Loading...
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48#include <linux/module.h>
49#include <linux/kernel.h>
50#include <linux/sched.h>
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
60#include <linux/vmalloc.h>
61#include <linux/preempt.h>
62#include <linux/spinlock.h>
63#include <linux/types.h>
64#include <linux/debugfs.h>
65#include <linux/zsmalloc.h>
66#include <linux/zpool.h>
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134/* each chunk includes extra space to keep handle */
135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137/*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169};
170
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
183#endif
184
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
195 * f = fullness_threshold_frac
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
216 struct zs_size_stat stats;
217
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
242};
243
244struct zs_pool {
245 const char *name;
246
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249
250 gfp_t flags; /* allocation flags used when growing pool */
251 atomic_long_t pages_allocated;
252
253 struct zs_pool_stats stats;
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
265};
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
276struct mapping_area {
277#ifdef CONFIG_PGTABLE_MAPPING
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
295 kmem_cache_destroy(pool->handle_cachep);
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
317}
318
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
323static void *zs_zpool_create(const char *name, gfp_t gfp,
324 const struct zpool_ops *zpool_ops,
325 struct zpool *zpool)
326{
327 return zs_create_pool(name, gfp);
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
379 return zs_get_total_pages(pool) << PAGE_SHIFT;
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
395MODULE_ALIAS("zpool-zsmalloc");
396#endif /* CONFIG_ZPOOL */
397
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
408 return PagePrivate(page);
409}
410
411static int is_last_page(struct page *page)
412{
413 return PagePrivate2(page);
414}
415
416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
417 enum fullness_group *fullness)
418{
419 unsigned long m;
420 BUG_ON(!is_first_page(page));
421
422 m = (unsigned long)page->mapping;
423 *fullness = m & FULLNESS_MASK;
424 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
425}
426
427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
428 enum fullness_group fullness)
429{
430 unsigned long m;
431 BUG_ON(!is_first_page(page));
432
433 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
434 (fullness & FULLNESS_MASK);
435 page->mapping = (struct address_space *)m;
436}
437
438/*
439 * zsmalloc divides the pool into various size classes where each
440 * class maintains a list of zspages where each zspage is divided
441 * into equal sized chunks. Each allocation falls into one of these
442 * classes depending on its size. This function returns index of the
443 * size class which has chunk size big enough to hold the give size.
444 */
445static int get_size_class_index(int size)
446{
447 int idx = 0;
448
449 if (likely(size > ZS_MIN_ALLOC_SIZE))
450 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
451 ZS_SIZE_CLASS_DELTA);
452
453 return min(zs_size_classes - 1, idx);
454}
455
456static inline void zs_stat_inc(struct size_class *class,
457 enum zs_stat_type type, unsigned long cnt)
458{
459 if (type < NR_ZS_STAT_TYPE)
460 class->stats.objs[type] += cnt;
461}
462
463static inline void zs_stat_dec(struct size_class *class,
464 enum zs_stat_type type, unsigned long cnt)
465{
466 if (type < NR_ZS_STAT_TYPE)
467 class->stats.objs[type] -= cnt;
468}
469
470static inline unsigned long zs_stat_get(struct size_class *class,
471 enum zs_stat_type type)
472{
473 if (type < NR_ZS_STAT_TYPE)
474 return class->stats.objs[type];
475 return 0;
476}
477
478#ifdef CONFIG_ZSMALLOC_STAT
479
480static int __init zs_stat_init(void)
481{
482 if (!debugfs_initialized())
483 return -ENODEV;
484
485 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
486 if (!zs_stat_root)
487 return -ENOMEM;
488
489 return 0;
490}
491
492static void __exit zs_stat_exit(void)
493{
494 debugfs_remove_recursive(zs_stat_root);
495}
496
497static unsigned long zs_can_compact(struct size_class *class);
498
499static int zs_stats_size_show(struct seq_file *s, void *v)
500{
501 int i;
502 struct zs_pool *pool = s->private;
503 struct size_class *class;
504 int objs_per_zspage;
505 unsigned long class_almost_full, class_almost_empty;
506 unsigned long obj_allocated, obj_used, pages_used, freeable;
507 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
508 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
509 unsigned long total_freeable = 0;
510
511 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
512 "class", "size", "almost_full", "almost_empty",
513 "obj_allocated", "obj_used", "pages_used",
514 "pages_per_zspage", "freeable");
515
516 for (i = 0; i < zs_size_classes; i++) {
517 class = pool->size_class[i];
518
519 if (class->index != i)
520 continue;
521
522 spin_lock(&class->lock);
523 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
524 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
525 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
526 obj_used = zs_stat_get(class, OBJ_USED);
527 freeable = zs_can_compact(class);
528 spin_unlock(&class->lock);
529
530 objs_per_zspage = get_maxobj_per_zspage(class->size,
531 class->pages_per_zspage);
532 pages_used = obj_allocated / objs_per_zspage *
533 class->pages_per_zspage;
534
535 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
536 " %10lu %10lu %16d %8lu\n",
537 i, class->size, class_almost_full, class_almost_empty,
538 obj_allocated, obj_used, pages_used,
539 class->pages_per_zspage, freeable);
540
541 total_class_almost_full += class_almost_full;
542 total_class_almost_empty += class_almost_empty;
543 total_objs += obj_allocated;
544 total_used_objs += obj_used;
545 total_pages += pages_used;
546 total_freeable += freeable;
547 }
548
549 seq_puts(s, "\n");
550 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
551 "Total", "", total_class_almost_full,
552 total_class_almost_empty, total_objs,
553 total_used_objs, total_pages, "", total_freeable);
554
555 return 0;
556}
557
558static int zs_stats_size_open(struct inode *inode, struct file *file)
559{
560 return single_open(file, zs_stats_size_show, inode->i_private);
561}
562
563static const struct file_operations zs_stat_size_ops = {
564 .open = zs_stats_size_open,
565 .read = seq_read,
566 .llseek = seq_lseek,
567 .release = single_release,
568};
569
570static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
571{
572 struct dentry *entry;
573
574 if (!zs_stat_root)
575 return -ENODEV;
576
577 entry = debugfs_create_dir(name, zs_stat_root);
578 if (!entry) {
579 pr_warn("debugfs dir <%s> creation failed\n", name);
580 return -ENOMEM;
581 }
582 pool->stat_dentry = entry;
583
584 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
585 pool->stat_dentry, pool, &zs_stat_size_ops);
586 if (!entry) {
587 pr_warn("%s: debugfs file entry <%s> creation failed\n",
588 name, "classes");
589 return -ENOMEM;
590 }
591
592 return 0;
593}
594
595static void zs_pool_stat_destroy(struct zs_pool *pool)
596{
597 debugfs_remove_recursive(pool->stat_dentry);
598}
599
600#else /* CONFIG_ZSMALLOC_STAT */
601static int __init zs_stat_init(void)
602{
603 return 0;
604}
605
606static void __exit zs_stat_exit(void)
607{
608}
609
610static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
611{
612 return 0;
613}
614
615static inline void zs_pool_stat_destroy(struct zs_pool *pool)
616{
617}
618#endif
619
620
621/*
622 * For each size class, zspages are divided into different groups
623 * depending on how "full" they are. This was done so that we could
624 * easily find empty or nearly empty zspages when we try to shrink
625 * the pool (not yet implemented). This function returns fullness
626 * status of the given page.
627 */
628static enum fullness_group get_fullness_group(struct page *page)
629{
630 int inuse, max_objects;
631 enum fullness_group fg;
632 BUG_ON(!is_first_page(page));
633
634 inuse = page->inuse;
635 max_objects = page->objects;
636
637 if (inuse == 0)
638 fg = ZS_EMPTY;
639 else if (inuse == max_objects)
640 fg = ZS_FULL;
641 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
642 fg = ZS_ALMOST_EMPTY;
643 else
644 fg = ZS_ALMOST_FULL;
645
646 return fg;
647}
648
649/*
650 * Each size class maintains various freelists and zspages are assigned
651 * to one of these freelists based on the number of live objects they
652 * have. This functions inserts the given zspage into the freelist
653 * identified by <class, fullness_group>.
654 */
655static void insert_zspage(struct page *page, struct size_class *class,
656 enum fullness_group fullness)
657{
658 struct page **head;
659
660 BUG_ON(!is_first_page(page));
661
662 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
663 return;
664
665 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
666 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
667
668 head = &class->fullness_list[fullness];
669 if (!*head) {
670 *head = page;
671 return;
672 }
673
674 /*
675 * We want to see more ZS_FULL pages and less almost
676 * empty/full. Put pages with higher ->inuse first.
677 */
678 list_add_tail(&page->lru, &(*head)->lru);
679 if (page->inuse >= (*head)->inuse)
680 *head = page;
681}
682
683/*
684 * This function removes the given zspage from the freelist identified
685 * by <class, fullness_group>.
686 */
687static void remove_zspage(struct page *page, struct size_class *class,
688 enum fullness_group fullness)
689{
690 struct page **head;
691
692 BUG_ON(!is_first_page(page));
693
694 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
695 return;
696
697 head = &class->fullness_list[fullness];
698 BUG_ON(!*head);
699 if (list_empty(&(*head)->lru))
700 *head = NULL;
701 else if (*head == page)
702 *head = (struct page *)list_entry((*head)->lru.next,
703 struct page, lru);
704
705 list_del_init(&page->lru);
706 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
707 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
708}
709
710/*
711 * Each size class maintains zspages in different fullness groups depending
712 * on the number of live objects they contain. When allocating or freeing
713 * objects, the fullness status of the page can change, say, from ALMOST_FULL
714 * to ALMOST_EMPTY when freeing an object. This function checks if such
715 * a status change has occurred for the given page and accordingly moves the
716 * page from the freelist of the old fullness group to that of the new
717 * fullness group.
718 */
719static enum fullness_group fix_fullness_group(struct size_class *class,
720 struct page *page)
721{
722 int class_idx;
723 enum fullness_group currfg, newfg;
724
725 BUG_ON(!is_first_page(page));
726
727 get_zspage_mapping(page, &class_idx, &currfg);
728 newfg = get_fullness_group(page);
729 if (newfg == currfg)
730 goto out;
731
732 remove_zspage(page, class, currfg);
733 insert_zspage(page, class, newfg);
734 set_zspage_mapping(page, class_idx, newfg);
735
736out:
737 return newfg;
738}
739
740/*
741 * We have to decide on how many pages to link together
742 * to form a zspage for each size class. This is important
743 * to reduce wastage due to unusable space left at end of
744 * each zspage which is given as:
745 * wastage = Zp % class_size
746 * usage = Zp - wastage
747 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
748 *
749 * For example, for size class of 3/8 * PAGE_SIZE, we should
750 * link together 3 PAGE_SIZE sized pages to form a zspage
751 * since then we can perfectly fit in 8 such objects.
752 */
753static int get_pages_per_zspage(int class_size)
754{
755 int i, max_usedpc = 0;
756 /* zspage order which gives maximum used size per KB */
757 int max_usedpc_order = 1;
758
759 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
760 int zspage_size;
761 int waste, usedpc;
762
763 zspage_size = i * PAGE_SIZE;
764 waste = zspage_size % class_size;
765 usedpc = (zspage_size - waste) * 100 / zspage_size;
766
767 if (usedpc > max_usedpc) {
768 max_usedpc = usedpc;
769 max_usedpc_order = i;
770 }
771 }
772
773 return max_usedpc_order;
774}
775
776/*
777 * A single 'zspage' is composed of many system pages which are
778 * linked together using fields in struct page. This function finds
779 * the first/head page, given any component page of a zspage.
780 */
781static struct page *get_first_page(struct page *page)
782{
783 if (is_first_page(page))
784 return page;
785 else
786 return (struct page *)page_private(page);
787}
788
789static struct page *get_next_page(struct page *page)
790{
791 struct page *next;
792
793 if (is_last_page(page))
794 next = NULL;
795 else if (is_first_page(page))
796 next = (struct page *)page_private(page);
797 else
798 next = list_entry(page->lru.next, struct page, lru);
799
800 return next;
801}
802
803/*
804 * Encode <page, obj_idx> as a single handle value.
805 * We use the least bit of handle for tagging.
806 */
807static void *location_to_obj(struct page *page, unsigned long obj_idx)
808{
809 unsigned long obj;
810
811 if (!page) {
812 BUG_ON(obj_idx);
813 return NULL;
814 }
815
816 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
817 obj |= ((obj_idx) & OBJ_INDEX_MASK);
818 obj <<= OBJ_TAG_BITS;
819
820 return (void *)obj;
821}
822
823/*
824 * Decode <page, obj_idx> pair from the given object handle. We adjust the
825 * decoded obj_idx back to its original value since it was adjusted in
826 * location_to_obj().
