
4187
4188	return skb_chk;
4189
4190err:
4191	if (skb_chk && skb_chk != skb)
4192		kfree_skb(skb_chk);
4193
4194	return NULL;
4195
4196}
4197EXPORT_SYMBOL(skb_checksum_trimmed);
4198
4199void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4200{
4201	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4202			     skb->dev->name);
4203}
4204EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4205
4206void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4207{
4208	if (head_stolen) {
4209		skb_release_head_state(skb);
4210		kmem_cache_free(skbuff_head_cache, skb);
4211	} else {
4212		__kfree_skb(skb);
4213	}
4214}
4215EXPORT_SYMBOL(kfree_skb_partial);
4216
4217/**
4218 * skb_try_coalesce - try to merge skb to prior one
4219 * @to: prior buffer
4220 * @from: buffer to add
4221 * @fragstolen: pointer to boolean
4222 * @delta_truesize: how much more was allocated than was requested
4223 */
4224bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4225		      bool *fragstolen, int *delta_truesize)
4226{
4227	int i, delta, len = from->len;
4228
4229	*fragstolen = false;
4230
4231	if (skb_cloned(to))
4232		return false;
4233
4234	if (len <= skb_tailroom(to)) {
4235		if (len)
4236			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4237		*delta_truesize = 0;
4238		return true;
4239	}
4240
4241	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4242		return false;
4243
4244	if (skb_headlen(from) != 0) {
4245		struct page *page;
4246		unsigned int offset;
4247
4248		if (skb_shinfo(to)->nr_frags +
4249		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4250			return false;
4251
4252		if (skb_head_is_locked(from))
4253			return false;
4254
4255		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4256
4257		page = virt_to_head_page(from->head);
4258		offset = from->data - (unsigned char *)page_address(page);
4259
4260		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4261				   page, offset, skb_headlen(from));
4262		*fragstolen = true;
4263	} else {
4264		if (skb_shinfo(to)->nr_frags +
4265		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4266			return false;
4267
4268		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
 
4269	}
4270
4271	WARN_ON_ONCE(delta < len);
4272
4273	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4274	       skb_shinfo(from)->frags,
4275	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4276	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4277
4278	if (!skb_cloned(from))
4279		skb_shinfo(from)->nr_frags = 0;
4280
4281	/* if the skb is not cloned this does nothing
4282	 * since we set nr_frags to 0.
4283	 */
4284	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4285		skb_frag_ref(from, i);
4286
4287	to->truesize += delta;
4288	to->len += len;
4289	to->data_len += len;
4290
4291	*delta_truesize = delta;
4292	return true;
4293}
4294EXPORT_SYMBOL(skb_try_coalesce);
4295
4296/**
4297 * skb_scrub_packet - scrub an skb
4298 *
4299 * @skb: buffer to clean
4300 * @xnet: packet is crossing netns
4301 *
4302 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4303 * into/from a tunnel. Some information have to be cleared during these
4304 * operations.
4305 * skb_scrub_packet can also be used to clean a skb before injecting it in
4306 * another namespace (@xnet == true). We have to clear all information in the
4307 * skb that could impact namespace isolation.
4308 */
4309void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4310{
4311	skb->tstamp.tv64 = 0;
4312	skb->pkt_type = PACKET_HOST;
4313	skb->skb_iif = 0;
4314	skb->ignore_df = 0;
4315	skb_dst_drop(skb);
4316	secpath_reset(skb);
4317	nf_reset(skb);
4318	nf_reset_trace(skb);
4319
4320	if (!xnet)
4321		return;
4322
4323	skb_orphan(skb);
4324	skb->mark = 0;
4325}
4326EXPORT_SYMBOL_GPL(skb_scrub_packet);
4327
4328/**
4329 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4330 *
4331 * @skb: GSO skb
4332 *
4333 * skb_gso_transport_seglen is used to determine the real size of the
4334 * individual segments, including Layer4 headers (TCP/UDP).
4335 *
4336 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4337 */
4338unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4339{
4340	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4341	unsigned int thlen = 0;
4342
4343	if (skb->encapsulation) {
4344		thlen = skb_inner_transport_header(skb) -
4345			skb_transport_header(skb);
4346
4347		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4348			thlen += inner_tcp_hdrlen(skb);
4349	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4350		thlen = tcp_hdrlen(skb);
4351	}
4352	/* UFO sets gso_size to the size of the fragmentation
4353	 * payload, i.e. the size of the L4 (UDP) header is already
4354	 * accounted for.
4355	 */
4356	return thlen + shinfo->gso_size;
4357}
4358EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4359
4360static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4361{
4362	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4363		kfree_skb(skb);
4364		return NULL;
4365	}
4366
4367	memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4368		2 * ETH_ALEN);
4369	skb->mac_header += VLAN_HLEN;
4370	return skb;
4371}
4372
4373struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4374{
4375	struct vlan_hdr *vhdr;
4376	u16 vlan_tci;
4377
4378	if (unlikely(skb_vlan_tag_present(skb))) {
4379		/* vlan_tci is already set-up so leave this for another time */
4380		return skb;
4381	}
4382
4383	skb = skb_share_check(skb, GFP_ATOMIC);
4384	if (unlikely(!skb))
4385		goto err_free;
4386
4387	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4388		goto err_free;
4389
4390	vhdr = (struct vlan_hdr *)skb->data;
4391	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4392	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4393
4394	skb_pull_rcsum(skb, VLAN_HLEN);
4395	vlan_set_encap_proto(skb, vhdr);
4396
4397	skb = skb_reorder_vlan_header(skb);
4398	if (unlikely(!skb))
4399		goto err_free;
4400
4401	skb_reset_network_header(skb);
4402	skb_reset_transport_header(skb);
4403	skb_reset_mac_len(skb);
4404
4405	return skb;
4406
4407err_free:
4408	kfree_skb(skb);
4409	return NULL;
4410}
4411EXPORT_SYMBOL(skb_vlan_untag);
4412
4413int skb_ensure_writable(struct sk_buff *skb, int write_len)
4414{
4415	if (!pskb_may_pull(skb, write_len))
4416		return -ENOMEM;
4417
4418	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4419		return 0;
4420
4421	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4422}
4423EXPORT_SYMBOL(skb_ensure_writable);
4424
4425/* remove VLAN header from packet and update csum accordingly. */
4426static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4427{
4428	struct vlan_hdr *vhdr;
4429	unsigned int offset = skb->data - skb_mac_header(skb);
4430	int err;
4431
4432	__skb_push(skb, offset);
4433	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4434	if (unlikely(err))
4435		goto pull;
4436
4437	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4438
4439	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4440	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4441
4442	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4443	__skb_pull(skb, VLAN_HLEN);
4444
4445	vlan_set_encap_proto(skb, vhdr);
4446	skb->mac_header += VLAN_HLEN;
4447
4448	if (skb_network_offset(skb) < ETH_HLEN)
4449		skb_set_network_header(skb, ETH_HLEN);
4450
4451	skb_reset_mac_len(skb);
4452pull:
4453	__skb_pull(skb, offset);
4454
4455	return err;
4456}
4457
4458int skb_vlan_pop(struct sk_buff *skb)
4459{
4460	u16 vlan_tci;
4461	__be16 vlan_proto;
4462	int err;
4463
4464	if (likely(skb_vlan_tag_present(skb))) {
4465		skb->vlan_tci = 0;
4466	} else {
4467		if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4468			      skb->protocol != htons(ETH_P_8021AD)) ||
4469			     skb->len < VLAN_ETH_HLEN))
4470			return 0;
4471
4472		err = __skb_vlan_pop(skb, &vlan_tci);
4473		if (err)
4474			return err;
4475	}
4476	/* move next vlan tag to hw accel tag */
4477	if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4478		    skb->protocol != htons(ETH_P_8021AD)) ||
4479		   skb->len < VLAN_ETH_HLEN))
4480		return 0;
4481
4482	vlan_proto = skb->protocol;
4483	err = __skb_vlan_pop(skb, &vlan_tci);
4484	if (unlikely(err))
4485		return err;
4486
4487	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4488	return 0;
4489}
4490EXPORT_SYMBOL(skb_vlan_pop);
4491
4492int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4493{
4494	if (skb_vlan_tag_present(skb)) {
4495		unsigned int offset = skb->data - skb_mac_header(skb);
4496		int err;
4497
4498		/* __vlan_insert_tag expect skb->data pointing to mac header.
4499		 * So change skb->data before calling it and change back to
4500		 * original position later
4501		 */
4502		__skb_push(skb, offset);
4503		err = __vlan_insert_tag(skb, skb->vlan_proto,
4504					skb_vlan_tag_get(skb));
4505		if (err) {
4506			__skb_pull(skb, offset);
4507			return err;
4508		}
4509
4510		skb->protocol = skb->vlan_proto;
4511		skb->mac_len += VLAN_HLEN;
4512
4513		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4514		__skb_pull(skb, offset);
4515	}
4516	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4517	return 0;
4518}
4519EXPORT_SYMBOL(skb_vlan_push);
4520
4521/**
4522 * alloc_skb_with_frags - allocate skb with page frags
4523 *
4524 * @header_len: size of linear part
4525 * @data_len: needed length in frags
4526 * @max_page_order: max page order desired.
4527 * @errcode: pointer to error code if any
4528 * @gfp_mask: allocation mask
4529 *
4530 * This can be used to allocate a paged skb, given a maximal order for frags.
4531 */
4532struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4533				     unsigned long data_len,
4534				     int max_page_order,
4535				     int *errcode,
4536				     gfp_t gfp_mask)
4537{
4538	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4539	unsigned long chunk;
4540	struct sk_buff *skb;
4541	struct page *page;
4542	gfp_t gfp_head;
4543	int i;
4544
4545	*errcode = -EMSGSIZE;
4546	/* Note this test could be relaxed, if we succeed to allocate
4547	 * high order pages...
4548	 */
4549	if (npages > MAX_SKB_FRAGS)
4550		return NULL;
4551
4552	gfp_head = gfp_mask;
4553	if (gfp_head & __GFP_DIRECT_RECLAIM)
4554		gfp_head |= __GFP_REPEAT;
4555
4556	*errcode = -ENOBUFS;
4557	skb = alloc_skb(header_len, gfp_head);
4558	if (!skb)
4559		return NULL;
4560
4561	skb->truesize += npages << PAGE_SHIFT;
4562
4563	for (i = 0; npages > 0; i++) {
4564		int order = max_page_order;
4565
4566		while (order) {
4567			if (npages >= 1 << order) {
4568				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4569						   __GFP_COMP |
4570						   __GFP_NOWARN |
4571						   __GFP_NORETRY,
4572						   order);
4573				if (page)
4574					goto fill_page;
4575				/* Do not retry other high order allocations */
4576				order = 1;
4577				max_page_order = 0;
4578			}
4579			order--;
4580		}
4581		page = alloc_page(gfp_mask);
4582		if (!page)
4583			goto failure;
4584fill_page:
4585		chunk = min_t(unsigned long, data_len,
4586			      PAGE_SIZE << order);
4587		skb_fill_page_desc(skb, i, page, 0, chunk);
4588		data_len -= chunk;
4589		npages -= 1 << order;
4590	}
4591	return skb;
4592
4593failure:
4594	kfree_skb(skb);
4595	return NULL;
4596}
4597EXPORT_SYMBOL(alloc_skb_with_frags);
v3.5.6
   1/*
   2 *	Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *			Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *	Fixes:
   8 *		Alan Cox	:	Fixed the worst of the load
   9 *					balancer bugs.
  10 *		Dave Platt	:	Interrupt stacking fix.
  11 *	Richard Kooijman	:	Timestamp fixes.
  12 *		Alan Cox	:	Changed buffer format.
  13 *		Alan Cox	:	destructor hook for AF_UNIX etc.
  14 *		Linus Torvalds	:	Better skb_clone.
  15 *		Alan Cox	:	Added skb_copy.
  16 *		Alan Cox	:	Added all the changed routines Linus
  17 *					only put in the headers
  18 *		Ray VanTassle	:	Fixed --skb->lock in free
  19 *		Alan Cox	:	skb_copy copy arp field
  20 *		Andi Kleen	:	slabified it.
  21 *		Robert Olsson	:	Removed skb_head_pool
  22 *
  23 *	NOTE:
  24 *		The __skb_ routines should be called with interrupts
  25 *	disabled, or you better be *real* sure that the operation is atomic
  26 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *	or via disabling bottom half handlers, etc).
  28 *
  29 *	This program is free software; you can redistribute it and/or
  30 *	modify it under the terms of the GNU General Public License
  31 *	as published by the Free Software Foundation; either version
  32 *	2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *	The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
 
 
  50#include <linux/netdevice.h>
  51#ifdef CONFIG_NET_CLS_ACT
  52#include <net/pkt_sched.h>
  53#endif
  54#include <linux/string.h>
  55#include <linux/skbuff.h>
  56#include <linux/splice.h>
  57#include <linux/cache.h>
  58#include <linux/rtnetlink.h>
  59#include <linux/init.h>
  60#include <linux/scatterlist.h>
  61#include <linux/errqueue.h>
  62#include <linux/prefetch.h>
 
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
 
  68#include <net/xfrm.h>
  69
  70#include <asm/uaccess.h>
  71#include <trace/events/skb.h>
  72#include <linux/highmem.h>
 
 
  73
  74struct kmem_cache *skbuff_head_cache __read_mostly;
  75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
 
 
  76
  77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  78				  struct pipe_buffer *buf)
 
 
 
 
 
 
 
 
 
 
 
 
  79{
  80	put_page(buf->page);
 
 
 
 
  81}
  82
  83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  84				struct pipe_buffer *buf)
  85{
  86	get_page(buf->page);
  87}
  88
  89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  90			       struct pipe_buffer *buf)
  91{
  92	return 1;
  93}
  94
  95
  96/* Pipe buffer operations for a socket. */
  97static const struct pipe_buf_operations sock_pipe_buf_ops = {
  98	.can_merge = 0,
  99	.map = generic_pipe_buf_map,
 100	.unmap = generic_pipe_buf_unmap,
 101	.confirm = generic_pipe_buf_confirm,
 102	.release = sock_pipe_buf_release,
 103	.steal = sock_pipe_buf_steal,
 104	.get = sock_pipe_buf_get,
 105};
 106
 107/*
 108 *	Keep out-of-line to prevent kernel bloat.
 109 *	__builtin_return_address is not used because it is not always
 110 *	reliable.
 
