Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to the first component (0-order) page
  20 *	page->index (union with page->freelist): offset of the first object
  21 *		starting in this page. For the first page, this is
  22 *		always 0, so we use this field (aka freelist) to point
  23 *		to the first free object in zspage.
  24 *	page->lru: links together all component pages (except the first page)
  25 *		of a zspage
  26 *
  27 *	For _first_ page only:
  28 *
  29 *	page->private: refers to the component page after the first page
  30 *		If the page is first_page for huge object, it stores handle.
  31 *		Look at size_class->huge.
  32 *	page->freelist: points to the first free object in zspage.
  33 *		Free objects are linked together using in-place
  34 *		metadata.
  35 *	page->objects: maximum number of objects we can store in this
  36 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
  37 *	page->lru: links together first pages of various zspages.
  38 *		Basically forming list of zspages in a fullness group.
  39 *	page->mapping: class index and fullness group of the zspage
  40 *	page->inuse: the number of objects that are used in this zspage
  41 *
  42 * Usage of struct page flags:
  43 *	PG_private: identifies the first component page
  44 *	PG_private2: identifies the last component page
  45 *
  46 */
  47
 
 
  48#include <linux/module.h>
  49#include <linux/kernel.h>
  50#include <linux/sched.h>
 
  51#include <linux/bitops.h>
  52#include <linux/errno.h>
  53#include <linux/highmem.h>
  54#include <linux/string.h>
  55#include <linux/slab.h>
 
  56#include <asm/tlbflush.h>
  57#include <asm/pgtable.h>
  58#include <linux/cpumask.h>
  59#include <linux/cpu.h>
  60#include <linux/vmalloc.h>
  61#include <linux/preempt.h>
  62#include <linux/spinlock.h>
 
  63#include <linux/types.h>
  64#include <linux/debugfs.h>
  65#include <linux/zsmalloc.h>
  66#include <linux/zpool.h>
 
 
 
 
 
 
 
 
  67
  68/*
  69 * This must be power of 2 and greater than of equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN		8
  75
  76/*
  77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  79 */
  80#define ZS_MAX_ZSPAGE_ORDER 2
  81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  82
  83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  84
  85/*
  86 * Object location (<PFN>, <obj_idx>) is encoded as
  87 * as single (unsigned long) handle value.
  88 *
  89 * Note that object index <obj_idx> is relative to system
  90 * page <PFN> it is stored in, so for each sub-page belonging
  91 * to a zspage, obj_idx starts with 0.
  92 *
  93 * This is made more complicated by various memory models and PAE.
  94 */
  95
  96#ifndef MAX_PHYSMEM_BITS
  97#ifdef CONFIG_HIGHMEM64G
  98#define MAX_PHYSMEM_BITS 36
  99#else /* !CONFIG_HIGHMEM64G */
 100/*
 101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 102 * be PAGE_SHIFT
 103 */
 104#define MAX_PHYSMEM_BITS BITS_PER_LONG
 105#endif
 106#endif
 107#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
 
 108
 109/*
 110 * Memory for allocating for handle keeps object position by
 111 * encoding <page, obj_idx> and the encoded value has a room
 112 * in least bit(ie, look at obj_to_location).
 113 * We use the bit to synchronize between object access by
 114 * user and migration.
 115 */
 116#define HANDLE_PIN_BIT	0
 117
 118/*
 119 * Head in allocated object should have OBJ_ALLOCATED_TAG
 120 * to identify the object was allocated or not.
 121 * It's okay to add the status bit in the least bit because
 122 * header keeps handle which is 4byte-aligned address so we
 123 * have room for two bit at least.
 124 */
 125#define OBJ_ALLOCATED_TAG 1
 126#define OBJ_TAG_BITS 1
 127#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 128#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 129
 
 
 
 
 
 130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 132#define ZS_MIN_ALLOC_SIZE \
 133	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 134/* each chunk includes extra space to keep handle */
 135#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 136
 137/*
 138 * On systems with 4K page size, this gives 255 size classes! There is a
 139 * trader-off here:
 140 *  - Large number of size classes is potentially wasteful as free page are
 141 *    spread across these classes
 142 *  - Small number of size classes causes large internal fragmentation
 143 *  - Probably its better to use specific size classes (empirically
 144 *    determined). NOTE: all those class sizes must be set as multiple of
 145 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 146 *
 147 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 148 *  (reason above)
 149 */
 150#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
 
 
 151
 152/*
 153 * We do not maintain any list for completely empty or full pages
 154 */
 155enum fullness_group {
 156	ZS_ALMOST_FULL,
 157	ZS_ALMOST_EMPTY,
 158	_ZS_NR_FULLNESS_GROUPS,
 159
 160	ZS_EMPTY,
 161	ZS_FULL
 
 
 
 162};
 163
 164enum zs_stat_type {
 
 
 
 
 165	OBJ_ALLOCATED,
 166	OBJ_USED,
 167	CLASS_ALMOST_FULL,
 168	CLASS_ALMOST_EMPTY,
 169};
 170
 171#ifdef CONFIG_ZSMALLOC_STAT
 172#define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1)
 173#else
 174#define NR_ZS_STAT_TYPE	(OBJ_USED + 1)
 175#endif
 176
 177struct zs_size_stat {
 178	unsigned long objs[NR_ZS_STAT_TYPE];
 179};
 180
 181#ifdef CONFIG_ZSMALLOC_STAT
 182static struct dentry *zs_stat_root;
 183#endif
 184
 185/*
 186 * number of size_classes
 187 */
 188static int zs_size_classes;
 189
 190/*
 191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 192 *	n <= N / f, where
 193 * n = number of allocated objects
 194 * N = total number of objects zspage can store
 195 * f = fullness_threshold_frac
 196 *
 197 * Similarly, we assign zspage to:
 198 *	ZS_ALMOST_FULL	when n > N / f
 199 *	ZS_EMPTY	when n == 0
 200 *	ZS_FULL		when n == N
 201 *
 202 * (see: fix_fullness_group())
 203 */
 204static const int fullness_threshold_frac = 4;
 
 205
 206struct size_class {
 207	spinlock_t lock;
 208	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 209	/*
 210	 * Size of objects stored in this class. Must be multiple
 211	 * of ZS_ALIGN.
 212	 */
 213	int size;
 214	unsigned int index;
 215
 216	struct zs_size_stat stats;
 217
 218	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 219	int pages_per_zspage;
 220	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 221	bool huge;
 
 222};
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, first_page->freelist gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231	union {
 232		/*
 233		 * Position of next free chunk (encodes <PFN, obj_idx>)
 234		 * It's valid for non-allocated object
 235		 */
 236		void *next;
 237		/*
 238		 * Handle of allocated object.
 239		 */
 240		unsigned long handle;
 241	};
 242};
 243
 244struct zs_pool {
 245	const char *name;
 246
 247	struct size_class **size_class;
 248	struct kmem_cache *handle_cachep;
 
 249
 250	gfp_t flags;	/* allocation flags used when growing pool */
 251	atomic_long_t pages_allocated;
 252
 253	struct zs_pool_stats stats;
 254
 255	/* Compact classes */
 256	struct shrinker shrinker;
 257	/*
 258	 * To signify that register_shrinker() was successful
 259	 * and unregister_shrinker() will not Oops.
 260	 */
 261	bool shrinker_enabled;
 262#ifdef CONFIG_ZSMALLOC_STAT
 263	struct dentry *stat_dentry;
 264#endif
 
 
 
 
 
 
 
 
 265};
 266
 267/*
 268 * A zspage's class index and fullness group
 269 * are encoded in its (first)page->mapping
 270 */
 271#define CLASS_IDX_BITS	28
 272#define FULLNESS_BITS	4
 273#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
 274#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
 
 
 
 
 
 
 
 275
 276struct mapping_area {
 277#ifdef CONFIG_PGTABLE_MAPPING
 278	struct vm_struct *vm; /* vm area for mapping object that span pages */
 279#else
 280	char *vm_buf; /* copy buffer for objects that span pages */
 281#endif
 282	char *vm_addr; /* address of kmap_atomic()'ed pages */
 283	enum zs_mapmode vm_mm; /* mapping mode */
 284};
 285
 286static int create_handle_cache(struct zs_pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287{
 288	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 289					0, 0, NULL);
 290	return pool->handle_cachep ? 0 : 1;
 
 
 
 
 
 
 
 
 
 
 
 291}
 292
 293static void destroy_handle_cache(struct zs_pool *pool)
 294{
 295	kmem_cache_destroy(pool->handle_cachep);
 
 296}
 297
 298static unsigned long alloc_handle(struct zs_pool *pool)
 299{
 300	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 301		pool->flags & ~__GFP_HIGHMEM);
 302}
 303
 304static void free_handle(struct zs_pool *pool, unsigned long handle)
 305{
 306	kmem_cache_free(pool->handle_cachep, (void *)handle);
 307}
 308
 
 
 
 
 
 
 
 
 
 
 
 309static void record_obj(unsigned long handle, unsigned long obj)
 310{
 311	/*
 312	 * lsb of @obj represents handle lock while other bits
 313	 * represent object value the handle is pointing so
 314	 * updating shouldn't do store tearing.
 315	 */
 316	WRITE_ONCE(*(unsigned long *)handle, obj);
 317}
 318
 319/* zpool driver */
 320
 321#ifdef CONFIG_ZPOOL
 322
 323static void *zs_zpool_create(const char *name, gfp_t gfp,
 324			     const struct zpool_ops *zpool_ops,
 325			     struct zpool *zpool)
 326{
 327	return zs_create_pool(name, gfp);
 
 
 
 
 
 328}
 329
 330static void zs_zpool_destroy(void *pool)
 331{
 332	zs_destroy_pool(pool);
 333}
 334
 335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 336			unsigned long *handle)
 337{
 338	*handle = zs_malloc(pool, size);
 339	return *handle ? 0 : -1;
 340}
 341static void zs_zpool_free(void *pool, unsigned long handle)
 342{
 343	zs_free(pool, handle);
 344}
 345
 346static int zs_zpool_shrink(void *pool, unsigned int pages,
 347			unsigned int *reclaimed)
 348{
 349	return -EINVAL;
 350}
 351
 352static void *zs_zpool_map(void *pool, unsigned long handle,
 353			enum zpool_mapmode mm)
 354{
 355	enum zs_mapmode zs_mm;
 356
 357	switch (mm) {
 358	case ZPOOL_MM_RO:
 359		zs_mm = ZS_MM_RO;
 360		break;
 361	case ZPOOL_MM_WO:
 362		zs_mm = ZS_MM_WO;
 363		break;
 364	case ZPOOL_MM_RW: /* fallthru */
 365	default:
 366		zs_mm = ZS_MM_RW;
 367		break;
 368	}
 369
 370	return zs_map_object(pool, handle, zs_mm);
 371}
 372static void zs_zpool_unmap(void *pool, unsigned long handle)
 373{
 374	zs_unmap_object(pool, handle);
 375}
 376
 377static u64 zs_zpool_total_size(void *pool)
 378{
 379	return zs_get_total_pages(pool) << PAGE_SHIFT;
 380}
 381
 382static struct zpool_driver zs_zpool_driver = {
 383	.type =		"zsmalloc",
 384	.owner =	THIS_MODULE,
 385	.create =	zs_zpool_create,
 386	.destroy =	zs_zpool_destroy,
 387	.malloc =	zs_zpool_malloc,
 388	.free =		zs_zpool_free,
 389	.shrink =	zs_zpool_shrink,
 390	.map =		zs_zpool_map,
 391	.unmap =	zs_zpool_unmap,
 392	.total_size =	zs_zpool_total_size,
 393};
 394
 395MODULE_ALIAS("zpool-zsmalloc");
 396#endif /* CONFIG_ZPOOL */
 397
 398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 399{
 400	return pages_per_zspage * PAGE_SIZE / size;
 401}
 402
 403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 405
 406static int is_first_page(struct page *page)
 
 
 
 
 
 407{
 408	return PagePrivate(page);
 409}
 410
 411static int is_last_page(struct page *page)
 
 412{
 413	return PagePrivate2(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415
 416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417				enum fullness_group *fullness)
 418{
 419	unsigned long m;
 420	BUG_ON(!is_first_page(page));
 421
 422	m = (unsigned long)page->mapping;
 423	*fullness = m & FULLNESS_MASK;
 424	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 425}
 426
 427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 
 428				enum fullness_group fullness)
 429{
 430	unsigned long m;
 431	BUG_ON(!is_first_page(page));
 432
 433	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 434			(fullness & FULLNESS_MASK);
 435	page->mapping = (struct address_space *)m;
 436}
 437
 438/*
 439 * zsmalloc divides the pool into various size classes where each
 440 * class maintains a list of zspages where each zspage is divided
 441 * into equal sized chunks. Each allocation falls into one of these
 442 * classes depending on its size. This function returns index of the
 443 * size class which has chunk size big enough to hold the give size.
 444 */
 445static int get_size_class_index(int size)
 446{
 447	int idx = 0;
 448
 449	if (likely(size > ZS_MIN_ALLOC_SIZE))
 450		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 451				ZS_SIZE_CLASS_DELTA);
 452
 453	return min(zs_size_classes - 1, idx);
 454}
 455
 
 456static inline void zs_stat_inc(struct size_class *class,
 457				enum zs_stat_type type, unsigned long cnt)
 458{
 459	if (type < NR_ZS_STAT_TYPE)
 460		class->stats.objs[type] += cnt;
 461}
 462
 
 463static inline void zs_stat_dec(struct size_class *class,
 464				enum zs_stat_type type, unsigned long cnt)
 465{
 466	if (type < NR_ZS_STAT_TYPE)
 467		class->stats.objs[type] -= cnt;
 468}
 469
 
 470static inline unsigned long zs_stat_get(struct size_class *class,
 471				enum zs_stat_type type)
 472{
 473	if (type < NR_ZS_STAT_TYPE)
 474		return class->stats.objs[type];
 475	return 0;
 476}
 477
 478#ifdef CONFIG_ZSMALLOC_STAT
 479
 480static int __init zs_stat_init(void)
 481{
 482	if (!debugfs_initialized())
 483		return -ENODEV;
 
 
 484
 485	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 486	if (!zs_stat_root)
 487		return -ENOMEM;
 488
 489	return 0;
 490}
 491
 492static void __exit zs_stat_exit(void)
 493{
 494	debugfs_remove_recursive(zs_stat_root);
 495}
 496
 497static unsigned long zs_can_compact(struct size_class *class);
 498
 499static int zs_stats_size_show(struct seq_file *s, void *v)
 500{
 501	int i;
 502	struct zs_pool *pool = s->private;
 503	struct size_class *class;
 504	int objs_per_zspage;
 505	unsigned long class_almost_full, class_almost_empty;
 506	unsigned long obj_allocated, obj_used, pages_used, freeable;
 507	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 508	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 509	unsigned long total_freeable = 0;
 510
 511	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 512			"class", "size", "almost_full", "almost_empty",
 513			"obj_allocated", "obj_used", "pages_used",
 514			"pages_per_zspage", "freeable");
 515
 516	for (i = 0; i < zs_size_classes; i++) {
 517		class = pool->size_class[i];
 518
 519		if (class->index != i)
 520			continue;
 521
 522		spin_lock(&class->lock);
 523		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 524		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 525		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 526		obj_used = zs_stat_get(class, OBJ_USED);
 527		freeable = zs_can_compact(class);
 528		spin_unlock(&class->lock);
 529
 530		objs_per_zspage = get_maxobj_per_zspage(class->size,
 531				class->pages_per_zspage);
 532		pages_used = obj_allocated / objs_per_zspage *
 533				class->pages_per_zspage;
 534
 535		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 536				" %10lu %10lu %16d %8lu\n",
 537			i, class->size, class_almost_full, class_almost_empty,
 538			obj_allocated, obj_used, pages_used,
 539			class->pages_per_zspage, freeable);
 540
 541		total_class_almost_full += class_almost_full;
 542		total_class_almost_empty += class_almost_empty;
 543		total_objs += obj_allocated;
 544		total_used_objs += obj_used;
 545		total_pages += pages_used;
 546		total_freeable += freeable;
 547	}
 548
 549	seq_puts(s, "\n");
 550	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 551			"Total", "", total_class_almost_full,
 552			total_class_almost_empty, total_objs,
 553			total_used_objs, total_pages, "", total_freeable);
 554
 555	return 0;
 556}
 
