Loading...
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48#include <linux/module.h>
49#include <linux/kernel.h>
50#include <linux/sched.h>
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
60#include <linux/vmalloc.h>
61#include <linux/preempt.h>
62#include <linux/spinlock.h>
63#include <linux/types.h>
64#include <linux/debugfs.h>
65#include <linux/zsmalloc.h>
66#include <linux/zpool.h>
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134/* each chunk includes extra space to keep handle */
135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137/*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169};
170
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
183#endif
184
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
195 * f = fullness_threshold_frac
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
216 struct zs_size_stat stats;
217
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
242};
243
244struct zs_pool {
245 const char *name;
246
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249
250 gfp_t flags; /* allocation flags used when growing pool */
251 atomic_long_t pages_allocated;
252
253 struct zs_pool_stats stats;
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
265};
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
276struct mapping_area {
277#ifdef CONFIG_PGTABLE_MAPPING
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
295 kmem_cache_destroy(pool->handle_cachep);
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
317}
318
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
323static void *zs_zpool_create(const char *name, gfp_t gfp,
324 const struct zpool_ops *zpool_ops,
325 struct zpool *zpool)
326{
327 return zs_create_pool(name, gfp);
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
379 return zs_get_total_pages(pool) << PAGE_SHIFT;
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
395MODULE_ALIAS("zpool-zsmalloc");
396#endif /* CONFIG_ZPOOL */
397
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
408 return PagePrivate(page);
409}
410
411static int is_last_page(struct page *page)
412{
413 return PagePrivate2(page);
414}
415
416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
417 enum fullness_group *fullness)
418{
419 unsigned long m;
420 BUG_ON(!is_first_page(page));
421
422 m = (unsigned long)page->mapping;
423 *fullness = m & FULLNESS_MASK;
424 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
425}
426
427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
428 enum fullness_group fullness)
429{
430 unsigned long m;
431 BUG_ON(!is_first_page(page));
432
433 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
434 (fullness & FULLNESS_MASK);
435 page->mapping = (struct address_space *)m;
436}
437
438/*
439 * zsmalloc divides the pool into various size classes where each
440 * class maintains a list of zspages where each zspage is divided
441 * into equal sized chunks. Each allocation falls into one of these
442 * classes depending on its size. This function returns index of the
443 * size class which has chunk size big enough to hold the give size.
444 */
445static int get_size_class_index(int size)
446{
447 int idx = 0;
448
449 if (likely(size > ZS_MIN_ALLOC_SIZE))
450 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
451 ZS_SIZE_CLASS_DELTA);
452
453 return min(zs_size_classes - 1, idx);
454}
455
456static inline void zs_stat_inc(struct size_class *class,
457 enum zs_stat_type type, unsigned long cnt)
458{
459 if (type < NR_ZS_STAT_TYPE)
460 class->stats.objs[type] += cnt;
461}
462
463static inline void zs_stat_dec(struct size_class *class,
464 enum zs_stat_type type, unsigned long cnt)
465{
466 if (type < NR_ZS_STAT_TYPE)
467 class->stats.objs[type] -= cnt;
468}
469
470static inline unsigned long zs_stat_get(struct size_class *class,
471 enum zs_stat_type type)
472{
473 if (type < NR_ZS_STAT_TYPE)
474 return class->stats.objs[type];
475 return 0;
476}
477
478#ifdef CONFIG_ZSMALLOC_STAT
479
480static int __init zs_stat_init(void)
481{
482 if (!debugfs_initialized())
483 return -ENODEV;
484
485 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
486 if (!zs_stat_root)
487 return -ENOMEM;
488
489 return 0;
490}
491
492static void __exit zs_stat_exit(void)
493{
494 debugfs_remove_recursive(zs_stat_root);
495}
496
497static unsigned long zs_can_compact(struct size_class *class);
498
499static int zs_stats_size_show(struct seq_file *s, void *v)
500{
501 int i;
502 struct zs_pool *pool = s->private;
503 struct size_class *class;
504 int objs_per_zspage;
505 unsigned long class_almost_full, class_almost_empty;
506 unsigned long obj_allocated, obj_used, pages_used, freeable;
507 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
508 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
509 unsigned long total_freeable = 0;
510
511 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
512 "class", "size", "almost_full", "almost_empty",
513 "obj_allocated", "obj_used", "pages_used",
514 "pages_per_zspage", "freeable");
515
516 for (i = 0; i < zs_size_classes; i++) {
517 class = pool->size_class[i];
518
519 if (class->index != i)
520 continue;
521
522 spin_lock(&class->lock);
523 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
524 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
525 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
526 obj_used = zs_stat_get(class, OBJ_USED);
527 freeable = zs_can_compact(class);
528 spin_unlock(&class->lock);
529
530 objs_per_zspage = get_maxobj_per_zspage(class->size,
531 class->pages_per_zspage);
532 pages_used = obj_allocated / objs_per_zspage *
533 class->pages_per_zspage;
534
535 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
536 " %10lu %10lu %16d %8lu\n",
537 i, class->size, class_almost_full, class_almost_empty,
538 obj_allocated, obj_used, pages_used,
539 class->pages_per_zspage, freeable);
540
541 total_class_almost_full += class_almost_full;
542 total_class_almost_empty += class_almost_empty;
543 total_objs += obj_allocated;
544 total_used_objs += obj_used;
545 total_pages += pages_used;
546 total_freeable += freeable;
547 }
548
549 seq_puts(s, "\n");
550 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
551 "Total", "", total_class_almost_full,
552 total_class_almost_empty, total_objs,
553 total_used_objs, total_pages, "", total_freeable);
554
555 return 0;
556}
557
558static int zs_stats_size_open(struct inode *inode, struct file *file)
559{
560 return single_open(file, zs_stats_size_show, inode->i_private);
561}
562
563static const struct file_operations zs_stat_size_ops = {
564 .open = zs_stats_size_open,
565 .read = seq_read,
566 .llseek = seq_lseek,
567 .release = single_release,
568};
569
570static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
571{
572 struct dentry *entry;
573
574 if (!zs_stat_root)
575 return -ENODEV;
576
577 entry = debugfs_create_dir(name, zs_stat_root);
578 if (!entry) {
579 pr_warn("debugfs dir <%s> creation failed\n", name);
580 return -ENOMEM;
581 }
582 pool->stat_dentry = entry;
583
584 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
585 pool->stat_dentry, pool, &zs_stat_size_ops);
586 if (!entry) {
587 pr_warn("%s: debugfs file entry <%s> creation failed\n",
588 name, "classes");
589 return -ENOMEM;
590 }
591
592 return 0;
593}
594
595static void zs_pool_stat_destroy(struct zs_pool *pool)
596{
597 debugfs_remove_recursive(pool->stat_dentry);
598}
599
600#else /* CONFIG_ZSMALLOC_STAT */
601static int __init zs_stat_init(void)
602{
603 return 0;
604}
605
606static void __exit zs_stat_exit(void)
607{
608}
609
610static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
611{
612 return 0;
613}
614
615static inline void zs_pool_stat_destroy(struct zs_pool *pool)
616{
617}
618#endif
619
620
621/*
622 * For each size class, zspages are divided into different groups
623 * depending on how "full" they are. This was done so that we could
624 * easily find empty or nearly empty zspages when we try to shrink
625 * the pool (not yet implemented). This function returns fullness
626 * status of the given page.
627 */
628static enum fullness_group get_fullness_group(struct page *page)
629{
630 int inuse, max_objects;
631 enum fullness_group fg;
632 BUG_ON(!is_first_page(page));
633
634 inuse = page->inuse;
635 max_objects = page->objects;
636
637 if (inuse == 0)
638 fg = ZS_EMPTY;
639 else if (inuse == max_objects)
640 fg = ZS_FULL;
641 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
642 fg = ZS_ALMOST_EMPTY;
643 else
644 fg = ZS_ALMOST_FULL;
645
646 return fg;
647}
648
649/*
650 * Each size class maintains various freelists and zspages are assigned
651 * to one of these freelists based on the number of live objects they
652 * have. This functions inserts the given zspage into the freelist
653 * identified by <class, fullness_group>.
654 */
655static void insert_zspage(struct page *page, struct size_class *class,
656 enum fullness_group fullness)
657{
658 struct page **head;
659
660 BUG_ON(!is_first_page(page));
661
662 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
663 return;
664
665 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
666 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
667
668 head = &class->fullness_list[fullness];
669 if (!*head) {
670 *head = page;
671 return;
672 }
673
674 /*
675 * We want to see more ZS_FULL pages and less almost
676 * empty/full. Put pages with higher ->inuse first.
677 */
678 list_add_tail(&page->lru, &(*head)->lru);
679 if (page->inuse >= (*head)->inuse)
680 *head = page;
681}
682
683/*
684 * This function removes the given zspage from the freelist identified
685 * by <class, fullness_group>.
686 */
687static void remove_zspage(struct page *page, struct size_class *class,
688 enum fullness_group fullness)
689{
690 struct page **head;
691
692 BUG_ON(!is_first_page(page));
693
694 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
695 return;
696
697 head = &class->fullness_list[fullness];
698 BUG_ON(!*head);
699 if (list_empty(&(*head)->lru))
700 *head = NULL;
701 else if (*head == page)
702 *head = (struct page *)list_entry((*head)->lru.next,
703 struct page, lru);
704
705 list_del_init(&page->lru);
706 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
707 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
708}
709
710/*
711 * Each size class maintains zspages in different fullness groups depending
712 * on the number of live objects they contain. When allocating or freeing
713 * objects, the fullness status of the page can change, say, from ALMOST_FULL
714 * to ALMOST_EMPTY when freeing an object. This function checks if such
715 * a status change has occurred for the given page and accordingly moves the
716 * page from the freelist of the old fullness group to that of the new
717 * fullness group.
718 */
719static enum fullness_group fix_fullness_group(struct size_class *class,
720 struct page *page)
721{
722 int class_idx;
723 enum fullness_group currfg, newfg;
724
725 BUG_ON(!is_first_page(page));
726
727 get_zspage_mapping(page, &class_idx, &currfg);
728 newfg = get_fullness_group(page);
729 if (newfg == currfg)
730 goto out;
731
732 remove_zspage(page, class, currfg);
733 insert_zspage(page, class, newfg);
734 set_zspage_mapping(page, class_idx, newfg);
735
736out:
737 return newfg;
738}
739
740/*
741 * We have to decide on how many pages to link together
742 * to form a zspage for each size class. This is important
743 * to reduce wastage due to unusable space left at end of
744 * each zspage which is given as:
745 * wastage = Zp % class_size
746 * usage = Zp - wastage
747 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
748 *
749 * For example, for size class of 3/8 * PAGE_SIZE, we should
750 * link together 3 PAGE_SIZE sized pages to form a zspage
751 * since then we can perfectly fit in 8 such objects.
752 */
753static int get_pages_per_zspage(int class_size)
754{
755 int i, max_usedpc = 0;
756 /* zspage order which gives maximum used size per KB */
757 int max_usedpc_order = 1;
758
759 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
760 int zspage_size;
761 int waste, usedpc;
762
763 zspage_size = i * PAGE_SIZE;
764 waste = zspage_size % class_size;
765 usedpc = (zspage_size - waste) * 100 / zspage_size;
766
767 if (usedpc > max_usedpc) {
768 max_usedpc = usedpc;
769 max_usedpc_order = i;
770 }
771 }
772
773 return max_usedpc_order;
774}
775
776/*
777 * A single 'zspage' is composed of many system pages which are
778 * linked together using fields in struct page. This function finds
779 * the first/head page, given any component page of a zspage.
780 */
781static struct page *get_first_page(struct page *page)
782{
783 if (is_first_page(page))
784 return page;
785 else
786 return (struct page *)page_private(page);
787}
788
789static struct page *get_next_page(struct page *page)
790{
791 struct page *next;
792
793 if (is_last_page(page))
794 next = NULL;
795 else if (is_first_page(page))
796 next = (struct page *)page_private(page);
797 else
798 next = list_entry(page->lru.next, struct page, lru);
799
800 return next;
801}
802
803/*
804 * Encode <page, obj_idx> as a single handle value.
805 * We use the least bit of handle for tagging.
806 */
807static void *location_to_obj(struct page *page, unsigned long obj_idx)
808{
809 unsigned long obj;
810
811 if (!page) {
812 BUG_ON(obj_idx);
813 return NULL;
814 }
815
816 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
817 obj |= ((obj_idx) & OBJ_INDEX_MASK);
818 obj <<= OBJ_TAG_BITS;
819
820 return (void *)obj;
821}
822
823/*
824 * Decode <page, obj_idx> pair from the given object handle. We adjust the
825 * decoded obj_idx back to its original value since it was adjusted in
826 * location_to_obj().
827 */
828static void obj_to_location(unsigned long obj, struct page **page,
829 unsigned long *obj_idx)
830{
831 obj >>= OBJ_TAG_BITS;
832 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
833 *obj_idx = (obj & OBJ_INDEX_MASK);
834}
835
836static unsigned long handle_to_obj(unsigned long handle)
837{
838 return *(unsigned long *)handle;
839}
840
841static unsigned long obj_to_head(struct size_class *class, struct page *page,
842 void *obj)
843{
844 if (class->huge) {
845 VM_BUG_ON(!is_first_page(page));
846 return page_private(page);
847 } else
848 return *(unsigned long *)obj;
849}
850
851static unsigned long obj_idx_to_offset(struct page *page,
852 unsigned long obj_idx, int class_size)
853{
854 unsigned long off = 0;
855
856 if (!is_first_page(page))
857 off = page->index;
858
859 return off + obj_idx * class_size;
860}
861
862static inline int trypin_tag(unsigned long handle)
863{
864 unsigned long *ptr = (unsigned long *)handle;
865
866 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
867}
868
869static void pin_tag(unsigned long handle)
870{
871 while (!trypin_tag(handle));
872}
873
874static void unpin_tag(unsigned long handle)
875{
876 unsigned long *ptr = (unsigned long *)handle;
877
878 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
879}
880
881static void reset_page(struct page *page)
882{
883 clear_bit(PG_private, &page->flags);
884 clear_bit(PG_private_2, &page->flags);
885 set_page_private(page, 0);
886 page->mapping = NULL;
887 page->freelist = NULL;
888 page_mapcount_reset(page);
889}
890
891static void free_zspage(struct page *first_page)
892{
893 struct page *nextp, *tmp, *head_extra;
894
895 BUG_ON(!is_first_page(first_page));
896 BUG_ON(first_page->inuse);
897
898 head_extra = (struct page *)page_private(first_page);
899
900 reset_page(first_page);
901 __free_page(first_page);
902
903 /* zspage with only 1 system page */
904 if (!head_extra)
905 return;
906
907 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
908 list_del(&nextp->lru);
909 reset_page(nextp);
910 __free_page(nextp);
911 }
912 reset_page(head_extra);
913 __free_page(head_extra);
914}
915
916/* Initialize a newly allocated zspage */
917static void init_zspage(struct page *first_page, struct size_class *class)
918{
919 unsigned long off = 0;
920 struct page *page = first_page;
921
922 BUG_ON(!is_first_page(first_page));
923 while (page) {
924 struct page *next_page;
925 struct link_free *link;
926 unsigned int i = 1;
927 void *vaddr;
928
929 /*
930 * page->index stores offset of first object starting
931 * in the page. For the first page, this is always 0,
932 * so we use first_page->index (aka ->freelist) to store
933 * head of corresponding zspage's freelist.