 
 111 */
 
 
 112
 113/**
 114 *	skb_over_panic	- 	private function
 115 *	@skb: buffer
 116 *	@sz: size
 117 *	@here: address
 118 *
 119 *	Out of line support code for skb_put(). Not user callable.
 120 */
 121static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
 122{
 123	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 124		 __func__, here, skb->len, sz, skb->head, skb->data,
 125		 (unsigned long)skb->tail, (unsigned long)skb->end,
 126		 skb->dev ? skb->dev->name : "<NULL>");
 127	BUG();
 128}
 
 
 
 
 
 
 
 
 
 
 129
 130/**
 131 *	skb_under_panic	- 	private function
 132 *	@skb: buffer
 133 *	@sz: size
 134 *	@here: address
 135 *
 136 *	Out of line support code for skb_push(). Not user callable.
 137 */
 138
 139static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
 140{
 141	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 142		 __func__, here, skb->len, sz, skb->head, skb->data,
 143		 (unsigned long)skb->tail, (unsigned long)skb->end,
 144		 skb->dev ? skb->dev->name : "<NULL>");
 145	BUG();
 146}
 147
 148/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
 149 *	'private' fields and also do memory statistics to find all the
 150 *	[BEEP] leaks.
 151 *
 152 */
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/**
 155 *	__alloc_skb	-	allocate a network buffer
 156 *	@size: size to allocate
 157 *	@gfp_mask: allocation mask
 158 *	@fclone: allocate from fclone cache instead of head cache
 159 *		and allocate a cloned (child) skb
 
 
 160 *	@node: numa node to allocate memory on
 161 *
 162 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
 163 *	tail room of size bytes. The object has a reference count of one.
 164 *	The return is the buffer. On a failure the return is %NULL.
 165 *
 166 *	Buffers may only be allocated from interrupts using a @gfp_mask of
 167 *	%GFP_ATOMIC.
 168 */
 169struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 170			    int fclone, int node)
 171{
 172	struct kmem_cache *cache;
 173	struct skb_shared_info *shinfo;
 174	struct sk_buff *skb;
 175	u8 *data;
 
 176
 177	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
 
 
 
 
 178
 179	/* Get the HEAD */
 180	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 181	if (!skb)
 182		goto out;
 183	prefetchw(skb);
 184
 185	/* We do our best to align skb_shared_info on a separate cache
 186	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 187	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 188	 * Both skb->head and skb_shared_info are cache line aligned.
 189	 */
 190	size = SKB_DATA_ALIGN(size);
 191	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 192	data = kmalloc_node_track_caller(size, gfp_mask, node);
 193	if (!data)
 194		goto nodata;
 195	/* kmalloc(size) might give us more room than requested.
 196	 * Put skb_shared_info exactly at the end of allocated zone,
 197	 * to allow max possible filling before reallocation.
 198	 */
 199	size = SKB_WITH_OVERHEAD(ksize(data));
 200	prefetchw(data + size);
 201
 202	/*
 203	 * Only clear those fields we need to clear, not those that we will
 204	 * actually initialise below. Hence, don't put any more fields after
 205	 * the tail pointer in struct sk_buff!
 206	 */
 207	memset(skb, 0, offsetof(struct sk_buff, tail));
 208	/* Account for allocated memory : skb + skb->head */
 209	skb->truesize = SKB_TRUESIZE(size);
 
 210	atomic_set(&skb->users, 1);
 211	skb->head = data;
 212	skb->data = data;
 213	skb_reset_tail_pointer(skb);
 214	skb->end = skb->tail + size;
 215#ifdef NET_SKBUFF_DATA_USES_OFFSET
 216	skb->mac_header = ~0U;
 217#endif
 218
 219	/* make sure we initialize shinfo sequentially */
 220	shinfo = skb_shinfo(skb);
 221	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 222	atomic_set(&shinfo->dataref, 1);
 223	kmemcheck_annotate_variable(shinfo->destructor_arg);
 224
 225	if (fclone) {
 226		struct sk_buff *child = skb + 1;
 227		atomic_t *fclone_ref = (atomic_t *) (child + 1);
 
 228
 229		kmemcheck_annotate_bitfield(child, flags1);
 230		kmemcheck_annotate_bitfield(child, flags2);
 231		skb->fclone = SKB_FCLONE_ORIG;
 232		atomic_set(fclone_ref, 1);
 233
 234		child->fclone = SKB_FCLONE_UNAVAILABLE;
 
 235	}
 236out:
 237	return skb;
 238nodata:
 239	kmem_cache_free(cache, skb);
 240	skb = NULL;
 241	goto out;
 242}
 243EXPORT_SYMBOL(__alloc_skb);
 244
 245/**
 246 * build_skb - build a network buffer
 247 * @data: data buffer provided by caller
 248 * @frag_size: size of fragment, or 0 if head was kmalloced
 249 *
 250 * Allocate a new &sk_buff. Caller provides space holding head and
 251 * skb_shared_info. @data must have been allocated by kmalloc()
 
 
 252 * The return is the new skb buffer.
 253 * On a failure the return is %NULL, and @data is not freed.
 254 * Notes :
 255 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 256 *  Driver should add room at head (NET_SKB_PAD) and
 257 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 258 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 259 *  before giving packet to stack.
 260 *  RX rings only contains data buffers, not full skbs.
 261 */
 262struct sk_buff *build_skb(void *data, unsigned int frag_size)
 263{
 264	struct skb_shared_info *shinfo;
 265	struct sk_buff *skb;
 266	unsigned int size = frag_size ? : ksize(data);
 267
 268	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 269	if (!skb)
 270		return NULL;
 271
 272	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 273
 274	memset(skb, 0, offsetof(struct sk_buff, tail));
 275	skb->truesize = SKB_TRUESIZE(size);
 276	skb->head_frag = frag_size != 0;
 277	atomic_set(&skb->users, 1);
 278	skb->head = data;
 279	skb->data = data;
 280	skb_reset_tail_pointer(skb);
 281	skb->end = skb->tail + size;
 282#ifdef NET_SKBUFF_DATA_USES_OFFSET
 283	skb->mac_header = ~0U;
 284#endif
 285
 286	/* make sure we initialize shinfo sequentially */
 287	shinfo = skb_shinfo(skb);
 288	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 289	atomic_set(&shinfo->dataref, 1);
 290	kmemcheck_annotate_variable(shinfo->destructor_arg);
 291
 292	return skb;
 293}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294EXPORT_SYMBOL(build_skb);
 295
 296struct netdev_alloc_cache {
 297	struct page *page;
 298	unsigned int offset;
 
 
 
 299};
 300static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302/**
 303 * netdev_alloc_frag - allocate a page fragment
 304 * @fragsz: fragment size
 305 *
 306 * Allocates a frag from a page for receive buffer.
 307 * Uses GFP_ATOMIC allocations.
 308 */
 309void *netdev_alloc_frag(unsigned int fragsz)
 310{
 311	struct netdev_alloc_cache *nc;
 312	void *data = NULL;
 313	unsigned long flags;
 
 
 
 
 
 
 
 314
 315	local_irq_save(flags);
 316	nc = &__get_cpu_var(netdev_alloc_cache);
 317	if (unlikely(!nc->page)) {
 318refill:
 319		nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
 320		nc->offset = 0;
 321	}
 322	if (likely(nc->page)) {
 323		if (nc->offset + fragsz > PAGE_SIZE) {
 324			put_page(nc->page);
 325			goto refill;
 326		}
 327		data = page_address(nc->page) + nc->offset;
 328		nc->offset += fragsz;
 329		get_page(nc->page);
 330	}
 331	local_irq_restore(flags);
 332	return data;
 333}
 334EXPORT_SYMBOL(netdev_alloc_frag);
 335
 336/**
 337 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
 338 *	@dev: network device to receive on
 339 *	@length: length to allocate
 340 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
 341 *
 342 *	Allocate a new &sk_buff and assign it a usage count of one. The
 343 *	buffer has unspecified headroom built in. Users should allocate
 344 *	the headroom they think they need without accounting for the
 345 *	built in space. The built in space is used for optimisations.
 346 *
 347 *	%NULL is returned if there is no free memory.
 348 */
 349struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 350				   unsigned int length, gfp_t gfp_mask)
 351{
 352	struct sk_buff *skb = NULL;
 353	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
 354			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 355
 356	if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 357		void *data = netdev_alloc_frag(fragsz);
 358
 359		if (likely(data)) {
 360			skb = build_skb(data, fragsz);
 361			if (unlikely(!skb))
 362				put_page(virt_to_head_page(data));
 363		}
 364	} else {
 365		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
 366	}
 367	if (likely(skb)) {
 368		skb_reserve(skb, NET_SKB_PAD);
 369		skb->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370	}
 
 
 
 
 
 
 
 
 
 
 
 371	return skb;
 372}
 373EXPORT_SYMBOL(__netdev_alloc_skb);
 374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 376		     int size, unsigned int truesize)
 377{
 378	skb_fill_page_desc(skb, i, page, off, size);
 379	skb->len += size;
 380	skb->data_len += size;
 381	skb->truesize += truesize;
 382}
 383EXPORT_SYMBOL(skb_add_rx_frag);
 384
 
 
 
 
 
 
 
 
 
 
 
 
 385static void skb_drop_list(struct sk_buff **listp)
 386{
 387	struct sk_buff *list = *listp;
 388
 389	*listp = NULL;
 390
 391	do {
 392		struct sk_buff *this = list;
 393		list = list->next;
 394		kfree_skb(this);
 395	} while (list);
 396}
 397
 398static inline void skb_drop_fraglist(struct sk_buff *skb)
 399{
 400	skb_drop_list(&skb_shinfo(skb)->frag_list);
 401}
 402
 403static void skb_clone_fraglist(struct sk_buff *skb)
 404{
 405	struct sk_buff *list;
 406
 407	skb_walk_frags(skb, list)
 408		skb_get(list);
 409}
 410
 411static void skb_free_head(struct sk_buff *skb)
 412{
 
 
 413	if (skb->head_frag)
 414		put_page(virt_to_head_page(skb->head));
 415	else
 416		kfree(skb->head);
 417}
 418
 419static void skb_release_data(struct sk_buff *skb)
 420{
 421	if (!skb->cloned ||
 422	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 423			       &skb_shinfo(skb)->dataref)) {
 424		if (skb_shinfo(skb)->nr_frags) {
 425			int i;
 426			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 427				skb_frag_unref(skb, i);
 428		}
 429
 430		/*
 431		 * If skb buf is from userspace, we need to notify the caller
 432		 * the lower device DMA has done;
 433		 */
 434		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 435			struct ubuf_info *uarg;
 436
 437			uarg = skb_shinfo(skb)->destructor_arg;
 438			if (uarg->callback)
 439				uarg->callback(uarg);
 440		}
 441
 442		if (skb_has_frag_list(skb))
 443			skb_drop_fraglist(skb);
 
 
 
 
 444
 445		skb_free_head(skb);
 
 
 446	}
 
 
 
 
 
 447}
 448
 449/*
 450 *	Free an skbuff by memory without cleaning the state.
 451 */
 452static void kfree_skbmem(struct sk_buff *skb)
 453{
 454	struct sk_buff *other;
 455	atomic_t *fclone_ref;
 456
 457	switch (skb->fclone) {
 458	case SKB_FCLONE_UNAVAILABLE:
 459		kmem_cache_free(skbuff_head_cache, skb);
 460		break;
 461
 462	case SKB_FCLONE_ORIG:
 463		fclone_ref = (atomic_t *) (skb + 2);
 464		if (atomic_dec_and_test(fclone_ref))
 465			kmem_cache_free(skbuff_fclone_cache, skb);
 466		break;
 467
 468	case SKB_FCLONE_CLONE:
 469		fclone_ref = (atomic_t *) (skb + 1);
 470		other = skb - 1;
 471
 472		/* The clone portion is available for
 473		 * fast-cloning again.
 
 474		 */
 475		skb->fclone = SKB_FCLONE_UNAVAILABLE;
 
 
 476
 477		if (atomic_dec_and_test(fclone_ref))
 478			kmem_cache_free(skbuff_fclone_cache, other);
 479		break;
 480	}
 
 
 
 
 481}
 482
 483static void skb_release_head_state(struct sk_buff *skb)
 484{
 485	skb_dst_drop(skb);
 486#ifdef CONFIG_XFRM
 487	secpath_put(skb->sp);
 488#endif
 489	if (skb->destructor) {
 490		WARN_ON(in_irq());
 491		skb->destructor(skb);
 492	}
 493#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 494	nf_conntrack_put(skb->nfct);
 495#endif
 496#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 497	nf_conntrack_put_reasm(skb->nfct_reasm);
 498#endif
 499#ifdef CONFIG_BRIDGE_NETFILTER
 500	nf_bridge_put(skb->nf_bridge);
 501#endif
 502/* XXX: IS this still necessary? - JHS */
 503#ifdef CONFIG_NET_SCHED
 504	skb->tc_index = 0;
 505#ifdef CONFIG_NET_CLS_ACT
 506	skb->tc_verd = 0;
 507#endif
 508#endif
 509}
 510
 511/* Free everything but the sk_buff shell. */
 512static void skb_release_all(struct sk_buff *skb)
 513{
 514	skb_release_head_state(skb);
 515	skb_release_data(skb);
 
 516}
 517
 518/**
 519 *	__kfree_skb - private function
 520 *	@skb: buffer
 521 *
 522 *	Free an sk_buff. Release anything attached to the buffer.
 523 *	Clean the state. This is an internal helper function. Users should
 524 *	always call kfree_skb
 525 */
 526
 527void __kfree_skb(struct sk_buff *skb)
 528{
 529	skb_release_all(skb);
 530	kfree_skbmem(skb);
 531}
 532EXPORT_SYMBOL(__kfree_skb);
 533
 534/**
 535 *	kfree_skb - free an sk_buff
 536 *	@skb: buffer to free
 537 *
 538 *	Drop a reference to the buffer and free it if the usage count has
 539 *	hit zero.
 540 */
 541void kfree_skb(struct sk_buff *skb)
 542{
 543	if (unlikely(!skb))
 544		return;
 545	if (likely(atomic_read(&skb->users) == 1))
 546		smp_rmb();
 547	else if (likely(!atomic_dec_and_test(&skb->users)))
 548		return;
 549	trace_kfree_skb(skb, __builtin_return_address(0));
 550	__kfree_skb(skb);
 551}
 552EXPORT_SYMBOL(kfree_skb);
 553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554/**
 555 *	consume_skb - free an skbuff
 556 *	@skb: buffer to free
 557 *
 558 *	Drop a ref to the buffer and free it if the usage count has hit zero
 559 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
 560 *	is being dropped after a failure and notes that
 561 */
 562void consume_skb(struct sk_buff *skb)
 563{
 564	if (unlikely(!skb))
 565		return;
 566	if (likely(atomic_read(&skb->users) == 1))
 567		smp_rmb();
 568	else if (likely(!atomic_dec_and_test(&skb->users)))
 569		return;
 570	trace_consume_skb(skb);
 571	__kfree_skb(skb);
 572}
 573EXPORT_SYMBOL(consume_skb);
 574
 575/**
 576 * 	skb_recycle - clean up an skb for reuse
 577 * 	@skb: buffer
 578 *
 579 * 	Recycles the skb to be reused as a receive buffer. This
 580 * 	function does any necessary reference count dropping, and
 581 * 	cleans up the skbuff as if it just came from __alloc_skb().
 582 */
 583void skb_recycle(struct sk_buff *skb)
 
