Linux Audio

Check our new training course

Loading...
v4.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61	[HPD_CRT] = SDE_CRT_HOTPLUG,
  62	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121	POSTING_READ(GEN8_##type##_IMR(which)); \
 122	I915_WRITE(GEN8_##type##_IER(which), 0); \
 123	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124	POSTING_READ(GEN8_##type##_IIR(which)); \
 125	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126	POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN5_IRQ_RESET(type) do { \
 130	I915_WRITE(type##IMR, 0xffffffff); \
 131	POSTING_READ(type##IMR); \
 132	I915_WRITE(type##IER, 0); \
 133	I915_WRITE(type##IIR, 0xffffffff); \
 134	POSTING_READ(type##IIR); \
 135	I915_WRITE(type##IIR, 0xffffffff); \
 136	POSTING_READ(type##IIR); \
 137} while (0)
 138
 139/*
 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 
 
 141 */
 142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 143				    i915_reg_t reg)
 144{
 145	u32 val = I915_READ(reg);
 146
 147	if (val == 0)
 148		return;
 149
 150	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 151	     i915_mmio_reg_offset(reg), val);
 152	I915_WRITE(reg, 0xffffffff);
 153	POSTING_READ(reg);
 154	I915_WRITE(reg, 0xffffffff);
 155	POSTING_READ(reg);
 156}
 157
 158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 159	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 160	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 161	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 162	POSTING_READ(GEN8_##type##_IMR(which)); \
 163} while (0)
 164
 165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
 166	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
 167	I915_WRITE(type##IER, (ier_val)); \
 168	I915_WRITE(type##IMR, (imr_val)); \
 169	POSTING_READ(type##IMR); \
 170} while (0)
 171
 172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 173
 174/* For display hotplug interrupt */
 175static inline void
 176i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 177				     uint32_t mask,
 178				     uint32_t bits)
 179{
 180	uint32_t val;
 181
 182	assert_spin_locked(&dev_priv->irq_lock);
 183	WARN_ON(bits & ~mask);
 184
 185	val = I915_READ(PORT_HOTPLUG_EN);
 186	val &= ~mask;
 187	val |= bits;
 188	I915_WRITE(PORT_HOTPLUG_EN, val);
 189}
 190
 191/**
 192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 193 * @dev_priv: driver private
 194 * @mask: bits to update
 195 * @bits: bits to enable
 196 * NOTE: the HPD enable bits are modified both inside and outside
 197 * of an interrupt context. To avoid that read-modify-write cycles
 198 * interfer, these bits are protected by a spinlock. Since this
 199 * function is usually not called from a context where the lock is
 200 * held already, this function acquires the lock itself. A non-locking
 201 * version is also available.
 202 */
 203void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 204				   uint32_t mask,
 205				   uint32_t bits)
 206{
 207	spin_lock_irq(&dev_priv->irq_lock);
 208	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 209	spin_unlock_irq(&dev_priv->irq_lock);
 210}
 211
 212/**
 213 * ilk_update_display_irq - update DEIMR
 214 * @dev_priv: driver private
 215 * @interrupt_mask: mask of interrupt bits to update
 216 * @enabled_irq_mask: mask of interrupt bits to enable
 217 */
 218void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 219			    uint32_t interrupt_mask,
 220			    uint32_t enabled_irq_mask)
 221{
 222	uint32_t new_val;
 223
 224	assert_spin_locked(&dev_priv->irq_lock);
 225
 226	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 227
 228	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 229		return;
 230
 231	new_val = dev_priv->irq_mask;
 232	new_val &= ~interrupt_mask;
 233	new_val |= (~enabled_irq_mask & interrupt_mask);
 234
 235	if (new_val != dev_priv->irq_mask) {
 236		dev_priv->irq_mask = new_val;
 237		I915_WRITE(DEIMR, dev_priv->irq_mask);
 238		POSTING_READ(DEIMR);
 239	}
 240}
 241
 242/**
 243 * ilk_update_gt_irq - update GTIMR
 244 * @dev_priv: driver private
 245 * @interrupt_mask: mask of interrupt bits to update
 246 * @enabled_irq_mask: mask of interrupt bits to enable
 247 */
 248static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 249			      uint32_t interrupt_mask,
 250			      uint32_t enabled_irq_mask)
 251{
 252	assert_spin_locked(&dev_priv->irq_lock);
 253
 254	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 255
 256	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 257		return;
 258
 259	dev_priv->gt_irq_mask &= ~interrupt_mask;
 260	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 261	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 262	POSTING_READ(GTIMR);
 263}
 264
 265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 266{
 267	ilk_update_gt_irq(dev_priv, mask, mask);
 268}
 269
 270void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 271{
 272	ilk_update_gt_irq(dev_priv, mask, 0);
 273}
 274
 275static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 276{
 277	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 278}
 279
 280static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 281{
 282	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 283}
 284
 285static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 286{
 287	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 288}
 289
 290/**
 291 * snb_update_pm_irq - update GEN6_PMIMR
 292 * @dev_priv: driver private
 293 * @interrupt_mask: mask of interrupt bits to update
 294 * @enabled_irq_mask: mask of interrupt bits to enable
 295 */
 296static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 297			      uint32_t interrupt_mask,
 298			      uint32_t enabled_irq_mask)
 299{
 300	uint32_t new_val;
 301
 302	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 303
 304	assert_spin_locked(&dev_priv->irq_lock);
 305
 306	new_val = dev_priv->pm_irq_mask;
 307	new_val &= ~interrupt_mask;
 308	new_val |= (~enabled_irq_mask & interrupt_mask);
 309
 310	if (new_val != dev_priv->pm_irq_mask) {
 311		dev_priv->pm_irq_mask = new_val;
 312		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
 313		POSTING_READ(gen6_pm_imr(dev_priv));
 314	}
 315}
 316
 317void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 318{
 319	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 320		return;
 321
 322	snb_update_pm_irq(dev_priv, mask, mask);
 323}
 324
 325static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
 326				  uint32_t mask)
 327{
 328	snb_update_pm_irq(dev_priv, mask, 0);
 329}
 330
 331void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 332{
 333	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 334		return;
 335
 336	__gen6_disable_pm_irq(dev_priv, mask);
 337}
 338
 339void gen6_reset_rps_interrupts(struct drm_device *dev)
 340{
 341	struct drm_i915_private *dev_priv = dev->dev_private;
 342	i915_reg_t reg = gen6_pm_iir(dev_priv);
 343
 344	spin_lock_irq(&dev_priv->irq_lock);
 345	I915_WRITE(reg, dev_priv->pm_rps_events);
 346	I915_WRITE(reg, dev_priv->pm_rps_events);
 347	POSTING_READ(reg);
 348	dev_priv->rps.pm_iir = 0;
 349	spin_unlock_irq(&dev_priv->irq_lock);
 350}
 351
 352void gen6_enable_rps_interrupts(struct drm_device *dev)
 353{
 354	struct drm_i915_private *dev_priv = dev->dev_private;
 355
 356	spin_lock_irq(&dev_priv->irq_lock);
 357
 358	WARN_ON(dev_priv->rps.pm_iir);
 359	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 360	dev_priv->rps.interrupts_enabled = true;
 361	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
 362				dev_priv->pm_rps_events);
 363	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 364
 365	spin_unlock_irq(&dev_priv->irq_lock);
 366}
 367
 368u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
 369{
 370	/*
 371	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
 372	 * if GEN6_PM_UP_EI_EXPIRED is masked.
 373	 *
 374	 * TODO: verify if this can be reproduced on VLV,CHV.
 375	 */
 376	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
 377		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
 378
 379	if (INTEL_INFO(dev_priv)->gen >= 8)
 380		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
 381
 382	return mask;
 383}
 384
 385void gen6_disable_rps_interrupts(struct drm_device *dev)
 
 386{
 387	struct drm_i915_private *dev_priv = dev->dev_private;
 388
 389	spin_lock_irq(&dev_priv->irq_lock);
 390	dev_priv->rps.interrupts_enabled = false;
 391	spin_unlock_irq(&dev_priv->irq_lock);
 392
 393	cancel_work_sync(&dev_priv->rps.work);
 394
 395	spin_lock_irq(&dev_priv->irq_lock);
 396
 397	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 398
 399	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 400	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
 401				~dev_priv->pm_rps_events);
 402
 403	spin_unlock_irq(&dev_priv->irq_lock);
 404
 405	synchronize_irq(dev->irq);
 406}
 407
 408/**
 409 * bdw_update_port_irq - update DE port interrupt
 410 * @dev_priv: driver private
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 415				uint32_t interrupt_mask,
 416				uint32_t enabled_irq_mask)
 417{
 418	uint32_t new_val;
 419	uint32_t old_val;
 420
 421	assert_spin_locked(&dev_priv->irq_lock);
 422
 423	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 424
 425	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	old_val = I915_READ(GEN8_DE_PORT_IMR);
 429
 430	new_val = old_val;
 431	new_val &= ~interrupt_mask;
 432	new_val |= (~enabled_irq_mask & interrupt_mask);
 433
 434	if (new_val != old_val) {
 435		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 436		POSTING_READ(GEN8_DE_PORT_IMR);
 437	}
 438}
 439
 440/**
 441 * bdw_update_pipe_irq - update DE pipe interrupt
 442 * @dev_priv: driver private
 443 * @pipe: pipe whose interrupt to update
 444 * @interrupt_mask: mask of interrupt bits to update
 445 * @enabled_irq_mask: mask of interrupt bits to enable
 446 */
 447void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 448			 enum pipe pipe,
 449			 uint32_t interrupt_mask,
 450			 uint32_t enabled_irq_mask)
 451{
 452	uint32_t new_val;
 
 453
 454	assert_spin_locked(&dev_priv->irq_lock);
 455
 456	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 457
 458	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 459		return;
 460
 461	new_val = dev_priv->de_irq_mask[pipe];
 462	new_val &= ~interrupt_mask;
 463	new_val |= (~enabled_irq_mask & interrupt_mask);
 464
 465	if (new_val != dev_priv->de_irq_mask[pipe]) {
 466		dev_priv->de_irq_mask[pipe] = new_val;
 467		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 468		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 469	}
 470}
 471
 472/**
 473 * ibx_display_interrupt_update - update SDEIMR
 474 * @dev_priv: driver private
 475 * @interrupt_mask: mask of interrupt bits to update
 476 * @enabled_irq_mask: mask of interrupt bits to enable
 477 */
 478void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 479				  uint32_t interrupt_mask,
 480				  uint32_t enabled_irq_mask)
 481{
 482	uint32_t sdeimr = I915_READ(SDEIMR);
 483	sdeimr &= ~interrupt_mask;
 484	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 485
 486	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 487
 488	assert_spin_locked(&dev_priv->irq_lock);
 489
 490	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491		return;
 492
 493	I915_WRITE(SDEIMR, sdeimr);
 494	POSTING_READ(SDEIMR);
 495}
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499		       u32 enable_mask, u32 status_mask)
 500{
 501	i915_reg_t reg = PIPESTAT(pipe);
 502	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504	assert_spin_locked(&dev_priv->irq_lock);
 505	WARN_ON(!intel_irqs_enabled(dev_priv));
 506
 507	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 508		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 509		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 510		      pipe_name(pipe), enable_mask, status_mask))
 511		return;
 512
 513	if ((pipestat & enable_mask) == enable_mask)
 514		return;
 515
 516	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 517
 518	/* Enable the interrupt, clear any pending status */
 519	pipestat |= enable_mask | status_mask;
 520	I915_WRITE(reg, pipestat);
 521	POSTING_READ(reg);
 522}
 523
 524static void
 525__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 526		        u32 enable_mask, u32 status_mask)
 527{
 528	i915_reg_t reg = PIPESTAT(pipe);
 529	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 530
 531	assert_spin_locked(&dev_priv->irq_lock);
 532	WARN_ON(!intel_irqs_enabled(dev_priv));
 533
 534	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 535		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 536		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 537		      pipe_name(pipe), enable_mask, status_mask))
 538		return;
 539
 540	if ((pipestat & enable_mask) == 0)
 541		return;
 542
 543	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 544
 545	pipestat &= ~enable_mask;
 546	I915_WRITE(reg, pipestat);
 547	POSTING_READ(reg);
 548}
 549
 550static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 551{
 552	u32 enable_mask = status_mask << 16;
 553
 554	/*
 555	 * On pipe A we don't support the PSR interrupt yet,
 556	 * on pipe B and C the same bit MBZ.
 557	 */
 558	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 559		return 0;
 560	/*
 561	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 562	 * A the same bit is for perf counters which we don't use either.
 563	 */
 564	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 565		return 0;
 566
 567	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 568			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 569			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 570	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 571		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 572	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 573		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 574
 575	return enable_mask;
 576}
 577
 578void
 579i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 580		     u32 status_mask)
 581{
 582	u32 enable_mask;
 583
 584	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 585		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 586							   status_mask);
 587	else
 588		enable_mask = status_mask << 16;
 589	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 590}
 591
 592void
 593i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 594		      u32 status_mask)
 595{
 596	u32 enable_mask;
 597
 598	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 599		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 600							   status_mask);
 601	else
 602		enable_mask = status_mask << 16;
 603	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 604}
 605
 606/**
 607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 608 * @dev: drm device
 609 */
 610static void i915_enable_asle_pipestat(struct drm_device *dev)
 611{
 612	struct drm_i915_private *dev_priv = dev->dev_private;
 613
 614	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 615		return;
 616
 617	spin_lock_irq(&dev_priv->irq_lock);
 618
 619	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 620	if (INTEL_INFO(dev)->gen >= 4)
 621		i915_enable_pipestat(dev_priv, PIPE_A,
 622				     PIPE_LEGACY_BLC_EVENT_STATUS);
 623
 624	spin_unlock_irq(&dev_priv->irq_lock);
 625}
 626
 627/*
 628 * This timing diagram depicts the video signal in and
 629 * around the vertical blanking period.
 630 *
 631 * Assumptions about the fictitious mode used in this example:
 632 *  vblank_start >= 3
 633 *  vsync_start = vblank_start + 1
 634 *  vsync_end = vblank_start + 2
 635 *  vtotal = vblank_start + 3
 636 *
 637 *           start of vblank:
 638 *           latch double buffered registers
 639 *           increment frame counter (ctg+)
 640 *           generate start of vblank interrupt (gen4+)
 641 *           |
 642 *           |          frame start:
 643 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 644 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 645 *           |          |
 646 *           |          |  start of vsync:
 647 *           |          |  generate vsync interrupt
 648 *           |          |  |
 649 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 650 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 651 * ----va---> <-----------------vb--------------------> <--------va-------------
 652 *       |          |       <----vs----->                     |
 653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 656 *       |          |                                         |
 657 *       last visible pixel                                   first visible pixel
 658 *                  |                                         increment frame counter (gen3/4)
 659 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 660 *
 661 * x  = horizontal active
 662 * _  = horizontal blanking
 663 * hs = horizontal sync
 664 * va = vertical active
 665 * vb = vertical blanking
 666 * vs = vertical sync
 667 * vbs = vblank_start (number)
 668 *
 669 * Summary:
 670 * - most events happen at the start of horizontal sync
 671 * - frame start happens at the start of horizontal blank, 1-4 lines
 672 *   (depending on PIPECONF settings) after the start of vblank
 673 * - gen3/4 pixel and frame counter are synchronized with the start
 674 *   of horizontal active on the first line of vertical active
 675 */
 676
 677static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 678{
 679	/* Gen2 doesn't have a hardware frame counter */
 680	return 0;
 681}
 682
 683/* Called from drm generic code, passed a 'crtc', which
 684 * we use as a pipe index
 685 */
 686static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 687{
 688	struct drm_i915_private *dev_priv = dev->dev_private;
 689	i915_reg_t high_frame, low_frame;
 690	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 691	struct intel_crtc *intel_crtc =
 692		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 693	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
 694
 695	htotal = mode->crtc_htotal;
 696	hsync_start = mode->crtc_hsync_start;
 697	vbl_start = mode->crtc_vblank_start;
 698	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 699		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 700
 701	/* Convert to pixel count */
 702	vbl_start *= htotal;
 703
 704	/* Start of vblank event occurs at start of hsync */
 705	vbl_start -= htotal - hsync_start;
 706
 707	high_frame = PIPEFRAME(pipe);
 708	low_frame = PIPEFRAMEPIXEL(pipe);
 709
 710	/*
 711	 * High & low register fields aren't synchronized, so make sure
 712	 * we get a low value that's stable across two reads of the high
 713	 * register.
 714	 */
 715	do {
 716		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 717		low   = I915_READ(low_frame);
 718		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 719	} while (high1 != high2);
 720
 721	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 722	pixel = low & PIPE_PIXEL_MASK;
 723	low >>= PIPE_FRAME_LOW_SHIFT;
 724
 725	/*
 726	 * The frame counter increments at beginning of active.
 727	 * Cook up a vblank counter by also checking the pixel
 728	 * counter against vblank start.
 729	 */
 730	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 731}
 732
 733static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 734{
 735	struct drm_i915_private *dev_priv = dev->dev_private;
 736
 737	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 738}
 739
 740/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 741static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 742{
 743	struct drm_device *dev = crtc->base.dev;
 744	struct drm_i915_private *dev_priv = dev->dev_private;
 745	const struct drm_display_mode *mode = &crtc->base.hwmode;
 746	enum pipe pipe = crtc->pipe;
 747	int position, vtotal;
 748
 749	vtotal = mode->crtc_vtotal;
 750	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 751		vtotal /= 2;
 752
 753	if (IS_GEN2(dev))
 754		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 755	else
 756		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 757
 758	/*
 759	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 760	 * read it just before the start of vblank.  So try it again
 761	 * so we don't accidentally end up spanning a vblank frame
 762	 * increment, causing the pipe_update_end() code to squak at us.
 763	 *
 764	 * The nature of this problem means we can't simply check the ISR
 765	 * bit and return the vblank start value; nor can we use the scanline
 766	 * debug register in the transcoder as it appears to have the same
 767	 * problem.  We may need to extend this to include other platforms,
 768	 * but so far testing only shows the problem on HSW.
 769	 */
 770	if (HAS_DDI(dev) && !position) {
 771		int i, temp;
 772
 773		for (i = 0; i < 100; i++) {
 774			udelay(1);
 775			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
 776				DSL_LINEMASK_GEN3;
 777			if (temp != position) {
 778				position = temp;
 779				break;
 780			}
 781		}
 782	}
 783
 784	/*
 785	 * See update_scanline_offset() for the details on the
 786	 * scanline_offset adjustment.
 787	 */
 788	return (position + crtc->scanline_offset) % vtotal;
 789}
 790
 791static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 792				    unsigned int flags, int *vpos, int *hpos,
 793				    ktime_t *stime, ktime_t *etime,
 794				    const struct drm_display_mode *mode)
 795{
 796	struct drm_i915_private *dev_priv = dev->dev_private;
 797	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 798	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 799	int position;
 800	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 801	bool in_vbl = true;
 802	int ret = 0;
 803	unsigned long irqflags;
 804
 805	if (WARN_ON(!mode->crtc_clock)) {
 806		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 807				 "pipe %c\n", pipe_name(pipe));
 808		return 0;
 809	}
 810
 811	htotal = mode->crtc_htotal;
 812	hsync_start = mode->crtc_hsync_start;
 813	vtotal = mode->crtc_vtotal;
 814	vbl_start = mode->crtc_vblank_start;
 815	vbl_end = mode->crtc_vblank_end;
 816
 817	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 818		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 819		vbl_end /= 2;
 820		vtotal /= 2;
 821	}
 822
 823	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 824
 825	/*
 826	 * Lock uncore.lock, as we will do multiple timing critical raw
 827	 * register reads, potentially with preemption disabled, so the
 828	 * following code must not block on uncore.lock.
 829	 */
 830	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 831
 832	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 833
 834	/* Get optional system timestamp before query. */
 835	if (stime)
 836		*stime = ktime_get();
 837
 838	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 839		/* No obvious pixelcount register. Only query vertical
 840		 * scanout position from Display scan line register.
 841		 */
 842		position = __intel_get_crtc_scanline(intel_crtc);
 843	} else {
 844		/* Have access to pixelcount since start of frame.
 845		 * We can split this into vertical and horizontal
 846		 * scanout position.
 847		 */
 848		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 849
 850		/* convert to pixel counts */
 851		vbl_start *= htotal;
 852		vbl_end *= htotal;
 853		vtotal *= htotal;
 854
 855		/*
 856		 * In interlaced modes, the pixel counter counts all pixels,
 857		 * so one field will have htotal more pixels. In order to avoid
 858		 * the reported position from jumping backwards when the pixel
 859		 * counter is beyond the length of the shorter field, just
 860		 * clamp the position the length of the shorter field. This
 861		 * matches how the scanline counter based position works since
 862		 * the scanline counter doesn't count the two half lines.
 863		 */
 864		if (position >= vtotal)
 865			position = vtotal - 1;
 866
 867		/*
 868		 * Start of vblank interrupt is triggered at start of hsync,
 869		 * just prior to the first active line of vblank. However we
 870		 * consider lines to start at the leading edge of horizontal
 871		 * active. So, should we get here before we've crossed into
 872		 * the horizontal active of the first line in vblank, we would
 873		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 874		 * always add htotal-hsync_start to the current pixel position.
 875		 */
 876		position = (position + htotal - hsync_start) % vtotal;
 877	}
 878
 879	/* Get optional system timestamp after query. */
 880	if (etime)
 881		*etime = ktime_get();
 882
 883	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 884
 885	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 886
 887	in_vbl = position >= vbl_start && position < vbl_end;
 888
 889	/*
 890	 * While in vblank, position will be negative
 891	 * counting up towards 0 at vbl_end. And outside
 892	 * vblank, position will be positive counting
 893	 * up since vbl_end.
 894	 */
 895	if (position >= vbl_start)
 896		position -= vbl_end;
 897	else
 898		position += vtotal - vbl_end;
 899
 900	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 901		*vpos = position;
 902		*hpos = 0;
 903	} else {
 904		*vpos = position / htotal;
 905		*hpos = position - (*vpos * htotal);
 906	}
 907
 908	/* In vblank? */
 909	if (in_vbl)
 910		ret |= DRM_SCANOUTPOS_IN_VBLANK;
 911
 912	return ret;
 913}
 914
 915int intel_get_crtc_scanline(struct intel_crtc *crtc)
 916{
 917	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 918	unsigned long irqflags;
 919	int position;
 920
 921	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 922	position = __intel_get_crtc_scanline(crtc);
 923	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 924
 925	return position;
 926}
 927
 928static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
 929			      int *max_error,
 930			      struct timeval *vblank_time,
 931			      unsigned flags)
 932{
 933	struct drm_crtc *crtc;
 934
 935	if (pipe >= INTEL_INFO(dev)->num_pipes) {
 936		DRM_ERROR("Invalid crtc %u\n", pipe);
 937		return -EINVAL;
 938	}
 939
 940	/* Get drm_crtc to timestamp: */
 941	crtc = intel_get_crtc_for_pipe(dev, pipe);
 942	if (crtc == NULL) {
 943		DRM_ERROR("Invalid crtc %u\n", pipe);
 944		return -EINVAL;
 945	}
 946
 947	if (!crtc->hwmode.crtc_clock) {
 948		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
 949		return -EBUSY;
 950	}
 951
 952	/* Helper routine in DRM core does all the work: */
 953	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 954						     vblank_time, flags,
 955						     &crtc->hwmode);
 956}
 957
 958static void ironlake_rps_change_irq_handler(struct drm_device *dev)
 959{
 960	struct drm_i915_private *dev_priv = dev->dev_private;
 961	u32 busy_up, busy_down, max_avg, min_avg;
 962	u8 new_delay;
 963
 964	spin_lock(&mchdev_lock);
 965
 966	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 967
 968	new_delay = dev_priv->ips.cur_delay;
 969
 970	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 971	busy_up = I915_READ(RCPREVBSYTUPAVG);
 972	busy_down = I915_READ(RCPREVBSYTDNAVG);
 973	max_avg = I915_READ(RCBMAXAVG);
 974	min_avg = I915_READ(RCBMINAVG);
 975
 976	/* Handle RCS change request from hw */
 977	if (busy_up > max_avg) {
 978		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
 979			new_delay = dev_priv->ips.cur_delay - 1;
 980		if (new_delay < dev_priv->ips.max_delay)
 981			new_delay = dev_priv->ips.max_delay;
 982	} else if (busy_down < min_avg) {
 983		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
 984			new_delay = dev_priv->ips.cur_delay + 1;
 985		if (new_delay > dev_priv->ips.min_delay)
 986			new_delay = dev_priv->ips.min_delay;
 987	}
 988
 989	if (ironlake_set_drps(dev, new_delay))
 990		dev_priv->ips.cur_delay = new_delay;
 991
 992	spin_unlock(&mchdev_lock);
 993
 994	return;
 995}
 996
 997static void notify_ring(struct intel_engine_cs *ring)
 998{
 999	if (!intel_ring_initialized(ring))
1000		return;
1001
1002	trace_i915_gem_request_notify(ring);
1003
1004	wake_up_all(&ring->irq_queue);
1005}
1006
1007static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008			struct intel_rps_ei *ei)
1009{
1010	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013}
1014
1015static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016			 const struct intel_rps_ei *old,
1017			 const struct intel_rps_ei *now,
1018			 int threshold)
1019{
1020	u64 time, c0;
1021	unsigned int mul = 100;
1022
1023	if (old->cz_clock == 0)
1024		return false;
1025
1026	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027		mul <<= 8;
1028
1029	time = now->cz_clock - old->cz_clock;
1030	time *= threshold * dev_priv->czclk_freq;
1031
1032	/* Workload can be split between render + media, e.g. SwapBuffers
1033	 * being blitted in X after being rendered in mesa. To account for
1034	 * this we need to combine both engines into our activity counter.
1035	 */
1036	c0 = now->render_c0 - old->render_c0;
1037	c0 += now->media_c0 - old->media_c0;
1038	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040	return c0 >= time;
1041}
1042
1043void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044{
1045	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047}
1048
1049static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050{
1051	struct intel_rps_ei now;
1052	u32 events = 0;
1053
1054	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055		return 0;
1056
1057	vlv_c0_read(dev_priv, &now);
1058	if (now.cz_clock == 0)
1059		return 0;
1060
1061	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062		if (!vlv_c0_above(dev_priv,
1063				  &dev_priv->rps.down_ei, &now,
1064				  dev_priv->rps.down_threshold))
1065			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066		dev_priv->rps.down_ei = now;
1067	}
1068
1069	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070		if (vlv_c0_above(dev_priv,
1071				 &dev_priv->rps.up_ei, &now,
1072				 dev_priv->rps.up_threshold))
1073			events |= GEN6_PM_RP_UP_THRESHOLD;
1074		dev_priv->rps.up_ei = now;
1075	}
1076
1077	return events;
 
