Linux Audio

Check our new training course

Loading...
v4.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61	[HPD_CRT] = SDE_CRT_HOTPLUG,
  62	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121	POSTING_READ(GEN8_##type##_IMR(which)); \
 122	I915_WRITE(GEN8_##type##_IER(which), 0); \
 123	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124	POSTING_READ(GEN8_##type##_IIR(which)); \
 125	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126	POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN5_IRQ_RESET(type) do { \
 130	I915_WRITE(type##IMR, 0xffffffff); \
 131	POSTING_READ(type##IMR); \
 132	I915_WRITE(type##IER, 0); \
 133	I915_WRITE(type##IIR, 0xffffffff); \
 134	POSTING_READ(type##IIR); \
 135	I915_WRITE(type##IIR, 0xffffffff); \
 136	POSTING_READ(type##IIR); \
 137} while (0)
 138
 139/*
 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 141 */
 142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 143				    i915_reg_t reg)
 144{
 145	u32 val = I915_READ(reg);
 146
 147	if (val == 0)
 148		return;
 149
 150	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 151	     i915_mmio_reg_offset(reg), val);
 152	I915_WRITE(reg, 0xffffffff);
 153	POSTING_READ(reg);
 154	I915_WRITE(reg, 0xffffffff);
 155	POSTING_READ(reg);
 156}
 157
 158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 159	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 160	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 161	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 162	POSTING_READ(GEN8_##type##_IMR(which)); \
 163} while (0)
 164
 165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
 166	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
 167	I915_WRITE(type##IER, (ier_val)); \
 168	I915_WRITE(type##IMR, (imr_val)); \
 169	POSTING_READ(type##IMR); \
 170} while (0)
 171
 172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 173
 174/* For display hotplug interrupt */
 175static inline void
 176i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 177				     uint32_t mask,
 178				     uint32_t bits)
 179{
 180	uint32_t val;
 181
 182	assert_spin_locked(&dev_priv->irq_lock);
 183	WARN_ON(bits & ~mask);
 184
 185	val = I915_READ(PORT_HOTPLUG_EN);
 186	val &= ~mask;
 187	val |= bits;
 188	I915_WRITE(PORT_HOTPLUG_EN, val);
 189}
 190
 191/**
 192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 193 * @dev_priv: driver private
 194 * @mask: bits to update
 195 * @bits: bits to enable
 196 * NOTE: the HPD enable bits are modified both inside and outside
 197 * of an interrupt context. To avoid that read-modify-write cycles
 198 * interfer, these bits are protected by a spinlock. Since this
 199 * function is usually not called from a context where the lock is
 200 * held already, this function acquires the lock itself. A non-locking
 201 * version is also available.
 202 */
 203void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 204				   uint32_t mask,
 205				   uint32_t bits)
 206{
 207	spin_lock_irq(&dev_priv->irq_lock);
 208	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 209	spin_unlock_irq(&dev_priv->irq_lock);
 210}
 211
 212/**
 213 * ilk_update_display_irq - update DEIMR
 214 * @dev_priv: driver private
 215 * @interrupt_mask: mask of interrupt bits to update
 216 * @enabled_irq_mask: mask of interrupt bits to enable
 217 */
 218void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 219			    uint32_t interrupt_mask,
 220			    uint32_t enabled_irq_mask)
 221{
 222	uint32_t new_val;
 223
 224	assert_spin_locked(&dev_priv->irq_lock);
 225
 226	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 227
 228	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 229		return;
 230
 231	new_val = dev_priv->irq_mask;
 232	new_val &= ~interrupt_mask;
 233	new_val |= (~enabled_irq_mask & interrupt_mask);
 234
 235	if (new_val != dev_priv->irq_mask) {
 236		dev_priv->irq_mask = new_val;
 237		I915_WRITE(DEIMR, dev_priv->irq_mask);
 238		POSTING_READ(DEIMR);
 239	}
 240}
 241
 242/**
 243 * ilk_update_gt_irq - update GTIMR
 244 * @dev_priv: driver private
 245 * @interrupt_mask: mask of interrupt bits to update
 246 * @enabled_irq_mask: mask of interrupt bits to enable
 247 */
 248static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 249			      uint32_t interrupt_mask,
 250			      uint32_t enabled_irq_mask)
 251{
 252	assert_spin_locked(&dev_priv->irq_lock);
 253
 254	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 255
 256	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 257		return;
 258
 259	dev_priv->gt_irq_mask &= ~interrupt_mask;
 260	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 261	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 262	POSTING_READ(GTIMR);
 263}
 264
 265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 266{
 267	ilk_update_gt_irq(dev_priv, mask, mask);
 268}
 269
 270void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 271{
 272	ilk_update_gt_irq(dev_priv, mask, 0);
 273}
 274
 275static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 276{
 277	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 278}
 279
 280static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 281{
 282	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 283}
 284
 285static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 286{
 287	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 288}
 289
 290/**
 291 * snb_update_pm_irq - update GEN6_PMIMR
 292 * @dev_priv: driver private
 293 * @interrupt_mask: mask of interrupt bits to update
 294 * @enabled_irq_mask: mask of interrupt bits to enable
 295 */
 296static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 297			      uint32_t interrupt_mask,
 298			      uint32_t enabled_irq_mask)
 299{
 300	uint32_t new_val;
 301
 302	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 303
 304	assert_spin_locked(&dev_priv->irq_lock);
 305
 306	new_val = dev_priv->pm_irq_mask;
 307	new_val &= ~interrupt_mask;
 308	new_val |= (~enabled_irq_mask & interrupt_mask);
 309
 310	if (new_val != dev_priv->pm_irq_mask) {
 311		dev_priv->pm_irq_mask = new_val;
 312		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
 313		POSTING_READ(gen6_pm_imr(dev_priv));
 314	}
 315}
 316
 317void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 318{
 319	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 320		return;
 321
 322	snb_update_pm_irq(dev_priv, mask, mask);
 323}
 324
 325static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
 326				  uint32_t mask)
 327{
 328	snb_update_pm_irq(dev_priv, mask, 0);
 329}
 330
 331void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 332{
 333	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 334		return;
 335
 336	__gen6_disable_pm_irq(dev_priv, mask);
 337}
 338
 339void gen6_reset_rps_interrupts(struct drm_device *dev)
 340{
 341	struct drm_i915_private *dev_priv = dev->dev_private;
 342	i915_reg_t reg = gen6_pm_iir(dev_priv);
 343
 344	spin_lock_irq(&dev_priv->irq_lock);
 345	I915_WRITE(reg, dev_priv->pm_rps_events);
 346	I915_WRITE(reg, dev_priv->pm_rps_events);
 347	POSTING_READ(reg);
 348	dev_priv->rps.pm_iir = 0;
 349	spin_unlock_irq(&dev_priv->irq_lock);
 350}
 351
 352void gen6_enable_rps_interrupts(struct drm_device *dev)
 353{
 354	struct drm_i915_private *dev_priv = dev->dev_private;
 355
 356	spin_lock_irq(&dev_priv->irq_lock);
 357
 358	WARN_ON(dev_priv->rps.pm_iir);
 359	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 360	dev_priv->rps.interrupts_enabled = true;
 361	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
 362				dev_priv->pm_rps_events);
 363	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 364
 365	spin_unlock_irq(&dev_priv->irq_lock);
 366}
 367
 368u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
 369{
 370	/*
 371	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
 372	 * if GEN6_PM_UP_EI_EXPIRED is masked.
 373	 *
 374	 * TODO: verify if this can be reproduced on VLV,CHV.
 375	 */
 376	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
 377		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
 378
 379	if (INTEL_INFO(dev_priv)->gen >= 8)
 380		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
 381
 382	return mask;
 383}
 384
 385void gen6_disable_rps_interrupts(struct drm_device *dev)
 386{
 387	struct drm_i915_private *dev_priv = dev->dev_private;
 388
 389	spin_lock_irq(&dev_priv->irq_lock);
 390	dev_priv->rps.interrupts_enabled = false;
 391	spin_unlock_irq(&dev_priv->irq_lock);
 392
 393	cancel_work_sync(&dev_priv->rps.work);
 394
 395	spin_lock_irq(&dev_priv->irq_lock);
 396
 397	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 398
 399	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 400	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
 401				~dev_priv->pm_rps_events);
 402
 403	spin_unlock_irq(&dev_priv->irq_lock);
 404
 405	synchronize_irq(dev->irq);
 406}
 407
 408/**
 409 * bdw_update_port_irq - update DE port interrupt
 410 * @dev_priv: driver private
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 415				uint32_t interrupt_mask,
 416				uint32_t enabled_irq_mask)
 417{
 418	uint32_t new_val;
 419	uint32_t old_val;
 420
 421	assert_spin_locked(&dev_priv->irq_lock);
 422
 423	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 424
 425	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	old_val = I915_READ(GEN8_DE_PORT_IMR);
 429
 430	new_val = old_val;
 431	new_val &= ~interrupt_mask;
 432	new_val |= (~enabled_irq_mask & interrupt_mask);
 433
 434	if (new_val != old_val) {
 435		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 436		POSTING_READ(GEN8_DE_PORT_IMR);
 437	}
 438}
 439
 440/**
 441 * bdw_update_pipe_irq - update DE pipe interrupt
 442 * @dev_priv: driver private
 443 * @pipe: pipe whose interrupt to update
 444 * @interrupt_mask: mask of interrupt bits to update
 445 * @enabled_irq_mask: mask of interrupt bits to enable
 446 */
 447void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 448			 enum pipe pipe,
 449			 uint32_t interrupt_mask,
 450			 uint32_t enabled_irq_mask)
 451{
 452	uint32_t new_val;
 453
 454	assert_spin_locked(&dev_priv->irq_lock);
 455
 456	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 457
 458	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 459		return;
 460
 461	new_val = dev_priv->de_irq_mask[pipe];
 462	new_val &= ~interrupt_mask;
 463	new_val |= (~enabled_irq_mask & interrupt_mask);
 464
 465	if (new_val != dev_priv->de_irq_mask[pipe]) {
 466		dev_priv->de_irq_mask[pipe] = new_val;
 467		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 468		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 469	}
 470}
 471
 472/**
 473 * ibx_display_interrupt_update - update SDEIMR
 474 * @dev_priv: driver private
 475 * @interrupt_mask: mask of interrupt bits to update
 476 * @enabled_irq_mask: mask of interrupt bits to enable
 477 */
 478void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 479				  uint32_t interrupt_mask,
 480				  uint32_t enabled_irq_mask)
 481{
 482	uint32_t sdeimr = I915_READ(SDEIMR);
 483	sdeimr &= ~interrupt_mask;
 484	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 485
 486	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 487
 488	assert_spin_locked(&dev_priv->irq_lock);
 489
 490	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491		return;
 492
 493	I915_WRITE(SDEIMR, sdeimr);
 494	POSTING_READ(SDEIMR);
 495}
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499		       u32 enable_mask, u32 status_mask)
 500{
 501	i915_reg_t reg = PIPESTAT(pipe);
 502	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504	assert_spin_locked(&dev_priv->irq_lock);
 505	WARN_ON(!intel_irqs_enabled(dev_priv));
 506
 507	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 508		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 509		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 510		      pipe_name(pipe), enable_mask, status_mask))
 511		return;
 512
 513	if ((pipestat & enable_mask) == enable_mask)
 514		return;
 515
 516	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 517
 518	/* Enable the interrupt, clear any pending status */
 519	pipestat |= enable_mask | status_mask;
 520	I915_WRITE(reg, pipestat);
 521	POSTING_READ(reg);
 522}
 523
 524static void
 525__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 526		        u32 enable_mask, u32 status_mask)
 527{
 528	i915_reg_t reg = PIPESTAT(pipe);
 529	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 530
 531	assert_spin_locked(&dev_priv->irq_lock);
 532	WARN_ON(!intel_irqs_enabled(dev_priv));
 533
 534	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 535		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 536		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 537		      pipe_name(pipe), enable_mask, status_mask))
 538		return;
 539
 540	if ((pipestat & enable_mask) == 0)
 
 541		return;
 542
 543	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 544
 545	pipestat &= ~enable_mask;
 546	I915_WRITE(reg, pipestat);
 547	POSTING_READ(reg);
 548}
 549
 550static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 551{
 552	u32 enable_mask = status_mask << 16;
 553
 554	/*
 555	 * On pipe A we don't support the PSR interrupt yet,
 556	 * on pipe B and C the same bit MBZ.
 557	 */
 558	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 559		return 0;
 560	/*
 561	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 562	 * A the same bit is for perf counters which we don't use either.
 563	 */
 564	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 565		return 0;
 566
 567	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 568			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 569			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 570	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 571		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 572	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 573		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 574
 575	return enable_mask;
 576}
 577
 578void
 579i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 580		     u32 status_mask)
 581{
 582	u32 enable_mask;
 583
 584	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 585		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 586							   status_mask);
 587	else
 588		enable_mask = status_mask << 16;
 589	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 590}
 591
 592void
 593i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 594		      u32 status_mask)
 595{
 596	u32 enable_mask;
 
 
 
 
 597
 598	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 599		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 600							   status_mask);
 601	else
 602		enable_mask = status_mask << 16;
 603	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 604}
 605
 606/**
 607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 608 * @dev: drm device
 609 */
 610static void i915_enable_asle_pipestat(struct drm_device *dev)
 611{
 612	struct drm_i915_private *dev_priv = dev->dev_private;
 613
 614	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 615		return;
 616
 617	spin_lock_irq(&dev_priv->irq_lock);
 618
 619	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 620	if (INTEL_INFO(dev)->gen >= 4)
 621		i915_enable_pipestat(dev_priv, PIPE_A,
 622				     PIPE_LEGACY_BLC_EVENT_STATUS);
 623
 624	spin_unlock_irq(&dev_priv->irq_lock);
 625}
 626
 627/*
 628 * This timing diagram depicts the video signal in and
 629 * around the vertical blanking period.
 630 *
 631 * Assumptions about the fictitious mode used in this example:
 632 *  vblank_start >= 3
 633 *  vsync_start = vblank_start + 1
 634 *  vsync_end = vblank_start + 2
 635 *  vtotal = vblank_start + 3
 636 *
 637 *           start of vblank:
 638 *           latch double buffered registers
 639 *           increment frame counter (ctg+)
 640 *           generate start of vblank interrupt (gen4+)
 641 *           |
 642 *           |          frame start:
 643 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 644 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 645 *           |          |
 646 *           |          |  start of vsync:
 647 *           |          |  generate vsync interrupt
 648 *           |          |  |
 649 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 650 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 651 * ----va---> <-----------------vb--------------------> <--------va-------------
 652 *       |          |       <----vs----->                     |
 653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 656 *       |          |                                         |
 657 *       last visible pixel                                   first visible pixel
 658 *                  |                                         increment frame counter (gen3/4)
 659 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 660 *
 661 * x  = horizontal active
 662 * _  = horizontal blanking
 663 * hs = horizontal sync
 664 * va = vertical active
 665 * vb = vertical blanking
 666 * vs = vertical sync
 667 * vbs = vblank_start (number)
 668 *
 669 * Summary:
 670 * - most events happen at the start of horizontal sync
 671 * - frame start happens at the start of horizontal blank, 1-4 lines
 672 *   (depending on PIPECONF settings) after the start of vblank
 673 * - gen3/4 pixel and frame counter are synchronized with the start
 674 *   of horizontal active on the first line of vertical active
 675 */
 676
 677static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 678{
 679	/* Gen2 doesn't have a hardware frame counter */
 680	return 0;
 681}
 682
 683/* Called from drm generic code, passed a 'crtc', which
 684 * we use as a pipe index
 685 */
 686static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 687{
 688	struct drm_i915_private *dev_priv = dev->dev_private;
 689	i915_reg_t high_frame, low_frame;
 690	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 691	struct intel_crtc *intel_crtc =
 692		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 693	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
 694
 695	htotal = mode->crtc_htotal;
 696	hsync_start = mode->crtc_hsync_start;
 697	vbl_start = mode->crtc_vblank_start;
 698	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 699		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 700
 701	/* Convert to pixel count */
 702	vbl_start *= htotal;
 703
 704	/* Start of vblank event occurs at start of hsync */
 705	vbl_start -= htotal - hsync_start;
 706
 707	high_frame = PIPEFRAME(pipe);
 708	low_frame = PIPEFRAMEPIXEL(pipe);
 709
 710	/*
 711	 * High & low register fields aren't synchronized, so make sure
 712	 * we get a low value that's stable across two reads of the high
 713	 * register.
 714	 */
 715	do {
 716		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 717		low   = I915_READ(low_frame);
 718		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 719	} while (high1 != high2);
 720
 721	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 722	pixel = low & PIPE_PIXEL_MASK;
 723	low >>= PIPE_FRAME_LOW_SHIFT;
 724
 725	/*
 726	 * The frame counter increments at beginning of active.
 727	 * Cook up a vblank counter by also checking the pixel
 728	 * counter against vblank start.
 729	 */
 730	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 731}
 732
 733static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 734{
 735	struct drm_i915_private *dev_priv = dev->dev_private;
 736
 737	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 738}
 739
 740/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 741static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 742{
 743	struct drm_device *dev = crtc->base.dev;
 744	struct drm_i915_private *dev_priv = dev->dev_private;
 745	const struct drm_display_mode *mode = &crtc->base.hwmode;
 746	enum pipe pipe = crtc->pipe;
 747	int position, vtotal;
 748
 749	vtotal = mode->crtc_vtotal;
 750	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 751		vtotal /= 2;
 752
 753	if (IS_GEN2(dev))
 754		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 755	else
 756		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 757
 758	/*
 759	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 760	 * read it just before the start of vblank.  So try it again
 761	 * so we don't accidentally end up spanning a vblank frame
 762	 * increment, causing the pipe_update_end() code to squak at us.
 763	 *
 764	 * The nature of this problem means we can't simply check the ISR
 765	 * bit and return the vblank start value; nor can we use the scanline
 766	 * debug register in the transcoder as it appears to have the same
 767	 * problem.  We may need to extend this to include other platforms,
 768	 * but so far testing only shows the problem on HSW.
 769	 */
 770	if (HAS_DDI(dev) && !position) {
 771		int i, temp;
 772
 773		for (i = 0; i < 100; i++) {
 774			udelay(1);
 775			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
 776				DSL_LINEMASK_GEN3;
 777			if (temp != position) {
 778				position = temp;
 779				break;
 780			}
 781		}
 782	}
 783
 784	/*
 785	 * See update_scanline_offset() for the details on the
 786	 * scanline_offset adjustment.
 787	 */
 788	return (position + crtc->scanline_offset) % vtotal;
 789}
 790
 791static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 792				    unsigned int flags, int *vpos, int *hpos,
 793				    ktime_t *stime, ktime_t *etime,
 794				    const struct drm_display_mode *mode)
 795{
 796	struct drm_i915_private *dev_priv = dev->dev_private;
 797	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 798	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 799	int position;
 800	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 801	bool in_vbl = true;
 802	int ret = 0;
 803	unsigned long irqflags;
 804
 805	if (WARN_ON(!mode->crtc_clock)) {
 806		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 807				 "pipe %c\n", pipe_name(pipe));
 808		return 0;
 809	}
 810
 811	htotal = mode->crtc_htotal;
 812	hsync_start = mode->crtc_hsync_start;
 813	vtotal = mode->crtc_vtotal;
 814	vbl_start = mode->crtc_vblank_start;
 815	vbl_end = mode->crtc_vblank_end;
 816
 817	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 818		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 819		vbl_end /= 2;
 820		vtotal /= 2;
 821	}
 822
 823	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 824
 825	/*
 826	 * Lock uncore.lock, as we will do multiple timing critical raw
 827	 * register reads, potentially with preemption disabled, so the
 828	 * following code must not block on uncore.lock.
 829	 */
 830	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 831
 832	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 833
 834	/* Get optional system timestamp before query. */
 835	if (stime)
 836		*stime = ktime_get();
 837
 838	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 839		/* No obvious pixelcount register. Only query vertical
 840		 * scanout position from Display scan line register.
 841		 */
 842		position = __intel_get_crtc_scanline(intel_crtc);
 
