Loading...
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48#include <linux/module.h>
49#include <linux/kernel.h>
50#include <linux/sched.h>
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
60#include <linux/vmalloc.h>
61#include <linux/preempt.h>
62#include <linux/spinlock.h>
63#include <linux/types.h>
64#include <linux/debugfs.h>
65#include <linux/zsmalloc.h>
66#include <linux/zpool.h>
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134/* each chunk includes extra space to keep handle */
135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137/*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169};
170
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
183#endif
184
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
195 * f = fullness_threshold_frac
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
216 struct zs_size_stat stats;
217
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
242};
243
244struct zs_pool {
245 const char *name;
246
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249
250 gfp_t flags; /* allocation flags used when growing pool */
251 atomic_long_t pages_allocated;
252
253 struct zs_pool_stats stats;
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
265};
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
276struct mapping_area {
277#ifdef CONFIG_PGTABLE_MAPPING
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
295 kmem_cache_destroy(pool->handle_cachep);
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
317}
318
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
323static void *zs_zpool_create(const char *name, gfp_t gfp,
324 const struct zpool_ops *zpool_ops,
325 struct zpool *zpool)
326{
327 return zs_create_pool(name, gfp);
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
379 return zs_get_total_pages(pool) << PAGE_SHIFT;
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
395MODULE_ALIAS("zpool-zsmalloc");
396#endif /* CONFIG_ZPOOL */
397
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
408 return PagePrivate(page);
409}
410
411static int is_last_page(struct page *page)
412{
413 return PagePrivate2(page);
414}
415
416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
417 enum fullness_group *fullness)
418{
419 unsigned long m;
420 BUG_ON(!is_first_page(page));
421
422 m = (unsigned long)page->mapping;
423 *fullness = m & FULLNESS_MASK;
424 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
425}
426
427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
428 enum fullness_group fullness)
429{
430 unsigned long m;
431 BUG_ON(!is_first_page(page));
432
433 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
434 (fullness & FULLNESS_MASK);
435 page->mapping = (struct address_space *)m;
436}
437
438/*
439 * zsmalloc divides the pool into various size classes where each
440 * class maintains a list of zspages where each zspage is divided
441 * into equal sized chunks. Each allocation falls into one of these
442 * classes depending on its size. This function returns index of the
443 * size class which has chunk size big enough to hold the give size.
444 */
445static int get_size_class_index(int size)
446{
447 int idx = 0;
448
449 if (likely(size > ZS_MIN_ALLOC_SIZE))
450 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
451 ZS_SIZE_CLASS_DELTA);
452
453 return min(zs_size_classes - 1, idx);
454}
455
456static inline void zs_stat_inc(struct size_class *class,
457 enum zs_stat_type type, unsigned long cnt)
458{
459 if (type < NR_ZS_STAT_TYPE)
460 class->stats.objs[type] += cnt;
461}
462
463static inline void zs_stat_dec(struct size_class *class,
464 enum zs_stat_type type, unsigned long cnt)
465{
466 if (type < NR_ZS_STAT_TYPE)
467 class->stats.objs[type] -= cnt;
468}
469
470static inline unsigned long zs_stat_get(struct size_class *class,
471 enum zs_stat_type type)
472{
473 if (type < NR_ZS_STAT_TYPE)
474 return class->stats.objs[type];
475 return 0;
476}
477
478#ifdef CONFIG_ZSMALLOC_STAT
479
480static int __init zs_stat_init(void)
481{
482 if (!debugfs_initialized())
483 return -ENODEV;
484
485 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
486 if (!zs_stat_root)
487 return -ENOMEM;
488
489 return 0;
490}
491
492static void __exit zs_stat_exit(void)
493{
494 debugfs_remove_recursive(zs_stat_root);
495}
496
497static unsigned long zs_can_compact(struct size_class *class);
498
499static int zs_stats_size_show(struct seq_file *s, void *v)
500{
501 int i;
502 struct zs_pool *pool = s->private;
503 struct size_class *class;
504 int objs_per_zspage;
505 unsigned long class_almost_full, class_almost_empty;
506 unsigned long obj_allocated, obj_used, pages_used, freeable;
507 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
508 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
509 unsigned long total_freeable = 0;
510
511 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
512 "class", "size", "almost_full", "almost_empty",
513 "obj_allocated", "obj_used", "pages_used",
514 "pages_per_zspage", "freeable");
515
516 for (i = 0; i < zs_size_classes; i++) {
517 class = pool->size_class[i];
518
519 if (class->index != i)
520 continue;
521
522 spin_lock(&class->lock);
523 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
524 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
525 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
526 obj_used = zs_stat_get(class, OBJ_USED);
527 freeable = zs_can_compact(class);
528 spin_unlock(&class->lock);
529
530 objs_per_zspage = get_maxobj_per_zspage(class->size,
531 class->pages_per_zspage);
532 pages_used = obj_allocated / objs_per_zspage *
533 class->pages_per_zspage;
534
535 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
536 " %10lu %10lu %16d %8lu\n",
537 i, class->size, class_almost_full, class_almost_empty,
538 obj_allocated, obj_used, pages_used,
539 class->pages_per_zspage, freeable);
540
541 total_class_almost_full += class_almost_full;
542 total_class_almost_empty += class_almost_empty;
543 total_objs += obj_allocated;
544 total_used_objs += obj_used;
545 total_pages += pages_used;
546 total_freeable += freeable;
547 }
548
549 seq_puts(s, "\n");
550 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
551 "Total", "", total_class_almost_full,
552 total_class_almost_empty, total_objs,
553 total_used_objs, total_pages, "", total_freeable);
554
555 return 0;
556}
557
558static int zs_stats_size_open(struct inode *inode, struct file *file)
559{
560 return single_open(file, zs_stats_size_show, inode->i_private);
561}
562
563static const struct file_operations zs_stat_size_ops = {
564 .open = zs_stats_size_open,
565 .read = seq_read,
566 .llseek = seq_lseek,
567 .release = single_release,
568};
569
570static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
571{
572 struct dentry *entry;
573
574 if (!zs_stat_root)
575 return -ENODEV;
576
577 entry = debugfs_create_dir(name, zs_stat_root);
578 if (!entry) {
579 pr_warn("debugfs dir <%s> creation failed\n", name);
580 return -ENOMEM;
581 }
582 pool->stat_dentry = entry;
583
584 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
585 pool->stat_dentry, pool, &zs_stat_size_ops);
586 if (!entry) {
587 pr_warn("%s: debugfs file entry <%s> creation failed\n",
588 name, "classes");
589 return -ENOMEM;
590 }
591
592 return 0;
593}
594
595static void zs_pool_stat_destroy(struct zs_pool *pool)
596{
597 debugfs_remove_recursive(pool->stat_dentry);
598}
599
600#else /* CONFIG_ZSMALLOC_STAT */
601static int __init zs_stat_init(void)
602{
603 return 0;
604}
605
606static void __exit zs_stat_exit(void)
607{
608}
609
610static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
611{
612 return 0;
613}
614
615static inline void zs_pool_stat_destroy(struct zs_pool *pool)
616{
617}
618#endif
619
620
621/*
622 * For each size class, zspages are divided into different groups
623 * depending on how "full" they are. This was done so that we could
624 * easily find empty or nearly empty zspages when we try to shrink
625 * the pool (not yet implemented). This function returns fullness
626 * status of the given page.
627 */
628static enum fullness_group get_fullness_group(struct page *page)
629{
630 int inuse, max_objects;
631 enum fullness_group fg;
632 BUG_ON(!is_first_page(page));
633
634 inuse = page->inuse;
635 max_objects = page->objects;
636
637 if (inuse == 0)
638 fg = ZS_EMPTY;
639 else if (inuse == max_objects)
640 fg = ZS_FULL;
641 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
642 fg = ZS_ALMOST_EMPTY;
643 else
644 fg = ZS_ALMOST_FULL;
645
646 return fg;
647}
648
649/*
650 * Each size class maintains various freelists and zspages are assigned
651 * to one of these freelists based on the number of live objects they
652 * have. This functions inserts the given zspage into the freelist
653 * identified by <class, fullness_group>.
654 */
655static void insert_zspage(struct page *page, struct size_class *class,
656 enum fullness_group fullness)
657{
658 struct page **head;
659
660 BUG_ON(!is_first_page(page));
661
662 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
663 return;
664
665 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
666 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
667
668 head = &class->fullness_list[fullness];
669 if (!*head) {
670 *head = page;
671 return;
672 }
673
674 /*
675 * We want to see more ZS_FULL pages and less almost
676 * empty/full. Put pages with higher ->inuse first.
677 */
678 list_add_tail(&page->lru, &(*head)->lru);
679 if (page->inuse >= (*head)->inuse)
680 *head = page;
681}
682
683/*
684 * This function removes the given zspage from the freelist identified
685 * by <class, fullness_group>.
686 */
687static void remove_zspage(struct page *page, struct size_class *class,
688 enum fullness_group fullness)
689{
690 struct page **head;
691
692 BUG_ON(!is_first_page(page));
693
694 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
695 return;
696
697 head = &class->fullness_list[fullness];
698 BUG_ON(!*head);
699 if (list_empty(&(*head)->lru))
700 *head = NULL;
701 else if (*head == page)
702 *head = (struct page *)list_entry((*head)->lru.next,
703 struct page, lru);
704
705 list_del_init(&page->lru);
706 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
707 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
708}
709
710/*
711 * Each size class maintains zspages in different fullness groups depending
712 * on the number of live objects they contain. When allocating or freeing
713 * objects, the fullness status of the page can change, say, from ALMOST_FULL
714 * to ALMOST_EMPTY when freeing an object. This function checks if such
715 * a status change has occurred for the given page and accordingly moves the
716 * page from the freelist of the old fullness group to that of the new
717 * fullness group.
718 */
719static enum fullness_group fix_fullness_group(struct size_class *class,
720 struct page *page)
721{
722 int class_idx;
723 enum fullness_group currfg, newfg;
724
725 BUG_ON(!is_first_page(page));
726
727 get_zspage_mapping(page, &class_idx, &currfg);
728 newfg = get_fullness_group(page);
729 if (newfg == currfg)
730 goto out;
731
732 remove_zspage(page, class, currfg);
733 insert_zspage(page, class, newfg);
734 set_zspage_mapping(page, class_idx, newfg);
735
736out:
737 return newfg;
738}
739
740/*
741 * We have to decide on how many pages to link together
742 * to form a zspage for each size class. This is important
743 * to reduce wastage due to unusable space left at end of
744 * each zspage which is given as:
745 * wastage = Zp % class_size
746 * usage = Zp - wastage
747 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
748 *
749 * For example, for size class of 3/8 * PAGE_SIZE, we should
750 * link together 3 PAGE_SIZE sized pages to form a zspage
751 * since then we can perfectly fit in 8 such objects.
752 */
753static int get_pages_per_zspage(int class_size)
754{
755 int i, max_usedpc = 0;
756 /* zspage order which gives maximum used size per KB */
757 int max_usedpc_order = 1;
758
759 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
760 int zspage_size;
761 int waste, usedpc;
762
763 zspage_size = i * PAGE_SIZE;
764 waste = zspage_size % class_size;
765 usedpc = (zspage_size - waste) * 100 / zspage_size;
766
767 if (usedpc > max_usedpc) {
768 max_usedpc = usedpc;
769 max_usedpc_order = i;
770 }
771 }
772
773 return max_usedpc_order;
774}
775
776/*
777 * A single 'zspage' is composed of many system pages which are
778 * linked together using fields in struct page. This function finds
779 * the first/head page, given any component page of a zspage.
780 */
781static struct page *get_first_page(struct page *page)
782{
783 if (is_first_page(page))
784 return page;
785 else
786 return (struct page *)page_private(page);
787}
788
789static struct page *get_next_page(struct page *page)
790{
791 struct page *next;
792
793 if (is_last_page(page))
794 next = NULL;
795 else if (is_first_page(page))
796 next = (struct page *)page_private(page);
797 else
798 next = list_entry(page->lru.next, struct page, lru);
799
800 return next;
801}
802
803/*
804 * Encode <page, obj_idx> as a single handle value.
805 * We use the least bit of handle for tagging.
806 */
807static void *location_to_obj(struct page *page, unsigned long obj_idx)
808{
809 unsigned long obj;
810
811 if (!page) {
812 BUG_ON(obj_idx);
813 return NULL;
814 }
815
816 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
817 obj |= ((obj_idx) & OBJ_INDEX_MASK);
818 obj <<= OBJ_TAG_BITS;
819
820 return (void *)obj;
821}
822
823/*
824 * Decode <page, obj_idx> pair from the given object handle. We adjust the
825 * decoded obj_idx back to its original value since it was adjusted in
826 * location_to_obj().