934 */
935 if (page != first_page)
936 page->index = off;
937
938 vaddr = kmap_atomic(page);
939 link = (struct link_free *)vaddr + off / sizeof(*link);
940
941 while ((off += class->size) < PAGE_SIZE) {
942 link->next = location_to_obj(page, i++);
943 link += class->size / sizeof(*link);
944 }
945
946 /*
947 * We now come to the last (full or partial) object on this
948 * page, which must point to the first object on the next
949 * page (if present)
950 */
951 next_page = get_next_page(page);
952 link->next = location_to_obj(next_page, 0);
953 kunmap_atomic(vaddr);
954 page = next_page;
955 off %= PAGE_SIZE;
956 }
957}
958
959/*
960 * Allocate a zspage for the given size class
961 */
962static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
963{
964 int i, error;
965 struct page *first_page = NULL, *uninitialized_var(prev_page);
966
967 /*
968 * Allocate individual pages and link them together as:
969 * 1. first page->private = first sub-page
970 * 2. all sub-pages are linked together using page->lru
971 * 3. each sub-page is linked to the first page using page->private
972 *
973 * For each size class, First/Head pages are linked together using
974 * page->lru. Also, we set PG_private to identify the first page
975 * (i.e. no other sub-page has this flag set) and PG_private_2 to
976 * identify the last page.
977 */
978 error = -ENOMEM;
979 for (i = 0; i < class->pages_per_zspage; i++) {
980 struct page *page;
981
982 page = alloc_page(flags);
983 if (!page)
984 goto cleanup;
985
986 INIT_LIST_HEAD(&page->lru);
987 if (i == 0) { /* first page */
988 SetPagePrivate(page);
989 set_page_private(page, 0);
990 first_page = page;
991 first_page->inuse = 0;
992 }
993 if (i == 1)
994 set_page_private(first_page, (unsigned long)page);
995 if (i >= 1)
996 set_page_private(page, (unsigned long)first_page);
997 if (i >= 2)
998 list_add(&page->lru, &prev_page->lru);
999 if (i == class->pages_per_zspage - 1) /* last page */
1000 SetPagePrivate2(page);
1001 prev_page = page;
1002 }
1003
1004 init_zspage(first_page, class);
1005
1006 first_page->freelist = location_to_obj(first_page, 0);
1007 /* Maximum number of objects we can store in this zspage */
1008 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009
1010 error = 0; /* Success */
1011
1012cleanup:
1013 if (unlikely(error) && first_page) {
1014 free_zspage(first_page);
1015 first_page = NULL;
1016 }
1017
1018 return first_page;
1019}
1020
1021static struct page *find_get_zspage(struct size_class *class)
1022{
1023 int i;
1024 struct page *page;
1025
1026 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027 page = class->fullness_list[i];
1028 if (page)
1029 break;
1030 }
1031
1032 return page;
1033}
1034
1035#ifdef CONFIG_PGTABLE_MAPPING
1036static inline int __zs_cpu_up(struct mapping_area *area)
1037{
1038 /*
1039 * Make sure we don't leak memory if a cpu UP notification
1040 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041 */
1042 if (area->vm)
1043 return 0;
1044 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045 if (!area->vm)
1046 return -ENOMEM;
1047 return 0;
1048}
1049
1050static inline void __zs_cpu_down(struct mapping_area *area)
1051{
1052 if (area->vm)
1053 free_vm_area(area->vm);
1054 area->vm = NULL;
1055}
1056
1057static inline void *__zs_map_object(struct mapping_area *area,
1058 struct page *pages[2], int off, int size)
1059{
1060 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061 area->vm_addr = area->vm->addr;
1062 return area->vm_addr + off;
1063}
1064
1065static inline void __zs_unmap_object(struct mapping_area *area,
1066 struct page *pages[2], int off, int size)
1067{
1068 unsigned long addr = (unsigned long)area->vm_addr;
1069
1070 unmap_kernel_range(addr, PAGE_SIZE * 2);
1071}
1072
1073#else /* CONFIG_PGTABLE_MAPPING */
1074
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077 /*
1078 * Make sure we don't leak memory if a cpu UP notification
1079 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080 */
1081 if (area->vm_buf)
1082 return 0;
1083 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084 if (!area->vm_buf)
1085 return -ENOMEM;
1086 return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091 kfree(area->vm_buf);
1092 area->vm_buf = NULL;
1093}
1094
1095static void *__zs_map_object(struct mapping_area *area,
1096 struct page *pages[2], int off, int size)
1097{
1098 int sizes[2];
1099 void *addr;
1100 char *buf = area->vm_buf;
1101
1102 /* disable page faults to match kmap_atomic() return conditions */
1103 pagefault_disable();
1104
1105 /* no read fastpath */
1106 if (area->vm_mm == ZS_MM_WO)
1107 goto out;
1108
1109 sizes[0] = PAGE_SIZE - off;
1110 sizes[1] = size - sizes[0];
1111
1112 /* copy object to per-cpu buffer */
1113 addr = kmap_atomic(pages[0]);
1114 memcpy(buf, addr + off, sizes[0]);
1115 kunmap_atomic(addr);
1116 addr = kmap_atomic(pages[1]);
1117 memcpy(buf + sizes[0], addr, sizes[1]);
1118 kunmap_atomic(addr);
1119out:
1120 return area->vm_buf;
1121}
1122
1123static void __zs_unmap_object(struct mapping_area *area,
1124 struct page *pages[2], int off, int size)
1125{
1126 int sizes[2];
1127 void *addr;
1128 char *buf;
1129
1130 /* no write fastpath */
1131 if (area->vm_mm == ZS_MM_RO)
1132 goto out;
1133
1134 buf = area->vm_buf;
1135 buf = buf + ZS_HANDLE_SIZE;
1136 size -= ZS_HANDLE_SIZE;
1137 off += ZS_HANDLE_SIZE;
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
1142 /* copy per-cpu buffer to object */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(addr + off, buf, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(addr, buf + sizes[0], sizes[1]);
1148 kunmap_atomic(addr);
1149
1150out:
1151 /* enable page faults to match kunmap_atomic() return conditions */
1152 pagefault_enable();
1153}
1154
1155#endif /* CONFIG_PGTABLE_MAPPING */
1156
1157static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158 void *pcpu)
1159{
1160 int ret, cpu = (long)pcpu;
1161 struct mapping_area *area;
1162
1163 switch (action) {
1164 case CPU_UP_PREPARE:
1165 area = &per_cpu(zs_map_area, cpu);
1166 ret = __zs_cpu_up(area);
1167 if (ret)
1168 return notifier_from_errno(ret);
1169 break;
1170 case CPU_DEAD:
1171 case CPU_UP_CANCELED:
1172 area = &per_cpu(zs_map_area, cpu);
1173 __zs_cpu_down(area);
1174 break;
1175 }
1176
1177 return NOTIFY_OK;
1178}
1179
1180static struct notifier_block zs_cpu_nb = {
1181 .notifier_call = zs_cpu_notifier
1182};
1183
1184static int zs_register_cpu_notifier(void)
1185{
1186 int cpu, uninitialized_var(ret);
1187
1188 cpu_notifier_register_begin();
1189
1190 __register_cpu_notifier(&zs_cpu_nb);
1191 for_each_online_cpu(cpu) {
1192 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193 if (notifier_to_errno(ret))
1194 break;
1195 }
1196
1197 cpu_notifier_register_done();
1198 return notifier_to_errno(ret);
1199}
1200
1201static void zs_unregister_cpu_notifier(void)
1202{
1203 int cpu;
1204
1205 cpu_notifier_register_begin();
1206
1207 for_each_online_cpu(cpu)
1208 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209 __unregister_cpu_notifier(&zs_cpu_nb);
1210
1211 cpu_notifier_register_done();
1212}
1213
1214static void init_zs_size_classes(void)
1215{
1216 int nr;
1217
1218 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220 nr += 1;
1221
1222 zs_size_classes = nr;
1223}
1224
1225static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226{
1227 if (prev->pages_per_zspage != pages_per_zspage)
1228 return false;
1229
1230 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231 != get_maxobj_per_zspage(size, pages_per_zspage))
1232 return false;
1233
1234 return true;
1235}
1236
1237static bool zspage_full(struct page *page)
1238{
1239 BUG_ON(!is_first_page(page));
1240
1241 return page->inuse == page->objects;
1242}
1243
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246 return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250/**
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
1254 *
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
1258 *
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
1263 */
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265 enum zs_mapmode mm)
1266{
1267 struct page *page;
1268 unsigned long obj, obj_idx, off;
1269
1270 unsigned int class_idx;
1271 enum fullness_group fg;
1272 struct size_class *class;
1273 struct mapping_area *area;
1274 struct page *pages[2];
1275 void *ret;
1276
1277 BUG_ON(!handle);
1278
1279 /*
1280 * Because we use per-cpu mapping areas shared among the
1281 * pools/users, we can't allow mapping in interrupt context
1282 * because it can corrupt another users mappings.
1283 */
1284 BUG_ON(in_interrupt());
1285
1286 /* From now on, migration cannot move the object */
1287 pin_tag(handle);
1288
1289 obj = handle_to_obj(handle);
1290 obj_to_location(obj, &page, &obj_idx);
1291 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 class = pool->size_class[class_idx];
1293 off = obj_idx_to_offset(page, obj_idx, class->size);
1294
1295 area = &get_cpu_var(zs_map_area);
1296 area->vm_mm = mm;
1297 if (off + class->size <= PAGE_SIZE) {
1298 /* this object is contained entirely within a page */
1299 area->vm_addr = kmap_atomic(page);
1300 ret = area->vm_addr + off;
1301 goto out;
1302 }
1303
1304 /* this object spans two pages */
1305 pages[0] = page;
1306 pages[1] = get_next_page(page);
1307 BUG_ON(!pages[1]);
1308
1309 ret = __zs_map_object(area, pages, off, class->size);
1310out:
1311 if (!class->huge)
1312 ret += ZS_HANDLE_SIZE;
1313
1314 return ret;
1315}
1316EXPORT_SYMBOL_GPL(zs_map_object);
1317
1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319{
1320 struct page *page;
1321 unsigned long obj, obj_idx, off;
1322
1323 unsigned int class_idx;
1324 enum fullness_group fg;
1325 struct size_class *class;
1326 struct mapping_area *area;
1327
1328 BUG_ON(!handle);
1329
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
1341
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
1349 unpin_tag(handle);
1350}
1351EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353static unsigned long obj_malloc(struct page *first_page,
1354 struct size_class *class, unsigned long handle)
1355{
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
1363 handle |= OBJ_ALLOCATED_TAG;
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382}
1383
1384
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395{
1396 unsigned long handle, obj;
1397 struct size_class *class;
1398 struct page *first_page;
1399
1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 return 0;
1402
1403 handle = alloc_handle(pool);
1404 if (!handle)
1405 return 0;
1406
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
1409 class = pool->size_class[get_size_class_index(size)];
1410
1411 spin_lock(&class->lock);
1412 first_page = find_get_zspage(class);
1413
1414 if (!first_page) {
1415 spin_unlock(&class->lock);
1416 first_page = alloc_zspage(class, pool->flags);
1417 if (unlikely(!first_page)) {
1418 free_handle(pool, handle);
1419 return 0;
1420 }
1421
1422 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 atomic_long_add(class->pages_per_zspage,
1424 &pool->pages_allocated);
1425
1426 spin_lock(&class->lock);
1427 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 class->size, class->pages_per_zspage));
1429 }
1430
1431 obj = obj_malloc(first_page, class, handle);
1432 /* Now move the zspage to another fullness group, if required */
1433 fix_fullness_group(class, first_page);
1434 record_obj(handle, obj);
1435 spin_unlock(&class->lock);
1436
1437 return handle;
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442 unsigned long obj)
1443{
1444 struct link_free *link;
1445 struct page *first_page, *f_page;
1446 unsigned long f_objidx, f_offset;
1447 void *vaddr;
1448
1449 BUG_ON(!obj);
1450
1451 obj &= ~OBJ_ALLOCATED_TAG;
1452 obj_to_location(obj, &f_page, &f_objidx);
1453 first_page = get_first_page(f_page);
1454
1455 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456
1457 vaddr = kmap_atomic(f_page);
1458
1459 /* Insert this object in containing zspage's freelist */
1460 link = (struct link_free *)(vaddr + f_offset);
1461 link->next = first_page->freelist;
1462 if (class->huge)
1463 set_page_private(first_page, 0);
1464 kunmap_atomic(vaddr);
1465 first_page->freelist = (void *)obj;
1466 first_page->inuse--;
1467 zs_stat_dec(class, OBJ_USED, 1);
1468}
1469
1470void zs_free(struct zs_pool *pool, unsigned long handle)
1471{
1472 struct page *first_page, *f_page;
1473 unsigned long obj, f_objidx;
1474 int class_idx;
1475 struct size_class *class;
1476 enum fullness_group fullness;
1477
1478 if (unlikely(!handle))
1479 return;
1480
1481 pin_tag(handle);
1482 obj = handle_to_obj(handle);
1483 obj_to_location(obj, &f_page, &f_objidx);
1484 first_page = get_first_page(f_page);
1485
1486 get_zspage_mapping(first_page, &class_idx, &fullness);
1487 class = pool->size_class[class_idx];
1488
1489 spin_lock(&class->lock);
1490 obj_free(pool, class, obj);
1491 fullness = fix_fullness_group(class, first_page);
1492 if (fullness == ZS_EMPTY) {
1493 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494 class->size, class->pages_per_zspage));
1495 atomic_long_sub(class->pages_per_zspage,
1496 &pool->pages_allocated);
1497 free_zspage(first_page);
1498 }
1499 spin_unlock(&class->lock);
1500 unpin_tag(handle);
1501
1502 free_handle(pool, handle);
1503}
1504EXPORT_SYMBOL_GPL(zs_free);
1505
1506static void zs_object_copy(unsigned long dst, unsigned long src,
1507 struct size_class *class)
1508{
1509 struct page *s_page, *d_page;
1510 unsigned long s_objidx, d_objidx;
1511 unsigned long s_off, d_off;
1512 void *s_addr, *d_addr;
1513 int s_size, d_size, size;
1514 int written = 0;
1515
1516 s_size = d_size = class->size;
1517
1518 obj_to_location(src, &s_page, &s_objidx);
1519 obj_to_location(dst, &d_page, &d_objidx);
1520
1521 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523
1524 if (s_off + class->size > PAGE_SIZE)
1525 s_size = PAGE_SIZE - s_off;
1526
1527 if (d_off + class->size > PAGE_SIZE)
1528 d_size = PAGE_SIZE - d_off;
1529
1530 s_addr = kmap_atomic(s_page);
1531 d_addr = kmap_atomic(d_page);
1532
1533 while (1) {
1534 size = min(s_size, d_size);
1535 memcpy(d_addr + d_off, s_addr + s_off, size);
1536 written += size;
1537
1538 if (written == class->size)
1539 break;
1540
1541 s_off += size;
1542 s_size -= size;
1543 d_off += size;
1544 d_size -= size;
1545
1546 if (s_off >= PAGE_SIZE) {
1547 kunmap_atomic(d_addr);
1548 kunmap_atomic(s_addr);
1549 s_page = get_next_page(s_page);
1550 BUG_ON(!s_page);
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553 s_size = class->size - written;
1554 s_off = 0;
1555 }
1556
1557 if (d_off >= PAGE_SIZE) {
1558 kunmap_atomic(d_addr);
1559 d_page = get_next_page(d_page);
1560 BUG_ON(!d_page);
1561 d_addr = kmap_atomic(d_page);
1562 d_size = class->size - written;
1563 d_off = 0;
1564 }
1565 }
1566
1567 kunmap_atomic(d_addr);
1568 kunmap_atomic(s_addr);
1569}
1570
1571/*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575static unsigned long find_alloced_obj(struct page *page, int index,
1576 struct size_class *class)
1577{
1578 unsigned long head;
1579 int offset = 0;
1580 unsigned long handle = 0;
1581 void *addr = kmap_atomic(page);
1582
1583 if (!is_first_page(page))
1584 offset = page->index;
1585 offset += class->size * index;
1586
1587 while (offset < PAGE_SIZE) {
1588 head = obj_to_head(class, page, addr + offset);
1589 if (head & OBJ_ALLOCATED_TAG) {
1590 handle = head & ~OBJ_ALLOCATED_TAG;
1591 if (trypin_tag(handle))
1592 break;
1593 handle = 0;
1594 }
1595
1596 offset += class->size;
1597 index++;
1598 }
1599
1600 kunmap_atomic(addr);
1601 return handle;
1602}
1603
1604struct zs_compact_control {
1605 /* Source page for migration which could be a subpage of zspage. */
1606 struct page *s_page;
1607 /* Destination page for migration which should be a first page
1608 * of zspage. */
1609 struct page *d_page;
1610 /* Starting object index within @s_page which used for live object
1611 * in the subpage. */
1612 int index;
1613};
1614
1615static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616 struct zs_compact_control *cc)
1617{
1618 unsigned long used_obj, free_obj;
1619 unsigned long handle;
1620 struct page *s_page = cc->s_page;
1621 struct page *d_page = cc->d_page;
1622 unsigned long index = cc->index;
1623 int ret = 0;
1624
1625 while (1) {
1626 handle = find_alloced_obj(s_page, index, class);
1627 if (!handle) {
1628 s_page = get_next_page(s_page);
1629 if (!s_page)
1630 break;
1631 index = 0;
1632 continue;
1633 }
1634
1635 /* Stop if there is no more space */
1636 if (zspage_full(d_page)) {
1637 unpin_tag(handle);
1638 ret = -ENOMEM;
1639 break;
1640 }
1641
1642 used_obj = handle_to_obj(handle);
1643 free_obj = obj_malloc(d_page, class, handle);
1644 zs_object_copy(free_obj, used_obj, class);
1645 index++;
1646 /*
1647 * record_obj updates handle's value to free_obj and it will
1648 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649 * breaks synchronization using pin_tag(e,g, zs_free) so
1650 * let's keep the lock bit.