 
 
 
 
 
 843	} else {
 844		/* Have access to pixelcount since start of frame.
 845		 * We can split this into vertical and horizontal
 846		 * scanout position.
 847		 */
 848		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 849
 850		/* convert to pixel counts */
 851		vbl_start *= htotal;
 852		vbl_end *= htotal;
 853		vtotal *= htotal;
 854
 855		/*
 856		 * In interlaced modes, the pixel counter counts all pixels,
 857		 * so one field will have htotal more pixels. In order to avoid
 858		 * the reported position from jumping backwards when the pixel
 859		 * counter is beyond the length of the shorter field, just
 860		 * clamp the position the length of the shorter field. This
 861		 * matches how the scanline counter based position works since
 862		 * the scanline counter doesn't count the two half lines.
 863		 */
 864		if (position >= vtotal)
 865			position = vtotal - 1;
 866
 867		/*
 868		 * Start of vblank interrupt is triggered at start of hsync,
 869		 * just prior to the first active line of vblank. However we
 870		 * consider lines to start at the leading edge of horizontal
 871		 * active. So, should we get here before we've crossed into
 872		 * the horizontal active of the first line in vblank, we would
 873		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 874		 * always add htotal-hsync_start to the current pixel position.
 875		 */
 876		position = (position + htotal - hsync_start) % vtotal;
 877	}
 878
 879	/* Get optional system timestamp after query. */
 880	if (etime)
 881		*etime = ktime_get();
 882
 883	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 884
 885	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 886
 887	in_vbl = position >= vbl_start && position < vbl_end;
 888
 889	/*
 890	 * While in vblank, position will be negative
 891	 * counting up towards 0 at vbl_end. And outside
 892	 * vblank, position will be positive counting
 893	 * up since vbl_end.
 894	 */
 895	if (position >= vbl_start)
 896		position -= vbl_end;
 897	else
 898		position += vtotal - vbl_end;
 899
 900	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 901		*vpos = position;
 902		*hpos = 0;
 903	} else {
 904		*vpos = position / htotal;
 905		*hpos = position - (*vpos * htotal);
 906	}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908	/* In vblank? */
 909	if (in_vbl)
 910		ret |= DRM_SCANOUTPOS_IN_VBLANK;
 911
 912	return ret;
 913}
 914
 915int intel_get_crtc_scanline(struct intel_crtc *crtc)
 916{
 917	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 918	unsigned long irqflags;
 919	int position;
 920
 921	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 922	position = __intel_get_crtc_scanline(crtc);
 923	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 924
 925	return position;
 926}
 927
 928static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
 929			      int *max_error,
 930			      struct timeval *vblank_time,
 931			      unsigned flags)
 932{
 
 933	struct drm_crtc *crtc;
 934
 935	if (pipe >= INTEL_INFO(dev)->num_pipes) {
 936		DRM_ERROR("Invalid crtc %u\n", pipe);
 937		return -EINVAL;
 938	}
 939
 940	/* Get drm_crtc to timestamp: */
 941	crtc = intel_get_crtc_for_pipe(dev, pipe);
 942	if (crtc == NULL) {
 943		DRM_ERROR("Invalid crtc %u\n", pipe);
 944		return -EINVAL;
 945	}
 946
 947	if (!crtc->hwmode.crtc_clock) {
 948		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
 949		return -EBUSY;
 950	}
 951
 952	/* Helper routine in DRM core does all the work: */
 953	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 954						     vblank_time, flags,
 955						     &crtc->hwmode);
 956}
 957
 958static void ironlake_rps_change_irq_handler(struct drm_device *dev)
 
 
 
 959{
 960	struct drm_i915_private *dev_priv = dev->dev_private;
 961	u32 busy_up, busy_down, max_avg, min_avg;
 962	u8 new_delay;
 
 
 
 
 
 963
 964	spin_lock(&mchdev_lock);
 
 
 965
 966	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 967
 968	new_delay = dev_priv->ips.cur_delay;
 
 
 
 
 
 
 
 
 969
 970	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 971	busy_up = I915_READ(RCPREVBSYTUPAVG);
 972	busy_down = I915_READ(RCPREVBSYTDNAVG);
 973	max_avg = I915_READ(RCBMAXAVG);
 974	min_avg = I915_READ(RCBMINAVG);
 975
 976	/* Handle RCS change request from hw */
 977	if (busy_up > max_avg) {
 978		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
 979			new_delay = dev_priv->ips.cur_delay - 1;
 980		if (new_delay < dev_priv->ips.max_delay)
 981			new_delay = dev_priv->ips.max_delay;
 982	} else if (busy_down < min_avg) {
 983		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
 984			new_delay = dev_priv->ips.cur_delay + 1;
 985		if (new_delay > dev_priv->ips.min_delay)
 986			new_delay = dev_priv->ips.min_delay;
 987	}
 988
 989	if (ironlake_set_drps(dev, new_delay))
 990		dev_priv->ips.cur_delay = new_delay;
 991
 992	spin_unlock(&mchdev_lock);
 993
 994	return;
 995}
 996
 997static void notify_ring(struct intel_engine_cs *ring)
 
 998{
 999	if (!intel_ring_initialized(ring))
 
 
1000		return;
1001
1002	trace_i915_gem_request_notify(ring);
1003
1004	wake_up_all(&ring->irq_queue);
1005}
1006
1007static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008			struct intel_rps_ei *ei)
1009{
1010	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013}
1014
1015static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016			 const struct intel_rps_ei *old,
1017			 const struct intel_rps_ei *now,
1018			 int threshold)
1019{
1020	u64 time, c0;
1021	unsigned int mul = 100;
1022
1023	if (old->cz_clock == 0)
1024		return false;
1025
1026	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027		mul <<= 8;
1028
1029	time = now->cz_clock - old->cz_clock;
1030	time *= threshold * dev_priv->czclk_freq;
1031
1032	/* Workload can be split between render + media, e.g. SwapBuffers
1033	 * being blitted in X after being rendered in mesa. To account for
1034	 * this we need to combine both engines into our activity counter.
1035	 */
1036	c0 = now->render_c0 - old->render_c0;
1037	c0 += now->media_c0 - old->media_c0;
1038	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040	return c0 >= time;
1041}
1042
1043void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044{
1045	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047}
1048
1049static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050{
1051	struct intel_rps_ei now;
1052	u32 events = 0;
1053
1054	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055		return 0;
1056
1057	vlv_c0_read(dev_priv, &now);
1058	if (now.cz_clock == 0)
1059		return 0;
1060
1061	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062		if (!vlv_c0_above(dev_priv,
1063				  &dev_priv->rps.down_ei, &now,
1064				  dev_priv->rps.down_threshold))
1065			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066		dev_priv->rps.down_ei = now;
1067	}
1068
1069	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070		if (vlv_c0_above(dev_priv,
1071				 &dev_priv->rps.up_ei, &now,
1072				 dev_priv->rps.up_threshold))
1073			events |= GEN6_PM_RP_UP_THRESHOLD;
1074		dev_priv->rps.up_ei = now;
1075	}
1076
1077	return events;
1078}
1079
1080static bool any_waiters(struct drm_i915_private *dev_priv)
1081{
1082	struct intel_engine_cs *ring;
1083	int i;
1084
1085	for_each_ring(ring, dev_priv, i)
1086		if (ring->irq_refcount)
1087			return true;
1088
1089	return false;
1090}
1091
1092static void gen6_pm_rps_work(struct work_struct *work)
1093{
1094	struct drm_i915_private *dev_priv =
1095		container_of(work, struct drm_i915_private, rps.work);
1096	bool client_boost;
1097	int new_delay, adj, min, max;
1098	u32 pm_iir;
1099
1100	spin_lock_irq(&dev_priv->irq_lock);
1101	/* Speed up work cancelation during disabling rps interrupts. */
1102	if (!dev_priv->rps.interrupts_enabled) {
1103		spin_unlock_irq(&dev_priv->irq_lock);
1104		return;
1105	}
1106
1107	/*
1108	 * The RPS work is synced during runtime suspend, we don't require a
1109	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110	 * always hold an RPM reference while the work is running.
1111	 */
1112	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114	pm_iir = dev_priv->rps.pm_iir;
1115	dev_priv->rps.pm_iir = 0;
1116	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118	client_boost = dev_priv->rps.client_boost;
1119	dev_priv->rps.client_boost = false;
1120	spin_unlock_irq(&dev_priv->irq_lock);
1121
1122	/* Make sure we didn't queue anything we're not going to process. */
1123	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126		goto out;
1127
1128	mutex_lock(&dev_priv->rps.hw_lock);
1129
1130	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132	adj = dev_priv->rps.last_adj;
1133	new_delay = dev_priv->rps.cur_freq;
1134	min = dev_priv->rps.min_freq_softlimit;
1135	max = dev_priv->rps.max_freq_softlimit;
1136
1137	if (client_boost) {
1138		new_delay = dev_priv->rps.max_freq_softlimit;
1139		adj = 0;
1140	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141		if (adj > 0)
1142			adj *= 2;
1143		else /* CHV needs even encode values */
1144			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145		/*
1146		 * For better performance, jump directly
1147		 * to RPe if we're below it.
1148		 */
1149		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150			new_delay = dev_priv->rps.efficient_freq;
1151			adj = 0;
1152		}
1153	} else if (any_waiters(dev_priv)) {
1154		adj = 0;
1155	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157			new_delay = dev_priv->rps.efficient_freq;
1158		else
1159			new_delay = dev_priv->rps.min_freq_softlimit;
1160		adj = 0;
1161	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162		if (adj < 0)
1163			adj *= 2;
1164		else /* CHV needs even encode values */
1165			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166	} else { /* unknown event */
1167		adj = 0;
1168	}
1169
1170	dev_priv->rps.last_adj = adj;
1171
1172	/* sysfs frequency interfaces may have snuck in while servicing the
1173	 * interrupt
1174	 */
1175	new_delay += adj;
1176	new_delay = clamp_t(int, new_delay, min, max);
1177
1178	intel_set_rps(dev_priv->dev, new_delay);
1179
1180	mutex_unlock(&dev_priv->rps.hw_lock);
1181out:
1182	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183}
1184
 
 
1185
1186/**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195static void ivybridge_parity_work(struct work_struct *work)
1196{
1197	struct drm_i915_private *dev_priv =
1198		container_of(work, struct drm_i915_private, l3_parity.error_work);
1199	u32 error_status, row, bank, subbank;
1200	char *parity_event[6];
1201	uint32_t misccpctl;
1202	uint8_t slice = 0;
1203
1204	/* We must turn off DOP level clock gating to access the L3 registers.
1205	 * In order to prevent a get/put style interface, acquire struct mutex
1206	 * any time we access those registers.
1207	 */
1208	mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210	/* If we've screwed up tracking, just let the interrupt fire again */
1211	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212		goto out;
1213
1214	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216	POSTING_READ(GEN7_MISCCPCTL);
1217
1218	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219		i915_reg_t reg;
1220
1221		slice--;
1222		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223			break;
1224
1225		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227		reg = GEN7_L3CDERRST1(slice);
1228
1229		error_status = I915_READ(reg);
1230		row = GEN7_PARITY_ERROR_ROW(error_status);
1231		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235		POSTING_READ(reg);
1236
1237		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242		parity_event[5] = NULL;
1243
1244		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245				   KOBJ_CHANGE, parity_event);
1246
1247		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248			  slice, row, bank, subbank);
1249
1250		kfree(parity_event[4]);
1251		kfree(parity_event[3]);
1252		kfree(parity_event[2]);
1253		kfree(parity_event[1]);
1254	}
1255
1256	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258out:
1259	WARN_ON(dev_priv->l3_parity.which_slice);
1260	spin_lock_irq(&dev_priv->irq_lock);
1261	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262	spin_unlock_irq(&dev_priv->irq_lock);
1263
1264	mutex_unlock(&dev_priv->dev->struct_mutex);
1265}
1266
1267static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268{
1269	struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271	if (!HAS_L3_DPF(dev))
1272		return;
1273
1274	spin_lock(&dev_priv->irq_lock);
1275	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276	spin_unlock(&dev_priv->irq_lock);
1277
1278	iir &= GT_PARITY_ERROR(dev);
1279	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280		dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283		dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286}
1287
1288static void ilk_gt_irq_handler(struct drm_device *dev,
1289			       struct drm_i915_private *dev_priv,
1290			       u32 gt_iir)
1291{
1292	if (gt_iir &
1293	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294		notify_ring(&dev_priv->ring[RCS]);
1295	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296		notify_ring(&dev_priv->ring[VCS]);
1297}
1298
1299static void snb_gt_irq_handler(struct drm_device *dev,
1300			       struct drm_i915_private *dev_priv,
1301			       u32 gt_iir)
1302{
1303
1304	if (gt_iir &
1305	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306		notify_ring(&dev_priv->ring[RCS]);
1307	if (gt_iir & GT_BSD_USER_INTERRUPT)
1308		notify_ring(&dev_priv->ring[VCS]);
1309	if (gt_iir & GT_BLT_USER_INTERRUPT)
1310		notify_ring(&dev_priv->ring[BCS]);
1311
1312	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313		      GT_BSD_CS_ERROR_INTERRUPT |
1314		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317	if (gt_iir & GT_PARITY_ERROR(dev))
1318		ivybridge_parity_error_irq_handler(dev, gt_iir);
1319}
1320
1321static __always_inline void
1322gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323{
1324	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325		notify_ring(ring);
1326	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327		intel_lrc_irq_handler(ring);
1328}
1329
1330static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331				       u32 master_ctl)
1332{
1333	irqreturn_t ret = IRQ_NONE;
1334
1335	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337		if (iir) {
1338			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339			ret = IRQ_HANDLED;
1340
1341			gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342					iir, GEN8_RCS_IRQ_SHIFT);
1343
1344			gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345					iir, GEN8_BCS_IRQ_SHIFT);
1346		} else
1347			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348	}
1349
1350	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352		if (iir) {
1353			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354			ret = IRQ_HANDLED;
1355
1356			gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357					iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359			gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360					iir, GEN8_VCS2_IRQ_SHIFT);
1361		} else
1362			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363	}
1364
1365	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367		if (iir) {
1368			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369			ret = IRQ_HANDLED;
1370
1371			gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372					iir, GEN8_VECS_IRQ_SHIFT);
1373		} else
1374			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375	}
1376
1377	if (master_ctl & GEN8_GT_PM_IRQ) {
1378		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379		if (iir & dev_priv->pm_rps_events) {
1380			I915_WRITE_FW(GEN8_GT_IIR(2),
1381				      iir & dev_priv->pm_rps_events);
1382			ret = IRQ_HANDLED;
1383			gen6_rps_irq_handler(dev_priv, iir);
1384		} else
1385			DRM_ERROR("The master control interrupt lied (PM)!\n");
1386	}
1387
1388	return ret;
1389}
1390
1391static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392{
1393	switch (port) {
1394	case PORT_A:
1395		return val & PORTA_HOTPLUG_LONG_DETECT;
1396	case PORT_B:
1397		return val & PORTB_HOTPLUG_LONG_DETECT;
1398	case PORT_C:
1399		return val & PORTC_HOTPLUG_LONG_DETECT;
1400	default:
1401		return false;
1402	}
1403}
1404
1405static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406{
1407	switch (port) {
1408	case PORT_E:
1409		return val & PORTE_HOTPLUG_LONG_DETECT;
1410	default:
1411		return false;
1412	}
1413}
1414
1415static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416{
1417	switch (port) {
1418	case PORT_A:
1419		return val & PORTA_HOTPLUG_LONG_DETECT;
1420	case PORT_B:
1421		return val & PORTB_HOTPLUG_LONG_DETECT;
1422	case PORT_C:
1423		return val & PORTC_HOTPLUG_LONG_DETECT;
1424	case PORT_D:
1425		return val & PORTD_HOTPLUG_LONG_DETECT;
1426	default:
1427		return false;
1428	}
1429}
1430
1431static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432{
1433	switch (port) {
1434	case PORT_A:
1435		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436	default:
1437		return false;
1438	}
1439}
1440
1441static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442{
1443	switch (port) {
1444	case PORT_B:
1445		return val & PORTB_HOTPLUG_LONG_DETECT;
1446	case PORT_C:
1447		return val & PORTC_HOTPLUG_LONG_DETECT;
1448	case PORT_D:
1449		return val & PORTD_HOTPLUG_LONG_DETECT;
1450	default:
1451		return false;
1452	}
1453}
1454
1455static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456{
1457	switch (port) {
1458	case PORT_B:
1459		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460	case PORT_C:
1461		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462	case PORT_D:
1463		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464	default:
1465		return false;
1466	}
1467}
1468
1469/*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1478			     const u32 hpd[HPD_NUM_PINS],
1479			     bool long_pulse_detect(enum port port, u32 val))
1480{
1481	enum port port;
1482	int i;
1483
1484	for_each_hpd_pin(i) {
1485		if ((hpd[i] & hotplug_trigger) == 0)
1486			continue;
1487
1488		*pin_mask |= BIT(i);
1489
1490		if (!intel_hpd_pin_to_port(i, &port))
1491			continue;
1492
1493		if (long_pulse_detect(port, dig_hotplug_reg))
1494			*long_mask |= BIT(i);
1495	}
1496
1497	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500}
1501
1502static void gmbus_irq_handler(struct drm_device *dev)
1503{
1504	struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506	wake_up_all(&dev_priv->gmbus_wait_queue);
1507}
1508
1509static void dp_aux_irq_handler(struct drm_device *dev)
1510{
1511	struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513	wake_up_all(&dev_priv->gmbus_wait_queue);
1514}
1515
1516#if defined(CONFIG_DEBUG_FS)
1517static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518					 uint32_t crc0, uint32_t crc1,
1519					 uint32_t crc2, uint32_t crc3,
1520					 uint32_t crc4)
1521{
1522	struct drm_i915_private *dev_priv = dev->dev_private;
1523	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524	struct intel_pipe_crc_entry *entry;
1525	int head, tail;
1526
1527	spin_lock(&pipe_crc->lock);
1528
1529	if (!pipe_crc->entries) {
1530		spin_unlock(&pipe_crc->lock);
1531		DRM_DEBUG_KMS("spurious interrupt\n");
1532		return;
1533	}
1534
1535	head = pipe_crc->head;
1536	tail = pipe_crc->tail;
1537
1538	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539		spin_unlock(&pipe_crc->lock);
1540		DRM_ERROR("CRC buffer overflowing\n");
1541		return;
1542	}
1543
1544	entry = &pipe_crc->entries[head];
1545
1546	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547	entry->crc[0] = crc0;
1548	entry->crc[1] = crc1;
1549	entry->crc[2] = crc2;
1550	entry->crc[3] = crc3;
1551	entry->crc[4] = crc4;
1552
1553	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554	pipe_crc->head = head;
1555
1556	spin_unlock(&pipe_crc->lock);
1557
1558	wake_up_interruptible(&pipe_crc->wq);
1559}
1560#else
1561static inline void
1562display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563			     uint32_t crc0, uint32_t crc1,
1564			     uint32_t crc2, uint32_t crc3,
1565			     uint32_t crc4) {}
1566#endif
1567
1568
1569static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570{
1571	struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573	display_pipe_crc_irq_handler(dev, pipe,
1574				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575				     0, 0, 0, 0);
1576}
1577
1578static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579{
1580	struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582	display_pipe_crc_irq_handler(dev, pipe,
1583				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588}
1589
1590static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591{
1592	struct drm_i915_private *dev_priv = dev->dev_private;
1593	uint32_t res1, res2;
1594
1595	if (INTEL_INFO(dev)->gen >= 3)
1596		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597	else
1598		res1 = 0;
1599
1600	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602	else
1603		res2 = 0;
1604
1605	display_pipe_crc_irq_handler(dev, pipe,
1606				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609				     res1, res2);
1610}
1611
1612/* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616{
1617	if (pm_iir & dev_priv->pm_rps_events) {
1618		spin_lock(&dev_priv->irq_lock);
1619		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620		if (dev_priv->rps.interrupts_enabled) {
1621			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622			queue_work(dev_priv->wq, &dev_priv->rps.work);
1623		}
1624		spin_unlock(&dev_priv->irq_lock);
1625	}
1626
1627	if (INTEL_INFO(dev_priv)->gen >= 8)
1628		return;
1629
1630	if (HAS_VEBOX(dev_priv->dev)) {
1631		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632			notify_ring(&dev_priv->ring[VECS]);
1633
1634		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636	}
1637}
1638
1639static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640{
1641	if (!drm_handle_vblank(dev, pipe))
1642		return false;
1643
1644	return true;
1645}
1646
1647static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648{
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	u32 pipe_stats[I915_MAX_PIPES] = { };
1651	int pipe;
1652
1653	spin_lock(&dev_priv->irq_lock);
1654
1655	if (!dev_priv->display_irqs_enabled) {
1656		spin_unlock(&dev_priv->irq_lock);
1657		return;
1658	}
1659
1660	for_each_pipe(dev_priv, pipe) {
1661		i915_reg_t reg;
1662		u32 mask, iir_bit = 0;
1663
1664		/*
1665		 * PIPESTAT bits get signalled even when the interrupt is
1666		 * disabled with the mask bits, and some of the status bits do
1667		 * not generate interrupts at all (like the underrun bit). Hence
1668		 * we need to be careful that we only handle what we want to
1669		 * handle.
1670		 */
1671
1672		/* fifo underruns are filterered in the underrun handler. */
1673		mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675		switch (pipe) {
1676		case PIPE_A:
1677			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678			break;
1679		case PIPE_B:
1680			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681			break;
1682		case PIPE_C:
1683			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684			break;
1685		}
1686		if (iir & iir_bit)
1687			mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689		if (!mask)
1690			continue;
1691
1692		reg = PIPESTAT(pipe);
1693		mask |= PIPESTAT_INT_ENABLE_MASK;
1694		pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696		/*
1697		 * Clear the PIPE*STAT regs before the IIR
1698		 */
1699		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700					PIPESTAT_INT_STATUS_MASK))
1701			I915_WRITE(reg, pipe_stats[pipe]);
1702	}
1703	spin_unlock(&dev_priv->irq_lock);
1704
1705	for_each_pipe(dev_priv, pipe) {
1706		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707		    intel_pipe_handle_vblank(dev, pipe))
1708			intel_check_page_flip(dev, pipe);
1709
1710		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711			intel_prepare_page_flip(dev, pipe);
1712			intel_finish_page_flip(dev, pipe);
1713		}
1714
1715		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716			i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720	}
1721
1722	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723		gmbus_irq_handler(dev);
1724}
1725
1726static void i9xx_hpd_irq_handler(struct drm_device *dev)
 