 
 
 
 
 
1078}
1079
1080static bool any_waiters(struct drm_i915_private *dev_priv)
 
 
 
1081{
1082	struct intel_engine_cs *ring;
1083	int i;
1084
1085	for_each_ring(ring, dev_priv, i)
1086		if (ring->irq_refcount)
1087			return true;
1088
1089	return false;
 
 
1090}
1091
1092static void gen6_pm_rps_work(struct work_struct *work)
 
1093{
1094	struct drm_i915_private *dev_priv =
1095		container_of(work, struct drm_i915_private, rps.work);
1096	bool client_boost;
1097	int new_delay, adj, min, max;
1098	u32 pm_iir;
1099
1100	spin_lock_irq(&dev_priv->irq_lock);
1101	/* Speed up work cancelation during disabling rps interrupts. */
1102	if (!dev_priv->rps.interrupts_enabled) {
1103		spin_unlock_irq(&dev_priv->irq_lock);
1104		return;
1105	}
1106
1107	/*
1108	 * The RPS work is synced during runtime suspend, we don't require a
1109	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110	 * always hold an RPM reference while the work is running.
1111	 */
1112	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114	pm_iir = dev_priv->rps.pm_iir;
1115	dev_priv->rps.pm_iir = 0;
1116	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118	client_boost = dev_priv->rps.client_boost;
1119	dev_priv->rps.client_boost = false;
1120	spin_unlock_irq(&dev_priv->irq_lock);
1121
1122	/* Make sure we didn't queue anything we're not going to process. */
1123	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126		goto out;
1127
1128	mutex_lock(&dev_priv->rps.hw_lock);
1129
1130	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132	adj = dev_priv->rps.last_adj;
1133	new_delay = dev_priv->rps.cur_freq;
1134	min = dev_priv->rps.min_freq_softlimit;
1135	max = dev_priv->rps.max_freq_softlimit;
1136
1137	if (client_boost) {
1138		new_delay = dev_priv->rps.max_freq_softlimit;
1139		adj = 0;
1140	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141		if (adj > 0)
1142			adj *= 2;
1143		else /* CHV needs even encode values */
1144			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145		/*
1146		 * For better performance, jump directly
1147		 * to RPe if we're below it.
1148		 */
1149		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150			new_delay = dev_priv->rps.efficient_freq;
1151			adj = 0;
1152		}
1153	} else if (any_waiters(dev_priv)) {
1154		adj = 0;
1155	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157			new_delay = dev_priv->rps.efficient_freq;
1158		else
1159			new_delay = dev_priv->rps.min_freq_softlimit;
1160		adj = 0;
1161	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162		if (adj < 0)
1163			adj *= 2;
1164		else /* CHV needs even encode values */
1165			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166	} else { /* unknown event */
1167		adj = 0;
1168	}
1169
1170	dev_priv->rps.last_adj = adj;
1171
1172	/* sysfs frequency interfaces may have snuck in while servicing the
1173	 * interrupt
1174	 */
1175	new_delay += adj;
1176	new_delay = clamp_t(int, new_delay, min, max);
1177
1178	intel_set_rps(dev_priv->dev, new_delay);
1179
1180	mutex_unlock(&dev_priv->rps.hw_lock);
1181out:
1182	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183}
1184
1185
1186/**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195static void ivybridge_parity_work(struct work_struct *work)
1196{
1197	struct drm_i915_private *dev_priv =
1198		container_of(work, struct drm_i915_private, l3_parity.error_work);
 
1199	u32 error_status, row, bank, subbank;
1200	char *parity_event[6];
1201	uint32_t misccpctl;
1202	uint8_t slice = 0;
1203
1204	/* We must turn off DOP level clock gating to access the L3 registers.
1205	 * In order to prevent a get/put style interface, acquire struct mutex
1206	 * any time we access those registers.
1207	 */
1208	mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210	/* If we've screwed up tracking, just let the interrupt fire again */
1211	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212		goto out;
1213
1214	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216	POSTING_READ(GEN7_MISCCPCTL);
1217
1218	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219		i915_reg_t reg;
1220
1221		slice--;
1222		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
 
1223			break;
1224
1225		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227		reg = GEN7_L3CDERRST1(slice);
1228
1229		error_status = I915_READ(reg);
1230		row = GEN7_PARITY_ERROR_ROW(error_status);
1231		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235		POSTING_READ(reg);
1236
1237		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242		parity_event[5] = NULL;
1243
1244		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245				   KOBJ_CHANGE, parity_event);
1246
1247		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248			  slice, row, bank, subbank);
 
1249
1250		kfree(parity_event[4]);
1251		kfree(parity_event[3]);
1252		kfree(parity_event[2]);
1253		kfree(parity_event[1]);
1254	}
1255
1256	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258out:
1259	WARN_ON(dev_priv->l3_parity.which_slice);
1260	spin_lock_irq(&dev_priv->irq_lock);
1261	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262	spin_unlock_irq(&dev_priv->irq_lock);
1263
1264	mutex_unlock(&dev_priv->dev->struct_mutex);
1265}
1266
1267static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268{
1269	struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271	if (!HAS_L3_DPF(dev))
1272		return;
1273
1274	spin_lock(&dev_priv->irq_lock);
1275	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276	spin_unlock(&dev_priv->irq_lock);
1277
1278	iir &= GT_PARITY_ERROR(dev);
1279	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280		dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283		dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286}
1287
1288static void ilk_gt_irq_handler(struct drm_device *dev,
1289			       struct drm_i915_private *dev_priv,
1290			       u32 gt_iir)
1291{
1292	if (gt_iir &
1293	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294		notify_ring(&dev_priv->ring[RCS]);
1295	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296		notify_ring(&dev_priv->ring[VCS]);
1297}
1298
1299static void snb_gt_irq_handler(struct drm_device *dev,
1300			       struct drm_i915_private *dev_priv,
1301			       u32 gt_iir)
1302{
1303
1304	if (gt_iir &
1305	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306		notify_ring(&dev_priv->ring[RCS]);
1307	if (gt_iir & GT_BSD_USER_INTERRUPT)
1308		notify_ring(&dev_priv->ring[VCS]);
1309	if (gt_iir & GT_BLT_USER_INTERRUPT)
1310		notify_ring(&dev_priv->ring[BCS]);
1311
1312	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313		      GT_BSD_CS_ERROR_INTERRUPT |
1314		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317	if (gt_iir & GT_PARITY_ERROR(dev))
1318		ivybridge_parity_error_irq_handler(dev, gt_iir);
1319}
1320
1321static __always_inline void
1322gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323{
1324	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325		notify_ring(ring);
1326	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327		intel_lrc_irq_handler(ring);
1328}
1329
1330static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331				       u32 master_ctl)
1332{
 
1333	irqreturn_t ret = IRQ_NONE;
1334
1335	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337		if (iir) {
1338			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339			ret = IRQ_HANDLED;
1340
1341			gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342					iir, GEN8_RCS_IRQ_SHIFT);
1343
1344			gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345					iir, GEN8_BCS_IRQ_SHIFT);
1346		} else
1347			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348	}
1349
1350	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352		if (iir) {
1353			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354			ret = IRQ_HANDLED;
1355
1356			gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357					iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359			gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360					iir, GEN8_VCS2_IRQ_SHIFT);
1361		} else
1362			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363	}
1364
1365	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367		if (iir) {
1368			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369			ret = IRQ_HANDLED;
1370
1371			gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372					iir, GEN8_VECS_IRQ_SHIFT);
1373		} else
1374			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375	}
1376
1377	if (master_ctl & GEN8_GT_PM_IRQ) {
1378		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379		if (iir & dev_priv->pm_rps_events) {
1380			I915_WRITE_FW(GEN8_GT_IIR(2),
1381				      iir & dev_priv->pm_rps_events);
1382			ret = IRQ_HANDLED;
1383			gen6_rps_irq_handler(dev_priv, iir);
1384		} else
1385			DRM_ERROR("The master control interrupt lied (PM)!\n");
1386	}
1387
1388	return ret;
1389}
1390
1391static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392{
1393	switch (port) {
1394	case PORT_A:
1395		return val & PORTA_HOTPLUG_LONG_DETECT;
1396	case PORT_B:
1397		return val & PORTB_HOTPLUG_LONG_DETECT;
1398	case PORT_C:
1399		return val & PORTC_HOTPLUG_LONG_DETECT;
1400	default:
1401		return false;
1402	}
1403}
1404
1405static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406{
1407	switch (port) {
1408	case PORT_E:
1409		return val & PORTE_HOTPLUG_LONG_DETECT;
1410	default:
1411		return false;
1412	}
1413}
1414
1415static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416{
1417	switch (port) {
1418	case PORT_A:
1419		return val & PORTA_HOTPLUG_LONG_DETECT;
1420	case PORT_B:
1421		return val & PORTB_HOTPLUG_LONG_DETECT;
1422	case PORT_C:
1423		return val & PORTC_HOTPLUG_LONG_DETECT;
1424	case PORT_D:
1425		return val & PORTD_HOTPLUG_LONG_DETECT;
1426	default:
1427		return false;
1428	}
1429}
1430
1431static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432{
1433	switch (port) {
1434	case PORT_A:
1435		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436	default:
1437		return false;
1438	}
1439}
1440
1441static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442{
1443	switch (port) {
1444	case PORT_B:
1445		return val & PORTB_HOTPLUG_LONG_DETECT;
1446	case PORT_C:
1447		return val & PORTC_HOTPLUG_LONG_DETECT;
1448	case PORT_D:
1449		return val & PORTD_HOTPLUG_LONG_DETECT;
1450	default:
1451		return false;
1452	}
1453}
1454
1455static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456{
1457	switch (port) {
1458	case PORT_B:
1459		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460	case PORT_C:
1461		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462	case PORT_D:
1463		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464	default:
1465		return false;
1466	}
1467}
1468
1469/*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1478			     const u32 hpd[HPD_NUM_PINS],
1479			     bool long_pulse_detect(enum port port, u32 val))
1480{
1481	enum port port;
1482	int i;
1483
1484	for_each_hpd_pin(i) {
1485		if ((hpd[i] & hotplug_trigger) == 0)
1486			continue;
1487
1488		*pin_mask |= BIT(i);
1489
1490		if (!intel_hpd_pin_to_port(i, &port))
1491			continue;
1492
1493		if (long_pulse_detect(port, dig_hotplug_reg))
1494			*long_mask |= BIT(i);
1495	}
1496
1497	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500}
1501
1502static void gmbus_irq_handler(struct drm_device *dev)
1503{
1504	struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506	wake_up_all(&dev_priv->gmbus_wait_queue);
1507}
1508
1509static void dp_aux_irq_handler(struct drm_device *dev)
1510{
1511	struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513	wake_up_all(&dev_priv->gmbus_wait_queue);
1514}
1515
1516#if defined(CONFIG_DEBUG_FS)
1517static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518					 uint32_t crc0, uint32_t crc1,
1519					 uint32_t crc2, uint32_t crc3,
1520					 uint32_t crc4)
1521{
1522	struct drm_i915_private *dev_priv = dev->dev_private;
1523	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524	struct intel_pipe_crc_entry *entry;
1525	int head, tail;
1526
1527	spin_lock(&pipe_crc->lock);
1528
1529	if (!pipe_crc->entries) {
1530		spin_unlock(&pipe_crc->lock);
1531		DRM_DEBUG_KMS("spurious interrupt\n");
1532		return;
1533	}
1534
1535	head = pipe_crc->head;
1536	tail = pipe_crc->tail;
1537
1538	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539		spin_unlock(&pipe_crc->lock);
1540		DRM_ERROR("CRC buffer overflowing\n");
1541		return;
1542	}
1543
1544	entry = &pipe_crc->entries[head];
1545
1546	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547	entry->crc[0] = crc0;
1548	entry->crc[1] = crc1;
1549	entry->crc[2] = crc2;
1550	entry->crc[3] = crc3;
1551	entry->crc[4] = crc4;
1552
1553	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554	pipe_crc->head = head;
1555
1556	spin_unlock(&pipe_crc->lock);
1557
1558	wake_up_interruptible(&pipe_crc->wq);
1559}
1560#else
1561static inline void
1562display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563			     uint32_t crc0, uint32_t crc1,
1564			     uint32_t crc2, uint32_t crc3,
1565			     uint32_t crc4) {}
1566#endif
1567
1568
1569static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570{
1571	struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573	display_pipe_crc_irq_handler(dev, pipe,
1574				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575				     0, 0, 0, 0);
1576}
1577
1578static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579{
1580	struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582	display_pipe_crc_irq_handler(dev, pipe,
1583				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588}
1589
1590static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591{
1592	struct drm_i915_private *dev_priv = dev->dev_private;
1593	uint32_t res1, res2;
1594
1595	if (INTEL_INFO(dev)->gen >= 3)
1596		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597	else
1598		res1 = 0;
1599
1600	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602	else
1603		res2 = 0;
1604
1605	display_pipe_crc_irq_handler(dev, pipe,
1606				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609				     res1, res2);
1610}
1611
1612/* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616{
1617	if (pm_iir & dev_priv->pm_rps_events) {
1618		spin_lock(&dev_priv->irq_lock);
1619		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620		if (dev_priv->rps.interrupts_enabled) {
1621			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622			queue_work(dev_priv->wq, &dev_priv->rps.work);
1623		}
1624		spin_unlock(&dev_priv->irq_lock);
1625	}
1626
1627	if (INTEL_INFO(dev_priv)->gen >= 8)
1628		return;
1629
1630	if (HAS_VEBOX(dev_priv->dev)) {
1631		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632			notify_ring(&dev_priv->ring[VECS]);
1633
1634		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636	}
1637}
1638
1639static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640{
1641	if (!drm_handle_vblank(dev, pipe))
1642		return false;
1643
1644	return true;
1645}
1646
1647static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648{
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	u32 pipe_stats[I915_MAX_PIPES] = { };
1651	int pipe;
1652
1653	spin_lock(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
1654
1655	if (!dev_priv->display_irqs_enabled) {
1656		spin_unlock(&dev_priv->irq_lock);
1657		return;
1658	}
1659
1660	for_each_pipe(dev_priv, pipe) {
1661		i915_reg_t reg;
1662		u32 mask, iir_bit = 0;
1663
1664		/*
1665		 * PIPESTAT bits get signalled even when the interrupt is
1666		 * disabled with the mask bits, and some of the status bits do
1667		 * not generate interrupts at all (like the underrun bit). Hence
1668		 * we need to be careful that we only handle what we want to
1669		 * handle.
 