827 */
828static void obj_to_location(unsigned long obj, struct page **page,
829 unsigned long *obj_idx)
830{
831 obj >>= OBJ_TAG_BITS;
832 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
833 *obj_idx = (obj & OBJ_INDEX_MASK);
834}
835
836static unsigned long handle_to_obj(unsigned long handle)
837{
838 return *(unsigned long *)handle;
839}
840
841static unsigned long obj_to_head(struct size_class *class, struct page *page,
842 void *obj)
843{
844 if (class->huge) {
845 VM_BUG_ON(!is_first_page(page));
846 return page_private(page);
847 } else
848 return *(unsigned long *)obj;
849}
850
851static unsigned long obj_idx_to_offset(struct page *page,
852 unsigned long obj_idx, int class_size)
853{
854 unsigned long off = 0;
855
856 if (!is_first_page(page))
857 off = page->index;
858
859 return off + obj_idx * class_size;
860}
861
862static inline int trypin_tag(unsigned long handle)
863{
864 unsigned long *ptr = (unsigned long *)handle;
865
866 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
867}
868
869static void pin_tag(unsigned long handle)
870{
871 while (!trypin_tag(handle));
872}
873
874static void unpin_tag(unsigned long handle)
875{
876 unsigned long *ptr = (unsigned long *)handle;
877
878 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
879}
880
881static void reset_page(struct page *page)
882{
883 clear_bit(PG_private, &page->flags);
884 clear_bit(PG_private_2, &page->flags);
885 set_page_private(page, 0);
886 page->mapping = NULL;
887 page->freelist = NULL;
888 page_mapcount_reset(page);
889}
890
891static void free_zspage(struct page *first_page)
892{
893 struct page *nextp, *tmp, *head_extra;
894
895 BUG_ON(!is_first_page(first_page));
896 BUG_ON(first_page->inuse);
897
898 head_extra = (struct page *)page_private(first_page);
899
900 reset_page(first_page);
901 __free_page(first_page);
902
903 /* zspage with only 1 system page */
904 if (!head_extra)
905 return;
906
907 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
908 list_del(&nextp->lru);
909 reset_page(nextp);
910 __free_page(nextp);
911 }
912 reset_page(head_extra);
913 __free_page(head_extra);
914}
915
916/* Initialize a newly allocated zspage */
917static void init_zspage(struct page *first_page, struct size_class *class)
918{
919 unsigned long off = 0;
920 struct page *page = first_page;
921
922 BUG_ON(!is_first_page(first_page));
923 while (page) {
924 struct page *next_page;
925 struct link_free *link;
926 unsigned int i = 1;
927 void *vaddr;
928
929 /*
930 * page->index stores offset of first object starting
931 * in the page. For the first page, this is always 0,
932 * so we use first_page->index (aka ->freelist) to store
933 * head of corresponding zspage's freelist.
934 */
935 if (page != first_page)
936 page->index = off;
937
938 vaddr = kmap_atomic(page);
939 link = (struct link_free *)vaddr + off / sizeof(*link);
940
941 while ((off += class->size) < PAGE_SIZE) {
942 link->next = location_to_obj(page, i++);
943 link += class->size / sizeof(*link);
944 }
945
946 /*
947 * We now come to the last (full or partial) object on this
948 * page, which must point to the first object on the next
949 * page (if present)
950 */
951 next_page = get_next_page(page);
952 link->next = location_to_obj(next_page, 0);
953 kunmap_atomic(vaddr);
954 page = next_page;
955 off %= PAGE_SIZE;
956 }
957}
958
959/*
960 * Allocate a zspage for the given size class
961 */
962static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
963{
964 int i, error;
965 struct page *first_page = NULL, *uninitialized_var(prev_page);
966
967 /*
968 * Allocate individual pages and link them together as:
969 * 1. first page->private = first sub-page
970 * 2. all sub-pages are linked together using page->lru
971 * 3. each sub-page is linked to the first page using page->private
972 *
973 * For each size class, First/Head pages are linked together using
974 * page->lru. Also, we set PG_private to identify the first page
975 * (i.e. no other sub-page has this flag set) and PG_private_2 to
976 * identify the last page.
977 */
978 error = -ENOMEM;
979 for (i = 0; i < class->pages_per_zspage; i++) {
980 struct page *page;
981
982 page = alloc_page(flags);
983 if (!page)
984 goto cleanup;
985
986 INIT_LIST_HEAD(&page->lru);
987 if (i == 0) { /* first page */
988 SetPagePrivate(page);
989 set_page_private(page, 0);
990 first_page = page;
991 first_page->inuse = 0;
992 }
993 if (i == 1)
994 set_page_private(first_page, (unsigned long)page);
995 if (i >= 1)
996 set_page_private(page, (unsigned long)first_page);
997 if (i >= 2)
998 list_add(&page->lru, &prev_page->lru);
999 if (i == class->pages_per_zspage - 1) /* last page */
1000 SetPagePrivate2(page);
1001 prev_page = page;
1002 }
1003
1004 init_zspage(first_page, class);
1005
1006 first_page->freelist = location_to_obj(first_page, 0);
1007 /* Maximum number of objects we can store in this zspage */
1008 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009
1010 error = 0; /* Success */
1011
1012cleanup:
1013 if (unlikely(error) && first_page) {
1014 free_zspage(first_page);
1015 first_page = NULL;
1016 }
1017
1018 return first_page;
1019}
1020
1021static struct page *find_get_zspage(struct size_class *class)
1022{
1023 int i;
1024 struct page *page;
1025
1026 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027 page = class->fullness_list[i];
1028 if (page)
1029 break;
1030 }
1031
1032 return page;
1033}
1034
1035#ifdef CONFIG_PGTABLE_MAPPING
1036static inline int __zs_cpu_up(struct mapping_area *area)
1037{
1038 /*
1039 * Make sure we don't leak memory if a cpu UP notification
1040 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041 */
1042 if (area->vm)
1043 return 0;
1044 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045 if (!area->vm)
1046 return -ENOMEM;
1047 return 0;
1048}
1049
1050static inline void __zs_cpu_down(struct mapping_area *area)
1051{
1052 if (area->vm)
1053 free_vm_area(area->vm);
1054 area->vm = NULL;
1055}
1056
1057static inline void *__zs_map_object(struct mapping_area *area,
1058 struct page *pages[2], int off, int size)
1059{
1060 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061 area->vm_addr = area->vm->addr;
1062 return area->vm_addr + off;
1063}
1064
1065static inline void __zs_unmap_object(struct mapping_area *area,
1066 struct page *pages[2], int off, int size)
1067{
1068 unsigned long addr = (unsigned long)area->vm_addr;
1069
1070 unmap_kernel_range(addr, PAGE_SIZE * 2);
1071}
1072
1073#else /* CONFIG_PGTABLE_MAPPING */
1074
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077 /*
1078 * Make sure we don't leak memory if a cpu UP notification
1079 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080 */
1081 if (area->vm_buf)
1082 return 0;
1083 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084 if (!area->vm_buf)
1085 return -ENOMEM;
1086 return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091 kfree(area->vm_buf);
1092 area->vm_buf = NULL;
1093}
1094
1095static void *__zs_map_object(struct mapping_area *area,
1096 struct page *pages[2], int off, int size)
1097{
1098 int sizes[2];
1099 void *addr;
1100 char *buf = area->vm_buf;
1101
1102 /* disable page faults to match kmap_atomic() return conditions */
1103 pagefault_disable();
1104
1105 /* no read fastpath */
1106 if (area->vm_mm == ZS_MM_WO)
1107 goto out;
1108
1109 sizes[0] = PAGE_SIZE - off;
1110 sizes[1] = size - sizes[0];
1111
1112 /* copy object to per-cpu buffer */
1113 addr = kmap_atomic(pages[0]);
1114 memcpy(buf, addr + off, sizes[0]);
1115 kunmap_atomic(addr);
1116 addr = kmap_atomic(pages[1]);
1117 memcpy(buf + sizes[0], addr, sizes[1]);
1118 kunmap_atomic(addr);
1119out:
1120 return area->vm_buf;
1121}
1122
1123static void __zs_unmap_object(struct mapping_area *area,
1124 struct page *pages[2], int off, int size)
1125{
1126 int sizes[2];
1127 void *addr;
1128 char *buf;
1129
1130 /* no write fastpath */
1131 if (area->vm_mm == ZS_MM_RO)
1132 goto out;
1133
1134 buf = area->vm_buf;
1135 buf = buf + ZS_HANDLE_SIZE;
1136 size -= ZS_HANDLE_SIZE;
1137 off += ZS_HANDLE_SIZE;
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
1142 /* copy per-cpu buffer to object */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(addr + off, buf, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(addr, buf + sizes[0], sizes[1]);
1148 kunmap_atomic(addr);
1149
1150out:
1151 /* enable page faults to match kunmap_atomic() return conditions */
1152 pagefault_enable();
1153}
1154
1155#endif /* CONFIG_PGTABLE_MAPPING */
1156
1157static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158 void *pcpu)
1159{
1160 int ret, cpu = (long)pcpu;
1161 struct mapping_area *area;
1162
1163 switch (action) {
1164 case CPU_UP_PREPARE:
1165 area = &per_cpu(zs_map_area, cpu);
1166 ret = __zs_cpu_up(area);
1167 if (ret)
1168 return notifier_from_errno(ret);
1169 break;
1170 case CPU_DEAD:
1171 case CPU_UP_CANCELED:
1172 area = &per_cpu(zs_map_area, cpu);
1173 __zs_cpu_down(area);
1174 break;
1175 }
1176
1177 return NOTIFY_OK;
1178}
1179
1180static struct notifier_block zs_cpu_nb = {
1181 .notifier_call = zs_cpu_notifier
1182};
1183
1184static int zs_register_cpu_notifier(void)
1185{
1186 int cpu, uninitialized_var(ret);
1187
1188 cpu_notifier_register_begin();
1189
1190 __register_cpu_notifier(&zs_cpu_nb);
1191 for_each_online_cpu(cpu) {
1192 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193 if (notifier_to_errno(ret))
1194 break;
1195 }
1196
1197 cpu_notifier_register_done();
1198 return notifier_to_errno(ret);
1199}
1200
1201static void zs_unregister_cpu_notifier(void)
1202{
1203 int cpu;
1204
1205 cpu_notifier_register_begin();
1206
1207 for_each_online_cpu(cpu)
1208 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209 __unregister_cpu_notifier(&zs_cpu_nb);
1210
1211 cpu_notifier_register_done();
1212}
1213
1214static void init_zs_size_classes(void)
1215{
1216 int nr;
1217
1218 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220 nr += 1;
1221
1222 zs_size_classes = nr;
1223}
1224
1225static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226{
1227 if (prev->pages_per_zspage != pages_per_zspage)
1228 return false;
1229
1230 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231 != get_maxobj_per_zspage(size, pages_per_zspage))
1232 return false;
1233
1234 return true;
1235}
1236
1237static bool zspage_full(struct page *page)
1238{
1239 BUG_ON(!is_first_page(page));
1240
1241 return page->inuse == page->objects;
1242}
1243
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246 return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250/**
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
1254 *
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
1258 *
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
1263 */
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265 enum zs_mapmode mm)
1266{
1267 struct page *page;
1268 unsigned long obj, obj_idx, off;
1269
1270 unsigned int class_idx;
1271 enum fullness_group fg;
1272 struct size_class *class;
1273 struct mapping_area *area;
1274 struct page *pages[2];
1275 void *ret;
1276
1277 BUG_ON(!handle);
1278
1279 /*
1280 * Because we use per-cpu mapping areas shared among the
1281 * pools/users, we can't allow mapping in interrupt context
1282 * because it can corrupt another users mappings.