 
 
 
 584{
 585	struct skb_shared_info *shinfo;
 
 
 
 586
 587	skb_release_head_state(skb);
 
 588
 589	shinfo = skb_shinfo(skb);
 590	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 591	atomic_set(&shinfo->dataref, 1);
 
 592
 593	memset(skb, 0, offsetof(struct sk_buff, tail));
 594	skb->data = skb->head + NET_SKB_PAD;
 595	skb_reset_tail_pointer(skb);
 
 
 
 
 
 
 
 596}
 597EXPORT_SYMBOL(skb_recycle);
 598
 599/**
 600 *	skb_recycle_check - check if skb can be reused for receive
 601 *	@skb: buffer
 602 *	@skb_size: minimum receive buffer size
 603 *
 604 *	Checks that the skb passed in is not shared or cloned, and
 605 *	that it is linear and its head portion at least as large as
 606 *	skb_size so that it can be recycled as a receive buffer.
 607 *	If these conditions are met, this function does any necessary
 608 *	reference count dropping and cleans up the skbuff as if it
 609 *	just came from __alloc_skb().
 610 */
 611bool skb_recycle_check(struct sk_buff *skb, int skb_size)
 612{
 613	if (!skb_is_recycleable(skb, skb_size))
 614		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 615
 616	skb_recycle(skb);
 
 
 
 
 617
 618	return true;
 619}
 620EXPORT_SYMBOL(skb_recycle_check);
 
 
 
 
 
 
 
 621
 622static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 623{
 624	new->tstamp		= old->tstamp;
 
 625	new->dev		= old->dev;
 626	new->transport_header	= old->transport_header;
 627	new->network_header	= old->network_header;
 628	new->mac_header		= old->mac_header;
 629	skb_dst_copy(new, old);
 630	new->rxhash		= old->rxhash;
 631	new->ooo_okay		= old->ooo_okay;
 632	new->l4_rxhash		= old->l4_rxhash;
 633	new->no_fcs		= old->no_fcs;
 634#ifdef CONFIG_XFRM
 635	new->sp			= secpath_get(old->sp);
 636#endif
 637	memcpy(new->cb, old->cb, sizeof(old->cb));
 638	new->csum		= old->csum;
 639	new->local_df		= old->local_df;
 640	new->pkt_type		= old->pkt_type;
 641	new->ip_summed		= old->ip_summed;
 642	skb_copy_queue_mapping(new, old);
 643	new->priority		= old->priority;
 644#if IS_ENABLED(CONFIG_IP_VS)
 645	new->ipvs_property	= old->ipvs_property;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646#endif
 647	new->protocol		= old->protocol;
 648	new->mark		= old->mark;
 649	new->skb_iif		= old->skb_iif;
 650	__nf_copy(new, old);
 651#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
 652	new->nf_trace		= old->nf_trace;
 653#endif
 654#ifdef CONFIG_NET_SCHED
 655	new->tc_index		= old->tc_index;
 656#ifdef CONFIG_NET_CLS_ACT
 657	new->tc_verd		= old->tc_verd;
 658#endif
 659#endif
 660	new->vlan_tci		= old->vlan_tci;
 661
 662	skb_copy_secmark(new, old);
 663}
 664
 665/*
 666 * You should not add any new code to this function.  Add it to
 667 * __copy_skb_header above instead.
 668 */
 669static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 670{
 671#define C(x) n->x = skb->x
 672
 673	n->next = n->prev = NULL;
 674	n->sk = NULL;
 675	__copy_skb_header(n, skb);
 676
 677	C(len);
 678	C(data_len);
 679	C(mac_len);
 680	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 681	n->cloned = 1;
 682	n->nohdr = 0;
 683	n->destructor = NULL;
 684	C(tail);
 685	C(end);
 686	C(head);
 687	C(head_frag);
 688	C(data);
 689	C(truesize);
 690	atomic_set(&n->users, 1);
 691
 692	atomic_inc(&(skb_shinfo(skb)->dataref));
 693	skb->cloned = 1;
 694
 695	return n;
 696#undef C
 697}
 698
 699/**
 700 *	skb_morph	-	morph one skb into another
 701 *	@dst: the skb to receive the contents
 702 *	@src: the skb to supply the contents
 703 *
 704 *	This is identical to skb_clone except that the target skb is
 705 *	supplied by the user.
 706 *
 707 *	The target skb is returned upon exit.
 708 */
 709struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 710{
 711	skb_release_all(dst);
 712	return __skb_clone(dst, src);
 713}
 714EXPORT_SYMBOL_GPL(skb_morph);
 715
 716/*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
 
 717 *	@skb: the skb to modify
 718 *	@gfp_mask: allocation priority
 719 *
 720 *	This must be called on SKBTX_DEV_ZEROCOPY skb.
 721 *	It will copy all frags into kernel and drop the reference
 722 *	to userspace pages.
 723 *
 724 *	If this function is called from an interrupt gfp_mask() must be
 725 *	%GFP_ATOMIC.
 726 *
 727 *	Returns 0 on success or a negative error code on failure
 728 *	to allocate kernel memory to copy to.
 729 */
 730int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 731{
 732	int i;
 733	int num_frags = skb_shinfo(skb)->nr_frags;
 734	struct page *page, *head = NULL;
 735	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 736
 737	for (i = 0; i < num_frags; i++) {
 738		u8 *vaddr;
 739		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 740
 741		page = alloc_page(GFP_ATOMIC);
 742		if (!page) {
 743			while (head) {
 744				struct page *next = (struct page *)head->private;
 745				put_page(head);
 746				head = next;
 747			}
 748			return -ENOMEM;
 749		}
 750		vaddr = kmap_atomic(skb_frag_page(f));
 751		memcpy(page_address(page),
 752		       vaddr + f->page_offset, skb_frag_size(f));
 753		kunmap_atomic(vaddr);
 754		page->private = (unsigned long)head;
 755		head = page;
 756	}
 757
 758	/* skb frags release userspace buffers */
 759	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 760		skb_frag_unref(skb, i);
 761
 762	uarg->callback(uarg);
 763
 764	/* skb frags point to kernel buffers */
 765	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
 766		__skb_fill_page_desc(skb, i-1, head, 0,
 767				     skb_shinfo(skb)->frags[i - 1].size);
 768		head = (struct page *)head->private;
 769	}
 770
 771	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 772	return 0;
 773}
 774
 775
 776/**
 777 *	skb_clone	-	duplicate an sk_buff
 778 *	@skb: buffer to clone
 779 *	@gfp_mask: allocation priority
 780 *
 781 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
 782 *	copies share the same packet data but not structure. The new
 783 *	buffer has a reference count of 1. If the allocation fails the
 784 *	function returns %NULL otherwise the new buffer is returned.
 785 *
 786 *	If this function is called from an interrupt gfp_mask() must be
 787 *	%GFP_ATOMIC.
 788 */
 789
 790struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 791{
 
 
 
 792	struct sk_buff *n;
 793
 794	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 795		if (skb_copy_ubufs(skb, gfp_mask))
 796			return NULL;
 797	}
 798
 799	n = skb + 1;
 800	if (skb->fclone == SKB_FCLONE_ORIG &&
 801	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
 802		atomic_t *fclone_ref = (atomic_t *) (n + 1);
 803		n->fclone = SKB_FCLONE_CLONE;
 804		atomic_inc(fclone_ref);
 805	} else {
 
 
 
 806		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 807		if (!n)
 808			return NULL;
 809
 810		kmemcheck_annotate_bitfield(n, flags1);
 811		kmemcheck_annotate_bitfield(n, flags2);
 812		n->fclone = SKB_FCLONE_UNAVAILABLE;
 813	}
 814
 815	return __skb_clone(n, skb);
 816}
 817EXPORT_SYMBOL(skb_clone);
 818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 820{
 821#ifndef NET_SKBUFF_DATA_USES_OFFSET
 822	/*
 823	 *	Shift between the two data areas in bytes
 824	 */
 825	unsigned long offset = new->data - old->data;
 826#endif
 827
 828	__copy_skb_header(new, old);
 829
 830#ifndef NET_SKBUFF_DATA_USES_OFFSET
 831	/* {transport,network,mac}_header are relative to skb->head */
 832	new->transport_header += offset;
 833	new->network_header   += offset;
 834	if (skb_mac_header_was_set(new))
 835		new->mac_header	      += offset;
 836#endif
 837	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 838	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 839	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 840}
 841
 
 
 
 
 
 
 
 842/**
 843 *	skb_copy	-	create private copy of an sk_buff
 844 *	@skb: buffer to copy
 845 *	@gfp_mask: allocation priority
 846 *
 847 *	Make a copy of both an &sk_buff and its data. This is used when the
 848 *	caller wishes to modify the data and needs a private copy of the
 849 *	data to alter. Returns %NULL on failure or the pointer to the buffer
 850 *	on success. The returned buffer has a reference count of 1.
 851 *
 852 *	As by-product this function converts non-linear &sk_buff to linear
 853 *	one, so that &sk_buff becomes completely private and caller is allowed
 854 *	to modify all the data of returned buffer. This means that this
 855 *	function is not recommended for use in circumstances when only
 856 *	header is going to be modified. Use pskb_copy() instead.
 857 */
 858
 859struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 860{
 861	int headerlen = skb_headroom(skb);
 862	unsigned int size = skb_end_offset(skb) + skb->data_len;
 863	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 864
 865	if (!n)
 866		return NULL;
 867
 868	/* Set the data pointer */
 869	skb_reserve(n, headerlen);
 870	/* Set the tail pointer and length */
 871	skb_put(n, skb->len);
 872
 873	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 874		BUG();
 875
 876	copy_skb_header(n, skb);
 877	return n;
 878}
 879EXPORT_SYMBOL(skb_copy);
 880
 881/**
 882 *	__pskb_copy	-	create copy of an sk_buff with private head.
 883 *	@skb: buffer to copy
 884 *	@headroom: headroom of new skb
 885 *	@gfp_mask: allocation priority
 
 
 
 886 *
 887 *	Make a copy of both an &sk_buff and part of its data, located
 888 *	in header. Fragmented data remain shared. This is used when
 889 *	the caller wishes to modify only header of &sk_buff and needs
 890 *	private copy of the header to alter. Returns %NULL on failure
 891 *	or the pointer to the buffer on success.
 892 *	The returned buffer has a reference count of 1.
 893 */
 894
 895struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
 
 896{
 897	unsigned int size = skb_headlen(skb) + headroom;
 898	struct sk_buff *n = alloc_skb(size, gfp_mask);
 
 899
 900	if (!n)
 901		goto out;
 902
 903	/* Set the data pointer */
 904	skb_reserve(n, headroom);
 905	/* Set the tail pointer and length */
 906	skb_put(n, skb_headlen(skb));
 907	/* Copy the bytes */
 908	skb_copy_from_linear_data(skb, n->data, n->len);
 909
 910	n->truesize += skb->data_len;
 911	n->data_len  = skb->data_len;
 912	n->len	     = skb->len;
 913
 914	if (skb_shinfo(skb)->nr_frags) {
 915		int i;
 916
 917		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 918			if (skb_copy_ubufs(skb, gfp_mask)) {
 919				kfree_skb(n);
 920				n = NULL;
 921				goto out;
 922			}
 923		}
 924		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 925			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
 926			skb_frag_ref(skb, i);
 927		}
 928		skb_shinfo(n)->nr_frags = i;
 929	}
 930
 931	if (skb_has_frag_list(skb)) {
 932		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
 933		skb_clone_fraglist(n);
 934	}
 935
 936	copy_skb_header(n, skb);
 937out:
 938	return n;
 939}
 940EXPORT_SYMBOL(__pskb_copy);
 941
 942/**
 943 *	pskb_expand_head - reallocate header of &sk_buff
 944 *	@skb: buffer to reallocate
 945 *	@nhead: room to add at head
 946 *	@ntail: room to add at tail
 947 *	@gfp_mask: allocation priority
 948 *
 949 *	Expands (or creates identical copy, if &nhead and &ntail are zero)
 950 *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
 951 *	reference count of 1. Returns zero in the case of success or error,
 952 *	if expansion failed. In the last case, &sk_buff is not changed.
 953 *
 954 *	All the pointers pointing into skb header may change and must be
 955 *	reloaded after call to this function.
 956 */
 957
 958int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
 959		     gfp_t gfp_mask)
 960{
 961	int i;
 962	u8 *data;
 963	int size = nhead + skb_end_offset(skb) + ntail;
 964	long off;
 965
 966	BUG_ON(nhead < 0);
 967
 968	if (skb_shared(skb))
 969		BUG();
 970
 971	size = SKB_DATA_ALIGN(size);
 972
 973	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
 974		       gfp_mask);
 