1651 */
1652 free_obj |= BIT(HANDLE_PIN_BIT);
1653 record_obj(handle, free_obj);
1654 unpin_tag(handle);
1655 obj_free(pool, class, used_obj);
1656 }
1657
1658 /* Remember last position in this iteration */
1659 cc->s_page = s_page;
1660 cc->index = index;
1661
1662 return ret;
1663}
1664
1665static struct page *isolate_target_page(struct size_class *class)
1666{
1667 int i;
1668 struct page *page;
1669
1670 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671 page = class->fullness_list[i];
1672 if (page) {
1673 remove_zspage(page, class, i);
1674 break;
1675 }
1676 }
1677
1678 return page;
1679}
1680
1681/*
1682 * putback_zspage - add @first_page into right class's fullness list
1683 * @pool: target pool
1684 * @class: destination class
1685 * @first_page: target page
1686 *
1687 * Return @fist_page's fullness_group
1688 */
1689static enum fullness_group putback_zspage(struct zs_pool *pool,
1690 struct size_class *class,
1691 struct page *first_page)
1692{
1693 enum fullness_group fullness;
1694
1695 BUG_ON(!is_first_page(first_page));
1696
1697 fullness = get_fullness_group(first_page);
1698 insert_zspage(first_page, class, fullness);
1699 set_zspage_mapping(first_page, class->index, fullness);
1700
1701 if (fullness == ZS_EMPTY) {
1702 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703 class->size, class->pages_per_zspage));
1704 atomic_long_sub(class->pages_per_zspage,
1705 &pool->pages_allocated);
1706
1707 free_zspage(first_page);
1708 }
1709
1710 return fullness;
1711}
1712
1713static struct page *isolate_source_page(struct size_class *class)
1714{
1715 int i;
1716 struct page *page = NULL;
1717
1718 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719 page = class->fullness_list[i];
1720 if (!page)
1721 continue;
1722
1723 remove_zspage(page, class, i);
1724 break;
1725 }
1726
1727 return page;
1728}
1729
1730/*
1731 *
1732 * Based on the number of unused allocated objects calculate
1733 * and return the number of pages that we can free.
1734 */
1735static unsigned long zs_can_compact(struct size_class *class)
1736{
1737 unsigned long obj_wasted;
1738 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1739 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1740
1741 if (obj_allocated <= obj_used)
1742 return 0;
1743
1744 obj_wasted = obj_allocated - obj_used;
1745 obj_wasted /= get_maxobj_per_zspage(class->size,
1746 class->pages_per_zspage);
1747
1748 return obj_wasted * class->pages_per_zspage;
1749}
1750
1751static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1752{
1753 struct zs_compact_control cc;
1754 struct page *src_page;
1755 struct page *dst_page = NULL;
1756
1757 spin_lock(&class->lock);
1758 while ((src_page = isolate_source_page(class))) {
1759
1760 BUG_ON(!is_first_page(src_page));
1761
1762 if (!zs_can_compact(class))
1763 break;
1764
1765 cc.index = 0;
1766 cc.s_page = src_page;
1767
1768 while ((dst_page = isolate_target_page(class))) {
1769 cc.d_page = dst_page;
1770 /*
1771 * If there is no more space in dst_page, resched
1772 * and see if anyone had allocated another zspage.
1773 */
1774 if (!migrate_zspage(pool, class, &cc))
1775 break;
1776
1777 putback_zspage(pool, class, dst_page);
1778 }
1779
1780 /* Stop if we couldn't find slot */
1781 if (dst_page == NULL)
1782 break;
1783
1784 putback_zspage(pool, class, dst_page);
1785 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1786 pool->stats.pages_compacted += class->pages_per_zspage;
1787 spin_unlock(&class->lock);
1788 cond_resched();
1789 spin_lock(&class->lock);
1790 }
1791
1792 if (src_page)
1793 putback_zspage(pool, class, src_page);
1794
1795 spin_unlock(&class->lock);
1796}
1797
1798unsigned long zs_compact(struct zs_pool *pool)
1799{
1800 int i;
1801 struct size_class *class;
1802
1803 for (i = zs_size_classes - 1; i >= 0; i--) {
1804 class = pool->size_class[i];
1805 if (!class)
1806 continue;
1807 if (class->index != i)
1808 continue;
1809 __zs_compact(pool, class);
1810 }
1811
1812 return pool->stats.pages_compacted;
1813}
1814EXPORT_SYMBOL_GPL(zs_compact);
1815
1816void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1817{
1818 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1819}
1820EXPORT_SYMBOL_GPL(zs_pool_stats);
1821
1822static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1823 struct shrink_control *sc)
1824{
1825 unsigned long pages_freed;
1826 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1827 shrinker);
1828
1829 pages_freed = pool->stats.pages_compacted;
1830 /*
1831 * Compact classes and calculate compaction delta.
1832 * Can run concurrently with a manually triggered
1833 * (by user) compaction.
1834 */
1835 pages_freed = zs_compact(pool) - pages_freed;
1836
1837 return pages_freed ? pages_freed : SHRINK_STOP;
1838}
1839
1840static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1841 struct shrink_control *sc)
1842{
1843 int i;
1844 struct size_class *class;
1845 unsigned long pages_to_free = 0;
1846 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1847 shrinker);
1848
1849 for (i = zs_size_classes - 1; i >= 0; i--) {
1850 class = pool->size_class[i];
1851 if (!class)
1852 continue;
1853 if (class->index != i)
1854 continue;
1855
1856 pages_to_free += zs_can_compact(class);
1857 }
1858
1859 return pages_to_free;
1860}
1861
1862static void zs_unregister_shrinker(struct zs_pool *pool)
1863{
1864 if (pool->shrinker_enabled) {
1865 unregister_shrinker(&pool->shrinker);
1866 pool->shrinker_enabled = false;
1867 }
1868}
1869
1870static int zs_register_shrinker(struct zs_pool *pool)
1871{
1872 pool->shrinker.scan_objects = zs_shrinker_scan;
1873 pool->shrinker.count_objects = zs_shrinker_count;
1874 pool->shrinker.batch = 0;
1875 pool->shrinker.seeks = DEFAULT_SEEKS;
1876
1877 return register_shrinker(&pool->shrinker);
1878}
1879
1880/**
1881 * zs_create_pool - Creates an allocation pool to work from.
1882 * @flags: allocation flags used to allocate pool metadata
1883 *
1884 * This function must be called before anything when using
1885 * the zsmalloc allocator.
1886 *
1887 * On success, a pointer to the newly created pool is returned,
1888 * otherwise NULL.
1889 */
1890struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1891{
1892 int i;
1893 struct zs_pool *pool;
1894 struct size_class *prev_class = NULL;
1895
1896 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1897 if (!pool)
1898 return NULL;
1899
1900 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1901 GFP_KERNEL);
1902 if (!pool->size_class) {
1903 kfree(pool);
1904 return NULL;
1905 }
1906
1907 pool->name = kstrdup(name, GFP_KERNEL);
1908 if (!pool->name)
1909 goto err;
1910
1911 if (create_handle_cache(pool))
1912 goto err;
1913
1914 /*
1915 * Iterate reversly, because, size of size_class that we want to use
1916 * for merging should be larger or equal to current size.
1917 */
1918 for (i = zs_size_classes - 1; i >= 0; i--) {
1919 int size;
1920 int pages_per_zspage;
1921 struct size_class *class;
1922
1923 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1924 if (size > ZS_MAX_ALLOC_SIZE)
1925 size = ZS_MAX_ALLOC_SIZE;
1926 pages_per_zspage = get_pages_per_zspage(size);
1927
1928 /*
1929 * size_class is used for normal zsmalloc operation such
1930 * as alloc/free for that size. Although it is natural that we
1931 * have one size_class for each size, there is a chance that we
1932 * can get more memory utilization if we use one size_class for
1933 * many different sizes whose size_class have same
1934 * characteristics. So, we makes size_class point to
1935 * previous size_class if possible.
1936 */
1937 if (prev_class) {
1938 if (can_merge(prev_class, size, pages_per_zspage)) {
1939 pool->size_class[i] = prev_class;
1940 continue;
1941 }
1942 }
1943
1944 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1945 if (!class)
1946 goto err;
1947
1948 class->size = size;
1949 class->index = i;
1950 class->pages_per_zspage = pages_per_zspage;
1951 if (pages_per_zspage == 1 &&
1952 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1953 class->huge = true;
1954 spin_lock_init(&class->lock);
1955 pool->size_class[i] = class;
1956
1957 prev_class = class;
1958 }
1959
1960 pool->flags = flags;
1961
1962 if (zs_pool_stat_create(name, pool))
1963 goto err;
1964
1965 /*
1966 * Not critical, we still can use the pool
1967 * and user can trigger compaction manually.
1968 */
1969 if (zs_register_shrinker(pool) == 0)
1970 pool->shrinker_enabled = true;
1971 return pool;
1972
1973err:
1974 zs_destroy_pool(pool);
1975 return NULL;
1976}
1977EXPORT_SYMBOL_GPL(zs_create_pool);
1978
1979void zs_destroy_pool(struct zs_pool *pool)
1980{
1981 int i;
1982
1983 zs_unregister_shrinker(pool);
1984 zs_pool_stat_destroy(pool);
1985
1986 for (i = 0; i < zs_size_classes; i++) {
1987 int fg;
1988 struct size_class *class = pool->size_class[i];
1989
1990 if (!class)
1991 continue;
1992
1993 if (class->index != i)
1994 continue;
1995
1996 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1997 if (class->fullness_list[fg]) {
1998 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1999 class->size, fg);
2000 }
2001 }
2002 kfree(class);
2003 }
2004
2005 destroy_handle_cache(pool);
2006 kfree(pool->size_class);
2007 kfree(pool->name);
2008 kfree(pool);
2009}
2010EXPORT_SYMBOL_GPL(zs_destroy_pool);
2011
2012static int __init zs_init(void)
2013{
2014 int ret = zs_register_cpu_notifier();
2015
2016 if (ret)
2017 goto notifier_fail;
2018
2019 init_zs_size_classes();
2020
2021#ifdef CONFIG_ZPOOL
2022 zpool_register_driver(&zs_zpool_driver);
2023#endif
2024
2025 ret = zs_stat_init();
2026 if (ret) {
2027 pr_err("zs stat initialization failed\n");
2028 goto stat_fail;
2029 }
2030 return 0;
2031
2032stat_fail:
2033#ifdef CONFIG_ZPOOL
2034 zpool_unregister_driver(&zs_zpool_driver);
2035#endif
2036notifier_fail:
2037 zs_unregister_cpu_notifier();
2038
2039 return ret;
2040}
2041
2042static void __exit zs_exit(void)
2043{
2044#ifdef CONFIG_ZPOOL
2045 zpool_unregister_driver(&zs_zpool_driver);
2046#endif
2047 zs_unregister_cpu_notifier();
2048
2049 zs_stat_exit();
2050}
2051
2052module_init(zs_init);
2053module_exit(zs_exit);
2054
2055MODULE_LICENSE("Dual BSD/GPL");
2056MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33/*
34 * lock ordering:
35 * page_lock
36 * pool->lock
37 * zspage->lock
38 */
39
40#include <linux/module.h>
41#include <linux/kernel.h>
42#include <linux/sched.h>
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/pgtable.h>
49#include <asm/tlbflush.h>
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
52#include <linux/vmalloc.h>
53#include <linux/preempt.h>
54#include <linux/spinlock.h>
55#include <linux/shrinker.h>
56#include <linux/types.h>
57#include <linux/debugfs.h>
58#include <linux/zsmalloc.h>
59#include <linux/zpool.h>
60#include <linux/migrate.h>
61#include <linux/wait.h>
62#include <linux/pagemap.h>
63#include <linux/fs.h>
64#include <linux/local_lock.h>
65
66#define ZSPAGE_MAGIC 0x58
67
68/*
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * a single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> starts from 0.
90 *
91 * This is made more complicated by various memory models and PAE.