 557
 558static int zs_stats_size_open(struct inode *inode, struct file *file)
 559{
 560	return single_open(file, zs_stats_size_show, inode->i_private);
 561}
 562
 563static const struct file_operations zs_stat_size_ops = {
 564	.open           = zs_stats_size_open,
 565	.read           = seq_read,
 566	.llseek         = seq_lseek,
 567	.release        = single_release,
 568};
 569
 570static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 571{
 572	struct dentry *entry;
 573
 574	if (!zs_stat_root)
 575		return -ENODEV;
 576
 577	entry = debugfs_create_dir(name, zs_stat_root);
 578	if (!entry) {
 579		pr_warn("debugfs dir <%s> creation failed\n", name);
 580		return -ENOMEM;
 581	}
 582	pool->stat_dentry = entry;
 583
 584	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 585			pool->stat_dentry, pool, &zs_stat_size_ops);
 586	if (!entry) {
 587		pr_warn("%s: debugfs file entry <%s> creation failed\n",
 588				name, "classes");
 589		return -ENOMEM;
 590	}
 591
 592	return 0;
 
 593}
 594
 595static void zs_pool_stat_destroy(struct zs_pool *pool)
 596{
 597	debugfs_remove_recursive(pool->stat_dentry);
 598}
 599
 600#else /* CONFIG_ZSMALLOC_STAT */
 601static int __init zs_stat_init(void)
 602{
 603	return 0;
 604}
 605
 606static void __exit zs_stat_exit(void)
 607{
 608}
 609
 610static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
 611{
 612	return 0;
 613}
 614
 615static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 616{
 617}
 618#endif
 619
 620
 621/*
 622 * For each size class, zspages are divided into different groups
 623 * depending on how "full" they are. This was done so that we could
 624 * easily find empty or nearly empty zspages when we try to shrink
 625 * the pool (not yet implemented). This function returns fullness
 626 * status of the given page.
 627 */
 628static enum fullness_group get_fullness_group(struct page *page)
 
 629{
 630	int inuse, max_objects;
 631	enum fullness_group fg;
 632	BUG_ON(!is_first_page(page));
 633
 634	inuse = page->inuse;
 635	max_objects = page->objects;
 636
 637	if (inuse == 0)
 638		fg = ZS_EMPTY;
 639	else if (inuse == max_objects)
 640		fg = ZS_FULL;
 641	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
 642		fg = ZS_ALMOST_EMPTY;
 643	else
 644		fg = ZS_ALMOST_FULL;
 645
 646	return fg;
 647}
 648
 649/*
 650 * Each size class maintains various freelists and zspages are assigned
 651 * to one of these freelists based on the number of live objects they
 652 * have. This functions inserts the given zspage into the freelist
 653 * identified by <class, fullness_group>.
 654 */
 655static void insert_zspage(struct page *page, struct size_class *class,
 
 656				enum fullness_group fullness)
 657{
 658	struct page **head;
 659
 660	BUG_ON(!is_first_page(page));
 661
 662	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 663		return;
 664
 665	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
 666			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 667
 668	head = &class->fullness_list[fullness];
 669	if (!*head) {
 670		*head = page;
 671		return;
 672	}
 673
 
 
 
 674	/*
 675	 * We want to see more ZS_FULL pages and less almost
 676	 * empty/full. Put pages with higher ->inuse first.
 677	 */
 678	list_add_tail(&page->lru, &(*head)->lru);
 679	if (page->inuse >= (*head)->inuse)
 680		*head = page;
 
 681}
 682
 683/*
 684 * This function removes the given zspage from the freelist identified
 685 * by <class, fullness_group>.
 686 */
 687static void remove_zspage(struct page *page, struct size_class *class,
 
 688				enum fullness_group fullness)
 689{
 690	struct page **head;
 
 691
 692	BUG_ON(!is_first_page(page));
 693
 694	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 695		return;
 696
 697	head = &class->fullness_list[fullness];
 698	BUG_ON(!*head);
 699	if (list_empty(&(*head)->lru))
 700		*head = NULL;
 701	else if (*head == page)
 702		*head = (struct page *)list_entry((*head)->lru.next,
 703					struct page, lru);
 704
 705	list_del_init(&page->lru);
 706	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
 707			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 708}
 709
 710/*
 711 * Each size class maintains zspages in different fullness groups depending
 712 * on the number of live objects they contain. When allocating or freeing
 713 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 714 * to ALMOST_EMPTY when freeing an object. This function checks if such
 715 * a status change has occurred for the given page and accordingly moves the
 716 * page from the freelist of the old fullness group to that of the new
 717 * fullness group.
 718 */
 719static enum fullness_group fix_fullness_group(struct size_class *class,
 720						struct page *page)
 721{
 722	int class_idx;
 723	enum fullness_group currfg, newfg;
 724
 725	BUG_ON(!is_first_page(page));
 726
 727	get_zspage_mapping(page, &class_idx, &currfg);
 728	newfg = get_fullness_group(page);
 729	if (newfg == currfg)
 730		goto out;
 731
 732	remove_zspage(page, class, currfg);
 733	insert_zspage(page, class, newfg);
 734	set_zspage_mapping(page, class_idx, newfg);
 
 
 
 735
 736out:
 737	return newfg;
 738}
 739
 740/*
 741 * We have to decide on how many pages to link together
 742 * to form a zspage for each size class. This is important
 743 * to reduce wastage due to unusable space left at end of
 744 * each zspage which is given as:
 745 *     wastage = Zp % class_size
 746 *     usage = Zp - wastage
 747 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 748 *
 749 * For example, for size class of 3/8 * PAGE_SIZE, we should
 750 * link together 3 PAGE_SIZE sized pages to form a zspage
 751 * since then we can perfectly fit in 8 such objects.
 752 */
 753static int get_pages_per_zspage(int class_size)
 754{
 755	int i, max_usedpc = 0;
 756	/* zspage order which gives maximum used size per KB */
 757	int max_usedpc_order = 1;
 758
 759	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 760		int zspage_size;
 761		int waste, usedpc;
 762
 763		zspage_size = i * PAGE_SIZE;
 764		waste = zspage_size % class_size;
 765		usedpc = (zspage_size - waste) * 100 / zspage_size;
 766
 767		if (usedpc > max_usedpc) {
 768			max_usedpc = usedpc;
 769			max_usedpc_order = i;
 770		}
 771	}
 772
 773	return max_usedpc_order;
 774}
 775
 776/*
 777 * A single 'zspage' is composed of many system pages which are
 778 * linked together using fields in struct page. This function finds
 779 * the first/head page, given any component page of a zspage.
 780 */
 781static struct page *get_first_page(struct page *page)
 782{
 783	if (is_first_page(page))
 784		return page;
 785	else
 786		return (struct page *)page_private(page);
 787}
 788
 789static struct page *get_next_page(struct page *page)
 790{
 791	struct page *next;
 
 792
 793	if (is_last_page(page))
 794		next = NULL;
 795	else if (is_first_page(page))
 796		next = (struct page *)page_private(page);
 797	else
 798		next = list_entry(page->lru.next, struct page, lru);
 799
 800	return next;
 
 
 
 
 
 
 
 
 
 
 
 801}
 802
 803/*
 804 * Encode <page, obj_idx> as a single handle value.
 805 * We use the least bit of handle for tagging.
 
 806 */
 807static void *location_to_obj(struct page *page, unsigned long obj_idx)
 808{
 809	unsigned long obj;
 810
 811	if (!page) {
 812		BUG_ON(obj_idx);
 813		return NULL;
 814	}
 815
 816	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 817	obj |= ((obj_idx) & OBJ_INDEX_MASK);
 818	obj <<= OBJ_TAG_BITS;
 819
 820	return (void *)obj;
 821}
 822
 823/*
 824 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 825 * decoded obj_idx back to its original value since it was adjusted in
 826 * location_to_obj().
 827 */
 828static void obj_to_location(unsigned long obj, struct page **page,
 829				unsigned long *obj_idx)
 830{
 831	obj >>= OBJ_TAG_BITS;
 832	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 833	*obj_idx = (obj & OBJ_INDEX_MASK);
 834}
 835
 836static unsigned long handle_to_obj(unsigned long handle)
 837{
 838	return *(unsigned long *)handle;
 839}
 840
 841static unsigned long obj_to_head(struct size_class *class, struct page *page,
 842			void *obj)
 843{
 844	if (class->huge) {
 845		VM_BUG_ON(!is_first_page(page));
 846		return page_private(page);
 847	} else
 848		return *(unsigned long *)obj;
 849}
 850
 851static unsigned long obj_idx_to_offset(struct page *page,
 852				unsigned long obj_idx, int class_size)
 853{
 854	unsigned long off = 0;
 855
 856	if (!is_first_page(page))
 857		off = page->index;
 858
 859	return off + obj_idx * class_size;
 860}
 861
 862static inline int trypin_tag(unsigned long handle)
 863{
 864	unsigned long *ptr = (unsigned long *)handle;
 865
 866	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
 867}
 868
 869static void pin_tag(unsigned long handle)
 870{
 871	while (!trypin_tag(handle));
 872}
 873
 874static void unpin_tag(unsigned long handle)
 875{
 876	unsigned long *ptr = (unsigned long *)handle;
 877
 878	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
 879}
 880
 881static void reset_page(struct page *page)
 882{
 883	clear_bit(PG_private, &page->flags);
 884	clear_bit(PG_private_2, &page->flags);
 885	set_page_private(page, 0);
 886	page->mapping = NULL;
 887	page->freelist = NULL;
 888	page_mapcount_reset(page);
 
 
 889}
 890
 891static void free_zspage(struct page *first_page)
 892{
 893	struct page *nextp, *tmp, *head_extra;
 894
 895	BUG_ON(!is_first_page(first_page));
 896	BUG_ON(first_page->inuse);
 
 
 
 
 
 897
 898	head_extra = (struct page *)page_private(first_page);
 
 
 
 
 899
 900	reset_page(first_page);
 901	__free_page(first_page);
 902
 903	/* zspage with only 1 system page */
 904	if (!head_extra)
 905		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906
 907	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 908		list_del(&nextp->lru);
 909		reset_page(nextp);
 910		__free_page(nextp);
 
 
 
 
 
 
 
 
 
 
 
 
 911	}
 912	reset_page(head_extra);
 913	__free_page(head_extra);
 
 914}
 915
 916/* Initialize a newly allocated zspage */
 917static void init_zspage(struct page *first_page, struct size_class *class)
 918{
 
 919	unsigned long off = 0;
 920	struct page *page = first_page;
 921
 922	BUG_ON(!is_first_page(first_page));
 923	while (page) {
 924		struct page *next_page;
 925		struct link_free *link;
 926		unsigned int i = 1;
 927		void *vaddr;
 928
 929		/*
 930		 * page->index stores offset of first object starting
 931		 * in the page. For the first page, this is always 0,
 932		 * so we use first_page->index (aka ->freelist) to store
 933		 * head of corresponding zspage's freelist.
 934		 */
 935		if (page != first_page)
 936			page->index = off;
 937
 938		vaddr = kmap_atomic(page);
 939		link = (struct link_free *)vaddr + off / sizeof(*link);
 940
 941		while ((off += class->size) < PAGE_SIZE) {
 942			link->next = location_to_obj(page, i++);
 943			link += class->size / sizeof(*link);
 944		}
 945
 946		/*
 947		 * We now come to the last (full or partial) object on this
 948		 * page, which must point to the first object on the next
 949		 * page (if present)
 950		 */
 951		next_page = get_next_page(page);
 952		link->next = location_to_obj(next_page, 0);
 
 
 
 
 
 
 
 
 953		kunmap_atomic(vaddr);
 954		page = next_page;
 955		off %= PAGE_SIZE;
 956	}
 
 
 957}
 958
 959/*
 960 * Allocate a zspage for the given size class
 961 */
 962static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 963{
 964	int i, error;
 965	struct page *first_page = NULL, *uninitialized_var(prev_page);
 
 
 966
 967	/*
 968	 * Allocate individual pages and link them together as:
 969	 * 1. first page->private = first sub-page
 970	 * 2. all sub-pages are linked together using page->lru
 971	 * 3. each sub-page is linked to the first page using page->private
 972	 *
 973	 * For each size class, First/Head pages are linked together using
 974	 * page->lru. Also, we set PG_private to identify the first page
 975	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
 976	 * identify the last page.
 977	 */
 978	error = -ENOMEM;
 979	for (i = 0; i < class->pages_per_zspage; i++) {
 980		struct page *page;
 981
 982		page = alloc_page(flags);
 983		if (!page)
 984			goto cleanup;
 985
 986		INIT_LIST_HEAD(&page->lru);
 987		if (i == 0) {	/* first page */
 988			SetPagePrivate(page);
 989			set_page_private(page, 0);
 990			first_page = page;
 991			first_page->inuse = 0;
 
 
 992		}
 993		if (i == 1)
 994			set_page_private(first_page, (unsigned long)page);
 995		if (i >= 1)
 996			set_page_private(page, (unsigned long)first_page);
 997		if (i >= 2)
 998			list_add(&page->lru, &prev_page->lru);
 999		if (i == class->pages_per_zspage - 1)	/* last page */
1000			SetPagePrivate2(page);
1001		prev_page = page;
1002	}
1003
1004	init_zspage(first_page, class);
1005
1006	first_page->freelist = location_to_obj(first_page, 0);
1007	/* Maximum number of objects we can store in this zspage */
1008	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1009
1010	error = 0; /* Success */
1011
1012cleanup:
1013	if (unlikely(error) && first_page) {
1014		free_zspage(first_page);
1015		first_page = NULL;
1016	}
1017
1018	return first_page;
1019}
1020
1021static struct page *find_get_zspage(struct size_class *class)
 
 
 
 
 
1022{
1023	int i;
1024	struct page *page;
 
1025
1026	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1027		page = class->fullness_list[i];
1028		if (page)
1029			break;
1030	}
1031
1032	return page;
1033}
1034
1035#ifdef CONFIG_PGTABLE_MAPPING
1036static inline int __zs_cpu_up(struct mapping_area *area)
1037{
1038	/*
1039	 * Make sure we don't leak memory if a cpu UP notification
1040	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1041	 */
1042	if (area->vm)
1043		return 0;
1044	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1045	if (!area->vm)
1046		return -ENOMEM;
1047	return 0;
1048}
1049
1050static inline void __zs_cpu_down(struct mapping_area *area)
1051{
1052	if (area->vm)
1053		free_vm_area(area->vm);
1054	area->vm = NULL;
1055}
 
 
 
1056
1057static inline void *__zs_map_object(struct mapping_area *area,
1058				struct page *pages[2], int off, int size)
1059{
1060	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1061	area->vm_addr = area->vm->addr;
1062	return area->vm_addr + off;
 
 
1063}
1064
1065static inline void __zs_unmap_object(struct mapping_area *area,
1066				struct page *pages[2], int off, int size)
1067{
1068	unsigned long addr = (unsigned long)area->vm_addr;
 
1069
1070	unmap_kernel_range(addr, PAGE_SIZE * 2);
1071}
 
 
 