827 */
828static void obj_to_location(unsigned long obj, struct page **page,
829 unsigned long *obj_idx)
830{
831 obj >>= OBJ_TAG_BITS;
832 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
833 *obj_idx = (obj & OBJ_INDEX_MASK);
834}
835
836static unsigned long handle_to_obj(unsigned long handle)
837{
838 return *(unsigned long *)handle;
839}
840
841static unsigned long obj_to_head(struct size_class *class, struct page *page,
842 void *obj)
843{
844 if (class->huge) {
845 VM_BUG_ON(!is_first_page(page));
846 return page_private(page);
847 } else
848 return *(unsigned long *)obj;
849}
850
851static unsigned long obj_idx_to_offset(struct page *page,
852 unsigned long obj_idx, int class_size)
853{
854 unsigned long off = 0;
855
856 if (!is_first_page(page))
857 off = page->index;
858
859 return off + obj_idx * class_size;
860}
861
862static inline int trypin_tag(unsigned long handle)
863{
864 unsigned long *ptr = (unsigned long *)handle;
865
866 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
867}
868
869static void pin_tag(unsigned long handle)
870{
871 while (!trypin_tag(handle));
872}
873
874static void unpin_tag(unsigned long handle)
875{
876 unsigned long *ptr = (unsigned long *)handle;
877
878 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
879}
880
881static void reset_page(struct page *page)
882{
883 clear_bit(PG_private, &page->flags);
884 clear_bit(PG_private_2, &page->flags);
885 set_page_private(page, 0);
886 page->mapping = NULL;
887 page->freelist = NULL;
888 page_mapcount_reset(page);
889}
890
891static void free_zspage(struct page *first_page)
892{
893 struct page *nextp, *tmp, *head_extra;
894
895 BUG_ON(!is_first_page(first_page));
896 BUG_ON(first_page->inuse);
897
898 head_extra = (struct page *)page_private(first_page);
899
900 reset_page(first_page);
901 __free_page(first_page);
902
903 /* zspage with only 1 system page */
904 if (!head_extra)
905 return;
906
907 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
908 list_del(&nextp->lru);
909 reset_page(nextp);
910 __free_page(nextp);
911 }
912 reset_page(head_extra);
913 __free_page(head_extra);
914}
915
916/* Initialize a newly allocated zspage */
917static void init_zspage(struct page *first_page, struct size_class *class)
918{
919 unsigned long off = 0;
920 struct page *page = first_page;
921
922 BUG_ON(!is_first_page(first_page));
923 while (page) {
924 struct page *next_page;
925 struct link_free *link;
926 unsigned int i = 1;
927 void *vaddr;
928
929 /*
930 * page->index stores offset of first object starting
931 * in the page. For the first page, this is always 0,
932 * so we use first_page->index (aka ->freelist) to store
933 * head of corresponding zspage's freelist.
934 */
935 if (page != first_page)
936 page->index = off;
937
938 vaddr = kmap_atomic(page);
939 link = (struct link_free *)vaddr + off / sizeof(*link);
940
941 while ((off += class->size) < PAGE_SIZE) {
942 link->next = location_to_obj(page, i++);
943 link += class->size / sizeof(*link);
944 }
945
946 /*
947 * We now come to the last (full or partial) object on this
948 * page, which must point to the first object on the next
949 * page (if present)
950 */
951 next_page = get_next_page(page);
952 link->next = location_to_obj(next_page, 0);
953 kunmap_atomic(vaddr);
954 page = next_page;
955 off %= PAGE_SIZE;
956 }
957}
958
959/*
960 * Allocate a zspage for the given size class
961 */
962static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
963{
964 int i, error;
965 struct page *first_page = NULL, *uninitialized_var(prev_page);
966
967 /*
968 * Allocate individual pages and link them together as:
969 * 1. first page->private = first sub-page
970 * 2. all sub-pages are linked together using page->lru
971 * 3. each sub-page is linked to the first page using page->private
972 *
973 * For each size class, First/Head pages are linked together using
974 * page->lru. Also, we set PG_private to identify the first page
975 * (i.e. no other sub-page has this flag set) and PG_private_2 to
976 * identify the last page.
977 */
978 error = -ENOMEM;
979 for (i = 0; i < class->pages_per_zspage; i++) {
980 struct page *page;
981
982 page = alloc_page(flags);
983 if (!page)
984 goto cleanup;
985
986 INIT_LIST_HEAD(&page->lru);
987 if (i == 0) { /* first page */
988 SetPagePrivate(page);
989 set_page_private(page, 0);
990 first_page = page;
991 first_page->inuse = 0;
992 }
993 if (i == 1)
994 set_page_private(first_page, (unsigned long)page);
995 if (i >= 1)
996 set_page_private(page, (unsigned long)first_page);
997 if (i >= 2)
998 list_add(&page->lru, &prev_page->lru);
999 if (i == class->pages_per_zspage - 1) /* last page */
1000 SetPagePrivate2(page);
1001 prev_page = page;
1002 }
1003
1004 init_zspage(first_page, class);
1005
1006 first_page->freelist = location_to_obj(first_page, 0);
1007 /* Maximum number of objects we can store in this zspage */
1008 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009
1010 error = 0; /* Success */
1011
1012cleanup:
1013 if (unlikely(error) && first_page) {
1014 free_zspage(first_page);
1015 first_page = NULL;
1016 }
1017
1018 return first_page;
1019}
1020
1021static struct page *find_get_zspage(struct size_class *class)
1022{
1023 int i;
1024 struct page *page;
1025
1026 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027 page = class->fullness_list[i];
1028 if (page)
1029 break;
1030 }
1031
1032 return page;
1033}
1034
1035#ifdef CONFIG_PGTABLE_MAPPING
1036static inline int __zs_cpu_up(struct mapping_area *area)
1037{
1038 /*
1039 * Make sure we don't leak memory if a cpu UP notification
1040 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041 */
1042 if (area->vm)
1043 return 0;
1044 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045 if (!area->vm)
1046 return -ENOMEM;
1047 return 0;
1048}
1049
1050static inline void __zs_cpu_down(struct mapping_area *area)
1051{
1052 if (area->vm)
1053 free_vm_area(area->vm);
1054 area->vm = NULL;
1055}
1056
1057static inline void *__zs_map_object(struct mapping_area *area,
1058 struct page *pages[2], int off, int size)
1059{
1060 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061 area->vm_addr = area->vm->addr;
1062 return area->vm_addr + off;
1063}
1064
1065static inline void __zs_unmap_object(struct mapping_area *area,
1066 struct page *pages[2], int off, int size)
1067{
1068 unsigned long addr = (unsigned long)area->vm_addr;
1069
1070 unmap_kernel_range(addr, PAGE_SIZE * 2);
1071}
1072
1073#else /* CONFIG_PGTABLE_MAPPING */
1074
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077 /*
1078 * Make sure we don't leak memory if a cpu UP notification
1079 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080 */
1081 if (area->vm_buf)
1082 return 0;
1083 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084 if (!area->vm_buf)
1085 return -ENOMEM;
1086 return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091 kfree(area->vm_buf);
1092 area->vm_buf = NULL;
1093}
1094
1095static void *__zs_map_object(struct mapping_area *area,
1096 struct page *pages[2], int off, int size)
1097{
1098 int sizes[2];
1099 void *addr;
1100 char *buf = area->vm_buf;
1101
1102 /* disable page faults to match kmap_atomic() return conditions */
1103 pagefault_disable();
1104
1105 /* no read fastpath */
1106 if (area->vm_mm == ZS_MM_WO)
1107 goto out;
1108
1109 sizes[0] = PAGE_SIZE - off;
1110 sizes[1] = size - sizes[0];
1111
1112 /* copy object to per-cpu buffer */
1113 addr = kmap_atomic(pages[0]);
1114 memcpy(buf, addr + off, sizes[0]);
1115 kunmap_atomic(addr);
1116 addr = kmap_atomic(pages[1]);
1117 memcpy(buf + sizes[0], addr, sizes[1]);
1118 kunmap_atomic(addr);
1119out:
1120 return area->vm_buf;
1121}
1122
1123static void __zs_unmap_object(struct mapping_area *area,
1124 struct page *pages[2], int off, int size)
1125{
1126 int sizes[2];
1127 void *addr;
1128 char *buf;
1129
1130 /* no write fastpath */
1131 if (area->vm_mm == ZS_MM_RO)
1132 goto out;
1133
1134 buf = area->vm_buf;
1135 buf = buf + ZS_HANDLE_SIZE;
1136 size -= ZS_HANDLE_SIZE;
1137 off += ZS_HANDLE_SIZE;
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
1142 /* copy per-cpu buffer to object */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(addr + off, buf, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(addr, buf + sizes[0], sizes[1]);
1148 kunmap_atomic(addr);
1149
1150out:
1151 /* enable page faults to match kunmap_atomic() return conditions */
1152 pagefault_enable();
1153}
1154
1155#endif /* CONFIG_PGTABLE_MAPPING */
1156
1157static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158 void *pcpu)
1159{
1160 int ret, cpu = (long)pcpu;
1161 struct mapping_area *area;
1162
1163 switch (action) {
1164 case CPU_UP_PREPARE:
1165 area = &per_cpu(zs_map_area, cpu);
1166 ret = __zs_cpu_up(area);
1167 if (ret)
1168 return notifier_from_errno(ret);
1169 break;
1170 case CPU_DEAD:
1171 case CPU_UP_CANCELED:
1172 area = &per_cpu(zs_map_area, cpu);
1173 __zs_cpu_down(area);
1174 break;
1175 }
1176
1177 return NOTIFY_OK;
1178}
1179
1180static struct notifier_block zs_cpu_nb = {
1181 .notifier_call = zs_cpu_notifier
1182};
1183
1184static int zs_register_cpu_notifier(void)
1185{
1186 int cpu, uninitialized_var(ret);
1187
1188 cpu_notifier_register_begin();
1189
1190 __register_cpu_notifier(&zs_cpu_nb);
1191 for_each_online_cpu(cpu) {
1192 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193 if (notifier_to_errno(ret))
1194 break;
1195 }
1196
1197 cpu_notifier_register_done();
1198 return notifier_to_errno(ret);
1199}
1200
1201static void zs_unregister_cpu_notifier(void)
1202{
1203 int cpu;
1204
1205 cpu_notifier_register_begin();
1206
1207 for_each_online_cpu(cpu)
1208 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209 __unregister_cpu_notifier(&zs_cpu_nb);
1210
1211 cpu_notifier_register_done();
1212}
1213
1214static void init_zs_size_classes(void)
1215{
1216 int nr;
1217
1218 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220 nr += 1;
1221
1222 zs_size_classes = nr;
1223}
1224
1225static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226{
1227 if (prev->pages_per_zspage != pages_per_zspage)
1228 return false;
1229
1230 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231 != get_maxobj_per_zspage(size, pages_per_zspage))
1232 return false;
1233
1234 return true;
1235}
1236
1237static bool zspage_full(struct page *page)
1238{
1239 BUG_ON(!is_first_page(page));
1240
1241 return page->inuse == page->objects;
1242}
1243
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246 return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250/**
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
1254 *
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
1258 *
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
1263 */
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265 enum zs_mapmode mm)
1266{
1267 struct page *page;
1268 unsigned long obj, obj_idx, off;
1269
1270 unsigned int class_idx;
1271 enum fullness_group fg;
1272 struct size_class *class;
1273 struct mapping_area *area;
1274 struct page *pages[2];
1275 void *ret;
1276
1277 BUG_ON(!handle);
1278
1279 /*
1280 * Because we use per-cpu mapping areas shared among the
1281 * pools/users, we can't allow mapping in interrupt context
1282 * because it can corrupt another users mappings.