1727{
1728	struct drm_i915_private *dev_priv = dev->dev_private;
1729	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730	u32 pin_mask = 0, long_mask = 0;
1731
1732	if (!hotplug_status)
1733		return;
1734
1735	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736	/*
1737	 * Make sure hotplug status is cleared before we clear IIR, or else we
1738	 * may miss hotplug events.
 
 
 
 
 
1739	 */
1740	POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
 
 
 
1744
1745		if (hotplug_trigger) {
1746			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747					   hotplug_trigger, hpd_status_g4x,
1748					   i9xx_port_hotplug_long_detect);
1749
1750			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751		}
1752
1753		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754			dp_aux_irq_handler(dev);
1755	} else {
1756		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758		if (hotplug_trigger) {
1759			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760					   hotplug_trigger, hpd_status_i915,
1761					   i9xx_port_hotplug_long_detect);
1762			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763		}
1764	}
1765}
1766
1767static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768{
1769	struct drm_device *dev = arg;
1770	struct drm_i915_private *dev_priv = dev->dev_private;
1771	u32 iir, gt_iir, pm_iir;
1772	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
1773
1774	if (!intel_irqs_enabled(dev_priv))
1775		return IRQ_NONE;
1776
1777	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778	disable_rpm_wakeref_asserts(dev_priv);
1779
1780	while (true) {
1781		/* Find, clear, then process each source of interrupt */
1782
1783		gt_iir = I915_READ(GTIIR);
1784		if (gt_iir)
1785			I915_WRITE(GTIIR, gt_iir);
1786
1787		pm_iir = I915_READ(GEN6_PMIIR);
1788		if (pm_iir)
1789			I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791		iir = I915_READ(VLV_IIR);
1792		if (iir) {
1793			/* Consume port before clearing IIR or we'll miss events */
1794			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795				i9xx_hpd_irq_handler(dev);
1796			I915_WRITE(VLV_IIR, iir);
1797		}
1798
1799		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800			goto out;
1801
1802		ret = IRQ_HANDLED;
1803
1804		if (gt_iir)
1805			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806		if (pm_iir)
1807			gen6_rps_irq_handler(dev_priv, pm_iir);
1808		/* Call regardless, as some status bits might not be
1809		 * signalled in iir */
1810		valleyview_pipestat_irq_handler(dev, iir);
1811	}
1812
1813out:
1814	enable_rpm_wakeref_asserts(dev_priv);
1815
1816	return ret;
1817}
1818
1819static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820{
1821	struct drm_device *dev = arg;
1822	struct drm_i915_private *dev_priv = dev->dev_private;
1823	u32 master_ctl, iir;
1824	irqreturn_t ret = IRQ_NONE;
1825
1826	if (!intel_irqs_enabled(dev_priv))
1827		return IRQ_NONE;
1828
1829	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830	disable_rpm_wakeref_asserts(dev_priv);
1831
1832	do {
1833		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834		iir = I915_READ(VLV_IIR);
1835
1836		if (master_ctl == 0 && iir == 0)
1837			break;
 
 
1838
1839		ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
1840
1841		I915_WRITE(GEN8_MASTER_IRQ, 0);
 
 
1842
1843		/* Find, clear, then process each source of interrupt */
 
 
 
 
1844
1845		if (iir) {
1846			/* Consume port before clearing IIR or we'll miss events */
1847			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848				i9xx_hpd_irq_handler(dev);
1849			I915_WRITE(VLV_IIR, iir);
1850		}
1851
1852		gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854		/* Call regardless, as some status bits might not be
1855		 * signalled in iir */
1856		valleyview_pipestat_irq_handler(dev, iir);
 
 
1857
1858		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859		POSTING_READ(GEN8_MASTER_IRQ);
1860	} while (0);
 
 
1861
1862	enable_rpm_wakeref_asserts(dev_priv);
 
1863
1864	return ret;
1865}
1866
1867static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868				const u32 hpd[HPD_NUM_PINS])
1869{
1870	struct drm_i915_private *dev_priv = to_i915(dev);
1871	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873	/*
1874	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875	 * unless we touch the hotplug register, even if hotplug_trigger is
1876	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877	 * errors.
1878	 */
1879	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880	if (!hotplug_trigger) {
1881		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882			PORTD_HOTPLUG_STATUS_MASK |
1883			PORTC_HOTPLUG_STATUS_MASK |
1884			PORTB_HOTPLUG_STATUS_MASK;
1885		dig_hotplug_reg &= ~mask;
1886	}
1887
1888	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889	if (!hotplug_trigger)
1890		return;
1891
1892	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893			   dig_hotplug_reg, hpd,
1894			   pch_port_hotplug_long_detect);
1895
1896	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897}
1898
1899static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900{
1901	struct drm_i915_private *dev_priv = dev->dev_private;
1902	int pipe;
1903	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909			       SDE_AUDIO_POWER_SHIFT);
1910		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911				 port_name(port));
1912	}
1913
1914	if (pch_iir & SDE_AUX_MASK)
1915		dp_aux_irq_handler(dev);
1916
1917	if (pch_iir & SDE_GMBUS)
1918		gmbus_irq_handler(dev);
1919
1920	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926	if (pch_iir & SDE_POISON)
1927		DRM_ERROR("PCH poison interrupt\n");
1928
1929	if (pch_iir & SDE_FDI_MASK)
1930		for_each_pipe(dev_priv, pipe)
1931			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932					 pipe_name(pipe),
1933					 I915_READ(FDI_RX_IIR(pipe)));
1934
1935	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946}
1947
1948static void ivb_err_int_handler(struct drm_device *dev)
1949{
1950	struct drm_i915_private *dev_priv = dev->dev_private;
1951	u32 err_int = I915_READ(GEN7_ERR_INT);
1952	enum pipe pipe;
1953
1954	if (err_int & ERR_INT_POISON)
1955		DRM_ERROR("Poison interrupt\n");
1956
1957	for_each_pipe(dev_priv, pipe) {
1958		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962			if (IS_IVYBRIDGE(dev))
1963				ivb_pipe_crc_irq_handler(dev, pipe);
1964			else
1965				hsw_pipe_crc_irq_handler(dev, pipe);
1966		}
1967	}
1968
1969	I915_WRITE(GEN7_ERR_INT, err_int);
1970}
1971
1972static void cpt_serr_int_handler(struct drm_device *dev)
1973{
1974	struct drm_i915_private *dev_priv = dev->dev_private;
1975	u32 serr_int = I915_READ(SERR_INT);
1976
1977	if (serr_int & SERR_INT_POISON)
1978		DRM_ERROR("PCH poison interrupt\n");
1979
1980	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989	I915_WRITE(SERR_INT, serr_int);
1990}
1991
1992static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993{
1994	struct drm_i915_private *dev_priv = dev->dev_private;
1995	int pipe;
1996	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002			       SDE_AUDIO_POWER_SHIFT_CPT);
2003		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004				 port_name(port));
2005	}
2006
2007	if (pch_iir & SDE_AUX_MASK_CPT)
2008		dp_aux_irq_handler(dev);
2009
2010	if (pch_iir & SDE_GMBUS_CPT)
2011		gmbus_irq_handler(dev);
2012
2013	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019	if (pch_iir & SDE_FDI_MASK_CPT)
2020		for_each_pipe(dev_priv, pipe)
2021			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022					 pipe_name(pipe),
2023					 I915_READ(FDI_RX_IIR(pipe)));
2024
2025	if (pch_iir & SDE_ERROR_CPT)
2026		cpt_serr_int_handler(dev);
2027}
2028
2029static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030{
2031	struct drm_i915_private *dev_priv = dev->dev_private;
2032	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033		~SDE_PORTE_HOTPLUG_SPT;
2034	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035	u32 pin_mask = 0, long_mask = 0;
2036
2037	if (hotplug_trigger) {
2038		u32 dig_hotplug_reg;
2039
2040		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
 
2042
2043		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044				   dig_hotplug_reg, hpd_spt,
2045				   spt_port_hotplug_long_detect);
 
 
2046	}
2047
2048	if (hotplug2_trigger) {
2049		u32 dig_hotplug_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050
2051		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
 
2053
2054		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055				   dig_hotplug_reg, hpd_spt,
2056				   spt_port_hotplug2_long_detect);
 
 
 
2057	}
2058
2059	if (pin_mask)
2060		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062	if (pch_iir & SDE_GMBUS_CPT)
2063		gmbus_irq_handler(dev);
2064}
2065
2066static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067				const u32 hpd[HPD_NUM_PINS])
 
2068{
2069	struct drm_i915_private *dev_priv = to_i915(dev);
2070	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
 
 
 
2071
2072	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
 
 
 
 
 
2074
2075	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076			   dig_hotplug_reg, hpd,
2077			   ilk_port_hotplug_long_detect);
2078
2079	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080}
 
 
2081
2082static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083{
2084	struct drm_i915_private *dev_priv = dev->dev_private;
2085	enum pipe pipe;
2086	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
 
 
 
 
 
 
 
 
2087
2088	if (hotplug_trigger)
2089		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091	if (de_iir & DE_AUX_CHANNEL_A)
2092		dp_aux_irq_handler(dev);
 
 
2093
2094	if (de_iir & DE_GSE)
2095		intel_opregion_asle_intr(dev);
2096
2097	if (de_iir & DE_POISON)
2098		DRM_ERROR("Poison interrupt\n");
 
 
2099
2100	for_each_pipe(dev_priv, pipe) {
2101		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102		    intel_pipe_handle_vblank(dev, pipe))
2103			intel_check_page_flip(dev, pipe);
2104
2105		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109			i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111		/* plane/pipes map 1:1 on ilk+ */
2112		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113			intel_prepare_page_flip(dev, pipe);
2114			intel_finish_page_flip_plane(dev, pipe);
2115		}
2116	}
2117
 
 
 
 
 
 
2118	/* check event from PCH */
2119	if (de_iir & DE_PCH_EVENT) {
2120		u32 pch_iir = I915_READ(SDEIIR);
2121
2122		if (HAS_PCH_CPT(dev))
2123			cpt_irq_handler(dev, pch_iir);
2124		else
2125			ibx_irq_handler(dev, pch_iir);
2126
2127		/* should clear PCH hotplug event before clear CPU irq */
2128		I915_WRITE(SDEIIR, pch_iir);
2129	}
2130
2131	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132		ironlake_rps_change_irq_handler(dev);
2133}
 
2134
2135static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	enum pipe pipe;
2139	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141	if (hotplug_trigger)
2142		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
 
 
 
2143
2144	if (de_iir & DE_ERR_INT_IVB)
2145		ivb_err_int_handler(dev);
 
2146
2147	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148		dp_aux_irq_handler(dev);
2149
2150	if (de_iir & DE_GSE_IVB)
2151		intel_opregion_asle_intr(dev);
2152
2153	for_each_pipe(dev_priv, pipe) {
2154		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155		    intel_pipe_handle_vblank(dev, pipe))
2156			intel_check_page_flip(dev, pipe);
2157
2158		/* plane/pipes map 1:1 on ilk+ */
2159		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160			intel_prepare_page_flip(dev, pipe);
2161			intel_finish_page_flip_plane(dev, pipe);
2162		}
2163	}
2164
2165	/* check event from PCH */
2166	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167		u32 pch_iir = I915_READ(SDEIIR);
 
 
 
 
 
 
 
 
 
 
 
 
2168
2169		cpt_irq_handler(dev, pch_iir);
2170
2171		/* clear PCH hotplug event before clear CPU irq */
2172		I915_WRITE(SDEIIR, pch_iir);
 
 
 
 
 
 
2173	}
2174}
2175
2176/*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185{
2186	struct drm_device *dev = arg;
2187	struct drm_i915_private *dev_priv = dev->dev_private;
2188	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189	irqreturn_t ret = IRQ_NONE;
2190
2191	if (!intel_irqs_enabled(dev_priv))
2192		return IRQ_NONE;
2193
2194	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195	disable_rpm_wakeref_asserts(dev_priv);
2196
2197	/* disable master interrupt before clearing iir  */
2198	de_ier = I915_READ(DEIER);
2199	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200	POSTING_READ(DEIER);
2201
2202	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2203	 * interrupts will will be stored on its back queue, and then we'll be
2204	 * able to process them after we restore SDEIER (as soon as we restore
2205	 * it, we'll get an interrupt if SDEIIR still has something to process
2206	 * due to its back queue). */
2207	if (!HAS_PCH_NOP(dev)) {
2208		sde_ier = I915_READ(SDEIER);
2209		I915_WRITE(SDEIER, 0);
2210		POSTING_READ(SDEIER);
2211	}
 
 
 
 
 
 
 
 
2212
2213	/* Find, clear, then process each source of interrupt */
 
 
 
 
 
2214
2215	gt_iir = I915_READ(GTIIR);
2216	if (gt_iir) {
2217		I915_WRITE(GTIIR, gt_iir);
2218		ret = IRQ_HANDLED;
2219		if (INTEL_INFO(dev)->gen >= 6)
2220			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221		else
2222			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223	}
2224
2225	de_iir = I915_READ(DEIIR);
2226	if (de_iir) {
2227		I915_WRITE(DEIIR, de_iir);
2228		ret = IRQ_HANDLED;
2229		if (INTEL_INFO(dev)->gen >= 7)
2230			ivb_display_irq_handler(dev, de_iir);
2231		else
2232			ilk_display_irq_handler(dev, de_iir);
2233	}
2234
2235	if (INTEL_INFO(dev)->gen >= 6) {
2236		u32 pm_iir = I915_READ(GEN6_PMIIR);
2237		if (pm_iir) {
2238			I915_WRITE(GEN6_PMIIR, pm_iir);
2239			ret = IRQ_HANDLED;
2240			gen6_rps_irq_handler(dev_priv, pm_iir);
2241		}
2242	}
2243
2244	I915_WRITE(DEIER, de_ier);
2245	POSTING_READ(DEIER);
2246	if (!HAS_PCH_NOP(dev)) {
2247		I915_WRITE(SDEIER, sde_ier);
2248		POSTING_READ(SDEIER);
2249	}
 
 
2250
2251	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252	enable_rpm_wakeref_asserts(dev_priv);
2253
2254	return ret;
 
 
 
 
2255}
2256
2257static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258				const u32 hpd[HPD_NUM_PINS])
2259{
2260	struct drm_i915_private *dev_priv = to_i915(dev);
2261	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267			   dig_hotplug_reg, hpd,
2268			   bxt_port_hotplug_long_detect);
2269
2270	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271}
2272
2273static irqreturn_t
2274gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275{
2276	struct drm_device *dev = dev_priv->dev;
2277	irqreturn_t ret = IRQ_NONE;
2278	u32 iir;
2279	enum pipe pipe;
2280
2281	if (master_ctl & GEN8_DE_MISC_IRQ) {
2282		iir = I915_READ(GEN8_DE_MISC_IIR);
2283		if (iir) {
2284			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285			ret = IRQ_HANDLED;
2286			if (iir & GEN8_DE_MISC_GSE)
2287				intel_opregion_asle_intr(dev);
2288			else
2289				DRM_ERROR("Unexpected DE Misc interrupt\n");
2290		}
2291		else
2292			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2293	}
2294
2295	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296		iir = I915_READ(GEN8_DE_PORT_IIR);
2297		if (iir) {
2298			u32 tmp_mask;
2299			bool found = false;
2300
2301			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302			ret = IRQ_HANDLED;
2303
2304			tmp_mask = GEN8_AUX_CHANNEL_A;
2305			if (INTEL_INFO(dev_priv)->gen >= 9)
2306				tmp_mask |= GEN9_AUX_CHANNEL_B |
2307					    GEN9_AUX_CHANNEL_C |
2308					    GEN9_AUX_CHANNEL_D;
2309
2310			if (iir & tmp_mask) {
2311				dp_aux_irq_handler(dev);
2312				found = true;
2313			}
2314
2315			if (IS_BROXTON(dev_priv)) {
2316				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317				if (tmp_mask) {
2318					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319					found = true;
2320				}
2321			} else if (IS_BROADWELL(dev_priv)) {
2322				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323				if (tmp_mask) {
2324					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325					found = true;
2326				}
2327			}
2328
2329			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330				gmbus_irq_handler(dev);
2331				found = true;
2332			}
2333
2334			if (!found)
2335				DRM_ERROR("Unexpected DE Port interrupt\n");
2336		}
2337		else
2338			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339	}
2340
2341	for_each_pipe(dev_priv, pipe) {
2342		u32 flip_done, fault_errors;
2343
2344		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345			continue;
2346
2347		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348		if (!iir) {
2349			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350			continue;
2351		}
2352
2353		ret = IRQ_HANDLED;
2354		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355
2356		if (iir & GEN8_PIPE_VBLANK &&
2357		    intel_pipe_handle_vblank(dev, pipe))
2358			intel_check_page_flip(dev, pipe);
2359
2360		flip_done = iir;
2361		if (INTEL_INFO(dev_priv)->gen >= 9)
2362			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363		else
2364			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366		if (flip_done) {
2367			intel_prepare_page_flip(dev, pipe);
2368			intel_finish_page_flip_plane(dev, pipe);
2369		}
 