 
 975	if (!data)
 976		goto nodata;
 977	size = SKB_WITH_OVERHEAD(ksize(data));
 978
 979	/* Copy only real data... and, alas, header. This should be
 980	 * optimized for the cases when header is void.
 981	 */
 982	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
 983
 984	memcpy((struct skb_shared_info *)(data + size),
 985	       skb_shinfo(skb),
 986	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
 987
 988	/*
 989	 * if shinfo is shared we must drop the old head gracefully, but if it
 990	 * is not we can just drop the old head and let the existing refcount
 991	 * be since all we did is relocate the values
 992	 */
 993	if (skb_cloned(skb)) {
 994		/* copy this zero copy skb frags */
 995		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 996			if (skb_copy_ubufs(skb, gfp_mask))
 997				goto nofrags;
 998		}
 999		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1000			skb_frag_ref(skb, i);
1001
1002		if (skb_has_frag_list(skb))
1003			skb_clone_fraglist(skb);
1004
1005		skb_release_data(skb);
1006	} else {
1007		skb_free_head(skb);
1008	}
1009	off = (data + nhead) - skb->head;
1010
1011	skb->head     = data;
1012	skb->head_frag = 0;
1013	skb->data    += off;
1014#ifdef NET_SKBUFF_DATA_USES_OFFSET
1015	skb->end      = size;
1016	off           = nhead;
1017#else
1018	skb->end      = skb->head + size;
1019#endif
1020	/* {transport,network,mac}_header and tail are relative to skb->head */
1021	skb->tail	      += off;
1022	skb->transport_header += off;
1023	skb->network_header   += off;
1024	if (skb_mac_header_was_set(skb))
1025		skb->mac_header += off;
1026	/* Only adjust this if it actually is csum_start rather than csum */
1027	if (skb->ip_summed == CHECKSUM_PARTIAL)
1028		skb->csum_start += nhead;
1029	skb->cloned   = 0;
1030	skb->hdr_len  = 0;
1031	skb->nohdr    = 0;
1032	atomic_set(&skb_shinfo(skb)->dataref, 1);
1033	return 0;
1034
1035nofrags:
1036	kfree(data);
1037nodata:
1038	return -ENOMEM;
1039}
1040EXPORT_SYMBOL(pskb_expand_head);
1041
1042/* Make private copy of skb with writable head and some headroom */
1043
1044struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1045{
1046	struct sk_buff *skb2;
1047	int delta = headroom - skb_headroom(skb);
1048
1049	if (delta <= 0)
1050		skb2 = pskb_copy(skb, GFP_ATOMIC);
1051	else {
1052		skb2 = skb_clone(skb, GFP_ATOMIC);
1053		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1054					     GFP_ATOMIC)) {
1055			kfree_skb(skb2);
1056			skb2 = NULL;
1057		}
1058	}
1059	return skb2;
1060}
1061EXPORT_SYMBOL(skb_realloc_headroom);
1062
1063/**
1064 *	skb_copy_expand	-	copy and expand sk_buff
1065 *	@skb: buffer to copy
1066 *	@newheadroom: new free bytes at head
1067 *	@newtailroom: new free bytes at tail
1068 *	@gfp_mask: allocation priority
1069 *
1070 *	Make a copy of both an &sk_buff and its data and while doing so
1071 *	allocate additional space.
1072 *
1073 *	This is used when the caller wishes to modify the data and needs a
1074 *	private copy of the data to alter as well as more space for new fields.
1075 *	Returns %NULL on failure or the pointer to the buffer
1076 *	on success. The returned buffer has a reference count of 1.
1077 *
1078 *	You must pass %GFP_ATOMIC as the allocation priority if this function
1079 *	is called from an interrupt.
1080 */
1081struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1082				int newheadroom, int newtailroom,
1083				gfp_t gfp_mask)
1084{
1085	/*
1086	 *	Allocate the copy buffer
1087	 */
1088	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1089				      gfp_mask);
 
1090	int oldheadroom = skb_headroom(skb);
1091	int head_copy_len, head_copy_off;
1092	int off;
1093
1094	if (!n)
1095		return NULL;
1096
1097	skb_reserve(n, newheadroom);
1098
1099	/* Set the tail pointer and length */
1100	skb_put(n, skb->len);
1101
1102	head_copy_len = oldheadroom;
1103	head_copy_off = 0;
1104	if (newheadroom <= head_copy_len)
1105		head_copy_len = newheadroom;
1106	else
1107		head_copy_off = newheadroom - head_copy_len;
1108
1109	/* Copy the linear header and data. */
1110	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1111			  skb->len + head_copy_len))
1112		BUG();
1113
1114	copy_skb_header(n, skb);
1115
1116	off                  = newheadroom - oldheadroom;
1117	if (n->ip_summed == CHECKSUM_PARTIAL)
1118		n->csum_start += off;
1119#ifdef NET_SKBUFF_DATA_USES_OFFSET
1120	n->transport_header += off;
1121	n->network_header   += off;
1122	if (skb_mac_header_was_set(skb))
1123		n->mac_header += off;
1124#endif
1125
1126	return n;
1127}
1128EXPORT_SYMBOL(skb_copy_expand);
1129
1130/**
1131 *	skb_pad			-	zero pad the tail of an skb
1132 *	@skb: buffer to pad
1133 *	@pad: space to pad
1134 *
1135 *	Ensure that a buffer is followed by a padding area that is zero
1136 *	filled. Used by network drivers which may DMA or transfer data
1137 *	beyond the buffer end onto the wire.
1138 *
1139 *	May return error in out of memory cases. The skb is freed on error.
1140 */
1141
1142int skb_pad(struct sk_buff *skb, int pad)
1143{
1144	int err;
1145	int ntail;
1146
1147	/* If the skbuff is non linear tailroom is always zero.. */
1148	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1149		memset(skb->data+skb->len, 0, pad);
1150		return 0;
1151	}
1152
1153	ntail = skb->data_len + pad - (skb->end - skb->tail);
1154	if (likely(skb_cloned(skb) || ntail > 0)) {
1155		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1156		if (unlikely(err))
1157			goto free_skb;
1158	}
1159
1160	/* FIXME: The use of this function with non-linear skb's really needs
1161	 * to be audited.
1162	 */
1163	err = skb_linearize(skb);
1164	if (unlikely(err))
1165		goto free_skb;
1166
1167	memset(skb->data + skb->len, 0, pad);
1168	return 0;
1169
1170free_skb:
1171	kfree_skb(skb);
1172	return err;
1173}
1174EXPORT_SYMBOL(skb_pad);
1175
1176/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177 *	skb_put - add data to a buffer
1178 *	@skb: buffer to use
1179 *	@len: amount of data to add
1180 *
1181 *	This function extends the used data area of the buffer. If this would
1182 *	exceed the total buffer size the kernel will panic. A pointer to the
1183 *	first byte of the extra data is returned.
1184 */
1185unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1186{
1187	unsigned char *tmp = skb_tail_pointer(skb);
1188	SKB_LINEAR_ASSERT(skb);
1189	skb->tail += len;
1190	skb->len  += len;
1191	if (unlikely(skb->tail > skb->end))
1192		skb_over_panic(skb, len, __builtin_return_address(0));
1193	return tmp;
1194}
1195EXPORT_SYMBOL(skb_put);
1196
1197/**
1198 *	skb_push - add data to the start of a buffer
1199 *	@skb: buffer to use
1200 *	@len: amount of data to add
1201 *
1202 *	This function extends the used data area of the buffer at the buffer
1203 *	start. If this would exceed the total buffer headroom the kernel will
1204 *	panic. A pointer to the first byte of the extra data is returned.
1205 */
1206unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1207{
1208	skb->data -= len;
1209	skb->len  += len;
1210	if (unlikely(skb->data<skb->head))
1211		skb_under_panic(skb, len, __builtin_return_address(0));
1212	return skb->data;
1213}
1214EXPORT_SYMBOL(skb_push);
1215
1216/**
1217 *	skb_pull - remove data from the start of a buffer
1218 *	@skb: buffer to use
1219 *	@len: amount of data to remove
1220 *
1221 *	This function removes data from the start of a buffer, returning
1222 *	the memory to the headroom. A pointer to the next data in the buffer
1223 *	is returned. Once the data has been pulled future pushes will overwrite
1224 *	the old data.
1225 */
1226unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1227{
1228	return skb_pull_inline(skb, len);
1229}
1230EXPORT_SYMBOL(skb_pull);
1231
1232/**
1233 *	skb_trim - remove end from a buffer
1234 *	@skb: buffer to alter
1235 *	@len: new length
1236 *
1237 *	Cut the length of a buffer down by removing data from the tail. If
1238 *	the buffer is already under the length specified it is not modified.
1239 *	The skb must be linear.
1240 */
1241void skb_trim(struct sk_buff *skb, unsigned int len)
1242{
1243	if (skb->len > len)
1244		__skb_trim(skb, len);
1245}
1246EXPORT_SYMBOL(skb_trim);
1247
1248/* Trims skb to length len. It can change skb pointers.
1249 */
1250
1251int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1252{
1253	struct sk_buff **fragp;
1254	struct sk_buff *frag;
1255	int offset = skb_headlen(skb);
1256	int nfrags = skb_shinfo(skb)->nr_frags;
1257	int i;
1258	int err;
1259
1260	if (skb_cloned(skb) &&
1261	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1262		return err;
1263
1264	i = 0;
1265	if (offset >= len)
1266		goto drop_pages;
1267
1268	for (; i < nfrags; i++) {
1269		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1270
1271		if (end < len) {
1272			offset = end;
1273			continue;
1274		}
1275
1276		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1277
1278drop_pages:
1279		skb_shinfo(skb)->nr_frags = i;
1280
1281		for (; i < nfrags; i++)
1282			skb_frag_unref(skb, i);
1283
1284		if (skb_has_frag_list(skb))
1285			skb_drop_fraglist(skb);
1286		goto done;
1287	}
1288
1289	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1290	     fragp = &frag->next) {
1291		int end = offset + frag->len;
1292
1293		if (skb_shared(frag)) {
1294			struct sk_buff *nfrag;
1295
1296			nfrag = skb_clone(frag, GFP_ATOMIC);
1297			if (unlikely(!nfrag))
1298				return -ENOMEM;
1299
1300			nfrag->next = frag->next;
1301			consume_skb(frag);
1302			frag = nfrag;
1303			*fragp = frag;
1304		}
1305
1306		if (end < len) {
1307			offset = end;
1308			continue;
1309		}
1310
1311		if (end > len &&
1312		    unlikely((err = pskb_trim(frag, len - offset))))
1313			return err;
1314
1315		if (frag->next)
1316			skb_drop_list(&frag->next);
1317		break;
1318	}
1319
1320done:
1321	if (len > skb_headlen(skb)) {
1322		skb->data_len -= skb->len - len;
1323		skb->len       = len;
1324	} else {
1325		skb->len       = len;
1326		skb->data_len  = 0;
1327		skb_set_tail_pointer(skb, len);
1328	}
1329
1330	return 0;
1331}
1332EXPORT_SYMBOL(___pskb_trim);
1333
1334/**
1335 *	__pskb_pull_tail - advance tail of skb header
1336 *	@skb: buffer to reallocate
1337 *	@delta: number of bytes to advance tail
1338 *
1339 *	The function makes a sense only on a fragmented &sk_buff,
1340 *	it expands header moving its tail forward and copying necessary
1341 *	data from fragmented part.
1342 *
1343 *	&sk_buff MUST have reference count of 1.
1344 *
1345 *	Returns %NULL (and &sk_buff does not change) if pull failed
1346 *	or value of new tail of skb in the case of success.
1347 *
1348 *	All the pointers pointing into skb header may change and must be
1349 *	reloaded after call to this function.
1350 */
1351
1352/* Moves tail of skb head forward, copying data from fragmented part,
1353 * when it is necessary.
1354 * 1. It may fail due to malloc failure.
1355 * 2. It may change skb pointers.
1356 *
1357 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1358 */
1359unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1360{
1361	/* If skb has not enough free space at tail, get new one
1362	 * plus 128 bytes for future expansions. If we have enough
1363	 * room at tail, reallocate without expansion only if skb is cloned.
1364	 */
1365	int i, k, eat = (skb->tail + delta) - skb->end;
1366
1367	if (eat > 0 || skb_cloned(skb)) {
1368		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1369				     GFP_ATOMIC))
1370			return NULL;
1371	}
1372
1373	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1374		BUG();
1375
1376	/* Optimization: no fragments, no reasons to preestimate
1377	 * size of pulled pages. Superb.
1378	 */
1379	if (!skb_has_frag_list(skb))
1380		goto pull_pages;
1381
1382	/* Estimate size of pulled pages. */
1383	eat = delta;
1384	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1385		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1386
1387		if (size >= eat)
1388			goto pull_pages;
1389		eat -= size;
1390	}
1391
1392	/* If we need update frag list, we are in troubles.
1393	 * Certainly, it possible to add an offset to skb data,
1394	 * but taking into account that pulling is expected to
1395	 * be very rare operation, it is worth to fight against
1396	 * further bloating skb head and crucify ourselves here instead.
1397	 * Pure masohism, indeed. 8)8)
1398	 */
1399	if (eat) {
1400		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1401		struct sk_buff *clone = NULL;
1402		struct sk_buff *insp = NULL;
1403
1404		do {
1405			BUG_ON(!list);
1406
1407			if (list->len <= eat) {
1408				/* Eaten as whole. */
1409				eat -= list->len;
1410				list = list->next;
1411				insp = list;
1412			} else {
1413				/* Eaten partially. */
1414
1415				if (skb_shared(list)) {
1416					/* Sucks! We need to fork list. :-( */
1417					clone = skb_clone(list, GFP_ATOMIC);
1418					if (!clone)
1419						return NULL;
1420					insp = list->next;
1421					list = clone;
1422				} else {
1423					/* This may be pulled without
1424					 * problems. */
1425					insp = list;
1426				}
1427				if (!pskb_pull(list, eat)) {
1428					kfree_skb(clone);
1429					return NULL;
1430				}
1431				break;
1432			}
1433		} while (eat);
1434
1435		/* Free pulled out fragments. */
1436		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1437			skb_shinfo(skb)->frag_list = list->next;
1438			kfree_skb(list);
1439		}
1440		/* And insert new clone at head. */
1441		if (clone) {
1442			clone->next = list;
1443			skb_shinfo(skb)->frag_list = clone;
1444		}
1445	}
1446	/* Success! Now we may commit changes to skb data. */
1447
1448pull_pages:
1449	eat = delta;
1450	k = 0;
1451	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1452		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1453
1454		if (size <= eat) {
1455			skb_frag_unref(skb, i);
1456			eat -= size;
1457		} else {
1458			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1459			if (eat) {
1460				skb_shinfo(skb)->frags[k].page_offset += eat;
1461				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1462				eat = 0;
1463			}
1464			k++;
1465		}
1466	}
1467	skb_shinfo(skb)->nr_frags = k;
1468
1469	skb->tail     += delta;
1470	skb->data_len -= delta;
1471
1472	return skb_tail_pointer(skb);
1473}
1474EXPORT_SYMBOL(__pskb_pull_tail);
1475
1476/**
1477 *	skb_copy_bits - copy bits from skb to kernel buffer
1478 *	@skb: source skb
1479 *	@offset: offset in source
1480 *	@to: destination buffer
1481 *	@len: number of bytes to copy
1482 *
1483 *	Copy the specified number of bytes from the source skb to the
1484 *	destination buffer.
1485 *
1486 *	CAUTION ! :
1487 *		If its prototype is ever changed,
1488 *		check arch/{*}/net/{*}.S files,
1489 *		since it is called from BPF assembly code.
1490 */
1491int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1492{
1493	int start = skb_headlen(skb);
1494	struct sk_buff *frag_iter;
1495	int i, copy;
1496
1497	if (offset > (int)skb->len - len)
1498		goto fault;
1499
1500	/* Copy header. */
1501	if ((copy = start - offset) > 0) {
1502		if (copy > len)
1503			copy = len;
1504		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1505		if ((len -= copy) == 0)
1506			return 0;
1507		offset += copy;
1508		to     += copy;
1509	}
1510
1511	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1512		int end;
1513		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1514
1515		WARN_ON(start > offset + len);
1516
1517		end = start + skb_frag_size(f);
1518		if ((copy = end - offset) > 0) {
1519			u8 *vaddr;
1520
1521			if (copy > len)
1522				copy = len;
1523
1524			vaddr = kmap_atomic(skb_frag_page(f));
1525			memcpy(to,
1526			       vaddr + f->page_offset + offset - start,
1527			       copy);
1528			kunmap_atomic(vaddr);
1529
1530			if ((len -= copy) == 0)
1531				return 0;
1532			offset += copy;
1533			to     += copy;
1534		}
1535		start = end;
1536	}
1537
1538	skb_walk_frags(skb, frag_iter) {
1539		int end;
1540
1541		WARN_ON(start > offset + len);
1542
1543		end = start + frag_iter->len;
1544		if ((copy = end - offset) > 0) {
1545			if (copy > len)
1546				copy = len;
1547			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1548				goto fault;
1549			if ((len -= copy) == 0)
1550				return 0;
1551			offset += copy;
1552			to     += copy;
1553		}
1554		start = end;
1555	}
1556
1557	if (!len)
1558		return 0;
1559
1560fault:
1561	return -EFAULT;
1562}
1563EXPORT_SYMBOL(skb_copy_bits);
1564
1565/*
1566 * Callback from splice_to_pipe(), if we need to release some pages
1567 * at the end of the spd in case we error'ed out in filling the pipe.
1568 */
1569static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1570{
1571	put_page(spd->pages[i]);
1572}
1573
1574static struct page *linear_to_page(struct page *page, unsigned int *len,
1575				   unsigned int *offset,
1576				   struct sk_buff *skb, struct sock *sk)
1577{
1578	struct page *p = sk->sk_sndmsg_page;
1579	unsigned int off;
1580
1581	if (!p) {
1582new_page:
1583		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1584		if (!p)
1585			return NULL;
1586
1587		off = sk->sk_sndmsg_off = 0;
1588		/* hold one ref to this page until it's full */
1589	} else {
1590		unsigned int mlen;
1591
1592		/* If we are the only user of the page, we can reset offset */
1593		if (page_count(p) == 1)
1594			sk->sk_sndmsg_off = 0;
1595		off = sk->sk_sndmsg_off;
1596		mlen = PAGE_SIZE - off;
1597		if (mlen < 64 && mlen < *len) {
1598			put_page(p);
1599			goto new_page;
1600		}
1601
1602		*len = min_t(unsigned int, *len, mlen);
1603	}
1604
1605	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1606	sk->sk_sndmsg_off += *len;
1607	*offset = off;
1608
1609	return p;
1610}
1611
1612static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1613			     struct page *page,
1614			     unsigned int offset)
1615{
1616	return	spd->nr_pages &&
1617		spd->pages[spd->nr_pages - 1] == page &&
1618		(spd->partial[spd->nr_pages - 1].offset +
1619		 spd->partial[spd->nr_pages - 1].len == offset);
1620}
1621
1622/*
1623 * Fill page/offset/length into spd, if it can hold more pages.
1624 */
1625static bool spd_fill_page(struct splice_pipe_desc *spd,
1626			  struct pipe_inode_info *pipe, struct page *page,
1627			  unsigned int *len, unsigned int offset,
1628			  struct sk_buff *skb, bool linear,
1629			  struct sock *sk)
1630{
1631	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1632		return true;
1633
1634	if (linear) {
1635		page = linear_to_page(page, len, &offset, skb, sk);
1636		if (!page)
1637			return true;
1638	}
1639	if (spd_can_coalesce(spd, page, offset)) {
1640		spd->partial[spd->nr_pages - 1].len += *len;
1641		return false;
1642	}
1643	get_page(page);
1644	spd->pages[spd->nr_pages] = page;
1645	spd->partial[spd->nr_pages].len = *len;
1646	spd->partial[spd->nr_pages].offset = offset;
1647	spd->nr_pages++;
1648
1649	return false;
1650}
1651
1652static inline void __segment_seek(struct page **page, unsigned int *poff,
1653				  unsigned int *plen, unsigned int off)
1654{
1655	unsigned long n;
1656
1657	*poff += off;
1658	n = *poff / PAGE_SIZE;
1659	if (n)
1660		*page = nth_page(*page, n);
1661
1662	*poff = *poff % PAGE_SIZE;
1663	*plen -= off;
1664}
1665
1666static bool __splice_segment(struct page *page, unsigned int poff,
1667			     unsigned int plen, unsigned int *off,
1668			     unsigned int *len, struct sk_buff *skb,
1669			     struct splice_pipe_desc *spd, bool linear,
1670			     struct sock *sk,
1671			     struct pipe_inode_info *pipe)
1672{
1673	if (!*len)
1674		return true;
1675
1676	/* skip this segment if already processed */
1677	if (*off >= plen) {
1678		*off -= plen;
1679		return false;
1680	}
1681
1682	/* ignore any bits we already processed */
1683	if (*off) {
1684		__segment_seek(&page, &poff, &plen, *off);
1685		*off = 0;
1686	}
1687
1688	do {
1689		unsigned int flen = min(*len, plen);
1690
1691		/* the linear region may spread across several pages  */
1692		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1693
1694		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1695			return true;
1696
1697		__segment_seek(&page, &poff, &plen, flen);
1698		*len -= flen;
1699
1700	} while (*len && plen);
1701
1702	return false;
1703}
1704
1705/*
1706 * Map linear and fragment data from the skb to spd. It reports true if the
1707 * pipe is full or if we already spliced the requested length.
1708 */
1709static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1710			      unsigned int *offset, unsigned int *len,
1711			      struct splice_pipe_desc *spd, struct sock *sk)
1712{
1713	int seg;
 