1283 */
1284 BUG_ON(in_interrupt());
1285
1286 /* From now on, migration cannot move the object */
1287 pin_tag(handle);
1288
1289 obj = handle_to_obj(handle);
1290 obj_to_location(obj, &page, &obj_idx);
1291 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 class = pool->size_class[class_idx];
1293 off = obj_idx_to_offset(page, obj_idx, class->size);
1294
1295 area = &get_cpu_var(zs_map_area);
1296 area->vm_mm = mm;
1297 if (off + class->size <= PAGE_SIZE) {
1298 /* this object is contained entirely within a page */
1299 area->vm_addr = kmap_atomic(page);
1300 ret = area->vm_addr + off;
1301 goto out;
1302 }
1303
1304 /* this object spans two pages */
1305 pages[0] = page;
1306 pages[1] = get_next_page(page);
1307 BUG_ON(!pages[1]);
1308
1309 ret = __zs_map_object(area, pages, off, class->size);
1310out:
1311 if (!class->huge)
1312 ret += ZS_HANDLE_SIZE;
1313
1314 return ret;
1315}
1316EXPORT_SYMBOL_GPL(zs_map_object);
1317
1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319{
1320 struct page *page;
1321 unsigned long obj, obj_idx, off;
1322
1323 unsigned int class_idx;
1324 enum fullness_group fg;
1325 struct size_class *class;
1326 struct mapping_area *area;
1327
1328 BUG_ON(!handle);
1329
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
1341
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
1349 unpin_tag(handle);
1350}
1351EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353static unsigned long obj_malloc(struct page *first_page,
1354 struct size_class *class, unsigned long handle)
1355{
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
1363 handle |= OBJ_ALLOCATED_TAG;
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382}
1383
1384
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395{
1396 unsigned long handle, obj;
1397 struct size_class *class;
1398 struct page *first_page;
1399
1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 return 0;
1402
1403 handle = alloc_handle(pool);
1404 if (!handle)
1405 return 0;
1406
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
1409 class = pool->size_class[get_size_class_index(size)];
1410
1411 spin_lock(&class->lock);
1412 first_page = find_get_zspage(class);
1413
1414 if (!first_page) {
1415 spin_unlock(&class->lock);
1416 first_page = alloc_zspage(class, pool->flags);
1417 if (unlikely(!first_page)) {
1418 free_handle(pool, handle);
1419 return 0;
1420 }
1421
1422 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 atomic_long_add(class->pages_per_zspage,
1424 &pool->pages_allocated);
1425
1426 spin_lock(&class->lock);
1427 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 class->size, class->pages_per_zspage));
1429 }
1430
1431 obj = obj_malloc(first_page, class, handle);
1432 /* Now move the zspage to another fullness group, if required */
1433 fix_fullness_group(class, first_page);
1434 record_obj(handle, obj);
1435 spin_unlock(&class->lock);
1436
1437 return handle;
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442 unsigned long obj)
1443{
1444 struct link_free *link;
1445 struct page *first_page, *f_page;
1446 unsigned long f_objidx, f_offset;
1447 void *vaddr;
1448
1449 BUG_ON(!obj);
1450
1451 obj &= ~OBJ_ALLOCATED_TAG;
1452 obj_to_location(obj, &f_page, &f_objidx);
1453 first_page = get_first_page(f_page);
1454
1455 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456
1457 vaddr = kmap_atomic(f_page);
1458
1459 /* Insert this object in containing zspage's freelist */
1460 link = (struct link_free *)(vaddr + f_offset);
1461 link->next = first_page->freelist;
1462 if (class->huge)
1463 set_page_private(first_page, 0);
1464 kunmap_atomic(vaddr);
1465 first_page->freelist = (void *)obj;
1466 first_page->inuse--;
1467 zs_stat_dec(class, OBJ_USED, 1);
1468}
1469
1470void zs_free(struct zs_pool *pool, unsigned long handle)
1471{
1472 struct page *first_page, *f_page;
1473 unsigned long obj, f_objidx;
1474 int class_idx;
1475 struct size_class *class;
1476 enum fullness_group fullness;
1477
1478 if (unlikely(!handle))
1479 return;
1480
1481 pin_tag(handle);
1482 obj = handle_to_obj(handle);
1483 obj_to_location(obj, &f_page, &f_objidx);
1484 first_page = get_first_page(f_page);
1485
1486 get_zspage_mapping(first_page, &class_idx, &fullness);
1487 class = pool->size_class[class_idx];
1488
1489 spin_lock(&class->lock);
1490 obj_free(pool, class, obj);
1491 fullness = fix_fullness_group(class, first_page);
1492 if (fullness == ZS_EMPTY) {
1493 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494 class->size, class->pages_per_zspage));
1495 atomic_long_sub(class->pages_per_zspage,
1496 &pool->pages_allocated);
1497 free_zspage(first_page);
1498 }
1499 spin_unlock(&class->lock);
1500 unpin_tag(handle);
1501
1502 free_handle(pool, handle);
1503}
1504EXPORT_SYMBOL_GPL(zs_free);
1505
1506static void zs_object_copy(unsigned long dst, unsigned long src,
1507 struct size_class *class)
1508{
1509 struct page *s_page, *d_page;
1510 unsigned long s_objidx, d_objidx;
1511 unsigned long s_off, d_off;
1512 void *s_addr, *d_addr;
1513 int s_size, d_size, size;
1514 int written = 0;
1515
1516 s_size = d_size = class->size;
1517
1518 obj_to_location(src, &s_page, &s_objidx);
1519 obj_to_location(dst, &d_page, &d_objidx);
1520
1521 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523
1524 if (s_off + class->size > PAGE_SIZE)
1525 s_size = PAGE_SIZE - s_off;
1526
1527 if (d_off + class->size > PAGE_SIZE)
1528 d_size = PAGE_SIZE - d_off;
1529
1530 s_addr = kmap_atomic(s_page);
1531 d_addr = kmap_atomic(d_page);
1532
1533 while (1) {
1534 size = min(s_size, d_size);
1535 memcpy(d_addr + d_off, s_addr + s_off, size);
1536 written += size;
1537
1538 if (written == class->size)
1539 break;
1540
1541 s_off += size;
1542 s_size -= size;
1543 d_off += size;
1544 d_size -= size;
1545
1546 if (s_off >= PAGE_SIZE) {
1547 kunmap_atomic(d_addr);
1548 kunmap_atomic(s_addr);
1549 s_page = get_next_page(s_page);
1550 BUG_ON(!s_page);
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553 s_size = class->size - written;
1554 s_off = 0;
1555 }
1556
1557 if (d_off >= PAGE_SIZE) {
1558 kunmap_atomic(d_addr);
1559 d_page = get_next_page(d_page);
1560 BUG_ON(!d_page);
1561 d_addr = kmap_atomic(d_page);
1562 d_size = class->size - written;
1563 d_off = 0;
1564 }
1565 }
1566
1567 kunmap_atomic(d_addr);
1568 kunmap_atomic(s_addr);
1569}
1570
1571/*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575static unsigned long find_alloced_obj(struct page *page, int index,
1576 struct size_class *class)
1577{
1578 unsigned long head;
1579 int offset = 0;
1580 unsigned long handle = 0;
1581 void *addr = kmap_atomic(page);
1582
1583 if (!is_first_page(page))
1584 offset = page->index;
1585 offset += class->size * index;
1586
1587 while (offset < PAGE_SIZE) {
1588 head = obj_to_head(class, page, addr + offset);
1589 if (head & OBJ_ALLOCATED_TAG) {
1590 handle = head & ~OBJ_ALLOCATED_TAG;
1591 if (trypin_tag(handle))
1592 break;
1593 handle = 0;
1594 }
1595
1596 offset += class->size;
1597 index++;
1598 }
1599
1600 kunmap_atomic(addr);
1601 return handle;
1602}
1603
1604struct zs_compact_control {
1605 /* Source page for migration which could be a subpage of zspage. */
1606 struct page *s_page;
1607 /* Destination page for migration which should be a first page
1608 * of zspage. */
1609 struct page *d_page;
1610 /* Starting object index within @s_page which used for live object
1611 * in the subpage. */
1612 int index;
1613};
1614
1615static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616 struct zs_compact_control *cc)
1617{
1618 unsigned long used_obj, free_obj;
1619 unsigned long handle;
1620 struct page *s_page = cc->s_page;
1621 struct page *d_page = cc->d_page;
1622 unsigned long index = cc->index;
1623 int ret = 0;
1624
1625 while (1) {
1626 handle = find_alloced_obj(s_page, index, class);
1627 if (!handle) {
1628 s_page = get_next_page(s_page);
1629 if (!s_page)
1630 break;
1631 index = 0;
1632 continue;
1633 }
1634
1635 /* Stop if there is no more space */
1636 if (zspage_full(d_page)) {
1637 unpin_tag(handle);
1638 ret = -ENOMEM;
1639 break;
1640 }
1641
1642 used_obj = handle_to_obj(handle);
1643 free_obj = obj_malloc(d_page, class, handle);
1644 zs_object_copy(free_obj, used_obj, class);
1645 index++;
1646 /*
1647 * record_obj updates handle's value to free_obj and it will
1648 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649 * breaks synchronization using pin_tag(e,g, zs_free) so
1650 * let's keep the lock bit.
1651 */
1652 free_obj |= BIT(HANDLE_PIN_BIT);
1653 record_obj(handle, free_obj);
1654 unpin_tag(handle);
1655 obj_free(pool, class, used_obj);
1656 }
1657
1658 /* Remember last position in this iteration */
1659 cc->s_page = s_page;
1660 cc->index = index;
1661
1662 return ret;
1663}
1664
1665static struct page *isolate_target_page(struct size_class *class)
1666{
1667 int i;
1668 struct page *page;
1669
1670 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671 page = class->fullness_list[i];
1672 if (page) {
1673 remove_zspage(page, class, i);
1674 break;
1675 }
1676 }
1677
1678 return page;
1679}
1680
1681/*
1682 * putback_zspage - add @first_page into right class's fullness list
1683 * @pool: target pool
1684 * @class: destination class
1685 * @first_page: target page
1686 *
1687 * Return @fist_page's fullness_group
1688 */
1689static enum fullness_group putback_zspage(struct zs_pool *pool,
1690 struct size_class *class,
1691 struct page *first_page)
1692{
1693 enum fullness_group fullness;
1694
1695 BUG_ON(!is_first_page(first_page));
1696
1697 fullness = get_fullness_group(first_page);
1698 insert_zspage(first_page, class, fullness);
1699 set_zspage_mapping(first_page, class->index, fullness);
1700
1701 if (fullness == ZS_EMPTY) {
1702 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703 class->size, class->pages_per_zspage));
1704 atomic_long_sub(class->pages_per_zspage,
1705 &pool->pages_allocated);
1706
1707 free_zspage(first_page);
1708 }
1709
1710 return fullness;
1711}
1712
1713static struct page *isolate_source_page(struct size_class *class)
1714{
1715 int i;
1716 struct page *page = NULL;
1717
1718 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719 page = class->fullness_list[i];
1720 if (!page)
1721 continue;
1722
1723 remove_zspage(page, class, i);
1724 break;
1725 }
1726
1727 return page;
1728}
1729
1730/*
1731 *
1732 * Based on the number of unused allocated objects calculate
1733 * and return the number of pages that we can free.
1734 */
1735static unsigned long zs_can_compact(struct size_class *class)
1736{
1737 unsigned long obj_wasted;
1738 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1739 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1740
1741 if (obj_allocated <= obj_used)
1742 return 0;
1743
1744 obj_wasted = obj_allocated - obj_used;
1745 obj_wasted /= get_maxobj_per_zspage(class->size,
1746 class->pages_per_zspage);
1747
1748 return obj_wasted * class->pages_per_zspage;
1749}
1750
1751static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1752{
1753 struct zs_compact_control cc;
1754 struct page *src_page;
1755 struct page *dst_page = NULL;
1756
1757 spin_lock(&class->lock);
1758 while ((src_page = isolate_source_page(class))) {
1759
1760 BUG_ON(!is_first_page(src_page));
1761
1762 if (!zs_can_compact(class))
1763 break;
1764
1765 cc.index = 0;
1766 cc.s_page = src_page;
1767
1768 while ((dst_page = isolate_target_page(class))) {
1769 cc.d_page = dst_page;
1770 /*
1771 * If there is no more space in dst_page, resched
1772 * and see if anyone had allocated another zspage.
1773 */
1774 if (!migrate_zspage(pool, class, &cc))
1775 break;
1776
1777 putback_zspage(pool, class, dst_page);
1778 }
1779
1780 /* Stop if we couldn't find slot */
1781 if (dst_page == NULL)
1782 break;
1783
1784 putback_zspage(pool, class, dst_page);
1785 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1786 pool->stats.pages_compacted += class->pages_per_zspage;
1787 spin_unlock(&class->lock);
1788 cond_resched();
1789 spin_lock(&class->lock);
1790 }
1791
1792 if (src_page)
1793 putback_zspage(pool, class, src_page);
1794
1795 spin_unlock(&class->lock);
1796}
1797
1798unsigned long zs_compact(struct zs_pool *pool)
1799{
1800 int i;
1801 struct size_class *class;
1802
1803 for (i = zs_size_classes - 1; i >= 0; i--) {
1804 class = pool->size_class[i];
1805 if (!class)
1806 continue;
1807 if (class->index != i)
1808 continue;
1809 __zs_compact(pool, class);
1810 }
1811
1812 return pool->stats.pages_compacted;
1813}
1814EXPORT_SYMBOL_GPL(zs_compact);
1815
1816void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1817{
1818 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1819}
1820EXPORT_SYMBOL_GPL(zs_pool_stats);
1821
1822static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1823 struct shrink_control *sc)
1824{
1825 unsigned long pages_freed;
1826 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1827 shrinker);
1828
1829 pages_freed = pool->stats.pages_compacted;
1830 /*
1831 * Compact classes and calculate compaction delta.
1832 * Can run concurrently with a manually triggered
1833 * (by user) compaction.
1834 */
1835 pages_freed = zs_compact(pool) - pages_freed;
1836
1837 return pages_freed ? pages_freed : SHRINK_STOP;
1838}
1839
1840static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1841 struct shrink_control *sc)
1842{
1843 int i;
1844 struct size_class *class;
1845 unsigned long pages_to_free = 0;
1846 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1847 shrinker);
1848
1849 for (i = zs_size_classes - 1; i >= 0; i--) {
1850 class = pool->size_class[i];
1851 if (!class)
1852 continue;
1853 if (class->index != i)
1854 continue;
1855
1856 pages_to_free += zs_can_compact(class);
1857 }
1858
1859 return pages_to_free;
1860}
1861
1862static void zs_unregister_shrinker(struct zs_pool *pool)
1863{
1864 if (pool->shrinker_enabled) {
1865 unregister_shrinker(&pool->shrinker);
1866 pool->shrinker_enabled = false;
1867 }
1868}
1869
1870static int zs_register_shrinker(struct zs_pool *pool)
1871{
1872 pool->shrinker.scan_objects = zs_shrinker_scan;
1873 pool->shrinker.count_objects = zs_shrinker_count;
1874 pool->shrinker.batch = 0;
1875 pool->shrinker.seeks = DEFAULT_SEEKS;
1876
1877 return register_shrinker(&pool->shrinker);
1878}
1879
1880/**
1881 * zs_create_pool - Creates an allocation pool to work from.
1882 * @flags: allocation flags used to allocate pool metadata
1883 *
1884 * This function must be called before anything when using
1885 * the zsmalloc allocator.
1886 *
1887 * On success, a pointer to the newly created pool is returned,
1888 * otherwise NULL.