 
2370
2371		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372			hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
2376
2377		fault_errors = iir;
2378		if (INTEL_INFO(dev_priv)->gen >= 9)
2379			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380		else
2381			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383		if (fault_errors)
2384			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385				  pipe_name(pipe),
2386				  fault_errors);
2387	}
2388
2389	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390	    master_ctl & GEN8_DE_PCH_IRQ) {
2391		/*
2392		 * FIXME(BDW): Assume for now that the new interrupt handling
2393		 * scheme also closed the SDE interrupt handling race we've seen
2394		 * on older pch-split platforms. But this needs testing.
2395		 */
2396		iir = I915_READ(SDEIIR);
2397		if (iir) {
2398			I915_WRITE(SDEIIR, iir);
2399			ret = IRQ_HANDLED;
2400
2401			if (HAS_PCH_SPT(dev_priv))
2402				spt_irq_handler(dev, iir);
2403			else
2404				cpt_irq_handler(dev, iir);
2405		} else {
2406			/*
2407			 * Like on previous PCH there seems to be something
2408			 * fishy going on with forwarding PCH interrupts.
2409			 */
2410			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411		}
2412	}
2413
2414	return ret;
2415}
2416
2417static irqreturn_t gen8_irq_handler(int irq, void *arg)
 
 
2418{
2419	struct drm_device *dev = arg;
2420	struct drm_i915_private *dev_priv = dev->dev_private;
2421	u32 master_ctl;
2422	irqreturn_t ret;
2423
2424	if (!intel_irqs_enabled(dev_priv))
2425		return IRQ_NONE;
2426
2427	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429	if (!master_ctl)
2430		return IRQ_NONE;
2431
2432	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435	disable_rpm_wakeref_asserts(dev_priv);
2436
2437	/* Find, clear, then process each source of interrupt */
2438	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442	POSTING_READ_FW(GEN8_MASTER_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
2443
2444	enable_rpm_wakeref_asserts(dev_priv);
 
 
 
 
 
2445
2446	return ret;
 
2447}
2448
2449static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450			       bool reset_completed)
2451{
2452	struct intel_engine_cs *ring;
2453	int i;
 
 
2454
2455	/*
2456	 * Notify all waiters for GPU completion events that reset state has
2457	 * been changed, and that they need to restart their wait after
2458	 * checking for potential errors (and bail out to drop locks if there is
2459	 * a gpu reset pending so that i915_error_work_func can acquire them).
2460	 */
2461
2462	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463	for_each_ring(ring, dev_priv, i)
2464		wake_up_all(&ring->irq_queue);
2465
2466	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467	wake_up_all(&dev_priv->pending_flip_queue);
2468
2469	/*
2470	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471	 * reset state is cleared.
2472	 */
2473	if (reset_completed)
2474		wake_up_all(&dev_priv->gpu_error.reset_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475}
2476
2477/**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
 
 
2483 */
2484static void i915_reset_and_wakeup(struct drm_device *dev)
2485{
2486	struct drm_i915_private *dev_priv = to_i915(dev);
2487	struct i915_gpu_error *error = &dev_priv->gpu_error;
2488	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491	int ret;
2492
2493	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
 
 
 
 
2494
2495	/*
2496	 * Note that there's only one work item which does gpu resets, so we
2497	 * need not worry about concurrent gpu resets potentially incrementing
2498	 * error->reset_counter twice. We only need to take care of another
2499	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500	 * quick check for that is good enough: schedule_work ensures the
2501	 * correct ordering between hang detection and this work item, and since
2502	 * the reset in-progress bit is only ever set by code outside of this
2503	 * work we don't need to worry about any other races.
2504	 */
2505	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506		DRM_DEBUG_DRIVER("resetting chip\n");
2507		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508				   reset_event);
2509
2510		/*
2511		 * In most cases it's guaranteed that we get here with an RPM
2512		 * reference held, for example because there is a pending GPU
2513		 * request that won't finish until the reset is done. This
2514		 * isn't the case at least when we get here by doing a
2515		 * simulated reset via debugs, so get an RPM reference.
2516		 */
2517		intel_runtime_pm_get(dev_priv);
2518
2519		intel_prepare_reset(dev);
 
 
2520
2521		/*
2522		 * All state reset _must_ be completed before we update the
2523		 * reset counter, for otherwise waiters might miss the reset
2524		 * pending state and not properly drop locks, resulting in
2525		 * deadlocks with the reset work.
2526		 */
2527		ret = i915_reset(dev);
 
2528
2529		intel_finish_reset(dev);
 
2530
2531		intel_runtime_pm_put(dev_priv);
 
 
 
2532
2533		if (ret == 0) {
2534			/*
2535			 * After all the gem state is reset, increment the reset
2536			 * counter and wake up everyone waiting for the reset to
2537			 * complete.
2538			 *
2539			 * Since unlock operations are a one-sided barrier only,
2540			 * we need to insert a barrier here to order any seqno
2541			 * updates before
2542			 * the counter increment.
2543			 */
2544			smp_mb__before_atomic();
2545			atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547			kobject_uevent_env(&dev->primary->kdev->kobj,
2548					   KOBJ_CHANGE, reset_done_event);
2549		} else {
2550			atomic_or(I915_WEDGED, &error->reset_counter);
2551		}
2552
2553		/*
2554		 * Note: The wake_up also serves as a memory barrier so that
2555		 * waiters see the update value of the reset counter atomic_t.
2556		 */
2557		i915_error_wake_up(dev_priv, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558	}
 
 
 
 
2559}
2560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561static void i915_report_and_clear_eir(struct drm_device *dev)
2562{
2563	struct drm_i915_private *dev_priv = dev->dev_private;
2564	uint32_t instdone[I915_NUM_INSTDONE_REG];
2565	u32 eir = I915_READ(EIR);
2566	int pipe, i;
2567
2568	if (!eir)
2569		return;
2570
2571	pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573	i915_get_extra_instdone(dev, instdone);
2574
2575	if (IS_G4X(dev)) {
2576		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577			u32 ipeir = I915_READ(IPEIR_I965);
2578
2579			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
 
2584			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585			I915_WRITE(IPEIR_I965, ipeir);
2586			POSTING_READ(IPEIR_I965);
2587		}
2588		if (eir & GM45_ERROR_PAGE_TABLE) {
2589			u32 pgtbl_err = I915_READ(PGTBL_ER);
2590			pr_err("page table error\n");
2591			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592			I915_WRITE(PGTBL_ER, pgtbl_err);
2593			POSTING_READ(PGTBL_ER);
2594		}
2595	}
2596
2597	if (!IS_GEN2(dev)) {
2598		if (eir & I915_ERROR_PAGE_TABLE) {
2599			u32 pgtbl_err = I915_READ(PGTBL_ER);
2600			pr_err("page table error\n");
2601			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602			I915_WRITE(PGTBL_ER, pgtbl_err);
2603			POSTING_READ(PGTBL_ER);
2604		}
2605	}
2606
2607	if (eir & I915_ERROR_MEMORY_REFRESH) {
2608		pr_err("memory refresh error:\n");
2609		for_each_pipe(dev_priv, pipe)
2610			pr_err("pipe %c stat: 0x%08x\n",
2611			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612		/* pipestat has already been acked */
2613	}
2614	if (eir & I915_ERROR_INSTRUCTION) {
2615		pr_err("instruction error\n");
2616		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619		if (INTEL_INFO(dev)->gen < 4) {
2620			u32 ipeir = I915_READ(IPEIR);
2621
2622			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
 
2624			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625			I915_WRITE(IPEIR, ipeir);
2626			POSTING_READ(IPEIR);
2627		} else {
2628			u32 ipeir = I915_READ(IPEIR_I965);
2629
2630			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
 
 
2632			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
 
2633			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634			I915_WRITE(IPEIR_I965, ipeir);
2635			POSTING_READ(IPEIR_I965);
2636		}
2637	}
2638
2639	I915_WRITE(EIR, eir);
2640	POSTING_READ(EIR);
2641	eir = I915_READ(EIR);
2642	if (eir) {
2643		/*
2644		 * some errors might have become stuck,
2645		 * mask them.
2646		 */
2647		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648		I915_WRITE(EMR, I915_READ(EMR) | eir);
2649		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650	}
2651}
2652
2653/**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog.  Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs.  Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663void i915_handle_error(struct drm_device *dev, bool wedged,
2664		       const char *fmt, ...)
2665{
2666	struct drm_i915_private *dev_priv = dev->dev_private;
2667	va_list args;
2668	char error_msg[80];
2669
2670	va_start(args, fmt);
2671	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672	va_end(args);
2673
2674	i915_capture_error_state(dev, wedged, error_msg);
2675	i915_report_and_clear_eir(dev);
2676
2677	if (wedged) {
2678		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679				&dev_priv->gpu_error.reset_counter);
2680
2681		/*
2682		 * Wakeup waiting processes so that the reset function
2683		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684		 * various locks. By bumping the reset counter first, the woken
2685		 * processes will see a reset in progress and back off,
2686		 * releasing their locks and then wait for the reset completion.
2687		 * We must do this for _all_ gpu waiters that might hold locks
2688		 * that the reset work needs to acquire.
2689		 *
2690		 * Note: The wake_up serves as the required memory barrier to
2691		 * ensure that the waiters see the updated value of the reset
2692		 * counter atomic_t.
2693		 */
2694		i915_error_wake_up(dev_priv, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695	}
2696
2697	i915_reset_and_wakeup(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698}
2699
2700/* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
2706	unsigned long irqflags;
2707
 
 
 
2708	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709	if (INTEL_INFO(dev)->gen >= 4)
2710		i915_enable_pipestat(dev_priv, pipe,
2711				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2712	else
2713		i915_enable_pipestat(dev_priv, pipe,
2714				     PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
2715	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717	return 0;
2718}
2719
2720static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721{
2722	struct drm_i915_private *dev_priv = dev->dev_private;
2723	unsigned long irqflags;
2724	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725						     DE_PIPE_VBLANK(pipe);
 
2726
2727	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728	ilk_enable_display_irq(dev_priv, bit);
 
2729	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731	return 0;
2732}
2733
2734static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735{
2736	struct drm_i915_private *dev_priv = dev->dev_private;
2737	unsigned long irqflags;
2738
 
 
 
2739	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740	i915_enable_pipestat(dev_priv, pipe,
2741			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2742	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744	return 0;
2745}
2746
2747static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748{
2749	struct drm_i915_private *dev_priv = dev->dev_private;
2750	unsigned long irqflags;
 
 
 
 
2751
2752	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
 
 
 
 
 
 
 
 
 
2754	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756	return 0;
2757}
2758
2759/* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764	struct drm_i915_private *dev_priv = dev->dev_private;
2765	unsigned long irqflags;
2766
2767	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
 
 
2768	i915_disable_pipestat(dev_priv, pipe,
2769			      PIPE_VBLANK_INTERRUPT_STATUS |
2770			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2771	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772}
2773
2774static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775{
2776	struct drm_i915_private *dev_priv = dev->dev_private;
2777	unsigned long irqflags;
2778	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779						     DE_PIPE_VBLANK(pipe);
2780
2781	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782	ilk_disable_display_irq(dev_priv, bit);
 
2783	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784}
2785
2786static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787{
2788	struct drm_i915_private *dev_priv = dev->dev_private;
2789	unsigned long irqflags;
2790
2791	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792	i915_disable_pipestat(dev_priv, pipe,
2793			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2794	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795}
2796
2797static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798{
2799	struct drm_i915_private *dev_priv = dev->dev_private;
2800	unsigned long irqflags;
 
2801
2802	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805}
2806
2807static bool
2808ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809{
2810	return (list_empty(&ring->request_list) ||
2811		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812}
2813
2814static bool
2815ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816{
2817	if (INTEL_INFO(dev)->gen >= 8) {
2818		return (ipehr >> 23) == 0x1c;
2819	} else {
2820		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822				 MI_SEMAPHORE_REGISTER);
2823	}
2824}
2825
2826static struct intel_engine_cs *
2827semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828{
2829	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830	struct intel_engine_cs *signaller;
2831	int i;
2832
2833	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834		for_each_ring(signaller, dev_priv, i) {
2835			if (ring == signaller)
2836				continue;
2837
2838			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839				return signaller;
2840		}
2841	} else {
2842		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844		for_each_ring(signaller, dev_priv, i) {
2845			if(ring == signaller)
2846				continue;
2847
2848			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849				return signaller;
2850		}
2851	}
2852
2853	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854		  ring->id, ipehr, offset);
2855
2856	return NULL;
2857}
2858
2859static struct intel_engine_cs *
2860semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861{
2862	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863	u32 cmd, ipehr, head;
2864	u64 offset = 0;
2865	int i, backwards;
2866
2867	/*
2868	 * This function does not support execlist mode - any attempt to
2869	 * proceed further into this function will result in a kernel panic
2870	 * when dereferencing ring->buffer, which is not set up in execlist
2871	 * mode.
2872	 *
2873	 * The correct way of doing it would be to derive the currently
2874	 * executing ring buffer from the current context, which is derived
2875	 * from the currently running request. Unfortunately, to get the
2876	 * current request we would have to grab the struct_mutex before doing
2877	 * anything else, which would be ill-advised since some other thread
2878	 * might have grabbed it already and managed to hang itself, causing
2879	 * the hang checker to deadlock.
2880	 *
2881	 * Therefore, this function does not support execlist mode in its
2882	 * current form. Just return NULL and move on.
2883	 */
2884	if (ring->buffer == NULL)
2885		return NULL;
2886
2887	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889		return NULL;
2890
2891	/*
2892	 * HEAD is likely pointing to the dword after the actual command,
2893	 * so scan backwards until we find the MBOX. But limit it to just 3
2894	 * or 4 dwords depending on the semaphore wait command size.
2895	 * Note that we don't care about ACTHD here since that might
2896	 * point at at batch, and semaphores are always emitted into the
2897	 * ringbuffer itself.
2898	 */
2899	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902	for (i = backwards; i; --i) {
2903		/*
2904		 * Be paranoid and presume the hw has gone off into the wild -
2905		 * our ring is smaller than what the hardware (and hence
2906		 * HEAD_ADDR) allows. Also handles wrap-around.
2907		 */
2908		head &= ring->buffer->size - 1;
2909
2910		/* This here seems to blow up */
2911		cmd = ioread32(ring->buffer->virtual_start + head);
2912		if (cmd == ipehr)
2913			break;
2914
2915		head -= 4;
2916	}
2917
2918	if (!i)
2919		return NULL;
2920
2921	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922	if (INTEL_INFO(ring->dev)->gen >= 8) {
2923		offset = ioread32(ring->buffer->virtual_start + head + 12);
2924		offset <<= 32;
2925		offset = ioread32(ring->buffer->virtual_start + head + 8);
2926	}
2927	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928}
2929
2930static int semaphore_passed(struct intel_engine_cs *ring)
2931{
2932	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933	struct intel_engine_cs *signaller;
2934	u32 seqno;
2935
2936	ring->hangcheck.deadlock++;
2937
2938	signaller = semaphore_waits_for(ring, &seqno);
2939	if (signaller == NULL)
2940		return -1;
2941
2942	/* Prevent pathological recursion due to driver bugs */
2943	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944		return -1;
2945
2946	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947		return 1;
2948
2949	/* cursory check for an unkickable deadlock */
2950	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951	    semaphore_passed(signaller) < 0)
2952		return -1;
2953
2954	return 0;
2955}
2956
2957static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958{
2959	struct intel_engine_cs *ring;
2960	int i;
2961
2962	for_each_ring(ring, dev_priv, i)
2963		ring->hangcheck.deadlock = 0;
2964}
2965
2966static bool subunits_stuck(struct intel_engine_cs *ring)
 
2967{
2968	u32 instdone[I915_NUM_INSTDONE_REG];
2969	bool stuck;
2970	int i;
2971
2972	if (ring->id != RCS)
2973		return true;
2974
2975	i915_get_extra_instdone(ring->dev, instdone);
2976
2977	/* There might be unstable subunit states even when
2978	 * actual head is not moving. Filter out the unstable ones by
2979	 * accumulating the undone -> done transitions and only
2980	 * consider those as progress.
2981	 */
2982	stuck = true;
2983	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984		const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986		if (tmp != ring->hangcheck.instdone[i])
2987			stuck = false;
2988
2989		ring->hangcheck.instdone[i] |= tmp;
2990	}
2991
2992	return stuck;
2993}
2994
2995static enum intel_ring_hangcheck_action
2996head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997{
2998	if (acthd != ring->hangcheck.acthd) {
2999
3000		/* Clear subunit states on head movement */
3001		memset(ring->hangcheck.instdone, 0,
3002		       sizeof(ring->hangcheck.instdone));
3003
3004		if (acthd > ring->hangcheck.max_acthd) {
3005			ring->hangcheck.max_acthd = acthd;
3006			return HANGCHECK_ACTIVE;
3007		}
3008
3009		return HANGCHECK_ACTIVE_LOOP;
3010	}
3011
3012	if (!subunits_stuck(ring))
3013		return HANGCHECK_ACTIVE;
3014
3015	return HANGCHECK_HUNG;
3016}
3017
3018static enum intel_ring_hangcheck_action
3019ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020{
3021	struct drm_device *dev = ring->dev;
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	enum intel_ring_hangcheck_action ha;
3024	u32 tmp;
3025
3026	ha = head_stuck(ring, acthd);
3027	if (ha != HANGCHECK_HUNG)
3028		return ha;
3029
3030	if (IS_GEN2(dev))
3031		return HANGCHECK_HUNG;
3032
3033	/* Is the chip hanging on a WAIT_FOR_EVENT?
3034	 * If so we can simply poke the RB_WAIT bit
3035	 * and break the hang. This should work on
3036	 * all but the second generation chipsets.
3037	 */
3038	tmp = I915_READ_CTL(ring);
3039	if (tmp & RING_WAIT) {
3040		i915_handle_error(dev, false,
3041				  "Kicking stuck wait on %s",
3042				  ring->name);
3043		I915_WRITE_CTL(ring, tmp);
3044		return HANGCHECK_KICK;
3045	}
3046
3047	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048		switch (semaphore_passed(ring)) {
3049		default:
3050			return HANGCHECK_HUNG;
3051		case 1:
3052			i915_handle_error(dev, false,
3053					  "Kicking stuck semaphore on %s",
3054					  ring->name);
3055			I915_WRITE_CTL(ring, tmp);
3056			return HANGCHECK_KICK;
3057		case 0:
3058			return HANGCHECK_WAIT;
3059		}
3060	}
3061
3062	return HANGCHECK_HUNG;
3063}
3064
3065/*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073static void i915_hangcheck_elapsed(struct work_struct *work)
3074{
3075	struct drm_i915_private *dev_priv =
3076		container_of(work, typeof(*dev_priv),
3077			     gpu_error.hangcheck_work.work);
3078	struct drm_device *dev = dev_priv->dev;
3079	struct intel_engine_cs *ring;
3080	int i;
3081	int busy_count = 0, rings_hung = 0;
3082	bool stuck[I915_NUM_RINGS] = { 0 };
3083#define BUSY 1
3084#define KICK 5
3085#define HUNG 20
3086
3087	if (!i915.enable_hangcheck)
3088		return;
3089
3090	/*
3091	 * The hangcheck work is synced during runtime suspend, we don't
3092	 * require a wakeref. TODO: instead of disabling the asserts make
3093	 * sure that we hold a reference when this work is running.
3094	 */
3095	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097	/* As enabling the GPU requires fairly extensive mmio access,
3098	 * periodically arm the mmio checker to see if we are triggering
3099	 * any invalid access.
3100	 */
3101	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103	for_each_ring(ring, dev_priv, i) {
3104		u64 acthd;
3105		u32 seqno;
3106		bool busy = true;
3107
3108		semaphore_clear_deadlocks(dev_priv);
3109
3110		seqno = ring->get_seqno(ring, false);
3111		acthd = intel_ring_get_active_head(ring);
3112
3113		if (ring->hangcheck.seqno == seqno) {
3114			if (ring_idle(ring, seqno)) {
3115				ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117				if (waitqueue_active(&ring->irq_queue)) {
3118					/* Issue a wake-up to catch stuck h/w. */
3119					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122								  ring->name);
3123						else
3124							DRM_INFO("Fake missed irq on %s\n",
3125								 ring->name);
3126						wake_up_all(&ring->irq_queue);
3127					}
3128					/* Safeguard against driver failure */
3129					ring->hangcheck.score += BUSY;
3130				} else
3131					busy = false;
3132			} else {
3133				/* We always increment the hangcheck score
3134				 * if the ring is busy and still processing
3135				 * the same request, so that no single request
3136				 * can run indefinitely (such as a chain of
3137				 * batches). The only time we do not increment
3138				 * the hangcheck score on this ring, if this
3139				 * ring is in a legitimate wait for another
3140				 * ring. In that case the waiting ring is a
3141				 * victim and we want to be sure we catch the
3142				 * right culprit. Then every time we do kick
3143				 * the ring, add a small increment to the
3144				 * score so that we can catch a batch that is
3145				 * being repeatedly kicked and so responsible
3146				 * for stalling the machine.
3147				 */
3148				ring->hangcheck.action = ring_stuck(ring,
3149								    acthd);
3150
3151				switch (ring->hangcheck.action) {
3152				case HANGCHECK_IDLE:
3153				case HANGCHECK_WAIT:
3154				case HANGCHECK_ACTIVE:
3155					break;
3156				case HANGCHECK_ACTIVE_LOOP:
3157					ring->hangcheck.score += BUSY;
3158					break;
3159				case HANGCHECK_KICK:
3160					ring->hangcheck.score += KICK;
3161					break;
3162				case HANGCHECK_HUNG:
3163					ring->hangcheck.score += HUNG;
3164					stuck[i] = true;
3165					break;
3166				}
3167			}
3168		} else {
3169			ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171			/* Gradually reduce the count so that we catch DoS
3172			 * attempts across multiple batches.
 