1714
1715	/* map the linear part :
1716	 * If skb->head_frag is set, this 'linear' part is backed by a
1717	 * fragment, and if the head is not shared with any clones then
1718	 * we can avoid a copy since we own the head portion of this page.
1719	 */
1720	if (__splice_segment(virt_to_page(skb->data),
1721			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1722			     skb_headlen(skb),
1723			     offset, len, skb, spd,
1724			     skb_head_is_locked(skb),
1725			     sk, pipe))
1726		return true;
1727
1728	/*
1729	 * then map the fragments
1730	 */
1731	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1732		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1733
1734		if (__splice_segment(skb_frag_page(f),
1735				     f->page_offset, skb_frag_size(f),
1736				     offset, len, skb, spd, false, sk, pipe))
 
 
 
 
 
 
 
 
 
 
 
 
 
1737			return true;
1738	}
1739
1740	return false;
1741}
1742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743/*
1744 * Map data from the skb to a pipe. Should handle both the linear part,
1745 * the fragments, and the frag list. It does NOT handle frag lists within
1746 * the frag list, if such a thing exists. We'd probably need to recurse to
1747 * handle that cleanly.
1748 */
1749int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1750		    struct pipe_inode_info *pipe, unsigned int tlen,
1751		    unsigned int flags)
 
 
 
1752{
1753	struct partial_page partial[MAX_SKB_FRAGS];
1754	struct page *pages[MAX_SKB_FRAGS];
1755	struct splice_pipe_desc spd = {
1756		.pages = pages,
1757		.partial = partial,
1758		.nr_pages_max = MAX_SKB_FRAGS,
1759		.flags = flags,
1760		.ops = &sock_pipe_buf_ops,
1761		.spd_release = sock_spd_release,
1762	};
1763	struct sk_buff *frag_iter;
1764	struct sock *sk = skb->sk;
1765	int ret = 0;
1766
1767	/*
1768	 * __skb_splice_bits() only fails if the output has no room left,
1769	 * so no point in going over the frag_list for the error case.
1770	 */
1771	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1772		goto done;
1773	else if (!tlen)
1774		goto done;
1775
1776	/*
1777	 * now see if we have a frag_list to map
1778	 */
1779	skb_walk_frags(skb, frag_iter) {
1780		if (!tlen)
1781			break;
1782		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1783			break;
1784	}
1785
1786done:
1787	if (spd.nr_pages) {
1788		/*
1789		 * Drop the socket lock, otherwise we have reverse
1790		 * locking dependencies between sk_lock and i_mutex
1791		 * here as compared to sendfile(). We enter here
1792		 * with the socket lock held, and splice_to_pipe() will
1793		 * grab the pipe inode lock. For sendfile() emulation,
1794		 * we call into ->sendpage() with the i_mutex lock held
1795		 * and networking will grab the socket lock.
1796		 */
1797		release_sock(sk);
1798		ret = splice_to_pipe(pipe, &spd);
1799		lock_sock(sk);
1800	}
1801
1802	return ret;
1803}
 
1804
1805/**
1806 *	skb_store_bits - store bits from kernel buffer to skb
1807 *	@skb: destination buffer
1808 *	@offset: offset in destination
1809 *	@from: source buffer
1810 *	@len: number of bytes to copy
1811 *
1812 *	Copy the specified number of bytes from the source buffer to the
1813 *	destination skb.  This function handles all the messy bits of
1814 *	traversing fragment lists and such.
1815 */
1816
1817int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1818{
1819	int start = skb_headlen(skb);
1820	struct sk_buff *frag_iter;
1821	int i, copy;
1822
1823	if (offset > (int)skb->len - len)
1824		goto fault;
1825
1826	if ((copy = start - offset) > 0) {
1827		if (copy > len)
1828			copy = len;
1829		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1830		if ((len -= copy) == 0)
1831			return 0;
1832		offset += copy;
1833		from += copy;
1834	}
1835
1836	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1837		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1838		int end;
1839
1840		WARN_ON(start > offset + len);
1841
1842		end = start + skb_frag_size(frag);
1843		if ((copy = end - offset) > 0) {
1844			u8 *vaddr;
1845
1846			if (copy > len)
1847				copy = len;
1848
1849			vaddr = kmap_atomic(skb_frag_page(frag));
1850			memcpy(vaddr + frag->page_offset + offset - start,
1851			       from, copy);
1852			kunmap_atomic(vaddr);
1853
1854			if ((len -= copy) == 0)
1855				return 0;
1856			offset += copy;
1857			from += copy;
1858		}
1859		start = end;
1860	}
1861
1862	skb_walk_frags(skb, frag_iter) {
1863		int end;
1864
1865		WARN_ON(start > offset + len);
1866
1867		end = start + frag_iter->len;
1868		if ((copy = end - offset) > 0) {
1869			if (copy > len)
1870				copy = len;
1871			if (skb_store_bits(frag_iter, offset - start,
1872					   from, copy))
1873				goto fault;
1874			if ((len -= copy) == 0)
1875				return 0;
1876			offset += copy;
1877			from += copy;
1878		}
1879		start = end;
1880	}
1881	if (!len)
1882		return 0;
1883
1884fault:
1885	return -EFAULT;
1886}
1887EXPORT_SYMBOL(skb_store_bits);
1888
1889/* Checksum skb data. */
1890
1891__wsum skb_checksum(const struct sk_buff *skb, int offset,
1892			  int len, __wsum csum)
1893{
1894	int start = skb_headlen(skb);
1895	int i, copy = start - offset;
1896	struct sk_buff *frag_iter;
1897	int pos = 0;
1898
1899	/* Checksum header. */
1900	if (copy > 0) {
1901		if (copy > len)
1902			copy = len;
1903		csum = csum_partial(skb->data + offset, copy, csum);
1904		if ((len -= copy) == 0)
1905			return csum;
1906		offset += copy;
1907		pos	= copy;
1908	}
1909
1910	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1911		int end;
1912		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1913
1914		WARN_ON(start > offset + len);
1915
1916		end = start + skb_frag_size(frag);
1917		if ((copy = end - offset) > 0) {
1918			__wsum csum2;
1919			u8 *vaddr;
1920
1921			if (copy > len)
1922				copy = len;
1923			vaddr = kmap_atomic(skb_frag_page(frag));
1924			csum2 = csum_partial(vaddr + frag->page_offset +
1925					     offset - start, copy, 0);
1926			kunmap_atomic(vaddr);
1927			csum = csum_block_add(csum, csum2, pos);
1928			if (!(len -= copy))
1929				return csum;
1930			offset += copy;
1931			pos    += copy;
1932		}
1933		start = end;
1934	}
1935
1936	skb_walk_frags(skb, frag_iter) {
1937		int end;
1938
1939		WARN_ON(start > offset + len);
1940
1941		end = start + frag_iter->len;
1942		if ((copy = end - offset) > 0) {
1943			__wsum csum2;
1944			if (copy > len)
1945				copy = len;
1946			csum2 = skb_checksum(frag_iter, offset - start,
1947					     copy, 0);
1948			csum = csum_block_add(csum, csum2, pos);
1949			if ((len -= copy) == 0)
1950				return csum;
1951			offset += copy;
1952			pos    += copy;
1953		}
1954		start = end;
1955	}
1956	BUG_ON(len);
1957
1958	return csum;
1959}
 
 
 
 
 
 
 
 
 
 
 