92 */
93
94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
95#ifdef MAX_PHYSMEM_BITS
96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97#else
98/*
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100 * be PAGE_SHIFT
101 */
102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103#endif
104#endif
105
106#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107
108/*
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
114 */
115#define OBJ_ALLOCATED_TAG 1
116
117#ifdef CONFIG_ZPOOL
118/*
119 * The second least-significant bit in the object's header identifies if the
120 * value stored at the header is a deferred handle from the last reclaim
121 * attempt.
122 *
123 * As noted above, this is valid because we have room for two bits.
124 */
125#define OBJ_DEFERRED_HANDLE_TAG 2
126#define OBJ_TAG_BITS 2
127#define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
128#else
129#define OBJ_TAG_BITS 1
130#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
131#endif /* CONFIG_ZPOOL */
132
133#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
134#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
135
136#define HUGE_BITS 1
137#define FULLNESS_BITS 2
138#define CLASS_BITS 8
139#define ISOLATED_BITS 3
140#define MAGIC_VAL_BITS 8
141
142#define MAX(a, b) ((a) >= (b) ? (a) : (b))
143/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
144#define ZS_MIN_ALLOC_SIZE \
145 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
146/* each chunk includes extra space to keep handle */
147#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
148
149/*
150 * On systems with 4K page size, this gives 255 size classes! There is a
151 * trader-off here:
152 * - Large number of size classes is potentially wasteful as free page are
153 * spread across these classes
154 * - Small number of size classes causes large internal fragmentation
155 * - Probably its better to use specific size classes (empirically
156 * determined). NOTE: all those class sizes must be set as multiple of
157 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
158 *
159 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
160 * (reason above)
161 */
162#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
163#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
164 ZS_SIZE_CLASS_DELTA) + 1)
165
166enum fullness_group {
167 ZS_EMPTY,
168 ZS_ALMOST_EMPTY,
169 ZS_ALMOST_FULL,
170 ZS_FULL,
171 NR_ZS_FULLNESS,
172};
173
174enum class_stat_type {
175 CLASS_EMPTY,
176 CLASS_ALMOST_EMPTY,
177 CLASS_ALMOST_FULL,
178 CLASS_FULL,
179 OBJ_ALLOCATED,
180 OBJ_USED,
181 NR_ZS_STAT_TYPE,
182};
183
184struct zs_size_stat {
185 unsigned long objs[NR_ZS_STAT_TYPE];
186};
187
188#ifdef CONFIG_ZSMALLOC_STAT
189static struct dentry *zs_stat_root;
190#endif
191
192/*
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194 * n <= N / f, where
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
198 *
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
203 *
204 * (see: fix_fullness_group())
205 */
206static const int fullness_threshold_frac = 4;
207static size_t huge_class_size;
208
209struct size_class {
210 struct list_head fullness_list[NR_ZS_FULLNESS];
211 /*
212 * Size of objects stored in this class. Must be multiple
213 * of ZS_ALIGN.
214 */
215 int size;
216 int objs_per_zspage;
217 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218 int pages_per_zspage;
219
220 unsigned int index;
221 struct zs_size_stat stats;
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
231 union {
232 /*
233 * Free object index;
234 * It's valid for non-allocated object
235 */
236 unsigned long next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241#ifdef CONFIG_ZPOOL
242 /*
243 * Deferred handle of a reclaimed object.
244 */
245 unsigned long deferred_handle;
246#endif
247 };
248};
249
250struct zs_pool {
251 const char *name;
252
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
256
257 atomic_long_t pages_allocated;
258
259 struct zs_pool_stats stats;
260
261 /* Compact classes */
262 struct shrinker shrinker;
263
264#ifdef CONFIG_ZPOOL
265 /* List tracking the zspages in LRU order by most recently added object */
266 struct list_head lru;
267 struct zpool *zpool;
268 const struct zpool_ops *zpool_ops;
269#endif
270
271#ifdef CONFIG_ZSMALLOC_STAT
272 struct dentry *stat_dentry;
273#endif
274#ifdef CONFIG_COMPACTION
275 struct work_struct free_work;
276#endif
277 spinlock_t lock;
278};
279
280struct zspage {
281 struct {
282 unsigned int huge:HUGE_BITS;
283 unsigned int fullness:FULLNESS_BITS;
284 unsigned int class:CLASS_BITS + 1;
285 unsigned int isolated:ISOLATED_BITS;
286 unsigned int magic:MAGIC_VAL_BITS;
287 };
288 unsigned int inuse;
289 unsigned int freeobj;
290 struct page *first_page;
291 struct list_head list; /* fullness list */
292
293#ifdef CONFIG_ZPOOL
294 /* links the zspage to the lru list in the pool */
295 struct list_head lru;
296 bool under_reclaim;
297#endif
298
299 struct zs_pool *pool;
300 rwlock_t lock;
301};
302
303struct mapping_area {
304 local_lock_t lock;
305 char *vm_buf; /* copy buffer for objects that span pages */
306 char *vm_addr; /* address of kmap_atomic()'ed pages */
307 enum zs_mapmode vm_mm; /* mapping mode */
308};
309
310/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
311static void SetZsHugePage(struct zspage *zspage)
312{
313 zspage->huge = 1;
314}
315
316static bool ZsHugePage(struct zspage *zspage)
317{
318 return zspage->huge;
319}
320
321static void migrate_lock_init(struct zspage *zspage);
322static void migrate_read_lock(struct zspage *zspage);
323static void migrate_read_unlock(struct zspage *zspage);
324
325#ifdef CONFIG_COMPACTION
326static void migrate_write_lock(struct zspage *zspage);
327static void migrate_write_lock_nested(struct zspage *zspage);
328static void migrate_write_unlock(struct zspage *zspage);
329static void kick_deferred_free(struct zs_pool *pool);
330static void init_deferred_free(struct zs_pool *pool);
331static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
332#else
333static void migrate_write_lock(struct zspage *zspage) {}
334static void migrate_write_lock_nested(struct zspage *zspage) {}
335static void migrate_write_unlock(struct zspage *zspage) {}
336static void kick_deferred_free(struct zs_pool *pool) {}
337static void init_deferred_free(struct zs_pool *pool) {}
338static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
339#endif
340
341static int create_cache(struct zs_pool *pool)
342{
343 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
344 0, 0, NULL);
345 if (!pool->handle_cachep)
346 return 1;
347
348 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
349 0, 0, NULL);
350 if (!pool->zspage_cachep) {
351 kmem_cache_destroy(pool->handle_cachep);
352 pool->handle_cachep = NULL;
353 return 1;
354 }
355
356 return 0;
357}
358
359static void destroy_cache(struct zs_pool *pool)
360{
361 kmem_cache_destroy(pool->handle_cachep);
362 kmem_cache_destroy(pool->zspage_cachep);
363}
364
365static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
366{
367 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
368 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369}
370
371static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
372{
373 kmem_cache_free(pool->handle_cachep, (void *)handle);
374}
375
376static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
377{
378 return kmem_cache_zalloc(pool->zspage_cachep,
379 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
380}
381
382static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
383{
384 kmem_cache_free(pool->zspage_cachep, zspage);
385}
386
387/* pool->lock(which owns the handle) synchronizes races */
388static void record_obj(unsigned long handle, unsigned long obj)
389{
390 *(unsigned long *)handle = obj;
391}
392
393/* zpool driver */
394
395#ifdef CONFIG_ZPOOL
396
397static void *zs_zpool_create(const char *name, gfp_t gfp,
398 const struct zpool_ops *zpool_ops,
399 struct zpool *zpool)
400{
401 /*
402 * Ignore global gfp flags: zs_malloc() may be invoked from
403 * different contexts and its caller must provide a valid
404 * gfp mask.
405 */
406 struct zs_pool *pool = zs_create_pool(name);
407
408 if (pool) {
409 pool->zpool = zpool;
410 pool->zpool_ops = zpool_ops;
411 }
412
413 return pool;
414}
415
416static void zs_zpool_destroy(void *pool)
417{
418 zs_destroy_pool(pool);
419}
420
421static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
422 unsigned long *handle)
423{
424 *handle = zs_malloc(pool, size, gfp);
425
426 if (IS_ERR_VALUE(*handle))
427 return PTR_ERR((void *)*handle);
428 return 0;
429}
430static void zs_zpool_free(void *pool, unsigned long handle)
431{
432 zs_free(pool, handle);
433}
434
435static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
436
437static int zs_zpool_shrink(void *pool, unsigned int pages,
438 unsigned int *reclaimed)
439{
440 unsigned int total = 0;
441 int ret = -EINVAL;
442
443 while (total < pages) {
444 ret = zs_reclaim_page(pool, 8);
445 if (ret < 0)
446 break;
447 total++;
448 }
449
450 if (reclaimed)
451 *reclaimed = total;
452
453 return ret;
454}
455
456static void *zs_zpool_map(void *pool, unsigned long handle,
457 enum zpool_mapmode mm)
458{
459 enum zs_mapmode zs_mm;
460
461 switch (mm) {
462 case ZPOOL_MM_RO:
463 zs_mm = ZS_MM_RO;
464 break;
465 case ZPOOL_MM_WO:
466 zs_mm = ZS_MM_WO;
467 break;
468 case ZPOOL_MM_RW:
469 default:
470 zs_mm = ZS_MM_RW;
471 break;
472 }
473
474 return zs_map_object(pool, handle, zs_mm);
475}
476static void zs_zpool_unmap(void *pool, unsigned long handle)
477{
478 zs_unmap_object(pool, handle);
479}
480
481static u64 zs_zpool_total_size(void *pool)
482{
483 return zs_get_total_pages(pool) << PAGE_SHIFT;
484}
485
486static struct zpool_driver zs_zpool_driver = {
487 .type = "zsmalloc",
488 .owner = THIS_MODULE,
489 .create = zs_zpool_create,
490 .destroy = zs_zpool_destroy,
491 .malloc_support_movable = true,
492 .malloc = zs_zpool_malloc,
493 .free = zs_zpool_free,
494 .shrink = zs_zpool_shrink,
495 .map = zs_zpool_map,
496 .unmap = zs_zpool_unmap,
497 .total_size = zs_zpool_total_size,
498};
499
500MODULE_ALIAS("zpool-zsmalloc");
501#endif /* CONFIG_ZPOOL */
502
503/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
504static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
505 .lock = INIT_LOCAL_LOCK(lock),
506};
507
508static __maybe_unused int is_first_page(struct page *page)
509{
510 return PagePrivate(page);
511}
512
513/* Protected by pool->lock */
514static inline int get_zspage_inuse(struct zspage *zspage)
515{
516 return zspage->inuse;
517}
518
519
520static inline void mod_zspage_inuse(struct zspage *zspage, int val)
521{
522 zspage->inuse += val;
523}
524
525static inline struct page *get_first_page(struct zspage *zspage)
526{
527 struct page *first_page = zspage->first_page;
528
529 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
530 return first_page;
531}
532
533static inline unsigned int get_first_obj_offset(struct page *page)
534{
535 return page->page_type;
536}
537
538static inline void set_first_obj_offset(struct page *page, unsigned int offset)
539{
540 page->page_type = offset;
541}
542
543static inline unsigned int get_freeobj(struct zspage *zspage)
544{
545 return zspage->freeobj;
546}
547
548static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
549{
550 zspage->freeobj = obj;
551}
552
553static void get_zspage_mapping(struct zspage *zspage,
554 unsigned int *class_idx,
555 enum fullness_group *fullness)
556{
557 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
558
559 *fullness = zspage->fullness;
560 *class_idx = zspage->class;
561}
562
563static struct size_class *zspage_class(struct zs_pool *pool,
564 struct zspage *zspage)
565{
566 return pool->size_class[zspage->class];
567}
568
569static void set_zspage_mapping(struct zspage *zspage,
570 unsigned int class_idx,
571 enum fullness_group fullness)
572{
573 zspage->class = class_idx;
574 zspage->fullness = fullness;
575}
576
577/*
578 * zsmalloc divides the pool into various size classes where each
579 * class maintains a list of zspages where each zspage is divided
580 * into equal sized chunks. Each allocation falls into one of these
581 * classes depending on its size. This function returns index of the
582 * size class which has chunk size big enough to hold the given size.
583 */
584static int get_size_class_index(int size)
585{
586 int idx = 0;
587
588 if (likely(size > ZS_MIN_ALLOC_SIZE))
589 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
590 ZS_SIZE_CLASS_DELTA);
591
592 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
593}
594
595/* type can be of enum type class_stat_type or fullness_group */
596static inline void class_stat_inc(struct size_class *class,
597 int type, unsigned long cnt)
598{
599 class->stats.objs[type] += cnt;
600}
601
602/* type can be of enum type class_stat_type or fullness_group */
603static inline void class_stat_dec(struct size_class *class,
604 int type, unsigned long cnt)
605{
606 class->stats.objs[type] -= cnt;
607}
608
609/* type can be of enum type class_stat_type or fullness_group */
610static inline unsigned long zs_stat_get(struct size_class *class,
611 int type)
612{
613 return class->stats.objs[type];
614}
615
616#ifdef CONFIG_ZSMALLOC_STAT
617
618static void __init zs_stat_init(void)
619{
620 if (!debugfs_initialized()) {
621 pr_warn("debugfs not available, stat dir not created\n");
622 return;
623 }
624
625 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
626}
627
628static void __exit zs_stat_exit(void)
629{
630 debugfs_remove_recursive(zs_stat_root);
631}
632
633static unsigned long zs_can_compact(struct size_class *class);
634
635static int zs_stats_size_show(struct seq_file *s, void *v)
636{
637 int i;
638 struct zs_pool *pool = s->private;
639 struct size_class *class;
640 int objs_per_zspage;
641 unsigned long class_almost_full, class_almost_empty;
642 unsigned long obj_allocated, obj_used, pages_used, freeable;
643 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
644 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
645 unsigned long total_freeable = 0;
646
647 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
648 "class", "size", "almost_full", "almost_empty",
649 "obj_allocated", "obj_used", "pages_used",
650 "pages_per_zspage", "freeable");
651
652 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
653 class = pool->size_class[i];
654
655 if (class->index != i)
656 continue;
657
658 spin_lock(&pool->lock);
659 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
660 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
661 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
662 obj_used = zs_stat_get(class, OBJ_USED);
663 freeable = zs_can_compact(class);
664 spin_unlock(&pool->lock);
665
666 objs_per_zspage = class->objs_per_zspage;
667 pages_used = obj_allocated / objs_per_zspage *
668 class->pages_per_zspage;
669
670 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
671 " %10lu %10lu %16d %8lu\n",
672 i, class->size, class_almost_full, class_almost_empty,
673 obj_allocated, obj_used, pages_used,
674 class->pages_per_zspage, freeable);
675
676 total_class_almost_full += class_almost_full;
677 total_class_almost_empty += class_almost_empty;
678 total_objs += obj_allocated;
679 total_used_objs += obj_used;
680 total_pages += pages_used;
681 total_freeable += freeable;
682 }
683
684 seq_puts(s, "\n");
685 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
686 "Total", "", total_class_almost_full,
687 total_class_almost_empty, total_objs,
688 total_used_objs, total_pages, "", total_freeable);
689
690 return 0;
691}
692DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
693
694static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695{
696 if (!zs_stat_root) {
697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
698 return;
699 }
700
701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
702
703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704 &zs_stats_size_fops);
705}
706
707static void zs_pool_stat_destroy(struct zs_pool *pool)
708{
709 debugfs_remove_recursive(pool->stat_dentry);
710}
711
712#else /* CONFIG_ZSMALLOC_STAT */
713static void __init zs_stat_init(void)
714{
715}
716
717static void __exit zs_stat_exit(void)
718{
719}
720
721static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
722{
723}
724
725static inline void zs_pool_stat_destroy(struct zs_pool *pool)
726{
727}
728#endif
729
730
731/*
732 * For each size class, zspages are divided into different groups
733 * depending on how "full" they are. This was done so that we could
734 * easily find empty or nearly empty zspages when we try to shrink
735 * the pool (not yet implemented). This function returns fullness
736 * status of the given page.