 
3173			 */
3174			if (ring->hangcheck.score > 0)
3175				ring->hangcheck.score--;
3176
3177			/* Clear head and subunit states on seqno movement */
3178			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180			memset(ring->hangcheck.instdone, 0,
3181			       sizeof(ring->hangcheck.instdone));
3182		}
3183
3184		ring->hangcheck.seqno = seqno;
3185		ring->hangcheck.acthd = acthd;
3186		busy_count += busy;
3187	}
3188
3189	for_each_ring(ring, dev_priv, i) {
3190		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191			DRM_INFO("%s on %s\n",
3192				 stuck[i] ? "stuck" : "no progress",
3193				 ring->name);
3194			rings_hung++;
3195		}
3196	}
3197
3198	if (rings_hung) {
3199		i915_handle_error(dev, true, "Ring hung");
3200		goto out;
3201	}
3202
3203	if (busy_count)
3204		/* Reset timer case chip hangs without another request
3205		 * being added */
3206		i915_queue_hangcheck(dev);
3207
3208out:
3209	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210}
3211
3212void i915_queue_hangcheck(struct drm_device *dev)
3213{
3214	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
 
 
 
 
 
 
 
 
 
 
 
3215
3216	if (!i915.enable_hangcheck)
3217		return;
3218
3219	/* Don't continually defer the hangcheck so that it is always run at
3220	 * least once after work has been scheduled on any ring. Otherwise,
3221	 * we will ignore a hung ring if a second ring is kept busy.
3222	 */
 
 
3223
3224	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226}
 
 
3227
3228static void ibx_irq_reset(struct drm_device *dev)
3229{
3230	struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232	if (HAS_PCH_NOP(dev))
3233		return;
 
3234
3235	GEN5_IRQ_RESET(SDE);
3236
3237	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238		I915_WRITE(SERR_INT, 0xffffffff);
3239}
3240
3241/*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250{
3251	struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253	if (HAS_PCH_NOP(dev))
3254		return;
3255
3256	WARN_ON(I915_READ(SDEIER) != 0);
3257	I915_WRITE(SDEIER, 0xffffffff);
3258	POSTING_READ(SDEIER);
3259}
 
 
 
3260
3261static void gen5_gt_irq_reset(struct drm_device *dev)
3262{
3263	struct drm_i915_private *dev_priv = dev->dev_private;
 
3264
3265	GEN5_IRQ_RESET(GT);
3266	if (INTEL_INFO(dev)->gen >= 6)
3267		GEN5_IRQ_RESET(GEN6_PM);
 
3268}
3269
3270/* drm_dma.h hooks
3271*/
3272static void ironlake_irq_reset(struct drm_device *dev)
3273{
3274	struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276	I915_WRITE(HWSTAM, 0xffffffff);
3277
3278	GEN5_IRQ_RESET(DE);
3279	if (IS_GEN7(dev))
3280		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282	gen5_gt_irq_reset(dev);
3283
3284	ibx_irq_reset(dev);
3285}
3286
3287static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288{
3289	enum pipe pipe;
3290
3291	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294	for_each_pipe(dev_priv, pipe)
3295		I915_WRITE(PIPESTAT(pipe), 0xffff);
 
3296
3297	GEN5_IRQ_RESET(VLV_);
 
 
 
 
 
 
 
 
3298}
3299
3300static void valleyview_irq_preinstall(struct drm_device *dev)
3301{
3302	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
3303
3304	/* VLV magic */
3305	I915_WRITE(VLV_IMR, 0);
3306	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310	gen5_gt_irq_reset(dev);
3311
3312	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314	vlv_display_irq_reset(dev_priv);
3315}
3316
3317static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318{
3319	GEN8_IRQ_RESET_NDX(GT, 0);
3320	GEN8_IRQ_RESET_NDX(GT, 1);
3321	GEN8_IRQ_RESET_NDX(GT, 2);
3322	GEN8_IRQ_RESET_NDX(GT, 3);
3323}
3324
3325static void gen8_irq_reset(struct drm_device *dev)
3326{
3327	struct drm_i915_private *dev_priv = dev->dev_private;
3328	int pipe;
3329
3330	I915_WRITE(GEN8_MASTER_IRQ, 0);
3331	POSTING_READ(GEN8_MASTER_IRQ);
3332
3333	gen8_gt_irq_reset(dev_priv);
3334
3335	for_each_pipe(dev_priv, pipe)
3336		if (intel_display_power_is_enabled(dev_priv,
3337						   POWER_DOMAIN_PIPE(pipe)))
3338			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342	GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344	if (HAS_PCH_SPLIT(dev))
3345		ibx_irq_reset(dev);
3346}
3347
3348void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349				     unsigned int pipe_mask)
3350{
3351	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352	enum pipe pipe;
3353
3354	spin_lock_irq(&dev_priv->irq_lock);
3355	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357				  dev_priv->de_irq_mask[pipe],
3358				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363				     unsigned int pipe_mask)
3364{
3365	enum pipe pipe;
3366
3367	spin_lock_irq(&dev_priv->irq_lock);
3368	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370	spin_unlock_irq(&dev_priv->irq_lock);
3371
3372	/* make sure we're done processing display irqs */
3373	synchronize_irq(dev_priv->dev->irq);
 
 
 
 
 
 
3374}
3375
3376static void cherryview_irq_preinstall(struct drm_device *dev)
3377{
3378	struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380	I915_WRITE(GEN8_MASTER_IRQ, 0);
3381	POSTING_READ(GEN8_MASTER_IRQ);
3382
3383	gen8_gt_irq_reset(dev_priv);
3384
3385	GEN5_IRQ_RESET(GEN8_PCU_);
3386
3387	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3388
3389	vlv_display_irq_reset(dev_priv);
3390}
3391
3392static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393				  const u32 hpd[HPD_NUM_PINS])
3394{
3395	struct drm_i915_private *dev_priv = to_i915(dev);
3396	struct intel_encoder *encoder;
3397	u32 enabled_irqs = 0;
3398
3399	for_each_intel_encoder(dev, encoder)
3400		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401			enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403	return enabled_irqs;
3404}
3405
3406static void ibx_hpd_irq_setup(struct drm_device *dev)
3407{
3408	struct drm_i915_private *dev_priv = dev->dev_private;
3409	u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411	if (HAS_PCH_IBX(dev)) {
3412		hotplug_irqs = SDE_HOTPLUG_MASK;
3413		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414	} else {
3415		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417	}
3418
3419	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421	/*
3422	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3423	 * duration to 2ms (which is the minimum in the Display Port spec).
3424	 * The pulse duration bits are reserved on LPT+.
3425	 */
3426	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3431	/*
3432	 * When CPU and PCH are on the same package, port A
3433	 * HPD must be enabled in both north and south.
3434	 */
3435	if (HAS_PCH_LPT_LP(dev))
3436		hotplug |= PORTA_HOTPLUG_ENABLE;
3437	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438}
3439
3440static void spt_hpd_irq_setup(struct drm_device *dev)
3441{
3442	struct drm_i915_private *dev_priv = dev->dev_private;
3443	u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3447
3448	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450	/* Enable digital hotplug on the PCH */
3451	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457	hotplug |= PORTE_HOTPLUG_ENABLE;
3458	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459}
3460
3461static void ilk_hpd_irq_setup(struct drm_device *dev)
3462{
3463	struct drm_i915_private *dev_priv = dev->dev_private;
3464	u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466	if (INTEL_INFO(dev)->gen >= 8) {
3467		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471	} else if (INTEL_INFO(dev)->gen >= 7) {
3472		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476	} else {
3477		hotplug_irqs = DE_DP_A_HOTPLUG;
3478		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3481	}
3482
3483	/*
3484	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3485	 * duration to 2ms (which is the minimum in the Display Port spec)
3486	 * The pulse duration bits are reserved on HSW+.
3487	 */
3488	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3492
3493	ibx_hpd_irq_setup(dev);
3494}
3495
3496static void bxt_hpd_irq_setup(struct drm_device *dev)
3497{
3498	struct drm_i915_private *dev_priv = dev->dev_private;
3499	u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3502	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505
3506	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508		PORTA_HOTPLUG_ENABLE;
3509	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510}
3511
3512static void ibx_irq_postinstall(struct drm_device *dev)
3513{
3514	struct drm_i915_private *dev_priv = dev->dev_private;
3515	u32 mask;
3516
3517	if (HAS_PCH_NOP(dev))
3518		return;
3519
3520	if (HAS_PCH_IBX(dev))
3521		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522	else
3523		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3524
3525	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526	I915_WRITE(SDEIMR, ~mask);
3527}
3528
3529static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530{
3531	struct drm_i915_private *dev_priv = dev->dev_private;
3532	u32 pm_irqs, gt_irqs;
3533
3534	pm_irqs = gt_irqs = 0;
 
 
 
 
3535
3536	dev_priv->gt_irq_mask = ~0;
3537	if (HAS_L3_DPF(dev)) {
3538		/* L3 parity interrupt is always unmasked. */
3539		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540		gt_irqs |= GT_PARITY_ERROR(dev);
3541	}
3542
3543	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544	if (IS_GEN5(dev)) {
3545		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546			   ILK_BSD_USER_INTERRUPT;
3547	} else {
3548		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549	}
3550
3551	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3552
3553	if (INTEL_INFO(dev)->gen >= 6) {
3554		/*
3555		 * RPS interrupts will get enabled/disabled on demand when RPS
3556		 * itself is enabled/disabled.
3557		 */
3558		if (HAS_VEBOX(dev))
3559			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561		dev_priv->pm_irq_mask = 0xffffffff;
3562		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563	}
3564}
3565
3566static int ironlake_irq_postinstall(struct drm_device *dev)
3567{
3568	struct drm_i915_private *dev_priv = dev->dev_private;
3569	u32 display_mask, extra_mask;
3570
3571	if (INTEL_INFO(dev)->gen >= 7) {
3572		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574				DE_PLANEB_FLIP_DONE_IVB |
3575				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3578			      DE_DP_A_HOTPLUG_IVB);
 
 
 
 
 
 
 
 
 
 
3579	} else {
3580		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582				DE_AUX_CHANNEL_A |
3583				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584				DE_POISON);
3585		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3587			      DE_DP_A_HOTPLUG);
3588	}
3589
3590	dev_priv->irq_mask = ~display_mask;
3591
3592	I915_WRITE(HWSTAM, 0xeffe);
3593
3594	ibx_irq_pre_postinstall(dev);
3595
3596	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598	gen5_gt_irq_postinstall(dev);
3599
3600	ibx_irq_postinstall(dev);
3601
3602	if (IS_IRONLAKE_M(dev)) {
3603		/* Enable PCU event interrupts
3604		 *
3605		 * spinlocking not required here for correctness since interrupt
3606		 * setup is guaranteed to run in single-threaded context. But we
3607		 * need it to make the assert_spin_locked happy. */
3608		spin_lock_irq(&dev_priv->irq_lock);
3609		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610		spin_unlock_irq(&dev_priv->irq_lock);
3611	}
3612
3613	return 0;
3614}
3615
3616static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617{
3618	u32 pipestat_mask;
3619	u32 iir_mask;
3620	enum pipe pipe;
3621
3622	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623			PIPE_FIFO_UNDERRUN_STATUS;
3624
3625	for_each_pipe(dev_priv, pipe)
3626		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627	POSTING_READ(PIPESTAT(PIPE_A));
3628
3629	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630			PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633	for_each_pipe(dev_priv, pipe)
3634		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639	if (IS_CHERRYVIEW(dev_priv))
3640		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641	dev_priv->irq_mask &= ~iir_mask;
3642
3643	I915_WRITE(VLV_IIR, iir_mask);
3644	I915_WRITE(VLV_IIR, iir_mask);
3645	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647	POSTING_READ(VLV_IMR);
3648}
3649
3650static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651{
3652	u32 pipestat_mask;
3653	u32 iir_mask;
3654	enum pipe pipe;
3655
3656	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659	if (IS_CHERRYVIEW(dev_priv))
3660		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662	dev_priv->irq_mask |= iir_mask;
3663	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665	I915_WRITE(VLV_IIR, iir_mask);
3666	I915_WRITE(VLV_IIR, iir_mask);
3667	POSTING_READ(VLV_IIR);
3668
3669	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670			PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673	for_each_pipe(dev_priv, pipe)
3674		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677			PIPE_FIFO_UNDERRUN_STATUS;
 
 
 
 
 
 
 
3678
3679	for_each_pipe(dev_priv, pipe)
3680		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681	POSTING_READ(PIPESTAT(PIPE_A));
3682}
3683
3684void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685{
3686	assert_spin_locked(&dev_priv->irq_lock);
3687
3688	if (dev_priv->display_irqs_enabled)
3689		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
3690
3691	dev_priv->display_irqs_enabled = true;
3692
3693	if (intel_irqs_enabled(dev_priv))
3694		valleyview_display_irqs_install(dev_priv);
3695}
3696
3697void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698{
3699	assert_spin_locked(&dev_priv->irq_lock);
3700
3701	if (!dev_priv->display_irqs_enabled)
3702		return;
3703
3704	dev_priv->display_irqs_enabled = false;
3705
3706	if (intel_irqs_enabled(dev_priv))
3707		valleyview_display_irqs_uninstall(dev_priv);
3708}
3709
3710static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711{
3712	dev_priv->irq_mask = ~0;
 
 
 
 
 
 
 
 
 
 
 
 
3713
3714	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715	POSTING_READ(PORT_HOTPLUG_EN);
 
 
 
 
3716
3717	I915_WRITE(VLV_IIR, 0xffffffff);
3718	I915_WRITE(VLV_IIR, 0xffffffff);
3719	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721	POSTING_READ(VLV_IMR);
3722
3723	/* Interrupt setup is already guaranteed to be single-threaded, this is
3724	 * just to make the assert_spin_locked check happy. */
3725	spin_lock_irq(&dev_priv->irq_lock);
3726	if (dev_priv->display_irqs_enabled)
3727		valleyview_display_irqs_install(dev_priv);
3728	spin_unlock_irq(&dev_priv->irq_lock);
3729}
3730
3731static int valleyview_irq_postinstall(struct drm_device *dev)
3732{
3733	struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735	vlv_display_irq_postinstall(dev_priv);
3736
3737	gen5_gt_irq_postinstall(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3738
3739	/* ack & enable invalid PTE error interrupts */
3740#if 0 /* FIXME: add support to irq handler for checking these bits */
3741	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743#endif
3744
3745	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3746
3747	return 0;
3748}
3749
3750static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751{
3752	/* These are interrupts we'll toggle with the ring mask register */
3753	uint32_t gt_interrupts[] = {
3754		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763		0,
3764		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766		};
3767
3768	dev_priv->pm_irq_mask = 0xffffffff;
3769	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771	/*
3772	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3773	 * is enabled/disabled.
3774	 */
3775	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777}
3778
3779static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780{
3781	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782	uint32_t de_pipe_enables;
3783	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784	u32 de_port_enables;
3785	enum pipe pipe;
3786
3787	if (INTEL_INFO(dev_priv)->gen >= 9) {
3788		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3790		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791				  GEN9_AUX_CHANNEL_D;
3792		if (IS_BROXTON(dev_priv))
3793			de_port_masked |= BXT_DE_PORT_GMBUS;
3794	} else {
3795		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797	}
 
3798
3799	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800					   GEN8_PIPE_FIFO_UNDERRUN;
3801
3802	de_port_enables = de_port_masked;
3803	if (IS_BROXTON(dev_priv))
3804		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805	else if (IS_BROADWELL(dev_priv))
3806		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3811
3812	for_each_pipe(dev_priv, pipe)
3813		if (intel_display_power_is_enabled(dev_priv,
3814				POWER_DOMAIN_PIPE(pipe)))
3815			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816					  dev_priv->de_irq_mask[pipe],
3817					  de_pipe_enables);
3818
3819	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820}
3821
3822static int gen8_irq_postinstall(struct drm_device *dev)
3823{
3824	struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826	if (HAS_PCH_SPLIT(dev))
3827		ibx_irq_pre_postinstall(dev);
3828
3829	gen8_gt_irq_postinstall(dev_priv);
3830	gen8_de_irq_postinstall(dev_priv);
3831
3832	if (HAS_PCH_SPLIT(dev))
3833		ibx_irq_postinstall(dev);
3834
3835	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836	POSTING_READ(GEN8_MASTER_IRQ);
3837
3838	return 0;
3839}
3840
3841static int cherryview_irq_postinstall(struct drm_device *dev)
3842{
3843	struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845	vlv_display_irq_postinstall(dev_priv);
3846
3847	gen8_gt_irq_postinstall(dev_priv);
3848
3849	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850	POSTING_READ(GEN8_MASTER_IRQ);
3851
3852	return 0;
3853}
3854
3855static void gen8_irq_uninstall(struct drm_device *dev)
3856{
3857	struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859	if (!dev_priv)
3860		return;
3861
3862	gen8_irq_reset(dev);
3863}
3864
3865static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866{
3867	/* Interrupt setup is already guaranteed to be single-threaded, this is
3868	 * just to make the assert_spin_locked check happy. */
3869	spin_lock_irq(&dev_priv->irq_lock);
3870	if (dev_priv->display_irqs_enabled)
3871		valleyview_display_irqs_uninstall(dev_priv);
3872	spin_unlock_irq(&dev_priv->irq_lock);
3873
3874	vlv_display_irq_reset(dev_priv);
3875
3876	dev_priv->irq_mask = ~0;
3877}
3878
3879static void valleyview_irq_uninstall(struct drm_device *dev)
3880{
3881	struct drm_i915_private *dev_priv = dev->dev_private;
 