 
 
 
 
 
1670		 */
 
 
1671
1672		/* fifo underruns are filterered in the underrun handler. */
1673		mask = PIPE_FIFO_UNDERRUN_STATUS;
 
 
1674
1675		switch (pipe) {
1676		case PIPE_A:
1677			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678			break;
1679		case PIPE_B:
1680			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681			break;
1682		case PIPE_C:
1683			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684			break;
1685		}
1686		if (iir & iir_bit)
1687			mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689		if (!mask)
1690			continue;
 
1691
1692		reg = PIPESTAT(pipe);
1693		mask |= PIPESTAT_INT_ENABLE_MASK;
1694		pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696		/*
1697		 * Clear the PIPE*STAT regs before the IIR
 
1698		 */
1699		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700					PIPESTAT_INT_STATUS_MASK))
1701			I915_WRITE(reg, pipe_stats[pipe]);
1702	}
1703	spin_unlock(&dev_priv->irq_lock);
1704
1705	for_each_pipe(dev_priv, pipe) {
1706		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707		    intel_pipe_handle_vblank(dev, pipe))
1708			intel_check_page_flip(dev, pipe);
1709
1710		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711			intel_prepare_page_flip(dev, pipe);
1712			intel_finish_page_flip(dev, pipe);
1713		}
1714
1715		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716			i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720	}
1721
1722	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723		gmbus_irq_handler(dev);
1724}
1725
1726static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727{
1728	struct drm_i915_private *dev_priv = dev->dev_private;
1729	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730	u32 pin_mask = 0, long_mask = 0;
1731
1732	if (!hotplug_status)
1733		return;
1734
1735	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736	/*
1737	 * Make sure hotplug status is cleared before we clear IIR, or else we
1738	 * may miss hotplug events.
1739	 */
1740	POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745		if (hotplug_trigger) {
1746			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747					   hotplug_trigger, hpd_status_g4x,
1748					   i9xx_port_hotplug_long_detect);
1749
1750			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751		}
1752
1753		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754			dp_aux_irq_handler(dev);
1755	} else {
1756		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758		if (hotplug_trigger) {
1759			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760					   hotplug_trigger, hpd_status_i915,
1761					   i9xx_port_hotplug_long_detect);
1762			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763		}
1764	}
1765}
1766
1767static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768{
1769	struct drm_device *dev = arg;
1770	struct drm_i915_private *dev_priv = dev->dev_private;
1771	u32 iir, gt_iir, pm_iir;
1772	irqreturn_t ret = IRQ_NONE;
1773
1774	if (!intel_irqs_enabled(dev_priv))
1775		return IRQ_NONE;
1776
1777	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778	disable_rpm_wakeref_asserts(dev_priv);
1779
1780	while (true) {
1781		/* Find, clear, then process each source of interrupt */
1782
1783		gt_iir = I915_READ(GTIIR);
1784		if (gt_iir)
1785			I915_WRITE(GTIIR, gt_iir);
1786
1787		pm_iir = I915_READ(GEN6_PMIIR);
1788		if (pm_iir)
1789			I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791		iir = I915_READ(VLV_IIR);
1792		if (iir) {
1793			/* Consume port before clearing IIR or we'll miss events */
1794			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795				i9xx_hpd_irq_handler(dev);
1796			I915_WRITE(VLV_IIR, iir);
1797		}
1798
1799		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800			goto out;
1801
1802		ret = IRQ_HANDLED;
 
1803
1804		if (gt_iir)
1805			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806		if (pm_iir)
1807			gen6_rps_irq_handler(dev_priv, pm_iir);
1808		/* Call regardless, as some status bits might not be
1809		 * signalled in iir */
1810		valleyview_pipestat_irq_handler(dev, iir);
1811	}
1812
1813out:
1814	enable_rpm_wakeref_asserts(dev_priv);
1815
1816	return ret;
1817}
1818
1819static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820{
1821	struct drm_device *dev = arg;
1822	struct drm_i915_private *dev_priv = dev->dev_private;
1823	u32 master_ctl, iir;
1824	irqreturn_t ret = IRQ_NONE;
1825
1826	if (!intel_irqs_enabled(dev_priv))
1827		return IRQ_NONE;
1828
1829	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830	disable_rpm_wakeref_asserts(dev_priv);
1831
1832	do {
1833		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834		iir = I915_READ(VLV_IIR);
 
 
 
 
 
1835
1836		if (master_ctl == 0 && iir == 0)
1837			break;
1838
1839		ret = IRQ_HANDLED;
1840
1841		I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843		/* Find, clear, then process each source of interrupt */
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845		if (iir) {
1846			/* Consume port before clearing IIR or we'll miss events */
1847			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848				i9xx_hpd_irq_handler(dev);
1849			I915_WRITE(VLV_IIR, iir);
1850		}
1851
1852		gen8_gt_irq_handler(dev_priv, master_ctl);
 
1853
1854		/* Call regardless, as some status bits might not be
1855		 * signalled in iir */
1856		valleyview_pipestat_irq_handler(dev, iir);
1857
1858		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859		POSTING_READ(GEN8_MASTER_IRQ);
1860	} while (0);
1861
1862	enable_rpm_wakeref_asserts(dev_priv);
1863
1864	return ret;
1865}
1866
1867static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868				const u32 hpd[HPD_NUM_PINS])
1869{
1870	struct drm_i915_private *dev_priv = to_i915(dev);
1871	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873	/*
1874	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875	 * unless we touch the hotplug register, even if hotplug_trigger is
1876	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877	 * errors.
1878	 */
1879	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880	if (!hotplug_trigger) {
1881		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882			PORTD_HOTPLUG_STATUS_MASK |
1883			PORTC_HOTPLUG_STATUS_MASK |
1884			PORTB_HOTPLUG_STATUS_MASK;
1885		dig_hotplug_reg &= ~mask;
1886	}
1887
1888	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889	if (!hotplug_trigger)
1890		return;
1891
1892	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893			   dig_hotplug_reg, hpd,
1894			   pch_port_hotplug_long_detect);
1895
1896	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897}
1898
1899static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900{
1901	struct drm_i915_private *dev_priv = dev->dev_private;
1902	int pipe;
1903	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909			       SDE_AUDIO_POWER_SHIFT);
1910		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911				 port_name(port));
1912	}
1913
1914	if (pch_iir & SDE_AUX_MASK)
1915		dp_aux_irq_handler(dev);
1916
1917	if (pch_iir & SDE_GMBUS)
1918		gmbus_irq_handler(dev);
1919
1920	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926	if (pch_iir & SDE_POISON)
1927		DRM_ERROR("PCH poison interrupt\n");
1928
1929	if (pch_iir & SDE_FDI_MASK)
1930		for_each_pipe(dev_priv, pipe)
1931			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932					 pipe_name(pipe),
1933					 I915_READ(FDI_RX_IIR(pipe)));
1934
1935	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946}
1947
1948static void ivb_err_int_handler(struct drm_device *dev)
1949{
1950	struct drm_i915_private *dev_priv = dev->dev_private;
1951	u32 err_int = I915_READ(GEN7_ERR_INT);
1952	enum pipe pipe;
1953
1954	if (err_int & ERR_INT_POISON)
1955		DRM_ERROR("Poison interrupt\n");
1956
1957	for_each_pipe(dev_priv, pipe) {
1958		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962			if (IS_IVYBRIDGE(dev))
1963				ivb_pipe_crc_irq_handler(dev, pipe);
1964			else
1965				hsw_pipe_crc_irq_handler(dev, pipe);
1966		}
1967	}
1968
1969	I915_WRITE(GEN7_ERR_INT, err_int);
1970}
1971
1972static void cpt_serr_int_handler(struct drm_device *dev)
1973{
1974	struct drm_i915_private *dev_priv = dev->dev_private;
1975	u32 serr_int = I915_READ(SERR_INT);
1976
1977	if (serr_int & SERR_INT_POISON)
1978		DRM_ERROR("PCH poison interrupt\n");
1979
1980	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989	I915_WRITE(SERR_INT, serr_int);
1990}
1991
1992static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993{
1994	struct drm_i915_private *dev_priv = dev->dev_private;
1995	int pipe;
1996	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002			       SDE_AUDIO_POWER_SHIFT_CPT);
2003		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004				 port_name(port));
2005	}
2006
2007	if (pch_iir & SDE_AUX_MASK_CPT)
2008		dp_aux_irq_handler(dev);
2009
2010	if (pch_iir & SDE_GMBUS_CPT)
2011		gmbus_irq_handler(dev);
2012
2013	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019	if (pch_iir & SDE_FDI_MASK_CPT)
2020		for_each_pipe(dev_priv, pipe)
2021			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022					 pipe_name(pipe),
2023					 I915_READ(FDI_RX_IIR(pipe)));
2024
2025	if (pch_iir & SDE_ERROR_CPT)
2026		cpt_serr_int_handler(dev);
2027}
2028
2029static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030{
2031	struct drm_i915_private *dev_priv = dev->dev_private;
2032	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033		~SDE_PORTE_HOTPLUG_SPT;
2034	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035	u32 pin_mask = 0, long_mask = 0;
2036
2037	if (hotplug_trigger) {
2038		u32 dig_hotplug_reg;
2039
2040		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044				   dig_hotplug_reg, hpd_spt,
2045				   spt_port_hotplug_long_detect);
2046	}
2047
2048	if (hotplug2_trigger) {
2049		u32 dig_hotplug_reg;
2050
2051		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055				   dig_hotplug_reg, hpd_spt,
2056				   spt_port_hotplug2_long_detect);
2057	}
2058
2059	if (pin_mask)
2060		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062	if (pch_iir & SDE_GMBUS_CPT)
2063		gmbus_irq_handler(dev);
2064}
2065
2066static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067				const u32 hpd[HPD_NUM_PINS])
2068{
2069	struct drm_i915_private *dev_priv = to_i915(dev);
2070	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076			   dig_hotplug_reg, hpd,
2077			   ilk_port_hotplug_long_detect);
2078
2079	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080}
2081
2082static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083{
2084	struct drm_i915_private *dev_priv = dev->dev_private;
2085	enum pipe pipe;
2086	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088	if (hotplug_trigger)
2089		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091	if (de_iir & DE_AUX_CHANNEL_A)
2092		dp_aux_irq_handler(dev);
2093
2094	if (de_iir & DE_GSE)
2095		intel_opregion_asle_intr(dev);
2096
2097	if (de_iir & DE_POISON)
2098		DRM_ERROR("Poison interrupt\n");
2099
2100	for_each_pipe(dev_priv, pipe) {
2101		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102		    intel_pipe_handle_vblank(dev, pipe))
2103			intel_check_page_flip(dev, pipe);
2104
2105		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109			i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111		/* plane/pipes map 1:1 on ilk+ */
2112		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113			intel_prepare_page_flip(dev, pipe);
2114			intel_finish_page_flip_plane(dev, pipe);
2115		}
2116	}
2117
2118	/* check event from PCH */
2119	if (de_iir & DE_PCH_EVENT) {
2120		u32 pch_iir = I915_READ(SDEIIR);
2121
2122		if (HAS_PCH_CPT(dev))
2123			cpt_irq_handler(dev, pch_iir);
2124		else
2125			ibx_irq_handler(dev, pch_iir);
2126
2127		/* should clear PCH hotplug event before clear CPU irq */
2128		I915_WRITE(SDEIIR, pch_iir);
2129	}
2130
2131	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132		ironlake_rps_change_irq_handler(dev);
2133}
2134
2135static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	enum pipe pipe;
2139	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141	if (hotplug_trigger)
2142		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144	if (de_iir & DE_ERR_INT_IVB)
2145		ivb_err_int_handler(dev);
2146
2147	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148		dp_aux_irq_handler(dev);
2149
2150	if (de_iir & DE_GSE_IVB)
2151		intel_opregion_asle_intr(dev);
2152
2153	for_each_pipe(dev_priv, pipe) {
2154		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155		    intel_pipe_handle_vblank(dev, pipe))
2156			intel_check_page_flip(dev, pipe);
2157
2158		/* plane/pipes map 1:1 on ilk+ */
2159		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160			intel_prepare_page_flip(dev, pipe);
2161			intel_finish_page_flip_plane(dev, pipe);
2162		}
2163	}
2164
2165	/* check event from PCH */
2166	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167		u32 pch_iir = I915_READ(SDEIIR);
2168
2169		cpt_irq_handler(dev, pch_iir);
2170
2171		/* clear PCH hotplug event before clear CPU irq */
2172		I915_WRITE(SDEIIR, pch_iir);
2173	}
2174}
2175
2176/*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185{
2186	struct drm_device *dev = arg;
2187	struct drm_i915_private *dev_priv = dev->dev_private;
2188	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189	irqreturn_t ret = IRQ_NONE;
2190
2191	if (!intel_irqs_enabled(dev_priv))
2192		return IRQ_NONE;
2193
2194	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195	disable_rpm_wakeref_asserts(dev_priv);
2196
2197	/* disable master interrupt before clearing iir  */
2198	de_ier = I915_READ(DEIER);
2199	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200	POSTING_READ(DEIER);
2201
2202	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2203	 * interrupts will will be stored on its back queue, and then we'll be
2204	 * able to process them after we restore SDEIER (as soon as we restore
2205	 * it, we'll get an interrupt if SDEIIR still has something to process
2206	 * due to its back queue). */
2207	if (!HAS_PCH_NOP(dev)) {
2208		sde_ier = I915_READ(SDEIER);
2209		I915_WRITE(SDEIER, 0);
2210		POSTING_READ(SDEIER);
2211	}
2212
2213	/* Find, clear, then process each source of interrupt */
2214
2215	gt_iir = I915_READ(GTIIR);
2216	if (gt_iir) {
2217		I915_WRITE(GTIIR, gt_iir);
2218		ret = IRQ_HANDLED;
2219		if (INTEL_INFO(dev)->gen >= 6)
2220			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221		else
2222			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
 
2223	}
2224
2225	de_iir = I915_READ(DEIIR);
2226	if (de_iir) {
2227		I915_WRITE(DEIIR, de_iir);
2228		ret = IRQ_HANDLED;
2229		if (INTEL_INFO(dev)->gen >= 7)
2230			ivb_display_irq_handler(dev, de_iir);
2231		else
2232			ilk_display_irq_handler(dev, de_iir);
 
2233	}
2234
2235	if (INTEL_INFO(dev)->gen >= 6) {
2236		u32 pm_iir = I915_READ(GEN6_PMIIR);
2237		if (pm_iir) {
2238			I915_WRITE(GEN6_PMIIR, pm_iir);
 
2239			ret = IRQ_HANDLED;
2240			gen6_rps_irq_handler(dev_priv, pm_iir);
2241		}
2242	}
2243
2244	I915_WRITE(DEIER, de_ier);
2245	POSTING_READ(DEIER);
2246	if (!HAS_PCH_NOP(dev)) {
2247		I915_WRITE(SDEIER, sde_ier);
2248		POSTING_READ(SDEIER);
2249	}
2250
2251	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252	enable_rpm_wakeref_asserts(dev_priv);
2253
2254	return ret;
2255}
2256
2257static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258				const u32 hpd[HPD_NUM_PINS])
2259{
2260	struct drm_i915_private *dev_priv = to_i915(dev);
2261	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267			   dig_hotplug_reg, hpd,
2268			   bxt_port_hotplug_long_detect);
2269
2270	intel_hpd_irq_handler(dev, pin_mask, long_mask);
 
 
2271}
2272
2273static irqreturn_t
2274gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275{
2276	struct drm_device *dev = dev_priv->dev;
2277	irqreturn_t ret = IRQ_NONE;
2278	u32 iir;
2279	enum pipe pipe;
2280
2281	if (master_ctl & GEN8_DE_MISC_IRQ) {
2282		iir = I915_READ(GEN8_DE_MISC_IIR);
2283		if (iir) {
2284			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285			ret = IRQ_HANDLED;
2286			if (iir & GEN8_DE_MISC_GSE)
2287				intel_opregion_asle_intr(dev);
2288			else
2289				DRM_ERROR("Unexpected DE Misc interrupt\n");
2290		}
2291		else
2292			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293	}
2294
2295	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296		iir = I915_READ(GEN8_DE_PORT_IIR);
2297		if (iir) {
2298			u32 tmp_mask;
2299			bool found = false;
2300
2301			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302			ret = IRQ_HANDLED;
2303
2304			tmp_mask = GEN8_AUX_CHANNEL_A;
2305			if (INTEL_INFO(dev_priv)->gen >= 9)
2306				tmp_mask |= GEN9_AUX_CHANNEL_B |
2307					    GEN9_AUX_CHANNEL_C |
2308					    GEN9_AUX_CHANNEL_D;
2309
2310			if (iir & tmp_mask) {
2311				dp_aux_irq_handler(dev);
2312				found = true;
2313			}
2314
2315			if (IS_BROXTON(dev_priv)) {
2316				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317				if (tmp_mask) {
2318					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319					found = true;
2320				}
2321			} else if (IS_BROADWELL(dev_priv)) {
2322				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323				if (tmp_mask) {
2324					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325					found = true;
2326				}
2327			}
2328
2329			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330				gmbus_irq_handler(dev);
2331				found = true;
2332			}
2333
2334			if (!found)
2335				DRM_ERROR("Unexpected DE Port interrupt\n");
2336		}
2337		else
2338			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339	}
2340
2341	for_each_pipe(dev_priv, pipe) {
2342		u32 flip_done, fault_errors;
2343
2344		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345			continue;
2346
2347		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348		if (!iir) {
2349			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350			continue;
2351		}
2352
2353		ret = IRQ_HANDLED;
2354		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356		if (iir & GEN8_PIPE_VBLANK &&
2357		    intel_pipe_handle_vblank(dev, pipe))
2358			intel_check_page_flip(dev, pipe);
2359
2360		flip_done = iir;
2361		if (INTEL_INFO(dev_priv)->gen >= 9)
2362			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363		else
2364			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366		if (flip_done) {
2367			intel_prepare_page_flip(dev, pipe);
2368			intel_finish_page_flip_plane(dev, pipe);
2369		}
2370
2371		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372			hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377		fault_errors = iir;
2378		if (INTEL_INFO(dev_priv)->gen >= 9)
2379			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380		else
2381			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383		if (fault_errors)
2384			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385				  pipe_name(pipe),
2386				  fault_errors);
2387	}
2388
2389	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390	    master_ctl & GEN8_DE_PCH_IRQ) {
2391		/*
2392		 * FIXME(BDW): Assume for now that the new interrupt handling
2393		 * scheme also closed the SDE interrupt handling race we've seen
2394		 * on older pch-split platforms. But this needs testing.
2395		 */
2396		iir = I915_READ(SDEIIR);
2397		if (iir) {
2398			I915_WRITE(SDEIIR, iir);
2399			ret = IRQ_HANDLED;
2400
2401			if (HAS_PCH_SPT(dev_priv))
2402				spt_irq_handler(dev, iir);
2403			else
2404				cpt_irq_handler(dev, iir);
2405		} else {
2406			/*
2407			 * Like on previous PCH there seems to be something
2408			 * fishy going on with forwarding PCH interrupts.
2409			 */
2410			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411		}
2412	}
2413
2414	return ret;
2415}
2416
2417static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418{
2419	struct drm_device *dev = arg;
2420	struct drm_i915_private *dev_priv = dev->dev_private;
2421	u32 master_ctl;
2422	irqreturn_t ret;
2423
2424	if (!intel_irqs_enabled(dev_priv))
2425		return IRQ_NONE;
2426
2427	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429	if (!master_ctl)
2430		return IRQ_NONE;
 
2431
2432	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
 
2433
2434	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435	disable_rpm_wakeref_asserts(dev_priv);
2436
2437	/* Find, clear, then process each source of interrupt */
2438	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442	POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444	enable_rpm_wakeref_asserts(dev_priv);
2445
2446	return ret;
2447}
2448
2449static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450			       bool reset_completed)
2451{
2452	struct intel_engine_cs *ring;
2453	int i;
2454
2455	/*
2456	 * Notify all waiters for GPU completion events that reset state has
2457	 * been changed, and that they need to restart their wait after
2458	 * checking for potential errors (and bail out to drop locks if there is
2459	 * a gpu reset pending so that i915_error_work_func can acquire them).
2460	 */
2461
2462	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463	for_each_ring(ring, dev_priv, i)
2464		wake_up_all(&ring->irq_queue);
2465
2466	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467	wake_up_all(&dev_priv->pending_flip_queue);
2468
2469	/*
2470	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471	 * reset state is cleared.
 