1283 */
1284 BUG_ON(in_interrupt());
1285
1286 /* From now on, migration cannot move the object */
1287 pin_tag(handle);
1288
1289 obj = handle_to_obj(handle);
1290 obj_to_location(obj, &page, &obj_idx);
1291 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 class = pool->size_class[class_idx];
1293 off = obj_idx_to_offset(page, obj_idx, class->size);
1294
1295 area = &get_cpu_var(zs_map_area);
1296 area->vm_mm = mm;
1297 if (off + class->size <= PAGE_SIZE) {
1298 /* this object is contained entirely within a page */
1299 area->vm_addr = kmap_atomic(page);
1300 ret = area->vm_addr + off;
1301 goto out;
1302 }
1303
1304 /* this object spans two pages */
1305 pages[0] = page;
1306 pages[1] = get_next_page(page);
1307 BUG_ON(!pages[1]);
1308
1309 ret = __zs_map_object(area, pages, off, class->size);
1310out:
1311 if (!class->huge)
1312 ret += ZS_HANDLE_SIZE;
1313
1314 return ret;
1315}
1316EXPORT_SYMBOL_GPL(zs_map_object);
1317
1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319{
1320 struct page *page;
1321 unsigned long obj, obj_idx, off;
1322
1323 unsigned int class_idx;
1324 enum fullness_group fg;
1325 struct size_class *class;
1326 struct mapping_area *area;
1327
1328 BUG_ON(!handle);
1329
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
1341
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
1349 unpin_tag(handle);
1350}
1351EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353static unsigned long obj_malloc(struct page *first_page,
1354 struct size_class *class, unsigned long handle)
1355{
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
1363 handle |= OBJ_ALLOCATED_TAG;
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382}
1383
1384
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395{
1396 unsigned long handle, obj;
1397 struct size_class *class;
1398 struct page *first_page;
1399
1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 return 0;
1402
1403 handle = alloc_handle(pool);
1404 if (!handle)
1405 return 0;
1406
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
1409 class = pool->size_class[get_size_class_index(size)];
1410
1411 spin_lock(&class->lock);
1412 first_page = find_get_zspage(class);
1413
1414 if (!first_page) {
1415 spin_unlock(&class->lock);
1416 first_page = alloc_zspage(class, pool->flags);
1417 if (unlikely(!first_page)) {
1418 free_handle(pool, handle);
1419 return 0;
1420 }
1421
1422 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 atomic_long_add(class->pages_per_zspage,
1424 &pool->pages_allocated);
1425
1426 spin_lock(&class->lock);
1427 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 class->size, class->pages_per_zspage));
1429 }
1430
1431 obj = obj_malloc(first_page, class, handle);
1432 /* Now move the zspage to another fullness group, if required */
1433 fix_fullness_group(class, first_page);
1434 record_obj(handle, obj);
1435 spin_unlock(&class->lock);
1436
1437 return handle;
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442 unsigned long obj)
1443{
1444 struct link_free *link;
1445 struct page *first_page, *f_page;
1446 unsigned long f_objidx, f_offset;
1447 void *vaddr;
1448
1449 BUG_ON(!obj);
1450
1451 obj &= ~OBJ_ALLOCATED_TAG;
1452 obj_to_location(obj, &f_page, &f_objidx);
1453 first_page = get_first_page(f_page);
1454
1455 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456
1457 vaddr = kmap_atomic(f_page);
1458
1459 /* Insert this object in containing zspage's freelist */
1460 link = (struct link_free *)(vaddr + f_offset);
1461 link->next = first_page->freelist;
1462 if (class->huge)
1463 set_page_private(first_page, 0);
1464 kunmap_atomic(vaddr);
1465 first_page->freelist = (void *)obj;
1466 first_page->inuse--;
1467 zs_stat_dec(class, OBJ_USED, 1);
1468}
1469
1470void zs_free(struct zs_pool *pool, unsigned long handle)
1471{
1472 struct page *first_page, *f_page;
1473 unsigned long obj, f_objidx;
1474 int class_idx;
1475 struct size_class *class;
1476 enum fullness_group fullness;
1477
1478 if (unlikely(!handle))
1479 return;
1480
1481 pin_tag(handle);
1482 obj = handle_to_obj(handle);
1483 obj_to_location(obj, &f_page, &f_objidx);
1484 first_page = get_first_page(f_page);
1485
1486 get_zspage_mapping(first_page, &class_idx, &fullness);
1487 class = pool->size_class[class_idx];
1488
1489 spin_lock(&class->lock);
1490 obj_free(pool, class, obj);
1491 fullness = fix_fullness_group(class, first_page);
1492 if (fullness == ZS_EMPTY) {
1493 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494 class->size, class->pages_per_zspage));
1495 atomic_long_sub(class->pages_per_zspage,
1496 &pool->pages_allocated);
1497 free_zspage(first_page);
1498 }
1499 spin_unlock(&class->lock);
1500 unpin_tag(handle);
1501
1502 free_handle(pool, handle);
1503}
1504EXPORT_SYMBOL_GPL(zs_free);
1505
1506static void zs_object_copy(unsigned long dst, unsigned long src,
1507 struct size_class *class)
1508{
1509 struct page *s_page, *d_page;
1510 unsigned long s_objidx, d_objidx;
1511 unsigned long s_off, d_off;
1512 void *s_addr, *d_addr;
1513 int s_size, d_size, size;
1514 int written = 0;
1515
1516 s_size = d_size = class->size;
1517
1518 obj_to_location(src, &s_page, &s_objidx);
1519 obj_to_location(dst, &d_page, &d_objidx);
1520
1521 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523
1524 if (s_off + class->size > PAGE_SIZE)
1525 s_size = PAGE_SIZE - s_off;
1526
1527 if (d_off + class->size > PAGE_SIZE)
1528 d_size = PAGE_SIZE - d_off;
1529
1530 s_addr = kmap_atomic(s_page);
1531 d_addr = kmap_atomic(d_page);
1532
1533 while (1) {
1534 size = min(s_size, d_size);
1535 memcpy(d_addr + d_off, s_addr + s_off, size);
1536 written += size;
1537
1538 if (written == class->size)
1539 break;
1540
1541 s_off += size;
1542 s_size -= size;
1543 d_off += size;
1544 d_size -= size;
1545
1546 if (s_off >= PAGE_SIZE) {
1547 kunmap_atomic(d_addr);
1548 kunmap_atomic(s_addr);
1549 s_page = get_next_page(s_page);
1550 BUG_ON(!s_page);
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553 s_size = class->size - written;
1554 s_off = 0;
1555 }
1556
1557 if (d_off >= PAGE_SIZE) {
1558 kunmap_atomic(d_addr);
1559 d_page = get_next_page(d_page);
1560 BUG_ON(!d_page);
1561 d_addr = kmap_atomic(d_page);
1562 d_size = class->size - written;
1563 d_off = 0;
1564 }
1565 }
1566
1567 kunmap_atomic(d_addr);
1568 kunmap_atomic(s_addr);
1569}
1570
1571/*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575static unsigned long find_alloced_obj(struct page *page, int index,
1576 struct size_class *class)
1577{
1578 unsigned long head;
1579 int offset = 0;
1580 unsigned long handle = 0;
1581 void *addr = kmap_atomic(page);
1582
1583 if (!is_first_page(page))
1584 offset = page->index;
1585 offset += class->size * index;
1586
1587 while (offset < PAGE_SIZE) {
1588 head = obj_to_head(class, page, addr + offset);
1589 if (head & OBJ_ALLOCATED_TAG) {
1590 handle = head & ~OBJ_ALLOCATED_TAG;
1591 if (trypin_tag(handle))
1592 break;
1593 handle = 0;
1594 }
1595
1596 offset += class->size;
1597 index++;
1598 }
1599
1600 kunmap_atomic(addr);
1601 return handle;
1602}
1603
1604struct zs_compact_control {
1605 /* Source page for migration which could be a subpage of zspage. */
1606 struct page *s_page;
1607 /* Destination page for migration which should be a first page
1608 * of zspage. */
1609 struct page *d_page;
1610 /* Starting object index within @s_page which used for live object
1611 * in the subpage. */
1612 int index;
1613};
1614
1615static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616 struct zs_compact_control *cc)
1617{
1618 unsigned long used_obj, free_obj;
1619 unsigned long handle;
1620 struct page *s_page = cc->s_page;
1621 struct page *d_page = cc->d_page;
1622 unsigned long index = cc->index;
1623 int ret = 0;
1624
1625 while (1) {
1626 handle = find_alloced_obj(s_page, index, class);
1627 if (!handle) {
1628 s_page = get_next_page(s_page);
1629 if (!s_page)
1630 break;
1631 index = 0;
1632 continue;
1633 }
1634
1635 /* Stop if there is no more space */
1636 if (zspage_full(d_page)) {
1637 unpin_tag(handle);
1638 ret = -ENOMEM;
1639 break;
1640 }
1641
1642 used_obj = handle_to_obj(handle);
1643 free_obj = obj_malloc(d_page, class, handle);
1644 zs_object_copy(free_obj, used_obj, class);
1645 index++;
1646 /*
1647 * record_obj updates handle's value to free_obj and it will
1648 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649 * breaks synchronization using pin_tag(e,g, zs_free) so
1650 * let's keep the lock bit.
1651 */
1652 free_obj |= BIT(HANDLE_PIN_BIT);
1653 record_obj(handle, free_obj);
1654 unpin_tag(handle);
1655 obj_free(pool, class, used_obj);
1656 }
1657
1658 /* Remember last position in this iteration */
1659 cc->s_page = s_page;
1660 cc->index = index;
1661
1662 return ret;
1663}
1664
1665static struct page *isolate_target_page(struct size_class *class)
1666{
1667 int i;
1668 struct page *page;
1669
1670 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671 page = class->fullness_list[i];
1672 if (page) {
1673 remove_zspage(page, class, i);
1674 break;
1675 }
1676 }
1677
1678 return page;
1679}
1680
1681/*
1682 * putback_zspage - add @first_page into right class's fullness list
1683 * @pool: target pool
1684 * @class: destination class
1685 * @first_page: target page
1686 *
1687 * Return @fist_page's fullness_group
1688 */
1689static enum fullness_group putback_zspage(struct zs_pool *pool,
1690 struct size_class *class,
1691 struct page *first_page)
1692{
1693 enum fullness_group fullness;
1694
1695 BUG_ON(!is_first_page(first_page));
1696
1697 fullness = get_fullness_group(first_page);
1698 insert_zspage(first_page, class, fullness);
1699 set_zspage_mapping(first_page, class->index, fullness);
1700
1701 if (fullness == ZS_EMPTY) {
1702 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703 class->size, class->pages_per_zspage));
1704 atomic_long_sub(class->pages_per_zspage,
1705 &pool->pages_allocated);
1706
1707 free_zspage(first_page);
1708 }
1709
1710 return fullness;
1711}
1712
1713static struct page *isolate_source_page(struct size_class *class)
1714{
1715 int i;
1716 struct page *page = NULL;
1717
1718 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719 page = class->fullness_list[i];
1720 if (!page)
1721 continue;
1722
1723 remove_zspage(page, class, i);
1724 break;
1725 }
1726
1727 return page;
1728}
1729
1730/*
1731 *
1732 * Based on the number of unused allocated objects calculate
1733 * and return the number of pages that we can free.
1734 */
1735static unsigned long zs_can_compact(struct size_class *class)
1736{
1737 unsigned long obj_wasted;
1738 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1739 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1740
1741 if (obj_allocated <= obj_used)
1742 return 0;
1743
1744 obj_wasted = obj_allocated - obj_used;
1745 obj_wasted /= get_maxobj_per_zspage(class->size,
1746 class->pages_per_zspage);
1747
1748 return obj_wasted * class->pages_per_zspage;
1749}
1750
1751static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1752{
1753 struct zs_compact_control cc;
1754 struct page *src_page;
1755 struct page *dst_page = NULL;
1756
1757 spin_lock(&class->lock);
1758 while ((src_page = isolate_source_page(class))) {
1759
1760 BUG_ON(!is_first_page(src_page));
1761
1762 if (!zs_can_compact(class))
1763 break;
1764
1765 cc.index = 0;
1766 cc.s_page = src_page;
1767
1768 while ((dst_page = isolate_target_page(class))) {
1769 cc.d_page = dst_page;
1770 /*
1771 * If there is no more space in dst_page, resched
1772 * and see if anyone had allocated another zspage.
1773 */
1774 if (!migrate_zspage(pool, class, &cc))
1775 break;
1776
1777 putback_zspage(pool, class, dst_page);
1778 }
1779
1780 /* Stop if we couldn't find slot */
1781 if (dst_page == NULL)
1782 break;
1783
1784 putback_zspage(pool, class, dst_page);
1785 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1786 pool->stats.pages_compacted += class->pages_per_zspage;
1787 spin_unlock(&class->lock);
1788 cond_resched();
1789 spin_lock(&class->lock);
1790 }
1791
1792 if (src_page)
1793 putback_zspage(pool, class, src_page);
1794
1795 spin_unlock(&class->lock);
1796}
1797
1798unsigned long zs_compact(struct zs_pool *pool)
1799{
1800 int i;
1801 struct size_class *class;
1802
1803 for (i = zs_size_classes - 1; i >= 0; i--) {
1804 class = pool->size_class[i];
1805 if (!class)
1806 continue;
1807 if (class->index != i)
1808 continue;
1809 __zs_compact(pool, class);
1810 }
1811
1812 return pool->stats.pages_compacted;
1813}
1814EXPORT_SYMBOL_GPL(zs_compact);
1815
1816void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1817{
1818 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1819}
1820EXPORT_SYMBOL_GPL(zs_pool_stats);
1821
1822static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1823 struct shrink_control *sc)
1824{
1825 unsigned long pages_freed;
1826 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1827 shrinker);
1828
1829 pages_freed = pool->stats.pages_compacted;
1830 /*
1831 * Compact classes and calculate compaction delta.
1832 * Can run concurrently with a manually triggered
1833 * (by user) compaction.