 
1960EXPORT_SYMBOL(skb_checksum);
1961
1962/* Both of above in one bottle. */
1963
1964__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1965				    u8 *to, int len, __wsum csum)
1966{
1967	int start = skb_headlen(skb);
1968	int i, copy = start - offset;
1969	struct sk_buff *frag_iter;
1970	int pos = 0;
1971
1972	/* Copy header. */
1973	if (copy > 0) {
1974		if (copy > len)
1975			copy = len;
1976		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1977						 copy, csum);
1978		if ((len -= copy) == 0)
1979			return csum;
1980		offset += copy;
1981		to     += copy;
1982		pos	= copy;
1983	}
1984
1985	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1986		int end;
1987
1988		WARN_ON(start > offset + len);
1989
1990		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1991		if ((copy = end - offset) > 0) {
1992			__wsum csum2;
1993			u8 *vaddr;
1994			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1995
1996			if (copy > len)
1997				copy = len;
1998			vaddr = kmap_atomic(skb_frag_page(frag));
1999			csum2 = csum_partial_copy_nocheck(vaddr +
2000							  frag->page_offset +
2001							  offset - start, to,
2002							  copy, 0);
2003			kunmap_atomic(vaddr);
2004			csum = csum_block_add(csum, csum2, pos);
2005			if (!(len -= copy))
2006				return csum;
2007			offset += copy;
2008			to     += copy;
2009			pos    += copy;
2010		}
2011		start = end;
2012	}
2013
2014	skb_walk_frags(skb, frag_iter) {
2015		__wsum csum2;
2016		int end;
2017
2018		WARN_ON(start > offset + len);
2019
2020		end = start + frag_iter->len;
2021		if ((copy = end - offset) > 0) {
2022			if (copy > len)
2023				copy = len;
2024			csum2 = skb_copy_and_csum_bits(frag_iter,
2025						       offset - start,
2026						       to, copy, 0);
2027			csum = csum_block_add(csum, csum2, pos);
2028			if ((len -= copy) == 0)
2029				return csum;
2030			offset += copy;
2031			to     += copy;
2032			pos    += copy;
2033		}
2034		start = end;
2035	}
2036	BUG_ON(len);
2037	return csum;
2038}
2039EXPORT_SYMBOL(skb_copy_and_csum_bits);
2040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2042{
2043	__wsum csum;
2044	long csstart;
2045
2046	if (skb->ip_summed == CHECKSUM_PARTIAL)
2047		csstart = skb_checksum_start_offset(skb);
2048	else
2049		csstart = skb_headlen(skb);
2050
2051	BUG_ON(csstart > skb_headlen(skb));
2052
2053	skb_copy_from_linear_data(skb, to, csstart);
2054
2055	csum = 0;
2056	if (csstart != skb->len)
2057		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2058					      skb->len - csstart, 0);
2059
2060	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2061		long csstuff = csstart + skb->csum_offset;
2062
2063		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2064	}
2065}
2066EXPORT_SYMBOL(skb_copy_and_csum_dev);
2067
2068/**
2069 *	skb_dequeue - remove from the head of the queue
2070 *	@list: list to dequeue from
2071 *
2072 *	Remove the head of the list. The list lock is taken so the function
2073 *	may be used safely with other locking list functions. The head item is
2074 *	returned or %NULL if the list is empty.
2075 */
2076
2077struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2078{
2079	unsigned long flags;
2080	struct sk_buff *result;
2081
2082	spin_lock_irqsave(&list->lock, flags);
2083	result = __skb_dequeue(list);
2084	spin_unlock_irqrestore(&list->lock, flags);
2085	return result;
2086}
2087EXPORT_SYMBOL(skb_dequeue);
2088
2089/**
2090 *	skb_dequeue_tail - remove from the tail of the queue
2091 *	@list: list to dequeue from
2092 *
2093 *	Remove the tail of the list. The list lock is taken so the function
2094 *	may be used safely with other locking list functions. The tail item is
2095 *	returned or %NULL if the list is empty.
2096 */
2097struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2098{
2099	unsigned long flags;
2100	struct sk_buff *result;
2101
2102	spin_lock_irqsave(&list->lock, flags);
2103	result = __skb_dequeue_tail(list);
2104	spin_unlock_irqrestore(&list->lock, flags);
2105	return result;
2106}
2107EXPORT_SYMBOL(skb_dequeue_tail);
2108
2109/**
2110 *	skb_queue_purge - empty a list
2111 *	@list: list to empty
2112 *
2113 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2114 *	the list and one reference dropped. This function takes the list
2115 *	lock and is atomic with respect to other list locking functions.
2116 */
2117void skb_queue_purge(struct sk_buff_head *list)
2118{
2119	struct sk_buff *skb;
2120	while ((skb = skb_dequeue(list)) != NULL)
2121		kfree_skb(skb);
2122}
2123EXPORT_SYMBOL(skb_queue_purge);
2124
2125/**
2126 *	skb_queue_head - queue a buffer at the list head
2127 *	@list: list to use
2128 *	@newsk: buffer to queue
2129 *
2130 *	Queue a buffer at the start of the list. This function takes the
2131 *	list lock and can be used safely with other locking &sk_buff functions
2132 *	safely.
2133 *
2134 *	A buffer cannot be placed on two lists at the same time.
2135 */
2136void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2137{
2138	unsigned long flags;
2139
2140	spin_lock_irqsave(&list->lock, flags);
2141	__skb_queue_head(list, newsk);
2142	spin_unlock_irqrestore(&list->lock, flags);
2143}
2144EXPORT_SYMBOL(skb_queue_head);
2145
2146/**
2147 *	skb_queue_tail - queue a buffer at the list tail
2148 *	@list: list to use
2149 *	@newsk: buffer to queue
2150 *
2151 *	Queue a buffer at the tail of the list. This function takes the
2152 *	list lock and can be used safely with other locking &sk_buff functions
2153 *	safely.
2154 *
2155 *	A buffer cannot be placed on two lists at the same time.
2156 */
2157void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2158{
2159	unsigned long flags;
2160
2161	spin_lock_irqsave(&list->lock, flags);
2162	__skb_queue_tail(list, newsk);
2163	spin_unlock_irqrestore(&list->lock, flags);
2164}
2165EXPORT_SYMBOL(skb_queue_tail);
2166
2167/**
2168 *	skb_unlink	-	remove a buffer from a list
2169 *	@skb: buffer to remove
2170 *	@list: list to use
2171 *
2172 *	Remove a packet from a list. The list locks are taken and this
2173 *	function is atomic with respect to other list locked calls
2174 *
2175 *	You must know what list the SKB is on.
2176 */
2177void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2178{
2179	unsigned long flags;
2180
2181	spin_lock_irqsave(&list->lock, flags);
2182	__skb_unlink(skb, list);
2183	spin_unlock_irqrestore(&list->lock, flags);
2184}
2185EXPORT_SYMBOL(skb_unlink);
2186
2187/**
2188 *	skb_append	-	append a buffer
2189 *	@old: buffer to insert after
2190 *	@newsk: buffer to insert
2191 *	@list: list to use
2192 *
2193 *	Place a packet after a given packet in a list. The list locks are taken
2194 *	and this function is atomic with respect to other list locked calls.
2195 *	A buffer cannot be placed on two lists at the same time.
2196 */
2197void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2198{
2199	unsigned long flags;
2200
2201	spin_lock_irqsave(&list->lock, flags);
2202	__skb_queue_after(list, old, newsk);
2203	spin_unlock_irqrestore(&list->lock, flags);
2204}
2205EXPORT_SYMBOL(skb_append);
2206
2207/**
2208 *	skb_insert	-	insert a buffer
2209 *	@old: buffer to insert before
2210 *	@newsk: buffer to insert
2211 *	@list: list to use
2212 *
2213 *	Place a packet before a given packet in a list. The list locks are
2214 * 	taken and this function is atomic with respect to other list locked
2215 *	calls.
2216 *
2217 *	A buffer cannot be placed on two lists at the same time.
2218 */
2219void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2220{
2221	unsigned long flags;
2222
2223	spin_lock_irqsave(&list->lock, flags);
2224	__skb_insert(newsk, old->prev, old, list);
2225	spin_unlock_irqrestore(&list->lock, flags);
2226}
2227EXPORT_SYMBOL(skb_insert);
2228
2229static inline void skb_split_inside_header(struct sk_buff *skb,
2230					   struct sk_buff* skb1,
2231					   const u32 len, const int pos)
2232{
2233	int i;
2234
2235	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2236					 pos - len);
2237	/* And move data appendix as is. */
2238	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2239		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2240
2241	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2242	skb_shinfo(skb)->nr_frags  = 0;
2243	skb1->data_len		   = skb->data_len;
2244	skb1->len		   += skb1->data_len;
2245	skb->data_len		   = 0;
2246	skb->len		   = len;
2247	skb_set_tail_pointer(skb, len);
2248}
2249
2250static inline void skb_split_no_header(struct sk_buff *skb,
2251				       struct sk_buff* skb1,
2252				       const u32 len, int pos)
2253{
2254	int i, k = 0;
2255	const int nfrags = skb_shinfo(skb)->nr_frags;
2256
2257	skb_shinfo(skb)->nr_frags = 0;
2258	skb1->len		  = skb1->data_len = skb->len - len;
2259	skb->len		  = len;
2260	skb->data_len		  = len - pos;
2261
2262	for (i = 0; i < nfrags; i++) {
2263		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2264
2265		if (pos + size > len) {
2266			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2267
2268			if (pos < len) {
2269				/* Split frag.
2270				 * We have two variants in this case:
2271				 * 1. Move all the frag to the second
2272				 *    part, if it is possible. F.e.
2273				 *    this approach is mandatory for TUX,
2274				 *    where splitting is expensive.
2275				 * 2. Split is accurately. We make this.
2276				 */
2277				skb_frag_ref(skb, i);
2278				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2279				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2280				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2281				skb_shinfo(skb)->nr_frags++;
2282			}
2283			k++;
2284		} else
2285			skb_shinfo(skb)->nr_frags++;
2286		pos += size;
2287	}
2288	skb_shinfo(skb1)->nr_frags = k;
2289}
2290
2291/**
2292 * skb_split - Split fragmented skb to two parts at length len.
2293 * @skb: the buffer to split
2294 * @skb1: the buffer to receive the second part
2295 * @len: new length for skb
2296 */
2297void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2298{
2299	int pos = skb_headlen(skb);
2300
 
2301	if (len < pos)	/* Split line is inside header. */
2302		skb_split_inside_header(skb, skb1, len, pos);
2303	else		/* Second chunk has no header, nothing to copy. */
2304		skb_split_no_header(skb, skb1, len, pos);
2305}
2306EXPORT_SYMBOL(skb_split);
2307
2308/* Shifting from/to a cloned skb is a no-go.
2309 *
2310 * Caller cannot keep skb_shinfo related pointers past calling here!
2311 */
2312static int skb_prepare_for_shift(struct sk_buff *skb)
2313{
2314	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2315}
2316
2317/**
2318 * skb_shift - Shifts paged data partially from skb to another
2319 * @tgt: buffer into which tail data gets added
2320 * @skb: buffer from which the paged data comes from
2321 * @shiftlen: shift up to this many bytes
2322 *
2323 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2324 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2325 * It's up to caller to free skb if everything was shifted.
2326 *
2327 * If @tgt runs out of frags, the whole operation is aborted.
2328 *
2329 * Skb cannot include anything else but paged data while tgt is allowed
2330 * to have non-paged data as well.
2331 *
2332 * TODO: full sized shift could be optimized but that would need
2333 * specialized skb free'er to handle frags without up-to-date nr_frags.
2334 */
2335int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2336{
2337	int from, to, merge, todo;
2338	struct skb_frag_struct *fragfrom, *fragto;
2339
2340	BUG_ON(shiftlen > skb->len);
2341	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2342
2343	todo = shiftlen;
2344	from = 0;
2345	to = skb_shinfo(tgt)->nr_frags;
2346	fragfrom = &skb_shinfo(skb)->frags[from];
2347
2348	/* Actual merge is delayed until the point when we know we can
2349	 * commit all, so that we don't have to undo partial changes
2350	 */
2351	if (!to ||
2352	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2353			      fragfrom->page_offset)) {
2354		merge = -1;
2355	} else {
2356		merge = to - 1;
2357
2358		todo -= skb_frag_size(fragfrom);
2359		if (todo < 0) {
2360			if (skb_prepare_for_shift(skb) ||
2361			    skb_prepare_for_shift(tgt))
2362				return 0;
2363
2364			/* All previous frag pointers might be stale! */
2365			fragfrom = &skb_shinfo(skb)->frags[from];
2366			fragto = &skb_shinfo(tgt)->frags[merge];
2367
2368			skb_frag_size_add(fragto, shiftlen);
2369			skb_frag_size_sub(fragfrom, shiftlen);
2370			fragfrom->page_offset += shiftlen;
2371
2372			goto onlymerged;
2373		}
2374
2375		from++;
2376	}
2377
2378	/* Skip full, not-fitting skb to avoid expensive operations */
2379	if ((shiftlen == skb->len) &&
2380	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2381		return 0;
2382
2383	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2384		return 0;
2385
2386	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2387		if (to == MAX_SKB_FRAGS)
2388			return 0;
2389
2390		fragfrom = &skb_shinfo(skb)->frags[from];
2391		fragto = &skb_shinfo(tgt)->frags[to];
2392
2393		if (todo >= skb_frag_size(fragfrom)) {
2394			*fragto = *fragfrom;
2395			todo -= skb_frag_size(fragfrom);
2396			from++;
2397			to++;
2398
2399		} else {
2400			__skb_frag_ref(fragfrom);
2401			fragto->page = fragfrom->page;
2402			fragto->page_offset = fragfrom->page_offset;
2403			skb_frag_size_set(fragto, todo);
2404
2405			fragfrom->page_offset += todo;
2406			skb_frag_size_sub(fragfrom, todo);
2407			todo = 0;
2408
2409			to++;
2410			break;
2411		}
2412	}
2413
2414	/* Ready to "commit" this state change to tgt */
2415	skb_shinfo(tgt)->nr_frags = to;
2416
2417	if (merge >= 0) {
2418		fragfrom = &skb_shinfo(skb)->frags[0];
2419		fragto = &skb_shinfo(tgt)->frags[merge];
2420
2421		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2422		__skb_frag_unref(fragfrom);
2423	}
2424
2425	/* Reposition in the original skb */
2426	to = 0;
2427	while (from < skb_shinfo(skb)->nr_frags)
2428		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2429	skb_shinfo(skb)->nr_frags = to;
2430
2431	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2432
2433onlymerged:
2434	/* Most likely the tgt won't ever need its checksum anymore, skb on
2435	 * the other hand might need it if it needs to be resent
2436	 */
2437	tgt->ip_summed = CHECKSUM_PARTIAL;
2438	skb->ip_summed = CHECKSUM_PARTIAL;
2439
2440	/* Yak, is it really working this way? Some helper please? */
2441	skb->len -= shiftlen;
2442	skb->data_len -= shiftlen;
2443	skb->truesize -= shiftlen;
2444	tgt->len += shiftlen;
2445	tgt->data_len += shiftlen;
2446	tgt->truesize += shiftlen;
2447
2448	return shiftlen;
2449}
2450
2451/**
2452 * skb_prepare_seq_read - Prepare a sequential read of skb data
2453 * @skb: the buffer to read
2454 * @from: lower offset of data to be read
2455 * @to: upper offset of data to be read
2456 * @st: state variable
2457 *
2458 * Initializes the specified state variable. Must be called before
2459 * invoking skb_seq_read() for the first time.
2460 */
2461void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2462			  unsigned int to, struct skb_seq_state *st)
2463{
2464	st->lower_offset = from;
2465	st->upper_offset = to;
2466	st->root_skb = st->cur_skb = skb;
2467	st->frag_idx = st->stepped_offset = 0;
2468	st->frag_data = NULL;
2469}
2470EXPORT_SYMBOL(skb_prepare_seq_read);
2471
2472/**
2473 * skb_seq_read - Sequentially read skb data
2474 * @consumed: number of bytes consumed by the caller so far
2475 * @data: destination pointer for data to be returned
2476 * @st: state variable
2477 *
2478 * Reads a block of skb data at &consumed relative to the
2479 * lower offset specified to skb_prepare_seq_read(). Assigns
2480 * the head of the data block to &data and returns the length
2481 * of the block or 0 if the end of the skb data or the upper
2482 * offset has been reached.
2483 *
2484 * The caller is not required to consume all of the data
2485 * returned, i.e. &consumed is typically set to the number
2486 * of bytes already consumed and the next call to
2487 * skb_seq_read() will return the remaining part of the block.
2488 *
2489 * Note 1: The size of each block of data returned can be arbitrary,
2490 *       this limitation is the cost for zerocopy seqeuental
2491 *       reads of potentially non linear data.
2492 *
2493 * Note 2: Fragment lists within fragments are not implemented
2494 *       at the moment, state->root_skb could be replaced with
2495 *       a stack for this purpose.
2496 */
2497unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2498			  struct skb_seq_state *st)
2499{
2500	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2501	skb_frag_t *frag;
2502
2503	if (unlikely(abs_offset >= st->upper_offset))
 