 
1072
1073#else /* CONFIG_PGTABLE_MAPPING */
 
1074
1075static inline int __zs_cpu_up(struct mapping_area *area)
1076{
1077	/*
1078	 * Make sure we don't leak memory if a cpu UP notification
1079	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1080	 */
1081	if (area->vm_buf)
1082		return 0;
1083	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1084	if (!area->vm_buf)
1085		return -ENOMEM;
1086	return 0;
1087}
1088
1089static inline void __zs_cpu_down(struct mapping_area *area)
1090{
1091	kfree(area->vm_buf);
1092	area->vm_buf = NULL;
1093}
1094
1095static void *__zs_map_object(struct mapping_area *area,
1096			struct page *pages[2], int off, int size)
1097{
1098	int sizes[2];
1099	void *addr;
1100	char *buf = area->vm_buf;
1101
1102	/* disable page faults to match kmap_atomic() return conditions */
1103	pagefault_disable();
1104
1105	/* no read fastpath */
1106	if (area->vm_mm == ZS_MM_WO)
1107		goto out;
1108
1109	sizes[0] = PAGE_SIZE - off;
1110	sizes[1] = size - sizes[0];
1111
1112	/* copy object to per-cpu buffer */
1113	addr = kmap_atomic(pages[0]);
1114	memcpy(buf, addr + off, sizes[0]);
1115	kunmap_atomic(addr);
1116	addr = kmap_atomic(pages[1]);
1117	memcpy(buf + sizes[0], addr, sizes[1]);
1118	kunmap_atomic(addr);
1119out:
1120	return area->vm_buf;
1121}
1122
1123static void __zs_unmap_object(struct mapping_area *area,
1124			struct page *pages[2], int off, int size)
1125{
1126	int sizes[2];
1127	void *addr;
1128	char *buf;
1129
1130	/* no write fastpath */
1131	if (area->vm_mm == ZS_MM_RO)
1132		goto out;
1133
1134	buf = area->vm_buf;
1135	buf = buf + ZS_HANDLE_SIZE;
1136	size -= ZS_HANDLE_SIZE;
1137	off += ZS_HANDLE_SIZE;
1138
1139	sizes[0] = PAGE_SIZE - off;
1140	sizes[1] = size - sizes[0];
1141
1142	/* copy per-cpu buffer to object */
1143	addr = kmap_atomic(pages[0]);
1144	memcpy(addr + off, buf, sizes[0]);
1145	kunmap_atomic(addr);
1146	addr = kmap_atomic(pages[1]);
1147	memcpy(addr, buf + sizes[0], sizes[1]);
1148	kunmap_atomic(addr);
1149
1150out:
1151	/* enable page faults to match kunmap_atomic() return conditions */
1152	pagefault_enable();
1153}
1154
1155#endif /* CONFIG_PGTABLE_MAPPING */
1156
1157static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1158				void *pcpu)
1159{
1160	int ret, cpu = (long)pcpu;
1161	struct mapping_area *area;
1162
1163	switch (action) {
1164	case CPU_UP_PREPARE:
1165		area = &per_cpu(zs_map_area, cpu);
1166		ret = __zs_cpu_up(area);
1167		if (ret)
1168			return notifier_from_errno(ret);
1169		break;
1170	case CPU_DEAD:
1171	case CPU_UP_CANCELED:
1172		area = &per_cpu(zs_map_area, cpu);
1173		__zs_cpu_down(area);
1174		break;
1175	}
1176
1177	return NOTIFY_OK;
1178}
1179
1180static struct notifier_block zs_cpu_nb = {
1181	.notifier_call = zs_cpu_notifier
1182};
1183
1184static int zs_register_cpu_notifier(void)
1185{
1186	int cpu, uninitialized_var(ret);
1187
1188	cpu_notifier_register_begin();
1189
1190	__register_cpu_notifier(&zs_cpu_nb);
1191	for_each_online_cpu(cpu) {
1192		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1193		if (notifier_to_errno(ret))
1194			break;
1195	}
1196
1197	cpu_notifier_register_done();
1198	return notifier_to_errno(ret);
1199}
1200
1201static void zs_unregister_cpu_notifier(void)
1202{
1203	int cpu;
1204
1205	cpu_notifier_register_begin();
1206
1207	for_each_online_cpu(cpu)
1208		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1209	__unregister_cpu_notifier(&zs_cpu_nb);
1210
1211	cpu_notifier_register_done();
 
 
1212}
1213
1214static void init_zs_size_classes(void)
 
1215{
1216	int nr;
1217
1218	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1219	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1220		nr += 1;
1221
1222	zs_size_classes = nr;
1223}
1224
1225static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1226{
1227	if (prev->pages_per_zspage != pages_per_zspage)
1228		return false;
1229
1230	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1231		!= get_maxobj_per_zspage(size, pages_per_zspage))
1232		return false;
1233
1234	return true;
1235}
1236
1237static bool zspage_full(struct page *page)
1238{
1239	BUG_ON(!is_first_page(page));
1240
1241	return page->inuse == page->objects;
1242}
1243
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246	return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250/**
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
 
1254 *
1255 * Before using an object allocated from zs_malloc, it must be mapped using
1256 * this function. When done with the object, it must be unmapped using
1257 * zs_unmap_object.
1258 *
1259 * Only one object can be mapped per cpu at a time. There is no protection
1260 * against nested mappings.
1261 *
1262 * This function returns with preemption and page faults disabled.
1263 */
1264void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1265			enum zs_mapmode mm)
1266{
 
1267	struct page *page;
1268	unsigned long obj, obj_idx, off;
 
1269
1270	unsigned int class_idx;
1271	enum fullness_group fg;
1272	struct size_class *class;
1273	struct mapping_area *area;
1274	struct page *pages[2];
1275	void *ret;
1276
1277	BUG_ON(!handle);
1278
1279	/*
1280	 * Because we use per-cpu mapping areas shared among the
1281	 * pools/users, we can't allow mapping in interrupt context
1282	 * because it can corrupt another users mappings.
1283	 */
1284	BUG_ON(in_interrupt());
1285
1286	/* From now on, migration cannot move the object */
1287	pin_tag(handle);
1288
1289	obj = handle_to_obj(handle);
1290	obj_to_location(obj, &page, &obj_idx);
1291	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
 
 
 
 
 
1292	class = pool->size_class[class_idx];
1293	off = obj_idx_to_offset(page, obj_idx, class->size);
1294
1295	area = &get_cpu_var(zs_map_area);
1296	area->vm_mm = mm;
1297	if (off + class->size <= PAGE_SIZE) {
1298		/* this object is contained entirely within a page */
1299		area->vm_addr = kmap_atomic(page);
1300		ret = area->vm_addr + off;
1301		goto out;
1302	}
1303
1304	/* this object spans two pages */
1305	pages[0] = page;
1306	pages[1] = get_next_page(page);
1307	BUG_ON(!pages[1]);
1308
1309	ret = __zs_map_object(area, pages, off, class->size);
1310out:
1311	if (!class->huge)
1312		ret += ZS_HANDLE_SIZE;
1313
1314	return ret;
1315}
1316EXPORT_SYMBOL_GPL(zs_map_object);
1317
1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319{
 
1320	struct page *page;
1321	unsigned long obj, obj_idx, off;
 
1322
1323	unsigned int class_idx;
1324	enum fullness_group fg;
1325	struct size_class *class;
1326	struct mapping_area *area;
1327
1328	BUG_ON(!handle);
1329
1330	obj = handle_to_obj(handle);
1331	obj_to_location(obj, &page, &obj_idx);
1332	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
 
1333	class = pool->size_class[class_idx];
1334	off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336	area = this_cpu_ptr(&zs_map_area);
1337	if (off + class->size <= PAGE_SIZE)
1338		kunmap_atomic(area->vm_addr);
1339	else {
1340		struct page *pages[2];
1341
1342		pages[0] = page;
1343		pages[1] = get_next_page(page);
1344		BUG_ON(!pages[1]);
1345
1346		__zs_unmap_object(area, pages, off, class->size);
1347	}
1348	put_cpu_var(zs_map_area);
 
 
1349	unpin_tag(handle);
1350}
1351EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353static unsigned long obj_malloc(struct page *first_page,
1354		struct size_class *class, unsigned long handle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355{
 
1356	unsigned long obj;
1357	struct link_free *link;
1358
1359	struct page *m_page;
1360	unsigned long m_objidx, m_offset;
1361	void *vaddr;
1362
1363	handle |= OBJ_ALLOCATED_TAG;
1364	obj = (unsigned long)first_page->freelist;
1365	obj_to_location(obj, &m_page, &m_objidx);
1366	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
 
 
 
 
 
 
1367
1368	vaddr = kmap_atomic(m_page);
1369	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370	first_page->freelist = link->next;
1371	if (!class->huge)
1372		/* record handle in the header of allocated chunk */
1373		link->handle = handle;
1374	else
1375		/* record handle in first_page->private */
1376		set_page_private(first_page, handle);
 
1377	kunmap_atomic(vaddr);
1378	first_page->inuse++;
1379	zs_stat_inc(class, OBJ_USED, 1);
1380
 
 
1381	return obj;
1382}
1383
1384
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
 
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395{
1396	unsigned long handle, obj;
1397	struct size_class *class;
1398	struct page *first_page;
 
1399
1400	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401		return 0;
1402
1403	handle = alloc_handle(pool);
1404	if (!handle)
1405		return 0;
1406
1407	/* extra space in chunk to keep the handle */
1408	size += ZS_HANDLE_SIZE;
1409	class = pool->size_class[get_size_class_index(size)];
1410
1411	spin_lock(&class->lock);
1412	first_page = find_get_zspage(class);
1413
1414	if (!first_page) {
 
 
 
1415		spin_unlock(&class->lock);
1416		first_page = alloc_zspage(class, pool->flags);
1417		if (unlikely(!first_page)) {
1418			free_handle(pool, handle);
1419			return 0;
1420		}
1421
1422		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423		atomic_long_add(class->pages_per_zspage,
1424					&pool->pages_allocated);
1425
1426		spin_lock(&class->lock);
1427		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428				class->size, class->pages_per_zspage));
 
 
 
1429	}
1430
1431	obj = obj_malloc(first_page, class, handle);
1432	/* Now move the zspage to another fullness group, if required */
1433	fix_fullness_group(class, first_page);
 
 
1434	record_obj(handle, obj);
 
 
 
 
 
 
1435	spin_unlock(&class->lock);
1436
1437	return handle;
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442			unsigned long obj)
1443{
1444	struct link_free *link;
1445	struct page *first_page, *f_page;
1446	unsigned long f_objidx, f_offset;
 
 
1447	void *vaddr;
1448
1449	BUG_ON(!obj);
1450
1451	obj &= ~OBJ_ALLOCATED_TAG;
1452	obj_to_location(obj, &f_page, &f_objidx);
1453	first_page = get_first_page(f_page);
1454
1455	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456
1457	vaddr = kmap_atomic(f_page);
1458
1459	/* Insert this object in containing zspage's freelist */
1460	link = (struct link_free *)(vaddr + f_offset);
1461	link->next = first_page->freelist;
1462	if (class->huge)
1463		set_page_private(first_page, 0);
1464	kunmap_atomic(vaddr);
1465	first_page->freelist = (void *)obj;
1466	first_page->inuse--;
1467	zs_stat_dec(class, OBJ_USED, 1);
1468}
1469
1470void zs_free(struct zs_pool *pool, unsigned long handle)
1471{
1472	struct page *first_page, *f_page;
1473	unsigned long obj, f_objidx;
 
 
1474	int class_idx;
1475	struct size_class *class;
1476	enum fullness_group fullness;
 
1477
1478	if (unlikely(!handle))
1479		return;
1480
1481	pin_tag(handle);
1482	obj = handle_to_obj(handle);
1483	obj_to_location(obj, &f_page, &f_objidx);
1484	first_page = get_first_page(f_page);
1485
1486	get_zspage_mapping(first_page, &class_idx, &fullness);
 
 
1487	class = pool->size_class[class_idx];
1488
1489	spin_lock(&class->lock);
1490	obj_free(pool, class, obj);
1491	fullness = fix_fullness_group(class, first_page);
1492	if (fullness == ZS_EMPTY) {
1493		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494				class->size, class->pages_per_zspage));
1495		atomic_long_sub(class->pages_per_zspage,
1496				&pool->pages_allocated);
1497		free_zspage(first_page);
1498	}
 
 
 
 
 
 
 
 
1499	spin_unlock(&class->lock);
1500	unpin_tag(handle);
1501
1502	free_handle(pool, handle);
1503}
1504EXPORT_SYMBOL_GPL(zs_free);
1505
1506static void zs_object_copy(unsigned long dst, unsigned long src,
1507				struct size_class *class)
1508{
1509	struct page *s_page, *d_page;
1510	unsigned long s_objidx, d_objidx;
1511	unsigned long s_off, d_off;
1512	void *s_addr, *d_addr;
1513	int s_size, d_size, size;
1514	int written = 0;
1515
1516	s_size = d_size = class->size;
1517
1518	obj_to_location(src, &s_page, &s_objidx);
1519	obj_to_location(dst, &d_page, &d_objidx);
1520
1521	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523
1524	if (s_off + class->size > PAGE_SIZE)
1525		s_size = PAGE_SIZE - s_off;
1526
1527	if (d_off + class->size > PAGE_SIZE)
1528		d_size = PAGE_SIZE - d_off;
1529
1530	s_addr = kmap_atomic(s_page);
1531	d_addr = kmap_atomic(d_page);
1532
1533	while (1) {
1534		size = min(s_size, d_size);
1535		memcpy(d_addr + d_off, s_addr + s_off, size);
1536		written += size;
1537
1538		if (written == class->size)
1539			break;
1540
1541		s_off += size;
1542		s_size -= size;
1543		d_off += size;
1544		d_size -= size;
1545
1546		if (s_off >= PAGE_SIZE) {
1547			kunmap_atomic(d_addr);
1548			kunmap_atomic(s_addr);
1549			s_page = get_next_page(s_page);
1550			BUG_ON(!s_page);
1551			s_addr = kmap_atomic(s_page);
1552			d_addr = kmap_atomic(d_page);
1553			s_size = class->size - written;
1554			s_off = 0;
1555		}
1556
1557		if (d_off >= PAGE_SIZE) {
1558			kunmap_atomic(d_addr);
1559			d_page = get_next_page(d_page);
1560			BUG_ON(!d_page);
1561			d_addr = kmap_atomic(d_page);
1562			d_size = class->size - written;
1563			d_off = 0;
1564		}
1565	}
1566
1567	kunmap_atomic(d_addr);
1568	kunmap_atomic(s_addr);
1569}
1570
1571/*
1572 * Find alloced object in zspage from index object and
1573 * return handle.
1574 */
1575static unsigned long find_alloced_obj(struct page *page, int index,
1576					struct size_class *class)
1577{
1578	unsigned long head;
1579	int offset = 0;
 
1580	unsigned long handle = 0;
1581	void *addr = kmap_atomic(page);
1582
1583	if (!is_first_page(page))
1584		offset = page->index;
1585	offset += class->size * index;
1586
1587	while (offset < PAGE_SIZE) {
1588		head = obj_to_head(class, page, addr + offset);
1589		if (head & OBJ_ALLOCATED_TAG) {
1590			handle = head & ~OBJ_ALLOCATED_TAG;
1591			if (trypin_tag(handle))
1592				break;
1593			handle = 0;
1594		}
1595
1596		offset += class->size;
1597		index++;
1598	}
1599
1600	kunmap_atomic(addr);
 
 
 
1601	return handle;
1602}
1603
1604struct zs_compact_control {
1605	/* Source page for migration which could be a subpage of zspage. */
1606	struct page *s_page;
1607	/* Destination page for migration which should be a first page
1608	 * of zspage. */
1609	struct page *d_page;
1610	 /* Starting object index within @s_page which used for live object
1611	  * in the subpage. */
1612	int index;
1613};
1614
1615static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1616				struct zs_compact_control *cc)
1617{
1618	unsigned long used_obj, free_obj;
1619	unsigned long handle;
1620	struct page *s_page = cc->s_page;
1621	struct page *d_page = cc->d_page;
1622	unsigned long index = cc->index;
1623	int ret = 0;
1624
1625	while (1) {
1626		handle = find_alloced_obj(s_page, index, class);
1627		if (!handle) {
1628			s_page = get_next_page(s_page);
1629			if (!s_page)
1630				break;
1631			index = 0;
1632			continue;
1633		}
1634
1635		/* Stop if there is no more space */
1636		if (zspage_full(d_page)) {
1637			unpin_tag(handle);
1638			ret = -ENOMEM;
1639			break;
1640		}
1641
1642		used_obj = handle_to_obj(handle);
1643		free_obj = obj_malloc(d_page, class, handle);
1644		zs_object_copy(free_obj, used_obj, class);
1645		index++;
1646		/*
1647		 * record_obj updates handle's value to free_obj and it will
1648		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1649		 * breaks synchronization using pin_tag(e,g, zs_free) so
1650		 * let's keep the lock bit.
1651		 */
1652		free_obj |= BIT(HANDLE_PIN_BIT);
1653		record_obj(handle, free_obj);
1654		unpin_tag(handle);
1655		obj_free(pool, class, used_obj);
1656	}
1657
1658	/* Remember last position in this iteration */
1659	cc->s_page = s_page;
1660	cc->index = index;
1661
1662	return ret;
1663}
1664
1665static struct page *isolate_target_page(struct size_class *class)
1666{
1667	int i;
1668	struct page *page;
 
1669
1670	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1671		page = class->fullness_list[i];
1672		if (page) {
1673			remove_zspage(page, class, i);
1674			break;
 
 
 
 
 
 
 
1675		}
1676	}
1677
1678	return page;
1679}
1680
1681/*
1682 * putback_zspage - add @first_page into right class's fullness list
1683 * @pool: target pool
1684 * @class: destination class
1685 * @first_page: target page
1686 *
1687 * Return @fist_page's fullness_group
1688 */
1689static enum fullness_group putback_zspage(struct zs_pool *pool,
1690			struct size_class *class,
1691			struct page *first_page)
1692{
1693	enum fullness_group fullness;
1694
1695	BUG_ON(!is_first_page(first_page));
1696
1697	fullness = get_fullness_group(first_page);
1698	insert_zspage(first_page, class, fullness);
1699	set_zspage_mapping(first_page, class->index, fullness);
1700
1701	if (fullness == ZS_EMPTY) {
1702		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1703			class->size, class->pages_per_zspage));
1704		atomic_long_sub(class->pages_per_zspage,
1705				&pool->pages_allocated);
 
 
 
 
 
 
 
 
 
 
 
1706
1707		free_zspage(first_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708	}
1709
1710	return fullness;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711}
1712
1713static struct page *isolate_source_page(struct size_class *class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714{
1715	int i;
1716	struct page *page = NULL;
 