 
2472	 */
2473	if (reset_completed)
2474		wake_up_all(&dev_priv->gpu_error.reset_queue);
2475}
2476
2477/**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484static void i915_reset_and_wakeup(struct drm_device *dev)
2485{
2486	struct drm_i915_private *dev_priv = to_i915(dev);
2487	struct i915_gpu_error *error = &dev_priv->gpu_error;
2488	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491	int ret;
2492
2493	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2494
2495	/*
2496	 * Note that there's only one work item which does gpu resets, so we
2497	 * need not worry about concurrent gpu resets potentially incrementing
2498	 * error->reset_counter twice. We only need to take care of another
2499	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500	 * quick check for that is good enough: schedule_work ensures the
2501	 * correct ordering between hang detection and this work item, and since
2502	 * the reset in-progress bit is only ever set by code outside of this
2503	 * work we don't need to worry about any other races.
2504	 */
2505	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506		DRM_DEBUG_DRIVER("resetting chip\n");
2507		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508				   reset_event);
2509
2510		/*
2511		 * In most cases it's guaranteed that we get here with an RPM
2512		 * reference held, for example because there is a pending GPU
2513		 * request that won't finish until the reset is done. This
2514		 * isn't the case at least when we get here by doing a
2515		 * simulated reset via debugs, so get an RPM reference.
2516		 */
2517		intel_runtime_pm_get(dev_priv);
2518
2519		intel_prepare_reset(dev);
2520
2521		/*
2522		 * All state reset _must_ be completed before we update the
2523		 * reset counter, for otherwise waiters might miss the reset
2524		 * pending state and not properly drop locks, resulting in
2525		 * deadlocks with the reset work.
2526		 */
2527		ret = i915_reset(dev);
2528
2529		intel_finish_reset(dev);
2530
2531		intel_runtime_pm_put(dev_priv);
2532
2533		if (ret == 0) {
2534			/*
2535			 * After all the gem state is reset, increment the reset
2536			 * counter and wake up everyone waiting for the reset to
2537			 * complete.
2538			 *
2539			 * Since unlock operations are a one-sided barrier only,
2540			 * we need to insert a barrier here to order any seqno
2541			 * updates before
2542			 * the counter increment.
2543			 */
2544			smp_mb__before_atomic();
2545			atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547			kobject_uevent_env(&dev->primary->kdev->kobj,
2548					   KOBJ_CHANGE, reset_done_event);
2549		} else {
2550			atomic_or(I915_WEDGED, &error->reset_counter);
2551		}
2552
2553		/*
2554		 * Note: The wake_up also serves as a memory barrier so that
2555		 * waiters see the update value of the reset counter atomic_t.
2556		 */
2557		i915_error_wake_up(dev_priv, true);
2558	}
2559}
2560
2561static void i915_report_and_clear_eir(struct drm_device *dev)
2562{
2563	struct drm_i915_private *dev_priv = dev->dev_private;
2564	uint32_t instdone[I915_NUM_INSTDONE_REG];
2565	u32 eir = I915_READ(EIR);
2566	int pipe, i;
2567
2568	if (!eir)
2569		return;
2570
2571	pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573	i915_get_extra_instdone(dev, instdone);
2574
2575	if (IS_G4X(dev)) {
2576		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577			u32 ipeir = I915_READ(IPEIR_I965);
2578
2579			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585			I915_WRITE(IPEIR_I965, ipeir);
2586			POSTING_READ(IPEIR_I965);
2587		}
2588		if (eir & GM45_ERROR_PAGE_TABLE) {
2589			u32 pgtbl_err = I915_READ(PGTBL_ER);
2590			pr_err("page table error\n");
2591			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592			I915_WRITE(PGTBL_ER, pgtbl_err);
2593			POSTING_READ(PGTBL_ER);
2594		}
2595	}
2596
2597	if (!IS_GEN2(dev)) {
2598		if (eir & I915_ERROR_PAGE_TABLE) {
2599			u32 pgtbl_err = I915_READ(PGTBL_ER);
2600			pr_err("page table error\n");
2601			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602			I915_WRITE(PGTBL_ER, pgtbl_err);
2603			POSTING_READ(PGTBL_ER);
2604		}
2605	}
2606
2607	if (eir & I915_ERROR_MEMORY_REFRESH) {
2608		pr_err("memory refresh error:\n");
2609		for_each_pipe(dev_priv, pipe)
2610			pr_err("pipe %c stat: 0x%08x\n",
2611			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612		/* pipestat has already been acked */
2613	}
2614	if (eir & I915_ERROR_INSTRUCTION) {
2615		pr_err("instruction error\n");
2616		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619		if (INTEL_INFO(dev)->gen < 4) {
2620			u32 ipeir = I915_READ(IPEIR);
2621
2622			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625			I915_WRITE(IPEIR, ipeir);
2626			POSTING_READ(IPEIR);
2627		} else {
2628			u32 ipeir = I915_READ(IPEIR_I965);
2629
2630			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634			I915_WRITE(IPEIR_I965, ipeir);
2635			POSTING_READ(IPEIR_I965);
2636		}
2637	}
2638
2639	I915_WRITE(EIR, eir);
2640	POSTING_READ(EIR);
2641	eir = I915_READ(EIR);
2642	if (eir) {
2643		/*
2644		 * some errors might have become stuck,
2645		 * mask them.
2646		 */
2647		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648		I915_WRITE(EMR, I915_READ(EMR) | eir);
2649		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650	}
2651}
2652
2653/**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog.  Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs.  Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663void i915_handle_error(struct drm_device *dev, bool wedged,
2664		       const char *fmt, ...)
2665{
2666	struct drm_i915_private *dev_priv = dev->dev_private;
2667	va_list args;
2668	char error_msg[80];
2669
2670	va_start(args, fmt);
2671	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672	va_end(args);
2673
2674	i915_capture_error_state(dev, wedged, error_msg);
2675	i915_report_and_clear_eir(dev);
2676
2677	if (wedged) {
2678		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679				&dev_priv->gpu_error.reset_counter);
2680
2681		/*
2682		 * Wakeup waiting processes so that the reset function
2683		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684		 * various locks. By bumping the reset counter first, the woken
2685		 * processes will see a reset in progress and back off,
2686		 * releasing their locks and then wait for the reset completion.
2687		 * We must do this for _all_ gpu waiters that might hold locks
2688		 * that the reset work needs to acquire.
2689		 *
2690		 * Note: The wake_up serves as the required memory barrier to
2691		 * ensure that the waiters see the updated value of the reset
2692		 * counter atomic_t.
2693		 */
2694		i915_error_wake_up(dev_priv, false);
2695	}
2696
2697	i915_reset_and_wakeup(dev);
2698}
2699
2700/* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
2706	unsigned long irqflags;
2707
2708	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709	if (INTEL_INFO(dev)->gen >= 4)
2710		i915_enable_pipestat(dev_priv, pipe,
2711				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2712	else
2713		i915_enable_pipestat(dev_priv, pipe,
2714				     PIPE_VBLANK_INTERRUPT_STATUS);
2715	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717	return 0;
2718}
2719
2720static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721{
2722	struct drm_i915_private *dev_priv = dev->dev_private;
2723	unsigned long irqflags;
2724	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725						     DE_PIPE_VBLANK(pipe);
2726
2727	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728	ilk_enable_display_irq(dev_priv, bit);
2729	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731	return 0;
2732}
2733
2734static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735{
2736	struct drm_i915_private *dev_priv = dev->dev_private;
2737	unsigned long irqflags;
2738
2739	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740	i915_enable_pipestat(dev_priv, pipe,
2741			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2742	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744	return 0;
2745}
2746
2747static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748{
2749	struct drm_i915_private *dev_priv = dev->dev_private;
2750	unsigned long irqflags;
2751
2752	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756	return 0;
2757}
2758
2759/* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764	struct drm_i915_private *dev_priv = dev->dev_private;
2765	unsigned long irqflags;
2766
2767	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768	i915_disable_pipestat(dev_priv, pipe,
2769			      PIPE_VBLANK_INTERRUPT_STATUS |
2770			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2771	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772}
2773
2774static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775{
2776	struct drm_i915_private *dev_priv = dev->dev_private;
2777	unsigned long irqflags;
2778	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779						     DE_PIPE_VBLANK(pipe);
2780
2781	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782	ilk_disable_display_irq(dev_priv, bit);
2783	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784}
2785
2786static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787{
2788	struct drm_i915_private *dev_priv = dev->dev_private;
2789	unsigned long irqflags;
2790
2791	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792	i915_disable_pipestat(dev_priv, pipe,
2793			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2794	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795}
2796
2797static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798{
2799	struct drm_i915_private *dev_priv = dev->dev_private;
2800	unsigned long irqflags;
2801
2802	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805}
2806
2807static bool
2808ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809{
2810	return (list_empty(&ring->request_list) ||
2811		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812}
2813
2814static bool
2815ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816{
2817	if (INTEL_INFO(dev)->gen >= 8) {
2818		return (ipehr >> 23) == 0x1c;
2819	} else {
2820		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822				 MI_SEMAPHORE_REGISTER);
2823	}
2824}
2825
2826static struct intel_engine_cs *
2827semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828{
2829	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830	struct intel_engine_cs *signaller;
2831	int i;
2832
2833	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834		for_each_ring(signaller, dev_priv, i) {
2835			if (ring == signaller)
2836				continue;
2837
2838			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839				return signaller;
2840		}
2841	} else {
2842		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844		for_each_ring(signaller, dev_priv, i) {
2845			if(ring == signaller)
2846				continue;
2847
2848			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849				return signaller;
2850		}
2851	}
2852
2853	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854		  ring->id, ipehr, offset);
2855
2856	return NULL;
2857}
2858
2859static struct intel_engine_cs *
2860semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861{
2862	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863	u32 cmd, ipehr, head;
2864	u64 offset = 0;
2865	int i, backwards;
2866
2867	/*
2868	 * This function does not support execlist mode - any attempt to
2869	 * proceed further into this function will result in a kernel panic
2870	 * when dereferencing ring->buffer, which is not set up in execlist
2871	 * mode.
2872	 *
2873	 * The correct way of doing it would be to derive the currently
2874	 * executing ring buffer from the current context, which is derived
2875	 * from the currently running request. Unfortunately, to get the
2876	 * current request we would have to grab the struct_mutex before doing
2877	 * anything else, which would be ill-advised since some other thread
2878	 * might have grabbed it already and managed to hang itself, causing
2879	 * the hang checker to deadlock.
2880	 *
2881	 * Therefore, this function does not support execlist mode in its
2882	 * current form. Just return NULL and move on.
2883	 */
2884	if (ring->buffer == NULL)
2885		return NULL;
2886
2887	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889		return NULL;
2890
2891	/*
2892	 * HEAD is likely pointing to the dword after the actual command,
2893	 * so scan backwards until we find the MBOX. But limit it to just 3
2894	 * or 4 dwords depending on the semaphore wait command size.
2895	 * Note that we don't care about ACTHD here since that might
2896	 * point at at batch, and semaphores are always emitted into the
2897	 * ringbuffer itself.
2898	 */
2899	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902	for (i = backwards; i; --i) {
2903		/*
2904		 * Be paranoid and presume the hw has gone off into the wild -
2905		 * our ring is smaller than what the hardware (and hence
2906		 * HEAD_ADDR) allows. Also handles wrap-around.
2907		 */
2908		head &= ring->buffer->size - 1;
2909
2910		/* This here seems to blow up */
2911		cmd = ioread32(ring->buffer->virtual_start + head);
2912		if (cmd == ipehr)
2913			break;
2914
2915		head -= 4;
2916	}
2917
2918	if (!i)
2919		return NULL;
2920
2921	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922	if (INTEL_INFO(ring->dev)->gen >= 8) {
2923		offset = ioread32(ring->buffer->virtual_start + head + 12);
2924		offset <<= 32;
2925		offset = ioread32(ring->buffer->virtual_start + head + 8);
2926	}
2927	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928}
2929
2930static int semaphore_passed(struct intel_engine_cs *ring)
2931{
2932	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933	struct intel_engine_cs *signaller;
2934	u32 seqno;
2935
2936	ring->hangcheck.deadlock++;
2937
2938	signaller = semaphore_waits_for(ring, &seqno);
2939	if (signaller == NULL)
2940		return -1;
2941
2942	/* Prevent pathological recursion due to driver bugs */
2943	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944		return -1;
2945
2946	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947		return 1;
2948
2949	/* cursory check for an unkickable deadlock */
2950	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951	    semaphore_passed(signaller) < 0)
2952		return -1;
2953
2954	return 0;
2955}
2956
2957static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958{
2959	struct intel_engine_cs *ring;
2960	int i;
2961
2962	for_each_ring(ring, dev_priv, i)
2963		ring->hangcheck.deadlock = 0;
2964}
2965
2966static bool subunits_stuck(struct intel_engine_cs *ring)
2967{
2968	u32 instdone[I915_NUM_INSTDONE_REG];
2969	bool stuck;
2970	int i;
2971
2972	if (ring->id != RCS)
2973		return true;
2974
2975	i915_get_extra_instdone(ring->dev, instdone);
2976
2977	/* There might be unstable subunit states even when
2978	 * actual head is not moving. Filter out the unstable ones by
2979	 * accumulating the undone -> done transitions and only
2980	 * consider those as progress.
2981	 */
2982	stuck = true;
2983	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984		const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986		if (tmp != ring->hangcheck.instdone[i])
2987			stuck = false;
2988
2989		ring->hangcheck.instdone[i] |= tmp;
2990	}
2991
2992	return stuck;
2993}
2994
2995static enum intel_ring_hangcheck_action
2996head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997{
2998	if (acthd != ring->hangcheck.acthd) {
2999
3000		/* Clear subunit states on head movement */
3001		memset(ring->hangcheck.instdone, 0,
3002		       sizeof(ring->hangcheck.instdone));
3003
3004		if (acthd > ring->hangcheck.max_acthd) {
3005			ring->hangcheck.max_acthd = acthd;
3006			return HANGCHECK_ACTIVE;
3007		}
3008
3009		return HANGCHECK_ACTIVE_LOOP;
3010	}
3011
3012	if (!subunits_stuck(ring))
3013		return HANGCHECK_ACTIVE;
3014
3015	return HANGCHECK_HUNG;
3016}
3017
3018static enum intel_ring_hangcheck_action
3019ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020{
3021	struct drm_device *dev = ring->dev;
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	enum intel_ring_hangcheck_action ha;
3024	u32 tmp;
3025
3026	ha = head_stuck(ring, acthd);
3027	if (ha != HANGCHECK_HUNG)
3028		return ha;
3029
3030	if (IS_GEN2(dev))
3031		return HANGCHECK_HUNG;
3032
3033	/* Is the chip hanging on a WAIT_FOR_EVENT?
3034	 * If so we can simply poke the RB_WAIT bit
3035	 * and break the hang. This should work on
3036	 * all but the second generation chipsets.
3037	 */
3038	tmp = I915_READ_CTL(ring);
3039	if (tmp & RING_WAIT) {
3040		i915_handle_error(dev, false,
3041				  "Kicking stuck wait on %s",
3042				  ring->name);
3043		I915_WRITE_CTL(ring, tmp);
3044		return HANGCHECK_KICK;
3045	}
3046
3047	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048		switch (semaphore_passed(ring)) {
3049		default:
3050			return HANGCHECK_HUNG;
3051		case 1:
3052			i915_handle_error(dev, false,
3053					  "Kicking stuck semaphore on %s",
3054					  ring->name);
3055			I915_WRITE_CTL(ring, tmp);
3056			return HANGCHECK_KICK;
3057		case 0:
3058			return HANGCHECK_WAIT;
3059		}
3060	}
3061
3062	return HANGCHECK_HUNG;
3063}
3064
3065/*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073static void i915_hangcheck_elapsed(struct work_struct *work)
3074{
3075	struct drm_i915_private *dev_priv =
3076		container_of(work, typeof(*dev_priv),
3077			     gpu_error.hangcheck_work.work);
3078	struct drm_device *dev = dev_priv->dev;
3079	struct intel_engine_cs *ring;
3080	int i;
3081	int busy_count = 0, rings_hung = 0;
3082	bool stuck[I915_NUM_RINGS] = { 0 };
3083#define BUSY 1
3084#define KICK 5
3085#define HUNG 20
3086
3087	if (!i915.enable_hangcheck)
3088		return;
3089
3090	/*
3091	 * The hangcheck work is synced during runtime suspend, we don't
3092	 * require a wakeref. TODO: instead of disabling the asserts make
3093	 * sure that we hold a reference when this work is running.
3094	 */
3095	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097	/* As enabling the GPU requires fairly extensive mmio access,
3098	 * periodically arm the mmio checker to see if we are triggering
3099	 * any invalid access.
3100	 */
3101	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103	for_each_ring(ring, dev_priv, i) {
3104		u64 acthd;
3105		u32 seqno;
3106		bool busy = true;
3107
3108		semaphore_clear_deadlocks(dev_priv);
3109
3110		seqno = ring->get_seqno(ring, false);
3111		acthd = intel_ring_get_active_head(ring);
3112
3113		if (ring->hangcheck.seqno == seqno) {
3114			if (ring_idle(ring, seqno)) {
3115				ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117				if (waitqueue_active(&ring->irq_queue)) {
3118					/* Issue a wake-up to catch stuck h/w. */
3119					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122								  ring->name);
3123						else
3124							DRM_INFO("Fake missed irq on %s\n",
3125								 ring->name);
3126						wake_up_all(&ring->irq_queue);
3127					}
3128					/* Safeguard against driver failure */
3129					ring->hangcheck.score += BUSY;
3130				} else
3131					busy = false;
3132			} else {
3133				/* We always increment the hangcheck score
3134				 * if the ring is busy and still processing
3135				 * the same request, so that no single request
3136				 * can run indefinitely (such as a chain of
3137				 * batches). The only time we do not increment
3138				 * the hangcheck score on this ring, if this
3139				 * ring is in a legitimate wait for another
3140				 * ring. In that case the waiting ring is a
3141				 * victim and we want to be sure we catch the
3142				 * right culprit. Then every time we do kick
3143				 * the ring, add a small increment to the
3144				 * score so that we can catch a batch that is
3145				 * being repeatedly kicked and so responsible
3146				 * for stalling the machine.
3147				 */
3148				ring->hangcheck.action = ring_stuck(ring,
3149								    acthd);
3150
3151				switch (ring->hangcheck.action) {
3152				case HANGCHECK_IDLE:
3153				case HANGCHECK_WAIT:
3154				case HANGCHECK_ACTIVE:
3155					break;
3156				case HANGCHECK_ACTIVE_LOOP:
3157					ring->hangcheck.score += BUSY;
3158					break;
3159				case HANGCHECK_KICK:
3160					ring->hangcheck.score += KICK;
3161					break;
3162				case HANGCHECK_HUNG:
3163					ring->hangcheck.score += HUNG;
3164					stuck[i] = true;
3165					break;
3166				}
3167			}
3168		} else {
3169			ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171			/* Gradually reduce the count so that we catch DoS
3172			 * attempts across multiple batches.
3173			 */
3174			if (ring->hangcheck.score > 0)
3175				ring->hangcheck.score--;
3176
3177			/* Clear head and subunit states on seqno movement */
3178			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180			memset(ring->hangcheck.instdone, 0,
3181			       sizeof(ring->hangcheck.instdone));
3182		}
3183
3184		ring->hangcheck.seqno = seqno;
3185		ring->hangcheck.acthd = acthd;
3186		busy_count += busy;
3187	}
3188
3189	for_each_ring(ring, dev_priv, i) {
3190		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191			DRM_INFO("%s on %s\n",
3192				 stuck[i] ? "stuck" : "no progress",
3193				 ring->name);
3194			rings_hung++;
3195		}
3196	}
3197
3198	if (rings_hung) {
3199		i915_handle_error(dev, true, "Ring hung");
3200		goto out;
3201	}
3202
3203	if (busy_count)
3204		/* Reset timer case chip hangs without another request
3205		 * being added */
3206		i915_queue_hangcheck(dev);
3207
3208out:
3209	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210}
3211
3212void i915_queue_hangcheck(struct drm_device *dev)
3213{
3214	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3215
3216	if (!i915.enable_hangcheck)
3217		return;
3218
3219	/* Don't continually defer the hangcheck so that it is always run at
3220	 * least once after work has been scheduled on any ring. Otherwise,
3221	 * we will ignore a hung ring if a second ring is kept busy.
3222	 */
3223
3224	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226}
3227
3228static void ibx_irq_reset(struct drm_device *dev)
3229{
3230	struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232	if (HAS_PCH_NOP(dev))
3233		return;
3234
3235	GEN5_IRQ_RESET(SDE);
3236
3237	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238		I915_WRITE(SERR_INT, 0xffffffff);
3239}
3240
3241/*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250{
3251	struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253	if (HAS_PCH_NOP(dev))
3254		return;
3255
3256	WARN_ON(I915_READ(SDEIER) != 0);
3257	I915_WRITE(SDEIER, 0xffffffff);
3258	POSTING_READ(SDEIER);
3259}
3260
3261static void gen5_gt_irq_reset(struct drm_device *dev)
3262{
3263	struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265	GEN5_IRQ_RESET(GT);
3266	if (INTEL_INFO(dev)->gen >= 6)
3267		GEN5_IRQ_RESET(GEN6_PM);
3268}
3269
3270/* drm_dma.h hooks
3271*/
3272static void ironlake_irq_reset(struct drm_device *dev)
3273{
3274	struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276	I915_WRITE(HWSTAM, 0xffffffff);
3277
3278	GEN5_IRQ_RESET(DE);
3279	if (IS_GEN7(dev))
3280		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282	gen5_gt_irq_reset(dev);
3283
3284	ibx_irq_reset(dev);
3285}
3286
3287static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288{
3289	enum pipe pipe;
3290
3291	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294	for_each_pipe(dev_priv, pipe)
3295		I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297	GEN5_IRQ_RESET(VLV_);
3298}
3299
3300static void valleyview_irq_preinstall(struct drm_device *dev)
3301{
3302	struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304	/* VLV magic */
3305	I915_WRITE(VLV_IMR, 0);
3306	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310	gen5_gt_irq_reset(dev);
3311
3312	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314	vlv_display_irq_reset(dev_priv);
3315}
3316
3317static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318{
3319	GEN8_IRQ_RESET_NDX(GT, 0);
3320	GEN8_IRQ_RESET_NDX(GT, 1);
3321	GEN8_IRQ_RESET_NDX(GT, 2);
3322	GEN8_IRQ_RESET_NDX(GT, 3);
3323}
3324
3325static void gen8_irq_reset(struct drm_device *dev)
3326{
3327	struct drm_i915_private *dev_priv = dev->dev_private;
3328	int pipe;
3329
3330	I915_WRITE(GEN8_MASTER_IRQ, 0);
3331	POSTING_READ(GEN8_MASTER_IRQ);
3332
3333	gen8_gt_irq_reset(dev_priv);
 