1889 */
1890struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1891{
1892 int i;
1893 struct zs_pool *pool;
1894 struct size_class *prev_class = NULL;
1895
1896 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1897 if (!pool)
1898 return NULL;
1899
1900 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1901 GFP_KERNEL);
1902 if (!pool->size_class) {
1903 kfree(pool);
1904 return NULL;
1905 }
1906
1907 pool->name = kstrdup(name, GFP_KERNEL);
1908 if (!pool->name)
1909 goto err;
1910
1911 if (create_handle_cache(pool))
1912 goto err;
1913
1914 /*
1915 * Iterate reversly, because, size of size_class that we want to use
1916 * for merging should be larger or equal to current size.
1917 */
1918 for (i = zs_size_classes - 1; i >= 0; i--) {
1919 int size;
1920 int pages_per_zspage;
1921 struct size_class *class;
1922
1923 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1924 if (size > ZS_MAX_ALLOC_SIZE)
1925 size = ZS_MAX_ALLOC_SIZE;
1926 pages_per_zspage = get_pages_per_zspage(size);
1927
1928 /*
1929 * size_class is used for normal zsmalloc operation such
1930 * as alloc/free for that size. Although it is natural that we
1931 * have one size_class for each size, there is a chance that we
1932 * can get more memory utilization if we use one size_class for
1933 * many different sizes whose size_class have same
1934 * characteristics. So, we makes size_class point to
1935 * previous size_class if possible.
1936 */
1937 if (prev_class) {
1938 if (can_merge(prev_class, size, pages_per_zspage)) {
1939 pool->size_class[i] = prev_class;
1940 continue;
1941 }
1942 }
1943
1944 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1945 if (!class)
1946 goto err;
1947
1948 class->size = size;
1949 class->index = i;
1950 class->pages_per_zspage = pages_per_zspage;
1951 if (pages_per_zspage == 1 &&
1952 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1953 class->huge = true;
1954 spin_lock_init(&class->lock);
1955 pool->size_class[i] = class;
1956
1957 prev_class = class;
1958 }
1959
1960 pool->flags = flags;
1961
1962 if (zs_pool_stat_create(name, pool))
1963 goto err;
1964
1965 /*
1966 * Not critical, we still can use the pool
1967 * and user can trigger compaction manually.
1968 */
1969 if (zs_register_shrinker(pool) == 0)
1970 pool->shrinker_enabled = true;
1971 return pool;
1972
1973err:
1974 zs_destroy_pool(pool);
1975 return NULL;
1976}
1977EXPORT_SYMBOL_GPL(zs_create_pool);
1978
1979void zs_destroy_pool(struct zs_pool *pool)
1980{
1981 int i;
1982
1983 zs_unregister_shrinker(pool);
1984 zs_pool_stat_destroy(pool);
1985
1986 for (i = 0; i < zs_size_classes; i++) {
1987 int fg;
1988 struct size_class *class = pool->size_class[i];
1989
1990 if (!class)
1991 continue;
1992
1993 if (class->index != i)
1994 continue;
1995
1996 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1997 if (class->fullness_list[fg]) {
1998 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1999 class->size, fg);
2000 }
2001 }
2002 kfree(class);
2003 }
2004
2005 destroy_handle_cache(pool);
2006 kfree(pool->size_class);
2007 kfree(pool->name);
2008 kfree(pool);
2009}
2010EXPORT_SYMBOL_GPL(zs_destroy_pool);
2011
2012static int __init zs_init(void)
2013{
2014 int ret = zs_register_cpu_notifier();
2015
2016 if (ret)
2017 goto notifier_fail;
2018
2019 init_zs_size_classes();
2020
2021#ifdef CONFIG_ZPOOL
2022 zpool_register_driver(&zs_zpool_driver);
2023#endif
2024
2025 ret = zs_stat_init();
2026 if (ret) {
2027 pr_err("zs stat initialization failed\n");
2028 goto stat_fail;
2029 }
2030 return 0;
2031
2032stat_fail:
2033#ifdef CONFIG_ZPOOL
2034 zpool_unregister_driver(&zs_zpool_driver);
2035#endif
2036notifier_fail:
2037 zs_unregister_cpu_notifier();
2038
2039 return ret;
2040}
2041
2042static void __exit zs_exit(void)
2043{
2044#ifdef CONFIG_ZPOOL
2045 zpool_unregister_driver(&zs_zpool_driver);
2046#endif
2047 zs_unregister_cpu_notifier();
2048
2049 zs_stat_exit();
2050}
2051
2052module_init(zs_init);
2053module_exit(zs_exit);
2054
2055MODULE_LICENSE("Dual BSD/GPL");
2056MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33/*
34 * lock ordering:
35 * page_lock
36 * pool->lock
37 * zspage->lock
38 */
39
40#include <linux/module.h>
41#include <linux/kernel.h>
42#include <linux/sched.h>
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/pgtable.h>
49#include <asm/tlbflush.h>
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
52#include <linux/vmalloc.h>
53#include <linux/preempt.h>
54#include <linux/spinlock.h>
55#include <linux/shrinker.h>
56#include <linux/types.h>
57#include <linux/debugfs.h>
58#include <linux/zsmalloc.h>
59#include <linux/zpool.h>
60#include <linux/migrate.h>
61#include <linux/wait.h>
62#include <linux/pagemap.h>
63#include <linux/fs.h>
64#include <linux/local_lock.h>
65
66#define ZSPAGE_MAGIC 0x58
67
68/*
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * a single (unsigned long) handle value.
81 *
82 * Note that object index <obj_idx> starts from 0.
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96#endif
97#endif
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101/*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108#define OBJ_ALLOCATED_TAG 1
109
110#define OBJ_TAG_BITS 1
111#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
112
113#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
114#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115
116#define HUGE_BITS 1
117#define FULLNESS_BITS 4
118#define CLASS_BITS 8
119#define MAGIC_VAL_BITS 8
120
121#define MAX(a, b) ((a) >= (b) ? (a) : (b))
122
123#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
124
125/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126#define ZS_MIN_ALLOC_SIZE \
127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128/* each chunk includes extra space to keep handle */
129#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
130
131/*
132 * On systems with 4K page size, this gives 255 size classes! There is a
133 * trader-off here:
134 * - Large number of size classes is potentially wasteful as free page are
135 * spread across these classes
136 * - Small number of size classes causes large internal fragmentation
137 * - Probably its better to use specific size classes (empirically
138 * determined). NOTE: all those class sizes must be set as multiple of
139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140 *
141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142 * (reason above)
143 */
144#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
145#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 ZS_SIZE_CLASS_DELTA) + 1)
147
148/*
149 * Pages are distinguished by the ratio of used memory (that is the ratio
150 * of ->inuse objects to all objects that page can store). For example,
151 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
152 *
153 * The number of fullness groups is not random. It allows us to keep
154 * difference between the least busy page in the group (minimum permitted
155 * number of ->inuse objects) and the most busy page (maximum permitted
156 * number of ->inuse objects) at a reasonable value.
157 */
158enum fullness_group {
159 ZS_INUSE_RATIO_0,
160 ZS_INUSE_RATIO_10,
161 /* NOTE: 8 more fullness groups here */
162 ZS_INUSE_RATIO_99 = 10,
163 ZS_INUSE_RATIO_100,
164 NR_FULLNESS_GROUPS,
165};
166
167enum class_stat_type {
168 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
169 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
170 ZS_OBJS_INUSE,
171 NR_CLASS_STAT_TYPES,
172};
173
174struct zs_size_stat {
175 unsigned long objs[NR_CLASS_STAT_TYPES];
176};
177
178#ifdef CONFIG_ZSMALLOC_STAT
179static struct dentry *zs_stat_root;
180#endif
181
182static size_t huge_class_size;
183
184struct size_class {
185 struct list_head fullness_list[NR_FULLNESS_GROUPS];
186 /*
187 * Size of objects stored in this class. Must be multiple
188 * of ZS_ALIGN.
189 */
190 int size;
191 int objs_per_zspage;
192 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
193 int pages_per_zspage;
194
195 unsigned int index;
196 struct zs_size_stat stats;
197};
198
199/*
200 * Placed within free objects to form a singly linked list.
201 * For every zspage, zspage->freeobj gives head of this list.
202 *
203 * This must be power of 2 and less than or equal to ZS_ALIGN
204 */
205struct link_free {
206 union {
207 /*
208 * Free object index;
209 * It's valid for non-allocated object
210 */
211 unsigned long next;
212 /*
213 * Handle of allocated object.
214 */
215 unsigned long handle;
216 };
217};
218
219struct zs_pool {
220 const char *name;
221
222 struct size_class *size_class[ZS_SIZE_CLASSES];
223 struct kmem_cache *handle_cachep;
224 struct kmem_cache *zspage_cachep;
225
226 atomic_long_t pages_allocated;
227
228 struct zs_pool_stats stats;
229
230 /* Compact classes */
231 struct shrinker *shrinker;
232
233#ifdef CONFIG_ZSMALLOC_STAT
234 struct dentry *stat_dentry;
235#endif
236#ifdef CONFIG_COMPACTION
237 struct work_struct free_work;
238#endif
239 spinlock_t lock;
240 atomic_t compaction_in_progress;
241};
242
243struct zspage {
244 struct {
245 unsigned int huge:HUGE_BITS;
246 unsigned int fullness:FULLNESS_BITS;
247 unsigned int class:CLASS_BITS + 1;
248 unsigned int magic:MAGIC_VAL_BITS;
249 };
250 unsigned int inuse;
251 unsigned int freeobj;
252 struct page *first_page;
253 struct list_head list; /* fullness list */
254 struct zs_pool *pool;
255 rwlock_t lock;
256};
257
258struct mapping_area {
259 local_lock_t lock;
260 char *vm_buf; /* copy buffer for objects that span pages */
261 char *vm_addr; /* address of kmap_atomic()'ed pages */
262 enum zs_mapmode vm_mm; /* mapping mode */
263};
264
265/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
266static void SetZsHugePage(struct zspage *zspage)
267{
268 zspage->huge = 1;
269}
270
271static bool ZsHugePage(struct zspage *zspage)
272{
273 return zspage->huge;
274}
275
276static void migrate_lock_init(struct zspage *zspage);
277static void migrate_read_lock(struct zspage *zspage);
278static void migrate_read_unlock(struct zspage *zspage);
279static void migrate_write_lock(struct zspage *zspage);
280static void migrate_write_unlock(struct zspage *zspage);
281
282#ifdef CONFIG_COMPACTION
283static void kick_deferred_free(struct zs_pool *pool);
284static void init_deferred_free(struct zs_pool *pool);
285static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
286#else
287static void kick_deferred_free(struct zs_pool *pool) {}
288static void init_deferred_free(struct zs_pool *pool) {}
289static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
290#endif
291
292static int create_cache(struct zs_pool *pool)
293{
294 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
295 0, 0, NULL);
296 if (!pool->handle_cachep)
297 return 1;
298
299 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
300 0, 0, NULL);
301 if (!pool->zspage_cachep) {
302 kmem_cache_destroy(pool->handle_cachep);
303 pool->handle_cachep = NULL;
304 return 1;
305 }
306
307 return 0;
308}
309
310static void destroy_cache(struct zs_pool *pool)
311{
312 kmem_cache_destroy(pool->handle_cachep);
313 kmem_cache_destroy(pool->zspage_cachep);
314}
315
316static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
317{
318 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
319 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
320}
321
322static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
323{
324 kmem_cache_free(pool->handle_cachep, (void *)handle);
325}
326
327static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
328{
329 return kmem_cache_zalloc(pool->zspage_cachep,
330 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
331}
332
333static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
334{
335 kmem_cache_free(pool->zspage_cachep, zspage);
336}
337
338/* pool->lock(which owns the handle) synchronizes races */
339static void record_obj(unsigned long handle, unsigned long obj)
340{
341 *(unsigned long *)handle = obj;
342}
343
344/* zpool driver */
345
346#ifdef CONFIG_ZPOOL
347
348static void *zs_zpool_create(const char *name, gfp_t gfp)
349{
350 /*
351 * Ignore global gfp flags: zs_malloc() may be invoked from
352 * different contexts and its caller must provide a valid
353 * gfp mask.