1834 */
1835 pages_freed = zs_compact(pool) - pages_freed;
1836
1837 return pages_freed ? pages_freed : SHRINK_STOP;
1838}
1839
1840static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1841 struct shrink_control *sc)
1842{
1843 int i;
1844 struct size_class *class;
1845 unsigned long pages_to_free = 0;
1846 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1847 shrinker);
1848
1849 for (i = zs_size_classes - 1; i >= 0; i--) {
1850 class = pool->size_class[i];
1851 if (!class)
1852 continue;
1853 if (class->index != i)
1854 continue;
1855
1856 pages_to_free += zs_can_compact(class);
1857 }
1858
1859 return pages_to_free;
1860}
1861
1862static void zs_unregister_shrinker(struct zs_pool *pool)
1863{
1864 if (pool->shrinker_enabled) {
1865 unregister_shrinker(&pool->shrinker);
1866 pool->shrinker_enabled = false;
1867 }
1868}
1869
1870static int zs_register_shrinker(struct zs_pool *pool)
1871{
1872 pool->shrinker.scan_objects = zs_shrinker_scan;
1873 pool->shrinker.count_objects = zs_shrinker_count;
1874 pool->shrinker.batch = 0;
1875 pool->shrinker.seeks = DEFAULT_SEEKS;
1876
1877 return register_shrinker(&pool->shrinker);
1878}
1879
1880/**
1881 * zs_create_pool - Creates an allocation pool to work from.
1882 * @flags: allocation flags used to allocate pool metadata
1883 *
1884 * This function must be called before anything when using
1885 * the zsmalloc allocator.
1886 *
1887 * On success, a pointer to the newly created pool is returned,
1888 * otherwise NULL.
1889 */
1890struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1891{
1892 int i;
1893 struct zs_pool *pool;
1894 struct size_class *prev_class = NULL;
1895
1896 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1897 if (!pool)
1898 return NULL;
1899
1900 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1901 GFP_KERNEL);
1902 if (!pool->size_class) {
1903 kfree(pool);
1904 return NULL;
1905 }
1906
1907 pool->name = kstrdup(name, GFP_KERNEL);
1908 if (!pool->name)
1909 goto err;
1910
1911 if (create_handle_cache(pool))
1912 goto err;
1913
1914 /*
1915 * Iterate reversly, because, size of size_class that we want to use
1916 * for merging should be larger or equal to current size.
1917 */
1918 for (i = zs_size_classes - 1; i >= 0; i--) {
1919 int size;
1920 int pages_per_zspage;
1921 struct size_class *class;
1922
1923 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1924 if (size > ZS_MAX_ALLOC_SIZE)
1925 size = ZS_MAX_ALLOC_SIZE;
1926 pages_per_zspage = get_pages_per_zspage(size);
1927
1928 /*
1929 * size_class is used for normal zsmalloc operation such
1930 * as alloc/free for that size. Although it is natural that we
1931 * have one size_class for each size, there is a chance that we
1932 * can get more memory utilization if we use one size_class for
1933 * many different sizes whose size_class have same
1934 * characteristics. So, we makes size_class point to
1935 * previous size_class if possible.
1936 */
1937 if (prev_class) {
1938 if (can_merge(prev_class, size, pages_per_zspage)) {
1939 pool->size_class[i] = prev_class;
1940 continue;
1941 }
1942 }
1943
1944 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1945 if (!class)
1946 goto err;
1947
1948 class->size = size;
1949 class->index = i;
1950 class->pages_per_zspage = pages_per_zspage;
1951 if (pages_per_zspage == 1 &&
1952 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1953 class->huge = true;
1954 spin_lock_init(&class->lock);
1955 pool->size_class[i] = class;
1956
1957 prev_class = class;
1958 }
1959
1960 pool->flags = flags;
1961
1962 if (zs_pool_stat_create(name, pool))
1963 goto err;
1964
1965 /*
1966 * Not critical, we still can use the pool
1967 * and user can trigger compaction manually.
1968 */
1969 if (zs_register_shrinker(pool) == 0)
1970 pool->shrinker_enabled = true;
1971 return pool;
1972
1973err:
1974 zs_destroy_pool(pool);
1975 return NULL;
1976}
1977EXPORT_SYMBOL_GPL(zs_create_pool);
1978
1979void zs_destroy_pool(struct zs_pool *pool)
1980{
1981 int i;
1982
1983 zs_unregister_shrinker(pool);
1984 zs_pool_stat_destroy(pool);
1985
1986 for (i = 0; i < zs_size_classes; i++) {
1987 int fg;
1988 struct size_class *class = pool->size_class[i];
1989
1990 if (!class)
1991 continue;
1992
1993 if (class->index != i)
1994 continue;
1995
1996 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1997 if (class->fullness_list[fg]) {
1998 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1999 class->size, fg);
2000 }
2001 }
2002 kfree(class);
2003 }
2004
2005 destroy_handle_cache(pool);
2006 kfree(pool->size_class);
2007 kfree(pool->name);
2008 kfree(pool);
2009}
2010EXPORT_SYMBOL_GPL(zs_destroy_pool);
2011
2012static int __init zs_init(void)
2013{
2014 int ret = zs_register_cpu_notifier();
2015
2016 if (ret)
2017 goto notifier_fail;
2018
2019 init_zs_size_classes();
2020
2021#ifdef CONFIG_ZPOOL
2022 zpool_register_driver(&zs_zpool_driver);
2023#endif
2024
2025 ret = zs_stat_init();
2026 if (ret) {
2027 pr_err("zs stat initialization failed\n");
2028 goto stat_fail;
2029 }
2030 return 0;
2031
2032stat_fail:
2033#ifdef CONFIG_ZPOOL
2034 zpool_unregister_driver(&zs_zpool_driver);
2035#endif
2036notifier_fail:
2037 zs_unregister_cpu_notifier();
2038
2039 return ret;
2040}
2041
2042static void __exit zs_exit(void)
2043{
2044#ifdef CONFIG_ZPOOL
2045 zpool_unregister_driver(&zs_zpool_driver);
2046#endif
2047 zs_unregister_cpu_notifier();
2048
2049 zs_stat_exit();
2050}
2051
2052module_init(zs_init);
2053module_exit(zs_exit);
2054
2055MODULE_LICENSE("Dual BSD/GPL");
2056MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/module.h>
34#include <linux/kernel.h>
35#include <linux/sched.h>
36#include <linux/magic.h>
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <linux/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
46#include <linux/vmalloc.h>
47#include <linux/preempt.h>
48#include <linux/spinlock.h>
49#include <linux/shrinker.h>
50#include <linux/types.h>
51#include <linux/debugfs.h>
52#include <linux/zsmalloc.h>
53#include <linux/zpool.h>
54#include <linux/mount.h>
55#include <linux/pseudo_fs.h>
56#include <linux/migrate.h>
57#include <linux/wait.h>
58#include <linux/pagemap.h>
59#include <linux/fs.h>
60
61#define ZSPAGE_MAGIC 0x58
62
63/*
64 * This must be power of 2 and greater than or equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
83 *
84 * Note that object index <obj_idx> starts from 0.
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98#endif
99#endif
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133/* each chunk includes extra space to keep handle */
134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135
136/*
137 * On systems with 4K page size, this gives 255 size classes! There is a
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
152
153enum fullness_group {
154 ZS_EMPTY,
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
159};
160
161enum zs_stat_type {
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 NR_ZS_STAT_TYPE,
169};
170
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
177#endif
178
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
198static size_t huge_class_size;
199
200struct size_class {
201 spinlock_t lock;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
208 int objs_per_zspage;
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
211
212 unsigned int index;
213 struct zs_size_stat stats;
214};
215
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
232/*
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
239 union {
240 /*
241 * Free object index;
242 * It's valid for non-allocated object
243 */
244 unsigned long next;
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
250};
251
252struct zs_pool {
253 const char *name;
254
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
258
259 atomic_long_t pages_allocated;
260
261 struct zs_pool_stats stats;
262
263 /* Compact classes */
264 struct shrinker shrinker;
265
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276#endif
277};
278
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
293};
294
295struct mapping_area {
296 char *vm_buf; /* copy buffer for objects that span pages */
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299};
300
301#ifdef CONFIG_COMPACTION
302static int zs_register_migration(struct zs_pool *pool);
303static void zs_unregister_migration(struct zs_pool *pool);
304static void migrate_lock_init(struct zspage *zspage);
305static void migrate_read_lock(struct zspage *zspage);
306static void migrate_read_unlock(struct zspage *zspage);
307static void kick_deferred_free(struct zs_pool *pool);
308static void init_deferred_free(struct zs_pool *pool);
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310#else
311static int zsmalloc_mount(void) { return 0; }
312static void zsmalloc_unmount(void) {}
313static int zs_register_migration(struct zs_pool *pool) { return 0; }
314static void zs_unregister_migration(struct zs_pool *pool) {}
315static void migrate_lock_init(struct zspage *zspage) {}
316static void migrate_read_lock(struct zspage *zspage) {}
317static void migrate_read_unlock(struct zspage *zspage) {}
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
323static int create_cache(struct zs_pool *pool)
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339}
340
341static void destroy_cache(struct zs_pool *pool)
342{
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345}
346
347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351}
352
353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
360 return kmem_cache_zalloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362}
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
369static void record_obj(unsigned long handle, unsigned long obj)
370{
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377}
378
379/* zpool driver */
380
381#ifdef CONFIG_ZPOOL
382
383static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386{
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
393}
394
395static void zs_zpool_destroy(void *pool)
396{
397 zs_destroy_pool(pool);
398}
399
400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402{
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405}
406static void zs_zpool_free(void *pool, unsigned long handle)
407{
408 zs_free(pool, handle);
409}
410
411static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413{
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
423 case ZPOOL_MM_RW:
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430}
431static void zs_zpool_unmap(void *pool, unsigned long handle)
432{
433 zs_unmap_object(pool, handle);
434}
435
436static u64 zs_zpool_total_size(void *pool)
437{
438 return zs_get_total_pages(pool) << PAGE_SHIFT;
439}
440
441static struct zpool_driver zs_zpool_driver = {
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
452};
453
454MODULE_ALIAS("zpool-zsmalloc");
455#endif /* CONFIG_ZPOOL */
456
457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460static bool is_zspage_isolated(struct zspage *zspage)
461{
462 return zspage->isolated;
463}
464
465static __maybe_unused int is_first_page(struct page *page)
466{
467 return PagePrivate(page);
468}
469
470/* Protected by class->lock */
471static inline int get_zspage_inuse(struct zspage *zspage)
472{
473 return zspage->inuse;
474}
475
476
477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478{
479 zspage->inuse += val;
480}
481
482static inline struct page *get_first_page(struct zspage *zspage)
483{
484 struct page *first_page = zspage->first_page;
485
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
488}
489
490static inline int get_first_obj_offset(struct page *page)
491{
492 return page->units;
493}
494
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
498}
499
500static inline unsigned int get_freeobj(struct zspage *zspage)
501{
502 return zspage->freeobj;
503}
504
505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506{
507 zspage->freeobj = obj;
508}
509
510static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
513{
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
518}
519
520static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
523{
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
526}
527
528/*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the given size.
534 */
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544}
545
546/* type can be of enum type zs_stat_type or fullness_group */
547static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
549{
550 class->stats.objs[type] += cnt;
551}
552
553/* type can be of enum type zs_stat_type or fullness_group */
554static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
556{
557 class->stats.objs[type] -= cnt;
558}
559
560/* type can be of enum type zs_stat_type or fullness_group */
561static inline unsigned long zs_stat_get(struct size_class *class,
562 int type)
563{
564 return class->stats.objs[type];
565}
566
567#ifdef CONFIG_ZSMALLOC_STAT
568
569static void __init zs_stat_init(void)
570{
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577}
578
579static void __exit zs_stat_exit(void)
580{
581 debugfs_remove_recursive(zs_stat_root);
582}
583
584static unsigned long zs_can_compact(struct size_class *class);
585
586static int zs_stats_size_show(struct seq_file *s, void *v)
587{
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
593 unsigned long obj_allocated, obj_used, pages_used, freeable;
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 unsigned long total_freeable = 0;
597
598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
601 "pages_per_zspage", "freeable");
602
603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
614 freeable = zs_can_compact(class);
615 spin_unlock(&class->lock);
616
617 objs_per_zspage = class->objs_per_zspage;
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
625 class->pages_per_zspage, freeable);
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
632 total_freeable += freeable;
633 }
634
635 seq_puts(s, "\n");
636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
639 total_used_objs, total_pages, "", total_freeable);
640
641 return 0;
642}
643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646{
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 return;
650 }
651
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
656}
657
658static void zs_pool_stat_destroy(struct zs_pool *pool)
659{
660 debugfs_remove_recursive(pool->stat_dentry);
661}
662
663#else /* CONFIG_ZSMALLOC_STAT */
664static void __init zs_stat_init(void)
665{
666}
667
668static void __exit zs_stat_exit(void)
669{
670}
671
672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673{
674}
675
676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677{
678}
679#endif
680
681
682/*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
689static enum fullness_group get_fullness_group(struct size_class *class,
690 struct zspage *zspage)
691{
692 int inuse, objs_per_zspage;
693 enum fullness_group fg;
694
695 inuse = get_zspage_inuse(zspage);
696 objs_per_zspage = class->objs_per_zspage;
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
700 else if (inuse == objs_per_zspage)
701 fg = ZS_FULL;
702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708}
709
710/*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
716static void insert_zspage(struct size_class *class,
717 struct zspage *zspage,
718 enum fullness_group fullness)
719{
720 struct zspage *head;
721
722 zs_stat_inc(class, fullness, 1);
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
725 /*
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
728 */
729 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
730 list_add(&zspage->list, &head->list);
731 else
732 list_add(&zspage->list, &class->fullness_list[fullness]);
733}
734
735/*
736 * This function removes the given zspage from the freelist identified
737 * by <class, fullness_group>.