3882
3883	if (!dev_priv)
3884		return;
3885
3886	I915_WRITE(VLV_MASTER_IER, 0);
3887
3888	gen5_gt_irq_reset(dev);
3889
3890	I915_WRITE(HWSTAM, 0xffffffff);
3891
3892	vlv_display_irq_uninstall(dev_priv);
3893}
3894
3895static void cherryview_irq_uninstall(struct drm_device *dev)
3896{
3897	struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899	if (!dev_priv)
3900		return;
3901
3902	I915_WRITE(GEN8_MASTER_IRQ, 0);
3903	POSTING_READ(GEN8_MASTER_IRQ);
3904
3905	gen8_gt_irq_reset(dev_priv);
3906
3907	GEN5_IRQ_RESET(GEN8_PCU_);
3908
3909	vlv_display_irq_uninstall(dev_priv);
3910}
3911
3912static void ironlake_irq_uninstall(struct drm_device *dev)
3913{
3914	struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916	if (!dev_priv)
3917		return;
3918
3919	ironlake_irq_reset(dev);
 
 
 
 
 
 
 
 
 
 
 
 
3920}
3921
3922static void i8xx_irq_preinstall(struct drm_device * dev)
3923{
3924	struct drm_i915_private *dev_priv = dev->dev_private;
3925	int pipe;
3926
3927	for_each_pipe(dev_priv, pipe)
 
 
3928		I915_WRITE(PIPESTAT(pipe), 0);
3929	I915_WRITE16(IMR, 0xffff);
3930	I915_WRITE16(IER, 0x0);
3931	POSTING_READ16(IER);
3932}
3933
3934static int i8xx_irq_postinstall(struct drm_device *dev)
3935{
3936	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
3937
3938	I915_WRITE16(EMR,
3939		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3940
3941	/* Unmask the interrupts that we always want on. */
3942	dev_priv->irq_mask =
3943		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
 
3947	I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949	I915_WRITE16(IER,
3950		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
3952		     I915_USER_INTERRUPT);
3953	POSTING_READ16(IER);
3954
3955	/* Interrupt setup is already guaranteed to be single-threaded, this is
3956	 * just to make the assert_spin_locked check happy. */
3957	spin_lock_irq(&dev_priv->irq_lock);
3958	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960	spin_unlock_irq(&dev_priv->irq_lock);
3961
3962	return 0;
3963}
3964
3965/*
3966 * Returns true when a page flip has completed.
3967 */
3968static bool i8xx_handle_vblank(struct drm_device *dev,
3969			       int plane, int pipe, u32 iir)
3970{
3971	struct drm_i915_private *dev_priv = dev->dev_private;
3972	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974	if (!intel_pipe_handle_vblank(dev, pipe))
3975		return false;
3976
3977	if ((iir & flip_pending) == 0)
3978		goto check_page_flip;
3979
3980	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3981	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983	 * the flip is completed (no longer pending). Since this doesn't raise
3984	 * an interrupt per se, we watch for the change at vblank.
3985	 */
3986	if (I915_READ16(ISR) & flip_pending)
3987		goto check_page_flip;
3988
3989	intel_prepare_page_flip(dev, plane);
3990	intel_finish_page_flip(dev, pipe);
3991	return true;
3992
3993check_page_flip:
3994	intel_check_page_flip(dev, pipe);
3995	return false;
3996}
3997
3998static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999{
4000	struct drm_device *dev = arg;
4001	struct drm_i915_private *dev_priv = dev->dev_private;
4002	u16 iir, new_iir;
4003	u32 pipe_stats[2];
 
 
4004	int pipe;
4005	u16 flip_mask =
4006		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008	irqreturn_t ret;
4009
4010	if (!intel_irqs_enabled(dev_priv))
4011		return IRQ_NONE;
4012
4013	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014	disable_rpm_wakeref_asserts(dev_priv);
4015
4016	ret = IRQ_NONE;
4017	iir = I915_READ16(IIR);
4018	if (iir == 0)
4019		goto out;
4020
4021	while (iir & ~flip_mask) {
4022		/* Can't rely on pipestat interrupt bit in iir as it might
4023		 * have been cleared after the pipestat interrupt was received.
4024		 * It doesn't set the bit in iir again, but it still produces
4025		 * interrupts (for non-MSI).
4026		 */
4027		spin_lock(&dev_priv->irq_lock);
4028		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031		for_each_pipe(dev_priv, pipe) {
4032			i915_reg_t reg = PIPESTAT(pipe);
4033			pipe_stats[pipe] = I915_READ(reg);
4034
4035			/*
4036			 * Clear the PIPE*STAT regs before the IIR
4037			 */
4038			if (pipe_stats[pipe] & 0x8000ffff)
 
 
 
4039				I915_WRITE(reg, pipe_stats[pipe]);
 
 
4040		}
4041		spin_unlock(&dev_priv->irq_lock);
4042
4043		I915_WRITE16(IIR, iir & ~flip_mask);
4044		new_iir = I915_READ16(IIR); /* Flush posted writes */
4045
4046		if (iir & I915_USER_INTERRUPT)
4047			notify_ring(&dev_priv->ring[RCS]);
4048
4049		for_each_pipe(dev_priv, pipe) {
4050			int plane = pipe;
4051			if (HAS_FBC(dev))
4052				plane = !plane;
4053
4054			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055			    i8xx_handle_vblank(dev, plane, pipe, iir))
4056				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059				i9xx_pipe_crc_irq_handler(dev, pipe);
 
 
 
 
 
 
4060
4061			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063								    pipe);
 
 
 
 
4064		}
4065
4066		iir = new_iir;
4067	}
4068	ret = IRQ_HANDLED;
4069
4070out:
4071	enable_rpm_wakeref_asserts(dev_priv);
4072
4073	return ret;
4074}
4075
4076static void i8xx_irq_uninstall(struct drm_device * dev)
4077{
4078	struct drm_i915_private *dev_priv = dev->dev_private;
4079	int pipe;
4080
4081	for_each_pipe(dev_priv, pipe) {
4082		/* Clear enable bits; then clear status bits */
4083		I915_WRITE(PIPESTAT(pipe), 0);
4084		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085	}
4086	I915_WRITE16(IMR, 0xffff);
4087	I915_WRITE16(IER, 0x0);
4088	I915_WRITE16(IIR, I915_READ16(IIR));
4089}
4090
4091static void i915_irq_preinstall(struct drm_device * dev)
4092{
4093	struct drm_i915_private *dev_priv = dev->dev_private;
4094	int pipe;
4095
 
 
4096	if (I915_HAS_HOTPLUG(dev)) {
4097		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099	}
4100
4101	I915_WRITE16(HWSTAM, 0xeffe);
4102	for_each_pipe(dev_priv, pipe)
4103		I915_WRITE(PIPESTAT(pipe), 0);
4104	I915_WRITE(IMR, 0xffffffff);
4105	I915_WRITE(IER, 0x0);
4106	POSTING_READ(IER);
4107}
4108
4109static int i915_irq_postinstall(struct drm_device *dev)
4110{
4111	struct drm_i915_private *dev_priv = dev->dev_private;
4112	u32 enable_mask;
4113
 
 
 
4114	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4115
4116	/* Unmask the interrupts that we always want on. */
4117	dev_priv->irq_mask =
4118		~(I915_ASLE_INTERRUPT |
4119		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
 
4123
4124	enable_mask =
4125		I915_ASLE_INTERRUPT |
4126		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
4128		I915_USER_INTERRUPT;
4129
4130	if (I915_HAS_HOTPLUG(dev)) {
4131		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132		POSTING_READ(PORT_HOTPLUG_EN);
4133
4134		/* Enable in IER... */
4135		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136		/* and unmask in IMR */
4137		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138	}
4139
4140	I915_WRITE(IMR, dev_priv->irq_mask);
4141	I915_WRITE(IER, enable_mask);
4142	POSTING_READ(IER);
4143
4144	i915_enable_asle_pipestat(dev);
4145
4146	/* Interrupt setup is already guaranteed to be single-threaded, this is
4147	 * just to make the assert_spin_locked check happy. */
4148	spin_lock_irq(&dev_priv->irq_lock);
4149	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151	spin_unlock_irq(&dev_priv->irq_lock);
4152
4153	return 0;
4154}
4155
4156/*
4157 * Returns true when a page flip has completed.
4158 */
4159static bool i915_handle_vblank(struct drm_device *dev,
4160			       int plane, int pipe, u32 iir)
4161{
4162	struct drm_i915_private *dev_priv = dev->dev_private;
4163	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165	if (!intel_pipe_handle_vblank(dev, pipe))
4166		return false;
 
 
 
 
 
 
 
 
 
 
 
 
4167
4168	if ((iir & flip_pending) == 0)
4169		goto check_page_flip;
4170
4171	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4172	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174	 * the flip is completed (no longer pending). Since this doesn't raise
4175	 * an interrupt per se, we watch for the change at vblank.
4176	 */
4177	if (I915_READ(ISR) & flip_pending)
4178		goto check_page_flip;
4179
4180	intel_prepare_page_flip(dev, plane);
4181	intel_finish_page_flip(dev, pipe);
4182	return true;
4183
4184check_page_flip:
4185	intel_check_page_flip(dev, pipe);
4186	return false;
4187}
4188
4189static irqreturn_t i915_irq_handler(int irq, void *arg)
4190{
4191	struct drm_device *dev = arg;
4192	struct drm_i915_private *dev_priv = dev->dev_private;
4193	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
 
4194	u32 flip_mask =
4195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
 
 
 
 
4197	int pipe, ret = IRQ_NONE;
4198
4199	if (!intel_irqs_enabled(dev_priv))
4200		return IRQ_NONE;
4201
4202	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203	disable_rpm_wakeref_asserts(dev_priv);
4204
4205	iir = I915_READ(IIR);
4206	do {
4207		bool irq_received = (iir & ~flip_mask) != 0;
4208		bool blc_event = false;
4209
4210		/* Can't rely on pipestat interrupt bit in iir as it might
4211		 * have been cleared after the pipestat interrupt was received.
4212		 * It doesn't set the bit in iir again, but it still produces
4213		 * interrupts (for non-MSI).
4214		 */
4215		spin_lock(&dev_priv->irq_lock);
4216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219		for_each_pipe(dev_priv, pipe) {
4220			i915_reg_t reg = PIPESTAT(pipe);
4221			pipe_stats[pipe] = I915_READ(reg);
4222
4223			/* Clear the PIPE*STAT regs before the IIR */
4224			if (pipe_stats[pipe] & 0x8000ffff) {
 
 
 
4225				I915_WRITE(reg, pipe_stats[pipe]);
4226				irq_received = true;
4227			}
4228		}
4229		spin_unlock(&dev_priv->irq_lock);
4230
4231		if (!irq_received)
4232			break;
4233
4234		/* Consume port.  Then clear IIR or we'll miss events */
4235		if (I915_HAS_HOTPLUG(dev) &&
4236		    iir & I915_DISPLAY_PORT_INTERRUPT)
4237			i9xx_hpd_irq_handler(dev);
 
 
 
 
 
 
 
 
 
 
4238
4239		I915_WRITE(IIR, iir & ~flip_mask);
4240		new_iir = I915_READ(IIR); /* Flush posted writes */
4241
4242		if (iir & I915_USER_INTERRUPT)
4243			notify_ring(&dev_priv->ring[RCS]);
4244
4245		for_each_pipe(dev_priv, pipe) {
4246			int plane = pipe;
4247			if (HAS_FBC(dev))
4248				plane = !plane;
4249
4250			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251			    i915_handle_vblank(dev, plane, pipe, iir))
4252				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
 
 
 
 
 
4253
4254			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255				blc_event = true;
4256
4257			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258				i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262								    pipe);
4263		}
4264
4265		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266			intel_opregion_asle_intr(dev);
4267
4268		/* With MSI, interrupts are only generated when iir
4269		 * transitions from zero to nonzero.  If another bit got
4270		 * set while we were handling the existing iir bits, then
4271		 * we would never get another interrupt.
4272		 *
4273		 * This is fine on non-MSI as well, as if we hit this path
4274		 * we avoid exiting the interrupt handler only to generate
4275		 * another one.
4276		 *
4277		 * Note that for MSI this could cause a stray interrupt report
4278		 * if an interrupt landed in the time between writing IIR and
4279		 * the posting read.  This should be rare enough to never
4280		 * trigger the 99% of 100,000 interrupts test for disabling
4281		 * stray interrupts.
4282		 */
4283		ret = IRQ_HANDLED;
4284		iir = new_iir;
4285	} while (iir & ~flip_mask);
4286
4287	enable_rpm_wakeref_asserts(dev_priv);
4288
4289	return ret;
4290}
4291
4292static void i915_irq_uninstall(struct drm_device * dev)
4293{
4294	struct drm_i915_private *dev_priv = dev->dev_private;
4295	int pipe;
4296
4297	if (I915_HAS_HOTPLUG(dev)) {
4298		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300	}
4301
4302	I915_WRITE16(HWSTAM, 0xffff);
4303	for_each_pipe(dev_priv, pipe) {
4304		/* Clear enable bits; then clear status bits */
4305		I915_WRITE(PIPESTAT(pipe), 0);
4306		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307	}
4308	I915_WRITE(IMR, 0xffffffff);
4309	I915_WRITE(IER, 0x0);
4310
4311	I915_WRITE(IIR, I915_READ(IIR));
4312}
4313
4314static void i965_irq_preinstall(struct drm_device * dev)
4315{
4316	struct drm_i915_private *dev_priv = dev->dev_private;
4317	int pipe;
4318
4319	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
4321
4322	I915_WRITE(HWSTAM, 0xeffe);
4323	for_each_pipe(dev_priv, pipe)
4324		I915_WRITE(PIPESTAT(pipe), 0);
4325	I915_WRITE(IMR, 0xffffffff);
4326	I915_WRITE(IER, 0x0);
4327	POSTING_READ(IER);
4328}
4329
4330static int i965_irq_postinstall(struct drm_device *dev)
4331{
4332	struct drm_i915_private *dev_priv = dev->dev_private;
4333	u32 enable_mask;
4334	u32 error_mask;
4335
4336	/* Unmask the interrupts that we always want on. */
4337	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338			       I915_DISPLAY_PORT_INTERRUPT |
4339			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345	enable_mask = ~dev_priv->irq_mask;
4346	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348	enable_mask |= I915_USER_INTERRUPT;
4349
4350	if (IS_G4X(dev))
4351		enable_mask |= I915_BSD_USER_INTERRUPT;
4352
4353	/* Interrupt setup is already guaranteed to be single-threaded, this is
4354	 * just to make the assert_spin_locked check happy. */
4355	spin_lock_irq(&dev_priv->irq_lock);
4356	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359	spin_unlock_irq(&dev_priv->irq_lock);
 
 
4360
4361	/*
4362	 * Enable some error detection, note the instruction error mask
4363	 * bit is reserved, so we leave it masked.
4364	 */
4365	if (IS_G4X(dev)) {
4366		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367			       GM45_ERROR_MEM_PRIV |
4368			       GM45_ERROR_CP_PRIV |
4369			       I915_ERROR_MEMORY_REFRESH);
4370	} else {
4371		error_mask = ~(I915_ERROR_PAGE_TABLE |
4372			       I915_ERROR_MEMORY_REFRESH);
4373	}
4374	I915_WRITE(EMR, error_mask);
4375
4376	I915_WRITE(IMR, dev_priv->irq_mask);
4377	I915_WRITE(IER, enable_mask);
4378	POSTING_READ(IER);
4379
4380	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381	POSTING_READ(PORT_HOTPLUG_EN);
4382
4383	i915_enable_asle_pipestat(dev);
4384
4385	return 0;
4386}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4387
4388static void i915_hpd_irq_setup(struct drm_device *dev)
4389{
4390	struct drm_i915_private *dev_priv = dev->dev_private;
4391	u32 hotplug_en;
4392
4393	assert_spin_locked(&dev_priv->irq_lock);
 
4394
4395	/* Note HDMI and DP share hotplug bits */
4396	/* enable bits are the same for all generations */
4397	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398	/* Programming the CRT detection parameters tends
4399	   to generate a spurious hotplug event about three
4400	   seconds later.  So just do it once.
4401	*/
4402	if (IS_G4X(dev))
4403		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406	/* Ignore TV since it's buggy */
4407	i915_hotplug_interrupt_update_locked(dev_priv,
4408					     HOTPLUG_INT_EN_MASK |
4409					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411					     hotplug_en);
4412}
4413
4414static irqreturn_t i965_irq_handler(int irq, void *arg)
4415{
4416	struct drm_device *dev = arg;
4417	struct drm_i915_private *dev_priv = dev->dev_private;
4418	u32 iir, new_iir;
4419	u32 pipe_stats[I915_MAX_PIPES];
 
 
4420	int ret = IRQ_NONE, pipe;
4421	u32 flip_mask =
4422		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425	if (!intel_irqs_enabled(dev_priv))
4426		return IRQ_NONE;
4427
4428	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429	disable_rpm_wakeref_asserts(dev_priv);
4430
4431	iir = I915_READ(IIR);
4432
4433	for (;;) {
4434		bool irq_received = (iir & ~flip_mask) != 0;
4435		bool blc_event = false;
4436
 
 
4437		/* Can't rely on pipestat interrupt bit in iir as it might
4438		 * have been cleared after the pipestat interrupt was received.
4439		 * It doesn't set the bit in iir again, but it still produces
4440		 * interrupts (for non-MSI).
4441		 */
4442		spin_lock(&dev_priv->irq_lock);
4443		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446		for_each_pipe(dev_priv, pipe) {
4447			i915_reg_t reg = PIPESTAT(pipe);
4448			pipe_stats[pipe] = I915_READ(reg);
4449
4450			/*
4451			 * Clear the PIPE*STAT regs before the IIR
4452			 */
4453			if (pipe_stats[pipe] & 0x8000ffff) {
 
 
 
4454				I915_WRITE(reg, pipe_stats[pipe]);
4455				irq_received = true;
4456			}
4457		}
4458		spin_unlock(&dev_priv->irq_lock);
4459
4460		if (!irq_received)
4461			break;
4462
4463		ret = IRQ_HANDLED;
4464
4465		/* Consume port.  Then clear IIR or we'll miss events */
4466		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467			i9xx_hpd_irq_handler(dev);
 
4468
4469		I915_WRITE(IIR, iir & ~flip_mask);
 
 
 
 
 
 
 
 
 
 
4470		new_iir = I915_READ(IIR); /* Flush posted writes */
4471
4472		if (iir & I915_USER_INTERRUPT)
4473			notify_ring(&dev_priv->ring[RCS]);
4474		if (iir & I915_BSD_USER_INTERRUPT)
4475			notify_ring(&dev_priv->ring[VCS]);
4476
4477		for_each_pipe(dev_priv, pipe) {
 
 
 
 
 
 
4478			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479			    i915_handle_vblank(dev, pipe, pipe, iir))
4480				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
 
 
4481
4482			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483				blc_event = true;
4484
4485			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486				i9xx_pipe_crc_irq_handler(dev, pipe);
4487
4488			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490		}
4491
 
4492		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493			intel_opregion_asle_intr(dev);
4494
4495		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496			gmbus_irq_handler(dev);
4497
4498		/* With MSI, interrupts are only generated when iir
4499		 * transitions from zero to nonzero.  If another bit got
4500		 * set while we were handling the existing iir bits, then
4501		 * we would never get another interrupt.
4502		 *
4503		 * This is fine on non-MSI as well, as if we hit this path
4504		 * we avoid exiting the interrupt handler only to generate
4505		 * another one.
4506		 *
4507		 * Note that for MSI this could cause a stray interrupt report
4508		 * if an interrupt landed in the time between writing IIR and
4509		 * the posting read.  This should be rare enough to never
4510		 * trigger the 99% of 100,000 interrupts test for disabling
4511		 * stray interrupts.
4512		 */
4513		iir = new_iir;
4514	}
4515
4516	enable_rpm_wakeref_asserts(dev_priv);
4517
4518	return ret;
4519}
4520
4521static void i965_irq_uninstall(struct drm_device * dev)
4522{
4523	struct drm_i915_private *dev_priv = dev->dev_private;
4524	int pipe;
4525
4526	if (!dev_priv)
4527		return;
4528
4529	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
4531
4532	I915_WRITE(HWSTAM, 0xffffffff);
4533	for_each_pipe(dev_priv, pipe)
4534		I915_WRITE(PIPESTAT(pipe), 0);
4535	I915_WRITE(IMR, 0xffffffff);
4536	I915_WRITE(IER, 0x0);
4537
4538	for_each_pipe(dev_priv, pipe)
4539		I915_WRITE(PIPESTAT(pipe),
4540			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541	I915_WRITE(IIR, I915_READ(IIR));
4542}
4543
4544/**
4545 * intel_irq_init - initializes irq support
4546 * @dev_priv: i915 device instance
4547 *
4548 * This function initializes all the irq support including work items, timers
4549 * and all the vtables. It does not setup the interrupt itself though.
4550 */
4551void intel_irq_init(struct drm_i915_private *dev_priv)
4552{
4553	struct drm_device *dev = dev_priv->dev;
4554
4555	intel_hpd_init_work(dev_priv);
4556
4557	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4558	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4559
4560	/* Let's track the enabled rps events */
4561	if (IS_VALLEYVIEW(dev_priv))
4562		/* WaGsvRC0ResidencyMethod:vlv */
4563		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564	else
4565		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4566
4567	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568			  i915_hangcheck_elapsed);
4569
4570	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
 