354 */
355 return zs_create_pool(name);
356}
357
358static void zs_zpool_destroy(void *pool)
359{
360 zs_destroy_pool(pool);
361}
362
363static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
364 unsigned long *handle)
365{
366 *handle = zs_malloc(pool, size, gfp);
367
368 if (IS_ERR_VALUE(*handle))
369 return PTR_ERR((void *)*handle);
370 return 0;
371}
372static void zs_zpool_free(void *pool, unsigned long handle)
373{
374 zs_free(pool, handle);
375}
376
377static void *zs_zpool_map(void *pool, unsigned long handle,
378 enum zpool_mapmode mm)
379{
380 enum zs_mapmode zs_mm;
381
382 switch (mm) {
383 case ZPOOL_MM_RO:
384 zs_mm = ZS_MM_RO;
385 break;
386 case ZPOOL_MM_WO:
387 zs_mm = ZS_MM_WO;
388 break;
389 case ZPOOL_MM_RW:
390 default:
391 zs_mm = ZS_MM_RW;
392 break;
393 }
394
395 return zs_map_object(pool, handle, zs_mm);
396}
397static void zs_zpool_unmap(void *pool, unsigned long handle)
398{
399 zs_unmap_object(pool, handle);
400}
401
402static u64 zs_zpool_total_size(void *pool)
403{
404 return zs_get_total_pages(pool) << PAGE_SHIFT;
405}
406
407static struct zpool_driver zs_zpool_driver = {
408 .type = "zsmalloc",
409 .owner = THIS_MODULE,
410 .create = zs_zpool_create,
411 .destroy = zs_zpool_destroy,
412 .malloc_support_movable = true,
413 .malloc = zs_zpool_malloc,
414 .free = zs_zpool_free,
415 .map = zs_zpool_map,
416 .unmap = zs_zpool_unmap,
417 .total_size = zs_zpool_total_size,
418};
419
420MODULE_ALIAS("zpool-zsmalloc");
421#endif /* CONFIG_ZPOOL */
422
423/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
424static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
425 .lock = INIT_LOCAL_LOCK(lock),
426};
427
428static __maybe_unused int is_first_page(struct page *page)
429{
430 return PagePrivate(page);
431}
432
433/* Protected by pool->lock */
434static inline int get_zspage_inuse(struct zspage *zspage)
435{
436 return zspage->inuse;
437}
438
439
440static inline void mod_zspage_inuse(struct zspage *zspage, int val)
441{
442 zspage->inuse += val;
443}
444
445static inline struct page *get_first_page(struct zspage *zspage)
446{
447 struct page *first_page = zspage->first_page;
448
449 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
450 return first_page;
451}
452
453static inline unsigned int get_first_obj_offset(struct page *page)
454{
455 return page->page_type;
456}
457
458static inline void set_first_obj_offset(struct page *page, unsigned int offset)
459{
460 page->page_type = offset;
461}
462
463static inline unsigned int get_freeobj(struct zspage *zspage)
464{
465 return zspage->freeobj;
466}
467
468static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
469{
470 zspage->freeobj = obj;
471}
472
473static struct size_class *zspage_class(struct zs_pool *pool,
474 struct zspage *zspage)
475{
476 return pool->size_class[zspage->class];
477}
478
479/*
480 * zsmalloc divides the pool into various size classes where each
481 * class maintains a list of zspages where each zspage is divided
482 * into equal sized chunks. Each allocation falls into one of these
483 * classes depending on its size. This function returns index of the
484 * size class which has chunk size big enough to hold the given size.
485 */
486static int get_size_class_index(int size)
487{
488 int idx = 0;
489
490 if (likely(size > ZS_MIN_ALLOC_SIZE))
491 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
492 ZS_SIZE_CLASS_DELTA);
493
494 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
495}
496
497static inline void class_stat_inc(struct size_class *class,
498 int type, unsigned long cnt)
499{
500 class->stats.objs[type] += cnt;
501}
502
503static inline void class_stat_dec(struct size_class *class,
504 int type, unsigned long cnt)
505{
506 class->stats.objs[type] -= cnt;
507}
508
509static inline unsigned long zs_stat_get(struct size_class *class, int type)
510{
511 return class->stats.objs[type];
512}
513
514#ifdef CONFIG_ZSMALLOC_STAT
515
516static void __init zs_stat_init(void)
517{
518 if (!debugfs_initialized()) {
519 pr_warn("debugfs not available, stat dir not created\n");
520 return;
521 }
522
523 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
524}
525
526static void __exit zs_stat_exit(void)
527{
528 debugfs_remove_recursive(zs_stat_root);
529}
530
531static unsigned long zs_can_compact(struct size_class *class);
532
533static int zs_stats_size_show(struct seq_file *s, void *v)
534{
535 int i, fg;
536 struct zs_pool *pool = s->private;
537 struct size_class *class;
538 int objs_per_zspage;
539 unsigned long obj_allocated, obj_used, pages_used, freeable;
540 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
541 unsigned long total_freeable = 0;
542 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
543
544 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
545 "class", "size", "10%", "20%", "30%", "40%",
546 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
547 "obj_allocated", "obj_used", "pages_used",
548 "pages_per_zspage", "freeable");
549
550 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
551
552 class = pool->size_class[i];
553
554 if (class->index != i)
555 continue;
556
557 spin_lock(&pool->lock);
558
559 seq_printf(s, " %5u %5u ", i, class->size);
560 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
561 inuse_totals[fg] += zs_stat_get(class, fg);
562 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
563 }
564
565 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
566 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
567 freeable = zs_can_compact(class);
568 spin_unlock(&pool->lock);
569
570 objs_per_zspage = class->objs_per_zspage;
571 pages_used = obj_allocated / objs_per_zspage *
572 class->pages_per_zspage;
573
574 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
575 obj_allocated, obj_used, pages_used,
576 class->pages_per_zspage, freeable);
577
578 total_objs += obj_allocated;
579 total_used_objs += obj_used;
580 total_pages += pages_used;
581 total_freeable += freeable;
582 }
583
584 seq_puts(s, "\n");
585 seq_printf(s, " %5s %5s ", "Total", "");
586
587 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
588 seq_printf(s, "%9lu ", inuse_totals[fg]);
589
590 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
591 total_objs, total_used_objs, total_pages, "",
592 total_freeable);
593
594 return 0;
595}
596DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
597
598static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
599{
600 if (!zs_stat_root) {
601 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
602 return;
603 }
604
605 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
606
607 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
608 &zs_stats_size_fops);
609}
610
611static void zs_pool_stat_destroy(struct zs_pool *pool)
612{
613 debugfs_remove_recursive(pool->stat_dentry);
614}
615
616#else /* CONFIG_ZSMALLOC_STAT */
617static void __init zs_stat_init(void)
618{
619}
620
621static void __exit zs_stat_exit(void)
622{
623}
624
625static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
626{
627}
628
629static inline void zs_pool_stat_destroy(struct zs_pool *pool)
630{
631}
632#endif
633
634
635/*
636 * For each size class, zspages are divided into different groups
637 * depending on their usage ratio. This function returns fullness
638 * status of the given page.
639 */
640static int get_fullness_group(struct size_class *class, struct zspage *zspage)
641{
642 int inuse, objs_per_zspage, ratio;
643
644 inuse = get_zspage_inuse(zspage);
645 objs_per_zspage = class->objs_per_zspage;
646
647 if (inuse == 0)
648 return ZS_INUSE_RATIO_0;
649 if (inuse == objs_per_zspage)
650 return ZS_INUSE_RATIO_100;
651
652 ratio = 100 * inuse / objs_per_zspage;
653 /*
654 * Take integer division into consideration: a page with one inuse
655 * object out of 127 possible, will end up having 0 usage ratio,
656 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
657 */
658 return ratio / 10 + 1;
659}
660
661/*
662 * Each size class maintains various freelists and zspages are assigned
663 * to one of these freelists based on the number of live objects they
664 * have. This functions inserts the given zspage into the freelist
665 * identified by <class, fullness_group>.
666 */
667static void insert_zspage(struct size_class *class,
668 struct zspage *zspage,
669 int fullness)
670{
671 class_stat_inc(class, fullness, 1);
672 list_add(&zspage->list, &class->fullness_list[fullness]);
673 zspage->fullness = fullness;
674}
675
676/*
677 * This function removes the given zspage from the freelist identified
678 * by <class, fullness_group>.
679 */
680static void remove_zspage(struct size_class *class, struct zspage *zspage)
681{
682 int fullness = zspage->fullness;
683
684 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
685
686 list_del_init(&zspage->list);
687 class_stat_dec(class, fullness, 1);
688}
689
690/*
691 * Each size class maintains zspages in different fullness groups depending
692 * on the number of live objects they contain. When allocating or freeing
693 * objects, the fullness status of the page can change, for instance, from
694 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
695 * checks if such a status change has occurred for the given page and
696 * accordingly moves the page from the list of the old fullness group to that
697 * of the new fullness group.
698 */
699static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
700{
701 int newfg;
702
703 newfg = get_fullness_group(class, zspage);
704 if (newfg == zspage->fullness)
705 goto out;
706
707 remove_zspage(class, zspage);
708 insert_zspage(class, zspage, newfg);
709out:
710 return newfg;
711}
712
713static struct zspage *get_zspage(struct page *page)
714{
715 struct zspage *zspage = (struct zspage *)page_private(page);
716
717 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
718 return zspage;
719}
720
721static struct page *get_next_page(struct page *page)
722{
723 struct zspage *zspage = get_zspage(page);
724
725 if (unlikely(ZsHugePage(zspage)))
726 return NULL;
727
728 return (struct page *)page->index;
729}
730
731/**
732 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
733 * @obj: the encoded object value
734 * @page: page object resides in zspage
735 * @obj_idx: object index
736 */
737static void obj_to_location(unsigned long obj, struct page **page,
738 unsigned int *obj_idx)
739{
740 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
741 *obj_idx = (obj & OBJ_INDEX_MASK);
742}
743
744static void obj_to_page(unsigned long obj, struct page **page)
745{
746 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
747}
748
749/**
750 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
751 * @page: page object resides in zspage
752 * @obj_idx: object index
753 */
754static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
755{
756 unsigned long obj;
757
758 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
759 obj |= obj_idx & OBJ_INDEX_MASK;
760
761 return obj;
762}
763
764static unsigned long handle_to_obj(unsigned long handle)
765{
766 return *(unsigned long *)handle;
767}
768
769static inline bool obj_allocated(struct page *page, void *obj,
770 unsigned long *phandle)
771{
772 unsigned long handle;
773 struct zspage *zspage = get_zspage(page);
774
775 if (unlikely(ZsHugePage(zspage))) {
776 VM_BUG_ON_PAGE(!is_first_page(page), page);
777 handle = page->index;
778 } else
779 handle = *(unsigned long *)obj;
780
781 if (!(handle & OBJ_ALLOCATED_TAG))
782 return false;
783
784 /* Clear all tags before returning the handle */
785 *phandle = handle & ~OBJ_TAG_MASK;
786 return true;
787}
788
789static void reset_page(struct page *page)
790{
791 __ClearPageMovable(page);
792 ClearPagePrivate(page);
793 set_page_private(page, 0);
794 page_mapcount_reset(page);
795 page->index = 0;
796}
797
798static int trylock_zspage(struct zspage *zspage)
799{
800 struct page *cursor, *fail;
801
802 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
803 get_next_page(cursor)) {
804 if (!trylock_page(cursor)) {
805 fail = cursor;
806 goto unlock;
807 }
808 }
809
810 return 1;
811unlock:
812 for (cursor = get_first_page(zspage); cursor != fail; cursor =
813 get_next_page(cursor))
814 unlock_page(cursor);
815
816 return 0;
817}
818
819static void __free_zspage(struct zs_pool *pool, struct size_class *class,
820 struct zspage *zspage)
821{
822 struct page *page, *next;
823
824 assert_spin_locked(&pool->lock);
825
826 VM_BUG_ON(get_zspage_inuse(zspage));
827 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
828
829 next = page = get_first_page(zspage);
830 do {
831 VM_BUG_ON_PAGE(!PageLocked(page), page);
832 next = get_next_page(page);
833 reset_page(page);
834 unlock_page(page);
835 dec_zone_page_state(page, NR_ZSPAGES);
836 put_page(page);
837 page = next;
838 } while (page != NULL);
839
840 cache_free_zspage(pool, zspage);
841
842 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
843 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
844}
845
846static void free_zspage(struct zs_pool *pool, struct size_class *class,
847 struct zspage *zspage)
848{
849 VM_BUG_ON(get_zspage_inuse(zspage));
850 VM_BUG_ON(list_empty(&zspage->list));
851
852 /*
853 * Since zs_free couldn't be sleepable, this function cannot call
854 * lock_page. The page locks trylock_zspage got will be released
855 * by __free_zspage.
856 */
857 if (!trylock_zspage(zspage)) {
858 kick_deferred_free(pool);
859 return;
860 }
861
862 remove_zspage(class, zspage);
863 __free_zspage(pool, class, zspage);
864}
865
866/* Initialize a newly allocated zspage */
867static void init_zspage(struct size_class *class, struct zspage *zspage)
868{
869 unsigned int freeobj = 1;
870 unsigned long off = 0;
871 struct page *page = get_first_page(zspage);
872
873 while (page) {
874 struct page *next_page;
875 struct link_free *link;
876 void *vaddr;
877
878 set_first_obj_offset(page, off);
879
880 vaddr = kmap_atomic(page);
881 link = (struct link_free *)vaddr + off / sizeof(*link);
882
883 while ((off += class->size) < PAGE_SIZE) {
884 link->next = freeobj++ << OBJ_TAG_BITS;
885 link += class->size / sizeof(*link);
886 }
887
888 /*
889 * We now come to the last (full or partial) object on this
890 * page, which must point to the first object on the next
891 * page (if present)
892 */
893 next_page = get_next_page(page);
894 if (next_page) {
895 link->next = freeobj++ << OBJ_TAG_BITS;
896 } else {
897 /*
898 * Reset OBJ_TAG_BITS bit to last link to tell
899 * whether it's allocated object or not.
900 */
901 link->next = -1UL << OBJ_TAG_BITS;
902 }
903 kunmap_atomic(vaddr);
904 page = next_page;
905 off %= PAGE_SIZE;
906 }
907
908 set_freeobj(zspage, 0);
909}
910
911static void create_page_chain(struct size_class *class, struct zspage *zspage,
912 struct page *pages[])
913{
914 int i;
915 struct page *page;
916 struct page *prev_page = NULL;
917 int nr_pages = class->pages_per_zspage;
918
919 /*
920 * Allocate individual pages and link them together as:
921 * 1. all pages are linked together using page->index
922 * 2. each sub-page point to zspage using page->private
923 *
924 * we set PG_private to identify the first page (i.e. no other sub-page
925 * has this flag set).