738 */
739static void remove_zspage(struct size_class *class,
740 struct zspage *zspage,
741 enum fullness_group fullness)
742{
743 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
744 VM_BUG_ON(is_zspage_isolated(zspage));
745
746 list_del_init(&zspage->list);
747 zs_stat_dec(class, fullness, 1);
748}
749
750/*
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
757 * fullness group.
758 */
759static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
761{
762 int class_idx;
763 enum fullness_group currfg, newfg;
764
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
767 if (newfg == currfg)
768 goto out;
769
770 if (!is_zspage_isolated(zspage)) {
771 remove_zspage(class, zspage, currfg);
772 insert_zspage(class, zspage, newfg);
773 }
774
775 set_zspage_mapping(zspage, class_idx, newfg);
776
777out:
778 return newfg;
779}
780
781/*
782 * We have to decide on how many pages to link together
783 * to form a zspage for each size class. This is important
784 * to reduce wastage due to unusable space left at end of
785 * each zspage which is given as:
786 * wastage = Zp % class_size
787 * usage = Zp - wastage
788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
789 *
790 * For example, for size class of 3/8 * PAGE_SIZE, we should
791 * link together 3 PAGE_SIZE sized pages to form a zspage
792 * since then we can perfectly fit in 8 such objects.
793 */
794static int get_pages_per_zspage(int class_size)
795{
796 int i, max_usedpc = 0;
797 /* zspage order which gives maximum used size per KB */
798 int max_usedpc_order = 1;
799
800 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
801 int zspage_size;
802 int waste, usedpc;
803
804 zspage_size = i * PAGE_SIZE;
805 waste = zspage_size % class_size;
806 usedpc = (zspage_size - waste) * 100 / zspage_size;
807
808 if (usedpc > max_usedpc) {
809 max_usedpc = usedpc;
810 max_usedpc_order = i;
811 }
812 }
813
814 return max_usedpc_order;
815}
816
817static struct zspage *get_zspage(struct page *page)
818{
819 struct zspage *zspage = (struct zspage *)page_private(page);
820
821 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
822 return zspage;
823}
824
825static struct page *get_next_page(struct page *page)
826{
827 if (unlikely(PageHugeObject(page)))
828 return NULL;
829
830 return page->freelist;
831}
832
833/**
834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
835 * @obj: the encoded object value
836 * @page: page object resides in zspage
837 * @obj_idx: object index
838 */
839static void obj_to_location(unsigned long obj, struct page **page,
840 unsigned int *obj_idx)
841{
842 obj >>= OBJ_TAG_BITS;
843 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
844 *obj_idx = (obj & OBJ_INDEX_MASK);
845}
846
847/**
848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849 * @page: page object resides in zspage
850 * @obj_idx: object index
851 */
852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853{
854 unsigned long obj;
855
856 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
857 obj |= obj_idx & OBJ_INDEX_MASK;
858 obj <<= OBJ_TAG_BITS;
859
860 return obj;
861}
862
863static unsigned long handle_to_obj(unsigned long handle)
864{
865 return *(unsigned long *)handle;
866}
867
868static unsigned long obj_to_head(struct page *page, void *obj)
869{
870 if (unlikely(PageHugeObject(page))) {
871 VM_BUG_ON_PAGE(!is_first_page(page), page);
872 return page->index;
873 } else
874 return *(unsigned long *)obj;
875}
876
877static inline int testpin_tag(unsigned long handle)
878{
879 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
880}
881
882static inline int trypin_tag(unsigned long handle)
883{
884 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
885}
886
887static void pin_tag(unsigned long handle) __acquires(bitlock)
888{
889 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
890}
891
892static void unpin_tag(unsigned long handle) __releases(bitlock)
893{
894 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
895}
896
897static void reset_page(struct page *page)
898{
899 __ClearPageMovable(page);
900 ClearPagePrivate(page);
901 set_page_private(page, 0);
902 page_mapcount_reset(page);
903 ClearPageHugeObject(page);
904 page->freelist = NULL;
905}
906
907static int trylock_zspage(struct zspage *zspage)
908{
909 struct page *cursor, *fail;
910
911 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
912 get_next_page(cursor)) {
913 if (!trylock_page(cursor)) {
914 fail = cursor;
915 goto unlock;
916 }
917 }
918
919 return 1;
920unlock:
921 for (cursor = get_first_page(zspage); cursor != fail; cursor =
922 get_next_page(cursor))
923 unlock_page(cursor);
924
925 return 0;
926}
927
928static void __free_zspage(struct zs_pool *pool, struct size_class *class,
929 struct zspage *zspage)
930{
931 struct page *page, *next;
932 enum fullness_group fg;
933 unsigned int class_idx;
934
935 get_zspage_mapping(zspage, &class_idx, &fg);
936
937 assert_spin_locked(&class->lock);
938
939 VM_BUG_ON(get_zspage_inuse(zspage));
940 VM_BUG_ON(fg != ZS_EMPTY);
941
942 next = page = get_first_page(zspage);
943 do {
944 VM_BUG_ON_PAGE(!PageLocked(page), page);
945 next = get_next_page(page);
946 reset_page(page);
947 unlock_page(page);
948 dec_zone_page_state(page, NR_ZSPAGES);
949 put_page(page);
950 page = next;
951 } while (page != NULL);
952
953 cache_free_zspage(pool, zspage);
954
955 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
956 atomic_long_sub(class->pages_per_zspage,
957 &pool->pages_allocated);
958}
959
960static void free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
962{
963 VM_BUG_ON(get_zspage_inuse(zspage));
964 VM_BUG_ON(list_empty(&zspage->list));
965
966 if (!trylock_zspage(zspage)) {
967 kick_deferred_free(pool);
968 return;
969 }
970
971 remove_zspage(class, zspage, ZS_EMPTY);
972 __free_zspage(pool, class, zspage);
973}
974
975/* Initialize a newly allocated zspage */
976static void init_zspage(struct size_class *class, struct zspage *zspage)
977{
978 unsigned int freeobj = 1;
979 unsigned long off = 0;
980 struct page *page = get_first_page(zspage);
981
982 while (page) {
983 struct page *next_page;
984 struct link_free *link;
985 void *vaddr;
986
987 set_first_obj_offset(page, off);
988
989 vaddr = kmap_atomic(page);
990 link = (struct link_free *)vaddr + off / sizeof(*link);
991
992 while ((off += class->size) < PAGE_SIZE) {
993 link->next = freeobj++ << OBJ_TAG_BITS;
994 link += class->size / sizeof(*link);
995 }
996
997 /*
998 * We now come to the last (full or partial) object on this
999 * page, which must point to the first object on the next
1000 * page (if present)
1001 */
1002 next_page = get_next_page(page);
1003 if (next_page) {
1004 link->next = freeobj++ << OBJ_TAG_BITS;
1005 } else {
1006 /*
1007 * Reset OBJ_TAG_BITS bit to last link to tell
1008 * whether it's allocated object or not.
1009 */
1010 link->next = -1UL << OBJ_TAG_BITS;
1011 }
1012 kunmap_atomic(vaddr);
1013 page = next_page;
1014 off %= PAGE_SIZE;
1015 }
1016
1017 set_freeobj(zspage, 0);
1018}
1019
1020static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021 struct page *pages[])
1022{
1023 int i;
1024 struct page *page;
1025 struct page *prev_page = NULL;
1026 int nr_pages = class->pages_per_zspage;
1027
1028 /*
1029 * Allocate individual pages and link them together as:
1030 * 1. all pages are linked together using page->freelist
1031 * 2. each sub-page point to zspage using page->private
1032 *
1033 * we set PG_private to identify the first page (i.e. no other sub-page
1034 * has this flag set).
1035 */
1036 for (i = 0; i < nr_pages; i++) {
1037 page = pages[i];
1038 set_page_private(page, (unsigned long)zspage);
1039 page->freelist = NULL;
1040 if (i == 0) {
1041 zspage->first_page = page;
1042 SetPagePrivate(page);
1043 if (unlikely(class->objs_per_zspage == 1 &&
1044 class->pages_per_zspage == 1))
1045 SetPageHugeObject(page);
1046 } else {
1047 prev_page->freelist = page;
1048 }
1049 prev_page = page;
1050 }
1051}
1052
1053/*
1054 * Allocate a zspage for the given size class
1055 */
1056static struct zspage *alloc_zspage(struct zs_pool *pool,
1057 struct size_class *class,
1058 gfp_t gfp)
1059{
1060 int i;
1061 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064 if (!zspage)
1065 return NULL;
1066
1067 zspage->magic = ZSPAGE_MAGIC;
1068 migrate_lock_init(zspage);
1069
1070 for (i = 0; i < class->pages_per_zspage; i++) {
1071 struct page *page;
1072
1073 page = alloc_page(gfp);
1074 if (!page) {
1075 while (--i >= 0) {
1076 dec_zone_page_state(pages[i], NR_ZSPAGES);
1077 __free_page(pages[i]);
1078 }
1079 cache_free_zspage(pool, zspage);
1080 return NULL;
1081 }
1082
1083 inc_zone_page_state(page, NR_ZSPAGES);
1084 pages[i] = page;
1085 }
1086
1087 create_page_chain(class, zspage, pages);
1088 init_zspage(class, zspage);
1089
1090 return zspage;
1091}
1092
1093static struct zspage *find_get_zspage(struct size_class *class)
1094{
1095 int i;
1096 struct zspage *zspage;
1097
1098 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1099 zspage = list_first_entry_or_null(&class->fullness_list[i],
1100 struct zspage, list);
1101 if (zspage)
1102 break;
1103 }
1104
1105 return zspage;
1106}
1107
1108static inline int __zs_cpu_up(struct mapping_area *area)
1109{
1110 /*
1111 * Make sure we don't leak memory if a cpu UP notification
1112 * and zs_init() race and both call zs_cpu_up() on the same cpu
1113 */
1114 if (area->vm_buf)
1115 return 0;
1116 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1117 if (!area->vm_buf)
1118 return -ENOMEM;
1119 return 0;
1120}
1121
1122static inline void __zs_cpu_down(struct mapping_area *area)
1123{
1124 kfree(area->vm_buf);
1125 area->vm_buf = NULL;
1126}
1127
1128static void *__zs_map_object(struct mapping_area *area,
1129 struct page *pages[2], int off, int size)
1130{
1131 int sizes[2];
1132 void *addr;
1133 char *buf = area->vm_buf;
1134
1135 /* disable page faults to match kmap_atomic() return conditions */
1136 pagefault_disable();
1137
1138 /* no read fastpath */
1139 if (area->vm_mm == ZS_MM_WO)
1140 goto out;
1141
1142 sizes[0] = PAGE_SIZE - off;
1143 sizes[1] = size - sizes[0];
1144
1145 /* copy object to per-cpu buffer */
1146 addr = kmap_atomic(pages[0]);
1147 memcpy(buf, addr + off, sizes[0]);
1148 kunmap_atomic(addr);
1149 addr = kmap_atomic(pages[1]);
1150 memcpy(buf + sizes[0], addr, sizes[1]);
1151 kunmap_atomic(addr);
1152out:
1153 return area->vm_buf;
1154}
1155
1156static void __zs_unmap_object(struct mapping_area *area,
1157 struct page *pages[2], int off, int size)
1158{
1159 int sizes[2];
1160 void *addr;
1161 char *buf;
1162
1163 /* no write fastpath */
1164 if (area->vm_mm == ZS_MM_RO)
1165 goto out;
1166
1167 buf = area->vm_buf;
1168 buf = buf + ZS_HANDLE_SIZE;
1169 size -= ZS_HANDLE_SIZE;
1170 off += ZS_HANDLE_SIZE;
1171
1172 sizes[0] = PAGE_SIZE - off;
1173 sizes[1] = size - sizes[0];
1174
1175 /* copy per-cpu buffer to object */
1176 addr = kmap_atomic(pages[0]);
1177 memcpy(addr + off, buf, sizes[0]);
1178 kunmap_atomic(addr);
1179 addr = kmap_atomic(pages[1]);
1180 memcpy(addr, buf + sizes[0], sizes[1]);
1181 kunmap_atomic(addr);
1182
1183out:
1184 /* enable page faults to match kunmap_atomic() return conditions */
1185 pagefault_enable();
1186}
1187
1188static int zs_cpu_prepare(unsigned int cpu)
1189{
1190 struct mapping_area *area;
1191
1192 area = &per_cpu(zs_map_area, cpu);
1193 return __zs_cpu_up(area);
1194}
1195
1196static int zs_cpu_dead(unsigned int cpu)
1197{
1198 struct mapping_area *area;
1199
1200 area = &per_cpu(zs_map_area, cpu);
1201 __zs_cpu_down(area);
1202 return 0;
1203}
1204
1205static bool can_merge(struct size_class *prev, int pages_per_zspage,
1206 int objs_per_zspage)
1207{
1208 if (prev->pages_per_zspage == pages_per_zspage &&
1209 prev->objs_per_zspage == objs_per_zspage)
1210 return true;
1211
1212 return false;
1213}
1214
1215static bool zspage_full(struct size_class *class, struct zspage *zspage)
1216{
1217 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1218}
1219
1220unsigned long zs_get_total_pages(struct zs_pool *pool)
1221{
1222 return atomic_long_read(&pool->pages_allocated);
1223}
1224EXPORT_SYMBOL_GPL(zs_get_total_pages);
1225
1226/**
1227 * zs_map_object - get address of allocated object from handle.