3334
3335	for_each_pipe(dev_priv, pipe)
3336		if (intel_display_power_is_enabled(dev_priv,
3337						   POWER_DOMAIN_PIPE(pipe)))
3338			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342	GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344	if (HAS_PCH_SPLIT(dev))
3345		ibx_irq_reset(dev);
3346}
3347
3348void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349				     unsigned int pipe_mask)
3350{
3351	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352	enum pipe pipe;
3353
3354	spin_lock_irq(&dev_priv->irq_lock);
3355	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357				  dev_priv->de_irq_mask[pipe],
3358				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363				     unsigned int pipe_mask)
3364{
3365	enum pipe pipe;
3366
3367	spin_lock_irq(&dev_priv->irq_lock);
3368	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370	spin_unlock_irq(&dev_priv->irq_lock);
3371
3372	/* make sure we're done processing display irqs */
3373	synchronize_irq(dev_priv->dev->irq);
3374}
3375
3376static void cherryview_irq_preinstall(struct drm_device *dev)
3377{
3378	struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380	I915_WRITE(GEN8_MASTER_IRQ, 0);
3381	POSTING_READ(GEN8_MASTER_IRQ);
3382
3383	gen8_gt_irq_reset(dev_priv);
3384
3385	GEN5_IRQ_RESET(GEN8_PCU_);
 
 
3386
3387	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
 
3388
3389	vlv_display_irq_reset(dev_priv);
3390}
3391
3392static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393				  const u32 hpd[HPD_NUM_PINS])
3394{
3395	struct drm_i915_private *dev_priv = to_i915(dev);
3396	struct intel_encoder *encoder;
3397	u32 enabled_irqs = 0;
3398
3399	for_each_intel_encoder(dev, encoder)
3400		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401			enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403	return enabled_irqs;
3404}
3405
3406static void ibx_hpd_irq_setup(struct drm_device *dev)
3407{
3408	struct drm_i915_private *dev_priv = dev->dev_private;
3409	u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411	if (HAS_PCH_IBX(dev)) {
3412		hotplug_irqs = SDE_HOTPLUG_MASK;
3413		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414	} else {
3415		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417	}
3418
3419	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421	/*
3422	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3423	 * duration to 2ms (which is the minimum in the Display Port spec).
3424	 * The pulse duration bits are reserved on LPT+.
3425	 */
3426	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3431	/*
3432	 * When CPU and PCH are on the same package, port A
3433	 * HPD must be enabled in both north and south.
3434	 */
3435	if (HAS_PCH_LPT_LP(dev))
3436		hotplug |= PORTA_HOTPLUG_ENABLE;
3437	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438}
3439
3440static void spt_hpd_irq_setup(struct drm_device *dev)
3441{
3442	struct drm_i915_private *dev_priv = dev->dev_private;
3443	u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3447
3448	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450	/* Enable digital hotplug on the PCH */
3451	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457	hotplug |= PORTE_HOTPLUG_ENABLE;
3458	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459}
3460
3461static void ilk_hpd_irq_setup(struct drm_device *dev)
3462{
3463	struct drm_i915_private *dev_priv = dev->dev_private;
3464	u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466	if (INTEL_INFO(dev)->gen >= 8) {
3467		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471	} else if (INTEL_INFO(dev)->gen >= 7) {
3472		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476	} else {
3477		hotplug_irqs = DE_DP_A_HOTPLUG;
3478		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3481	}
3482
3483	/*
3484	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3485	 * duration to 2ms (which is the minimum in the Display Port spec)
3486	 * The pulse duration bits are reserved on HSW+.
3487	 */
3488	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3492
3493	ibx_hpd_irq_setup(dev);
3494}
3495
3496static void bxt_hpd_irq_setup(struct drm_device *dev)
3497{
3498	struct drm_i915_private *dev_priv = dev->dev_private;
3499	u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3502	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505
3506	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508		PORTA_HOTPLUG_ENABLE;
3509	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510}
3511
3512static void ibx_irq_postinstall(struct drm_device *dev)
3513{
3514	struct drm_i915_private *dev_priv = dev->dev_private;
3515	u32 mask;
3516
3517	if (HAS_PCH_NOP(dev))
3518		return;
3519
3520	if (HAS_PCH_IBX(dev))
3521		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522	else
3523		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3524
3525	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526	I915_WRITE(SDEIMR, ~mask);
 
 
3527}
3528
3529static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530{
3531	struct drm_i915_private *dev_priv = dev->dev_private;
3532	u32 pm_irqs, gt_irqs;
3533
3534	pm_irqs = gt_irqs = 0;
3535
3536	dev_priv->gt_irq_mask = ~0;
3537	if (HAS_L3_DPF(dev)) {
3538		/* L3 parity interrupt is always unmasked. */
3539		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540		gt_irqs |= GT_PARITY_ERROR(dev);
3541	}
3542
3543	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544	if (IS_GEN5(dev)) {
3545		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546			   ILK_BSD_USER_INTERRUPT;
3547	} else {
3548		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549	}
3550
3551	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3552
3553	if (INTEL_INFO(dev)->gen >= 6) {
3554		/*
3555		 * RPS interrupts will get enabled/disabled on demand when RPS
3556		 * itself is enabled/disabled.
3557		 */
3558		if (HAS_VEBOX(dev))
3559			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561		dev_priv->pm_irq_mask = 0xffffffff;
3562		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563	}
3564}
3565
3566static int ironlake_irq_postinstall(struct drm_device *dev)
3567{
3568	struct drm_i915_private *dev_priv = dev->dev_private;
3569	u32 display_mask, extra_mask;
3570
3571	if (INTEL_INFO(dev)->gen >= 7) {
3572		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574				DE_PLANEB_FLIP_DONE_IVB |
3575				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3578			      DE_DP_A_HOTPLUG_IVB);
3579	} else {
3580		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582				DE_AUX_CHANNEL_A |
3583				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584				DE_POISON);
3585		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3587			      DE_DP_A_HOTPLUG);
3588	}
3589
3590	dev_priv->irq_mask = ~display_mask;
3591
3592	I915_WRITE(HWSTAM, 0xeffe);
3593
3594	ibx_irq_pre_postinstall(dev);
3595
3596	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598	gen5_gt_irq_postinstall(dev);
3599
3600	ibx_irq_postinstall(dev);
3601
3602	if (IS_IRONLAKE_M(dev)) {
3603		/* Enable PCU event interrupts
3604		 *
3605		 * spinlocking not required here for correctness since interrupt
3606		 * setup is guaranteed to run in single-threaded context. But we
3607		 * need it to make the assert_spin_locked happy. */
3608		spin_lock_irq(&dev_priv->irq_lock);
3609		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610		spin_unlock_irq(&dev_priv->irq_lock);
3611	}
3612
3613	return 0;
 
3614}
3615
3616static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617{
3618	u32 pipestat_mask;
3619	u32 iir_mask;
3620	enum pipe pipe;
3621
3622	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623			PIPE_FIFO_UNDERRUN_STATUS;
3624
3625	for_each_pipe(dev_priv, pipe)
3626		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627	POSTING_READ(PIPESTAT(PIPE_A));
3628
3629	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630			PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633	for_each_pipe(dev_priv, pipe)
3634		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639	if (IS_CHERRYVIEW(dev_priv))
3640		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641	dev_priv->irq_mask &= ~iir_mask;
3642
3643	I915_WRITE(VLV_IIR, iir_mask);
3644	I915_WRITE(VLV_IIR, iir_mask);
3645	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647	POSTING_READ(VLV_IMR);
3648}
3649
3650static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651{
3652	u32 pipestat_mask;
3653	u32 iir_mask;
3654	enum pipe pipe;
3655
3656	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659	if (IS_CHERRYVIEW(dev_priv))
3660		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662	dev_priv->irq_mask |= iir_mask;
3663	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665	I915_WRITE(VLV_IIR, iir_mask);
3666	I915_WRITE(VLV_IIR, iir_mask);
3667	POSTING_READ(VLV_IIR);
3668
3669	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670			PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673	for_each_pipe(dev_priv, pipe)
3674		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677			PIPE_FIFO_UNDERRUN_STATUS;
3678
3679	for_each_pipe(dev_priv, pipe)
3680		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681	POSTING_READ(PIPESTAT(PIPE_A));
3682}
3683
3684void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685{
3686	assert_spin_locked(&dev_priv->irq_lock);
3687
3688	if (dev_priv->display_irqs_enabled)
3689		return;
3690
3691	dev_priv->display_irqs_enabled = true;
 
3692
3693	if (intel_irqs_enabled(dev_priv))
3694		valleyview_display_irqs_install(dev_priv);
3695}
3696
3697void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698{
3699	assert_spin_locked(&dev_priv->irq_lock);
3700
3701	if (!dev_priv->display_irqs_enabled)
3702		return;
3703
3704	dev_priv->display_irqs_enabled = false;
3705
3706	if (intel_irqs_enabled(dev_priv))
3707		valleyview_display_irqs_uninstall(dev_priv);
3708}
3709
3710static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711{
3712	dev_priv->irq_mask = ~0;
3713
3714	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715	POSTING_READ(PORT_HOTPLUG_EN);
3716
3717	I915_WRITE(VLV_IIR, 0xffffffff);
3718	I915_WRITE(VLV_IIR, 0xffffffff);
3719	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721	POSTING_READ(VLV_IMR);
3722
3723	/* Interrupt setup is already guaranteed to be single-threaded, this is
3724	 * just to make the assert_spin_locked check happy. */
3725	spin_lock_irq(&dev_priv->irq_lock);
3726	if (dev_priv->display_irqs_enabled)
3727		valleyview_display_irqs_install(dev_priv);
3728	spin_unlock_irq(&dev_priv->irq_lock);
3729}
3730
3731static int valleyview_irq_postinstall(struct drm_device *dev)
3732{
3733	struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735	vlv_display_irq_postinstall(dev_priv);
3736
3737	gen5_gt_irq_postinstall(dev);
3738
3739	/* ack & enable invalid PTE error interrupts */
3740#if 0 /* FIXME: add support to irq handler for checking these bits */
3741	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743#endif
3744
3745	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3746
3747	return 0;
3748}
3749
3750static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751{
3752	/* These are interrupts we'll toggle with the ring mask register */
3753	uint32_t gt_interrupts[] = {
3754		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763		0,
3764		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766		};
3767
3768	dev_priv->pm_irq_mask = 0xffffffff;
3769	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771	/*
3772	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3773	 * is enabled/disabled.
3774	 */
3775	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777}
3778
3779static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780{
3781	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782	uint32_t de_pipe_enables;
3783	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784	u32 de_port_enables;
3785	enum pipe pipe;
3786
3787	if (INTEL_INFO(dev_priv)->gen >= 9) {
3788		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3790		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791				  GEN9_AUX_CHANNEL_D;
3792		if (IS_BROXTON(dev_priv))
3793			de_port_masked |= BXT_DE_PORT_GMBUS;
3794	} else {
3795		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797	}
3798
3799	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800					   GEN8_PIPE_FIFO_UNDERRUN;
3801
3802	de_port_enables = de_port_masked;
3803	if (IS_BROXTON(dev_priv))
3804		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805	else if (IS_BROADWELL(dev_priv))
3806		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3811
3812	for_each_pipe(dev_priv, pipe)
3813		if (intel_display_power_is_enabled(dev_priv,
3814				POWER_DOMAIN_PIPE(pipe)))
3815			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816					  dev_priv->de_irq_mask[pipe],
3817					  de_pipe_enables);
3818
3819	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820}
3821
3822static int gen8_irq_postinstall(struct drm_device *dev)
3823{
3824	struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826	if (HAS_PCH_SPLIT(dev))
3827		ibx_irq_pre_postinstall(dev);
3828
3829	gen8_gt_irq_postinstall(dev_priv);
3830	gen8_de_irq_postinstall(dev_priv);
3831
3832	if (HAS_PCH_SPLIT(dev))
3833		ibx_irq_postinstall(dev);
3834
3835	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836	POSTING_READ(GEN8_MASTER_IRQ);
3837
3838	return 0;
 
 
3839}
3840
3841static int cherryview_irq_postinstall(struct drm_device *dev)
3842{
3843	struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845	vlv_display_irq_postinstall(dev_priv);
3846
3847	gen8_gt_irq_postinstall(dev_priv);
3848
3849	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850	POSTING_READ(GEN8_MASTER_IRQ);
3851
3852	return 0;
3853}
3854
3855static void gen8_irq_uninstall(struct drm_device *dev)
3856{
3857	struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859	if (!dev_priv)
3860		return;
 
 
 
3861
3862	gen8_irq_reset(dev);
3863}
3864
3865static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866{
3867	/* Interrupt setup is already guaranteed to be single-threaded, this is
3868	 * just to make the assert_spin_locked check happy. */
3869	spin_lock_irq(&dev_priv->irq_lock);
3870	if (dev_priv->display_irqs_enabled)
3871		valleyview_display_irqs_uninstall(dev_priv);
3872	spin_unlock_irq(&dev_priv->irq_lock);
3873
3874	vlv_display_irq_reset(dev_priv);
3875
3876	dev_priv->irq_mask = ~0;
3877}
3878
3879static void valleyview_irq_uninstall(struct drm_device *dev)
 
3880{
3881	struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883	if (!dev_priv)
3884		return;
3885
3886	I915_WRITE(VLV_MASTER_IER, 0);
3887
3888	gen5_gt_irq_reset(dev);
3889
3890	I915_WRITE(HWSTAM, 0xffffffff);
3891
3892	vlv_display_irq_uninstall(dev_priv);
3893}
3894
3895static void cherryview_irq_uninstall(struct drm_device *dev)
3896{
3897	struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899	if (!dev_priv)
 
3900		return;
3901
3902	I915_WRITE(GEN8_MASTER_IRQ, 0);
3903	POSTING_READ(GEN8_MASTER_IRQ);
3904
3905	gen8_gt_irq_reset(dev_priv);
3906
3907	GEN5_IRQ_RESET(GEN8_PCU_);
3908
3909	vlv_display_irq_uninstall(dev_priv);
 
 
 
 
 
3910}
3911
3912static void ironlake_irq_uninstall(struct drm_device *dev)
 
3913{
3914	struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916	if (!dev_priv)
3917		return;
3918
3919	ironlake_irq_reset(dev);
3920}
3921
3922static void i8xx_irq_preinstall(struct drm_device * dev)
3923{
3924	struct drm_i915_private *dev_priv = dev->dev_private;
3925	int pipe;
3926
3927	for_each_pipe(dev_priv, pipe)
3928		I915_WRITE(PIPESTAT(pipe), 0);
3929	I915_WRITE16(IMR, 0xffff);
3930	I915_WRITE16(IER, 0x0);
3931	POSTING_READ16(IER);
3932}
3933
3934static int i8xx_irq_postinstall(struct drm_device *dev)
 
3935{
3936	struct drm_i915_private *dev_priv = dev->dev_private;
3937
3938	I915_WRITE16(EMR,
3939		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3940
3941	/* Unmask the interrupts that we always want on. */
3942	dev_priv->irq_mask =
3943		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3947	I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949	I915_WRITE16(IER,
3950		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952		     I915_USER_INTERRUPT);
3953	POSTING_READ16(IER);
3954
3955	/* Interrupt setup is already guaranteed to be single-threaded, this is
3956	 * just to make the assert_spin_locked check happy. */
3957	spin_lock_irq(&dev_priv->irq_lock);
3958	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960	spin_unlock_irq(&dev_priv->irq_lock);
3961
3962	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3963}
3964
3965/*
3966 * Returns true when a page flip has completed.
3967 */
3968static bool i8xx_handle_vblank(struct drm_device *dev,
3969			       int plane, int pipe, u32 iir)
3970{
3971	struct drm_i915_private *dev_priv = dev->dev_private;
3972	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974	if (!intel_pipe_handle_vblank(dev, pipe))
3975		return false;
3976
3977	if ((iir & flip_pending) == 0)
3978		goto check_page_flip;
3979
3980	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3981	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983	 * the flip is completed (no longer pending). Since this doesn't raise
3984	 * an interrupt per se, we watch for the change at vblank.
3985	 */
3986	if (I915_READ16(ISR) & flip_pending)
3987		goto check_page_flip;
3988
3989	intel_prepare_page_flip(dev, plane);
3990	intel_finish_page_flip(dev, pipe);
3991	return true;
3992
3993check_page_flip:
3994	intel_check_page_flip(dev, pipe);
3995	return false;
3996}
3997
3998static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999{
4000	struct drm_device *dev = arg;
4001	struct drm_i915_private *dev_priv = dev->dev_private;
4002	u16 iir, new_iir;
4003	u32 pipe_stats[2];
4004	int pipe;
4005	u16 flip_mask =
4006		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008	irqreturn_t ret;
4009
4010	if (!intel_irqs_enabled(dev_priv))
4011		return IRQ_NONE;
4012
4013	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014	disable_rpm_wakeref_asserts(dev_priv);
4015
4016	ret = IRQ_NONE;
4017	iir = I915_READ16(IIR);
4018	if (iir == 0)
4019		goto out;
4020
4021	while (iir & ~flip_mask) {
4022		/* Can't rely on pipestat interrupt bit in iir as it might
4023		 * have been cleared after the pipestat interrupt was received.
4024		 * It doesn't set the bit in iir again, but it still produces
4025		 * interrupts (for non-MSI).
4026		 */
4027		spin_lock(&dev_priv->irq_lock);
4028		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031		for_each_pipe(dev_priv, pipe) {
4032			i915_reg_t reg = PIPESTAT(pipe);
4033			pipe_stats[pipe] = I915_READ(reg);
4034
4035			/*
4036			 * Clear the PIPE*STAT regs before the IIR
4037			 */
4038			if (pipe_stats[pipe] & 0x8000ffff)
4039				I915_WRITE(reg, pipe_stats[pipe]);
4040		}
4041		spin_unlock(&dev_priv->irq_lock);
4042
4043		I915_WRITE16(IIR, iir & ~flip_mask);
4044		new_iir = I915_READ16(IIR); /* Flush posted writes */
4045
4046		if (iir & I915_USER_INTERRUPT)
4047			notify_ring(&dev_priv->ring[RCS]);
 
4048
4049		for_each_pipe(dev_priv, pipe) {
4050			int plane = pipe;
4051			if (HAS_FBC(dev))
4052				plane = !plane;
4053
4054			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055			    i8xx_handle_vblank(dev, plane, pipe, iir))
4056				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059				i9xx_pipe_crc_irq_handler(dev, pipe);
4060
4061			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063								    pipe);
4064		}
4065
4066		iir = new_iir;
4067	}
4068	ret = IRQ_HANDLED;
4069
4070out:
4071	enable_rpm_wakeref_asserts(dev_priv);
4072
4073	return ret;
4074}
4075
4076static void i8xx_irq_uninstall(struct drm_device * dev)
4077{
4078	struct drm_i915_private *dev_priv = dev->dev_private;
4079	int pipe;
4080
4081	for_each_pipe(dev_priv, pipe) {
4082		/* Clear enable bits; then clear status bits */
4083		I915_WRITE(PIPESTAT(pipe), 0);
4084		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085	}
4086	I915_WRITE16(IMR, 0xffff);
4087	I915_WRITE16(IER, 0x0);
4088	I915_WRITE16(IIR, I915_READ16(IIR));
4089}
4090
4091static void i915_irq_preinstall(struct drm_device * dev)
4092{
4093	struct drm_i915_private *dev_priv = dev->dev_private;
4094	int pipe;
4095
4096	if (I915_HAS_HOTPLUG(dev)) {
4097		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099	}
4100
4101	I915_WRITE16(HWSTAM, 0xeffe);
4102	for_each_pipe(dev_priv, pipe)
4103		I915_WRITE(PIPESTAT(pipe), 0);
4104	I915_WRITE(IMR, 0xffffffff);
4105	I915_WRITE(IER, 0x0);
4106	POSTING_READ(IER);
4107}
4108
4109static int i915_irq_postinstall(struct drm_device *dev)
4110{
4111	struct drm_i915_private *dev_priv = dev->dev_private;
4112	u32 enable_mask;
4113
4114	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4115
4116	/* Unmask the interrupts that we always want on. */
4117	dev_priv->irq_mask =
4118		~(I915_ASLE_INTERRUPT |
4119		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124	enable_mask =
4125		I915_ASLE_INTERRUPT |
4126		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
4128		I915_USER_INTERRUPT;
4129
4130	if (I915_HAS_HOTPLUG(dev)) {
4131		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132		POSTING_READ(PORT_HOTPLUG_EN);
4133
4134		/* Enable in IER... */
4135		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136		/* and unmask in IMR */
4137		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138	}
4139
4140	I915_WRITE(IMR, dev_priv->irq_mask);
4141	I915_WRITE(IER, enable_mask);
4142	POSTING_READ(IER);
4143
4144	i915_enable_asle_pipestat(dev);
4145
4146	/* Interrupt setup is already guaranteed to be single-threaded, this is
4147	 * just to make the assert_spin_locked check happy. */
4148	spin_lock_irq(&dev_priv->irq_lock);
4149	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151	spin_unlock_irq(&dev_priv->irq_lock);
4152
4153	return 0;
4154}
4155
4156/*
4157 * Returns true when a page flip has completed.
4158 */
4159static bool i915_handle_vblank(struct drm_device *dev,
4160			       int plane, int pipe, u32 iir)
4161{
4162	struct drm_i915_private *dev_priv = dev->dev_private;
4163	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165	if (!intel_pipe_handle_vblank(dev, pipe))
4166		return false;
4167
4168	if ((iir & flip_pending) == 0)
4169		goto check_page_flip;
4170
4171	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4172	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174	 * the flip is completed (no longer pending). Since this doesn't raise
4175	 * an interrupt per se, we watch for the change at vblank.
4176	 */
4177	if (I915_READ(ISR) & flip_pending)
4178		goto check_page_flip;
4179
4180	intel_prepare_page_flip(dev, plane);
4181	intel_finish_page_flip(dev, pipe);
4182	return true;
4183
4184check_page_flip:
4185	intel_check_page_flip(dev, pipe);
4186	return false;
4187}
4188
4189static irqreturn_t i915_irq_handler(int irq, void *arg)
4190{
4191	struct drm_device *dev = arg;
4192	struct drm_i915_private *dev_priv = dev->dev_private;
4193	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194	u32 flip_mask =
4195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197	int pipe, ret = IRQ_NONE;
4198
4199	if (!intel_irqs_enabled(dev_priv))
4200		return IRQ_NONE;
4201
4202	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203	disable_rpm_wakeref_asserts(dev_priv);
4204
4205	iir = I915_READ(IIR);
4206	do {
4207		bool irq_received = (iir & ~flip_mask) != 0;
4208		bool blc_event = false;
 