926 */
927 for (i = 0; i < nr_pages; i++) {
928 page = pages[i];
929 set_page_private(page, (unsigned long)zspage);
930 page->index = 0;
931 if (i == 0) {
932 zspage->first_page = page;
933 SetPagePrivate(page);
934 if (unlikely(class->objs_per_zspage == 1 &&
935 class->pages_per_zspage == 1))
936 SetZsHugePage(zspage);
937 } else {
938 prev_page->index = (unsigned long)page;
939 }
940 prev_page = page;
941 }
942}
943
944/*
945 * Allocate a zspage for the given size class
946 */
947static struct zspage *alloc_zspage(struct zs_pool *pool,
948 struct size_class *class,
949 gfp_t gfp)
950{
951 int i;
952 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
953 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
954
955 if (!zspage)
956 return NULL;
957
958 zspage->magic = ZSPAGE_MAGIC;
959 migrate_lock_init(zspage);
960
961 for (i = 0; i < class->pages_per_zspage; i++) {
962 struct page *page;
963
964 page = alloc_page(gfp);
965 if (!page) {
966 while (--i >= 0) {
967 dec_zone_page_state(pages[i], NR_ZSPAGES);
968 __free_page(pages[i]);
969 }
970 cache_free_zspage(pool, zspage);
971 return NULL;
972 }
973
974 inc_zone_page_state(page, NR_ZSPAGES);
975 pages[i] = page;
976 }
977
978 create_page_chain(class, zspage, pages);
979 init_zspage(class, zspage);
980 zspage->pool = pool;
981 zspage->class = class->index;
982
983 return zspage;
984}
985
986static struct zspage *find_get_zspage(struct size_class *class)
987{
988 int i;
989 struct zspage *zspage;
990
991 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
992 zspage = list_first_entry_or_null(&class->fullness_list[i],
993 struct zspage, list);
994 if (zspage)
995 break;
996 }
997
998 return zspage;
999}
1000
1001static inline int __zs_cpu_up(struct mapping_area *area)
1002{
1003 /*
1004 * Make sure we don't leak memory if a cpu UP notification
1005 * and zs_init() race and both call zs_cpu_up() on the same cpu
1006 */
1007 if (area->vm_buf)
1008 return 0;
1009 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1010 if (!area->vm_buf)
1011 return -ENOMEM;
1012 return 0;
1013}
1014
1015static inline void __zs_cpu_down(struct mapping_area *area)
1016{
1017 kfree(area->vm_buf);
1018 area->vm_buf = NULL;
1019}
1020
1021static void *__zs_map_object(struct mapping_area *area,
1022 struct page *pages[2], int off, int size)
1023{
1024 int sizes[2];
1025 void *addr;
1026 char *buf = area->vm_buf;
1027
1028 /* disable page faults to match kmap_atomic() return conditions */
1029 pagefault_disable();
1030
1031 /* no read fastpath */
1032 if (area->vm_mm == ZS_MM_WO)
1033 goto out;
1034
1035 sizes[0] = PAGE_SIZE - off;
1036 sizes[1] = size - sizes[0];
1037
1038 /* copy object to per-cpu buffer */
1039 addr = kmap_atomic(pages[0]);
1040 memcpy(buf, addr + off, sizes[0]);
1041 kunmap_atomic(addr);
1042 addr = kmap_atomic(pages[1]);
1043 memcpy(buf + sizes[0], addr, sizes[1]);
1044 kunmap_atomic(addr);
1045out:
1046 return area->vm_buf;
1047}
1048
1049static void __zs_unmap_object(struct mapping_area *area,
1050 struct page *pages[2], int off, int size)
1051{
1052 int sizes[2];
1053 void *addr;
1054 char *buf;
1055
1056 /* no write fastpath */
1057 if (area->vm_mm == ZS_MM_RO)
1058 goto out;
1059
1060 buf = area->vm_buf;
1061 buf = buf + ZS_HANDLE_SIZE;
1062 size -= ZS_HANDLE_SIZE;
1063 off += ZS_HANDLE_SIZE;
1064
1065 sizes[0] = PAGE_SIZE - off;
1066 sizes[1] = size - sizes[0];
1067
1068 /* copy per-cpu buffer to object */
1069 addr = kmap_atomic(pages[0]);
1070 memcpy(addr + off, buf, sizes[0]);
1071 kunmap_atomic(addr);
1072 addr = kmap_atomic(pages[1]);
1073 memcpy(addr, buf + sizes[0], sizes[1]);
1074 kunmap_atomic(addr);
1075
1076out:
1077 /* enable page faults to match kunmap_atomic() return conditions */
1078 pagefault_enable();
1079}
1080
1081static int zs_cpu_prepare(unsigned int cpu)
1082{
1083 struct mapping_area *area;
1084
1085 area = &per_cpu(zs_map_area, cpu);
1086 return __zs_cpu_up(area);
1087}
1088
1089static int zs_cpu_dead(unsigned int cpu)
1090{
1091 struct mapping_area *area;
1092
1093 area = &per_cpu(zs_map_area, cpu);
1094 __zs_cpu_down(area);
1095 return 0;
1096}
1097
1098static bool can_merge(struct size_class *prev, int pages_per_zspage,
1099 int objs_per_zspage)
1100{
1101 if (prev->pages_per_zspage == pages_per_zspage &&
1102 prev->objs_per_zspage == objs_per_zspage)
1103 return true;
1104
1105 return false;
1106}
1107
1108static bool zspage_full(struct size_class *class, struct zspage *zspage)
1109{
1110 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1111}
1112
1113static bool zspage_empty(struct zspage *zspage)
1114{
1115 return get_zspage_inuse(zspage) == 0;
1116}
1117
1118/**
1119 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1120 * that hold objects of the provided size.
1121 * @pool: zsmalloc pool to use
1122 * @size: object size
1123 *
1124 * Context: Any context.
1125 *
1126 * Return: the index of the zsmalloc &size_class that hold objects of the
1127 * provided size.
1128 */
1129unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1130{
1131 struct size_class *class;
1132
1133 class = pool->size_class[get_size_class_index(size)];
1134
1135 return class->index;
1136}
1137EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1138
1139unsigned long zs_get_total_pages(struct zs_pool *pool)
1140{
1141 return atomic_long_read(&pool->pages_allocated);
1142}
1143EXPORT_SYMBOL_GPL(zs_get_total_pages);
1144
1145/**
1146 * zs_map_object - get address of allocated object from handle.
1147 * @pool: pool from which the object was allocated
1148 * @handle: handle returned from zs_malloc
1149 * @mm: mapping mode to use
1150 *
1151 * Before using an object allocated from zs_malloc, it must be mapped using
1152 * this function. When done with the object, it must be unmapped using
1153 * zs_unmap_object.
1154 *
1155 * Only one object can be mapped per cpu at a time. There is no protection
1156 * against nested mappings.
1157 *
1158 * This function returns with preemption and page faults disabled.
1159 */
1160void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1161 enum zs_mapmode mm)
1162{
1163 struct zspage *zspage;
1164 struct page *page;
1165 unsigned long obj, off;
1166 unsigned int obj_idx;
1167
1168 struct size_class *class;
1169 struct mapping_area *area;
1170 struct page *pages[2];
1171 void *ret;
1172
1173 /*
1174 * Because we use per-cpu mapping areas shared among the
1175 * pools/users, we can't allow mapping in interrupt context
1176 * because it can corrupt another users mappings.
1177 */
1178 BUG_ON(in_interrupt());
1179
1180 /* It guarantees it can get zspage from handle safely */
1181 spin_lock(&pool->lock);
1182 obj = handle_to_obj(handle);
1183 obj_to_location(obj, &page, &obj_idx);
1184 zspage = get_zspage(page);
1185
1186 /*
1187 * migration cannot move any zpages in this zspage. Here, pool->lock
1188 * is too heavy since callers would take some time until they calls
1189 * zs_unmap_object API so delegate the locking from class to zspage
1190 * which is smaller granularity.
1191 */
1192 migrate_read_lock(zspage);
1193 spin_unlock(&pool->lock);
1194
1195 class = zspage_class(pool, zspage);
1196 off = offset_in_page(class->size * obj_idx);
1197
1198 local_lock(&zs_map_area.lock);
1199 area = this_cpu_ptr(&zs_map_area);
1200 area->vm_mm = mm;
1201 if (off + class->size <= PAGE_SIZE) {
1202 /* this object is contained entirely within a page */
1203 area->vm_addr = kmap_atomic(page);
1204 ret = area->vm_addr + off;
1205 goto out;
1206 }
1207
1208 /* this object spans two pages */
1209 pages[0] = page;
1210 pages[1] = get_next_page(page);
1211 BUG_ON(!pages[1]);
1212
1213 ret = __zs_map_object(area, pages, off, class->size);
1214out:
1215 if (likely(!ZsHugePage(zspage)))
1216 ret += ZS_HANDLE_SIZE;
1217
1218 return ret;
1219}
1220EXPORT_SYMBOL_GPL(zs_map_object);
1221
1222void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1223{
1224 struct zspage *zspage;
1225 struct page *page;
1226 unsigned long obj, off;
1227 unsigned int obj_idx;
1228
1229 struct size_class *class;
1230 struct mapping_area *area;
1231
1232 obj = handle_to_obj(handle);
1233 obj_to_location(obj, &page, &obj_idx);
1234 zspage = get_zspage(page);
1235 class = zspage_class(pool, zspage);
1236 off = offset_in_page(class->size * obj_idx);
1237
1238 area = this_cpu_ptr(&zs_map_area);
1239 if (off + class->size <= PAGE_SIZE)
1240 kunmap_atomic(area->vm_addr);
1241 else {
1242 struct page *pages[2];
1243
1244 pages[0] = page;
1245 pages[1] = get_next_page(page);
1246 BUG_ON(!pages[1]);
1247
1248 __zs_unmap_object(area, pages, off, class->size);
1249 }
1250 local_unlock(&zs_map_area.lock);
1251
1252 migrate_read_unlock(zspage);
1253}
1254EXPORT_SYMBOL_GPL(zs_unmap_object);
1255
1256/**
1257 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1258 * zsmalloc &size_class.
1259 * @pool: zsmalloc pool to use
1260 *
1261 * The function returns the size of the first huge class - any object of equal
1262 * or bigger size will be stored in zspage consisting of a single physical
1263 * page.
1264 *
1265 * Context: Any context.
1266 *
1267 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1268 */
1269size_t zs_huge_class_size(struct zs_pool *pool)
1270{
1271 return huge_class_size;
1272}
1273EXPORT_SYMBOL_GPL(zs_huge_class_size);
1274
1275static unsigned long obj_malloc(struct zs_pool *pool,
1276 struct zspage *zspage, unsigned long handle)
1277{
1278 int i, nr_page, offset;
1279 unsigned long obj;
1280 struct link_free *link;
1281 struct size_class *class;
1282
1283 struct page *m_page;
1284 unsigned long m_offset;
1285 void *vaddr;
1286
1287 class = pool->size_class[zspage->class];
1288 handle |= OBJ_ALLOCATED_TAG;
1289 obj = get_freeobj(zspage);
1290
1291 offset = obj * class->size;
1292 nr_page = offset >> PAGE_SHIFT;
1293 m_offset = offset_in_page(offset);
1294 m_page = get_first_page(zspage);
1295
1296 for (i = 0; i < nr_page; i++)
1297 m_page = get_next_page(m_page);
1298
1299 vaddr = kmap_atomic(m_page);
1300 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1301 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1302 if (likely(!ZsHugePage(zspage)))
1303 /* record handle in the header of allocated chunk */
1304 link->handle = handle;
1305 else
1306 /* record handle to page->index */
1307 zspage->first_page->index = handle;
1308
1309 kunmap_atomic(vaddr);
1310 mod_zspage_inuse(zspage, 1);
1311
1312 obj = location_to_obj(m_page, obj);
1313
1314 return obj;
1315}
1316
1317
1318/**
1319 * zs_malloc - Allocate block of given size from pool.
1320 * @pool: pool to allocate from
1321 * @size: size of block to allocate
1322 * @gfp: gfp flags when allocating object
1323 *
1324 * On success, handle to the allocated object is returned,
1325 * otherwise an ERR_PTR().