 
 
 
 
 
1717
1718	for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1719		page = class->fullness_list[i];
1720		if (!page)
1721			continue;
1722
1723		remove_zspage(page, class, i);
1724		break;
 
1725	}
1726
1727	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728}
1729
 
 
 
 
 
 
 
 
 
 
 
 
1730/*
1731 *
1732 * Based on the number of unused allocated objects calculate
1733 * and return the number of pages that we can free.
1734 */
1735static unsigned long zs_can_compact(struct size_class *class)
1736{
1737	unsigned long obj_wasted;
1738	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1739	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1740
1741	if (obj_allocated <= obj_used)
1742		return 0;
1743
1744	obj_wasted = obj_allocated - obj_used;
1745	obj_wasted /= get_maxobj_per_zspage(class->size,
1746			class->pages_per_zspage);
1747
1748	return obj_wasted * class->pages_per_zspage;
1749}
1750
1751static void __zs_compact(struct zs_pool *pool, struct size_class *class)
 
1752{
1753	struct zs_compact_control cc;
1754	struct page *src_page;
1755	struct page *dst_page = NULL;
 
1756
1757	spin_lock(&class->lock);
1758	while ((src_page = isolate_source_page(class))) {
1759
1760		BUG_ON(!is_first_page(src_page));
1761
1762		if (!zs_can_compact(class))
1763			break;
1764
1765		cc.index = 0;
1766		cc.s_page = src_page;
1767
1768		while ((dst_page = isolate_target_page(class))) {
1769			cc.d_page = dst_page;
1770			/*
1771			 * If there is no more space in dst_page, resched
1772			 * and see if anyone had allocated another zspage.
1773			 */
1774			if (!migrate_zspage(pool, class, &cc))
1775				break;
1776
1777			putback_zspage(pool, class, dst_page);
1778		}
1779
1780		/* Stop if we couldn't find slot */
1781		if (dst_page == NULL)
1782			break;
1783
1784		putback_zspage(pool, class, dst_page);
1785		if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1786			pool->stats.pages_compacted += class->pages_per_zspage;
 
 
1787		spin_unlock(&class->lock);
1788		cond_resched();
1789		spin_lock(&class->lock);
1790	}
1791
1792	if (src_page)
1793		putback_zspage(pool, class, src_page);
1794
1795	spin_unlock(&class->lock);
 
 
1796}
1797
1798unsigned long zs_compact(struct zs_pool *pool)
1799{
1800	int i;
1801	struct size_class *class;
 
1802
1803	for (i = zs_size_classes - 1; i >= 0; i--) {
1804		class = pool->size_class[i];
1805		if (!class)
1806			continue;
1807		if (class->index != i)
1808			continue;
1809		__zs_compact(pool, class);
1810	}
 
1811
1812	return pool->stats.pages_compacted;
1813}
1814EXPORT_SYMBOL_GPL(zs_compact);
1815
1816void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1817{
1818	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1819}
1820EXPORT_SYMBOL_GPL(zs_pool_stats);
1821
1822static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1823		struct shrink_control *sc)
1824{
1825	unsigned long pages_freed;
1826	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1827			shrinker);
1828
1829	pages_freed = pool->stats.pages_compacted;
1830	/*
1831	 * Compact classes and calculate compaction delta.
1832	 * Can run concurrently with a manually triggered
1833	 * (by user) compaction.
1834	 */
1835	pages_freed = zs_compact(pool) - pages_freed;
1836
1837	return pages_freed ? pages_freed : SHRINK_STOP;
1838}
1839
1840static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1841		struct shrink_control *sc)
1842{
1843	int i;
1844	struct size_class *class;
1845	unsigned long pages_to_free = 0;
1846	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1847			shrinker);
1848
1849	for (i = zs_size_classes - 1; i >= 0; i--) {
1850		class = pool->size_class[i];
1851		if (!class)
1852			continue;
1853		if (class->index != i)
1854			continue;
1855
1856		pages_to_free += zs_can_compact(class);
1857	}
1858
1859	return pages_to_free;
1860}
1861
1862static void zs_unregister_shrinker(struct zs_pool *pool)
1863{
1864	if (pool->shrinker_enabled) {
1865		unregister_shrinker(&pool->shrinker);
1866		pool->shrinker_enabled = false;
1867	}
1868}
1869
1870static int zs_register_shrinker(struct zs_pool *pool)
1871{
1872	pool->shrinker.scan_objects = zs_shrinker_scan;
1873	pool->shrinker.count_objects = zs_shrinker_count;
1874	pool->shrinker.batch = 0;
1875	pool->shrinker.seeks = DEFAULT_SEEKS;
1876
1877	return register_shrinker(&pool->shrinker);
1878}
1879
1880/**
1881 * zs_create_pool - Creates an allocation pool to work from.
1882 * @flags: allocation flags used to allocate pool metadata
1883 *
1884 * This function must be called before anything when using
1885 * the zsmalloc allocator.
1886 *
1887 * On success, a pointer to the newly created pool is returned,
1888 * otherwise NULL.
1889 */
1890struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
1891{
1892	int i;
1893	struct zs_pool *pool;
1894	struct size_class *prev_class = NULL;
1895
1896	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1897	if (!pool)
1898		return NULL;
1899
1900	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1901			GFP_KERNEL);
1902	if (!pool->size_class) {
1903		kfree(pool);
1904		return NULL;
1905	}
1906
1907	pool->name = kstrdup(name, GFP_KERNEL);
1908	if (!pool->name)
1909		goto err;
1910
1911	if (create_handle_cache(pool))
 
 
 
 
1912		goto err;
1913
1914	/*
1915	 * Iterate reversly, because, size of size_class that we want to use
1916	 * for merging should be larger or equal to current size.
1917	 */
1918	for (i = zs_size_classes - 1; i >= 0; i--) {
1919		int size;
1920		int pages_per_zspage;
 
1921		struct size_class *class;
 
1922
1923		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1924		if (size > ZS_MAX_ALLOC_SIZE)
1925			size = ZS_MAX_ALLOC_SIZE;
1926		pages_per_zspage = get_pages_per_zspage(size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927
1928		/*
1929		 * size_class is used for normal zsmalloc operation such
1930		 * as alloc/free for that size. Although it is natural that we
1931		 * have one size_class for each size, there is a chance that we
1932		 * can get more memory utilization if we use one size_class for
1933		 * many different sizes whose size_class have same
1934		 * characteristics. So, we makes size_class point to
1935		 * previous size_class if possible.
1936		 */
1937		if (prev_class) {
1938			if (can_merge(prev_class, size, pages_per_zspage)) {
1939				pool->size_class[i] = prev_class;
1940				continue;
1941			}
1942		}
1943
1944		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1945		if (!class)
1946			goto err;
1947
1948		class->size = size;
1949		class->index = i;
1950		class->pages_per_zspage = pages_per_zspage;
1951		if (pages_per_zspage == 1 &&
1952			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1953			class->huge = true;
1954		spin_lock_init(&class->lock);
1955		pool->size_class[i] = class;
 
 
 
1956
1957		prev_class = class;
1958	}
1959
1960	pool->flags = flags;
 
1961
1962	if (zs_pool_stat_create(name, pool))
1963		goto err;
1964
1965	/*
1966	 * Not critical, we still can use the pool
1967	 * and user can trigger compaction manually.
 
 
1968	 */
1969	if (zs_register_shrinker(pool) == 0)
1970		pool->shrinker_enabled = true;
1971	return pool;
1972
1973err:
1974	zs_destroy_pool(pool);
1975	return NULL;
1976}
1977EXPORT_SYMBOL_GPL(zs_create_pool);
1978
1979void zs_destroy_pool(struct zs_pool *pool)
1980{
1981	int i;
1982
1983	zs_unregister_shrinker(pool);
 
1984	zs_pool_stat_destroy(pool);
1985
1986	for (i = 0; i < zs_size_classes; i++) {
1987		int fg;
1988		struct size_class *class = pool->size_class[i];
1989
1990		if (!class)
1991			continue;
1992
1993		if (class->index != i)
1994			continue;
1995
1996		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1997			if (class->fullness_list[fg]) {
1998				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1999					class->size, fg);
2000			}
2001		}
2002		kfree(class);
2003	}
2004
2005	destroy_handle_cache(pool);
2006	kfree(pool->size_class);
2007	kfree(pool->name);
2008	kfree(pool);
2009}
2010EXPORT_SYMBOL_GPL(zs_destroy_pool);
2011
2012static int __init zs_init(void)
2013{
2014	int ret = zs_register_cpu_notifier();
2015
 
2016	if (ret)
2017		goto notifier_fail;
2018
2019	init_zs_size_classes();
 
 
 
2020
2021#ifdef CONFIG_ZPOOL
2022	zpool_register_driver(&zs_zpool_driver);
2023#endif
2024
2025	ret = zs_stat_init();
2026	if (ret) {
2027		pr_err("zs stat initialization failed\n");
2028		goto stat_fail;
2029	}
2030	return 0;
2031
2032stat_fail:
2033#ifdef CONFIG_ZPOOL
2034	zpool_unregister_driver(&zs_zpool_driver);
2035#endif
2036notifier_fail:
2037	zs_unregister_cpu_notifier();
2038
 
 
 
2039	return ret;
2040}
2041
2042static void __exit zs_exit(void)
2043{
2044#ifdef CONFIG_ZPOOL
2045	zpool_unregister_driver(&zs_zpool_driver);
2046#endif
2047	zs_unregister_cpu_notifier();
 
2048
2049	zs_stat_exit();
2050}
2051
2052module_init(zs_init);
2053module_exit(zs_exit);
2054
2055MODULE_LICENSE("Dual BSD/GPL");
2056MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v5.14.15
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <linux/pgtable.h>
  43#include <asm/tlbflush.h>
 
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/pseudo_fs.h>
  56#include <linux/migrate.h>
  57#include <linux/wait.h>
  58#include <linux/pagemap.h>
  59#include <linux/fs.h>
  60
  61#define ZSPAGE_MAGIC	0x58
  62
  63/*
  64 * This must be power of 2 and greater than or equal to sizeof(link_free).
  65 * These two conditions ensure that any 'struct link_free' itself doesn't
  66 * span more than 1 page which avoids complex case of mapping 2 pages simply
  67 * to restore link_free pointer values.
  68 */
  69#define ZS_ALIGN		8
  70
  71/*
  72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  74 */
  75#define ZS_MAX_ZSPAGE_ORDER 2
  76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  77
  78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  79
  80/*
  81 * Object location (<PFN>, <obj_idx>) is encoded as
  82 * a single (unsigned long) handle value.
  83 *
  84 * Note that object index <obj_idx> starts from 0.
 
 
  85 *
  86 * This is made more complicated by various memory models and PAE.
  87 */
  88
  89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  90#ifdef MAX_PHYSMEM_BITS
  91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  92#else
  93/*
  94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  95 * be PAGE_SHIFT
  96 */
  97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  98#endif
  99#endif
 100
 101#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 102
 103/*
 104 * Memory for allocating for handle keeps object position by
 105 * encoding <page, obj_idx> and the encoded value has a room
 106 * in least bit(ie, look at obj_to_location).
 107 * We use the bit to synchronize between object access by
 108 * user and migration.
 109 */
 110#define HANDLE_PIN_BIT	0
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 121#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 122#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 124#define FULLNESS_BITS	2
 125#define CLASS_BITS	8
 126#define ISOLATED_BITS	3
 127#define MAGIC_VAL_BITS	8
 128
 129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 131#define ZS_MIN_ALLOC_SIZE \
 132	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 133/* each chunk includes extra space to keep handle */
 134#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 135
 136/*
 137 * On systems with 4K page size, this gives 255 size classes! There is a
 138 * trader-off here:
 139 *  - Large number of size classes is potentially wasteful as free page are
 140 *    spread across these classes
 141 *  - Small number of size classes causes large internal fragmentation
 142 *  - Probably its better to use specific size classes (empirically
 143 *    determined). NOTE: all those class sizes must be set as multiple of
 144 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 145 *
 146 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 147 *  (reason above)
 148 */
 149#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 150#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 151				      ZS_SIZE_CLASS_DELTA) + 1)
 152
 
 
 
 153enum fullness_group {
 
 
 
 
 154	ZS_EMPTY,
 155	ZS_ALMOST_EMPTY,
 156	ZS_ALMOST_FULL,
 157	ZS_FULL,
 158	NR_ZS_FULLNESS,
 159};
 160
 161enum zs_stat_type {
 162	CLASS_EMPTY,
 163	CLASS_ALMOST_EMPTY,
 164	CLASS_ALMOST_FULL,
 165	CLASS_FULL,
 166	OBJ_ALLOCATED,
 167	OBJ_USED,
 168	NR_ZS_STAT_TYPE,
 
 169};
 170
 
 
 
 
 
 
 171struct zs_size_stat {
 172	unsigned long objs[NR_ZS_STAT_TYPE];
 173};
 174
 175#ifdef CONFIG_ZSMALLOC_STAT
 176static struct dentry *zs_stat_root;
 177#endif
 178
 179#ifdef CONFIG_COMPACTION
 180static struct vfsmount *zsmalloc_mnt;
 181#endif
 
 182
 183/*
 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 185 *	n <= N / f, where
 186 * n = number of allocated objects
 187 * N = total number of objects zspage can store
 188 * f = fullness_threshold_frac
 189 *
 190 * Similarly, we assign zspage to:
 191 *	ZS_ALMOST_FULL	when n > N / f
 192 *	ZS_EMPTY	when n == 0
 193 *	ZS_FULL		when n == N
 194 *
 195 * (see: fix_fullness_group())
 196 */
 197static const int fullness_threshold_frac = 4;
 198static size_t huge_class_size;
 199
 200struct size_class {
 201	spinlock_t lock;
 202	struct list_head fullness_list[NR_ZS_FULLNESS];
 203	/*
 204	 * Size of objects stored in this class. Must be multiple
 205	 * of ZS_ALIGN.
 206	 */
 207	int size;
 208	int objs_per_zspage;
 
 
 
 209	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 210	int pages_per_zspage;
 211
 212	unsigned int index;
 213	struct zs_size_stat stats;
 214};
 215
 216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 217static void SetPageHugeObject(struct page *page)
 218{
 219	SetPageOwnerPriv1(page);
 220}
 221
 222static void ClearPageHugeObject(struct page *page)
 223{
 224	ClearPageOwnerPriv1(page);
 225}
 226
 227static int PageHugeObject(struct page *page)
 228{
 229	return PageOwnerPriv1(page);
 230}
 231
 232/*
 233 * Placed within free objects to form a singly linked list.
 234 * For every zspage, zspage->freeobj gives head of this list.
 235 *
 236 * This must be power of 2 and less than or equal to ZS_ALIGN
 237 */
 238struct link_free {
 239	union {
 240		/*
 241		 * Free object index;
 242		 * It's valid for non-allocated object
 243		 */
 244		unsigned long next;
 245		/*
 246		 * Handle of allocated object.
 247		 */
 248		unsigned long handle;
 249	};
 250};
 251
 252struct zs_pool {
 253	const char *name;
 254
 255	struct size_class *size_class[ZS_SIZE_CLASSES];
 256	struct kmem_cache *handle_cachep;
 257	struct kmem_cache *zspage_cachep;
 258
 
 259	atomic_long_t pages_allocated;
 260
 261	struct zs_pool_stats stats;
 262
 263	/* Compact classes */
 264	struct shrinker shrinker;
 265
 
 
 
 
 266#ifdef CONFIG_ZSMALLOC_STAT
 267	struct dentry *stat_dentry;
 268#endif
 269#ifdef CONFIG_COMPACTION
 270	struct inode *inode;
 271	struct work_struct free_work;
 272	/* A wait queue for when migration races with async_free_zspage() */
 273	struct wait_queue_head migration_wait;
 274	atomic_long_t isolated_pages;
 275	bool destroying;
 276#endif
 277};
 278
 279struct zspage {
 280	struct {
 281		unsigned int fullness:FULLNESS_BITS;
 282		unsigned int class:CLASS_BITS + 1;
 283		unsigned int isolated:ISOLATED_BITS;
 284		unsigned int magic:MAGIC_VAL_BITS;
 285	};
 286	unsigned int inuse;
 287	unsigned int freeobj;
 288	struct page *first_page;
 289	struct list_head list; /* fullness list */
 290#ifdef CONFIG_COMPACTION
 291	rwlock_t lock;
 292#endif
 293};
 294
 295struct mapping_area {
 
 
 