737 */
738static enum fullness_group get_fullness_group(struct size_class *class,
739 struct zspage *zspage)
740{
741 int inuse, objs_per_zspage;
742 enum fullness_group fg;
743
744 inuse = get_zspage_inuse(zspage);
745 objs_per_zspage = class->objs_per_zspage;
746
747 if (inuse == 0)
748 fg = ZS_EMPTY;
749 else if (inuse == objs_per_zspage)
750 fg = ZS_FULL;
751 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
752 fg = ZS_ALMOST_EMPTY;
753 else
754 fg = ZS_ALMOST_FULL;
755
756 return fg;
757}
758
759/*
760 * Each size class maintains various freelists and zspages are assigned
761 * to one of these freelists based on the number of live objects they
762 * have. This functions inserts the given zspage into the freelist
763 * identified by <class, fullness_group>.
764 */
765static void insert_zspage(struct size_class *class,
766 struct zspage *zspage,
767 enum fullness_group fullness)
768{
769 struct zspage *head;
770
771 class_stat_inc(class, fullness, 1);
772 head = list_first_entry_or_null(&class->fullness_list[fullness],
773 struct zspage, list);
774 /*
775 * We want to see more ZS_FULL pages and less almost empty/full.
776 * Put pages with higher ->inuse first.
777 */
778 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
779 list_add(&zspage->list, &head->list);
780 else
781 list_add(&zspage->list, &class->fullness_list[fullness]);
782}
783
784/*
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
787 */
788static void remove_zspage(struct size_class *class,
789 struct zspage *zspage,
790 enum fullness_group fullness)
791{
792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793
794 list_del_init(&zspage->list);
795 class_stat_dec(class, fullness, 1);
796}
797
798/*
799 * Each size class maintains zspages in different fullness groups depending
800 * on the number of live objects they contain. When allocating or freeing
801 * objects, the fullness status of the page can change, say, from ALMOST_FULL
802 * to ALMOST_EMPTY when freeing an object. This function checks if such
803 * a status change has occurred for the given page and accordingly moves the
804 * page from the freelist of the old fullness group to that of the new
805 * fullness group.
806 */
807static enum fullness_group fix_fullness_group(struct size_class *class,
808 struct zspage *zspage)
809{
810 int class_idx;
811 enum fullness_group currfg, newfg;
812
813 get_zspage_mapping(zspage, &class_idx, &currfg);
814 newfg = get_fullness_group(class, zspage);
815 if (newfg == currfg)
816 goto out;
817
818 remove_zspage(class, zspage, currfg);
819 insert_zspage(class, zspage, newfg);
820 set_zspage_mapping(zspage, class_idx, newfg);
821out:
822 return newfg;
823}
824
825/*
826 * We have to decide on how many pages to link together
827 * to form a zspage for each size class. This is important
828 * to reduce wastage due to unusable space left at end of
829 * each zspage which is given as:
830 * wastage = Zp % class_size
831 * usage = Zp - wastage
832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
833 *
834 * For example, for size class of 3/8 * PAGE_SIZE, we should
835 * link together 3 PAGE_SIZE sized pages to form a zspage
836 * since then we can perfectly fit in 8 such objects.
837 */
838static int get_pages_per_zspage(int class_size)
839{
840 int i, max_usedpc = 0;
841 /* zspage order which gives maximum used size per KB */
842 int max_usedpc_order = 1;
843
844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845 int zspage_size;
846 int waste, usedpc;
847
848 zspage_size = i * PAGE_SIZE;
849 waste = zspage_size % class_size;
850 usedpc = (zspage_size - waste) * 100 / zspage_size;
851
852 if (usedpc > max_usedpc) {
853 max_usedpc = usedpc;
854 max_usedpc_order = i;
855 }
856 }
857
858 return max_usedpc_order;
859}
860
861static struct zspage *get_zspage(struct page *page)
862{
863 struct zspage *zspage = (struct zspage *)page_private(page);
864
865 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866 return zspage;
867}
868
869static struct page *get_next_page(struct page *page)
870{
871 struct zspage *zspage = get_zspage(page);
872
873 if (unlikely(ZsHugePage(zspage)))
874 return NULL;
875
876 return (struct page *)page->index;
877}
878
879/**
880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
881 * @obj: the encoded object value
882 * @page: page object resides in zspage
883 * @obj_idx: object index
884 */
885static void obj_to_location(unsigned long obj, struct page **page,
886 unsigned int *obj_idx)
887{
888 obj >>= OBJ_TAG_BITS;
889 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
890 *obj_idx = (obj & OBJ_INDEX_MASK);
891}
892
893static void obj_to_page(unsigned long obj, struct page **page)
894{
895 obj >>= OBJ_TAG_BITS;
896 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
897}
898
899/**
900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
901 * @page: page object resides in zspage
902 * @obj_idx: object index
903 */
904static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
905{
906 unsigned long obj;
907
908 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
909 obj |= obj_idx & OBJ_INDEX_MASK;
910 obj <<= OBJ_TAG_BITS;
911
912 return obj;
913}
914
915static unsigned long handle_to_obj(unsigned long handle)
916{
917 return *(unsigned long *)handle;
918}
919
920static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
921 int tag)
922{
923 unsigned long handle;
924 struct zspage *zspage = get_zspage(page);
925
926 if (unlikely(ZsHugePage(zspage))) {
927 VM_BUG_ON_PAGE(!is_first_page(page), page);
928 handle = page->index;
929 } else
930 handle = *(unsigned long *)obj;
931
932 if (!(handle & tag))
933 return false;
934
935 /* Clear all tags before returning the handle */
936 *phandle = handle & ~OBJ_TAG_MASK;
937 return true;
938}
939
940static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
941{
942 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
943}
944
945#ifdef CONFIG_ZPOOL
946static bool obj_stores_deferred_handle(struct page *page, void *obj,
947 unsigned long *phandle)
948{
949 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
950}
951#endif
952
953static void reset_page(struct page *page)
954{
955 __ClearPageMovable(page);
956 ClearPagePrivate(page);
957 set_page_private(page, 0);
958 page_mapcount_reset(page);
959 page->index = 0;
960}
961
962static int trylock_zspage(struct zspage *zspage)
963{
964 struct page *cursor, *fail;
965
966 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967 get_next_page(cursor)) {
968 if (!trylock_page(cursor)) {
969 fail = cursor;
970 goto unlock;
971 }
972 }
973
974 return 1;
975unlock:
976 for (cursor = get_first_page(zspage); cursor != fail; cursor =
977 get_next_page(cursor))
978 unlock_page(cursor);
979
980 return 0;
981}
982
983#ifdef CONFIG_ZPOOL
984static unsigned long find_deferred_handle_obj(struct size_class *class,
985 struct page *page, int *obj_idx);
986
987/*
988 * Free all the deferred handles whose objects are freed in zs_free.
989 */
990static void free_handles(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
992{
993 int obj_idx = 0;
994 struct page *page = get_first_page(zspage);
995 unsigned long handle;
996
997 while (1) {
998 handle = find_deferred_handle_obj(class, page, &obj_idx);
999 if (!handle) {
1000 page = get_next_page(page);
1001 if (!page)
1002 break;
1003 obj_idx = 0;
1004 continue;
1005 }
1006
1007 cache_free_handle(pool, handle);
1008 obj_idx++;
1009 }
1010}
1011#else
1012static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013 struct zspage *zspage) {}
1014#endif
1015
1016static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017 struct zspage *zspage)
1018{
1019 struct page *page, *next;
1020 enum fullness_group fg;
1021 unsigned int class_idx;
1022
1023 get_zspage_mapping(zspage, &class_idx, &fg);
1024
1025 assert_spin_locked(&pool->lock);
1026
1027 VM_BUG_ON(get_zspage_inuse(zspage));
1028 VM_BUG_ON(fg != ZS_EMPTY);
1029
1030 /* Free all deferred handles from zs_free */
1031 free_handles(pool, class, zspage);
1032
1033 next = page = get_first_page(zspage);
1034 do {
1035 VM_BUG_ON_PAGE(!PageLocked(page), page);
1036 next = get_next_page(page);
1037 reset_page(page);
1038 unlock_page(page);
1039 dec_zone_page_state(page, NR_ZSPAGES);
1040 put_page(page);
1041 page = next;
1042 } while (page != NULL);
1043
1044 cache_free_zspage(pool, zspage);
1045
1046 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047 atomic_long_sub(class->pages_per_zspage,
1048 &pool->pages_allocated);
1049}
1050
1051static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052 struct zspage *zspage)
1053{
1054 VM_BUG_ON(get_zspage_inuse(zspage));
1055 VM_BUG_ON(list_empty(&zspage->list));
1056
1057 /*
1058 * Since zs_free couldn't be sleepable, this function cannot call
1059 * lock_page. The page locks trylock_zspage got will be released
1060 * by __free_zspage.
1061 */
1062 if (!trylock_zspage(zspage)) {
1063 kick_deferred_free(pool);
1064 return;
1065 }
1066
1067 remove_zspage(class, zspage, ZS_EMPTY);
1068#ifdef CONFIG_ZPOOL
1069 list_del(&zspage->lru);
1070#endif
1071 __free_zspage(pool, class, zspage);
1072}
1073
1074/* Initialize a newly allocated zspage */
1075static void init_zspage(struct size_class *class, struct zspage *zspage)
1076{
1077 unsigned int freeobj = 1;
1078 unsigned long off = 0;
1079 struct page *page = get_first_page(zspage);
1080
1081 while (page) {
1082 struct page *next_page;
1083 struct link_free *link;
1084 void *vaddr;
1085
1086 set_first_obj_offset(page, off);
1087
1088 vaddr = kmap_atomic(page);
1089 link = (struct link_free *)vaddr + off / sizeof(*link);
1090
1091 while ((off += class->size) < PAGE_SIZE) {
1092 link->next = freeobj++ << OBJ_TAG_BITS;
1093 link += class->size / sizeof(*link);
1094 }
1095
1096 /*
1097 * We now come to the last (full or partial) object on this
1098 * page, which must point to the first object on the next
1099 * page (if present)
1100 */
1101 next_page = get_next_page(page);
1102 if (next_page) {
1103 link->next = freeobj++ << OBJ_TAG_BITS;
1104 } else {
1105 /*
1106 * Reset OBJ_TAG_BITS bit to last link to tell
1107 * whether it's allocated object or not.
1108 */
1109 link->next = -1UL << OBJ_TAG_BITS;
1110 }
1111 kunmap_atomic(vaddr);
1112 page = next_page;
1113 off %= PAGE_SIZE;
1114 }
1115
1116#ifdef CONFIG_ZPOOL
1117 INIT_LIST_HEAD(&zspage->lru);
1118 zspage->under_reclaim = false;
1119#endif
1120
1121 set_freeobj(zspage, 0);
1122}
1123
1124static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125 struct page *pages[])
1126{
1127 int i;
1128 struct page *page;
1129 struct page *prev_page = NULL;
1130 int nr_pages = class->pages_per_zspage;
1131
1132 /*
1133 * Allocate individual pages and link them together as:
1134 * 1. all pages are linked together using page->index
1135 * 2. each sub-page point to zspage using page->private
1136 *
1137 * we set PG_private to identify the first page (i.e. no other sub-page
1138 * has this flag set).
1139 */
1140 for (i = 0; i < nr_pages; i++) {
1141 page = pages[i];
1142 set_page_private(page, (unsigned long)zspage);
1143 page->index = 0;
1144 if (i == 0) {
1145 zspage->first_page = page;
1146 SetPagePrivate(page);
1147 if (unlikely(class->objs_per_zspage == 1 &&
1148 class->pages_per_zspage == 1))
1149 SetZsHugePage(zspage);
1150 } else {
1151 prev_page->index = (unsigned long)page;
1152 }
1153 prev_page = page;
1154 }
1155}
1156
1157/*
1158 * Allocate a zspage for the given size class
1159 */
1160static struct zspage *alloc_zspage(struct zs_pool *pool,
1161 struct size_class *class,
1162 gfp_t gfp)
1163{
1164 int i;
1165 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167
1168 if (!zspage)
1169 return NULL;
1170
1171 zspage->magic = ZSPAGE_MAGIC;
1172 migrate_lock_init(zspage);
1173
1174 for (i = 0; i < class->pages_per_zspage; i++) {
1175 struct page *page;
1176
1177 page = alloc_page(gfp);
1178 if (!page) {
1179 while (--i >= 0) {
1180 dec_zone_page_state(pages[i], NR_ZSPAGES);
1181 __free_page(pages[i]);
1182 }
1183 cache_free_zspage(pool, zspage);
1184 return NULL;
1185 }
1186
1187 inc_zone_page_state(page, NR_ZSPAGES);
1188 pages[i] = page;
1189 }
1190
1191 create_page_chain(class, zspage, pages);
1192 init_zspage(class, zspage);
1193 zspage->pool = pool;
1194
1195 return zspage;
1196}
1197
1198static struct zspage *find_get_zspage(struct size_class *class)
1199{
1200 int i;
1201 struct zspage *zspage;
1202
1203 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204 zspage = list_first_entry_or_null(&class->fullness_list[i],
1205 struct zspage, list);
1206 if (zspage)
1207 break;
1208 }
1209
1210 return zspage;
1211}
1212
1213static inline int __zs_cpu_up(struct mapping_area *area)
1214{
1215 /*
1216 * Make sure we don't leak memory if a cpu UP notification
1217 * and zs_init() race and both call zs_cpu_up() on the same cpu
1218 */
1219 if (area->vm_buf)
1220 return 0;
1221 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222 if (!area->vm_buf)
1223 return -ENOMEM;
1224 return 0;
1225}
1226
1227static inline void __zs_cpu_down(struct mapping_area *area)
1228{
1229 kfree(area->vm_buf);
1230 area->vm_buf = NULL;
1231}
1232
1233static void *__zs_map_object(struct mapping_area *area,
1234 struct page *pages[2], int off, int size)
1235{
1236 int sizes[2];
1237 void *addr;
1238 char *buf = area->vm_buf;
1239
1240 /* disable page faults to match kmap_atomic() return conditions */
1241 pagefault_disable();
1242
1243 /* no read fastpath */
1244 if (area->vm_mm == ZS_MM_WO)
1245 goto out;
1246
1247 sizes[0] = PAGE_SIZE - off;
1248 sizes[1] = size - sizes[0];
1249
1250 /* copy object to per-cpu buffer */
1251 addr = kmap_atomic(pages[0]);
1252 memcpy(buf, addr + off, sizes[0]);
1253 kunmap_atomic(addr);
1254 addr = kmap_atomic(pages[1]);
1255 memcpy(buf + sizes[0], addr, sizes[1]);
1256 kunmap_atomic(addr);
1257out:
1258 return area->vm_buf;
1259}
1260
1261static void __zs_unmap_object(struct mapping_area *area,
1262 struct page *pages[2], int off, int size)
1263{
1264 int sizes[2];
1265 void *addr;
1266 char *buf;
1267
1268 /* no write fastpath */
1269 if (area->vm_mm == ZS_MM_RO)
1270 goto out;
1271
1272 buf = area->vm_buf;
1273 buf = buf + ZS_HANDLE_SIZE;
1274 size -= ZS_HANDLE_SIZE;
1275 off += ZS_HANDLE_SIZE;
1276
1277 sizes[0] = PAGE_SIZE - off;
1278 sizes[1] = size - sizes[0];
1279
1280 /* copy per-cpu buffer to object */
1281 addr = kmap_atomic(pages[0]);
1282 memcpy(addr + off, buf, sizes[0]);
1283 kunmap_atomic(addr);
1284 addr = kmap_atomic(pages[1]);
1285 memcpy(addr, buf + sizes[0], sizes[1]);
1286 kunmap_atomic(addr);
1287
1288out:
1289 /* enable page faults to match kunmap_atomic() return conditions */
1290 pagefault_enable();
1291}
1292
1293static int zs_cpu_prepare(unsigned int cpu)
1294{
1295 struct mapping_area *area;
1296
1297 area = &per_cpu(zs_map_area, cpu);
1298 return __zs_cpu_up(area);
1299}
1300
1301static int zs_cpu_dead(unsigned int cpu)
1302{
1303 struct mapping_area *area;
1304
1305 area = &per_cpu(zs_map_area, cpu);
1306 __zs_cpu_down(area);
1307 return 0;
1308}
1309
1310static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311 int objs_per_zspage)
1312{
1313 if (prev->pages_per_zspage == pages_per_zspage &&
1314 prev->objs_per_zspage == objs_per_zspage)
1315 return true;
1316
1317 return false;
1318}
1319
1320static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321{
1322 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323}
1324
1325/**
1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327 * that hold objects of the provided size.