 
 
 
2504		return 0;
 
2505
2506next_skb:
2507	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2508
2509	if (abs_offset < block_limit && !st->frag_data) {
2510		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2511		return block_limit - abs_offset;
2512	}
2513
2514	if (st->frag_idx == 0 && !st->frag_data)
2515		st->stepped_offset += skb_headlen(st->cur_skb);
2516
2517	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2518		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2519		block_limit = skb_frag_size(frag) + st->stepped_offset;
2520
2521		if (abs_offset < block_limit) {
2522			if (!st->frag_data)
2523				st->frag_data = kmap_atomic(skb_frag_page(frag));
2524
2525			*data = (u8 *) st->frag_data + frag->page_offset +
2526				(abs_offset - st->stepped_offset);
2527
2528			return block_limit - abs_offset;
2529		}
2530
2531		if (st->frag_data) {
2532			kunmap_atomic(st->frag_data);
2533			st->frag_data = NULL;
2534		}
2535
2536		st->frag_idx++;
2537		st->stepped_offset += skb_frag_size(frag);
2538	}
2539
2540	if (st->frag_data) {
2541		kunmap_atomic(st->frag_data);
2542		st->frag_data = NULL;
2543	}
2544
2545	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2546		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2547		st->frag_idx = 0;
2548		goto next_skb;
2549	} else if (st->cur_skb->next) {
2550		st->cur_skb = st->cur_skb->next;
2551		st->frag_idx = 0;
2552		goto next_skb;
2553	}
2554
2555	return 0;
2556}
2557EXPORT_SYMBOL(skb_seq_read);
2558
2559/**
2560 * skb_abort_seq_read - Abort a sequential read of skb data
2561 * @st: state variable
2562 *
2563 * Must be called if skb_seq_read() was not called until it
2564 * returned 0.
2565 */
2566void skb_abort_seq_read(struct skb_seq_state *st)
2567{
2568	if (st->frag_data)
2569		kunmap_atomic(st->frag_data);
2570}
2571EXPORT_SYMBOL(skb_abort_seq_read);
2572
2573#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2574
2575static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2576					  struct ts_config *conf,
2577					  struct ts_state *state)
2578{
2579	return skb_seq_read(offset, text, TS_SKB_CB(state));
2580}
2581
2582static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2583{
2584	skb_abort_seq_read(TS_SKB_CB(state));
2585}
2586
2587/**
2588 * skb_find_text - Find a text pattern in skb data
2589 * @skb: the buffer to look in
2590 * @from: search offset
2591 * @to: search limit
2592 * @config: textsearch configuration
2593 * @state: uninitialized textsearch state variable
2594 *
2595 * Finds a pattern in the skb data according to the specified
2596 * textsearch configuration. Use textsearch_next() to retrieve
2597 * subsequent occurrences of the pattern. Returns the offset
2598 * to the first occurrence or UINT_MAX if no match was found.
2599 */
2600unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2601			   unsigned int to, struct ts_config *config,
2602			   struct ts_state *state)
2603{
 
2604	unsigned int ret;
2605
2606	config->get_next_block = skb_ts_get_next_block;
2607	config->finish = skb_ts_finish;
2608
2609	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2610
2611	ret = textsearch_find(config, state);
2612	return (ret <= to - from ? ret : UINT_MAX);
2613}
2614EXPORT_SYMBOL(skb_find_text);
2615
2616/**
2617 * skb_append_datato_frags: - append the user data to a skb
2618 * @sk: sock  structure
2619 * @skb: skb structure to be appened with user data.
2620 * @getfrag: call back function to be used for getting the user data
2621 * @from: pointer to user message iov
2622 * @length: length of the iov message
2623 *
2624 * Description: This procedure append the user data in the fragment part
2625 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2626 */
2627int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2628			int (*getfrag)(void *from, char *to, int offset,
2629					int len, int odd, struct sk_buff *skb),
2630			void *from, int length)
2631{
2632	int frg_cnt = 0;
2633	skb_frag_t *frag = NULL;
2634	struct page *page = NULL;
2635	int copy, left;
2636	int offset = 0;
2637	int ret;
 
2638
2639	do {
2640		/* Return error if we don't have space for new frag */
2641		frg_cnt = skb_shinfo(skb)->nr_frags;
2642		if (frg_cnt >= MAX_SKB_FRAGS)
2643			return -EFAULT;
2644
2645		/* allocate a new page for next frag */
2646		page = alloc_pages(sk->sk_allocation, 0);
2647
2648		/* If alloc_page fails just return failure and caller will
2649		 * free previous allocated pages by doing kfree_skb()
2650		 */
2651		if (page == NULL)
2652			return -ENOMEM;
2653
2654		/* initialize the next frag */
2655		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2656		skb->truesize += PAGE_SIZE;
2657		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2658
2659		/* get the new initialized frag */
2660		frg_cnt = skb_shinfo(skb)->nr_frags;
2661		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2662
2663		/* copy the user data to page */
2664		left = PAGE_SIZE - frag->page_offset;
2665		copy = (length > left)? left : length;
2666
2667		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2668			    offset, copy, 0, skb);
2669		if (ret < 0)
2670			return -EFAULT;
2671
2672		/* copy was successful so update the size parameters */
2673		skb_frag_size_add(frag, copy);
 
 
 
 
 
 
 
2674		skb->len += copy;
2675		skb->data_len += copy;
2676		offset += copy;
2677		length -= copy;
2678
2679	} while (length > 0);
2680
2681	return 0;
2682}
2683EXPORT_SYMBOL(skb_append_datato_frags);
2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685/**
2686 *	skb_pull_rcsum - pull skb and update receive checksum
2687 *	@skb: buffer to update
2688 *	@len: length of data pulled
2689 *
2690 *	This function performs an skb_pull on the packet and updates
2691 *	the CHECKSUM_COMPLETE checksum.  It should be used on
2692 *	receive path processing instead of skb_pull unless you know
2693 *	that the checksum difference is zero (e.g., a valid IP header)
2694 *	or you are setting ip_summed to CHECKSUM_NONE.
2695 */
2696unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2697{
 
 
2698	BUG_ON(len > skb->len);
2699	skb->len -= len;
2700	BUG_ON(skb->len < skb->data_len);
2701	skb_postpull_rcsum(skb, skb->data, len);
2702	return skb->data += len;
2703}
2704EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2705
2706/**
2707 *	skb_segment - Perform protocol segmentation on skb.
2708 *	@skb: buffer to segment
2709 *	@features: features for the output path (see dev->features)
2710 *
2711 *	This function performs segmentation on the given skb.  It returns
2712 *	a pointer to the first in a list of new skbs for the segments.
2713 *	In case of error it returns ERR_PTR(err).
2714 */
2715struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
 
2716{
2717	struct sk_buff *segs = NULL;
2718	struct sk_buff *tail = NULL;
2719	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2720	unsigned int mss = skb_shinfo(skb)->gso_size;
2721	unsigned int doffset = skb->data - skb_mac_header(skb);
 
 
2722	unsigned int offset = doffset;
 
2723	unsigned int headroom;
2724	unsigned int len;
 
 
2725	int sg = !!(features & NETIF_F_SG);
2726	int nfrags = skb_shinfo(skb)->nr_frags;
2727	int err = -ENOMEM;
2728	int i = 0;
2729	int pos;
 
 
 
 
 
 
 
 
2730
2731	__skb_push(skb, doffset);
2732	headroom = skb_headroom(skb);
2733	pos = skb_headlen(skb);
2734
2735	do {
2736		struct sk_buff *nskb;
2737		skb_frag_t *frag;
2738		int hsize;
2739		int size;
2740
2741		len = skb->len - offset;
2742		if (len > mss)
2743			len = mss;
2744
2745		hsize = skb_headlen(skb) - offset;
2746		if (hsize < 0)
2747			hsize = 0;
2748		if (hsize > len || !sg)
2749			hsize = len;
2750
2751		if (!hsize && i >= nfrags) {
2752			BUG_ON(fskb->len != len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753
2754			pos += len;
2755			nskb = skb_clone(fskb, GFP_ATOMIC);
2756			fskb = fskb->next;
2757
2758			if (unlikely(!nskb))
2759				goto err;
2760
 
 
 
 
 
2761			hsize = skb_end_offset(nskb);
2762			if (skb_cow_head(nskb, doffset + headroom)) {
2763				kfree_skb(nskb);
2764				goto err;
2765			}
2766
2767			nskb->truesize += skb_end_offset(nskb) - hsize;
2768			skb_release_head_state(nskb);
2769			__skb_push(nskb, doffset);
2770		} else {
2771			nskb = alloc_skb(hsize + doffset + headroom,
2772					 GFP_ATOMIC);
 
2773
2774			if (unlikely(!nskb))
2775				goto err;
2776
2777			skb_reserve(nskb, headroom);
2778			__skb_put(nskb, doffset);
2779		}
2780
2781		if (segs)
2782			tail->next = nskb;
2783		else
2784			segs = nskb;
2785		tail = nskb;
2786
2787		__copy_skb_header(nskb, skb);
2788		nskb->mac_len = skb->mac_len;
2789
2790		/* nskb and skb might have different headroom */
2791		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2792			nskb->csum_start += skb_headroom(nskb) - headroom;
2793
2794		skb_reset_mac_header(nskb);
2795		skb_set_network_header(nskb, skb->mac_len);
2796		nskb->transport_header = (nskb->network_header +
2797					  skb_network_header_len(skb));
2798		skb_copy_from_linear_data(skb, nskb->data, doffset);
2799
2800		if (fskb != skb_shinfo(skb)->frag_list)
2801			continue;
 
 
 
 
2802
2803		if (!sg) {
2804			nskb->ip_summed = CHECKSUM_NONE;
2805			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2806							    skb_put(nskb, len),
2807							    len, 0);
 
 
 
 
2808			continue;
2809		}
2810
2811		frag = skb_shinfo(nskb)->frags;
2812
2813		skb_copy_from_linear_data_offset(skb, offset,
2814						 skb_put(nskb, hsize), hsize);
2815
2816		while (pos < offset + len && i < nfrags) {
2817			*frag = skb_shinfo(skb)->frags[i];
2818			__skb_frag_ref(frag);
2819			size = skb_frag_size(frag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2820
2821			if (pos < offset) {
2822				frag->page_offset += offset - pos;
2823				skb_frag_size_sub(frag, offset - pos);
2824			}
2825
2826			skb_shinfo(nskb)->nr_frags++;
2827
2828			if (pos + size <= offset + len) {
2829				i++;
 
2830				pos += size;
2831			} else {
2832				skb_frag_size_sub(frag, pos + size - (offset + len));
2833				goto skip_fraglist;
2834			}
2835
2836			frag++;
2837		}
2838
2839		if (pos < offset + len) {
2840			struct sk_buff *fskb2 = fskb;
2841
2842			BUG_ON(pos + fskb->len != offset + len);
2843
2844			pos += fskb->len;
2845			fskb = fskb->next;
2846
2847			if (fskb2->next) {
2848				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2849				if (!fskb2)
 
 
2850					goto err;
2851			} else
2852				skb_get(fskb2);
2853
2854			SKB_FRAG_ASSERT(nskb);
2855			skb_shinfo(nskb)->frag_list = fskb2;
 
 
 
2856		}
 
2857
2858skip_fraglist:
2859		nskb->data_len = len - hsize;
2860		nskb->len += nskb->data_len;
2861		nskb->truesize += nskb->data_len;
2862	} while ((offset += len) < skb->len);
2863
 
 
 
 
 
 
 
 
 
2864	return segs;
2865
2866err:
2867	while ((skb = segs)) {
2868		segs = skb->next;
2869		kfree_skb(skb);
2870	}
2871	return ERR_PTR(err);
2872}
2873EXPORT_SYMBOL_GPL(skb_segment);
2874
2875int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2876{
2877	struct sk_buff *p = *head;
2878	struct sk_buff *nskb;
2879	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2880	struct skb_shared_info *pinfo = skb_shinfo(p);
2881	unsigned int headroom;
2882	unsigned int len = skb_gro_len(skb);
2883	unsigned int offset = skb_gro_offset(skb);
2884	unsigned int headlen = skb_headlen(skb);
 
 
2885	unsigned int delta_truesize;
2886
2887	if (p->len + len >= 65536)
2888		return -E2BIG;
2889
2890	if (pinfo->frag_list)
2891		goto merge;
2892	else if (headlen <= offset) {
 
2893		skb_frag_t *frag;
2894		skb_frag_t *frag2;
2895		int i = skbinfo->nr_frags;
2896		int nr_frags = pinfo->nr_frags + i;
2897
2898		offset -= headlen;
2899
2900		if (nr_frags > MAX_SKB_FRAGS)
2901			return -E2BIG;
2902
 