 
4571
4572	if (IS_GEN2(dev_priv)) {
4573		dev->max_vblank_count = 0;
4574		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4578	} else {
4579		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4581	}
4582
4583	/*
4584	 * Opt out of the vblank disable timer on everything except gen2.
4585	 * Gen2 doesn't have a hardware frame counter and so depends on
4586	 * vblank interrupts to produce sane vblank seuquence numbers.
4587	 */
4588	if (!IS_GEN2(dev_priv))
4589		dev->vblank_disable_immediate = true;
4590
4591	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4593
4594	if (IS_CHERRYVIEW(dev_priv)) {
4595		dev->driver->irq_handler = cherryview_irq_handler;
4596		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599		dev->driver->enable_vblank = valleyview_enable_vblank;
4600		dev->driver->disable_vblank = valleyview_disable_vblank;
4601		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602	} else if (IS_VALLEYVIEW(dev_priv)) {
4603		dev->driver->irq_handler = valleyview_irq_handler;
4604		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607		dev->driver->enable_vblank = valleyview_enable_vblank;
4608		dev->driver->disable_vblank = valleyview_disable_vblank;
4609		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611		dev->driver->irq_handler = gen8_irq_handler;
4612		dev->driver->irq_preinstall = gen8_irq_reset;
4613		dev->driver->irq_postinstall = gen8_irq_postinstall;
4614		dev->driver->irq_uninstall = gen8_irq_uninstall;
4615		dev->driver->enable_vblank = gen8_enable_vblank;
4616		dev->driver->disable_vblank = gen8_disable_vblank;
4617		if (IS_BROXTON(dev))
4618			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619		else if (HAS_PCH_SPT(dev))
4620			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621		else
4622			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
 
 
4623	} else if (HAS_PCH_SPLIT(dev)) {
4624		dev->driver->irq_handler = ironlake_irq_handler;
4625		dev->driver->irq_preinstall = ironlake_irq_reset;
4626		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628		dev->driver->enable_vblank = ironlake_enable_vblank;
4629		dev->driver->disable_vblank = ironlake_disable_vblank;
4630		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4631	} else {
4632		if (INTEL_INFO(dev_priv)->gen == 2) {
4633			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635			dev->driver->irq_handler = i8xx_irq_handler;
4636			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4638			dev->driver->irq_preinstall = i915_irq_preinstall;
4639			dev->driver->irq_postinstall = i915_irq_postinstall;
4640			dev->driver->irq_uninstall = i915_irq_uninstall;
4641			dev->driver->irq_handler = i915_irq_handler;
4642		} else {
4643			dev->driver->irq_preinstall = i965_irq_preinstall;
4644			dev->driver->irq_postinstall = i965_irq_postinstall;
4645			dev->driver->irq_uninstall = i965_irq_uninstall;
4646			dev->driver->irq_handler = i965_irq_handler;
4647		}
4648		if (I915_HAS_HOTPLUG(dev_priv))
4649			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650		dev->driver->enable_vblank = i915_enable_vblank;
4651		dev->driver->disable_vblank = i915_disable_vblank;
4652	}
4653}
4654
4655/**
4656 * intel_irq_install - enables the hardware interrupt
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function enables the hardware interrupt handling, but leaves the hotplug
4660 * handling still disabled. It is called after intel_irq_init().
4661 *
4662 * In the driver load and resume code we need working interrupts in a few places
4663 * but don't want to deal with the hassle of concurrent probe and hotplug
4664 * workers. Hence the split into this two-stage approach.
4665 */
4666int intel_irq_install(struct drm_i915_private *dev_priv)
4667{
4668	/*
4669	 * We enable some interrupt sources in our postinstall hooks, so mark
4670	 * interrupts as enabled _before_ actually enabling them to avoid
4671	 * special cases in our ordering checks.
4672	 */
4673	dev_priv->pm.irqs_enabled = true;
4674
4675	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4676}
4677
4678/**
4679 * intel_irq_uninstall - finilizes all irq handling
4680 * @dev_priv: i915 device instance
4681 *
4682 * This stops interrupt and hotplug handling and unregisters and frees all
4683 * resources acquired in the init functions.
4684 */
4685void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686{
4687	drm_irq_uninstall(dev_priv->dev);
4688	intel_hpd_cancel_work(dev_priv);
4689	dev_priv->pm.irqs_enabled = false;
4690}
4691
4692/**
4693 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This function is used to disable interrupts at runtime, both in the runtime
4697 * pm and the system suspend/resume code.
4698 */
4699void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700{
4701	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702	dev_priv->pm.irqs_enabled = false;
4703	synchronize_irq(dev_priv->dev->irq);
4704}
4705
4706/**
4707 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to enable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714{
4715	dev_priv->pm.irqs_enabled = true;
4716	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4718}
v3.5.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include "drmP.h"
  34#include "drm.h"
  35#include "i915_drm.h"
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/* For display hotplug interrupt */
  41static void
  42ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43{
  44	if ((dev_priv->irq_mask & mask) != 0) {
  45		dev_priv->irq_mask &= ~mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
  46		I915_WRITE(DEIMR, dev_priv->irq_mask);
  47		POSTING_READ(DEIMR);
  48	}
  49}
  50
  51static inline void
  52ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	if ((dev_priv->irq_mask & mask) != mask) {
  55		dev_priv->irq_mask |= mask;
  56		I915_WRITE(DEIMR, dev_priv->irq_mask);
  57		POSTING_READ(DEIMR);
 
 
 
 
 
 
 
 
 
 
  58	}
  59}
  60
  61void
  62i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63{
  64	if ((dev_priv->pipestat[pipe] & mask) != mask) {
  65		u32 reg = PIPESTAT(pipe);
 
 
  66
  67		dev_priv->pipestat[pipe] |= mask;
  68		/* Enable the interrupt, clear any pending status */
  69		I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
  70		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
  71	}
  72}
  73
  74void
  75i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 
 
 
 
 
 
 
 
 
  76{
  77	if ((dev_priv->pipestat[pipe] & mask) != 0) {
  78		u32 reg = PIPESTAT(pipe);
 
 
 
 
 
 
  79
  80		dev_priv->pipestat[pipe] &= ~mask;
  81		I915_WRITE(reg, dev_priv->pipestat[pipe]);
  82		POSTING_READ(reg);
 
 
 
 
 
  83	}
  84}
  85
  86/**
  87 * intel_enable_asle - enable ASLE interrupt for OpRegion
 
 
 
  88 */
  89void intel_enable_asle(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90{
  91	drm_i915_private_t *dev_priv = dev->dev_private;
  92	unsigned long irqflags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93
  94	/* FIXME: opregion/asle for VLV */
  95	if (IS_VALLEYVIEW(dev))
  96		return;
  97
  98	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100	if (HAS_PCH_SPLIT(dev))
 101		ironlake_enable_display_irq(dev_priv, DE_GSE);
 102	else {
 103		i915_enable_pipestat(dev_priv, 1,
 104				     PIPE_LEGACY_BLC_EVENT_ENABLE);
 105		if (INTEL_INFO(dev)->gen >= 4)
 106			i915_enable_pipestat(dev_priv, 0,
 107					     PIPE_LEGACY_BLC_EVENT_ENABLE);
 108	}
 109
 110	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 111}
 112
 113/**
 114 * i915_pipe_enabled - check if a pipe is enabled
 115 * @dev: DRM device
 116 * @pipe: pipe to check
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117 *
 118 * Reading certain registers when the pipe is disabled can hang the chip.
 119 * Use this routine to make sure the PLL is running and the pipe is active
 120 * before reading such registers if unsure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121 */
 122static int
 123i915_pipe_enabled(struct drm_device *dev, int pipe)
 124{
 125	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 126	return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 127}
 128
 129/* Called from drm generic code, passed a 'crtc', which
 130 * we use as a pipe index
 131 */
 132static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 133{
 134	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 135	unsigned long high_frame;
 136	unsigned long low_frame;
 137	u32 high1, high2, low;
 138
 139	if (!i915_pipe_enabled(dev, pipe)) {
 140		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 141				"pipe %c\n", pipe_name(pipe));
 142		return 0;
 143	}
 
 
 
 
 
 
 
 
 144
 145	high_frame = PIPEFRAME(pipe);
 146	low_frame = PIPEFRAMEPIXEL(pipe);
 147
 148	/*
 149	 * High & low register fields aren't synchronized, so make sure
 150	 * we get a low value that's stable across two reads of the high
 151	 * register.
 152	 */
 153	do {
 154		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 155		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
 156		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 157	} while (high1 != high2);
 158
 159	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 
 160	low >>= PIPE_FRAME_LOW_SHIFT;
 161	return (high1 << 8) | low;
 
 
 
 
 
 
 162}
 163
 164static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 165{
 166	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 167	int reg = PIPE_FRMCOUNT_GM45(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169	if (!i915_pipe_enabled(dev, pipe)) {
 170		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 171				 "pipe %c\n", pipe_name(pipe));
 172		return 0;
 
 
 
 
 
 173	}
 174
 175	return I915_READ(reg);
 
 
 
 
 176}
 177
 178static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 179			     int *vpos, int *hpos)
 
 
 180{
 181	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 182	u32 vbl = 0, position = 0;
 183	int vbl_start, vbl_end, htotal, vtotal;
 
 
 184	bool in_vbl = true;
 185	int ret = 0;
 
 186
 187	if (!i915_pipe_enabled(dev, pipe)) {
 188		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 189				 "pipe %c\n", pipe_name(pipe));
 190		return 0;
 191	}
 192
 193	/* Get vtotal. */
 194	vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195
 196	if (INTEL_INFO(dev)->gen >= 4) {
 197		/* No obvious pixelcount register. Only query vertical
 198		 * scanout position from Display scan line register.
 199		 */
 200		position = I915_READ(PIPEDSL(pipe));
 201
 202		/* Decode into vertical scanout position. Don't have
 203		 * horizontal scanout position.
 204		 */
 205		*vpos = position & 0x1fff;
 206		*hpos = 0;
 207	} else {
 208		/* Have access to pixelcount since start of frame.
 209		 * We can split this into vertical and horizontal
 210		 * scanout position.
 211		 */
 212		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213
 214		htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215		*vpos = position / htotal;
 216		*hpos = position - (*vpos * htotal);
 217	}
 218
 219	/* Query vblank area. */
 220	vbl = I915_READ(VBLANK(pipe));
 221
 222	/* Test position against vblank region. */
 223	vbl_start = vbl & 0x1fff;
 224	vbl_end = (vbl >> 16) & 0x1fff;
 225
 226	if ((*vpos < vbl_start) || (*vpos > vbl_end))
 227		in_vbl = false;
 228
 229	/* Inside "upper part" of vblank area? Apply corrective offset: */
 230	if (in_vbl && (*vpos >= vbl_start))
 231		*vpos = *vpos - vtotal;
 232
 233	/* Readouts valid? */
 234	if (vbl > 0)
 235		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 236
 237	/* In vblank? */
 238	if (in_vbl)
 239		ret |= DRM_SCANOUTPOS_INVBL;
 240
 241	return ret;
 242}
 243
 244static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 
 
 
 
 
 
 
 
 
 
 
 
 
 245			      int *max_error,
 246			      struct timeval *vblank_time,
 247			      unsigned flags)
 248{
 249	struct drm_i915_private *dev_priv = dev->dev_private;
 250	struct drm_crtc *crtc;
 251
 252	if (pipe < 0 || pipe >= dev_priv->num_pipe) {
 253		DRM_ERROR("Invalid crtc %d\n", pipe);
 254		return -EINVAL;
 255	}
 256
 257	/* Get drm_crtc to timestamp: */
 258	crtc = intel_get_crtc_for_pipe(dev, pipe);
 259	if (crtc == NULL) {
 260		DRM_ERROR("Invalid crtc %d\n", pipe);
 261		return -EINVAL;
 262	}
 263
 264	if (!crtc->enabled) {
 265		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 266		return -EBUSY;
 267	}
 268
 269	/* Helper routine in DRM core does all the work: */
 270	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 271						     vblank_time, flags,
 272						     crtc);
 273}
 274
 275/*
 276 * Handle hotplug events outside the interrupt handler proper.
 277 */
 278static void i915_hotplug_work_func(struct work_struct *work)
 279{
 280	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 281						    hotplug_work);
 282	struct drm_device *dev = dev_priv->dev;
 283	struct drm_mode_config *mode_config = &dev->mode_config;
 284	struct intel_encoder *encoder;
 285
 286	mutex_lock(&mode_config->mutex);
 287	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 288
 289	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 290		if (encoder->hot_plug)
 291			encoder->hot_plug(encoder);
 292
 293	mutex_unlock(&mode_config->mutex);
 294
 295	/* Just fire off a uevent and let userspace tell us what to do */
 296	drm_helper_hpd_irq_event(dev);
 297}
 298
 299static void i915_handle_rps_change(struct drm_device *dev)
 300{
 301	drm_i915_private_t *dev_priv = dev->dev_private;
 302	u32 busy_up, busy_down, max_avg, min_avg;
 303	u8 new_delay = dev_priv->cur_delay;
 304
 305	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 306	busy_up = I915_READ(RCPREVBSYTUPAVG);
 307	busy_down = I915_READ(RCPREVBSYTDNAVG);
 308	max_avg = I915_READ(RCBMAXAVG);
 309	min_avg = I915_READ(RCBMINAVG);
 310
 311	/* Handle RCS change request from hw */
 312	if (busy_up > max_avg) {
 313		if (dev_priv->cur_delay != dev_priv->max_delay)
 314			new_delay = dev_priv->cur_delay - 1;
 315		if (new_delay < dev_priv->max_delay)
 316			new_delay = dev_priv->max_delay;
 317	} else if (busy_down < min_avg) {
 318		if (dev_priv->cur_delay != dev_priv->min_delay)
 319			new_delay = dev_priv->cur_delay + 1;
 320		if (new_delay > dev_priv->min_delay)
 321			new_delay = dev_priv->min_delay;
 322	}
 323
 324	if (ironlake_set_drps(dev, new_delay))
 325		dev_priv->cur_delay = new_delay;
 
 
 326
 327	return;
 328}
 329
 330static void notify_ring(struct drm_device *dev,
 331			struct intel_ring_buffer *ring)
 332{
 333	struct drm_i915_private *dev_priv = dev->dev_private;
 334
 335	if (ring->obj == NULL)
 336		return;
 337
 338	trace_i915_gem_request_complete(ring, ring->get_seqno(ring));
 339
 340	wake_up_all(&ring->irq_queue);
 341	if (i915_enable_hangcheck) {
 342		dev_priv->hangcheck_count = 0;
 343		mod_timer(&dev_priv->hangcheck_timer,
 344			  jiffies +
 345			  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347}
 348
 349static void gen6_pm_rps_work(struct work_struct *work)
 350{
 351	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 352						    rps_work);
 353	u32 pm_iir, pm_imr;
 354	u8 new_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356	spin_lock_irq(&dev_priv->rps_lock);
 357	pm_iir = dev_priv->pm_iir;
 358	dev_priv->pm_iir = 0;
 359	pm_imr = I915_READ(GEN6_PMIMR);
 360	I915_WRITE(GEN6_PMIMR, 0);
 361	spin_unlock_irq(&dev_priv->rps_lock);
 362
 363	if ((pm_iir & GEN6_PM_DEFERRED_EVENTS) == 0)
 364		return;
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366	mutex_lock(&dev_priv->dev->struct_mutex);
 367
 368	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD)
 369		new_delay = dev_priv->cur_delay + 1;
 370	else
 371		new_delay = dev_priv->cur_delay - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	gen6_set_rps(dev_priv->dev, new_delay);
 
 
 
 
 374
 375	mutex_unlock(&dev_priv->dev->struct_mutex);
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378static void snb_gt_irq_handler(struct drm_device *dev,
 379			       struct drm_i915_private *dev_priv,
 380			       u32 gt_iir)
 381{
 382
 383	if (gt_iir & (GEN6_RENDER_USER_INTERRUPT |
 384		      GEN6_RENDER_PIPE_CONTROL_NOTIFY_INTERRUPT))
 385		notify_ring(dev, &dev_priv->ring[RCS]);
 386	if (gt_iir & GEN6_BSD_USER_INTERRUPT)
 387		notify_ring(dev, &dev_priv->ring[VCS]);
 388	if (gt_iir & GEN6_BLITTER_USER_INTERRUPT)
 389		notify_ring(dev, &dev_priv->ring[BCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391	if (gt_iir & (GT_GEN6_BLT_CS_ERROR_INTERRUPT |
 392		      GT_GEN6_BSD_CS_ERROR_INTERRUPT |
 393		      GT_RENDER_CS_ERROR_INTERRUPT)) {
 394		DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
 395		i915_handle_error(dev, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	}
 
 
 
 397}
 398
 399static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
 400				u32 pm_iir)
 401{
 402	unsigned long flags;
 
 
 403
 
 
 
 
 404	/*
 405	 * IIR bits should never already be set because IMR should
 406	 * prevent an interrupt from being shown in IIR. The warning
 407	 * displays a case where we've unsafely cleared
 408	 * dev_priv->pm_iir. Although missing an interrupt of the same
 409	 * type is not a problem, it displays a problem in the logic.
 410	 *
 411	 * The mask bit in IMR is cleared by rps_work.
 412	 */
 
 413
 414	spin_lock_irqsave(&dev_priv->rps_lock, flags);
 415	dev_priv->pm_iir |= pm_iir;
 416	I915_WRITE(GEN6_PMIMR, dev_priv->pm_iir);
 417	POSTING_READ(GEN6_PMIMR);
 418	spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 419
 420	queue_work(dev_priv->wq, &dev_priv->rps_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421}
 422
 423static irqreturn_t valleyview_irq_handler(DRM_IRQ_ARGS)
 424{
 425	struct drm_device *dev = (struct drm_device *) arg;
 426	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 427	u32 iir, gt_iir, pm_iir;
 428	irqreturn_t ret = IRQ_NONE;
 429	unsigned long irqflags;
 430	int pipe;
 431	u32 pipe_stats[I915_MAX_PIPES];
 432	u32 vblank_status;
 433	int vblank = 0;
 434	bool blc_event;
 435
 436	atomic_inc(&dev_priv->irq_received);
 
 437
 438	vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS |
 439		PIPE_VBLANK_INTERRUPT_STATUS;
 440
 441	while (true) {
 442		iir = I915_READ(VLV_IIR);
 
 443		gt_iir = I915_READ(GTIIR);
 
 
 
 444		pm_iir = I915_READ(GEN6_PMIIR);
 
 
 
 
 
 
 
 
 