1328 * @pool: zsmalloc pool to use
1329 * @size: object size
1330 *
1331 * Context: Any context.
1332 *
1333 * Return: the index of the zsmalloc &size_class that hold objects of the
1334 * provided size.
1335 */
1336unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337{
1338 struct size_class *class;
1339
1340 class = pool->size_class[get_size_class_index(size)];
1341
1342 return class->index;
1343}
1344EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345
1346unsigned long zs_get_total_pages(struct zs_pool *pool)
1347{
1348 return atomic_long_read(&pool->pages_allocated);
1349}
1350EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351
1352/**
1353 * zs_map_object - get address of allocated object from handle.
1354 * @pool: pool from which the object was allocated
1355 * @handle: handle returned from zs_malloc
1356 * @mm: mapping mode to use
1357 *
1358 * Before using an object allocated from zs_malloc, it must be mapped using
1359 * this function. When done with the object, it must be unmapped using
1360 * zs_unmap_object.
1361 *
1362 * Only one object can be mapped per cpu at a time. There is no protection
1363 * against nested mappings.
1364 *
1365 * This function returns with preemption and page faults disabled.
1366 */
1367void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368 enum zs_mapmode mm)
1369{
1370 struct zspage *zspage;
1371 struct page *page;
1372 unsigned long obj, off;
1373 unsigned int obj_idx;
1374
1375 struct size_class *class;
1376 struct mapping_area *area;
1377 struct page *pages[2];
1378 void *ret;
1379
1380 /*
1381 * Because we use per-cpu mapping areas shared among the
1382 * pools/users, we can't allow mapping in interrupt context
1383 * because it can corrupt another users mappings.
1384 */
1385 BUG_ON(in_interrupt());
1386
1387 /* It guarantees it can get zspage from handle safely */
1388 spin_lock(&pool->lock);
1389 obj = handle_to_obj(handle);
1390 obj_to_location(obj, &page, &obj_idx);
1391 zspage = get_zspage(page);
1392
1393#ifdef CONFIG_ZPOOL
1394 /*
1395 * Move the zspage to front of pool's LRU.
1396 *
1397 * Note that this is swap-specific, so by definition there are no ongoing
1398 * accesses to the memory while the page is swapped out that would make
1399 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400 * written back or swaps back in.
1401 *
1402 * Furthermore, map is also called during writeback. We must not put an
1403 * isolated page on the LRU mid-reclaim.
1404 *
1405 * As a result, only update the LRU when the page is mapped for write
1406 * when it's first instantiated.
1407 *
1408 * This is a deviation from the other backends, which perform this update
1409 * in the allocation function (zbud_alloc, z3fold_alloc).
1410 */
1411 if (mm == ZS_MM_WO) {
1412 if (!list_empty(&zspage->lru))
1413 list_del(&zspage->lru);
1414 list_add(&zspage->lru, &pool->lru);
1415 }
1416#endif
1417
1418 /*
1419 * migration cannot move any zpages in this zspage. Here, pool->lock
1420 * is too heavy since callers would take some time until they calls
1421 * zs_unmap_object API so delegate the locking from class to zspage
1422 * which is smaller granularity.
1423 */
1424 migrate_read_lock(zspage);
1425 spin_unlock(&pool->lock);
1426
1427 class = zspage_class(pool, zspage);
1428 off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430 local_lock(&zs_map_area.lock);
1431 area = this_cpu_ptr(&zs_map_area);
1432 area->vm_mm = mm;
1433 if (off + class->size <= PAGE_SIZE) {
1434 /* this object is contained entirely within a page */
1435 area->vm_addr = kmap_atomic(page);
1436 ret = area->vm_addr + off;
1437 goto out;
1438 }
1439
1440 /* this object spans two pages */
1441 pages[0] = page;
1442 pages[1] = get_next_page(page);
1443 BUG_ON(!pages[1]);
1444
1445 ret = __zs_map_object(area, pages, off, class->size);
1446out:
1447 if (likely(!ZsHugePage(zspage)))
1448 ret += ZS_HANDLE_SIZE;
1449
1450 return ret;
1451}
1452EXPORT_SYMBOL_GPL(zs_map_object);
1453
1454void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455{
1456 struct zspage *zspage;
1457 struct page *page;
1458 unsigned long obj, off;
1459 unsigned int obj_idx;
1460
1461 struct size_class *class;
1462 struct mapping_area *area;
1463
1464 obj = handle_to_obj(handle);
1465 obj_to_location(obj, &page, &obj_idx);
1466 zspage = get_zspage(page);
1467 class = zspage_class(pool, zspage);
1468 off = (class->size * obj_idx) & ~PAGE_MASK;
1469
1470 area = this_cpu_ptr(&zs_map_area);
1471 if (off + class->size <= PAGE_SIZE)
1472 kunmap_atomic(area->vm_addr);
1473 else {
1474 struct page *pages[2];
1475
1476 pages[0] = page;
1477 pages[1] = get_next_page(page);
1478 BUG_ON(!pages[1]);
1479
1480 __zs_unmap_object(area, pages, off, class->size);
1481 }
1482 local_unlock(&zs_map_area.lock);
1483
1484 migrate_read_unlock(zspage);
1485}
1486EXPORT_SYMBOL_GPL(zs_unmap_object);
1487
1488/**
1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490 * zsmalloc &size_class.
1491 * @pool: zsmalloc pool to use
1492 *
1493 * The function returns the size of the first huge class - any object of equal
1494 * or bigger size will be stored in zspage consisting of a single physical
1495 * page.
1496 *
1497 * Context: Any context.
1498 *
1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500 */
1501size_t zs_huge_class_size(struct zs_pool *pool)
1502{
1503 return huge_class_size;
1504}
1505EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506
1507static unsigned long obj_malloc(struct zs_pool *pool,
1508 struct zspage *zspage, unsigned long handle)
1509{
1510 int i, nr_page, offset;
1511 unsigned long obj;
1512 struct link_free *link;
1513 struct size_class *class;
1514
1515 struct page *m_page;
1516 unsigned long m_offset;
1517 void *vaddr;
1518
1519 class = pool->size_class[zspage->class];
1520 handle |= OBJ_ALLOCATED_TAG;
1521 obj = get_freeobj(zspage);
1522
1523 offset = obj * class->size;
1524 nr_page = offset >> PAGE_SHIFT;
1525 m_offset = offset & ~PAGE_MASK;
1526 m_page = get_first_page(zspage);
1527
1528 for (i = 0; i < nr_page; i++)
1529 m_page = get_next_page(m_page);
1530
1531 vaddr = kmap_atomic(m_page);
1532 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534 if (likely(!ZsHugePage(zspage)))
1535 /* record handle in the header of allocated chunk */
1536 link->handle = handle;
1537 else
1538 /* record handle to page->index */
1539 zspage->first_page->index = handle;
1540
1541 kunmap_atomic(vaddr);
1542 mod_zspage_inuse(zspage, 1);
1543
1544 obj = location_to_obj(m_page, obj);
1545
1546 return obj;
1547}
1548
1549
1550/**
1551 * zs_malloc - Allocate block of given size from pool.
1552 * @pool: pool to allocate from
1553 * @size: size of block to allocate
1554 * @gfp: gfp flags when allocating object
1555 *
1556 * On success, handle to the allocated object is returned,
1557 * otherwise an ERR_PTR().
1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559 */
1560unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561{
1562 unsigned long handle, obj;
1563 struct size_class *class;
1564 enum fullness_group newfg;
1565 struct zspage *zspage;
1566
1567 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568 return (unsigned long)ERR_PTR(-EINVAL);
1569
1570 handle = cache_alloc_handle(pool, gfp);
1571 if (!handle)
1572 return (unsigned long)ERR_PTR(-ENOMEM);
1573
1574 /* extra space in chunk to keep the handle */
1575 size += ZS_HANDLE_SIZE;
1576 class = pool->size_class[get_size_class_index(size)];
1577
1578 /* pool->lock effectively protects the zpage migration */
1579 spin_lock(&pool->lock);
1580 zspage = find_get_zspage(class);
1581 if (likely(zspage)) {
1582 obj = obj_malloc(pool, zspage, handle);
1583 /* Now move the zspage to another fullness group, if required */
1584 fix_fullness_group(class, zspage);
1585 record_obj(handle, obj);
1586 class_stat_inc(class, OBJ_USED, 1);
1587 spin_unlock(&pool->lock);
1588
1589 return handle;
1590 }
1591
1592 spin_unlock(&pool->lock);
1593
1594 zspage = alloc_zspage(pool, class, gfp);
1595 if (!zspage) {
1596 cache_free_handle(pool, handle);
1597 return (unsigned long)ERR_PTR(-ENOMEM);
1598 }
1599
1600 spin_lock(&pool->lock);
1601 obj = obj_malloc(pool, zspage, handle);
1602 newfg = get_fullness_group(class, zspage);
1603 insert_zspage(class, zspage, newfg);
1604 set_zspage_mapping(zspage, class->index, newfg);
1605 record_obj(handle, obj);
1606 atomic_long_add(class->pages_per_zspage,
1607 &pool->pages_allocated);
1608 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609 class_stat_inc(class, OBJ_USED, 1);
1610
1611 /* We completely set up zspage so mark them as movable */
1612 SetZsPageMovable(pool, zspage);
1613 spin_unlock(&pool->lock);
1614
1615 return handle;
1616}
1617EXPORT_SYMBOL_GPL(zs_malloc);
1618
1619static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620{
1621 struct link_free *link;
1622 struct zspage *zspage;
1623 struct page *f_page;
1624 unsigned long f_offset;
1625 unsigned int f_objidx;
1626 void *vaddr;
1627
1628 obj_to_location(obj, &f_page, &f_objidx);
1629 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630 zspage = get_zspage(f_page);
1631
1632 vaddr = kmap_atomic(f_page);
1633 link = (struct link_free *)(vaddr + f_offset);
1634
1635 if (handle) {
1636#ifdef CONFIG_ZPOOL
1637 /* Stores the (deferred) handle in the object's header */
1638 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1639 *handle &= ~OBJ_ALLOCATED_TAG;
1640
1641 if (likely(!ZsHugePage(zspage)))
1642 link->deferred_handle = *handle;
1643 else
1644 f_page->index = *handle;
1645#endif
1646 } else {
1647 /* Insert this object in containing zspage's freelist */
1648 if (likely(!ZsHugePage(zspage)))
1649 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650 else
1651 f_page->index = 0;
1652 set_freeobj(zspage, f_objidx);
1653 }
1654
1655 kunmap_atomic(vaddr);
1656 mod_zspage_inuse(zspage, -1);
1657}
1658
1659void zs_free(struct zs_pool *pool, unsigned long handle)
1660{
1661 struct zspage *zspage;
1662 struct page *f_page;
1663 unsigned long obj;
1664 struct size_class *class;
1665 enum fullness_group fullness;
1666
1667 if (IS_ERR_OR_NULL((void *)handle))
1668 return;
1669
1670 /*
1671 * The pool->lock protects the race with zpage's migration
1672 * so it's safe to get the page from handle.
1673 */
1674 spin_lock(&pool->lock);
1675 obj = handle_to_obj(handle);
1676 obj_to_page(obj, &f_page);
1677 zspage = get_zspage(f_page);
1678 class = zspage_class(pool, zspage);
1679
1680 class_stat_dec(class, OBJ_USED, 1);
1681
1682#ifdef CONFIG_ZPOOL
1683 if (zspage->under_reclaim) {
1684 /*
1685 * Reclaim needs the handles during writeback. It'll free
1686 * them along with the zspage when it's done with them.
1687 *
1688 * Record current deferred handle in the object's header.
1689 */
1690 obj_free(class->size, obj, &handle);
1691 spin_unlock(&pool->lock);
1692 return;
1693 }
1694#endif
1695 obj_free(class->size, obj, NULL);
1696
1697 fullness = fix_fullness_group(class, zspage);
1698 if (fullness == ZS_EMPTY)
1699 free_zspage(pool, class, zspage);
1700
1701 spin_unlock(&pool->lock);
1702 cache_free_handle(pool, handle);
1703}
1704EXPORT_SYMBOL_GPL(zs_free);
1705
1706static void zs_object_copy(struct size_class *class, unsigned long dst,
1707 unsigned long src)
1708{
1709 struct page *s_page, *d_page;
1710 unsigned int s_objidx, d_objidx;
1711 unsigned long s_off, d_off;
1712 void *s_addr, *d_addr;
1713 int s_size, d_size, size;
1714 int written = 0;
1715
1716 s_size = d_size = class->size;
1717
1718 obj_to_location(src, &s_page, &s_objidx);
1719 obj_to_location(dst, &d_page, &d_objidx);
1720
1721 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723
1724 if (s_off + class->size > PAGE_SIZE)
1725 s_size = PAGE_SIZE - s_off;
1726
1727 if (d_off + class->size > PAGE_SIZE)
1728 d_size = PAGE_SIZE - d_off;
1729
1730 s_addr = kmap_atomic(s_page);
1731 d_addr = kmap_atomic(d_page);
1732
1733 while (1) {
1734 size = min(s_size, d_size);
1735 memcpy(d_addr + d_off, s_addr + s_off, size);
1736 written += size;
1737
1738 if (written == class->size)
1739 break;
1740
1741 s_off += size;
1742 s_size -= size;
1743 d_off += size;
1744 d_size -= size;
1745
1746 /*
1747 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748 * calls must occurs in reverse order of calls to kmap_atomic().