 
4209
4210		/* Can't rely on pipestat interrupt bit in iir as it might
4211		 * have been cleared after the pipestat interrupt was received.
4212		 * It doesn't set the bit in iir again, but it still produces
4213		 * interrupts (for non-MSI).
4214		 */
4215		spin_lock(&dev_priv->irq_lock);
4216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219		for_each_pipe(dev_priv, pipe) {
4220			i915_reg_t reg = PIPESTAT(pipe);
4221			pipe_stats[pipe] = I915_READ(reg);
4222
4223			/* Clear the PIPE*STAT regs before the IIR */
4224			if (pipe_stats[pipe] & 0x8000ffff) {
4225				I915_WRITE(reg, pipe_stats[pipe]);
4226				irq_received = true;
4227			}
4228		}
4229		spin_unlock(&dev_priv->irq_lock);
4230
4231		if (!irq_received)
4232			break;
4233
4234		/* Consume port.  Then clear IIR or we'll miss events */
4235		if (I915_HAS_HOTPLUG(dev) &&
 
4236		    iir & I915_DISPLAY_PORT_INTERRUPT)
4237			i9xx_hpd_irq_handler(dev);
4238
4239		I915_WRITE(IIR, iir & ~flip_mask);
4240		new_iir = I915_READ(IIR); /* Flush posted writes */
 
 
 
 
 
 
4241
4242		if (iir & I915_USER_INTERRUPT)
4243			notify_ring(&dev_priv->ring[RCS]);
4244
4245		for_each_pipe(dev_priv, pipe) {
4246			int plane = pipe;
4247			if (HAS_FBC(dev))
4248				plane = !plane;
4249
4250			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251			    i915_handle_vblank(dev, plane, pipe, iir))
4252				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4253
4254			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255				blc_event = true;
4256
4257			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258				i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262								    pipe);
4263		}
4264
4265		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266			intel_opregion_asle_intr(dev);
4267
4268		/* With MSI, interrupts are only generated when iir
4269		 * transitions from zero to nonzero.  If another bit got
4270		 * set while we were handling the existing iir bits, then
4271		 * we would never get another interrupt.
4272		 *
4273		 * This is fine on non-MSI as well, as if we hit this path
4274		 * we avoid exiting the interrupt handler only to generate
4275		 * another one.
4276		 *
4277		 * Note that for MSI this could cause a stray interrupt report
4278		 * if an interrupt landed in the time between writing IIR and
4279		 * the posting read.  This should be rare enough to never
4280		 * trigger the 99% of 100,000 interrupts test for disabling
4281		 * stray interrupts.
4282		 */
4283		ret = IRQ_HANDLED;
4284		iir = new_iir;
4285	} while (iir & ~flip_mask);
4286
4287	enable_rpm_wakeref_asserts(dev_priv);
 
 
4288
4289	return ret;
4290}
4291
4292static void i915_irq_uninstall(struct drm_device * dev)
4293{
4294	struct drm_i915_private *dev_priv = dev->dev_private;
4295	int pipe;
4296
4297	if (I915_HAS_HOTPLUG(dev)) {
4298		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300	}
4301
4302	I915_WRITE16(HWSTAM, 0xffff);
4303	for_each_pipe(dev_priv, pipe) {
4304		/* Clear enable bits; then clear status bits */
4305		I915_WRITE(PIPESTAT(pipe), 0);
4306		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307	}
4308	I915_WRITE(IMR, 0xffffffff);
4309	I915_WRITE(IER, 0x0);
4310
4311	I915_WRITE(IIR, I915_READ(IIR));
 
4312}
4313
4314static void i965_irq_preinstall(struct drm_device * dev)
4315{
4316	struct drm_i915_private *dev_priv = dev->dev_private;
4317	int pipe;
4318
4319	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4321
4322	I915_WRITE(HWSTAM, 0xeffe);
4323	for_each_pipe(dev_priv, pipe)
4324		I915_WRITE(PIPESTAT(pipe), 0);
4325	I915_WRITE(IMR, 0xffffffff);
4326	I915_WRITE(IER, 0x0);
4327	POSTING_READ(IER);
 
 
 
4328}
4329
4330static int i965_irq_postinstall(struct drm_device *dev)
4331{
4332	struct drm_i915_private *dev_priv = dev->dev_private;
4333	u32 enable_mask;
4334	u32 error_mask;
 
4335
4336	/* Unmask the interrupts that we always want on. */
4337	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338			       I915_DISPLAY_PORT_INTERRUPT |
4339			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345	enable_mask = ~dev_priv->irq_mask;
4346	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348	enable_mask |= I915_USER_INTERRUPT;
 
 
4349
4350	if (IS_G4X(dev))
4351		enable_mask |= I915_BSD_USER_INTERRUPT;
4352
 
 
4353	/* Interrupt setup is already guaranteed to be single-threaded, this is
4354	 * just to make the assert_spin_locked check happy. */
4355	spin_lock_irq(&dev_priv->irq_lock);
4356	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359	spin_unlock_irq(&dev_priv->irq_lock);
4360
4361	/*
4362	 * Enable some error detection, note the instruction error mask
4363	 * bit is reserved, so we leave it masked.
4364	 */
4365	if (IS_G4X(dev)) {
4366		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367			       GM45_ERROR_MEM_PRIV |
4368			       GM45_ERROR_CP_PRIV |
4369			       I915_ERROR_MEMORY_REFRESH);
4370	} else {
4371		error_mask = ~(I915_ERROR_PAGE_TABLE |
4372			       I915_ERROR_MEMORY_REFRESH);
4373	}
4374	I915_WRITE(EMR, error_mask);
4375
4376	I915_WRITE(IMR, dev_priv->irq_mask);
4377	I915_WRITE(IER, enable_mask);
4378	POSTING_READ(IER);
4379
4380	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381	POSTING_READ(PORT_HOTPLUG_EN);
4382
4383	i915_enable_asle_pipestat(dev);
4384
4385	return 0;
4386}
4387
4388static void i915_hpd_irq_setup(struct drm_device *dev)
4389{
4390	struct drm_i915_private *dev_priv = dev->dev_private;
4391	u32 hotplug_en;
4392
4393	assert_spin_locked(&dev_priv->irq_lock);
4394
4395	/* Note HDMI and DP share hotplug bits */
4396	/* enable bits are the same for all generations */
4397	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398	/* Programming the CRT detection parameters tends
4399	   to generate a spurious hotplug event about three
4400	   seconds later.  So just do it once.
4401	*/
4402	if (IS_G4X(dev))
4403		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406	/* Ignore TV since it's buggy */
4407	i915_hotplug_interrupt_update_locked(dev_priv,
4408					     HOTPLUG_INT_EN_MASK |
4409					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411					     hotplug_en);
4412}
4413
4414static irqreturn_t i965_irq_handler(int irq, void *arg)
4415{
4416	struct drm_device *dev = arg;
4417	struct drm_i915_private *dev_priv = dev->dev_private;
4418	u32 iir, new_iir;
4419	u32 pipe_stats[I915_MAX_PIPES];
4420	int ret = IRQ_NONE, pipe;
4421	u32 flip_mask =
4422		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425	if (!intel_irqs_enabled(dev_priv))
4426		return IRQ_NONE;
4427
4428	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429	disable_rpm_wakeref_asserts(dev_priv);
4430
4431	iir = I915_READ(IIR);
4432
4433	for (;;) {
4434		bool irq_received = (iir & ~flip_mask) != 0;
4435		bool blc_event = false;
4436
4437		/* Can't rely on pipestat interrupt bit in iir as it might
4438		 * have been cleared after the pipestat interrupt was received.
4439		 * It doesn't set the bit in iir again, but it still produces
4440		 * interrupts (for non-MSI).
4441		 */
4442		spin_lock(&dev_priv->irq_lock);
4443		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446		for_each_pipe(dev_priv, pipe) {
4447			i915_reg_t reg = PIPESTAT(pipe);
4448			pipe_stats[pipe] = I915_READ(reg);
4449
4450			/*
4451			 * Clear the PIPE*STAT regs before the IIR
4452			 */
4453			if (pipe_stats[pipe] & 0x8000ffff) {
4454				I915_WRITE(reg, pipe_stats[pipe]);
4455				irq_received = true;
4456			}
4457		}
4458		spin_unlock(&dev_priv->irq_lock);
4459
4460		if (!irq_received)
 
4461			break;
4462
4463		ret = IRQ_HANDLED;
4464
4465		/* Consume port.  Then clear IIR or we'll miss events */
4466		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467			i9xx_hpd_irq_handler(dev);
4468
4469		I915_WRITE(IIR, iir & ~flip_mask);
4470		new_iir = I915_READ(IIR); /* Flush posted writes */
 
4471
4472		if (iir & I915_USER_INTERRUPT)
4473			notify_ring(&dev_priv->ring[RCS]);
4474		if (iir & I915_BSD_USER_INTERRUPT)
4475			notify_ring(&dev_priv->ring[VCS]);
4476
4477		for_each_pipe(dev_priv, pipe) {
4478			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479			    i915_handle_vblank(dev, pipe, pipe, iir))
4480				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4481
4482			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483				blc_event = true;
 
4484
4485			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486				i9xx_pipe_crc_irq_handler(dev, pipe);
 
4487
4488			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490		}
4491
4492		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493			intel_opregion_asle_intr(dev);
4494
4495		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496			gmbus_irq_handler(dev);
4497
4498		/* With MSI, interrupts are only generated when iir
4499		 * transitions from zero to nonzero.  If another bit got
4500		 * set while we were handling the existing iir bits, then
4501		 * we would never get another interrupt.
4502		 *
4503		 * This is fine on non-MSI as well, as if we hit this path
4504		 * we avoid exiting the interrupt handler only to generate
4505		 * another one.
4506		 *
4507		 * Note that for MSI this could cause a stray interrupt report
4508		 * if an interrupt landed in the time between writing IIR and
4509		 * the posting read.  This should be rare enough to never
4510		 * trigger the 99% of 100,000 interrupts test for disabling
4511		 * stray interrupts.
4512		 */
4513		iir = new_iir;
4514	}
4515
4516	enable_rpm_wakeref_asserts(dev_priv);
4517
4518	return ret;
4519}
4520
4521static void i965_irq_uninstall(struct drm_device * dev)
4522{
4523	struct drm_i915_private *dev_priv = dev->dev_private;
4524	int pipe;
4525
4526	if (!dev_priv)
4527		return;
4528
4529	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4531
4532	I915_WRITE(HWSTAM, 0xffffffff);
4533	for_each_pipe(dev_priv, pipe)
4534		I915_WRITE(PIPESTAT(pipe), 0);
4535	I915_WRITE(IMR, 0xffffffff);
4536	I915_WRITE(IER, 0x0);
4537
4538	for_each_pipe(dev_priv, pipe)
4539		I915_WRITE(PIPESTAT(pipe),
4540			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541	I915_WRITE(IIR, I915_READ(IIR));
4542}
4543
4544/**
4545 * intel_irq_init - initializes irq support
4546 * @dev_priv: i915 device instance
4547 *
4548 * This function initializes all the irq support including work items, timers
4549 * and all the vtables. It does not setup the interrupt itself though.
4550 */
4551void intel_irq_init(struct drm_i915_private *dev_priv)
4552{
4553	struct drm_device *dev = dev_priv->dev;
4554
4555	intel_hpd_init_work(dev_priv);
4556
4557	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4558	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4559
4560	/* Let's track the enabled rps events */
4561	if (IS_VALLEYVIEW(dev_priv))
4562		/* WaGsvRC0ResidencyMethod:vlv */
4563		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564	else
4565		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
 
 
4566
4567	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568			  i915_hangcheck_elapsed);
 
 
 
 
 
 
 
4569
4570	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
 
 
4571
4572	if (IS_GEN2(dev_priv)) {
4573		dev->max_vblank_count = 0;
4574		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
 
 
 
 
 
 
 
4578	} else {
4579		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
 
 
 
 
 
 
4581	}
 
4582
4583	/*
4584	 * Opt out of the vblank disable timer on everything except gen2.
4585	 * Gen2 doesn't have a hardware frame counter and so depends on
4586	 * vblank interrupts to produce sane vblank seuquence numbers.
4587	 */
4588	if (!IS_GEN2(dev_priv))
4589		dev->vblank_disable_immediate = true;
4590
4591	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4593
4594	if (IS_CHERRYVIEW(dev_priv)) {
4595		dev->driver->irq_handler = cherryview_irq_handler;
4596		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599		dev->driver->enable_vblank = valleyview_enable_vblank;
4600		dev->driver->disable_vblank = valleyview_disable_vblank;
4601		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602	} else if (IS_VALLEYVIEW(dev_priv)) {
4603		dev->driver->irq_handler = valleyview_irq_handler;
4604		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607		dev->driver->enable_vblank = valleyview_enable_vblank;
4608		dev->driver->disable_vblank = valleyview_disable_vblank;
4609		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611		dev->driver->irq_handler = gen8_irq_handler;
4612		dev->driver->irq_preinstall = gen8_irq_reset;
4613		dev->driver->irq_postinstall = gen8_irq_postinstall;
4614		dev->driver->irq_uninstall = gen8_irq_uninstall;
4615		dev->driver->enable_vblank = gen8_enable_vblank;
4616		dev->driver->disable_vblank = gen8_disable_vblank;
4617		if (IS_BROXTON(dev))
4618			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619		else if (HAS_PCH_SPT(dev))
4620			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621		else
4622			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4623	} else if (HAS_PCH_SPLIT(dev)) {
4624		dev->driver->irq_handler = ironlake_irq_handler;
4625		dev->driver->irq_preinstall = ironlake_irq_reset;
4626		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628		dev->driver->enable_vblank = ironlake_enable_vblank;
4629		dev->driver->disable_vblank = ironlake_disable_vblank;
4630		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4631	} else {
4632		if (INTEL_INFO(dev_priv)->gen == 2) {
4633			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635			dev->driver->irq_handler = i8xx_irq_handler;
4636			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4638			dev->driver->irq_preinstall = i915_irq_preinstall;
4639			dev->driver->irq_postinstall = i915_irq_postinstall;
4640			dev->driver->irq_uninstall = i915_irq_uninstall;
4641			dev->driver->irq_handler = i915_irq_handler;
4642		} else {
4643			dev->driver->irq_preinstall = i965_irq_preinstall;
4644			dev->driver->irq_postinstall = i965_irq_postinstall;
4645			dev->driver->irq_uninstall = i965_irq_uninstall;
4646			dev->driver->irq_handler = i965_irq_handler;
4647		}
4648		if (I915_HAS_HOTPLUG(dev_priv))
4649			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650		dev->driver->enable_vblank = i915_enable_vblank;
4651		dev->driver->disable_vblank = i915_disable_vblank;
4652	}
4653}
4654
4655/**
4656 * intel_irq_install - enables the hardware interrupt
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function enables the hardware interrupt handling, but leaves the hotplug
4660 * handling still disabled. It is called after intel_irq_init().
4661 *
4662 * In the driver load and resume code we need working interrupts in a few places
4663 * but don't want to deal with the hassle of concurrent probe and hotplug
4664 * workers. Hence the split into this two-stage approach.
4665 */
4666int intel_irq_install(struct drm_i915_private *dev_priv)
4667{
 
 
 
4668	/*
4669	 * We enable some interrupt sources in our postinstall hooks, so mark
4670	 * interrupts as enabled _before_ actually enabling them to avoid
4671	 * special cases in our ordering checks.
4672	 */
4673	dev_priv->pm.irqs_enabled = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
4674
4675	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4676}
4677
4678/**
4679 * intel_irq_uninstall - finilizes all irq handling
4680 * @dev_priv: i915 device instance
4681 *
4682 * This stops interrupt and hotplug handling and unregisters and frees all
4683 * resources acquired in the init functions.
4684 */
4685void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686{
4687	drm_irq_uninstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4688	intel_hpd_cancel_work(dev_priv);
4689	dev_priv->pm.irqs_enabled = false;
4690}
4691
4692/**
4693 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This function is used to disable interrupts at runtime, both in the runtime
4697 * pm and the system suspend/resume code.
4698 */
4699void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700{
4701	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702	dev_priv->pm.irqs_enabled = false;
4703	synchronize_irq(dev_priv->dev->irq);
4704}
4705
4706/**
4707 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to enable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714{
4715	dev_priv->pm.irqs_enabled = true;
4716	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4718}
v6.9.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
 
  31#include <linux/slab.h>
  32#include <linux/sysrq.h>
  33
  34#include <drm/drm_drv.h>
  35
  36#include "display/intel_display_irq.h"
  37#include "display/intel_display_types.h"
  38#include "display/intel_hotplug.h"
  39#include "display/intel_hotplug_irq.h"
  40#include "display/intel_lpe_audio.h"
  41#include "display/intel_psr_regs.h"
  42
  43#include "gt/intel_breadcrumbs.h"
  44#include "gt/intel_gt.h"
  45#include "gt/intel_gt_irq.h"
  46#include "gt/intel_gt_pm_irq.h"
  47#include "gt/intel_gt_regs.h"
  48#include "gt/intel_rps.h"
  49
  50#include "i915_driver.h"
  51#include "i915_drv.h"
  52#include "i915_irq.h"
  53#include "i915_reg.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63/*
  64 * Interrupt statistic for PMU. Increments the counter only if the
  65 * interrupt originated from the GPU so interrupts from a device which
  66 * shares the interrupt line are not accounted.
  67 */
  68static inline void pmu_irq_stats(struct drm_i915_private *i915,
  69				 irqreturn_t res)
  70{
  71	if (unlikely(res != IRQ_HANDLED))
 
 
  72		return;
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74	/*
  75	 * A clever compiler translates that into INC. A not so clever one
  76	 * should at least prevent store tearing.
 