1326 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1327 */
1328unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1329{
1330 unsigned long handle, obj;
1331 struct size_class *class;
1332 int newfg;
1333 struct zspage *zspage;
1334
1335 if (unlikely(!size))
1336 return (unsigned long)ERR_PTR(-EINVAL);
1337
1338 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1339 return (unsigned long)ERR_PTR(-ENOSPC);
1340
1341 handle = cache_alloc_handle(pool, gfp);
1342 if (!handle)
1343 return (unsigned long)ERR_PTR(-ENOMEM);
1344
1345 /* extra space in chunk to keep the handle */
1346 size += ZS_HANDLE_SIZE;
1347 class = pool->size_class[get_size_class_index(size)];
1348
1349 /* pool->lock effectively protects the zpage migration */
1350 spin_lock(&pool->lock);
1351 zspage = find_get_zspage(class);
1352 if (likely(zspage)) {
1353 obj = obj_malloc(pool, zspage, handle);
1354 /* Now move the zspage to another fullness group, if required */
1355 fix_fullness_group(class, zspage);
1356 record_obj(handle, obj);
1357 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1358
1359 goto out;
1360 }
1361
1362 spin_unlock(&pool->lock);
1363
1364 zspage = alloc_zspage(pool, class, gfp);
1365 if (!zspage) {
1366 cache_free_handle(pool, handle);
1367 return (unsigned long)ERR_PTR(-ENOMEM);
1368 }
1369
1370 spin_lock(&pool->lock);
1371 obj = obj_malloc(pool, zspage, handle);
1372 newfg = get_fullness_group(class, zspage);
1373 insert_zspage(class, zspage, newfg);
1374 record_obj(handle, obj);
1375 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1376 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1377 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1378
1379 /* We completely set up zspage so mark them as movable */
1380 SetZsPageMovable(pool, zspage);
1381out:
1382 spin_unlock(&pool->lock);
1383
1384 return handle;
1385}
1386EXPORT_SYMBOL_GPL(zs_malloc);
1387
1388static void obj_free(int class_size, unsigned long obj)
1389{
1390 struct link_free *link;
1391 struct zspage *zspage;
1392 struct page *f_page;
1393 unsigned long f_offset;
1394 unsigned int f_objidx;
1395 void *vaddr;
1396
1397 obj_to_location(obj, &f_page, &f_objidx);
1398 f_offset = offset_in_page(class_size * f_objidx);
1399 zspage = get_zspage(f_page);
1400
1401 vaddr = kmap_atomic(f_page);
1402 link = (struct link_free *)(vaddr + f_offset);
1403
1404 /* Insert this object in containing zspage's freelist */
1405 if (likely(!ZsHugePage(zspage)))
1406 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1407 else
1408 f_page->index = 0;
1409 set_freeobj(zspage, f_objidx);
1410
1411 kunmap_atomic(vaddr);
1412 mod_zspage_inuse(zspage, -1);
1413}
1414
1415void zs_free(struct zs_pool *pool, unsigned long handle)
1416{
1417 struct zspage *zspage;
1418 struct page *f_page;
1419 unsigned long obj;
1420 struct size_class *class;
1421 int fullness;
1422
1423 if (IS_ERR_OR_NULL((void *)handle))
1424 return;
1425
1426 /*
1427 * The pool->lock protects the race with zpage's migration
1428 * so it's safe to get the page from handle.
1429 */
1430 spin_lock(&pool->lock);
1431 obj = handle_to_obj(handle);
1432 obj_to_page(obj, &f_page);
1433 zspage = get_zspage(f_page);
1434 class = zspage_class(pool, zspage);
1435
1436 class_stat_dec(class, ZS_OBJS_INUSE, 1);
1437 obj_free(class->size, obj);
1438
1439 fullness = fix_fullness_group(class, zspage);
1440 if (fullness == ZS_INUSE_RATIO_0)
1441 free_zspage(pool, class, zspage);
1442
1443 spin_unlock(&pool->lock);
1444 cache_free_handle(pool, handle);
1445}
1446EXPORT_SYMBOL_GPL(zs_free);
1447
1448static void zs_object_copy(struct size_class *class, unsigned long dst,
1449 unsigned long src)
1450{
1451 struct page *s_page, *d_page;
1452 unsigned int s_objidx, d_objidx;
1453 unsigned long s_off, d_off;
1454 void *s_addr, *d_addr;
1455 int s_size, d_size, size;
1456 int written = 0;
1457
1458 s_size = d_size = class->size;
1459
1460 obj_to_location(src, &s_page, &s_objidx);
1461 obj_to_location(dst, &d_page, &d_objidx);
1462
1463 s_off = offset_in_page(class->size * s_objidx);
1464 d_off = offset_in_page(class->size * d_objidx);
1465
1466 if (s_off + class->size > PAGE_SIZE)
1467 s_size = PAGE_SIZE - s_off;
1468
1469 if (d_off + class->size > PAGE_SIZE)
1470 d_size = PAGE_SIZE - d_off;
1471
1472 s_addr = kmap_atomic(s_page);
1473 d_addr = kmap_atomic(d_page);
1474
1475 while (1) {
1476 size = min(s_size, d_size);
1477 memcpy(d_addr + d_off, s_addr + s_off, size);
1478 written += size;
1479
1480 if (written == class->size)
1481 break;
1482
1483 s_off += size;
1484 s_size -= size;
1485 d_off += size;
1486 d_size -= size;
1487
1488 /*
1489 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1490 * calls must occurs in reverse order of calls to kmap_atomic().
1491 * So, to call kunmap_atomic(s_addr) we should first call
1492 * kunmap_atomic(d_addr). For more details see
1493 * Documentation/mm/highmem.rst.
1494 */
1495 if (s_off >= PAGE_SIZE) {
1496 kunmap_atomic(d_addr);
1497 kunmap_atomic(s_addr);
1498 s_page = get_next_page(s_page);
1499 s_addr = kmap_atomic(s_page);
1500 d_addr = kmap_atomic(d_page);
1501 s_size = class->size - written;
1502 s_off = 0;
1503 }
1504
1505 if (d_off >= PAGE_SIZE) {
1506 kunmap_atomic(d_addr);
1507 d_page = get_next_page(d_page);
1508 d_addr = kmap_atomic(d_page);
1509 d_size = class->size - written;
1510 d_off = 0;
1511 }
1512 }
1513
1514 kunmap_atomic(d_addr);
1515 kunmap_atomic(s_addr);
1516}
1517
1518/*
1519 * Find alloced object in zspage from index object and
1520 * return handle.
1521 */
1522static unsigned long find_alloced_obj(struct size_class *class,
1523 struct page *page, int *obj_idx)
1524{
1525 unsigned int offset;
1526 int index = *obj_idx;
1527 unsigned long handle = 0;
1528 void *addr = kmap_atomic(page);
1529
1530 offset = get_first_obj_offset(page);
1531 offset += class->size * index;
1532
1533 while (offset < PAGE_SIZE) {
1534 if (obj_allocated(page, addr + offset, &handle))
1535 break;
1536
1537 offset += class->size;
1538 index++;
1539 }
1540
1541 kunmap_atomic(addr);
1542
1543 *obj_idx = index;
1544
1545 return handle;
1546}
1547
1548static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1549 struct zspage *dst_zspage)
1550{
1551 unsigned long used_obj, free_obj;
1552 unsigned long handle;
1553 int obj_idx = 0;
1554 struct page *s_page = get_first_page(src_zspage);
1555 struct size_class *class = pool->size_class[src_zspage->class];
1556
1557 while (1) {
1558 handle = find_alloced_obj(class, s_page, &obj_idx);
1559 if (!handle) {
1560 s_page = get_next_page(s_page);
1561 if (!s_page)
1562 break;
1563 obj_idx = 0;
1564 continue;
1565 }
1566
1567 used_obj = handle_to_obj(handle);
1568 free_obj = obj_malloc(pool, dst_zspage, handle);
1569 zs_object_copy(class, free_obj, used_obj);
1570 obj_idx++;
1571 record_obj(handle, free_obj);
1572 obj_free(class->size, used_obj);
1573
1574 /* Stop if there is no more space */
1575 if (zspage_full(class, dst_zspage))
1576 break;
1577
1578 /* Stop if there are no more objects to migrate */
1579 if (zspage_empty(src_zspage))
1580 break;
1581 }
1582}
1583
1584static struct zspage *isolate_src_zspage(struct size_class *class)
1585{
1586 struct zspage *zspage;
1587 int fg;
1588
1589 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1590 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1591 struct zspage, list);
1592 if (zspage) {
1593 remove_zspage(class, zspage);
1594 return zspage;
1595 }
1596 }
1597
1598 return zspage;
1599}
1600
1601static struct zspage *isolate_dst_zspage(struct size_class *class)
1602{
1603 struct zspage *zspage;
1604 int fg;
1605
1606 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1607 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1608 struct zspage, list);
1609 if (zspage) {
1610 remove_zspage(class, zspage);
1611 return zspage;
1612 }
1613 }
1614
1615 return zspage;
1616}
1617
1618/*
1619 * putback_zspage - add @zspage into right class's fullness list
1620 * @class: destination class
1621 * @zspage: target page
1622 *
1623 * Return @zspage's fullness status
1624 */
1625static int putback_zspage(struct size_class *class, struct zspage *zspage)
1626{
1627 int fullness;
1628
1629 fullness = get_fullness_group(class, zspage);
1630 insert_zspage(class, zspage, fullness);
1631
1632 return fullness;
1633}
1634
1635#ifdef CONFIG_COMPACTION
1636/*
1637 * To prevent zspage destroy during migration, zspage freeing should
1638 * hold locks of all pages in the zspage.
1639 */
1640static void lock_zspage(struct zspage *zspage)
1641{
1642 struct page *curr_page, *page;
1643
1644 /*
1645 * Pages we haven't locked yet can be migrated off the list while we're
1646 * trying to lock them, so we need to be careful and only attempt to
1647 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1648 * may no longer belong to the zspage. This means that we may wait for
1649 * the wrong page to unlock, so we must take a reference to the page
1650 * prior to waiting for it to unlock outside migrate_read_lock().
1651 */
1652 while (1) {
1653 migrate_read_lock(zspage);
1654 page = get_first_page(zspage);
1655 if (trylock_page(page))
1656 break;
1657 get_page(page);
1658 migrate_read_unlock(zspage);
1659 wait_on_page_locked(page);
1660 put_page(page);
1661 }
1662
1663 curr_page = page;
1664 while ((page = get_next_page(curr_page))) {
1665 if (trylock_page(page)) {
1666 curr_page = page;
1667 } else {
1668 get_page(page);
1669 migrate_read_unlock(zspage);
1670 wait_on_page_locked(page);
1671 put_page(page);
1672 migrate_read_lock(zspage);
1673 }
1674 }
1675 migrate_read_unlock(zspage);
1676}
1677#endif /* CONFIG_COMPACTION */
1678
1679static void migrate_lock_init(struct zspage *zspage)
1680{
1681 rwlock_init(&zspage->lock);
1682}
1683
1684static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1685{
1686 read_lock(&zspage->lock);
1687}
1688
1689static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1690{
1691 read_unlock(&zspage->lock);
1692}
1693
1694static void migrate_write_lock(struct zspage *zspage)
1695{
1696 write_lock(&zspage->lock);
1697}
1698
1699static void migrate_write_unlock(struct zspage *zspage)
1700{
1701 write_unlock(&zspage->lock);
1702}
1703
1704#ifdef CONFIG_COMPACTION
1705
1706static const struct movable_operations zsmalloc_mops;
1707
1708static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1709 struct page *newpage, struct page *oldpage)
1710{
1711 struct page *page;
1712 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1713 int idx = 0;
1714
1715 page = get_first_page(zspage);
1716 do {
1717 if (page == oldpage)
1718 pages[idx] = newpage;
1719 else
1720 pages[idx] = page;
1721 idx++;
1722 } while ((page = get_next_page(page)) != NULL);
1723
1724 create_page_chain(class, zspage, pages);
1725 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1726 if (unlikely(ZsHugePage(zspage)))
1727 newpage->index = oldpage->index;
1728 __SetPageMovable(newpage, &zsmalloc_mops);
1729}
1730
1731static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1732{
1733 /*
1734 * Page is locked so zspage couldn't be destroyed. For detail, look at
1735 * lock_zspage in free_zspage.
1736 */
1737 VM_BUG_ON_PAGE(PageIsolated(page), page);
1738
1739 return true;
1740}
1741
1742static int zs_page_migrate(struct page *newpage, struct page *page,
1743 enum migrate_mode mode)
1744{
1745 struct zs_pool *pool;
1746 struct size_class *class;
1747 struct zspage *zspage;
1748 struct page *dummy;
1749 void *s_addr, *d_addr, *addr;
1750 unsigned int offset;
1751 unsigned long handle;
1752 unsigned long old_obj, new_obj;
1753 unsigned int obj_idx;
1754
1755 /*
1756 * We cannot support the _NO_COPY case here, because copy needs to
1757 * happen under the zs lock, which does not work with
1758 * MIGRATE_SYNC_NO_COPY workflow.
1759 */
1760 if (mode == MIGRATE_SYNC_NO_COPY)
1761 return -EINVAL;
1762
1763 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1764
1765 /* The page is locked, so this pointer must remain valid */
1766 zspage = get_zspage(page);
1767 pool = zspage->pool;
1768
1769 /*
1770 * The pool's lock protects the race between zpage migration
1771 * and zs_free.
1772 */
1773 spin_lock(&pool->lock);
1774 class = zspage_class(pool, zspage);
1775
1776 /* the migrate_write_lock protects zpage access via zs_map_object */
1777 migrate_write_lock(zspage);
1778
1779 offset = get_first_obj_offset(page);
1780 s_addr = kmap_atomic(page);
1781
1782 /*
1783 * Here, any user cannot access all objects in the zspage so let's move.
1784 */
1785 d_addr = kmap_atomic(newpage);
1786 copy_page(d_addr, s_addr);
1787 kunmap_atomic(d_addr);
1788
1789 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1790 addr += class->size) {
1791 if (obj_allocated(page, addr, &handle)) {
1792
1793 old_obj = handle_to_obj(handle);
1794 obj_to_location(old_obj, &dummy, &obj_idx);
1795 new_obj = (unsigned long)location_to_obj(newpage,
1796 obj_idx);
1797 record_obj(handle, new_obj);
1798 }
1799 }
1800 kunmap_atomic(s_addr);
1801
1802 replace_sub_page(class, zspage, newpage, page);
1803 /*
1804 * Since we complete the data copy and set up new zspage structure,
1805 * it's okay to release the pool's lock.