 296	char *vm_buf; /* copy buffer for objects that span pages */
 
 297	char *vm_addr; /* address of kmap_atomic()'ed pages */
 298	enum zs_mapmode vm_mm; /* mapping mode */
 299};
 300
 301#ifdef CONFIG_COMPACTION
 302static int zs_register_migration(struct zs_pool *pool);
 303static void zs_unregister_migration(struct zs_pool *pool);
 304static void migrate_lock_init(struct zspage *zspage);
 305static void migrate_read_lock(struct zspage *zspage);
 306static void migrate_read_unlock(struct zspage *zspage);
 307static void kick_deferred_free(struct zs_pool *pool);
 308static void init_deferred_free(struct zs_pool *pool);
 309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 310#else
 311static int zsmalloc_mount(void) { return 0; }
 312static void zsmalloc_unmount(void) {}
 313static int zs_register_migration(struct zs_pool *pool) { return 0; }
 314static void zs_unregister_migration(struct zs_pool *pool) {}
 315static void migrate_lock_init(struct zspage *zspage) {}
 316static void migrate_read_lock(struct zspage *zspage) {}
 317static void migrate_read_unlock(struct zspage *zspage) {}
 318static void kick_deferred_free(struct zs_pool *pool) {}
 319static void init_deferred_free(struct zs_pool *pool) {}
 320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 321#endif
 322
 323static int create_cache(struct zs_pool *pool)
 324{
 325	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 326					0, 0, NULL);
 327	if (!pool->handle_cachep)
 328		return 1;
 329
 330	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 331					0, 0, NULL);
 332	if (!pool->zspage_cachep) {
 333		kmem_cache_destroy(pool->handle_cachep);
 334		pool->handle_cachep = NULL;
 335		return 1;
 336	}
 337
 338	return 0;
 339}
 340
 341static void destroy_cache(struct zs_pool *pool)
 342{
 343	kmem_cache_destroy(pool->handle_cachep);
 344	kmem_cache_destroy(pool->zspage_cachep);
 345}
 346
 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 348{
 349	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 350			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 351}
 352
 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 354{
 355	kmem_cache_free(pool->handle_cachep, (void *)handle);
 356}
 357
 358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 359{
 360	return kmem_cache_zalloc(pool->zspage_cachep,
 361			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 362}
 363
 364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 365{
 366	kmem_cache_free(pool->zspage_cachep, zspage);
 367}
 368
 369static void record_obj(unsigned long handle, unsigned long obj)
 370{
 371	/*
 372	 * lsb of @obj represents handle lock while other bits
 373	 * represent object value the handle is pointing so
 374	 * updating shouldn't do store tearing.
 375	 */
 376	WRITE_ONCE(*(unsigned long *)handle, obj);
 377}
 378
 379/* zpool driver */
 380
 381#ifdef CONFIG_ZPOOL
 382
 383static void *zs_zpool_create(const char *name, gfp_t gfp,
 384			     const struct zpool_ops *zpool_ops,
 385			     struct zpool *zpool)
 386{
 387	/*
 388	 * Ignore global gfp flags: zs_malloc() may be invoked from
 389	 * different contexts and its caller must provide a valid
 390	 * gfp mask.
 391	 */
 392	return zs_create_pool(name);
 393}
 394
 395static void zs_zpool_destroy(void *pool)
 396{
 397	zs_destroy_pool(pool);
 398}
 399
 400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 401			unsigned long *handle)
 402{
 403	*handle = zs_malloc(pool, size, gfp);
 404	return *handle ? 0 : -1;
 405}
 406static void zs_zpool_free(void *pool, unsigned long handle)
 407{
 408	zs_free(pool, handle);
 409}
 410
 
 
 
 
 
 
 411static void *zs_zpool_map(void *pool, unsigned long handle,
 412			enum zpool_mapmode mm)
 413{
 414	enum zs_mapmode zs_mm;
 415
 416	switch (mm) {
 417	case ZPOOL_MM_RO:
 418		zs_mm = ZS_MM_RO;
 419		break;
 420	case ZPOOL_MM_WO:
 421		zs_mm = ZS_MM_WO;
 422		break;
 423	case ZPOOL_MM_RW:
 424	default:
 425		zs_mm = ZS_MM_RW;
 426		break;
 427	}
 428
 429	return zs_map_object(pool, handle, zs_mm);
 430}
 431static void zs_zpool_unmap(void *pool, unsigned long handle)
 432{
 433	zs_unmap_object(pool, handle);
 434}
 435
 436static u64 zs_zpool_total_size(void *pool)
 437{
 438	return zs_get_total_pages(pool) << PAGE_SHIFT;
 439}
 440
 441static struct zpool_driver zs_zpool_driver = {
 442	.type =			  "zsmalloc",
 443	.owner =		  THIS_MODULE,
 444	.create =		  zs_zpool_create,
 445	.destroy =		  zs_zpool_destroy,
 446	.malloc_support_movable = true,
 447	.malloc =		  zs_zpool_malloc,
 448	.free =			  zs_zpool_free,
 449	.map =			  zs_zpool_map,
 450	.unmap =		  zs_zpool_unmap,
 451	.total_size =		  zs_zpool_total_size,
 452};
 453
 454MODULE_ALIAS("zpool-zsmalloc");
 455#endif /* CONFIG_ZPOOL */
 456
 
 
 
 
 
 457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 459
 460static bool is_zspage_isolated(struct zspage *zspage)
 461{
 462	return zspage->isolated;
 463}
 464
 465static __maybe_unused int is_first_page(struct page *page)
 466{
 467	return PagePrivate(page);
 468}
 469
 470/* Protected by class->lock */
 471static inline int get_zspage_inuse(struct zspage *zspage)
 472{
 473	return zspage->inuse;
 474}
 475
 476
 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 478{
 479	zspage->inuse += val;
 480}
 481
 482static inline struct page *get_first_page(struct zspage *zspage)
 483{
 484	struct page *first_page = zspage->first_page;
 485
 486	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 487	return first_page;
 488}
 489
 490static inline int get_first_obj_offset(struct page *page)
 491{
 492	return page->units;
 493}
 494
 495static inline void set_first_obj_offset(struct page *page, int offset)
 496{
 497	page->units = offset;
 498}
 499
 500static inline unsigned int get_freeobj(struct zspage *zspage)
 501{
 502	return zspage->freeobj;
 503}
 504
 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 506{
 507	zspage->freeobj = obj;
 508}
 509
 510static void get_zspage_mapping(struct zspage *zspage,
 511				unsigned int *class_idx,
 512				enum fullness_group *fullness)
 513{
 514	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 
 515
 516	*fullness = zspage->fullness;
 517	*class_idx = zspage->class;
 
 518}
 519
 520static void set_zspage_mapping(struct zspage *zspage,
 521				unsigned int class_idx,
 522				enum fullness_group fullness)
 523{
 524	zspage->class = class_idx;
 525	zspage->fullness = fullness;
 
 
 
 
 526}
 527
 528/*
 529 * zsmalloc divides the pool into various size classes where each
 530 * class maintains a list of zspages where each zspage is divided
 531 * into equal sized chunks. Each allocation falls into one of these
 532 * classes depending on its size. This function returns index of the
 533 * size class which has chunk size big enough to hold the given size.
 534 */
 535static int get_size_class_index(int size)
 536{
 537	int idx = 0;
 538
 539	if (likely(size > ZS_MIN_ALLOC_SIZE))
 540		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 541				ZS_SIZE_CLASS_DELTA);
 542
 543	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 544}
 545
 546/* type can be of enum type zs_stat_type or fullness_group */
 547static inline void zs_stat_inc(struct size_class *class,
 548				int type, unsigned long cnt)
 549{
 550	class->stats.objs[type] += cnt;
 
 551}
 552
 553/* type can be of enum type zs_stat_type or fullness_group */
 554static inline void zs_stat_dec(struct size_class *class,
 555				int type, unsigned long cnt)
 556{
 557	class->stats.objs[type] -= cnt;
 
 558}
 559
 560/* type can be of enum type zs_stat_type or fullness_group */
 561static inline unsigned long zs_stat_get(struct size_class *class,
 562				int type)
 563{
 564	return class->stats.objs[type];
 
 
 565}
 566
 567#ifdef CONFIG_ZSMALLOC_STAT
 568
 569static void __init zs_stat_init(void)
 570{
 571	if (!debugfs_initialized()) {
 572		pr_warn("debugfs not available, stat dir not created\n");
 573		return;
 574	}
 575
 576	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 
 
 
 
 577}
 578
 579static void __exit zs_stat_exit(void)
 580{
 581	debugfs_remove_recursive(zs_stat_root);
 582}
 583
 584static unsigned long zs_can_compact(struct size_class *class);
 585
 586static int zs_stats_size_show(struct seq_file *s, void *v)
 587{
 588	int i;
 589	struct zs_pool *pool = s->private;
 590	struct size_class *class;
 591	int objs_per_zspage;
 592	unsigned long class_almost_full, class_almost_empty;
 593	unsigned long obj_allocated, obj_used, pages_used, freeable;
 594	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 595	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 596	unsigned long total_freeable = 0;
 597
 598	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 599			"class", "size", "almost_full", "almost_empty",
 600			"obj_allocated", "obj_used", "pages_used",
 601			"pages_per_zspage", "freeable");
 602
 603	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 604		class = pool->size_class[i];
 605
 606		if (class->index != i)
 607			continue;
 608
 609		spin_lock(&class->lock);
 610		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 611		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 612		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 613		obj_used = zs_stat_get(class, OBJ_USED);
 614		freeable = zs_can_compact(class);
 615		spin_unlock(&class->lock);
 616
 617		objs_per_zspage = class->objs_per_zspage;
 
 618		pages_used = obj_allocated / objs_per_zspage *
 619				class->pages_per_zspage;
 620
 621		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 622				" %10lu %10lu %16d %8lu\n",
 623			i, class->size, class_almost_full, class_almost_empty,
 624			obj_allocated, obj_used, pages_used,
 625			class->pages_per_zspage, freeable);
 626
 627		total_class_almost_full += class_almost_full;
 628		total_class_almost_empty += class_almost_empty;
 629		total_objs += obj_allocated;
 630		total_used_objs += obj_used;
 631		total_pages += pages_used;
 632		total_freeable += freeable;
 633	}
 634
 635	seq_puts(s, "\n");
 636	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 637			"Total", "", total_class_almost_full,
 638			total_class_almost_empty, total_objs,
 639			total_used_objs, total_pages, "", total_freeable);
 640
 641	return 0;
 642}
 643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 644
 645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 646{
 647	if (!zs_stat_root) {
 648		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 649		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650	}
 
 651
 652	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 
 
 
 
 
 
 653
 654	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 655			    &zs_stats_size_fops);
 656}
 657
 658static void zs_pool_stat_destroy(struct zs_pool *pool)
 659{
 660	debugfs_remove_recursive(pool->stat_dentry);
 661}
 662
 663#else /* CONFIG_ZSMALLOC_STAT */
 664static void __init zs_stat_init(void)
 665{
 
 666}
 667
 668static void __exit zs_stat_exit(void)
 669{
 670}
 671
 672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 673{
 
 674}
 675
 676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 677{
 678}
 679#endif
 680
 681
 682/*
 683 * For each size class, zspages are divided into different groups
 684 * depending on how "full" they are. This was done so that we could
 685 * easily find empty or nearly empty zspages when we try to shrink
 686 * the pool (not yet implemented). This function returns fullness
 687 * status of the given page.
 688 */
 689static enum fullness_group get_fullness_group(struct size_class *class,
 690						struct zspage *zspage)
 691{
 692	int inuse, objs_per_zspage;
 693	enum fullness_group fg;
 
 694
 695	inuse = get_zspage_inuse(zspage);
 696	objs_per_zspage = class->objs_per_zspage;
 697
 698	if (inuse == 0)
 699		fg = ZS_EMPTY;
 700	else if (inuse == objs_per_zspage)
 701		fg = ZS_FULL;
 702	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 703		fg = ZS_ALMOST_EMPTY;
 704	else
 705		fg = ZS_ALMOST_FULL;
 706
 707	return fg;
 708}
 709
 710/*
 711 * Each size class maintains various freelists and zspages are assigned
 712 * to one of these freelists based on the number of live objects they
 713 * have. This functions inserts the given zspage into the freelist
 714 * identified by <class, fullness_group>.
 715 */
 716static void insert_zspage(struct size_class *class,
 717				struct zspage *zspage,
 718				enum fullness_group fullness)
 719{
 720	struct zspage *head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	zs_stat_inc(class, fullness, 1);
 723	head = list_first_entry_or_null(&class->fullness_list[fullness],
 724					struct zspage, list);
 725	/*
 726	 * We want to see more ZS_FULL pages and less almost empty/full.
 727	 * Put pages with higher ->inuse first.
 728	 */
 729	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
 730		list_add(&zspage->list, &head->list);
 731	else
 732		list_add(&zspage->list, &class->fullness_list[fullness]);
 733}
 734
 735/*
 736 * This function removes the given zspage from the freelist identified
 737 * by <class, fullness_group>.
 738 */
 739static void remove_zspage(struct size_class *class,
 740				struct zspage *zspage,
 741				enum fullness_group fullness)
 742{
 743	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 744	VM_BUG_ON(is_zspage_isolated(zspage));
 745
 746	list_del_init(&zspage->list);
 747	zs_stat_dec(class, fullness, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750/*
 751 * Each size class maintains zspages in different fullness groups depending
 752 * on the number of live objects they contain. When allocating or freeing
 753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 754 * to ALMOST_EMPTY when freeing an object. This function checks if such
 755 * a status change has occurred for the given page and accordingly moves the
 756 * page from the freelist of the old fullness group to that of the new
 757 * fullness group.
 758 */
 759static enum fullness_group fix_fullness_group(struct size_class *class,
 760						struct zspage *zspage)
 761{
 762	int class_idx;
 763	enum fullness_group currfg, newfg;
 764
 765	get_zspage_mapping(zspage, &class_idx, &currfg);
 766	newfg = get_fullness_group(class, zspage);
 
 
 767	if (newfg == currfg)
 768		goto out;
 769
 770	if (!is_zspage_isolated(zspage)) {
 771		remove_zspage(class, zspage, currfg);
 772		insert_zspage(class, zspage, newfg);
 773	}
 774
 775	set_zspage_mapping(zspage, class_idx, newfg);
 776
 777out:
 778	return newfg;
 779}
 780
 781/*
 782 * We have to decide on how many pages to link together
 783 * to form a zspage for each size class. This is important
 784 * to reduce wastage due to unusable space left at end of
 785 * each zspage which is given as:
 786 *     wastage = Zp % class_size
 787 *     usage = Zp - wastage
 788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 789 *
 790 * For example, for size class of 3/8 * PAGE_SIZE, we should
 791 * link together 3 PAGE_SIZE sized pages to form a zspage
 792 * since then we can perfectly fit in 8 such objects.
 793 */
 794static int get_pages_per_zspage(int class_size)
 795{
 796	int i, max_usedpc = 0;
 797	/* zspage order which gives maximum used size per KB */
 798	int max_usedpc_order = 1;
 799
 800	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 801		int zspage_size;
 802		int waste, usedpc;
 803
 804		zspage_size = i * PAGE_SIZE;
 805		waste = zspage_size % class_size;
 806		usedpc = (zspage_size - waste) * 100 / zspage_size;
 807
 808		if (usedpc > max_usedpc) {
 809			max_usedpc = usedpc;
 810			max_usedpc_order = i;
 811		}
 812	}
 813
 814	return max_usedpc_order;
 815}
 816
 817static struct zspage *get_zspage(struct page *page)
 
 
 
 
 
 818{
 819	struct zspage *zspage = (struct zspage *)page_private(page);
 820
 821	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 822	return zspage;
 823}
 824
 825static struct page *get_next_page(struct page *page)
 826{
 827	if (unlikely(PageHugeObject(page)))
 828		return NULL;
 829
 830	return page->freelist;
 831}
 
 
 
 
 832
 833/**
 834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 835 * @obj: the encoded object value
 836 * @page: page object resides in zspage
 837 * @obj_idx: object index
 838 */
 839static void obj_to_location(unsigned long obj, struct page **page,
 840				unsigned int *obj_idx)
 841{
 842	obj >>= OBJ_TAG_BITS;
 843	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 844	*obj_idx = (obj & OBJ_INDEX_MASK);
 845}
 846
 847/**
 848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 849 * @page: page object resides in zspage
 850 * @obj_idx: object index
 851 */
 852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 853{
 854	unsigned long obj;
 855
 
 
 
 
 
 856	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 857	obj |= obj_idx & OBJ_INDEX_MASK;
 858	obj <<= OBJ_TAG_BITS;
 859
 860	return obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862
 863static unsigned long handle_to_obj(unsigned long handle)
 864{
 865	return *(unsigned long *)handle;
 866}
 867
 868static unsigned long obj_to_head(struct page *page, void *obj)
 