1228 * @pool: pool from which the object was allocated
1229 * @handle: handle returned from zs_malloc
1230 * @mm: mapping mode to use
1231 *
1232 * Before using an object allocated from zs_malloc, it must be mapped using
1233 * this function. When done with the object, it must be unmapped using
1234 * zs_unmap_object.
1235 *
1236 * Only one object can be mapped per cpu at a time. There is no protection
1237 * against nested mappings.
1238 *
1239 * This function returns with preemption and page faults disabled.
1240 */
1241void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1242 enum zs_mapmode mm)
1243{
1244 struct zspage *zspage;
1245 struct page *page;
1246 unsigned long obj, off;
1247 unsigned int obj_idx;
1248
1249 unsigned int class_idx;
1250 enum fullness_group fg;
1251 struct size_class *class;
1252 struct mapping_area *area;
1253 struct page *pages[2];
1254 void *ret;
1255
1256 /*
1257 * Because we use per-cpu mapping areas shared among the
1258 * pools/users, we can't allow mapping in interrupt context
1259 * because it can corrupt another users mappings.
1260 */
1261 BUG_ON(in_interrupt());
1262
1263 /* From now on, migration cannot move the object */
1264 pin_tag(handle);
1265
1266 obj = handle_to_obj(handle);
1267 obj_to_location(obj, &page, &obj_idx);
1268 zspage = get_zspage(page);
1269
1270 /* migration cannot move any subpage in this zspage */
1271 migrate_read_lock(zspage);
1272
1273 get_zspage_mapping(zspage, &class_idx, &fg);
1274 class = pool->size_class[class_idx];
1275 off = (class->size * obj_idx) & ~PAGE_MASK;
1276
1277 area = &get_cpu_var(zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
1282 ret = area->vm_addr + off;
1283 goto out;
1284 }
1285
1286 /* this object spans two pages */
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
1290
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293 if (likely(!PageHugeObject(page)))
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302 struct zspage *zspage;
1303 struct page *page;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1306
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
1311
1312 obj = handle_to_obj(handle);
1313 obj_to_location(obj, &page, &obj_idx);
1314 zspage = get_zspage(page);
1315 get_zspage_mapping(zspage, &class_idx, &fg);
1316 class = pool->size_class[class_idx];
1317 off = (class->size * obj_idx) & ~PAGE_MASK;
1318
1319 area = this_cpu_ptr(&zs_map_area);
1320 if (off + class->size <= PAGE_SIZE)
1321 kunmap_atomic(area->vm_addr);
1322 else {
1323 struct page *pages[2];
1324
1325 pages[0] = page;
1326 pages[1] = get_next_page(page);
1327 BUG_ON(!pages[1]);
1328
1329 __zs_unmap_object(area, pages, off, class->size);
1330 }
1331 put_cpu_var(zs_map_area);
1332
1333 migrate_read_unlock(zspage);
1334 unpin_tag(handle);
1335}
1336EXPORT_SYMBOL_GPL(zs_unmap_object);
1337
1338/**
1339 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1340 * zsmalloc &size_class.
1341 * @pool: zsmalloc pool to use
1342 *
1343 * The function returns the size of the first huge class - any object of equal
1344 * or bigger size will be stored in zspage consisting of a single physical
1345 * page.
1346 *
1347 * Context: Any context.
1348 *
1349 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1350 */
1351size_t zs_huge_class_size(struct zs_pool *pool)
1352{
1353 return huge_class_size;
1354}
1355EXPORT_SYMBOL_GPL(zs_huge_class_size);
1356
1357static unsigned long obj_malloc(struct size_class *class,
1358 struct zspage *zspage, unsigned long handle)
1359{
1360 int i, nr_page, offset;
1361 unsigned long obj;
1362 struct link_free *link;
1363
1364 struct page *m_page;
1365 unsigned long m_offset;
1366 void *vaddr;
1367
1368 handle |= OBJ_ALLOCATED_TAG;
1369 obj = get_freeobj(zspage);
1370
1371 offset = obj * class->size;
1372 nr_page = offset >> PAGE_SHIFT;
1373 m_offset = offset & ~PAGE_MASK;
1374 m_page = get_first_page(zspage);
1375
1376 for (i = 0; i < nr_page; i++)
1377 m_page = get_next_page(m_page);
1378
1379 vaddr = kmap_atomic(m_page);
1380 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1381 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1382 if (likely(!PageHugeObject(m_page)))
1383 /* record handle in the header of allocated chunk */
1384 link->handle = handle;
1385 else
1386 /* record handle to page->index */
1387 zspage->first_page->index = handle;
1388
1389 kunmap_atomic(vaddr);
1390 mod_zspage_inuse(zspage, 1);
1391 zs_stat_inc(class, OBJ_USED, 1);
1392
1393 obj = location_to_obj(m_page, obj);
1394
1395 return obj;
1396}
1397
1398
1399/**
1400 * zs_malloc - Allocate block of given size from pool.
1401 * @pool: pool to allocate from
1402 * @size: size of block to allocate
1403 * @gfp: gfp flags when allocating object
1404 *
1405 * On success, handle to the allocated object is returned,
1406 * otherwise 0.
1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408 */
1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1410{
1411 unsigned long handle, obj;
1412 struct size_class *class;
1413 enum fullness_group newfg;
1414 struct zspage *zspage;
1415
1416 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1417 return 0;
1418
1419 handle = cache_alloc_handle(pool, gfp);
1420 if (!handle)
1421 return 0;
1422
1423 /* extra space in chunk to keep the handle */
1424 size += ZS_HANDLE_SIZE;
1425 class = pool->size_class[get_size_class_index(size)];
1426
1427 spin_lock(&class->lock);
1428 zspage = find_get_zspage(class);
1429 if (likely(zspage)) {
1430 obj = obj_malloc(class, zspage, handle);
1431 /* Now move the zspage to another fullness group, if required */
1432 fix_fullness_group(class, zspage);
1433 record_obj(handle, obj);
1434 spin_unlock(&class->lock);
1435
1436 return handle;
1437 }
1438
1439 spin_unlock(&class->lock);
1440
1441 zspage = alloc_zspage(pool, class, gfp);
1442 if (!zspage) {
1443 cache_free_handle(pool, handle);
1444 return 0;
1445 }
1446
1447 spin_lock(&class->lock);
1448 obj = obj_malloc(class, zspage, handle);
1449 newfg = get_fullness_group(class, zspage);
1450 insert_zspage(class, zspage, newfg);
1451 set_zspage_mapping(zspage, class->index, newfg);
1452 record_obj(handle, obj);
1453 atomic_long_add(class->pages_per_zspage,
1454 &pool->pages_allocated);
1455 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1456
1457 /* We completely set up zspage so mark them as movable */
1458 SetZsPageMovable(pool, zspage);
1459 spin_unlock(&class->lock);
1460
1461 return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(struct size_class *class, unsigned long obj)
1466{
1467 struct link_free *link;
1468 struct zspage *zspage;
1469 struct page *f_page;
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
1472 void *vaddr;
1473
1474 obj_to_location(obj, &f_page, &f_objidx);
1475 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1476 zspage = get_zspage(f_page);
1477
1478 vaddr = kmap_atomic(f_page);
1479
1480 /* Insert this object in containing zspage's freelist */
1481 link = (struct link_free *)(vaddr + f_offset);
1482 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1483 kunmap_atomic(vaddr);
1484 set_freeobj(zspage, f_objidx);
1485 mod_zspage_inuse(zspage, -1);
1486 zs_stat_dec(class, OBJ_USED, 1);
1487}
1488
1489void zs_free(struct zs_pool *pool, unsigned long handle)
1490{
1491 struct zspage *zspage;
1492 struct page *f_page;
1493 unsigned long obj;
1494 unsigned int f_objidx;
1495 int class_idx;
1496 struct size_class *class;
1497 enum fullness_group fullness;
1498 bool isolated;
1499
1500 if (unlikely(!handle))
1501 return;
1502
1503 pin_tag(handle);
1504 obj = handle_to_obj(handle);
1505 obj_to_location(obj, &f_page, &f_objidx);
1506 zspage = get_zspage(f_page);
1507
1508 migrate_read_lock(zspage);
1509
1510 get_zspage_mapping(zspage, &class_idx, &fullness);
1511 class = pool->size_class[class_idx];
1512
1513 spin_lock(&class->lock);
1514 obj_free(class, obj);
1515 fullness = fix_fullness_group(class, zspage);
1516 if (fullness != ZS_EMPTY) {
1517 migrate_read_unlock(zspage);
1518 goto out;
1519 }
1520
1521 isolated = is_zspage_isolated(zspage);
1522 migrate_read_unlock(zspage);
1523 /* If zspage is isolated, zs_page_putback will free the zspage */
1524 if (likely(!isolated))
1525 free_zspage(pool, class, zspage);
1526out:
1527
1528 spin_unlock(&class->lock);
1529 unpin_tag(handle);
1530 cache_free_handle(pool, handle);
1531}
1532EXPORT_SYMBOL_GPL(zs_free);
1533
1534static void zs_object_copy(struct size_class *class, unsigned long dst,
1535 unsigned long src)
1536{
1537 struct page *s_page, *d_page;
1538 unsigned int s_objidx, d_objidx;
1539 unsigned long s_off, d_off;
1540 void *s_addr, *d_addr;
1541 int s_size, d_size, size;
1542 int written = 0;
1543
1544 s_size = d_size = class->size;
1545
1546 obj_to_location(src, &s_page, &s_objidx);
1547 obj_to_location(dst, &d_page, &d_objidx);
1548
1549 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1550 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1551
1552 if (s_off + class->size > PAGE_SIZE)
1553 s_size = PAGE_SIZE - s_off;
1554
1555 if (d_off + class->size > PAGE_SIZE)
1556 d_size = PAGE_SIZE - d_off;
1557
1558 s_addr = kmap_atomic(s_page);
1559 d_addr = kmap_atomic(d_page);
1560
1561 while (1) {
1562 size = min(s_size, d_size);
1563 memcpy(d_addr + d_off, s_addr + s_off, size);
1564 written += size;
1565
1566 if (written == class->size)
1567 break;
1568
1569 s_off += size;
1570 s_size -= size;
1571 d_off += size;
1572 d_size -= size;
1573
1574 if (s_off >= PAGE_SIZE) {
1575 kunmap_atomic(d_addr);
1576 kunmap_atomic(s_addr);
1577 s_page = get_next_page(s_page);
1578 s_addr = kmap_atomic(s_page);
1579 d_addr = kmap_atomic(d_page);
1580 s_size = class->size - written;
1581 s_off = 0;
1582 }
1583
1584 if (d_off >= PAGE_SIZE) {
1585 kunmap_atomic(d_addr);
1586 d_page = get_next_page(d_page);
1587 d_addr = kmap_atomic(d_page);
1588 d_size = class->size - written;
1589 d_off = 0;
1590 }
1591 }
1592
1593 kunmap_atomic(d_addr);
1594 kunmap_atomic(s_addr);
1595}
1596
1597/*
1598 * Find alloced object in zspage from index object and
1599 * return handle.
1600 */
1601static unsigned long find_alloced_obj(struct size_class *class,
1602 struct page *page, int *obj_idx)
1603{
1604 unsigned long head;
1605 int offset = 0;
1606 int index = *obj_idx;
1607 unsigned long handle = 0;
1608 void *addr = kmap_atomic(page);
1609
1610 offset = get_first_obj_offset(page);
1611 offset += class->size * index;
1612
1613 while (offset < PAGE_SIZE) {
1614 head = obj_to_head(page, addr + offset);
1615 if (head & OBJ_ALLOCATED_TAG) {
1616 handle = head & ~OBJ_ALLOCATED_TAG;
1617 if (trypin_tag(handle))
1618 break;
1619 handle = 0;
1620 }
1621
1622 offset += class->size;
1623 index++;
1624 }
1625
1626 kunmap_atomic(addr);
1627
1628 *obj_idx = index;
1629
1630 return handle;
1631}
1632
1633struct zs_compact_control {
1634 /* Source spage for migration which could be a subpage of zspage */
1635 struct page *s_page;
1636 /* Destination page for migration which should be a first page
1637 * of zspage. */
1638 struct page *d_page;
1639 /* Starting object index within @s_page which used for live object
1640 * in the subpage. */
1641 int obj_idx;
1642};
1643
1644static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1645 struct zs_compact_control *cc)
1646{
1647 unsigned long used_obj, free_obj;
1648 unsigned long handle;
1649 struct page *s_page = cc->s_page;
1650 struct page *d_page = cc->d_page;
1651 int obj_idx = cc->obj_idx;
1652 int ret = 0;
1653
1654 while (1) {
1655 handle = find_alloced_obj(class, s_page, &obj_idx);
1656 if (!handle) {
1657 s_page = get_next_page(s_page);
1658 if (!s_page)
1659 break;
1660 obj_idx = 0;
1661 continue;
1662 }
1663
1664 /* Stop if there is no more space */
1665 if (zspage_full(class, get_zspage(d_page))) {
1666 unpin_tag(handle);
1667 ret = -ENOMEM;
1668 break;
1669 }
1670
1671 used_obj = handle_to_obj(handle);
1672 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1673 zs_object_copy(class, free_obj, used_obj);
1674 obj_idx++;
1675 /*
1676 * record_obj updates handle's value to free_obj and it will
1677 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1678 * breaks synchronization using pin_tag(e,g, zs_free) so
1679 * let's keep the lock bit.