1806 */
1807 spin_unlock(&pool->lock);
1808 migrate_write_unlock(zspage);
1809
1810 get_page(newpage);
1811 if (page_zone(newpage) != page_zone(page)) {
1812 dec_zone_page_state(page, NR_ZSPAGES);
1813 inc_zone_page_state(newpage, NR_ZSPAGES);
1814 }
1815
1816 reset_page(page);
1817 put_page(page);
1818
1819 return MIGRATEPAGE_SUCCESS;
1820}
1821
1822static void zs_page_putback(struct page *page)
1823{
1824 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1825}
1826
1827static const struct movable_operations zsmalloc_mops = {
1828 .isolate_page = zs_page_isolate,
1829 .migrate_page = zs_page_migrate,
1830 .putback_page = zs_page_putback,
1831};
1832
1833/*
1834 * Caller should hold page_lock of all pages in the zspage
1835 * In here, we cannot use zspage meta data.
1836 */
1837static void async_free_zspage(struct work_struct *work)
1838{
1839 int i;
1840 struct size_class *class;
1841 struct zspage *zspage, *tmp;
1842 LIST_HEAD(free_pages);
1843 struct zs_pool *pool = container_of(work, struct zs_pool,
1844 free_work);
1845
1846 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1847 class = pool->size_class[i];
1848 if (class->index != i)
1849 continue;
1850
1851 spin_lock(&pool->lock);
1852 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1853 &free_pages);
1854 spin_unlock(&pool->lock);
1855 }
1856
1857 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1858 list_del(&zspage->list);
1859 lock_zspage(zspage);
1860
1861 spin_lock(&pool->lock);
1862 class = zspage_class(pool, zspage);
1863 __free_zspage(pool, class, zspage);
1864 spin_unlock(&pool->lock);
1865 }
1866};
1867
1868static void kick_deferred_free(struct zs_pool *pool)
1869{
1870 schedule_work(&pool->free_work);
1871}
1872
1873static void zs_flush_migration(struct zs_pool *pool)
1874{
1875 flush_work(&pool->free_work);
1876}
1877
1878static void init_deferred_free(struct zs_pool *pool)
1879{
1880 INIT_WORK(&pool->free_work, async_free_zspage);
1881}
1882
1883static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1884{
1885 struct page *page = get_first_page(zspage);
1886
1887 do {
1888 WARN_ON(!trylock_page(page));
1889 __SetPageMovable(page, &zsmalloc_mops);
1890 unlock_page(page);
1891 } while ((page = get_next_page(page)) != NULL);
1892}
1893#else
1894static inline void zs_flush_migration(struct zs_pool *pool) { }
1895#endif
1896
1897/*
1898 *
1899 * Based on the number of unused allocated objects calculate
1900 * and return the number of pages that we can free.
1901 */
1902static unsigned long zs_can_compact(struct size_class *class)
1903{
1904 unsigned long obj_wasted;
1905 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1906 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1907
1908 if (obj_allocated <= obj_used)
1909 return 0;
1910
1911 obj_wasted = obj_allocated - obj_used;
1912 obj_wasted /= class->objs_per_zspage;
1913
1914 return obj_wasted * class->pages_per_zspage;
1915}
1916
1917static unsigned long __zs_compact(struct zs_pool *pool,
1918 struct size_class *class)
1919{
1920 struct zspage *src_zspage = NULL;
1921 struct zspage *dst_zspage = NULL;
1922 unsigned long pages_freed = 0;
1923
1924 /*
1925 * protect the race between zpage migration and zs_free
1926 * as well as zpage allocation/free
1927 */
1928 spin_lock(&pool->lock);
1929 while (zs_can_compact(class)) {
1930 int fg;
1931
1932 if (!dst_zspage) {
1933 dst_zspage = isolate_dst_zspage(class);
1934 if (!dst_zspage)
1935 break;
1936 }
1937
1938 src_zspage = isolate_src_zspage(class);
1939 if (!src_zspage)
1940 break;
1941
1942 migrate_write_lock(src_zspage);
1943 migrate_zspage(pool, src_zspage, dst_zspage);
1944 migrate_write_unlock(src_zspage);
1945
1946 fg = putback_zspage(class, src_zspage);
1947 if (fg == ZS_INUSE_RATIO_0) {
1948 free_zspage(pool, class, src_zspage);
1949 pages_freed += class->pages_per_zspage;
1950 }
1951 src_zspage = NULL;
1952
1953 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1954 || spin_is_contended(&pool->lock)) {
1955 putback_zspage(class, dst_zspage);
1956 dst_zspage = NULL;
1957
1958 spin_unlock(&pool->lock);
1959 cond_resched();
1960 spin_lock(&pool->lock);
1961 }
1962 }
1963
1964 if (src_zspage)
1965 putback_zspage(class, src_zspage);
1966
1967 if (dst_zspage)
1968 putback_zspage(class, dst_zspage);
1969
1970 spin_unlock(&pool->lock);
1971
1972 return pages_freed;
1973}
1974
1975unsigned long zs_compact(struct zs_pool *pool)
1976{
1977 int i;
1978 struct size_class *class;
1979 unsigned long pages_freed = 0;
1980
1981 /*
1982 * Pool compaction is performed under pool->lock so it is basically
1983 * single-threaded. Having more than one thread in __zs_compact()
1984 * will increase pool->lock contention, which will impact other
1985 * zsmalloc operations that need pool->lock.
1986 */
1987 if (atomic_xchg(&pool->compaction_in_progress, 1))
1988 return 0;
1989
1990 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1991 class = pool->size_class[i];
1992 if (class->index != i)
1993 continue;
1994 pages_freed += __zs_compact(pool, class);
1995 }
1996 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1997 atomic_set(&pool->compaction_in_progress, 0);
1998
1999 return pages_freed;
2000}
2001EXPORT_SYMBOL_GPL(zs_compact);
2002
2003void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2004{
2005 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2006}
2007EXPORT_SYMBOL_GPL(zs_pool_stats);
2008
2009static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2010 struct shrink_control *sc)
2011{
2012 unsigned long pages_freed;
2013 struct zs_pool *pool = shrinker->private_data;
2014
2015 /*
2016 * Compact classes and calculate compaction delta.
2017 * Can run concurrently with a manually triggered
2018 * (by user) compaction.
2019 */
2020 pages_freed = zs_compact(pool);
2021
2022 return pages_freed ? pages_freed : SHRINK_STOP;
2023}
2024
2025static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2026 struct shrink_control *sc)
2027{
2028 int i;
2029 struct size_class *class;
2030 unsigned long pages_to_free = 0;
2031 struct zs_pool *pool = shrinker->private_data;
2032
2033 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2034 class = pool->size_class[i];
2035 if (class->index != i)
2036 continue;
2037
2038 pages_to_free += zs_can_compact(class);
2039 }
2040
2041 return pages_to_free;
2042}
2043
2044static void zs_unregister_shrinker(struct zs_pool *pool)
2045{
2046 shrinker_free(pool->shrinker);
2047}
2048
2049static int zs_register_shrinker(struct zs_pool *pool)
2050{
2051 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2052 if (!pool->shrinker)
2053 return -ENOMEM;
2054
2055 pool->shrinker->scan_objects = zs_shrinker_scan;
2056 pool->shrinker->count_objects = zs_shrinker_count;
2057 pool->shrinker->batch = 0;
2058 pool->shrinker->private_data = pool;
2059
2060 shrinker_register(pool->shrinker);
2061
2062 return 0;
2063}
2064
2065static int calculate_zspage_chain_size(int class_size)
2066{
2067 int i, min_waste = INT_MAX;
2068 int chain_size = 1;
2069
2070 if (is_power_of_2(class_size))
2071 return chain_size;
2072
2073 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2074 int waste;
2075
2076 waste = (i * PAGE_SIZE) % class_size;
2077 if (waste < min_waste) {
2078 min_waste = waste;
2079 chain_size = i;
2080 }
2081 }
2082
2083 return chain_size;
2084}
2085
2086/**
2087 * zs_create_pool - Creates an allocation pool to work from.
2088 * @name: pool name to be created
2089 *
2090 * This function must be called before anything when using
2091 * the zsmalloc allocator.
2092 *
2093 * On success, a pointer to the newly created pool is returned,
2094 * otherwise NULL.
2095 */
2096struct zs_pool *zs_create_pool(const char *name)
2097{
2098 int i;
2099 struct zs_pool *pool;
2100 struct size_class *prev_class = NULL;
2101
2102 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2103 if (!pool)
2104 return NULL;
2105
2106 init_deferred_free(pool);
2107 spin_lock_init(&pool->lock);
2108 atomic_set(&pool->compaction_in_progress, 0);
2109
2110 pool->name = kstrdup(name, GFP_KERNEL);
2111 if (!pool->name)
2112 goto err;
2113
2114 if (create_cache(pool))
2115 goto err;
2116
2117 /*
2118 * Iterate reversely, because, size of size_class that we want to use
2119 * for merging should be larger or equal to current size.
2120 */
2121 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2122 int size;
2123 int pages_per_zspage;
2124 int objs_per_zspage;
2125 struct size_class *class;
2126 int fullness;
2127
2128 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2129 if (size > ZS_MAX_ALLOC_SIZE)
2130 size = ZS_MAX_ALLOC_SIZE;
2131 pages_per_zspage = calculate_zspage_chain_size(size);
2132 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2133
2134 /*
2135 * We iterate from biggest down to smallest classes,
2136 * so huge_class_size holds the size of the first huge
2137 * class. Any object bigger than or equal to that will
2138 * endup in the huge class.
2139 */
2140 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2141 !huge_class_size) {
2142 huge_class_size = size;
2143 /*
2144 * The object uses ZS_HANDLE_SIZE bytes to store the
2145 * handle. We need to subtract it, because zs_malloc()
2146 * unconditionally adds handle size before it performs
2147 * size class search - so object may be smaller than
2148 * huge class size, yet it still can end up in the huge
2149 * class because it grows by ZS_HANDLE_SIZE extra bytes
2150 * right before class lookup.
2151 */
2152 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2153 }
2154
2155 /*
2156 * size_class is used for normal zsmalloc operation such
2157 * as alloc/free for that size. Although it is natural that we
2158 * have one size_class for each size, there is a chance that we
2159 * can get more memory utilization if we use one size_class for
2160 * many different sizes whose size_class have same
2161 * characteristics. So, we makes size_class point to
2162 * previous size_class if possible.
2163 */
2164 if (prev_class) {
2165 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2166 pool->size_class[i] = prev_class;
2167 continue;
2168 }
2169 }
2170
2171 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2172 if (!class)
2173 goto err;
2174
2175 class->size = size;
2176 class->index = i;
2177 class->pages_per_zspage = pages_per_zspage;
2178 class->objs_per_zspage = objs_per_zspage;
2179 pool->size_class[i] = class;
2180
2181 fullness = ZS_INUSE_RATIO_0;
2182 while (fullness < NR_FULLNESS_GROUPS) {
2183 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2184 fullness++;
2185 }
2186
2187 prev_class = class;
2188 }
2189
2190 /* debug only, don't abort if it fails */
2191 zs_pool_stat_create(pool, name);
2192
2193 /*
2194 * Not critical since shrinker is only used to trigger internal
2195 * defragmentation of the pool which is pretty optional thing. If
2196 * registration fails we still can use the pool normally and user can
2197 * trigger compaction manually. Thus, ignore return code.
2198 */
2199 zs_register_shrinker(pool);
2200
2201 return pool;
2202
2203err:
2204 zs_destroy_pool(pool);
2205 return NULL;
2206}
2207EXPORT_SYMBOL_GPL(zs_create_pool);
2208
2209void zs_destroy_pool(struct zs_pool *pool)
2210{
2211 int i;
2212
2213 zs_unregister_shrinker(pool);
2214 zs_flush_migration(pool);
2215 zs_pool_stat_destroy(pool);
2216
2217 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2218 int fg;
2219 struct size_class *class = pool->size_class[i];
2220
2221 if (!class)
2222 continue;
2223
2224 if (class->index != i)
2225 continue;
2226
2227 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2228 if (list_empty(&class->fullness_list[fg]))
2229 continue;
2230
2231 pr_err("Class-%d fullness group %d is not empty\n",
2232 class->size, fg);
2233 }
2234 kfree(class);
2235 }
2236
2237 destroy_cache(pool);
2238 kfree(pool->name);
2239 kfree(pool);
2240}
2241EXPORT_SYMBOL_GPL(zs_destroy_pool);
2242
2243static int __init zs_init(void)
2244{
2245 int ret;
2246
2247 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2248 zs_cpu_prepare, zs_cpu_dead);
2249 if (ret)
2250 goto out;
2251
2252#ifdef CONFIG_ZPOOL
2253 zpool_register_driver(&zs_zpool_driver);
2254#endif
2255
2256 zs_stat_init();
2257
2258 return 0;
2259
2260out:
2261 return ret;
2262}
2263
2264static void __exit zs_exit(void)
2265{
2266#ifdef CONFIG_ZPOOL
2267 zpool_unregister_driver(&zs_zpool_driver);
2268#endif
2269 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2270
2271 zs_stat_exit();
2272}
2273
2274module_init(zs_init);
2275module_exit(zs_exit);
2276
2277MODULE_LICENSE("Dual BSD/GPL");
2278MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");