2903		pinfo->nr_frags = nr_frags;
2904		skbinfo->nr_frags = 0;
2905
2906		frag = pinfo->frags + nr_frags;
2907		frag2 = skbinfo->frags + i;
2908		do {
2909			*--frag = *--frag2;
2910		} while (--i);
2911
2912		frag->page_offset += offset;
2913		skb_frag_size_sub(frag, offset);
2914
2915		/* all fragments truesize : remove (head size + sk_buff) */
2916		delta_truesize = skb->truesize -
2917				 SKB_TRUESIZE(skb_end_offset(skb));
2918
2919		skb->truesize -= skb->data_len;
2920		skb->len -= skb->data_len;
2921		skb->data_len = 0;
2922
2923		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2924		goto done;
2925	} else if (skb->head_frag) {
2926		int nr_frags = pinfo->nr_frags;
2927		skb_frag_t *frag = pinfo->frags + nr_frags;
2928		struct page *page = virt_to_head_page(skb->head);
2929		unsigned int first_size = headlen - offset;
2930		unsigned int first_offset;
2931
2932		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2933			return -E2BIG;
2934
2935		first_offset = skb->data -
2936			       (unsigned char *)page_address(page) +
2937			       offset;
2938
2939		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2940
2941		frag->page.p	  = page;
2942		frag->page_offset = first_offset;
2943		skb_frag_size_set(frag, first_size);
2944
2945		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2946		/* We dont need to clear skbinfo->nr_frags here */
2947
2948		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2949		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2950		goto done;
2951	} else if (skb_gro_len(p) != pinfo->gso_size)
2952		return -E2BIG;
2953
2954	headroom = skb_headroom(p);
2955	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2956	if (unlikely(!nskb))
2957		return -ENOMEM;
2958
2959	__copy_skb_header(nskb, p);
2960	nskb->mac_len = p->mac_len;
2961
2962	skb_reserve(nskb, headroom);
2963	__skb_put(nskb, skb_gro_offset(p));
2964
2965	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2966	skb_set_network_header(nskb, skb_network_offset(p));
2967	skb_set_transport_header(nskb, skb_transport_offset(p));
2968
2969	__skb_pull(p, skb_gro_offset(p));
2970	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2971	       p->data - skb_mac_header(p));
2972
2973	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2974	skb_shinfo(nskb)->frag_list = p;
2975	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2976	pinfo->gso_size = 0;
2977	skb_header_release(p);
2978	nskb->prev = p;
2979
2980	nskb->data_len += p->len;
2981	nskb->truesize += p->truesize;
2982	nskb->len += p->len;
2983
2984	*head = nskb;
2985	nskb->next = p->next;
2986	p->next = NULL;
2987
2988	p = nskb;
2989
2990merge:
2991	delta_truesize = skb->truesize;
2992	if (offset > headlen) {
2993		unsigned int eat = offset - headlen;
2994
2995		skbinfo->frags[0].page_offset += eat;
2996		skb_frag_size_sub(&skbinfo->frags[0], eat);
2997		skb->data_len -= eat;
2998		skb->len -= eat;
2999		offset = headlen;
3000	}
3001
3002	__skb_pull(skb, offset);
3003
3004	p->prev->next = skb;
3005	p->prev = skb;
3006	skb_header_release(skb);
 
 
 
 
3007
3008done:
3009	NAPI_GRO_CB(p)->count++;
3010	p->data_len += len;
3011	p->truesize += delta_truesize;
3012	p->len += len;
3013
 
 
 
 
3014	NAPI_GRO_CB(skb)->same_flow = 1;
3015	return 0;
3016}
3017EXPORT_SYMBOL_GPL(skb_gro_receive);
3018
3019void __init skb_init(void)
3020{
3021	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3022					      sizeof(struct sk_buff),
3023					      0,
3024					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3025					      NULL);
3026	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3027						(2*sizeof(struct sk_buff)) +
3028						sizeof(atomic_t),
3029						0,
3030						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3031						NULL);
3032}
3033
3034/**
3035 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3036 *	@skb: Socket buffer containing the buffers to be mapped
3037 *	@sg: The scatter-gather list to map into
3038 *	@offset: The offset into the buffer's contents to start mapping
3039 *	@len: Length of buffer space to be mapped
3040 *
3041 *	Fill the specified scatter-gather list with mappings/pointers into a
3042 *	region of the buffer space attached to a socket buffer.
3043 */
3044static int
3045__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3046{
3047	int start = skb_headlen(skb);
3048	int i, copy = start - offset;
3049	struct sk_buff *frag_iter;
3050	int elt = 0;
3051
3052	if (copy > 0) {
3053		if (copy > len)
3054			copy = len;
3055		sg_set_buf(sg, skb->data + offset, copy);
3056		elt++;
3057		if ((len -= copy) == 0)
3058			return elt;
3059		offset += copy;
3060	}
3061
3062	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3063		int end;
3064
3065		WARN_ON(start > offset + len);
3066
3067		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3068		if ((copy = end - offset) > 0) {
3069			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3070
3071			if (copy > len)
3072				copy = len;
3073			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3074					frag->page_offset+offset-start);
3075			elt++;
3076			if (!(len -= copy))
3077				return elt;
3078			offset += copy;
3079		}
3080		start = end;
3081	}
3082
3083	skb_walk_frags(skb, frag_iter) {
3084		int end;
3085
3086		WARN_ON(start > offset + len);
3087
3088		end = start + frag_iter->len;
3089		if ((copy = end - offset) > 0) {
3090			if (copy > len)
3091				copy = len;
3092			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3093					      copy);
3094			if ((len -= copy) == 0)
3095				return elt;
3096			offset += copy;
3097		}
3098		start = end;
3099	}
3100	BUG_ON(len);
3101	return elt;
3102}
3103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3105{
3106	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3107
3108	sg_mark_end(&sg[nsg - 1]);
3109
3110	return nsg;
3111}
3112EXPORT_SYMBOL_GPL(skb_to_sgvec);
3113
3114/**
3115 *	skb_cow_data - Check that a socket buffer's data buffers are writable
3116 *	@skb: The socket buffer to check.
3117 *	@tailbits: Amount of trailing space to be added
3118 *	@trailer: Returned pointer to the skb where the @tailbits space begins
3119 *
3120 *	Make sure that the data buffers attached to a socket buffer are
3121 *	writable. If they are not, private copies are made of the data buffers
3122 *	and the socket buffer is set to use these instead.
3123 *
3124 *	If @tailbits is given, make sure that there is space to write @tailbits
3125 *	bytes of data beyond current end of socket buffer.  @trailer will be
3126 *	set to point to the skb in which this space begins.
3127 *
3128 *	The number of scatterlist elements required to completely map the
3129 *	COW'd and extended socket buffer will be returned.
3130 */
3131int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3132{
3133	int copyflag;
3134	int elt;
3135	struct sk_buff *skb1, **skb_p;
3136
3137	/* If skb is cloned or its head is paged, reallocate
3138	 * head pulling out all the pages (pages are considered not writable
3139	 * at the moment even if they are anonymous).
3140	 */
3141	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3142	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3143		return -ENOMEM;
3144
3145	/* Easy case. Most of packets will go this way. */
3146	if (!skb_has_frag_list(skb)) {
3147		/* A little of trouble, not enough of space for trailer.
3148		 * This should not happen, when stack is tuned to generate
3149		 * good frames. OK, on miss we reallocate and reserve even more
3150		 * space, 128 bytes is fair. */
3151
3152		if (skb_tailroom(skb) < tailbits &&
3153		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3154			return -ENOMEM;
3155
3156		/* Voila! */
3157		*trailer = skb;
3158		return 1;
3159	}
3160
3161	/* Misery. We are in troubles, going to mincer fragments... */
3162
3163	elt = 1;
3164	skb_p = &skb_shinfo(skb)->frag_list;
3165	copyflag = 0;
3166
3167	while ((skb1 = *skb_p) != NULL) {
3168		int ntail = 0;
3169
3170		/* The fragment is partially pulled by someone,
3171		 * this can happen on input. Copy it and everything
3172		 * after it. */
3173
3174		if (skb_shared(skb1))
3175			copyflag = 1;
3176
3177		/* If the skb is the last, worry about trailer. */
3178
3179		if (skb1->next == NULL && tailbits) {
3180			if (skb_shinfo(skb1)->nr_frags ||
3181			    skb_has_frag_list(skb1) ||
3182			    skb_tailroom(skb1) < tailbits)
3183				ntail = tailbits + 128;
3184		}
3185
3186		if (copyflag ||
3187		    skb_cloned(skb1) ||
3188		    ntail ||
3189		    skb_shinfo(skb1)->nr_frags ||
3190		    skb_has_frag_list(skb1)) {
3191			struct sk_buff *skb2;
3192
3193			/* Fuck, we are miserable poor guys... */
3194			if (ntail == 0)
3195				skb2 = skb_copy(skb1, GFP_ATOMIC);
3196			else
3197				skb2 = skb_copy_expand(skb1,
3198						       skb_headroom(skb1),
3199						       ntail,
3200						       GFP_ATOMIC);
3201			if (unlikely(skb2 == NULL))
3202				return -ENOMEM;
3203
3204			if (skb1->sk)
3205				skb_set_owner_w(skb2, skb1->sk);
3206
3207			/* Looking around. Are we still alive?
3208			 * OK, link new skb, drop old one */
3209
3210			skb2->next = skb1->next;
3211			*skb_p = skb2;
3212			kfree_skb(skb1);
3213			skb1 = skb2;
3214		}
3215		elt++;
3216		*trailer = skb1;
3217		skb_p = &skb1->next;
3218	}
3219
3220	return elt;
3221}
3222EXPORT_SYMBOL_GPL(skb_cow_data);
3223
3224static void sock_rmem_free(struct sk_buff *skb)
3225{
3226	struct sock *sk = skb->sk;
3227
3228	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3229}
3230
3231/*
3232 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3233 */
3234int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3235{
3236	int len = skb->len;
3237
3238	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3239	    (unsigned int)sk->sk_rcvbuf)
3240		return -ENOMEM;
3241
3242	skb_orphan(skb);
3243	skb->sk = sk;
3244	skb->destructor = sock_rmem_free;
3245	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3246
3247	/* before exiting rcu section, make sure dst is refcounted */
3248	skb_dst_force(skb);
3249
3250	skb_queue_tail(&sk->sk_error_queue, skb);
3251	if (!sock_flag(sk, SOCK_DEAD))
3252		sk->sk_data_ready(sk, len);
3253	return 0;
3254}
3255EXPORT_SYMBOL(sock_queue_err_skb);
3256
3257void skb_tstamp_tx(struct sk_buff *orig_skb,
3258		struct skb_shared_hwtstamps *hwtstamps)
3259{
3260	struct sock *sk = orig_skb->sk;
3261	struct sock_exterr_skb *serr;
3262	struct sk_buff *skb;
3263	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265	if (!sk)
3266		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3267
3268	skb = skb_clone(orig_skb, GFP_ATOMIC);
3269	if (!skb)
3270		return;
3271
3272	if (hwtstamps) {
3273		*skb_hwtstamps(skb) =
3274			*hwtstamps;
3275	} else {
3276		/*
3277		 * no hardware time stamps available,
3278		 * so keep the shared tx_flags and only
3279		 * store software time stamp
3280		 */
3281		skb->tstamp = ktime_get_real();
3282	}
3283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284	serr = SKB_EXT_ERR(skb);
3285	memset(serr, 0, sizeof(*serr));
3286	serr->ee.ee_errno = ENOMSG;
3287	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
 
 
 
 
 
 
 
3288
3289	err = sock_queue_err_skb(sk, skb);
3290
3291	if (err)
3292		kfree_skb(skb);
3293}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3294EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3295
3296void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3297{
3298	struct sock *sk = skb->sk;
3299	struct sock_exterr_skb *serr;
3300	int err;
3301
3302	skb->wifi_acked_valid = 1;
3303	skb->wifi_acked = acked;
3304
3305	serr = SKB_EXT_ERR(skb);
3306	memset(serr, 0, sizeof(*serr));
3307	serr->ee.ee_errno = ENOMSG;
3308	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3309
 
 
 
3310	err = sock_queue_err_skb(sk, skb);
3311	if (err)
3312		kfree_skb(skb);
 
 
3313}
3314EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3315
3316
3317/**
3318 * skb_partial_csum_set - set up and verify partial csum values for packet
3319 * @skb: the skb to set
3320 * @start: the number of bytes after skb->data to start checksumming.
3321 * @off: the offset from start to place the checksum.
3322 *
3323 * For untrusted partially-checksummed packets, we need to make sure the values
3324 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3325 *
3326 * This function checks and sets those values and skb->ip_summed: if this
3327 * returns false you should drop the packet.
3328 */
3329bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3330{
3331	if (unlikely(start > skb_headlen(skb)) ||
3332	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3333		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3334				     start, off, skb_headlen(skb));
3335		return false;
3336	}
3337	skb->ip_summed = CHECKSUM_PARTIAL;
3338	skb->csum_start = skb_headroom(skb) + start;
3339	skb->csum_offset = off;
 
3340	return true;
3341}
3342EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3345{
3346	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3347			     skb->dev->name);
3348}
3349EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3350
3351void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3352{
3353	if (head_stolen)
 
3354		kmem_cache_free(skbuff_head_cache, skb);
3355	else
3356		__kfree_skb(skb);
 
3357}
3358EXPORT_SYMBOL(kfree_skb_partial);
3359
3360/**
3361 * skb_try_coalesce - try to merge skb to prior one
3362 * @to: prior buffer
3363 * @from: buffer to add
3364 * @fragstolen: pointer to boolean
3365 * @delta_truesize: how much more was allocated than was requested
3366 */
3367bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3368		      bool *fragstolen, int *delta_truesize)
3369{
3370	int i, delta, len = from->len;
3371
3372	*fragstolen = false;
3373
3374	if (skb_cloned(to))
3375		return false;
3376
3377	if (len <= skb_tailroom(to)) {
3378		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
 
3379		*delta_truesize = 0;
3380		return true;
3381	}
3382
3383	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3384		return false;
3385
3386	if (skb_headlen(from) != 0) {
3387		struct page *page;
3388		unsigned int offset;
3389
3390		if (skb_shinfo(to)->nr_frags +
3391		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3392			return false;
3393
3394		if (skb_head_is_locked(from))
3395			return false;
3396
3397		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3398
3399		page = virt_to_head_page(from->head);
3400		offset = from->data - (unsigned char *)page_address(page);
3401
3402		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3403				   page, offset, skb_headlen(from));
3404		*fragstolen = true;
3405	} else {
3406		if (skb_shinfo(to)->nr_frags +
3407		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3408			return false;
3409
3410		delta = from->truesize -
3411			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3412	}
3413
3414	WARN_ON_ONCE(delta < len);
3415
3416	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3417	       skb_shinfo(from)->frags,
3418	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3419	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3420
3421	if (!skb_cloned(from))
3422		skb_shinfo(from)->nr_frags = 0;
3423
3424	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
 
 
3425	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3426		skb_frag_ref(from, i);
3427
3428	to->truesize += delta;
3429	to->len += len;
3430	to->data_len += len;
3431
3432	*delta_truesize = delta;
3433	return true;
3434}
3435EXPORT_SYMBOL(skb_try_coalesce);