1680 */
1681 free_obj |= BIT(HANDLE_PIN_BIT);
1682 record_obj(handle, free_obj);
1683 unpin_tag(handle);
1684 obj_free(class, used_obj);
1685 }
1686
1687 /* Remember last position in this iteration */
1688 cc->s_page = s_page;
1689 cc->obj_idx = obj_idx;
1690
1691 return ret;
1692}
1693
1694static struct zspage *isolate_zspage(struct size_class *class, bool source)
1695{
1696 int i;
1697 struct zspage *zspage;
1698 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1699
1700 if (!source) {
1701 fg[0] = ZS_ALMOST_FULL;
1702 fg[1] = ZS_ALMOST_EMPTY;
1703 }
1704
1705 for (i = 0; i < 2; i++) {
1706 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1707 struct zspage, list);
1708 if (zspage) {
1709 VM_BUG_ON(is_zspage_isolated(zspage));
1710 remove_zspage(class, zspage, fg[i]);
1711 return zspage;
1712 }
1713 }
1714
1715 return zspage;
1716}
1717
1718/*
1719 * putback_zspage - add @zspage into right class's fullness list
1720 * @class: destination class
1721 * @zspage: target page
1722 *
1723 * Return @zspage's fullness_group
1724 */
1725static enum fullness_group putback_zspage(struct size_class *class,
1726 struct zspage *zspage)
1727{
1728 enum fullness_group fullness;
1729
1730 VM_BUG_ON(is_zspage_isolated(zspage));
1731
1732 fullness = get_fullness_group(class, zspage);
1733 insert_zspage(class, zspage, fullness);
1734 set_zspage_mapping(zspage, class->index, fullness);
1735
1736 return fullness;
1737}
1738
1739#ifdef CONFIG_COMPACTION
1740/*
1741 * To prevent zspage destroy during migration, zspage freeing should
1742 * hold locks of all pages in the zspage.
1743 */
1744static void lock_zspage(struct zspage *zspage)
1745{
1746 struct page *page = get_first_page(zspage);
1747
1748 do {
1749 lock_page(page);
1750 } while ((page = get_next_page(page)) != NULL);
1751}
1752
1753static int zs_init_fs_context(struct fs_context *fc)
1754{
1755 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1756}
1757
1758static struct file_system_type zsmalloc_fs = {
1759 .name = "zsmalloc",
1760 .init_fs_context = zs_init_fs_context,
1761 .kill_sb = kill_anon_super,
1762};
1763
1764static int zsmalloc_mount(void)
1765{
1766 int ret = 0;
1767
1768 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1769 if (IS_ERR(zsmalloc_mnt))
1770 ret = PTR_ERR(zsmalloc_mnt);
1771
1772 return ret;
1773}
1774
1775static void zsmalloc_unmount(void)
1776{
1777 kern_unmount(zsmalloc_mnt);
1778}
1779
1780static void migrate_lock_init(struct zspage *zspage)
1781{
1782 rwlock_init(&zspage->lock);
1783}
1784
1785static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1786{
1787 read_lock(&zspage->lock);
1788}
1789
1790static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1791{
1792 read_unlock(&zspage->lock);
1793}
1794
1795static void migrate_write_lock(struct zspage *zspage)
1796{
1797 write_lock(&zspage->lock);
1798}
1799
1800static void migrate_write_unlock(struct zspage *zspage)
1801{
1802 write_unlock(&zspage->lock);
1803}
1804
1805/* Number of isolated subpage for *page migration* in this zspage */
1806static void inc_zspage_isolation(struct zspage *zspage)
1807{
1808 zspage->isolated++;
1809}
1810
1811static void dec_zspage_isolation(struct zspage *zspage)
1812{
1813 zspage->isolated--;
1814}
1815
1816static void putback_zspage_deferred(struct zs_pool *pool,
1817 struct size_class *class,
1818 struct zspage *zspage)
1819{
1820 enum fullness_group fg;
1821
1822 fg = putback_zspage(class, zspage);
1823 if (fg == ZS_EMPTY)
1824 schedule_work(&pool->free_work);
1825
1826}
1827
1828static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1829{
1830 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1831 atomic_long_dec(&pool->isolated_pages);
1832 /*
1833 * There's no possibility of racing, since wait_for_isolated_drain()
1834 * checks the isolated count under &class->lock after enqueuing
1835 * on migration_wait.
1836 */
1837 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1838 wake_up_all(&pool->migration_wait);
1839}
1840
1841static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1842 struct page *newpage, struct page *oldpage)
1843{
1844 struct page *page;
1845 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1846 int idx = 0;
1847
1848 page = get_first_page(zspage);
1849 do {
1850 if (page == oldpage)
1851 pages[idx] = newpage;
1852 else
1853 pages[idx] = page;
1854 idx++;
1855 } while ((page = get_next_page(page)) != NULL);
1856
1857 create_page_chain(class, zspage, pages);
1858 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1859 if (unlikely(PageHugeObject(oldpage)))
1860 newpage->index = oldpage->index;
1861 __SetPageMovable(newpage, page_mapping(oldpage));
1862}
1863
1864static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1865{
1866 struct zs_pool *pool;
1867 struct size_class *class;
1868 int class_idx;
1869 enum fullness_group fullness;
1870 struct zspage *zspage;
1871 struct address_space *mapping;
1872
1873 /*
1874 * Page is locked so zspage couldn't be destroyed. For detail, look at
1875 * lock_zspage in free_zspage.
1876 */
1877 VM_BUG_ON_PAGE(!PageMovable(page), page);
1878 VM_BUG_ON_PAGE(PageIsolated(page), page);
1879
1880 zspage = get_zspage(page);
1881
1882 /*
1883 * Without class lock, fullness could be stale while class_idx is okay
1884 * because class_idx is constant unless page is freed so we should get
1885 * fullness again under class lock.
1886 */
1887 get_zspage_mapping(zspage, &class_idx, &fullness);
1888 mapping = page_mapping(page);
1889 pool = mapping->private_data;
1890 class = pool->size_class[class_idx];
1891
1892 spin_lock(&class->lock);
1893 if (get_zspage_inuse(zspage) == 0) {
1894 spin_unlock(&class->lock);
1895 return false;
1896 }
1897
1898 /* zspage is isolated for object migration */
1899 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1900 spin_unlock(&class->lock);
1901 return false;
1902 }
1903
1904 /*
1905 * If this is first time isolation for the zspage, isolate zspage from
1906 * size_class to prevent further object allocation from the zspage.
1907 */
1908 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1909 get_zspage_mapping(zspage, &class_idx, &fullness);
1910 atomic_long_inc(&pool->isolated_pages);
1911 remove_zspage(class, zspage, fullness);
1912 }
1913
1914 inc_zspage_isolation(zspage);
1915 spin_unlock(&class->lock);
1916
1917 return true;
1918}
1919
1920static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1921 struct page *page, enum migrate_mode mode)
1922{
1923 struct zs_pool *pool;
1924 struct size_class *class;
1925 int class_idx;
1926 enum fullness_group fullness;
1927 struct zspage *zspage;
1928 struct page *dummy;
1929 void *s_addr, *d_addr, *addr;
1930 int offset, pos;
1931 unsigned long handle, head;
1932 unsigned long old_obj, new_obj;
1933 unsigned int obj_idx;
1934 int ret = -EAGAIN;
1935
1936 /*
1937 * We cannot support the _NO_COPY case here, because copy needs to
1938 * happen under the zs lock, which does not work with
1939 * MIGRATE_SYNC_NO_COPY workflow.
1940 */
1941 if (mode == MIGRATE_SYNC_NO_COPY)
1942 return -EINVAL;
1943
1944 VM_BUG_ON_PAGE(!PageMovable(page), page);
1945 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1946
1947 zspage = get_zspage(page);
1948
1949 /* Concurrent compactor cannot migrate any subpage in zspage */
1950 migrate_write_lock(zspage);
1951 get_zspage_mapping(zspage, &class_idx, &fullness);
1952 pool = mapping->private_data;
1953 class = pool->size_class[class_idx];
1954 offset = get_first_obj_offset(page);
1955
1956 spin_lock(&class->lock);
1957 if (!get_zspage_inuse(zspage)) {
1958 /*
1959 * Set "offset" to end of the page so that every loops
1960 * skips unnecessary object scanning.
1961 */
1962 offset = PAGE_SIZE;
1963 }
1964
1965 pos = offset;
1966 s_addr = kmap_atomic(page);
1967 while (pos < PAGE_SIZE) {
1968 head = obj_to_head(page, s_addr + pos);
1969 if (head & OBJ_ALLOCATED_TAG) {
1970 handle = head & ~OBJ_ALLOCATED_TAG;
1971 if (!trypin_tag(handle))
1972 goto unpin_objects;
1973 }
1974 pos += class->size;
1975 }
1976
1977 /*
1978 * Here, any user cannot access all objects in the zspage so let's move.
1979 */
1980 d_addr = kmap_atomic(newpage);
1981 memcpy(d_addr, s_addr, PAGE_SIZE);
1982 kunmap_atomic(d_addr);
1983
1984 for (addr = s_addr + offset; addr < s_addr + pos;
1985 addr += class->size) {
1986 head = obj_to_head(page, addr);
1987 if (head & OBJ_ALLOCATED_TAG) {
1988 handle = head & ~OBJ_ALLOCATED_TAG;
1989 BUG_ON(!testpin_tag(handle));
1990
1991 old_obj = handle_to_obj(handle);
1992 obj_to_location(old_obj, &dummy, &obj_idx);
1993 new_obj = (unsigned long)location_to_obj(newpage,
1994 obj_idx);
1995 new_obj |= BIT(HANDLE_PIN_BIT);
1996 record_obj(handle, new_obj);
1997 }
1998 }
1999
2000 replace_sub_page(class, zspage, newpage, page);
2001 get_page(newpage);
2002
2003 dec_zspage_isolation(zspage);
2004
2005 /*
2006 * Page migration is done so let's putback isolated zspage to
2007 * the list if @page is final isolated subpage in the zspage.
2008 */
2009 if (!is_zspage_isolated(zspage)) {
2010 /*
2011 * We cannot race with zs_destroy_pool() here because we wait
2012 * for isolation to hit zero before we start destroying.
2013 * Also, we ensure that everyone can see pool->destroying before
2014 * we start waiting.
2015 */
2016 putback_zspage_deferred(pool, class, zspage);
2017 zs_pool_dec_isolated(pool);
2018 }
2019
2020 if (page_zone(newpage) != page_zone(page)) {
2021 dec_zone_page_state(page, NR_ZSPAGES);
2022 inc_zone_page_state(newpage, NR_ZSPAGES);
2023 }
2024
2025 reset_page(page);
2026 put_page(page);
2027 page = newpage;
2028
2029 ret = MIGRATEPAGE_SUCCESS;
2030unpin_objects:
2031 for (addr = s_addr + offset; addr < s_addr + pos;
2032 addr += class->size) {
2033 head = obj_to_head(page, addr);
2034 if (head & OBJ_ALLOCATED_TAG) {
2035 handle = head & ~OBJ_ALLOCATED_TAG;
2036 BUG_ON(!testpin_tag(handle));
2037 unpin_tag(handle);
2038 }
2039 }
2040 kunmap_atomic(s_addr);
2041 spin_unlock(&class->lock);
2042 migrate_write_unlock(zspage);
2043
2044 return ret;
2045}
2046
2047static void zs_page_putback(struct page *page)
2048{
2049 struct zs_pool *pool;
2050 struct size_class *class;
2051 int class_idx;
2052 enum fullness_group fg;
2053 struct address_space *mapping;
2054 struct zspage *zspage;
2055
2056 VM_BUG_ON_PAGE(!PageMovable(page), page);
2057 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2058
2059 zspage = get_zspage(page);
2060 get_zspage_mapping(zspage, &class_idx, &fg);
2061 mapping = page_mapping(page);
2062 pool = mapping->private_data;
2063 class = pool->size_class[class_idx];
2064
2065 spin_lock(&class->lock);
2066 dec_zspage_isolation(zspage);
2067 if (!is_zspage_isolated(zspage)) {
2068 /*
2069 * Due to page_lock, we cannot free zspage immediately
2070 * so let's defer.