 
  77	 */
  78	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
 
 
 
 
 
 
  79}
  80
  81void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
  82		    i915_reg_t iir, i915_reg_t ier)
  83{
  84	intel_uncore_write(uncore, imr, 0xffffffff);
  85	intel_uncore_posting_read(uncore, imr);
 
 
 
  86
  87	intel_uncore_write(uncore, ier, 0);
  88
  89	/* IIR can theoretically queue up two events. Be paranoid. */
  90	intel_uncore_write(uncore, iir, 0xffffffff);
  91	intel_uncore_posting_read(uncore, iir);
  92	intel_uncore_write(uncore, iir, 0xffffffff);
  93	intel_uncore_posting_read(uncore, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94}
  95
  96static void gen2_irq_reset(struct intel_uncore *uncore)
 
 
 
 
 
 
 
 
 
 
  97{
  98	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
  99	intel_uncore_posting_read16(uncore, GEN2_IMR);
 100
 101	intel_uncore_write16(uncore, GEN2_IER, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103	/* IIR can theoretically queue up two events. Be paranoid. */
 104	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 105	intel_uncore_posting_read16(uncore, GEN2_IIR);
 106	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 107	intel_uncore_posting_read16(uncore, GEN2_IIR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108}
 109
 110/*
 111 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112 */
 113void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 114{
 115	u32 val = intel_uncore_read(uncore, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117	if (val == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118		return;
 119
 120	drm_WARN(&uncore->i915->drm, 1,
 121		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 122		 i915_mmio_reg_offset(reg), val);
 123	intel_uncore_write(uncore, reg, 0xffffffff);
 124	intel_uncore_posting_read(uncore, reg);
 125	intel_uncore_write(uncore, reg, 0xffffffff);
 126	intel_uncore_posting_read(uncore, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127}
 128
 129static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 130{
 131	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133	if (val == 0)
 134		return;
 
 
 
 
 
 135
 136	drm_WARN(&uncore->i915->drm, 1,
 137		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 138		 i915_mmio_reg_offset(GEN2_IIR), val);
 139	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 140	intel_uncore_posting_read16(uncore, GEN2_IIR);
 141	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 142	intel_uncore_posting_read16(uncore, GEN2_IIR);
 143}
 144
 145void gen3_irq_init(struct intel_uncore *uncore,
 146		   i915_reg_t imr, u32 imr_val,
 147		   i915_reg_t ier, u32 ier_val,
 148		   i915_reg_t iir)
 149{
 150	gen3_assert_iir_is_zero(uncore, iir);
 
 
 
 
 
 151
 152	intel_uncore_write(uncore, ier, ier_val);
 153	intel_uncore_write(uncore, imr, imr_val);
 154	intel_uncore_posting_read(uncore, imr);
 155}
 156
 157static void gen2_irq_init(struct intel_uncore *uncore,
 158			  u32 imr_val, u32 ier_val)
 159{
 160	gen2_assert_iir_is_zero(uncore);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 163	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 164	intel_uncore_posting_read16(uncore, GEN2_IMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165}
 166
 
 167/**
 168 * ivb_parity_work - Workqueue called when a parity error interrupt
 169 * occurred.
 170 * @work: workqueue struct
 171 *
 172 * Doesn't actually do anything except notify userspace. As a consequence of
 173 * this event, userspace should try to remap the bad rows since statistically
 174 * it is likely the same row is more likely to go bad again.
 175 */
 176static void ivb_parity_work(struct work_struct *work)
 177{
 178	struct drm_i915_private *dev_priv =
 179		container_of(work, typeof(*dev_priv), l3_parity.error_work);
 180	struct intel_gt *gt = to_gt(dev_priv);
 181	u32 error_status, row, bank, subbank;
 182	char *parity_event[6];
 183	u32 misccpctl;
 184	u8 slice = 0;
 185
 186	/* We must turn off DOP level clock gating to access the L3 registers.
 187	 * In order to prevent a get/put style interface, acquire struct mutex
 188	 * any time we access those registers.
 189	 */
 190	mutex_lock(&dev_priv->drm.struct_mutex);
 191
 192	/* If we've screwed up tracking, just let the interrupt fire again */
 193	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
 194		goto out;
 195
 196	misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL,
 197				     GEN7_DOP_CLOCK_GATE_ENABLE, 0);
 198	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
 199
 200	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
 201		i915_reg_t reg;
 202
 203		slice--;
 204		if (drm_WARN_ON_ONCE(&dev_priv->drm,
 205				     slice >= NUM_L3_SLICES(dev_priv)))
 206			break;
 207
 208		dev_priv->l3_parity.which_slice &= ~(1<<slice);
 209
 210		reg = GEN7_L3CDERRST1(slice);
 211
 212		error_status = intel_uncore_read(&dev_priv->uncore, reg);
 213		row = GEN7_PARITY_ERROR_ROW(error_status);
 214		bank = GEN7_PARITY_ERROR_BANK(error_status);
 215		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
 216
 217		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
 218		intel_uncore_posting_read(&dev_priv->uncore, reg);
 219
 220		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
 221		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
 222		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
 223		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
 224		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
 225		parity_event[5] = NULL;
 226
 227		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
 228				   KOBJ_CHANGE, parity_event);
 229
 230		drm_dbg(&dev_priv->drm,
 231			"Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
 232			slice, row, bank, subbank);
 233
 234		kfree(parity_event[4]);
 235		kfree(parity_event[3]);
 236		kfree(parity_event[2]);
 237		kfree(parity_event[1]);
 238	}
 239
 240	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
 241
 242out:
 243	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
 244	spin_lock_irq(gt->irq_lock);
 245	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
 246	spin_unlock_irq(gt->irq_lock);
 247
 248	mutex_unlock(&dev_priv->drm.struct_mutex);
 249}
 250
 251static irqreturn_t valleyview_irq_handler(int irq, void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252{
 253	struct drm_i915_private *dev_priv = arg;
 254	irqreturn_t ret = IRQ_NONE;
 255
 256	if (!intel_irqs_enabled(dev_priv))
 257		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 260	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 261
 262	do {
 263		u32 iir, gt_iir, pm_iir;
 264		u32 pipe_stats[I915_MAX_PIPES] = {};
 265		u32 hotplug_status = 0;
 266		u32 ier = 0;
 267
 268		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
 269		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
 270		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 271
 272		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
 273			break;
 
 
 274
 275		ret = IRQ_HANDLED;
 
 
 276
 277		/*
 278		 * Theory on interrupt generation, based on empirical evidence:
 279		 *
 280		 * x = ((VLV_IIR & VLV_IER) ||
 281		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
 282		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
 283		 *
 284		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
 285		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
 286		 * guarantee the CPU interrupt will be raised again even if we
 287		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
 288		 * bits this time around.
 289		 */
 290		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
 291		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
 292
 293		if (gt_iir)
 294			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
 295		if (pm_iir)
 296			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
 297
 298		if (iir & I915_DISPLAY_PORT_INTERRUPT)
 299			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 300
 301		/* Call regardless, as some status bits might not be
 302		 * signalled in iir */
 303		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 304
 305		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
 306			   I915_LPE_PIPE_B_INTERRUPT))
 307			intel_lpe_audio_irq_handler(dev_priv);
 308
 309		/*
 310		 * VLV_IIR is single buffered, and reflects the level
 311		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
 312		 */
 313		if (iir)
 314			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
 
 
 
 315
 316		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
 317		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 
 
 
 
 
 
 
 319		if (gt_iir)
 320			gen6_gt_irq_handler(to_gt(dev_priv), gt_iir);
 
 
 321		if (pm_iir)
 322			gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir);
 
 
 
 
 
 
 
 
 323
 324		if (hotplug_status)
 325			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 326
 327		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
 328	} while (0);
 329
 330	pmu_irq_stats(dev_priv, ret);
 
 
 
 
 
 
 
 331
 332	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 333
 334	return ret;
 335}
 336
 337static irqreturn_t cherryview_irq_handler(int irq, void *arg)
 338{
 339	struct drm_i915_private *dev_priv = arg;
 
 
 340	irqreturn_t ret = IRQ_NONE;
 341
 342	if (!intel_irqs_enabled(dev_priv))
 343		return IRQ_NONE;
 344
 345	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 346	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 347
 348	do {
 349		u32 master_ctl, iir;
 350		u32 pipe_stats[I915_MAX_PIPES] = {};
 351		u32 hotplug_status = 0;
 352		u32 ier = 0;
 353
 354		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
 355		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 356
 357		if (master_ctl == 0 && iir == 0)
 358			break;
 359
 360		ret = IRQ_HANDLED;
 361
 362		/*
 363		 * Theory on interrupt generation, based on empirical evidence:
 364		 *
 365		 * x = ((VLV_IIR & VLV_IER) ||
 366		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
 367		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
 368		 *
 369		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
 370		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
 371		 * guarantee the CPU interrupt will be raised again even if we
 372		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
 373		 * bits this time around.
 374		 */
 375		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
 376		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
 377
 378		gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
 
 
 
 
 
 379
 380		if (iir & I915_DISPLAY_PORT_INTERRUPT)
 381			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 382
 383		/* Call regardless, as some status bits might not be
 384		 * signalled in iir */
 385		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386
 387		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
 388			   I915_LPE_PIPE_B_INTERRUPT |
 389			   I915_LPE_PIPE_C_INTERRUPT))
 390			intel_lpe_audio_irq_handler(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392		/*
 393		 * VLV_IIR is single buffered, and reflects the level
 394		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
 395		 */
 396		if (iir)
 397			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 398
 399		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
 400		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 401
 402		if (hotplug_status)
 403			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 
 
 404
 405		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
 406	} while (0);
 
 
 
 
 407
 408	pmu_irq_stats(dev_priv, ret);
 
 
 409
 410	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 411
 412	return ret;
 
 
 413}
 414
 415/*
 416 * To handle irqs with the minimum potential races with fresh interrupts, we:
 417 * 1 - Disable Master Interrupt Control.
 418 * 2 - Find the source(s) of the interrupt.
 419 * 3 - Clear the Interrupt Identity bits (IIR).
 420 * 4 - Process the interrupt(s) that had bits set in the IIRs.
 421 * 5 - Re-enable Master Interrupt Control.
 422 */
 423static irqreturn_t ilk_irq_handler(int irq, void *arg)
 424{
 425	struct drm_i915_private *i915 = arg;
 426	void __iomem * const regs = intel_uncore_regs(&i915->uncore);
 427	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
 428	irqreturn_t ret = IRQ_NONE;
 429
 430	if (unlikely(!intel_irqs_enabled(i915)))
 431		return IRQ_NONE;
 432
 433	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 434	disable_rpm_wakeref_asserts(&i915->runtime_pm);
 435
 436	/* disable master interrupt before clearing iir  */
 437	de_ier = raw_reg_read(regs, DEIER);
 438	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
 439
 440	/* Disable south interrupts. We'll only write to SDEIIR once, so further
 441	 * interrupts will will be stored on its back queue, and then we'll be
 442	 * able to process them after we restore SDEIER (as soon as we restore
 443	 * it, we'll get an interrupt if SDEIIR still has something to process
 444	 * due to its back queue). */
 445	if (!HAS_PCH_NOP(i915)) {
 446		sde_ier = raw_reg_read(regs, SDEIER);
 447		raw_reg_write(regs, SDEIER, 0);
 
 448	}
 449
 450	/* Find, clear, then process each source of interrupt */
 451
 452	gt_iir = raw_reg_read(regs, GTIIR);
 453	if (gt_iir) {
 454		raw_reg_write(regs, GTIIR, gt_iir);
 455		if (GRAPHICS_VER(i915) >= 6)
 456			gen6_gt_irq_handler(to_gt(i915), gt_iir);
 
 457		else
 458			gen5_gt_irq_handler(to_gt(i915), gt_iir);
 459		ret = IRQ_HANDLED;
 460	}
 461
 462	de_iir = raw_reg_read(regs, DEIIR);
 463	if (de_iir) {
 464		raw_reg_write(regs, DEIIR, de_iir);
 465		if (DISPLAY_VER(i915) >= 7)
 466			ivb_display_irq_handler(i915, de_iir);
 
 467		else
 468			ilk_display_irq_handler(i915, de_iir);
 469		ret = IRQ_HANDLED;
 470	}
 471
 472	if (GRAPHICS_VER(i915) >= 6) {
 473		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
 474		if (pm_iir) {
 475			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
 476			gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir);
 477			ret = IRQ_HANDLED;
 
 478		}
 479	}
 480
 481	raw_reg_write(regs, DEIER, de_ier);
 482	if (sde_ier)
 483		raw_reg_write(regs, SDEIER, sde_ier);
 484
 485	pmu_irq_stats(i915, ret);
 
 486
 487	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 488	enable_rpm_wakeref_asserts(&i915->runtime_pm);
 489
 490	return ret;
 491}
 492
 493static inline u32 gen8_master_intr_disable(void __iomem * const regs)
 
 494{
 495	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 
 
 
 
 496
 497	/*
 498	 * Now with master disabled, get a sample of level indications
 499	 * for this interrupt. Indications will be cleared on related acks.
 500	 * New indications can and will light up during processing,
 501	 * and will generate new interrupt after enabling master.
 502	 */
 503	return raw_reg_read(regs, GEN8_MASTER_IRQ);
 504}
 505
 506static inline void gen8_master_intr_enable(void __iomem * const regs)
 
 507{
 508	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509}
 510
 511static irqreturn_t gen8_irq_handler(int irq, void *arg)
 512{
 513	struct drm_i915_private *dev_priv = arg;
 514	void __iomem * const regs = intel_uncore_regs(&dev_priv->uncore);
 515	u32 master_ctl;
 
 516
 517	if (!intel_irqs_enabled(dev_priv))
 518		return IRQ_NONE;
 519
 520	master_ctl = gen8_master_intr_disable(regs);
 521	if (!master_ctl) {
 522		gen8_master_intr_enable(regs);
 523		return IRQ_NONE;
 524	}
 525
 526	/* Find, queue (onto bottom-halves), then clear each source */
 527	gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
 528
 529	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 530	if (master_ctl & ~GEN8_GT_IRQS) {
 531		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 532		gen8_de_irq_handler(dev_priv, master_ctl);
 533		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 534	}
 535
 536	gen8_master_intr_enable(regs);
 
 537
 538	pmu_irq_stats(dev_priv, IRQ_HANDLED);
 539
 540	return IRQ_HANDLED;
 541}
 542
 543static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 544{
 545	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546
 547	/*
 548	 * Now with master disabled, get a sample of level indications
 549	 * for this interrupt. Indications will be cleared on related acks.
 550	 * New indications can and will light up during processing,
 551	 * and will generate new interrupt after enabling master.
 552	 */
 553	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 
 554}
 555
 556static inline void gen11_master_intr_enable(void __iomem * const regs)
 
 
 
 
 
 
 
 557{
 558	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static irqreturn_t gen11_irq_handler(int irq, void *arg)
 562{
 563	struct drm_i915_private *i915 = arg;
 564	void __iomem * const regs = intel_uncore_regs(&i915->uncore);
 565	struct intel_gt *gt = to_gt(i915);
 566	u32 master_ctl;
 567	u32 gu_misc_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568
 569	if (!intel_irqs_enabled(i915))
 570		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	master_ctl = gen11_master_intr_disable(regs);
 573	if (!master_ctl) {
 574		gen11_master_intr_enable(regs);
 575		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 578	/* Find, queue (onto bottom-halves), then clear each source */
 579	gen11_gt_irq_handler(gt, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580
 581	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 582	if (master_ctl & GEN11_DISPLAY_IRQ)
 583		gen11_display_irq_handler(i915);
 
 
 
 584
 585	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
 
 
 586
 587	gen11_master_intr_enable(regs);
 
 588
 589	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
 
 
 
 590
 591	pmu_irq_stats(i915, IRQ_HANDLED);
 
 
 
 592
 593	return IRQ_HANDLED;
 594}
 595
 596static inline u32 dg1_master_intr_disable(void __iomem * const regs)
 597{
 598	u32 val;
 
 
 
 
 
 
 
 
 599
 600	/* First disable interrupts */
 601	raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0);
 
 
 
 
 
 602
 603	/* Get the indication levels and ack the master unit */
 604	val = raw_reg_read(regs, DG1_MSTR_TILE_INTR);
 605	if (unlikely(!val))
 606		return 0;
 
 
 607
 608	raw_reg_write(regs, DG1_MSTR_TILE_INTR, val);
 
 
 
 
 
 609
 610	return val;
 
 
 611}
 612
 613static inline void dg1_master_intr_enable(void __iomem * const regs)
 614{
 615	raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
 
 
 
 
 
 
 616}
 617
 618static irqreturn_t dg1_irq_handler(int irq, void *arg)
 619{
 620	struct drm_i915_private * const i915 = arg;
 621	struct intel_gt *gt = to_gt(i915);
 622	void __iomem * const regs = intel_uncore_regs(gt->uncore);
 623	u32 master_tile_ctl, master_ctl;
 624	u32 gu_misc_iir;
 
 
 625
 626	if (!intel_irqs_enabled(i915))
 627		return IRQ_NONE;
 
 
 
 
 628
 629	master_tile_ctl = dg1_master_intr_disable(regs);
 630	if (!master_tile_ctl) {
 631		dg1_master_intr_enable(regs);
 632		return IRQ_NONE;
 
 
 
 
 
 633	}
 
 634
 635	/* FIXME: we only support tile 0 for now. */
 636	if (master_tile_ctl & DG1_MSTR_TILE(0)) {
 637		master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 638		raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 639	} else {
 640		drm_err(&i915->drm, "Tile not supported: 0x%08x\n",
 641			master_tile_ctl);
 642		dg1_master_intr_enable(regs);
 643		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644	}
 645
 646	gen11_gt_irq_handler(gt, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 647
 648	if (master_ctl & GEN11_DISPLAY_IRQ)
 649		gen11_display_irq_handler(i915);
 650
 651	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
 
 
 
 
 
 
 
 652
 653	dg1_master_intr_enable(regs);
 
 
 654
 655	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
 
 656
 657	pmu_irq_stats(i915, IRQ_HANDLED);
 658
 659	return IRQ_HANDLED;
 
 660}
 661
 662static void ibx_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 663{
 664	struct intel_uncore *uncore = &dev_priv->uncore;
 665
 666	if (HAS_PCH_NOP(dev_priv))
 667		return;
 668
 669	GEN3_IRQ_RESET(uncore, SDE);
 
 
 
 
 
 
 
 670
 671	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
 672		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
 
 673}
 674
 675/* drm_dma.h hooks
 676*/
 677static void ilk_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678{
 679	struct intel_uncore *uncore = &dev_priv->uncore;
 
 680
 681	GEN3_IRQ_RESET(uncore, DE);
 682	dev_priv->irq_mask = ~0u;
 683
 684	if (GRAPHICS_VER(dev_priv) == 7)
 685		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
 686
 687	if (IS_HASWELL(dev_priv)) {
 688		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
 689		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
 690	}
 691
 692	gen5_gt_irq_reset(to_gt(dev_priv));
 
 
 693
 694	ibx_irq_reset(dev_priv);
 
 695}
 696
 697static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
 
 698{
 699	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
 700	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
 
 
 
 
 
 
 
 
 701
 702	gen5_gt_irq_reset(to_gt(dev_priv));
 
 
 
 703
 704	spin_lock_irq(&dev_priv->irq_lock);
 705	if (dev_priv->display_irqs_enabled)
 706		vlv_display_irq_reset(dev_priv);
 707	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 708}
 709
 710static void gen8_irq_reset(struct drm_i915_private *dev_priv)
 711{
 712	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 713
 714	gen8_master_intr_disable(intel_uncore_regs(uncore));
 715
 716	gen8_gt_irq_reset(to_gt(dev_priv));
 717	gen8_display_irq_reset(dev_priv);
 718	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
 719
 720	if (HAS_PCH_SPLIT(dev_priv))
 721		ibx_irq_reset(dev_priv);
 722
 
 723}
 724
 725static void gen11_irq_reset(struct drm_i915_private *dev_priv)
 
 726{
 727	struct intel_gt *gt = to_gt(dev_priv);
 728	struct intel_uncore *uncore = gt->uncore;
 
 729
 730	gen11_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
 
 
 731
 732	gen11_gt_irq_reset(gt);
 733	gen11_display_irq_reset(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
 736	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737}
 738
 739static void dg1_irq_reset(struct drm_i915_private *dev_priv)
 740{
 741	struct intel_uncore *uncore = &dev_priv->uncore;
 742	struct intel_gt *gt;
 743	unsigned int i;
 
 
 
 
 744
 745	dg1_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
 
 
 
 
 746
 747	for_each_gt(gt, dev_priv, i)
 748		gen11_gt_irq_reset(gt);
 
 
 
 
 
 
 
 749
 750	gen11_display_irq_reset(dev_priv);
 
 
 751
 752	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
 753	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
 
 
 754
 755	intel_uncore_write(uncore, GEN11_GFX_MSTR_IRQ, ~0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756}
 757
 758static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
 759{
 760	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 761
 762	intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0);
 763	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
 
 
 764
 765	gen8_gt_irq_reset(to_gt(dev_priv));
 
 766
 767	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
 
 
 
 768
 769	spin_lock_irq(&dev_priv->irq_lock);
 770	if (dev_priv->display_irqs_enabled)
 771		vlv_display_irq_reset(dev_priv);
 772	spin_unlock_irq(&dev_priv->irq_lock);
 773}
 774
 775static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
 776{
 777	gen5_gt_irq_postinstall(to_gt(dev_priv));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	ilk_de_irq_postinstall(dev_priv);
 
 
 780}
 781
 782static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
 783{
 784	gen5_gt_irq_postinstall(to_gt(dev_priv));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785
 786	spin_lock_irq(&dev_priv->irq_lock);
 787	if (dev_priv->display_irqs_enabled)
 788		vlv_display_irq_postinstall(dev_priv);
 789	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 790
 791	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 792	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
 793}
 794
 795static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
 796{
 797	gen8_gt_irq_postinstall(to_gt(dev_priv));
 798	gen8_de_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799
 800	gen8_master_intr_enable(intel_uncore_regs(&dev_priv->uncore));
 
 
 
 
 801}
 802
 803static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
 804{
 805	struct intel_gt *gt = to_gt(dev_priv);
 806	struct intel_uncore *uncore = gt->uncore;
 807	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 
 
 
 
 
 
 808
 809	gen11_gt_irq_postinstall(gt);
 810	gen11_de_irq_postinstall(dev_priv);
 
 
 
 
 811
 812	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
 
 813
 814	gen11_master_intr_enable(intel_uncore_regs(uncore));
 815	intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
 
 
 
 
 
 
 