 869{
 870	if (unlikely(PageHugeObject(page))) {
 871		VM_BUG_ON_PAGE(!is_first_page(page), page);
 872		return page->index;
 873	} else
 874		return *(unsigned long *)obj;
 875}
 876
 877static inline int testpin_tag(unsigned long handle)
 
 878{
 879	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 
 
 
 
 
 880}
 881
 882static inline int trypin_tag(unsigned long handle)
 883{
 884	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 
 
 885}
 886
 887static void pin_tag(unsigned long handle) __acquires(bitlock)
 888{
 889	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 890}
 891
 892static void unpin_tag(unsigned long handle) __releases(bitlock)
 893{
 894	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 
 
 895}
 896
 897static void reset_page(struct page *page)
 898{
 899	__ClearPageMovable(page);
 900	ClearPagePrivate(page);
 901	set_page_private(page, 0);
 
 
 902	page_mapcount_reset(page);
 903	ClearPageHugeObject(page);
 904	page->freelist = NULL;
 905}
 906
 907static int trylock_zspage(struct zspage *zspage)
 908{
 909	struct page *cursor, *fail;
 910
 911	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 912					get_next_page(cursor)) {
 913		if (!trylock_page(cursor)) {
 914			fail = cursor;
 915			goto unlock;
 916		}
 917	}
 918
 919	return 1;
 920unlock:
 921	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 922					get_next_page(cursor))
 923		unlock_page(cursor);
 924
 925	return 0;
 926}
 927
 928static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 929				struct zspage *zspage)
 930{
 931	struct page *page, *next;
 932	enum fullness_group fg;
 933	unsigned int class_idx;
 934
 935	get_zspage_mapping(zspage, &class_idx, &fg);
 936
 937	assert_spin_locked(&class->lock);
 938
 939	VM_BUG_ON(get_zspage_inuse(zspage));
 940	VM_BUG_ON(fg != ZS_EMPTY);
 941
 942	next = page = get_first_page(zspage);
 943	do {
 944		VM_BUG_ON_PAGE(!PageLocked(page), page);
 945		next = get_next_page(page);
 946		reset_page(page);
 947		unlock_page(page);
 948		dec_zone_page_state(page, NR_ZSPAGES);
 949		put_page(page);
 950		page = next;
 951	} while (page != NULL);
 952
 953	cache_free_zspage(pool, zspage);
 954
 955	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 956	atomic_long_sub(class->pages_per_zspage,
 957					&pool->pages_allocated);
 958}
 959
 960static void free_zspage(struct zs_pool *pool, struct size_class *class,
 961				struct zspage *zspage)
 962{
 963	VM_BUG_ON(get_zspage_inuse(zspage));
 964	VM_BUG_ON(list_empty(&zspage->list));
 965
 966	if (!trylock_zspage(zspage)) {
 967		kick_deferred_free(pool);
 968		return;
 969	}
 970
 971	remove_zspage(class, zspage, ZS_EMPTY);
 972	__free_zspage(pool, class, zspage);
 973}
 974
 975/* Initialize a newly allocated zspage */
 976static void init_zspage(struct size_class *class, struct zspage *zspage)
 977{
 978	unsigned int freeobj = 1;
 979	unsigned long off = 0;
 980	struct page *page = get_first_page(zspage);
 981
 
 982	while (page) {
 983		struct page *next_page;
 984		struct link_free *link;
 
 985		void *vaddr;
 986
 987		set_first_obj_offset(page, off);
 
 
 
 
 
 
 
 988
 989		vaddr = kmap_atomic(page);
 990		link = (struct link_free *)vaddr + off / sizeof(*link);
 991
 992		while ((off += class->size) < PAGE_SIZE) {
 993			link->next = freeobj++ << OBJ_TAG_BITS;
 994			link += class->size / sizeof(*link);
 995		}
 996
 997		/*
 998		 * We now come to the last (full or partial) object on this
 999		 * page, which must point to the first object on the next
1000		 * page (if present)
1001		 */
1002		next_page = get_next_page(page);
1003		if (next_page) {
1004			link->next = freeobj++ << OBJ_TAG_BITS;
1005		} else {
1006			/*
1007			 * Reset OBJ_TAG_BITS bit to last link to tell
1008			 * whether it's allocated object or not.
1009			 */
1010			link->next = -1UL << OBJ_TAG_BITS;
1011		}
1012		kunmap_atomic(vaddr);
1013		page = next_page;
1014		off %= PAGE_SIZE;
1015	}
1016
1017	set_freeobj(zspage, 0);
1018}
1019
1020static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021				struct page *pages[])
 
 
1022{
1023	int i;
1024	struct page *page;
1025	struct page *prev_page = NULL;
1026	int nr_pages = class->pages_per_zspage;
1027
1028	/*
1029	 * Allocate individual pages and link them together as:
1030	 * 1. all pages are linked together using page->freelist
1031	 * 2. each sub-page point to zspage using page->private
 
1032	 *
1033	 * we set PG_private to identify the first page (i.e. no other sub-page
1034	 * has this flag set).
 
 
1035	 */
1036	for (i = 0; i < nr_pages; i++) {
1037		page = pages[i];
1038		set_page_private(page, (unsigned long)zspage);
1039		page->freelist = NULL;
1040		if (i == 0) {
1041			zspage->first_page = page;
 
 
 
 
1042			SetPagePrivate(page);
1043			if (unlikely(class->objs_per_zspage == 1 &&
1044					class->pages_per_zspage == 1))
1045				SetPageHugeObject(page);
1046		} else {
1047			prev_page->freelist = page;
1048		}
 
 
 
 
 
 
 
 
1049		prev_page = page;
1050	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051}
1052
1053/*
1054 * Allocate a zspage for the given size class
1055 */
1056static struct zspage *alloc_zspage(struct zs_pool *pool,
1057					struct size_class *class,
1058					gfp_t gfp)
1059{
1060	int i;
1061	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064	if (!zspage)
1065		return NULL;
 
 
 
1066
1067	zspage->magic = ZSPAGE_MAGIC;
1068	migrate_lock_init(zspage);
1069
1070	for (i = 0; i < class->pages_per_zspage; i++) {
1071		struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073		page = alloc_page(gfp);
1074		if (!page) {
1075			while (--i >= 0) {
1076				dec_zone_page_state(pages[i], NR_ZSPAGES);
1077				__free_page(pages[i]);
1078			}
1079			cache_free_zspage(pool, zspage);
1080			return NULL;
1081		}
1082
1083		inc_zone_page_state(page, NR_ZSPAGES);
1084		pages[i] = page;
1085	}
1086
1087	create_page_chain(class, zspage, pages);
1088	init_zspage(class, zspage);
1089
1090	return zspage;
1091}
1092
1093static struct zspage *find_get_zspage(struct size_class *class)
 
1094{
1095	int i;
1096	struct zspage *zspage;
1097
1098	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1099		zspage = list_first_entry_or_null(&class->fullness_list[i],
1100				struct zspage, list);
1101		if (zspage)
1102			break;
1103	}
1104
1105	return zspage;
1106}
1107
1108static inline int __zs_cpu_up(struct mapping_area *area)
1109{
1110	/*
1111	 * Make sure we don't leak memory if a cpu UP notification
1112	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1113	 */
1114	if (area->vm_buf)
1115		return 0;
1116	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1117	if (!area->vm_buf)
1118		return -ENOMEM;
1119	return 0;
1120}
1121
1122static inline void __zs_cpu_down(struct mapping_area *area)
1123{
1124	kfree(area->vm_buf);
1125	area->vm_buf = NULL;
1126}
1127
1128static void *__zs_map_object(struct mapping_area *area,
1129			struct page *pages[2], int off, int size)
1130{
1131	int sizes[2];
1132	void *addr;
1133	char *buf = area->vm_buf;
1134
1135	/* disable page faults to match kmap_atomic() return conditions */
1136	pagefault_disable();
1137
1138	/* no read fastpath */
1139	if (area->vm_mm == ZS_MM_WO)
1140		goto out;
1141
1142	sizes[0] = PAGE_SIZE - off;
1143	sizes[1] = size - sizes[0];
1144
1145	/* copy object to per-cpu buffer */
1146	addr = kmap_atomic(pages[0]);
1147	memcpy(buf, addr + off, sizes[0]);
1148	kunmap_atomic(addr);
1149	addr = kmap_atomic(pages[1]);
1150	memcpy(buf + sizes[0], addr, sizes[1]);
1151	kunmap_atomic(addr);
1152out:
1153	return area->vm_buf;
1154}
1155
1156static void __zs_unmap_object(struct mapping_area *area,
1157			struct page *pages[2], int off, int size)
1158{
1159	int sizes[2];
1160	void *addr;
1161	char *buf;
1162
1163	/* no write fastpath */
1164	if (area->vm_mm == ZS_MM_RO)
1165		goto out;
1166
1167	buf = area->vm_buf;
1168	buf = buf + ZS_HANDLE_SIZE;
1169	size -= ZS_HANDLE_SIZE;
1170	off += ZS_HANDLE_SIZE;
1171
1172	sizes[0] = PAGE_SIZE - off;
1173	sizes[1] = size - sizes[0];
1174
1175	/* copy per-cpu buffer to object */
1176	addr = kmap_atomic(pages[0]);
1177	memcpy(addr + off, buf, sizes[0]);
1178	kunmap_atomic(addr);
1179	addr = kmap_atomic(pages[1]);
1180	memcpy(addr, buf + sizes[0], sizes[1]);
1181	kunmap_atomic(addr);
1182
1183out:
1184	/* enable page faults to match kunmap_atomic() return conditions */
1185	pagefault_enable();
1186}
1187
1188static int zs_cpu_prepare(unsigned int cpu)
 
 
 
1189{
 
1190	struct mapping_area *area;
1191
1192	area = &per_cpu(zs_map_area, cpu);
1193	return __zs_cpu_up(area);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194}
1195
1196static int zs_cpu_dead(unsigned int cpu)
1197{
1198	struct mapping_area *area;
 
 
 
 
 
 
1199
1200	area = &per_cpu(zs_map_area, cpu);
1201	__zs_cpu_down(area);
1202	return 0;
1203}
1204
1205static bool can_merge(struct size_class *prev, int pages_per_zspage,
1206					int objs_per_zspage)
1207{
1208	if (prev->pages_per_zspage == pages_per_zspage &&
1209		prev->objs_per_zspage == objs_per_zspage)
1210		return true;
 
 
1211
1212	return false;
1213}
1214
1215static bool zspage_full(struct size_class *class, struct zspage *zspage)
1216{
1217	return get_zspage_inuse(zspage) == class->objs_per_zspage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218}
1219
1220unsigned long zs_get_total_pages(struct zs_pool *pool)
1221{
1222	return atomic_long_read(&pool->pages_allocated);
1223}
1224EXPORT_SYMBOL_GPL(zs_get_total_pages);
1225
1226/**
1227 * zs_map_object - get address of allocated object from handle.
1228 * @pool: pool from which the object was allocated
1229 * @handle: handle returned from zs_malloc
1230 * @mm: mapping mode to use
1231 *
1232 * Before using an object allocated from zs_malloc, it must be mapped using
1233 * this function. When done with the object, it must be unmapped using
1234 * zs_unmap_object.
1235 *
1236 * Only one object can be mapped per cpu at a time. There is no protection
1237 * against nested mappings.
1238 *
1239 * This function returns with preemption and page faults disabled.
1240 */
1241void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1242			enum zs_mapmode mm)
1243{
1244	struct zspage *zspage;
1245	struct page *page;
1246	unsigned long obj, off;
1247	unsigned int obj_idx;
1248
1249	unsigned int class_idx;
1250	enum fullness_group fg;
1251	struct size_class *class;
1252	struct mapping_area *area;
1253	struct page *pages[2];
1254	void *ret;
1255
 
 
1256	/*
1257	 * Because we use per-cpu mapping areas shared among the
1258	 * pools/users, we can't allow mapping in interrupt context
1259	 * because it can corrupt another users mappings.
1260	 */
1261	BUG_ON(in_interrupt());
1262
1263	/* From now on, migration cannot move the object */
1264	pin_tag(handle);
1265
1266	obj = handle_to_obj(handle);
1267	obj_to_location(obj, &page, &obj_idx);
1268	zspage = get_zspage(page);
1269
1270	/* migration cannot move any subpage in this zspage */
1271	migrate_read_lock(zspage);
1272
1273	get_zspage_mapping(zspage, &class_idx, &fg);
1274	class = pool->size_class[class_idx];
1275	off = (class->size * obj_idx) & ~PAGE_MASK;
1276
1277	area = &get_cpu_var(zs_map_area);
1278	area->vm_mm = mm;
1279	if (off + class->size <= PAGE_SIZE) {
1280		/* this object is contained entirely within a page */
1281		area->vm_addr = kmap_atomic(page);
1282		ret = area->vm_addr + off;
1283		goto out;
1284	}
1285
1286	/* this object spans two pages */
1287	pages[0] = page;
1288	pages[1] = get_next_page(page);
1289	BUG_ON(!pages[1]);
1290
1291	ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293	if (likely(!PageHugeObject(page)))
1294		ret += ZS_HANDLE_SIZE;
1295
1296	return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302	struct zspage *zspage;
1303	struct page *page;
1304	unsigned long obj, off;
1305	unsigned int obj_idx;
1306
1307	unsigned int class_idx;
1308	enum fullness_group fg;
1309	struct size_class *class;
1310	struct mapping_area *area;
1311
 
 
1312	obj = handle_to_obj(handle);
1313	obj_to_location(obj, &page, &obj_idx);
1314	zspage = get_zspage(page);
1315	get_zspage_mapping(zspage, &class_idx, &fg);
1316	class = pool->size_class[class_idx];
1317	off = (class->size * obj_idx) & ~PAGE_MASK;
1318
1319	area = this_cpu_ptr(&zs_map_area);
1320	if (off + class->size <= PAGE_SIZE)
1321		kunmap_atomic(area->vm_addr);
1322	else {
1323		struct page *pages[2];
1324
1325		pages[0] = page;
1326		pages[1] = get_next_page(page);
1327		BUG_ON(!pages[1]);
1328
1329		__zs_unmap_object(area, pages, off, class->size);
1330	}
1331	put_cpu_var(zs_map_area);
1332
1333	migrate_read_unlock(zspage);
1334	unpin_tag(handle);
1335}
1336EXPORT_SYMBOL_GPL(zs_unmap_object);
1337
1338/**
1339 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1340 *                        zsmalloc &size_class.
1341 * @pool: zsmalloc pool to use
1342 *
1343 * The function returns the size of the first huge class - any object of equal
1344 * or bigger size will be stored in zspage consisting of a single physical
1345 * page.
1346 *
1347 * Context: Any context.
1348 *
1349 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1350 */
1351size_t zs_huge_class_size(struct zs_pool *pool)
1352{
1353	return huge_class_size;
1354}
1355EXPORT_SYMBOL_GPL(zs_huge_class_size);
1356
1357static unsigned long obj_malloc(struct size_class *class,
1358				struct zspage *zspage, unsigned long handle)
1359{
1360	int i, nr_page, offset;
1361	unsigned long obj;
1362	struct link_free *link;
1363
1364	struct page *m_page;
1365	unsigned long m_offset;
1366	void *vaddr;
1367
1368	handle |= OBJ_ALLOCATED_TAG;
1369	obj = get_freeobj(zspage);
1370
1371	offset = obj * class->size;
1372	nr_page = offset >> PAGE_SHIFT;
1373	m_offset = offset & ~PAGE_MASK;
1374	m_page = get_first_page(zspage);
1375
1376	for (i = 0; i < nr_page; i++)
1377		m_page = get_next_page(m_page);
1378
1379	vaddr = kmap_atomic(m_page);
1380	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1381	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1382	if (likely(!PageHugeObject(m_page)))
1383		/* record handle in the header of allocated chunk */
1384		link->handle = handle;
1385	else
1386		/* record handle to page->index */
1387		zspage->first_page->index = handle;
1388
1389	kunmap_atomic(vaddr);
1390	mod_zspage_inuse(zspage, 1);
1391	zs_stat_inc(class, OBJ_USED, 1);
1392
1393	obj = location_to_obj(m_page, obj);
1394
1395	return obj;
1396}
1397
1398
1399/**
1400 * zs_malloc - Allocate block of given size from pool.
1401 * @pool: pool to allocate from
1402 * @size: size of block to allocate
1403 * @gfp: gfp flags when allocating object
1404 *
1405 * On success, handle to the allocated object is returned,
1406 * otherwise 0.
1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408 */
1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1410{
1411	unsigned long handle, obj;
1412	struct size_class *class;
1413	enum fullness_group newfg;
1414	struct zspage *zspage;
1415
1416	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1417		return 0;
1418
1419	handle = cache_alloc_handle(pool, gfp);
1420	if (!handle)
1421		return 0;
1422
1423	/* extra space in chunk to keep the handle */
1424	size += ZS_HANDLE_SIZE;
1425	class = pool->size_class[get_size_class_index(size)];
1426
1427	spin_lock(&class->lock);
1428	zspage = find_get_zspage(class);
1429	if (likely(zspage)) {
1430		obj = obj_malloc(class, zspage, handle);
1431		/* Now move the zspage to another fullness group, if required */
1432		fix_fullness_group(class, zspage);
1433		record_obj(handle, obj);
1434		spin_unlock(&class->lock);
 