2071 */
2072 putback_zspage_deferred(pool, class, zspage);
2073 zs_pool_dec_isolated(pool);
2074 }
2075 spin_unlock(&class->lock);
2076}
2077
2078static const struct address_space_operations zsmalloc_aops = {
2079 .isolate_page = zs_page_isolate,
2080 .migratepage = zs_page_migrate,
2081 .putback_page = zs_page_putback,
2082};
2083
2084static int zs_register_migration(struct zs_pool *pool)
2085{
2086 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2087 if (IS_ERR(pool->inode)) {
2088 pool->inode = NULL;
2089 return 1;
2090 }
2091
2092 pool->inode->i_mapping->private_data = pool;
2093 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2094 return 0;
2095}
2096
2097static bool pool_isolated_are_drained(struct zs_pool *pool)
2098{
2099 return atomic_long_read(&pool->isolated_pages) == 0;
2100}
2101
2102/* Function for resolving migration */
2103static void wait_for_isolated_drain(struct zs_pool *pool)
2104{
2105
2106 /*
2107 * We're in the process of destroying the pool, so there are no
2108 * active allocations. zs_page_isolate() fails for completely free
2109 * zspages, so we need only wait for the zs_pool's isolated
2110 * count to hit zero.
2111 */
2112 wait_event(pool->migration_wait,
2113 pool_isolated_are_drained(pool));
2114}
2115
2116static void zs_unregister_migration(struct zs_pool *pool)
2117{
2118 pool->destroying = true;
2119 /*
2120 * We need a memory barrier here to ensure global visibility of
2121 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2122 * case we don't care, or it will be > 0 and pool->destroying will
2123 * ensure that we wake up once isolation hits 0.
2124 */
2125 smp_mb();
2126 wait_for_isolated_drain(pool); /* This can block */
2127 flush_work(&pool->free_work);
2128 iput(pool->inode);
2129}
2130
2131/*
2132 * Caller should hold page_lock of all pages in the zspage
2133 * In here, we cannot use zspage meta data.
2134 */
2135static void async_free_zspage(struct work_struct *work)
2136{
2137 int i;
2138 struct size_class *class;
2139 unsigned int class_idx;
2140 enum fullness_group fullness;
2141 struct zspage *zspage, *tmp;
2142 LIST_HEAD(free_pages);
2143 struct zs_pool *pool = container_of(work, struct zs_pool,
2144 free_work);
2145
2146 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2147 class = pool->size_class[i];
2148 if (class->index != i)
2149 continue;
2150
2151 spin_lock(&class->lock);
2152 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2153 spin_unlock(&class->lock);
2154 }
2155
2156
2157 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2158 list_del(&zspage->list);
2159 lock_zspage(zspage);
2160
2161 get_zspage_mapping(zspage, &class_idx, &fullness);
2162 VM_BUG_ON(fullness != ZS_EMPTY);
2163 class = pool->size_class[class_idx];
2164 spin_lock(&class->lock);
2165 __free_zspage(pool, class, zspage);
2166 spin_unlock(&class->lock);
2167 }
2168};
2169
2170static void kick_deferred_free(struct zs_pool *pool)
2171{
2172 schedule_work(&pool->free_work);
2173}
2174
2175static void init_deferred_free(struct zs_pool *pool)
2176{
2177 INIT_WORK(&pool->free_work, async_free_zspage);
2178}
2179
2180static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2181{
2182 struct page *page = get_first_page(zspage);
2183
2184 do {
2185 WARN_ON(!trylock_page(page));
2186 __SetPageMovable(page, pool->inode->i_mapping);
2187 unlock_page(page);
2188 } while ((page = get_next_page(page)) != NULL);
2189}
2190#endif
2191
2192/*
2193 *
2194 * Based on the number of unused allocated objects calculate
2195 * and return the number of pages that we can free.
2196 */
2197static unsigned long zs_can_compact(struct size_class *class)
2198{
2199 unsigned long obj_wasted;
2200 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2201 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2202
2203 if (obj_allocated <= obj_used)
2204 return 0;
2205
2206 obj_wasted = obj_allocated - obj_used;
2207 obj_wasted /= class->objs_per_zspage;
2208
2209 return obj_wasted * class->pages_per_zspage;
2210}
2211
2212static unsigned long __zs_compact(struct zs_pool *pool,
2213 struct size_class *class)
2214{
2215 struct zs_compact_control cc;
2216 struct zspage *src_zspage;
2217 struct zspage *dst_zspage = NULL;
2218 unsigned long pages_freed = 0;
2219
2220 spin_lock(&class->lock);
2221 while ((src_zspage = isolate_zspage(class, true))) {
2222
2223 if (!zs_can_compact(class))
2224 break;
2225
2226 cc.obj_idx = 0;
2227 cc.s_page = get_first_page(src_zspage);
2228
2229 while ((dst_zspage = isolate_zspage(class, false))) {
2230 cc.d_page = get_first_page(dst_zspage);
2231 /*
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
2234 */
2235 if (!migrate_zspage(pool, class, &cc))
2236 break;
2237
2238 putback_zspage(class, dst_zspage);
2239 }
2240
2241 /* Stop if we couldn't find slot */
2242 if (dst_zspage == NULL)
2243 break;
2244
2245 putback_zspage(class, dst_zspage);
2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 free_zspage(pool, class, src_zspage);
2248 pages_freed += class->pages_per_zspage;
2249 }
2250 spin_unlock(&class->lock);
2251 cond_resched();
2252 spin_lock(&class->lock);
2253 }
2254
2255 if (src_zspage)
2256 putback_zspage(class, src_zspage);
2257
2258 spin_unlock(&class->lock);
2259
2260 return pages_freed;
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265 int i;
2266 struct size_class *class;
2267 unsigned long pages_freed = 0;
2268
2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270 class = pool->size_class[i];
2271 if (!class)
2272 continue;
2273 if (class->index != i)
2274 continue;
2275 pages_freed += __zs_compact(pool, class);
2276 }
2277 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2278
2279 return pages_freed;
2280}
2281EXPORT_SYMBOL_GPL(zs_compact);
2282
2283void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2284{
2285 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2286}
2287EXPORT_SYMBOL_GPL(zs_pool_stats);
2288
2289static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2290 struct shrink_control *sc)
2291{
2292 unsigned long pages_freed;
2293 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2294 shrinker);
2295
2296 /*
2297 * Compact classes and calculate compaction delta.
2298 * Can run concurrently with a manually triggered
2299 * (by user) compaction.
2300 */
2301 pages_freed = zs_compact(pool);
2302
2303 return pages_freed ? pages_freed : SHRINK_STOP;
2304}
2305
2306static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307 struct shrink_control *sc)
2308{
2309 int i;
2310 struct size_class *class;
2311 unsigned long pages_to_free = 0;
2312 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313 shrinker);
2314
2315 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316 class = pool->size_class[i];
2317 if (!class)
2318 continue;
2319 if (class->index != i)
2320 continue;
2321
2322 pages_to_free += zs_can_compact(class);
2323 }
2324
2325 return pages_to_free;
2326}
2327
2328static void zs_unregister_shrinker(struct zs_pool *pool)
2329{
2330 unregister_shrinker(&pool->shrinker);
2331}
2332
2333static int zs_register_shrinker(struct zs_pool *pool)
2334{
2335 pool->shrinker.scan_objects = zs_shrinker_scan;
2336 pool->shrinker.count_objects = zs_shrinker_count;
2337 pool->shrinker.batch = 0;
2338 pool->shrinker.seeks = DEFAULT_SEEKS;
2339
2340 return register_shrinker(&pool->shrinker);
2341}
2342
2343/**
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2346 *
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2349 *
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2352 */
2353struct zs_pool *zs_create_pool(const char *name)
2354{
2355 int i;
2356 struct zs_pool *pool;
2357 struct size_class *prev_class = NULL;
2358
2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 if (!pool)
2361 return NULL;
2362
2363 init_deferred_free(pool);
2364
2365 pool->name = kstrdup(name, GFP_KERNEL);
2366 if (!pool->name)
2367 goto err;
2368
2369#ifdef CONFIG_COMPACTION
2370 init_waitqueue_head(&pool->migration_wait);
2371#endif
2372
2373 if (create_cache(pool))
2374 goto err;
2375
2376 /*
2377 * Iterate reversely, because, size of size_class that we want to use
2378 * for merging should be larger or equal to current size.
2379 */
2380 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381 int size;
2382 int pages_per_zspage;
2383 int objs_per_zspage;
2384 struct size_class *class;
2385 int fullness = 0;
2386
2387 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2388 if (size > ZS_MAX_ALLOC_SIZE)
2389 size = ZS_MAX_ALLOC_SIZE;
2390 pages_per_zspage = get_pages_per_zspage(size);
2391 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2392
2393 /*
2394 * We iterate from biggest down to smallest classes,
2395 * so huge_class_size holds the size of the first huge
2396 * class. Any object bigger than or equal to that will
2397 * endup in the huge class.
2398 */
2399 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2400 !huge_class_size) {
2401 huge_class_size = size;
2402 /*
2403 * The object uses ZS_HANDLE_SIZE bytes to store the
2404 * handle. We need to subtract it, because zs_malloc()
2405 * unconditionally adds handle size before it performs
2406 * size class search - so object may be smaller than
2407 * huge class size, yet it still can end up in the huge
2408 * class because it grows by ZS_HANDLE_SIZE extra bytes
2409 * right before class lookup.
2410 */
2411 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2412 }
2413
2414 /*
2415 * size_class is used for normal zsmalloc operation such
2416 * as alloc/free for that size. Although it is natural that we
2417 * have one size_class for each size, there is a chance that we
2418 * can get more memory utilization if we use one size_class for
2419 * many different sizes whose size_class have same
2420 * characteristics. So, we makes size_class point to
2421 * previous size_class if possible.
2422 */
2423 if (prev_class) {
2424 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2425 pool->size_class[i] = prev_class;
2426 continue;
2427 }
2428 }
2429
2430 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2431 if (!class)
2432 goto err;
2433
2434 class->size = size;
2435 class->index = i;
2436 class->pages_per_zspage = pages_per_zspage;
2437 class->objs_per_zspage = objs_per_zspage;
2438 spin_lock_init(&class->lock);
2439 pool->size_class[i] = class;
2440 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2441 fullness++)
2442 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2443
2444 prev_class = class;
2445 }
2446
2447 /* debug only, don't abort if it fails */
2448 zs_pool_stat_create(pool, name);
2449
2450 if (zs_register_migration(pool))
2451 goto err;
2452
2453 /*
2454 * Not critical since shrinker is only used to trigger internal
2455 * defragmentation of the pool which is pretty optional thing. If
2456 * registration fails we still can use the pool normally and user can
2457 * trigger compaction manually. Thus, ignore return code.
2458 */
2459 zs_register_shrinker(pool);
2460
2461 return pool;
2462
2463err:
2464 zs_destroy_pool(pool);
2465 return NULL;
2466}
2467EXPORT_SYMBOL_GPL(zs_create_pool);
2468
2469void zs_destroy_pool(struct zs_pool *pool)
2470{
2471 int i;
2472
2473 zs_unregister_shrinker(pool);
2474 zs_unregister_migration(pool);
2475 zs_pool_stat_destroy(pool);
2476
2477 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2478 int fg;
2479 struct size_class *class = pool->size_class[i];
2480
2481 if (!class)
2482 continue;
2483
2484 if (class->index != i)
2485 continue;
2486
2487 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2488 if (!list_empty(&class->fullness_list[fg])) {
2489 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2490 class->size, fg);
2491 }
2492 }
2493 kfree(class);
2494 }
2495
2496 destroy_cache(pool);
2497 kfree(pool->name);
2498 kfree(pool);
2499}
2500EXPORT_SYMBOL_GPL(zs_destroy_pool);
2501
2502static int __init zs_init(void)
2503{
2504 int ret;
2505
2506 ret = zsmalloc_mount();
2507 if (ret)
2508 goto out;
2509
2510 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2511 zs_cpu_prepare, zs_cpu_dead);
2512 if (ret)
2513 goto hp_setup_fail;
2514
2515#ifdef CONFIG_ZPOOL
2516 zpool_register_driver(&zs_zpool_driver);
2517#endif
2518
2519 zs_stat_init();
2520
2521 return 0;
2522
2523hp_setup_fail:
2524 zsmalloc_unmount();
2525out:
2526 return ret;
2527}
2528
2529static void __exit zs_exit(void)
2530{
2531#ifdef CONFIG_ZPOOL
2532 zpool_unregister_driver(&zs_zpool_driver);
2533#endif
2534 zsmalloc_unmount();
2535 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2536
2537 zs_stat_exit();
2538}
2539
2540module_init(zs_init);
2541module_exit(zs_exit);
2542
2543MODULE_LICENSE("Dual BSD/GPL");
2544MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");