1749 * So, to call kunmap_atomic(s_addr) we should first call
1750 * kunmap_atomic(d_addr). For more details see
1751 * Documentation/mm/highmem.rst.
1752 */
1753 if (s_off >= PAGE_SIZE) {
1754 kunmap_atomic(d_addr);
1755 kunmap_atomic(s_addr);
1756 s_page = get_next_page(s_page);
1757 s_addr = kmap_atomic(s_page);
1758 d_addr = kmap_atomic(d_page);
1759 s_size = class->size - written;
1760 s_off = 0;
1761 }
1762
1763 if (d_off >= PAGE_SIZE) {
1764 kunmap_atomic(d_addr);
1765 d_page = get_next_page(d_page);
1766 d_addr = kmap_atomic(d_page);
1767 d_size = class->size - written;
1768 d_off = 0;
1769 }
1770 }
1771
1772 kunmap_atomic(d_addr);
1773 kunmap_atomic(s_addr);
1774}
1775
1776/*
1777 * Find object with a certain tag in zspage from index object and
1778 * return handle.
1779 */
1780static unsigned long find_tagged_obj(struct size_class *class,
1781 struct page *page, int *obj_idx, int tag)
1782{
1783 unsigned int offset;
1784 int index = *obj_idx;
1785 unsigned long handle = 0;
1786 void *addr = kmap_atomic(page);
1787
1788 offset = get_first_obj_offset(page);
1789 offset += class->size * index;
1790
1791 while (offset < PAGE_SIZE) {
1792 if (obj_tagged(page, addr + offset, &handle, tag))
1793 break;
1794
1795 offset += class->size;
1796 index++;
1797 }
1798
1799 kunmap_atomic(addr);
1800
1801 *obj_idx = index;
1802
1803 return handle;
1804}
1805
1806/*
1807 * Find alloced object in zspage from index object and
1808 * return handle.
1809 */
1810static unsigned long find_alloced_obj(struct size_class *class,
1811 struct page *page, int *obj_idx)
1812{
1813 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814}
1815
1816#ifdef CONFIG_ZPOOL
1817/*
1818 * Find object storing a deferred handle in header in zspage from index object
1819 * and return handle.
1820 */
1821static unsigned long find_deferred_handle_obj(struct size_class *class,
1822 struct page *page, int *obj_idx)
1823{
1824 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825}
1826#endif
1827
1828struct zs_compact_control {
1829 /* Source spage for migration which could be a subpage of zspage */
1830 struct page *s_page;
1831 /* Destination page for migration which should be a first page
1832 * of zspage. */
1833 struct page *d_page;
1834 /* Starting object index within @s_page which used for live object
1835 * in the subpage. */
1836 int obj_idx;
1837};
1838
1839static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840 struct zs_compact_control *cc)
1841{
1842 unsigned long used_obj, free_obj;
1843 unsigned long handle;
1844 struct page *s_page = cc->s_page;
1845 struct page *d_page = cc->d_page;
1846 int obj_idx = cc->obj_idx;
1847 int ret = 0;
1848
1849 while (1) {
1850 handle = find_alloced_obj(class, s_page, &obj_idx);
1851 if (!handle) {
1852 s_page = get_next_page(s_page);
1853 if (!s_page)
1854 break;
1855 obj_idx = 0;
1856 continue;
1857 }
1858
1859 /* Stop if there is no more space */
1860 if (zspage_full(class, get_zspage(d_page))) {
1861 ret = -ENOMEM;
1862 break;
1863 }
1864
1865 used_obj = handle_to_obj(handle);
1866 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867 zs_object_copy(class, free_obj, used_obj);
1868 obj_idx++;
1869 record_obj(handle, free_obj);
1870 obj_free(class->size, used_obj, NULL);
1871 }
1872
1873 /* Remember last position in this iteration */
1874 cc->s_page = s_page;
1875 cc->obj_idx = obj_idx;
1876
1877 return ret;
1878}
1879
1880static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881{
1882 int i;
1883 struct zspage *zspage;
1884 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885
1886 if (!source) {
1887 fg[0] = ZS_ALMOST_FULL;
1888 fg[1] = ZS_ALMOST_EMPTY;
1889 }
1890
1891 for (i = 0; i < 2; i++) {
1892 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893 struct zspage, list);
1894 if (zspage) {
1895 remove_zspage(class, zspage, fg[i]);
1896 return zspage;
1897 }
1898 }
1899
1900 return zspage;
1901}
1902
1903/*
1904 * putback_zspage - add @zspage into right class's fullness list
1905 * @class: destination class
1906 * @zspage: target page
1907 *
1908 * Return @zspage's fullness_group
1909 */
1910static enum fullness_group putback_zspage(struct size_class *class,
1911 struct zspage *zspage)
1912{
1913 enum fullness_group fullness;
1914
1915 fullness = get_fullness_group(class, zspage);
1916 insert_zspage(class, zspage, fullness);
1917 set_zspage_mapping(zspage, class->index, fullness);
1918
1919 return fullness;
1920}
1921
1922#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923/*
1924 * To prevent zspage destroy during migration, zspage freeing should
1925 * hold locks of all pages in the zspage.
1926 */
1927static void lock_zspage(struct zspage *zspage)
1928{
1929 struct page *curr_page, *page;
1930
1931 /*
1932 * Pages we haven't locked yet can be migrated off the list while we're
1933 * trying to lock them, so we need to be careful and only attempt to
1934 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935 * may no longer belong to the zspage. This means that we may wait for
1936 * the wrong page to unlock, so we must take a reference to the page
1937 * prior to waiting for it to unlock outside migrate_read_lock().
1938 */
1939 while (1) {
1940 migrate_read_lock(zspage);
1941 page = get_first_page(zspage);
1942 if (trylock_page(page))
1943 break;
1944 get_page(page);
1945 migrate_read_unlock(zspage);
1946 wait_on_page_locked(page);
1947 put_page(page);
1948 }
1949
1950 curr_page = page;
1951 while ((page = get_next_page(curr_page))) {
1952 if (trylock_page(page)) {
1953 curr_page = page;
1954 } else {
1955 get_page(page);
1956 migrate_read_unlock(zspage);
1957 wait_on_page_locked(page);
1958 put_page(page);
1959 migrate_read_lock(zspage);
1960 }
1961 }
1962 migrate_read_unlock(zspage);
1963}
1964#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965
1966#ifdef CONFIG_ZPOOL
1967/*
1968 * Unlocks all the pages of the zspage.
1969 *
1970 * pool->lock must be held before this function is called
1971 * to prevent the underlying pages from migrating.
1972 */
1973static void unlock_zspage(struct zspage *zspage)
1974{
1975 struct page *page = get_first_page(zspage);
1976
1977 do {
1978 unlock_page(page);
1979 } while ((page = get_next_page(page)) != NULL);
1980}
1981#endif /* CONFIG_ZPOOL */
1982
1983static void migrate_lock_init(struct zspage *zspage)
1984{
1985 rwlock_init(&zspage->lock);
1986}
1987
1988static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989{
1990 read_lock(&zspage->lock);
1991}
1992
1993static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994{
1995 read_unlock(&zspage->lock);
1996}
1997
1998#ifdef CONFIG_COMPACTION
1999static void migrate_write_lock(struct zspage *zspage)
2000{
2001 write_lock(&zspage->lock);
2002}
2003
2004static void migrate_write_lock_nested(struct zspage *zspage)
2005{
2006 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007}
2008
2009static void migrate_write_unlock(struct zspage *zspage)
2010{
2011 write_unlock(&zspage->lock);
2012}
2013
2014/* Number of isolated subpage for *page migration* in this zspage */
2015static void inc_zspage_isolation(struct zspage *zspage)
2016{
2017 zspage->isolated++;
2018}
2019
2020static void dec_zspage_isolation(struct zspage *zspage)
2021{
2022 VM_BUG_ON(zspage->isolated == 0);
2023 zspage->isolated--;
2024}
2025
2026static const struct movable_operations zsmalloc_mops;
2027
2028static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029 struct page *newpage, struct page *oldpage)
2030{
2031 struct page *page;
2032 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033 int idx = 0;
2034
2035 page = get_first_page(zspage);
2036 do {
2037 if (page == oldpage)
2038 pages[idx] = newpage;
2039 else
2040 pages[idx] = page;
2041 idx++;
2042 } while ((page = get_next_page(page)) != NULL);
2043
2044 create_page_chain(class, zspage, pages);
2045 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046 if (unlikely(ZsHugePage(zspage)))
2047 newpage->index = oldpage->index;
2048 __SetPageMovable(newpage, &zsmalloc_mops);
2049}
2050
2051static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052{
2053 struct zspage *zspage;
2054
2055 /*
2056 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057 * lock_zspage in free_zspage.
2058 */
2059 VM_BUG_ON_PAGE(!PageMovable(page), page);
2060 VM_BUG_ON_PAGE(PageIsolated(page), page);
2061
2062 zspage = get_zspage(page);
2063 migrate_write_lock(zspage);
2064 inc_zspage_isolation(zspage);
2065 migrate_write_unlock(zspage);
2066
2067 return true;
2068}
2069
2070static int zs_page_migrate(struct page *newpage, struct page *page,
2071 enum migrate_mode mode)
2072{
2073 struct zs_pool *pool;
2074 struct size_class *class;
2075 struct zspage *zspage;
2076 struct page *dummy;
2077 void *s_addr, *d_addr, *addr;
2078 unsigned int offset;
2079 unsigned long handle;
2080 unsigned long old_obj, new_obj;
2081 unsigned int obj_idx;
2082
2083 /*
2084 * We cannot support the _NO_COPY case here, because copy needs to
2085 * happen under the zs lock, which does not work with
2086 * MIGRATE_SYNC_NO_COPY workflow.
2087 */
2088 if (mode == MIGRATE_SYNC_NO_COPY)
2089 return -EINVAL;
2090
2091 VM_BUG_ON_PAGE(!PageMovable(page), page);
2092 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093
2094 /* The page is locked, so this pointer must remain valid */
2095 zspage = get_zspage(page);
2096 pool = zspage->pool;
2097
2098 /*
2099 * The pool's lock protects the race between zpage migration
2100 * and zs_free.
2101 */
2102 spin_lock(&pool->lock);
2103 class = zspage_class(pool, zspage);
2104
2105 /* the migrate_write_lock protects zpage access via zs_map_object */
2106 migrate_write_lock(zspage);
2107
2108 offset = get_first_obj_offset(page);
2109 s_addr = kmap_atomic(page);
2110
2111 /*
2112 * Here, any user cannot access all objects in the zspage so let's move.
2113 */
2114 d_addr = kmap_atomic(newpage);
2115 memcpy(d_addr, s_addr, PAGE_SIZE);
2116 kunmap_atomic(d_addr);
2117
2118 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119 addr += class->size) {
2120 if (obj_allocated(page, addr, &handle)) {
2121
2122 old_obj = handle_to_obj(handle);
2123 obj_to_location(old_obj, &dummy, &obj_idx);
2124 new_obj = (unsigned long)location_to_obj(newpage,
2125 obj_idx);
2126 record_obj(handle, new_obj);
2127 }
2128 }
2129 kunmap_atomic(s_addr);
2130
2131 replace_sub_page(class, zspage, newpage, page);
2132 /*
2133 * Since we complete the data copy and set up new zspage structure,
2134 * it's okay to release the pool's lock.
2135 */
2136 spin_unlock(&pool->lock);
2137 dec_zspage_isolation(zspage);
2138 migrate_write_unlock(zspage);
2139
2140 get_page(newpage);
2141 if (page_zone(newpage) != page_zone(page)) {
2142 dec_zone_page_state(page, NR_ZSPAGES);
2143 inc_zone_page_state(newpage, NR_ZSPAGES);
2144 }
2145
2146 reset_page(page);
2147 put_page(page);
2148
2149 return MIGRATEPAGE_SUCCESS;
2150}
2151
2152static void zs_page_putback(struct page *page)
2153{
2154 struct zspage *zspage;
2155
2156 VM_BUG_ON_PAGE(!PageMovable(page), page);
2157 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158
2159 zspage = get_zspage(page);
2160 migrate_write_lock(zspage);
2161 dec_zspage_isolation(zspage);
2162 migrate_write_unlock(zspage);
2163}
2164
2165static const struct movable_operations zsmalloc_mops = {
2166 .isolate_page = zs_page_isolate,
2167 .migrate_page = zs_page_migrate,
2168 .putback_page = zs_page_putback,
2169};
2170
2171/*
2172 * Caller should hold page_lock of all pages in the zspage
2173 * In here, we cannot use zspage meta data.
2174 */
2175static void async_free_zspage(struct work_struct *work)
2176{
2177 int i;
2178 struct size_class *class;
2179 unsigned int class_idx;
2180 enum fullness_group fullness;
2181 struct zspage *zspage, *tmp;
2182 LIST_HEAD(free_pages);
2183 struct zs_pool *pool = container_of(work, struct zs_pool,
2184 free_work);
2185
2186 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187 class = pool->size_class[i];
2188 if (class->index != i)
2189 continue;
2190
2191 spin_lock(&pool->lock);
2192 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193 spin_unlock(&pool->lock);
2194 }
2195
2196 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197 list_del(&zspage->list);
2198 lock_zspage(zspage);
2199
2200 get_zspage_mapping(zspage, &class_idx, &fullness);
2201 VM_BUG_ON(fullness != ZS_EMPTY);
2202 class = pool->size_class[class_idx];
2203 spin_lock(&pool->lock);
2204#ifdef CONFIG_ZPOOL
2205 list_del(&zspage->lru);
2206#endif
2207 __free_zspage(pool, class, zspage);
2208 spin_unlock(&pool->lock);
2209 }
2210};
2211
2212static void kick_deferred_free(struct zs_pool *pool)
2213{
2214 schedule_work(&pool->free_work);
2215}
2216
2217static void zs_flush_migration(struct zs_pool *pool)
2218{
2219 flush_work(&pool->free_work);
2220}
2221
2222static void init_deferred_free(struct zs_pool *pool)
2223{
2224 INIT_WORK(&pool->free_work, async_free_zspage);
2225}
2226
2227static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228{
2229 struct page *page = get_first_page(zspage);
2230
2231 do {
2232 WARN_ON(!trylock_page(page));
2233 __SetPageMovable(page, &zsmalloc_mops);
2234 unlock_page(page);
2235 } while ((page = get_next_page(page)) != NULL);
2236}
2237#else
2238static inline void zs_flush_migration(struct zs_pool *pool) { }
2239#endif
2240
2241/*
2242 *
2243 * Based on the number of unused allocated objects calculate
2244 * and return the number of pages that we can free.