 
 
 
 
1435
1436		return handle;
1437	}
 
1438
1439	spin_unlock(&class->lock);
1440
1441	zspage = alloc_zspage(pool, class, gfp);
1442	if (!zspage) {
1443		cache_free_handle(pool, handle);
1444		return 0;
1445	}
1446
1447	spin_lock(&class->lock);
1448	obj = obj_malloc(class, zspage, handle);
1449	newfg = get_fullness_group(class, zspage);
1450	insert_zspage(class, zspage, newfg);
1451	set_zspage_mapping(zspage, class->index, newfg);
1452	record_obj(handle, obj);
1453	atomic_long_add(class->pages_per_zspage,
1454				&pool->pages_allocated);
1455	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1456
1457	/* We completely set up zspage so mark them as movable */
1458	SetZsPageMovable(pool, zspage);
1459	spin_unlock(&class->lock);
1460
1461	return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(struct size_class *class, unsigned long obj)
 
1466{
1467	struct link_free *link;
1468	struct zspage *zspage;
1469	struct page *f_page;
1470	unsigned long f_offset;
1471	unsigned int f_objidx;
1472	void *vaddr;
1473
 
 
 
1474	obj_to_location(obj, &f_page, &f_objidx);
1475	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1476	zspage = get_zspage(f_page);
 
1477
1478	vaddr = kmap_atomic(f_page);
1479
1480	/* Insert this object in containing zspage's freelist */
1481	link = (struct link_free *)(vaddr + f_offset);
1482	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
 
 
1483	kunmap_atomic(vaddr);
1484	set_freeobj(zspage, f_objidx);
1485	mod_zspage_inuse(zspage, -1);
1486	zs_stat_dec(class, OBJ_USED, 1);
1487}
1488
1489void zs_free(struct zs_pool *pool, unsigned long handle)
1490{
1491	struct zspage *zspage;
1492	struct page *f_page;
1493	unsigned long obj;
1494	unsigned int f_objidx;
1495	int class_idx;
1496	struct size_class *class;
1497	enum fullness_group fullness;
1498	bool isolated;
1499
1500	if (unlikely(!handle))
1501		return;
1502
1503	pin_tag(handle);
1504	obj = handle_to_obj(handle);
1505	obj_to_location(obj, &f_page, &f_objidx);
1506	zspage = get_zspage(f_page);
1507
1508	migrate_read_lock(zspage);
1509
1510	get_zspage_mapping(zspage, &class_idx, &fullness);
1511	class = pool->size_class[class_idx];
1512
1513	spin_lock(&class->lock);
1514	obj_free(class, obj);
1515	fullness = fix_fullness_group(class, zspage);
1516	if (fullness != ZS_EMPTY) {
1517		migrate_read_unlock(zspage);
1518		goto out;
 
 
 
1519	}
1520
1521	isolated = is_zspage_isolated(zspage);
1522	migrate_read_unlock(zspage);
1523	/* If zspage is isolated, zs_page_putback will free the zspage */
1524	if (likely(!isolated))
1525		free_zspage(pool, class, zspage);
1526out:
1527
1528	spin_unlock(&class->lock);
1529	unpin_tag(handle);
1530	cache_free_handle(pool, handle);
 
1531}
1532EXPORT_SYMBOL_GPL(zs_free);
1533
1534static void zs_object_copy(struct size_class *class, unsigned long dst,
1535				unsigned long src)
1536{
1537	struct page *s_page, *d_page;
1538	unsigned int s_objidx, d_objidx;
1539	unsigned long s_off, d_off;
1540	void *s_addr, *d_addr;
1541	int s_size, d_size, size;
1542	int written = 0;
1543
1544	s_size = d_size = class->size;
1545
1546	obj_to_location(src, &s_page, &s_objidx);
1547	obj_to_location(dst, &d_page, &d_objidx);
1548
1549	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1550	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1551
1552	if (s_off + class->size > PAGE_SIZE)
1553		s_size = PAGE_SIZE - s_off;
1554
1555	if (d_off + class->size > PAGE_SIZE)
1556		d_size = PAGE_SIZE - d_off;
1557
1558	s_addr = kmap_atomic(s_page);
1559	d_addr = kmap_atomic(d_page);
1560
1561	while (1) {
1562		size = min(s_size, d_size);
1563		memcpy(d_addr + d_off, s_addr + s_off, size);
1564		written += size;
1565
1566		if (written == class->size)
1567			break;
1568
1569		s_off += size;
1570		s_size -= size;
1571		d_off += size;
1572		d_size -= size;
1573
1574		if (s_off >= PAGE_SIZE) {
1575			kunmap_atomic(d_addr);
1576			kunmap_atomic(s_addr);
1577			s_page = get_next_page(s_page);
 
1578			s_addr = kmap_atomic(s_page);
1579			d_addr = kmap_atomic(d_page);
1580			s_size = class->size - written;
1581			s_off = 0;
1582		}
1583
1584		if (d_off >= PAGE_SIZE) {
1585			kunmap_atomic(d_addr);
1586			d_page = get_next_page(d_page);
 
1587			d_addr = kmap_atomic(d_page);
1588			d_size = class->size - written;
1589			d_off = 0;
1590		}
1591	}
1592
1593	kunmap_atomic(d_addr);
1594	kunmap_atomic(s_addr);
1595}
1596
1597/*
1598 * Find alloced object in zspage from index object and
1599 * return handle.
1600 */
1601static unsigned long find_alloced_obj(struct size_class *class,
1602					struct page *page, int *obj_idx)
1603{
1604	unsigned long head;
1605	int offset = 0;
1606	int index = *obj_idx;
1607	unsigned long handle = 0;
1608	void *addr = kmap_atomic(page);
1609
1610	offset = get_first_obj_offset(page);
 
1611	offset += class->size * index;
1612
1613	while (offset < PAGE_SIZE) {
1614		head = obj_to_head(page, addr + offset);
1615		if (head & OBJ_ALLOCATED_TAG) {
1616			handle = head & ~OBJ_ALLOCATED_TAG;
1617			if (trypin_tag(handle))
1618				break;
1619			handle = 0;
1620		}
1621
1622		offset += class->size;
1623		index++;
1624	}
1625
1626	kunmap_atomic(addr);
1627
1628	*obj_idx = index;
1629
1630	return handle;
1631}
1632
1633struct zs_compact_control {
1634	/* Source spage for migration which could be a subpage of zspage */
1635	struct page *s_page;
1636	/* Destination page for migration which should be a first page
1637	 * of zspage. */
1638	struct page *d_page;
1639	 /* Starting object index within @s_page which used for live object
1640	  * in the subpage. */
1641	int obj_idx;
1642};
1643
1644static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1645				struct zs_compact_control *cc)
1646{
1647	unsigned long used_obj, free_obj;
1648	unsigned long handle;
1649	struct page *s_page = cc->s_page;
1650	struct page *d_page = cc->d_page;
1651	int obj_idx = cc->obj_idx;
1652	int ret = 0;
1653
1654	while (1) {
1655		handle = find_alloced_obj(class, s_page, &obj_idx);
1656		if (!handle) {
1657			s_page = get_next_page(s_page);
1658			if (!s_page)
1659				break;
1660			obj_idx = 0;
1661			continue;
1662		}
1663
1664		/* Stop if there is no more space */
1665		if (zspage_full(class, get_zspage(d_page))) {
1666			unpin_tag(handle);
1667			ret = -ENOMEM;
1668			break;
1669		}
1670
1671		used_obj = handle_to_obj(handle);
1672		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1673		zs_object_copy(class, free_obj, used_obj);
1674		obj_idx++;
1675		/*
1676		 * record_obj updates handle's value to free_obj and it will
1677		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1678		 * breaks synchronization using pin_tag(e,g, zs_free) so
1679		 * let's keep the lock bit.
1680		 */
1681		free_obj |= BIT(HANDLE_PIN_BIT);
1682		record_obj(handle, free_obj);
1683		unpin_tag(handle);
1684		obj_free(class, used_obj);
1685	}
1686
1687	/* Remember last position in this iteration */
1688	cc->s_page = s_page;
1689	cc->obj_idx = obj_idx;
1690
1691	return ret;
1692}
1693
1694static struct zspage *isolate_zspage(struct size_class *class, bool source)
1695{
1696	int i;
1697	struct zspage *zspage;
1698	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1699
1700	if (!source) {
1701		fg[0] = ZS_ALMOST_FULL;
1702		fg[1] = ZS_ALMOST_EMPTY;
1703	}
1704
1705	for (i = 0; i < 2; i++) {
1706		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1707							struct zspage, list);
1708		if (zspage) {
1709			VM_BUG_ON(is_zspage_isolated(zspage));
1710			remove_zspage(class, zspage, fg[i]);
1711			return zspage;
1712		}
1713	}
1714
1715	return zspage;
1716}
1717
1718/*
1719 * putback_zspage - add @zspage into right class's fullness list
 
1720 * @class: destination class
1721 * @zspage: target page
1722 *
1723 * Return @zspage's fullness_group
1724 */
1725static enum fullness_group putback_zspage(struct size_class *class,
1726			struct zspage *zspage)
 