 
 816}
 817
 818static void dg1_irq_postinstall(struct drm_i915_private *dev_priv)
 819{
 820	struct intel_uncore *uncore = &dev_priv->uncore;
 821	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 822	struct intel_gt *gt;
 823	unsigned int i;
 824
 825	for_each_gt(gt, dev_priv, i)
 826		gen11_gt_irq_postinstall(gt);
 827
 828	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
 
 
 
 
 
 
 
 
 
 829
 830	dg1_de_irq_postinstall(dev_priv);
 831
 832	dg1_master_intr_enable(intel_uncore_regs(uncore));
 833	intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR);
 834}
 835
 836static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
 837{
 838	gen8_gt_irq_postinstall(to_gt(dev_priv));
 839
 
 
 
 
 
 
 
 
 
 
 
 840	spin_lock_irq(&dev_priv->irq_lock);
 841	if (dev_priv->display_irqs_enabled)
 842		vlv_display_irq_postinstall(dev_priv);
 843	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 844
 845	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
 846	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
 850{
 851	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 853	i9xx_pipestat_irq_reset(dev_priv);
 
 
 
 
 854
 855	gen2_irq_reset(uncore);
 856	dev_priv->irq_mask = ~0u;
 
 
 
 
 
 
 
 
 
 
 857}
 858
 859static u32 i9xx_error_mask(struct drm_i915_private *i915)
 860{
 861	/*
 862	 * On gen2/3 FBC generates (seemingly spurious)
 863	 * display INVALID_GTT/INVALID_GTT_PTE table errors.
 864	 *
 865	 * Also gen3 bspec has this to say:
 866	 * "DISPA_INVALID_GTT_PTE
 867	 "  [DevNapa] : Reserved. This bit does not reflect the page
 868	 "              table error for the display plane A."
 869	 *
 870	 * Unfortunately we can't mask off individual PGTBL_ER bits,
 871	 * so we just have to mask off all page table errors via EMR.
 872	 */
 873	if (HAS_FBC(i915))
 874		return ~I915_ERROR_MEMORY_REFRESH;
 875	else
 876		return ~(I915_ERROR_PAGE_TABLE |
 877			 I915_ERROR_MEMORY_REFRESH);
 878}
 879
 880static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
 881{
 882	struct intel_uncore *uncore = &dev_priv->uncore;
 883	u16 enable_mask;
 
 
 
 884
 885	intel_uncore_write16(uncore, EMR, i9xx_error_mask(dev_priv));
 
 886
 887	/* Unmask the interrupts that we always want on. */
 888	dev_priv->irq_mask =
 889		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
 890		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 891		  I915_MASTER_ERROR_INTERRUPT);
 
 892
 893	enable_mask =
 894		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
 895		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 896		I915_MASTER_ERROR_INTERRUPT |
 897		I915_USER_INTERRUPT;
 898
 899	gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask);
 
 900
 
 
 901	/* Interrupt setup is already guaranteed to be single-threaded, this is
 902	 * just to make the assert_spin_locked check happy. */
 903	spin_lock_irq(&dev_priv->irq_lock);
 904	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
 905	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
 906	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 907}
 908
 909static void i8xx_error_irq_ack(struct drm_i915_private *i915,
 910			       u16 *eir, u16 *eir_stuck)
 911{
 912	struct intel_uncore *uncore = &i915->uncore;
 913	u16 emr;
 
 
 
 
 
 
 
 
 
 
 
 914
 915	*eir = intel_uncore_read16(uncore, EIR);
 916	intel_uncore_write16(uncore, EIR, *eir);
 
 917
 918	*eir_stuck = intel_uncore_read16(uncore, EIR);
 919	if (*eir_stuck == 0)
 920		return;
 921
 922	/*
 923	 * Toggle all EMR bits to make sure we get an edge
 924	 * in the ISR master error bit if we don't clear
 925	 * all the EIR bits. Otherwise the edge triggered
 926	 * IIR on i965/g4x wouldn't notice that an interrupt
 927	 * is still pending. Also some EIR bits can't be
 928	 * cleared except by handling the underlying error
 929	 * (or by a GPU reset) so we mask any bit that
 930	 * remains set.
 931	 */
 932	emr = intel_uncore_read16(uncore, EMR);
 933	intel_uncore_write16(uncore, EMR, 0xffff);
 934	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
 935}
 936
 937static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
 938				   u16 eir, u16 eir_stuck)
 939{
 940	drm_dbg(&dev_priv->drm, "Master Error: EIR 0x%04x\n", eir);
 
 
 
 
 
 
 941
 942	if (eir_stuck)
 943		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
 944			eir_stuck);
 
 945
 946	drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n",
 947		intel_uncore_read(&dev_priv->uncore, PGTBL_ER));
 
 
 
 948}
 949
 950static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
 951			       u32 *eir, u32 *eir_stuck)
 952{
 953	u32 emr;
 
 
 
 954
 955	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
 956	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
 
 
 
 
 
 
 
 
 
 
 
 957
 958	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
 959	if (*eir_stuck == 0)
 960		return;
 
 
 
 961
 962	/*
 963	 * Toggle all EMR bits to make sure we get an edge
 964	 * in the ISR master error bit if we don't clear
 965	 * all the EIR bits. Otherwise the edge triggered
 966	 * IIR on i965/g4x wouldn't notice that an interrupt
 967	 * is still pending. Also some EIR bits can't be
 968	 * cleared except by handling the underlying error
 969	 * (or by a GPU reset) so we mask any bit that
 970	 * remains set.
 971	 */
 972	emr = intel_uncore_read(&dev_priv->uncore, EMR);
 973	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
 974	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
 975}
 976
 977static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
 978				   u32 eir, u32 eir_stuck)
 
 
 
 979{
 980	drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir);
 
 981
 982	if (eir_stuck)
 983		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
 984			eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 985
 986	drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n",
 987		intel_uncore_read(&dev_priv->uncore, PGTBL_ER));
 
 
 
 
 
 988}
 989
 990static irqreturn_t i8xx_irq_handler(int irq, void *arg)
 991{
 992	struct drm_i915_private *dev_priv = arg;
 993	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
 
 994
 995	if (!intel_irqs_enabled(dev_priv))
 996		return IRQ_NONE;
 997
 998	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
 999	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1000
1001	do {
1002		u32 pipe_stats[I915_MAX_PIPES] = {};
1003		u16 eir = 0, eir_stuck = 0;
1004		u16 iir;
1005
1006		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
1007		if (iir == 0)
1008			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010		ret = IRQ_HANDLED;
 
1011
1012		/* Call regardless, as some status bits might not be
1013		 * signalled in iir */
1014		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1015
1016		if (iir & I915_MASTER_ERROR_INTERRUPT)
1017			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
 
 
1020
1021		if (iir & I915_USER_INTERRUPT)
1022			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
1023
1024		if (iir & I915_MASTER_ERROR_INTERRUPT)
1025			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
1026
1027		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
1028	} while (0);
 
 
1029
1030	pmu_irq_stats(dev_priv, ret);
1031
1032	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1033
1034	return ret;
 
 
 
1035}
1036
1037static void i915_irq_reset(struct drm_i915_private *dev_priv)
1038{
1039	struct intel_uncore *uncore = &dev_priv->uncore;
 
1040
1041	if (I915_HAS_HOTPLUG(dev_priv)) {
1042		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
1043		intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_STAT, 0, 0);
1044	}
1045
1046	i9xx_pipestat_irq_reset(dev_priv);
1047
1048	GEN3_IRQ_RESET(uncore, GEN2_);
1049	dev_priv->irq_mask = ~0u;
 
 
1050}
1051
1052static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
1053{
1054	struct intel_uncore *uncore = &dev_priv->uncore;
1055	u32 enable_mask;
1056
1057	intel_uncore_write(uncore, EMR, i9xx_error_mask(dev_priv));
1058
1059	/* Unmask the interrupts that we always want on. */
1060	dev_priv->irq_mask =
1061		~(I915_ASLE_INTERRUPT |
1062		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1063		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1064		  I915_MASTER_ERROR_INTERRUPT);
 
1065
1066	enable_mask =
1067		I915_ASLE_INTERRUPT |
1068		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1069		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1070		I915_MASTER_ERROR_INTERRUPT |
1071		I915_USER_INTERRUPT;
1072
1073	if (I915_HAS_HOTPLUG(dev_priv)) {
 
 
 
1074		/* Enable in IER... */
1075		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1076		/* and unmask in IMR */
1077		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1078	}
1079
1080	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
 
 
 
1081
1082	/* Interrupt setup is already guaranteed to be single-threaded, this is
1083	 * just to make the assert_spin_locked check happy. */
1084	spin_lock_irq(&dev_priv->irq_lock);
1085	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
1086	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
1087	spin_unlock_irq(&dev_priv->irq_lock);
1088
1089	i915_enable_asle_pipestat(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090}
1091
1092static irqreturn_t i915_irq_handler(int irq, void *arg)
1093{
1094	struct drm_i915_private *dev_priv = arg;
1095	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
1096
1097	if (!intel_irqs_enabled(dev_priv))
1098		return IRQ_NONE;
1099
1100	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1101	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1102
 
1103	do {
1104		u32 pipe_stats[I915_MAX_PIPES] = {};
1105		u32 eir = 0, eir_stuck = 0;
1106		u32 hotplug_status = 0;
1107		u32 iir;
1108
1109		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
1110		if (iir == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111			break;
1112
1113		ret = IRQ_HANDLED;
1114
1115		if (I915_HAS_HOTPLUG(dev_priv) &&
1116		    iir & I915_DISPLAY_PORT_INTERRUPT)
1117			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1118
1119		/* Call regardless, as some status bits might not be
1120		 * signalled in iir */
1121		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1122
1123		if (iir & I915_MASTER_ERROR_INTERRUPT)
1124			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
1125
1126		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
1127
1128		if (iir & I915_USER_INTERRUPT)
1129			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
1130
1131		if (iir & I915_MASTER_ERROR_INTERRUPT)
1132			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
1134		if (hotplug_status)
1135			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1136
1137		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
1138	} while (0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139
1140	pmu_irq_stats(dev_priv, ret);
1141
1142	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1143
1144	return ret;
1145}
1146
1147static void i965_irq_reset(struct drm_i915_private *dev_priv)
1148{
1149	struct intel_uncore *uncore = &dev_priv->uncore;
 
1150
1151	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
1152	intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0);
 
 
1153
1154	i9xx_pipestat_irq_reset(dev_priv);
 
 
 
 
 
 
 
1155
1156	GEN3_IRQ_RESET(uncore, GEN2_);
1157	dev_priv->irq_mask = ~0u;
1158}
1159
1160static u32 i965_error_mask(struct drm_i915_private *i915)
1161{
1162	/*
1163	 * Enable some error detection, note the instruction error mask
1164	 * bit is reserved, so we leave it masked.
1165	 *
1166	 * i965 FBC no longer generates spurious GTT errors,
1167	 * so we can always enable the page table errors.
1168	 */
1169	if (IS_G4X(i915))
1170		return ~(GM45_ERROR_PAGE_TABLE |
1171			 GM45_ERROR_MEM_PRIV |
1172			 GM45_ERROR_CP_PRIV |
1173			 I915_ERROR_MEMORY_REFRESH);
1174	else
1175		return ~(I915_ERROR_PAGE_TABLE |
1176			 I915_ERROR_MEMORY_REFRESH);
1177}
1178
1179static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
1180{
1181	struct intel_uncore *uncore = &dev_priv->uncore;
1182	u32 enable_mask;
1183
1184	intel_uncore_write(uncore, EMR, i965_error_mask(dev_priv));
1185
1186	/* Unmask the interrupts that we always want on. */
1187	dev_priv->irq_mask =
1188		~(I915_ASLE_INTERRUPT |
1189		  I915_DISPLAY_PORT_INTERRUPT |
1190		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1191		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1192		  I915_MASTER_ERROR_INTERRUPT);
1193
1194	enable_mask =
1195		I915_ASLE_INTERRUPT |
1196		I915_DISPLAY_PORT_INTERRUPT |
1197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1199		I915_MASTER_ERROR_INTERRUPT |
1200		I915_USER_INTERRUPT;
1201
1202	if (IS_G4X(dev_priv))
1203		enable_mask |= I915_BSD_USER_INTERRUPT;
1204
1205	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
1206
1207	/* Interrupt setup is already guaranteed to be single-threaded, this is
1208	 * just to make the assert_spin_locked check happy. */
1209	spin_lock_irq(&dev_priv->irq_lock);
1210	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
1211	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
1212	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
1213	spin_unlock_irq(&dev_priv->irq_lock);
1214
1215	i915_enable_asle_pipestat(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216}
1217
1218static irqreturn_t i965_irq_handler(int irq, void *arg)
1219{
1220	struct drm_i915_private *dev_priv = arg;
1221	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
1222
1223	if (!intel_irqs_enabled(dev_priv))
1224		return IRQ_NONE;
1225
1226	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1227	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
1228
1229	do {
1230		u32 pipe_stats[I915_MAX_PIPES] = {};
1231		u32 eir = 0, eir_stuck = 0;
1232		u32 hotplug_status = 0;
1233		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234
1235		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
1236		if (iir == 0)
1237			break;
1238
1239		ret = IRQ_HANDLED;
1240
 
1241		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1242			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1243
1244		/* Call regardless, as some status bits might not be
1245		 * signalled in iir */
1246		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1247
1248		if (iir & I915_MASTER_ERROR_INTERRUPT)
1249			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
 
1250
1251		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
 
 
 
1252
1253		if (iir & I915_USER_INTERRUPT)
1254			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0],
1255					    iir);
1256
1257		if (iir & I915_BSD_USER_INTERRUPT)
1258			intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0],
1259					    iir >> 25);
1260
1261		if (iir & I915_MASTER_ERROR_INTERRUPT)
1262			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
1263
1264		if (hotplug_status)
1265			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1266
1267		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
1268	} while (0);
1269
1270	pmu_irq_stats(dev_priv, IRQ_HANDLED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271
1272	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1273
1274	return ret;
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277/**
1278 * intel_irq_init - initializes irq support
1279 * @dev_priv: i915 device instance
1280 *
1281 * This function initializes all the irq support including work items, timers
1282 * and all the vtables. It does not setup the interrupt itself though.
1283 */
1284void intel_irq_init(struct drm_i915_private *dev_priv)
1285{
1286	int i;
 
 
 
 
 
1287
1288	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
1289	for (i = 0; i < MAX_L3_SLICES; ++i)
1290		dev_priv->l3_parity.remap_info[i] = NULL;
1291
1292	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
1293	if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
1294		to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16;
1295}
1296
1297/**
1298 * intel_irq_fini - deinitializes IRQ support
1299 * @i915: i915 device instance
1300 *
1301 * This function deinitializes all the IRQ support.
1302 */
1303void intel_irq_fini(struct drm_i915_private *i915)
1304{
1305	int i;
1306
1307	for (i = 0; i < MAX_L3_SLICES; ++i)
1308		kfree(i915->l3_parity.remap_info[i]);
1309}
1310
1311static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
1312{
1313	if (HAS_GMCH(dev_priv)) {
1314		if (IS_CHERRYVIEW(dev_priv))
1315			return cherryview_irq_handler;
1316		else if (IS_VALLEYVIEW(dev_priv))
1317			return valleyview_irq_handler;
1318		else if (GRAPHICS_VER(dev_priv) == 4)
1319			return i965_irq_handler;
1320		else if (GRAPHICS_VER(dev_priv) == 3)
1321			return i915_irq_handler;
1322		else
1323			return i8xx_irq_handler;
1324	} else {
1325		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1326			return dg1_irq_handler;
1327		else if (GRAPHICS_VER(dev_priv) >= 11)
1328			return gen11_irq_handler;
1329		else if (GRAPHICS_VER(dev_priv) >= 8)
1330			return gen8_irq_handler;
1331		else
1332			return ilk_irq_handler;
1333	}
1334}
1335
1336static void intel_irq_reset(struct drm_i915_private *dev_priv)
1337{
1338	if (HAS_GMCH(dev_priv)) {
1339		if (IS_CHERRYVIEW(dev_priv))
1340			cherryview_irq_reset(dev_priv);
1341		else if (IS_VALLEYVIEW(dev_priv))
1342			valleyview_irq_reset(dev_priv);
1343		else if (GRAPHICS_VER(dev_priv) == 4)
1344			i965_irq_reset(dev_priv);
1345		else if (GRAPHICS_VER(dev_priv) == 3)
1346			i915_irq_reset(dev_priv);
1347		else
1348			i8xx_irq_reset(dev_priv);
1349	} else {
1350		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1351			dg1_irq_reset(dev_priv);
1352		else if (GRAPHICS_VER(dev_priv) >= 11)
1353			gen11_irq_reset(dev_priv);
1354		else if (GRAPHICS_VER(dev_priv) >= 8)
1355			gen8_irq_reset(dev_priv);
1356		else
1357			ilk_irq_reset(dev_priv);
1358	}
1359}
1360
1361static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
1362{
1363	if (HAS_GMCH(dev_priv)) {
1364		if (IS_CHERRYVIEW(dev_priv))
1365			cherryview_irq_postinstall(dev_priv);
1366		else if (IS_VALLEYVIEW(dev_priv))
1367			valleyview_irq_postinstall(dev_priv);
1368		else if (GRAPHICS_VER(dev_priv) == 4)
1369			i965_irq_postinstall(dev_priv);
1370		else if (GRAPHICS_VER(dev_priv) == 3)
1371			i915_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372		else
1373			i8xx_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
1374	} else {
1375		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
1376			dg1_irq_postinstall(dev_priv);
1377		else if (GRAPHICS_VER(dev_priv) >= 11)
1378			gen11_irq_postinstall(dev_priv);
1379		else if (GRAPHICS_VER(dev_priv) >= 8)
1380			gen8_irq_postinstall(dev_priv);
1381		else
1382			ilk_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
1383	}
1384}
1385
1386/**
1387 * intel_irq_install - enables the hardware interrupt
1388 * @dev_priv: i915 device instance
1389 *
1390 * This function enables the hardware interrupt handling, but leaves the hotplug
1391 * handling still disabled. It is called after intel_irq_init().
1392 *
1393 * In the driver load and resume code we need working interrupts in a few places
1394 * but don't want to deal with the hassle of concurrent probe and hotplug
1395 * workers. Hence the split into this two-stage approach.
1396 */
1397int intel_irq_install(struct drm_i915_private *dev_priv)
1398{
1399	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
1400	int ret;
1401
1402	/*
1403	 * We enable some interrupt sources in our postinstall hooks, so mark
1404	 * interrupts as enabled _before_ actually enabling them to avoid
1405	 * special cases in our ordering checks.
1406	 */
1407	dev_priv->runtime_pm.irqs_enabled = true;
1408
1409	dev_priv->irq_enabled = true;
1410
1411	intel_irq_reset(dev_priv);
1412
1413	ret = request_irq(irq, intel_irq_handler(dev_priv),
1414			  IRQF_SHARED, DRIVER_NAME, dev_priv);
1415	if (ret < 0) {
1416		dev_priv->irq_enabled = false;
1417		return ret;
1418	}
1419
1420	intel_irq_postinstall(dev_priv);
1421
1422	return ret;
1423}
1424
1425/**
1426 * intel_irq_uninstall - finilizes all irq handling
1427 * @dev_priv: i915 device instance
1428 *
1429 * This stops interrupt and hotplug handling and unregisters and frees all
1430 * resources acquired in the init functions.
1431 */
1432void intel_irq_uninstall(struct drm_i915_private *dev_priv)
1433{
1434	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
1435
1436	/*
1437	 * FIXME we can get called twice during driver probe
1438	 * error handling as well as during driver remove due to
1439	 * intel_display_driver_remove() calling us out of sequence.
1440	 * Would be nice if it didn't do that...
1441	 */
1442	if (!dev_priv->irq_enabled)
1443		return;
1444
1445	dev_priv->irq_enabled = false;
1446
1447	intel_irq_reset(dev_priv);
1448
1449	free_irq(irq, dev_priv);
1450
1451	intel_hpd_cancel_work(dev_priv);
1452	dev_priv->runtime_pm.irqs_enabled = false;
1453}
1454
1455/**
1456 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
1457 * @dev_priv: i915 device instance
1458 *
1459 * This function is used to disable interrupts at runtime, both in the runtime
1460 * pm and the system suspend/resume code.
1461 */
1462void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
1463{
1464	intel_irq_reset(dev_priv);
1465	dev_priv->runtime_pm.irqs_enabled = false;
1466	intel_synchronize_irq(dev_priv);
1467}
1468
1469/**
1470 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
1471 * @dev_priv: i915 device instance
1472 *
1473 * This function is used to enable interrupts at runtime, both in the runtime
1474 * pm and the system suspend/resume code.
1475 */
1476void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
1477{
1478	dev_priv->runtime_pm.irqs_enabled = true;
1479	intel_irq_reset(dev_priv);
1480	intel_irq_postinstall(dev_priv);
1481}
1482
1483bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
1484{
1485	return dev_priv->runtime_pm.irqs_enabled;
1486}
1487
1488void intel_synchronize_irq(struct drm_i915_private *i915)
1489{
1490	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
1491}
1492
1493void intel_synchronize_hardirq(struct drm_i915_private *i915)
1494{
1495	synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
1496}