2245 */
2246static unsigned long zs_can_compact(struct size_class *class)
2247{
2248 unsigned long obj_wasted;
2249 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252 if (obj_allocated <= obj_used)
2253 return 0;
2254
2255 obj_wasted = obj_allocated - obj_used;
2256 obj_wasted /= class->objs_per_zspage;
2257
2258 return obj_wasted * class->pages_per_zspage;
2259}
2260
2261static unsigned long __zs_compact(struct zs_pool *pool,
2262 struct size_class *class)
2263{
2264 struct zs_compact_control cc;
2265 struct zspage *src_zspage;
2266 struct zspage *dst_zspage = NULL;
2267 unsigned long pages_freed = 0;
2268
2269 /*
2270 * protect the race between zpage migration and zs_free
2271 * as well as zpage allocation/free
2272 */
2273 spin_lock(&pool->lock);
2274 while ((src_zspage = isolate_zspage(class, true))) {
2275 /* protect someone accessing the zspage(i.e., zs_map_object) */
2276 migrate_write_lock(src_zspage);
2277
2278 if (!zs_can_compact(class))
2279 break;
2280
2281 cc.obj_idx = 0;
2282 cc.s_page = get_first_page(src_zspage);
2283
2284 while ((dst_zspage = isolate_zspage(class, false))) {
2285 migrate_write_lock_nested(dst_zspage);
2286
2287 cc.d_page = get_first_page(dst_zspage);
2288 /*
2289 * If there is no more space in dst_page, resched
2290 * and see if anyone had allocated another zspage.
2291 */
2292 if (!migrate_zspage(pool, class, &cc))
2293 break;
2294
2295 putback_zspage(class, dst_zspage);
2296 migrate_write_unlock(dst_zspage);
2297 dst_zspage = NULL;
2298 if (spin_is_contended(&pool->lock))
2299 break;
2300 }
2301
2302 /* Stop if we couldn't find slot */
2303 if (dst_zspage == NULL)
2304 break;
2305
2306 putback_zspage(class, dst_zspage);
2307 migrate_write_unlock(dst_zspage);
2308
2309 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310 migrate_write_unlock(src_zspage);
2311 free_zspage(pool, class, src_zspage);
2312 pages_freed += class->pages_per_zspage;
2313 } else
2314 migrate_write_unlock(src_zspage);
2315 spin_unlock(&pool->lock);
2316 cond_resched();
2317 spin_lock(&pool->lock);
2318 }
2319
2320 if (src_zspage) {
2321 putback_zspage(class, src_zspage);
2322 migrate_write_unlock(src_zspage);
2323 }
2324
2325 spin_unlock(&pool->lock);
2326
2327 return pages_freed;
2328}
2329
2330unsigned long zs_compact(struct zs_pool *pool)
2331{
2332 int i;
2333 struct size_class *class;
2334 unsigned long pages_freed = 0;
2335
2336 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337 class = pool->size_class[i];
2338 if (class->index != i)
2339 continue;
2340 pages_freed += __zs_compact(pool, class);
2341 }
2342 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343
2344 return pages_freed;
2345}
2346EXPORT_SYMBOL_GPL(zs_compact);
2347
2348void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349{
2350 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351}
2352EXPORT_SYMBOL_GPL(zs_pool_stats);
2353
2354static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355 struct shrink_control *sc)
2356{
2357 unsigned long pages_freed;
2358 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359 shrinker);
2360
2361 /*
2362 * Compact classes and calculate compaction delta.
2363 * Can run concurrently with a manually triggered
2364 * (by user) compaction.
2365 */
2366 pages_freed = zs_compact(pool);
2367
2368 return pages_freed ? pages_freed : SHRINK_STOP;
2369}
2370
2371static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372 struct shrink_control *sc)
2373{
2374 int i;
2375 struct size_class *class;
2376 unsigned long pages_to_free = 0;
2377 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378 shrinker);
2379
2380 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381 class = pool->size_class[i];
2382 if (class->index != i)
2383 continue;
2384
2385 pages_to_free += zs_can_compact(class);
2386 }
2387
2388 return pages_to_free;
2389}
2390
2391static void zs_unregister_shrinker(struct zs_pool *pool)
2392{
2393 unregister_shrinker(&pool->shrinker);
2394}
2395
2396static int zs_register_shrinker(struct zs_pool *pool)
2397{
2398 pool->shrinker.scan_objects = zs_shrinker_scan;
2399 pool->shrinker.count_objects = zs_shrinker_count;
2400 pool->shrinker.batch = 0;
2401 pool->shrinker.seeks = DEFAULT_SEEKS;
2402
2403 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404 pool->name);
2405}
2406
2407/**
2408 * zs_create_pool - Creates an allocation pool to work from.
2409 * @name: pool name to be created
2410 *
2411 * This function must be called before anything when using
2412 * the zsmalloc allocator.
2413 *
2414 * On success, a pointer to the newly created pool is returned,
2415 * otherwise NULL.
2416 */
2417struct zs_pool *zs_create_pool(const char *name)
2418{
2419 int i;
2420 struct zs_pool *pool;
2421 struct size_class *prev_class = NULL;
2422
2423 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424 if (!pool)
2425 return NULL;
2426
2427 init_deferred_free(pool);
2428 spin_lock_init(&pool->lock);
2429
2430 pool->name = kstrdup(name, GFP_KERNEL);
2431 if (!pool->name)
2432 goto err;
2433
2434 if (create_cache(pool))
2435 goto err;
2436
2437 /*
2438 * Iterate reversely, because, size of size_class that we want to use
2439 * for merging should be larger or equal to current size.
2440 */
2441 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442 int size;
2443 int pages_per_zspage;
2444 int objs_per_zspage;
2445 struct size_class *class;
2446 int fullness = 0;
2447
2448 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449 if (size > ZS_MAX_ALLOC_SIZE)
2450 size = ZS_MAX_ALLOC_SIZE;
2451 pages_per_zspage = get_pages_per_zspage(size);
2452 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453
2454 /*
2455 * We iterate from biggest down to smallest classes,
2456 * so huge_class_size holds the size of the first huge
2457 * class. Any object bigger than or equal to that will
2458 * endup in the huge class.
2459 */
2460 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461 !huge_class_size) {
2462 huge_class_size = size;
2463 /*
2464 * The object uses ZS_HANDLE_SIZE bytes to store the
2465 * handle. We need to subtract it, because zs_malloc()
2466 * unconditionally adds handle size before it performs
2467 * size class search - so object may be smaller than
2468 * huge class size, yet it still can end up in the huge
2469 * class because it grows by ZS_HANDLE_SIZE extra bytes
2470 * right before class lookup.
2471 */
2472 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473 }
2474
2475 /*
2476 * size_class is used for normal zsmalloc operation such
2477 * as alloc/free for that size. Although it is natural that we
2478 * have one size_class for each size, there is a chance that we
2479 * can get more memory utilization if we use one size_class for
2480 * many different sizes whose size_class have same
2481 * characteristics. So, we makes size_class point to
2482 * previous size_class if possible.
2483 */
2484 if (prev_class) {
2485 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486 pool->size_class[i] = prev_class;
2487 continue;
2488 }
2489 }
2490
2491 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492 if (!class)
2493 goto err;
2494
2495 class->size = size;
2496 class->index = i;
2497 class->pages_per_zspage = pages_per_zspage;
2498 class->objs_per_zspage = objs_per_zspage;
2499 pool->size_class[i] = class;
2500 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501 fullness++)
2502 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503
2504 prev_class = class;
2505 }
2506
2507 /* debug only, don't abort if it fails */
2508 zs_pool_stat_create(pool, name);
2509
2510 /*
2511 * Not critical since shrinker is only used to trigger internal
2512 * defragmentation of the pool which is pretty optional thing. If
2513 * registration fails we still can use the pool normally and user can
2514 * trigger compaction manually. Thus, ignore return code.
2515 */
2516 zs_register_shrinker(pool);
2517
2518#ifdef CONFIG_ZPOOL
2519 INIT_LIST_HEAD(&pool->lru);
2520#endif
2521
2522 return pool;
2523
2524err:
2525 zs_destroy_pool(pool);
2526 return NULL;
2527}
2528EXPORT_SYMBOL_GPL(zs_create_pool);
2529
2530void zs_destroy_pool(struct zs_pool *pool)
2531{
2532 int i;
2533
2534 zs_unregister_shrinker(pool);
2535 zs_flush_migration(pool);
2536 zs_pool_stat_destroy(pool);
2537
2538 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539 int fg;
2540 struct size_class *class = pool->size_class[i];
2541
2542 if (!class)
2543 continue;
2544
2545 if (class->index != i)
2546 continue;
2547
2548 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549 if (!list_empty(&class->fullness_list[fg])) {
2550 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551 class->size, fg);
2552 }
2553 }
2554 kfree(class);
2555 }
2556
2557 destroy_cache(pool);
2558 kfree(pool->name);
2559 kfree(pool);
2560}
2561EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562
2563#ifdef CONFIG_ZPOOL
2564static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565 struct zspage *zspage)
2566{
2567 unsigned int obj_idx = 0;
2568 unsigned long handle, off = 0; /* off is within-page offset */
2569 struct page *page = get_first_page(zspage);
2570 struct link_free *prev_free = NULL;
2571 void *prev_page_vaddr = NULL;
2572
2573 /* in case no free object found */
2574 set_freeobj(zspage, (unsigned int)(-1UL));
2575
2576 while (page) {
2577 void *vaddr = kmap_atomic(page);
2578 struct page *next_page;
2579
2580 while (off < PAGE_SIZE) {
2581 void *obj_addr = vaddr + off;
2582
2583 /* skip allocated object */
2584 if (obj_allocated(page, obj_addr, &handle)) {
2585 obj_idx++;
2586 off += class->size;
2587 continue;
2588 }
2589
2590 /* free deferred handle from reclaim attempt */
2591 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592 cache_free_handle(pool, handle);
2593
2594 if (prev_free)
2595 prev_free->next = obj_idx << OBJ_TAG_BITS;
2596 else /* first free object found */
2597 set_freeobj(zspage, obj_idx);
2598
2599 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600 /* if last free object in a previous page, need to unmap */
2601 if (prev_page_vaddr) {
2602 kunmap_atomic(prev_page_vaddr);
2603 prev_page_vaddr = NULL;
2604 }
2605
2606 obj_idx++;
2607 off += class->size;
2608 }
2609
2610 /*
2611 * Handle the last (full or partial) object on this page.
2612 */
2613 next_page = get_next_page(page);
2614 if (next_page) {
2615 if (!prev_free || prev_page_vaddr) {
2616 /*
2617 * There is no free object in this page, so we can safely
2618 * unmap it.
2619 */
2620 kunmap_atomic(vaddr);
2621 } else {
2622 /* update prev_page_vaddr since prev_free is on this page */
2623 prev_page_vaddr = vaddr;
2624 }
2625 } else { /* this is the last page */
2626 if (prev_free) {
2627 /*
2628 * Reset OBJ_TAG_BITS bit to last link to tell
2629 * whether it's allocated object or not.
2630 */
2631 prev_free->next = -1UL << OBJ_TAG_BITS;
2632 }
2633
2634 /* unmap previous page (if not done yet) */
2635 if (prev_page_vaddr) {
2636 kunmap_atomic(prev_page_vaddr);
2637 prev_page_vaddr = NULL;
2638 }
2639
2640 kunmap_atomic(vaddr);
2641 }
2642
2643 page = next_page;
2644 off %= PAGE_SIZE;
2645 }
2646}
2647
2648static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649{
2650 int i, obj_idx, ret = 0;
2651 unsigned long handle;
2652 struct zspage *zspage;
2653 struct page *page;
2654 enum fullness_group fullness;
2655
2656 /* Lock LRU and fullness list */
2657 spin_lock(&pool->lock);
2658 if (list_empty(&pool->lru)) {
2659 spin_unlock(&pool->lock);
2660 return -EINVAL;
2661 }
2662
2663 for (i = 0; i < retries; i++) {
2664 struct size_class *class;
2665
2666 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667 list_del(&zspage->lru);
2668
2669 /* zs_free may free objects, but not the zspage and handles */
2670 zspage->under_reclaim = true;
2671
2672 class = zspage_class(pool, zspage);
2673 fullness = get_fullness_group(class, zspage);
2674
2675 /* Lock out object allocations and object compaction */
2676 remove_zspage(class, zspage, fullness);
2677
2678 spin_unlock(&pool->lock);
2679 cond_resched();
2680
2681 /* Lock backing pages into place */
2682 lock_zspage(zspage);
2683
2684 obj_idx = 0;
2685 page = get_first_page(zspage);
2686 while (1) {
2687 handle = find_alloced_obj(class, page, &obj_idx);
2688 if (!handle) {
2689 page = get_next_page(page);
2690 if (!page)
2691 break;
2692 obj_idx = 0;
2693 continue;
2694 }
2695
2696 /*
2697 * This will write the object and call zs_free.
2698 *
2699 * zs_free will free the object, but the
2700 * under_reclaim flag prevents it from freeing
2701 * the zspage altogether. This is necessary so
2702 * that we can continue working with the
2703 * zspage potentially after the last object
2704 * has been freed.
2705 */
2706 ret = pool->zpool_ops->evict(pool->zpool, handle);
2707 if (ret)
2708 goto next;
2709
2710 obj_idx++;
2711 }
2712
2713next:
2714 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2715 spin_lock(&pool->lock);
2716 zspage->under_reclaim = false;
2717
2718 if (!get_zspage_inuse(zspage)) {
2719 /*
2720 * Fullness went stale as zs_free() won't touch it
2721 * while the page is removed from the pool. Fix it
2722 * up for the check in __free_zspage().
2723 */
2724 zspage->fullness = ZS_EMPTY;
2725
2726 __free_zspage(pool, class, zspage);
2727 spin_unlock(&pool->lock);
2728 return 0;
2729 }
2730
2731 /*
2732 * Eviction fails on one of the handles, so we need to restore zspage.
2733 * We need to rebuild its freelist (and free stored deferred handles),
2734 * put it back to the correct size class, and add it to the LRU list.
2735 */
2736 restore_freelist(pool, class, zspage);
2737 putback_zspage(class, zspage);
2738 list_add(&zspage->lru, &pool->lru);
2739 unlock_zspage(zspage);
2740 }
2741
2742 spin_unlock(&pool->lock);
2743 return -EAGAIN;
2744}
2745#endif /* CONFIG_ZPOOL */
2746
2747static int __init zs_init(void)
2748{
2749 int ret;
2750
2751 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752 zs_cpu_prepare, zs_cpu_dead);
2753 if (ret)
2754 goto out;
2755
2756#ifdef CONFIG_ZPOOL
2757 zpool_register_driver(&zs_zpool_driver);
2758#endif
2759
2760 zs_stat_init();
2761
2762 return 0;
2763
2764out:
2765 return ret;
2766}
2767
2768static void __exit zs_exit(void)
2769{
2770#ifdef CONFIG_ZPOOL
2771 zpool_unregister_driver(&zs_zpool_driver);
2772#endif
2773 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774
2775 zs_stat_exit();
2776}
2777
2778module_init(zs_init);
2779module_exit(zs_exit);
2780
2781MODULE_LICENSE("Dual BSD/GPL");
2782MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");