1727{
1728	enum fullness_group fullness;
1729
1730	VM_BUG_ON(is_zspage_isolated(zspage));
1731
1732	fullness = get_fullness_group(class, zspage);
1733	insert_zspage(class, zspage, fullness);
1734	set_zspage_mapping(zspage, class->index, fullness);
1735
1736	return fullness;
1737}
1738
1739#ifdef CONFIG_COMPACTION
1740/*
1741 * To prevent zspage destroy during migration, zspage freeing should
1742 * hold locks of all pages in the zspage.
1743 */
1744static void lock_zspage(struct zspage *zspage)
1745{
1746	struct page *page = get_first_page(zspage);
1747
1748	do {
1749		lock_page(page);
1750	} while ((page = get_next_page(page)) != NULL);
1751}
1752
1753static int zs_init_fs_context(struct fs_context *fc)
1754{
1755	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1756}
1757
1758static struct file_system_type zsmalloc_fs = {
1759	.name		= "zsmalloc",
1760	.init_fs_context = zs_init_fs_context,
1761	.kill_sb	= kill_anon_super,
1762};
1763
1764static int zsmalloc_mount(void)
1765{
1766	int ret = 0;
1767
1768	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1769	if (IS_ERR(zsmalloc_mnt))
1770		ret = PTR_ERR(zsmalloc_mnt);
1771
1772	return ret;
1773}
1774
1775static void zsmalloc_unmount(void)
1776{
1777	kern_unmount(zsmalloc_mnt);
1778}
1779
1780static void migrate_lock_init(struct zspage *zspage)
1781{
1782	rwlock_init(&zspage->lock);
1783}
1784
1785static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1786{
1787	read_lock(&zspage->lock);
1788}
1789
1790static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1791{
1792	read_unlock(&zspage->lock);
1793}
1794
1795static void migrate_write_lock(struct zspage *zspage)
1796{
1797	write_lock(&zspage->lock);
1798}
1799
1800static void migrate_write_unlock(struct zspage *zspage)
1801{
1802	write_unlock(&zspage->lock);
1803}
1804
1805/* Number of isolated subpage for *page migration* in this zspage */
1806static void inc_zspage_isolation(struct zspage *zspage)
1807{
1808	zspage->isolated++;
1809}
1810
1811static void dec_zspage_isolation(struct zspage *zspage)
1812{
1813	zspage->isolated--;
1814}
1815
1816static void putback_zspage_deferred(struct zs_pool *pool,
1817				    struct size_class *class,
1818				    struct zspage *zspage)
1819{
1820	enum fullness_group fg;
1821
1822	fg = putback_zspage(class, zspage);
1823	if (fg == ZS_EMPTY)
1824		schedule_work(&pool->free_work);
1825
1826}
1827
1828static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1829{
1830	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1831	atomic_long_dec(&pool->isolated_pages);
1832	/*
1833	 * There's no possibility of racing, since wait_for_isolated_drain()
1834	 * checks the isolated count under &class->lock after enqueuing
1835	 * on migration_wait.
1836	 */
1837	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1838		wake_up_all(&pool->migration_wait);
1839}
1840
1841static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1842				struct page *newpage, struct page *oldpage)
1843{
1844	struct page *page;
1845	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1846	int idx = 0;
1847
1848	page = get_first_page(zspage);
1849	do {
1850		if (page == oldpage)
1851			pages[idx] = newpage;
1852		else
1853			pages[idx] = page;
1854		idx++;
1855	} while ((page = get_next_page(page)) != NULL);
1856
1857	create_page_chain(class, zspage, pages);
1858	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1859	if (unlikely(PageHugeObject(oldpage)))
1860		newpage->index = oldpage->index;
1861	__SetPageMovable(newpage, page_mapping(oldpage));
1862}
1863
1864static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1865{
1866	struct zs_pool *pool;
1867	struct size_class *class;
1868	int class_idx;
1869	enum fullness_group fullness;
1870	struct zspage *zspage;
1871	struct address_space *mapping;
1872
1873	/*
1874	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1875	 * lock_zspage in free_zspage.
1876	 */
1877	VM_BUG_ON_PAGE(!PageMovable(page), page);
1878	VM_BUG_ON_PAGE(PageIsolated(page), page);
1879
1880	zspage = get_zspage(page);
1881
1882	/*
1883	 * Without class lock, fullness could be stale while class_idx is okay
1884	 * because class_idx is constant unless page is freed so we should get
1885	 * fullness again under class lock.
1886	 */
1887	get_zspage_mapping(zspage, &class_idx, &fullness);
1888	mapping = page_mapping(page);
1889	pool = mapping->private_data;
1890	class = pool->size_class[class_idx];
1891
1892	spin_lock(&class->lock);
1893	if (get_zspage_inuse(zspage) == 0) {
1894		spin_unlock(&class->lock);
1895		return false;
1896	}
1897
1898	/* zspage is isolated for object migration */
1899	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1900		spin_unlock(&class->lock);
1901		return false;
1902	}
1903
1904	/*
1905	 * If this is first time isolation for the zspage, isolate zspage from
1906	 * size_class to prevent further object allocation from the zspage.
1907	 */
1908	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1909		get_zspage_mapping(zspage, &class_idx, &fullness);
1910		atomic_long_inc(&pool->isolated_pages);
1911		remove_zspage(class, zspage, fullness);
1912	}
1913
1914	inc_zspage_isolation(zspage);
1915	spin_unlock(&class->lock);
1916
1917	return true;
1918}
1919
1920static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1921		struct page *page, enum migrate_mode mode)
1922{
1923	struct zs_pool *pool;
1924	struct size_class *class;
1925	int class_idx;
1926	enum fullness_group fullness;
1927	struct zspage *zspage;
1928	struct page *dummy;
1929	void *s_addr, *d_addr, *addr;
1930	int offset, pos;
1931	unsigned long handle, head;
1932	unsigned long old_obj, new_obj;
1933	unsigned int obj_idx;
1934	int ret = -EAGAIN;
1935
1936	/*
1937	 * We cannot support the _NO_COPY case here, because copy needs to
1938	 * happen under the zs lock, which does not work with
1939	 * MIGRATE_SYNC_NO_COPY workflow.
1940	 */
1941	if (mode == MIGRATE_SYNC_NO_COPY)
1942		return -EINVAL;
1943
1944	VM_BUG_ON_PAGE(!PageMovable(page), page);
1945	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1946
1947	zspage = get_zspage(page);
1948
1949	/* Concurrent compactor cannot migrate any subpage in zspage */
1950	migrate_write_lock(zspage);
1951	get_zspage_mapping(zspage, &class_idx, &fullness);
1952	pool = mapping->private_data;
1953	class = pool->size_class[class_idx];
1954	offset = get_first_obj_offset(page);
1955
1956	spin_lock(&class->lock);
1957	if (!get_zspage_inuse(zspage)) {
1958		/*
1959		 * Set "offset" to end of the page so that every loops
1960		 * skips unnecessary object scanning.
1961		 */
1962		offset = PAGE_SIZE;
1963	}
1964
1965	pos = offset;
1966	s_addr = kmap_atomic(page);
1967	while (pos < PAGE_SIZE) {
1968		head = obj_to_head(page, s_addr + pos);
1969		if (head & OBJ_ALLOCATED_TAG) {
1970			handle = head & ~OBJ_ALLOCATED_TAG;
1971			if (!trypin_tag(handle))
1972				goto unpin_objects;
1973		}
1974		pos += class->size;
1975	}
1976
1977	/*
1978	 * Here, any user cannot access all objects in the zspage so let's move.
1979	 */
1980	d_addr = kmap_atomic(newpage);
1981	memcpy(d_addr, s_addr, PAGE_SIZE);
1982	kunmap_atomic(d_addr);
1983
1984	for (addr = s_addr + offset; addr < s_addr + pos;
1985					addr += class->size) {
1986		head = obj_to_head(page, addr);
1987		if (head & OBJ_ALLOCATED_TAG) {
1988			handle = head & ~OBJ_ALLOCATED_TAG;
1989			BUG_ON(!testpin_tag(handle));
1990
1991			old_obj = handle_to_obj(handle);
1992			obj_to_location(old_obj, &dummy, &obj_idx);
1993			new_obj = (unsigned long)location_to_obj(newpage,
1994								obj_idx);
1995			new_obj |= BIT(HANDLE_PIN_BIT);
1996			record_obj(handle, new_obj);
1997		}
1998	}
1999
2000	replace_sub_page(class, zspage, newpage, page);
2001	get_page(newpage);
2002
2003	dec_zspage_isolation(zspage);
2004
2005	/*
2006	 * Page migration is done so let's putback isolated zspage to
2007	 * the list if @page is final isolated subpage in the zspage.
2008	 */
2009	if (!is_zspage_isolated(zspage)) {
2010		/*
2011		 * We cannot race with zs_destroy_pool() here because we wait
2012		 * for isolation to hit zero before we start destroying.
2013		 * Also, we ensure that everyone can see pool->destroying before
2014		 * we start waiting.
2015		 */
2016		putback_zspage_deferred(pool, class, zspage);
2017		zs_pool_dec_isolated(pool);
2018	}
2019
2020	if (page_zone(newpage) != page_zone(page)) {
2021		dec_zone_page_state(page, NR_ZSPAGES);
2022		inc_zone_page_state(newpage, NR_ZSPAGES);
2023	}
2024
2025	reset_page(page);
2026	put_page(page);
2027	page = newpage;
2028
2029	ret = MIGRATEPAGE_SUCCESS;
2030unpin_objects:
2031	for (addr = s_addr + offset; addr < s_addr + pos;
2032						addr += class->size) {
2033		head = obj_to_head(page, addr);
2034		if (head & OBJ_ALLOCATED_TAG) {
2035			handle = head & ~OBJ_ALLOCATED_TAG;
2036			BUG_ON(!testpin_tag(handle));
2037			unpin_tag(handle);
2038		}
2039	}
2040	kunmap_atomic(s_addr);
2041	spin_unlock(&class->lock);
2042	migrate_write_unlock(zspage);
2043
2044	return ret;
2045}
2046
2047static void zs_page_putback(struct page *page)
2048{
2049	struct zs_pool *pool;
2050	struct size_class *class;
2051	int class_idx;
2052	enum fullness_group fg;
2053	struct address_space *mapping;
2054	struct zspage *zspage;
2055
2056	VM_BUG_ON_PAGE(!PageMovable(page), page);
2057	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2058
2059	zspage = get_zspage(page);
2060	get_zspage_mapping(zspage, &class_idx, &fg);
2061	mapping = page_mapping(page);
2062	pool = mapping->private_data;
2063	class = pool->size_class[class_idx];
2064
2065	spin_lock(&class->lock);
2066	dec_zspage_isolation(zspage);
2067	if (!is_zspage_isolated(zspage)) {
2068		/*
2069		 * Due to page_lock, we cannot free zspage immediately
2070		 * so let's defer.
2071		 */
2072		putback_zspage_deferred(pool, class, zspage);
2073		zs_pool_dec_isolated(pool);
2074	}
2075	spin_unlock(&class->lock);
2076}
2077
2078static const struct address_space_operations zsmalloc_aops = {
2079	.isolate_page = zs_page_isolate,
2080	.migratepage = zs_page_migrate,
2081	.putback_page = zs_page_putback,
2082};
2083
2084static int zs_register_migration(struct zs_pool *pool)
2085{
2086	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2087	if (IS_ERR(pool->inode)) {
2088		pool->inode = NULL;
2089		return 1;
2090	}
2091
2092	pool->inode->i_mapping->private_data = pool;
2093	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2094	return 0;
2095}
2096
2097static bool pool_isolated_are_drained(struct zs_pool *pool)
2098{
2099	return atomic_long_read(&pool->isolated_pages) == 0;
2100}
2101
2102/* Function for resolving migration */
2103static void wait_for_isolated_drain(struct zs_pool *pool)
2104{
2105
2106	/*
2107	 * We're in the process of destroying the pool, so there are no
2108	 * active allocations. zs_page_isolate() fails for completely free
2109	 * zspages, so we need only wait for the zs_pool's isolated
2110	 * count to hit zero.
2111	 */
2112	wait_event(pool->migration_wait,
2113		   pool_isolated_are_drained(pool));
2114}
2115
2116static void zs_unregister_migration(struct zs_pool *pool)
2117{
2118	pool->destroying = true;
2119	/*
2120	 * We need a memory barrier here to ensure global visibility of
2121	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2122	 * case we don't care, or it will be > 0 and pool->destroying will
2123	 * ensure that we wake up once isolation hits 0.
2124	 */
2125	smp_mb();
2126	wait_for_isolated_drain(pool); /* This can block */
2127	flush_work(&pool->free_work);
2128	iput(pool->inode);
2129}
2130
2131/*
2132 * Caller should hold page_lock of all pages in the zspage
2133 * In here, we cannot use zspage meta data.
2134 */
2135static void async_free_zspage(struct work_struct *work)
2136{
2137	int i;
2138	struct size_class *class;
2139	unsigned int class_idx;
2140	enum fullness_group fullness;
2141	struct zspage *zspage, *tmp;
2142	LIST_HEAD(free_pages);
2143	struct zs_pool *pool = container_of(work, struct zs_pool,
2144					free_work);
2145
2146	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2147		class = pool->size_class[i];
2148		if (class->index != i)
2149			continue;
2150
2151		spin_lock(&class->lock);
2152		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2153		spin_unlock(&class->lock);
2154	}
2155
2156
2157	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2158		list_del(&zspage->list);
2159		lock_zspage(zspage);
2160
2161		get_zspage_mapping(zspage, &class_idx, &fullness);
2162		VM_BUG_ON(fullness != ZS_EMPTY);
2163		class = pool->size_class[class_idx];
2164		spin_lock(&class->lock);
2165		__free_zspage(pool, class, zspage);
2166		spin_unlock(&class->lock);
2167	}
2168};
2169
2170static void kick_deferred_free(struct zs_pool *pool)
2171{
2172	schedule_work(&pool->free_work);
2173}
2174
2175static void init_deferred_free(struct zs_pool *pool)
2176{
2177	INIT_WORK(&pool->free_work, async_free_zspage);
2178}
2179
2180static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2181{
2182	struct page *page = get_first_page(zspage);
2183
2184	do {
2185		WARN_ON(!trylock_page(page));
2186		__SetPageMovable(page, pool->inode->i_mapping);
2187		unlock_page(page);
2188	} while ((page = get_next_page(page)) != NULL);
2189}
2190#endif
2191
2192/*
2193 *
2194 * Based on the number of unused allocated objects calculate
2195 * and return the number of pages that we can free.
2196 */
2197static unsigned long zs_can_compact(struct size_class *class)
2198{
2199	unsigned long obj_wasted;
2200	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2201	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2202
2203	if (obj_allocated <= obj_used)
2204		return 0;
2205
2206	obj_wasted = obj_allocated - obj_used;
2207	obj_wasted /= class->objs_per_zspage;
 
2208
2209	return obj_wasted * class->pages_per_zspage;
2210}
2211
2212static unsigned long __zs_compact(struct zs_pool *pool,
2213				  struct size_class *class)
2214{
2215	struct zs_compact_control cc;
2216	struct zspage *src_zspage;
2217	struct zspage *dst_zspage = NULL;
2218	unsigned long pages_freed = 0;
2219
2220	spin_lock(&class->lock);
2221	while ((src_zspage = isolate_zspage(class, true))) {
 
 
2222
2223		if (!zs_can_compact(class))
2224			break;
2225
2226		cc.obj_idx = 0;
2227		cc.s_page = get_first_page(src_zspage);
2228
2229		while ((dst_zspage = isolate_zspage(class, false))) {
2230			cc.d_page = get_first_page(dst_zspage);
2231			/*
2232			 * If there is no more space in dst_page, resched
2233			 * and see if anyone had allocated another zspage.
2234			 */
2235			if (!migrate_zspage(pool, class, &cc))
2236				break;
2237
2238			putback_zspage(class, dst_zspage);
2239		}
2240
2241		/* Stop if we couldn't find slot */
2242		if (dst_zspage == NULL)
2243			break;
2244
2245		putback_zspage(class, dst_zspage);
2246		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247			free_zspage(pool, class, src_zspage);
2248			pages_freed += class->pages_per_zspage;
2249		}
2250		spin_unlock(&class->lock);
2251		cond_resched();
2252		spin_lock(&class->lock);
2253	}
2254
2255	if (src_zspage)
2256		putback_zspage(class, src_zspage);
2257
2258	spin_unlock(&class->lock);
2259
2260	return pages_freed;
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265	int i;
2266	struct size_class *class;
2267	unsigned long pages_freed = 0;
2268
2269	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270		class = pool->size_class[i];
2271		if (!class)
2272			continue;
2273		if (class->index != i)
2274			continue;
2275		pages_freed += __zs_compact(pool, class);
2276	}
2277	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2278
2279	return pages_freed;
2280}
2281EXPORT_SYMBOL_GPL(zs_compact);
2282
2283void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2284{
2285	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2286}
2287EXPORT_SYMBOL_GPL(zs_pool_stats);
2288
2289static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2290		struct shrink_control *sc)
2291{
2292	unsigned long pages_freed;
2293	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2294			shrinker);
2295
 
2296	/*
2297	 * Compact classes and calculate compaction delta.
2298	 * Can run concurrently with a manually triggered
2299	 * (by user) compaction.
2300	 */
2301	pages_freed = zs_compact(pool);
2302
2303	return pages_freed ? pages_freed : SHRINK_STOP;
2304}
2305
2306static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307		struct shrink_control *sc)
2308{
2309	int i;
2310	struct size_class *class;
2311	unsigned long pages_to_free = 0;
2312	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313			shrinker);
2314
2315	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316		class = pool->size_class[i];
2317		if (!class)
2318			continue;
2319		if (class->index != i)
2320			continue;
2321
2322		pages_to_free += zs_can_compact(class);
2323	}
2324
2325	return pages_to_free;
2326}
2327
2328static void zs_unregister_shrinker(struct zs_pool *pool)
2329{
2330	unregister_shrinker(&pool->shrinker);
 
 
 
2331}
2332
2333static int zs_register_shrinker(struct zs_pool *pool)
2334{
2335	pool->shrinker.scan_objects = zs_shrinker_scan;
2336	pool->shrinker.count_objects = zs_shrinker_count;
2337	pool->shrinker.batch = 0;
2338	pool->shrinker.seeks = DEFAULT_SEEKS;
2339
2340	return register_shrinker(&pool->shrinker);
2341}
2342
2343/**
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2346 *
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2349 *
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2352 */
2353struct zs_pool *zs_create_pool(const char *name)
2354{
2355	int i;
2356	struct zs_pool *pool;
2357	struct size_class *prev_class = NULL;
2358
2359	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360	if (!pool)
2361		return NULL;
2362
2363	init_deferred_free(pool);
 
 
 
 
 
2364
2365	pool->name = kstrdup(name, GFP_KERNEL);
2366	if (!pool->name)
2367		goto err;
2368
2369#ifdef CONFIG_COMPACTION
2370	init_waitqueue_head(&pool->migration_wait);
2371#endif
2372
2373	if (create_cache(pool))
2374		goto err;
2375
2376	/*
2377	 * Iterate reversely, because, size of size_class that we want to use
2378	 * for merging should be larger or equal to current size.
2379	 */
2380	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381		int size;
2382		int pages_per_zspage;
2383		int objs_per_zspage;
2384		struct size_class *class;
2385		int fullness = 0;
2386
2387		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2388		if (size > ZS_MAX_ALLOC_SIZE)
2389			size = ZS_MAX_ALLOC_SIZE;
2390		pages_per_zspage = get_pages_per_zspage(size);
2391		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2392
2393		/*
2394		 * We iterate from biggest down to smallest classes,
2395		 * so huge_class_size holds the size of the first huge
2396		 * class. Any object bigger than or equal to that will
2397		 * endup in the huge class.
2398		 */
2399		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2400				!huge_class_size) {
2401			huge_class_size = size;
2402			/*
2403			 * The object uses ZS_HANDLE_SIZE bytes to store the
2404			 * handle. We need to subtract it, because zs_malloc()
2405			 * unconditionally adds handle size before it performs
2406			 * size class search - so object may be smaller than
2407			 * huge class size, yet it still can end up in the huge
2408			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2409			 * right before class lookup.
2410			 */
2411			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2412		}
2413
2414		/*
2415		 * size_class is used for normal zsmalloc operation such
2416		 * as alloc/free for that size. Although it is natural that we
2417		 * have one size_class for each size, there is a chance that we
2418		 * can get more memory utilization if we use one size_class for
2419		 * many different sizes whose size_class have same
2420		 * characteristics. So, we makes size_class point to
2421		 * previous size_class if possible.
2422		 */
2423		if (prev_class) {
2424			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2425				pool->size_class[i] = prev_class;
2426				continue;
2427			}
2428		}
2429
2430		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2431		if (!class)
2432			goto err;
2433
2434		class->size = size;
2435		class->index = i;
2436		class->pages_per_zspage = pages_per_zspage;
2437		class->objs_per_zspage = objs_per_zspage;
 
 
2438		spin_lock_init(&class->lock);
2439		pool->size_class[i] = class;
2440		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2441							fullness++)
2442			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2443
2444		prev_class = class;
2445	}
2446
2447	/* debug only, don't abort if it fails */
2448	zs_pool_stat_create(pool, name);
2449
2450	if (zs_register_migration(pool))
2451		goto err;
2452
2453	/*
2454	 * Not critical since shrinker is only used to trigger internal
2455	 * defragmentation of the pool which is pretty optional thing.  If
2456	 * registration fails we still can use the pool normally and user can
2457	 * trigger compaction manually. Thus, ignore return code.
2458	 */
2459	zs_register_shrinker(pool);
2460
2461	return pool;
2462
2463err:
2464	zs_destroy_pool(pool);
2465	return NULL;
2466}
2467EXPORT_SYMBOL_GPL(zs_create_pool);
2468
2469void zs_destroy_pool(struct zs_pool *pool)
2470{
2471	int i;
2472
2473	zs_unregister_shrinker(pool);
2474	zs_unregister_migration(pool);
2475	zs_pool_stat_destroy(pool);
2476
2477	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2478		int fg;
2479		struct size_class *class = pool->size_class[i];
2480
2481		if (!class)
2482			continue;
2483
2484		if (class->index != i)
2485			continue;
2486
2487		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2488			if (!list_empty(&class->fullness_list[fg])) {
2489				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2490					class->size, fg);
2491			}
2492		}
2493		kfree(class);
2494	}
2495
2496	destroy_cache(pool);
 
2497	kfree(pool->name);
2498	kfree(pool);
2499}
2500EXPORT_SYMBOL_GPL(zs_destroy_pool);
2501
2502static int __init zs_init(void)
2503{
2504	int ret;
2505
2506	ret = zsmalloc_mount();
2507	if (ret)
2508		goto out;
2509
2510	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2511				zs_cpu_prepare, zs_cpu_dead);
2512	if (ret)
2513		goto hp_setup_fail;
2514
2515#ifdef CONFIG_ZPOOL
2516	zpool_register_driver(&zs_zpool_driver);
2517#endif
2518
2519	zs_stat_init();
 
 
 
 
 
2520
2521	return 0;
 
 
 
 
 
2522
2523hp_setup_fail:
2524	zsmalloc_unmount();
2525out:
2526	return ret;
2527}
2528
2529static void __exit zs_exit(void)
2530{
2531#ifdef CONFIG_ZPOOL
2532	zpool_unregister_driver(&zs_zpool_driver);
2533#endif
2534	zsmalloc_unmount();
2535	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2536
2537	zs_stat_exit();
2538}
2539
2540module_init(zs_init);
2541module_exit(zs_exit);
2542
2543MODULE_LICENSE("Dual BSD/GPL");
2544MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");