 
 445
 446		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
 447			goto out;
 448
 449		ret = IRQ_HANDLED;
 450
 451		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452
 453		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 454		for_each_pipe(pipe) {
 455			int reg = PIPESTAT(pipe);
 456			pipe_stats[pipe] = I915_READ(reg);
 457
 458			/*
 459			 * Clear the PIPE*STAT regs before the IIR
 460			 */
 461			if (pipe_stats[pipe] & 0x8000ffff) {
 462				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
 463					DRM_DEBUG_DRIVER("pipe %c underrun\n",
 464							 pipe_name(pipe));
 465				I915_WRITE(reg, pipe_stats[pipe]);
 466			}
 467		}
 468		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 469
 470		/* Consume port.  Then clear IIR or we'll miss events */
 471		if (iir & I915_DISPLAY_PORT_INTERRUPT) {
 472			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
 473
 474			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
 475					 hotplug_status);
 476			if (hotplug_status & dev_priv->hotplug_supported_mask)
 477				queue_work(dev_priv->wq,
 478					   &dev_priv->hotplug_work);
 479
 480			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
 481			I915_READ(PORT_HOTPLUG_STAT);
 
 
 
 482		}
 483
 
 484
 485		if (iir & I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT) {
 486			drm_handle_vblank(dev, 0);
 487			vblank++;
 488			intel_finish_page_flip(dev, 0);
 489		}
 490
 491		if (iir & I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT) {
 492			drm_handle_vblank(dev, 1);
 493			vblank++;
 494			intel_finish_page_flip(dev, 0);
 495		}
 496
 497		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
 498			blc_event = true;
 499
 500		if (pm_iir & GEN6_PM_DEFERRED_EVENTS)
 501			gen6_queue_rps_work(dev_priv, pm_iir);
 502
 503		I915_WRITE(GTIIR, gt_iir);
 504		I915_WRITE(GEN6_PMIIR, pm_iir);
 505		I915_WRITE(VLV_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	}
 507
 508out:
 509	return ret;
 
 
 
 
 
 
 
 510}
 511
 512static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
 513{
 514	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 515	int pipe;
 
 
 
 516
 517	if (pch_iir & SDE_AUDIO_POWER_MASK)
 
 
 518		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 519				 (pch_iir & SDE_AUDIO_POWER_MASK) >>
 520				 SDE_AUDIO_POWER_SHIFT);
 
 
 
 521
 522	if (pch_iir & SDE_GMBUS)
 523		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 524
 525	if (pch_iir & SDE_AUDIO_HDCP_MASK)
 526		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
 527
 528	if (pch_iir & SDE_AUDIO_TRANS_MASK)
 529		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
 530
 531	if (pch_iir & SDE_POISON)
 532		DRM_ERROR("PCH poison interrupt\n");
 533
 534	if (pch_iir & SDE_FDI_MASK)
 535		for_each_pipe(pipe)
 536			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 537					 pipe_name(pipe),
 538					 I915_READ(FDI_RX_IIR(pipe)));
 539
 540	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
 541		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
 542
 543	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
 544		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 545
 
 
 
 546	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
 547		DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
 548	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
 549		DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550}
 551
 552static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
 553{
 554	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 555	int pipe;
 
 556
 557	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT)
 558		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 559				 (pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
 560				 SDE_AUDIO_POWER_SHIFT_CPT);
 
 
 
 
 561
 562	if (pch_iir & SDE_AUX_MASK_CPT)
 563		DRM_DEBUG_DRIVER("AUX channel interrupt\n");
 564
 565	if (pch_iir & SDE_GMBUS_CPT)
 566		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 567
 568	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
 569		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
 570
 571	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
 572		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
 573
 574	if (pch_iir & SDE_FDI_MASK_CPT)
 575		for_each_pipe(pipe)
 576			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 577					 pipe_name(pipe),
 578					 I915_READ(FDI_RX_IIR(pipe)));
 
 
 
 579}
 580
 581static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
 582{
 583	struct drm_device *dev = (struct drm_device *) arg;
 584	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 585	u32 de_iir, gt_iir, de_ier, pm_iir;
 586	irqreturn_t ret = IRQ_NONE;
 587	int i;
 588
 589	atomic_inc(&dev_priv->irq_received);
 
 590
 591	/* disable master interrupt before clearing iir  */
 592	de_ier = I915_READ(DEIER);
 593	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 594
 595	gt_iir = I915_READ(GTIIR);
 596	if (gt_iir) {
 597		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 598		I915_WRITE(GTIIR, gt_iir);
 599		ret = IRQ_HANDLED;
 600	}
 601
 602	de_iir = I915_READ(DEIIR);
 603	if (de_iir) {
 604		if (de_iir & DE_GSE_IVB)
 605			intel_opregion_gse_intr(dev);
 606
 607		for (i = 0; i < 3; i++) {
 608			if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
 609				intel_prepare_page_flip(dev, i);
 610				intel_finish_page_flip_plane(dev, i);
 611			}
 612			if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
 613				drm_handle_vblank(dev, i);
 614		}
 615
 616		/* check event from PCH */
 617		if (de_iir & DE_PCH_EVENT_IVB) {
 618			u32 pch_iir = I915_READ(SDEIIR);
 619
 620			if (pch_iir & SDE_HOTPLUG_MASK_CPT)
 621				queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 622			cpt_irq_handler(dev, pch_iir);
 623
 624			/* clear PCH hotplug event before clear CPU irq */
 625			I915_WRITE(SDEIIR, pch_iir);
 626		}
 627
 628		I915_WRITE(DEIIR, de_iir);
 629		ret = IRQ_HANDLED;
 630	}
 631
 632	pm_iir = I915_READ(GEN6_PMIIR);
 633	if (pm_iir) {
 634		if (pm_iir & GEN6_PM_DEFERRED_EVENTS)
 635			gen6_queue_rps_work(dev_priv, pm_iir);
 636		I915_WRITE(GEN6_PMIIR, pm_iir);
 637		ret = IRQ_HANDLED;
 638	}
 639
 640	I915_WRITE(DEIER, de_ier);
 641	POSTING_READ(DEIER);
 642
 643	return ret;
 
 644}
 645
 646static void ilk_gt_irq_handler(struct drm_device *dev,
 647			       struct drm_i915_private *dev_priv,
 648			       u32 gt_iir)
 649{
 650	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 651		notify_ring(dev, &dev_priv->ring[RCS]);
 652	if (gt_iir & GT_BSD_USER_INTERRUPT)
 653		notify_ring(dev, &dev_priv->ring[VCS]);
 654}
 655
 656static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
 657{
 658	struct drm_device *dev = (struct drm_device *) arg;
 659	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 660	int ret = IRQ_NONE;
 661	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 662	u32 hotplug_mask;
 663
 664	atomic_inc(&dev_priv->irq_received);
 
 
 665
 666	/* disable master interrupt before clearing iir  */
 667	de_ier = I915_READ(DEIER);
 668	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 669	POSTING_READ(DEIER);
 670
 671	de_iir = I915_READ(DEIIR);
 672	gt_iir = I915_READ(GTIIR);
 673	pch_iir = I915_READ(SDEIIR);
 674	pm_iir = I915_READ(GEN6_PMIIR);
 675
 676	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
 677	    (!IS_GEN6(dev) || pm_iir == 0))
 678		goto done;
 679
 680	if (HAS_PCH_CPT(dev))
 681		hotplug_mask = SDE_HOTPLUG_MASK_CPT;
 682	else
 683		hotplug_mask = SDE_HOTPLUG_MASK;
 684
 685	ret = IRQ_HANDLED;
 
 686
 687	if (IS_GEN5(dev))
 688		ilk_gt_irq_handler(dev, dev_priv, gt_iir);
 689	else
 690		snb_gt_irq_handler(dev, dev_priv, gt_iir);
 691
 692	if (de_iir & DE_GSE)
 693		intel_opregion_gse_intr(dev);
 694
 695	if (de_iir & DE_PLANEA_FLIP_DONE) {
 696		intel_prepare_page_flip(dev, 0);
 697		intel_finish_page_flip_plane(dev, 0);
 698	}
 699
 700	if (de_iir & DE_PLANEB_FLIP_DONE) {
 701		intel_prepare_page_flip(dev, 1);
 702		intel_finish_page_flip_plane(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	}
 704
 705	if (de_iir & DE_PIPEA_VBLANK)
 706		drm_handle_vblank(dev, 0);
 707
 708	if (de_iir & DE_PIPEB_VBLANK)
 709		drm_handle_vblank(dev, 1);
 710
 711	/* check event from PCH */
 712	if (de_iir & DE_PCH_EVENT) {
 713		if (pch_iir & hotplug_mask)
 714			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 715		if (HAS_PCH_CPT(dev))
 716			cpt_irq_handler(dev, pch_iir);
 717		else
 718			ibx_irq_handler(dev, pch_iir);
 
 
 
 719	}
 720
 721	if (de_iir & DE_PCU_EVENT) {
 722		I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 723		i915_handle_rps_change(dev);
 724	}
 725
 726	if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS)
 727		gen6_queue_rps_work(dev_priv, pm_iir);
 
 
 
 728
 729	/* should clear PCH hotplug event before clear CPU irq */
 730	I915_WRITE(SDEIIR, pch_iir);
 731	I915_WRITE(GTIIR, gt_iir);
 732	I915_WRITE(DEIIR, de_iir);
 733	I915_WRITE(GEN6_PMIIR, pm_iir);
 734
 735done:
 736	I915_WRITE(DEIER, de_ier);
 737	POSTING_READ(DEIER);
 738
 739	return ret;
 740}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741
 742/**
 743 * i915_error_work_func - do process context error handling work
 744 * @work: work struct
 745 *
 746 * Fire an error uevent so userspace can see that a hang or error
 747 * was detected.
 748 */
 749static void i915_error_work_func(struct work_struct *work)
 750{
 751	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 752						    error_work);
 753	struct drm_device *dev = dev_priv->dev;
 754	char *error_event[] = { "ERROR=1", NULL };
 755	char *reset_event[] = { "RESET=1", NULL };
 756	char *reset_done_event[] = { "ERROR=0", NULL };
 757
 758	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 759
 760	if (atomic_read(&dev_priv->mm.wedged)) {
 761		DRM_DEBUG_DRIVER("resetting chip\n");
 762		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
 763		if (!i915_reset(dev)) {
 764			atomic_set(&dev_priv->mm.wedged, 0);
 765			kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
 766		}
 767		complete_all(&dev_priv->error_completion);
 768	}
 769}
 770
 771#ifdef CONFIG_DEBUG_FS
 772static struct drm_i915_error_object *
 773i915_error_object_create(struct drm_i915_private *dev_priv,
 774			 struct drm_i915_gem_object *src)
 
 
 
 
 
 775{
 776	struct drm_i915_error_object *dst;
 777	int page, page_count;
 778	u32 reloc_offset;
 
 779
 780	if (src == NULL || src->pages == NULL)
 781		return NULL;
 782
 783	page_count = src->base.size / PAGE_SIZE;
 
 784
 785	dst = kmalloc(sizeof(*dst) + page_count * sizeof(u32 *), GFP_ATOMIC);
 786	if (dst == NULL)
 787		return NULL;
 
 788
 789	reloc_offset = src->gtt_offset;
 790	for (page = 0; page < page_count; page++) {
 791		unsigned long flags;
 792		void *d;
 793
 794		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
 795		if (d == NULL)
 796			goto unwind;
 797
 798		local_irq_save(flags);
 799		if (reloc_offset < dev_priv->mm.gtt_mappable_end &&
 800		    src->has_global_gtt_mapping) {
 801			void __iomem *s;
 802
 803			/* Simply ignore tiling or any overlapping fence.
 804			 * It's part of the error state, and this hopefully
 805			 * captures what the GPU read.
 806			 */
 807
 808			s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 809						     reloc_offset);
 810			memcpy_fromio(d, s, PAGE_SIZE);
 811			io_mapping_unmap_atomic(s);
 812		} else {
 813			void *s;
 814
 815			drm_clflush_pages(&src->pages[page], 1);
 
 
 
 
 
 
 
 
 816
 817			s = kmap_atomic(src->pages[page]);
 818			memcpy(d, s, PAGE_SIZE);
 819			kunmap_atomic(s);
 
 
 
 
 
 
 820
 821			drm_clflush_pages(&src->pages[page], 1);
 
 
 
 
 
 822		}
 823		local_irq_restore(flags);
 824
 825		dst->pages[page] = d;
 826
 827		reloc_offset += PAGE_SIZE;
 
 
 828	}
 829	dst->page_count = page_count;
 830	dst->gtt_offset = src->gtt_offset;
 831
 832	return dst;
 
 833
 834unwind:
 835	while (page--)
 836		kfree(dst->pages[page]);
 837	kfree(dst);
 838	return NULL;
 839}
 840
 841static void
 842i915_error_object_free(struct drm_i915_error_object *obj)
 843{
 844	int page;
 
 845
 846	if (obj == NULL)
 847		return;
 848
 849	for (page = 0; page < obj->page_count; page++)
 850		kfree(obj->pages[page]);
 
 851
 852	kfree(obj);
 853}
 854
 855void
 856i915_error_state_free(struct kref *error_ref)
 857{
 858	struct drm_i915_error_state *error = container_of(error_ref,
 859							  typeof(*error), ref);
 860	int i;
 
 861
 862	for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
 863		i915_error_object_free(error->ring[i].batchbuffer);
 864		i915_error_object_free(error->ring[i].ringbuffer);
 865		kfree(error->ring[i].requests);
 866	}
 867
 868	kfree(error->active_bo);
 869	kfree(error->overlay);
 870	kfree(error);
 871}
 872static void capture_bo(struct drm_i915_error_buffer *err,
 873		       struct drm_i915_gem_object *obj)
 874{
 875	err->size = obj->base.size;
 876	err->name = obj->base.name;
 877	err->seqno = obj->last_rendering_seqno;
 878	err->gtt_offset = obj->gtt_offset;
 879	err->read_domains = obj->base.read_domains;
 880	err->write_domain = obj->base.write_domain;
 881	err->fence_reg = obj->fence_reg;
 882	err->pinned = 0;
 883	if (obj->pin_count > 0)
 884		err->pinned = 1;
 885	if (obj->user_pin_count > 0)
 886		err->pinned = -1;
 887	err->tiling = obj->tiling_mode;
 888	err->dirty = obj->dirty;
 889	err->purgeable = obj->madv != I915_MADV_WILLNEED;
 890	err->ring = obj->ring ? obj->ring->id : -1;
 891	err->cache_level = obj->cache_level;
 892}
 893
 894static u32 capture_active_bo(struct drm_i915_error_buffer *err,
 895			     int count, struct list_head *head)
 896{
 897	struct drm_i915_gem_object *obj;
 898	int i = 0;
 899
 900	list_for_each_entry(obj, head, mm_list) {
 901		capture_bo(err++, obj);
 902		if (++i == count)
 903			break;
 904	}
 905
 906	return i;
 907}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908
 909static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
 910			     int count, struct list_head *head)
 911{
 912	struct drm_i915_gem_object *obj;
 913	int i = 0;
 
 
 
 
 
 
 
 
 914
 915	list_for_each_entry(obj, head, gtt_list) {
 916		if (obj->pin_count == 0)
 917			continue;
 
 918
 919		capture_bo(err++, obj);
 920		if (++i == count)
 921			break;
 
 
 922	}
 923
 924	return i;
 925}
 
 
 
 926
 927static void i915_gem_record_fences(struct drm_device *dev,
 928				   struct drm_i915_error_state *error)
 929{
 930	struct drm_i915_private *dev_priv = dev->dev_private;
 931	int i;
 932
 933	/* Fences */
 934	switch (INTEL_INFO(dev)->gen) {
 935	case 7:
 936	case 6:
 937		for (i = 0; i < 16; i++)
 938			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
 939		break;
 940	case 5:
 941	case 4:
 942		for (i = 0; i < 16; i++)
 943			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
 944		break;
 945	case 3:
 946		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 947			for (i = 0; i < 8; i++)
 948				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
 949	case 2:
 950		for (i = 0; i < 8; i++)
 951			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
 952		break;
 953
 954	}
 955}
 
 
 
 
 
 
 
 956
 957static struct drm_i915_error_object *
 958i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
 959			     struct intel_ring_buffer *ring)
 960{
 961	struct drm_i915_gem_object *obj;
 962	u32 seqno;
 963
 964	if (!ring->get_seqno)
 965		return NULL;
 966
 967	seqno = ring->get_seqno(ring);
 968	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
 969		if (obj->ring != ring)
 970			continue;
 971
 972		if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
 973			continue;
 
 
 
 974
 975		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
 976			continue;
 
 
 
 977
 978		/* We need to copy these to an anonymous buffer as the simplest
 979		 * method to avoid being overwritten by userspace.
 
 
 
 
 980		 */
 981		return i915_error_object_create(dev_priv, obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	return NULL;
 985}
 986
 987static void i915_record_ring_state(struct drm_device *dev,
 988				   struct drm_i915_error_state *error,
 989				   struct intel_ring_buffer *ring)
 990{
 
 991	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 992
 993	if (INTEL_INFO(dev)->gen >= 6) {
 994		error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
 995		error->semaphore_mboxes[ring->id][0]
 996			= I915_READ(RING_SYNC_0(ring->mmio_base));
 997		error->semaphore_mboxes[ring->id][1]
 998			= I915_READ(RING_SYNC_1(ring->mmio_base));
 999	}
1000
1001	if (INTEL_INFO(dev)->gen >= 4) {
1002		error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1003		error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1004		error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1005		error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1006		error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1007		if (ring->id == RCS) {
1008			error->instdone1 = I915_READ(INSTDONE1);
1009			error->bbaddr = I915_READ64(BB_ADDR);
1010		}
1011	} else {
1012		error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1013		error->ipeir[ring->id] = I915_READ(IPEIR);
1014		error->ipehr[ring->id] = I915_READ(IPEHR);
1015		error->instdone[ring->id] = I915_READ(INSTDONE);
1016	}
1017
1018	error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1019	error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1020	error->seqno[ring->id] = ring->get_seqno(ring);
1021	error->acthd[ring->id] = intel_ring_get_active_head(ring);
1022	error->head[ring->id] = I915_READ_HEAD(ring);
1023	error->tail[ring->id] = I915_READ_TAIL(ring);
1024
1025	error->cpu_ring_head[ring->id] = ring->head;
1026	error->cpu_ring_tail[ring->id] = ring->tail;
1027}
1028
1029static void i915_gem_record_rings(struct drm_device *dev,
1030				  struct drm_i915_error_state *error)
1031{
1032	struct drm_i915_private *dev_priv = dev->dev_private;
1033	struct intel_ring_buffer *ring;
1034	struct drm_i915_gem_request *request;
1035	int i, count;
1036
1037	for_each_ring(ring, dev_priv, i) {
1038		i915_record_ring_state(dev, error, ring);
 
 
 
 
1039
1040		error->ring[i].batchbuffer =
1041			i915_error_first_batchbuffer(dev_priv, ring);
 
1042
1043		error->ring[i].ringbuffer =
1044			i915_error_object_create(dev_priv, ring->obj);
1045
1046		count = 0;
1047		list_for_each_entry(request, &ring->request_list, list)
1048			count++;
1049
1050		error->ring[i].num_requests = count;
1051		error->ring[i].requests =
1052			kmalloc(count*sizeof(struct drm_i915_error_request),
1053				GFP_ATOMIC);
1054		if (error->ring[i].requests == NULL) {
1055			error->ring[i].num_requests = 0;
1056			continue;
1057		}
1058
1059		count = 0;
1060		list_for_each_entry(request, &ring->request_list, list) {
1061			struct drm_i915_error_request *erq;
1062
1063			erq = &error->ring[i].requests[count++];
1064			erq->seqno = request->seqno;
1065			erq->jiffies = request->emitted_jiffies;
1066			erq->tail = request->tail;
1067		}
1068	}
1069}
1070
1071/**
1072 * i915_capture_error_state - capture an error record for later analysis
1073 * @dev: drm device
1074 *
1075 * Should be called when an error is detected (either a hang or an error
1076 * interrupt) to capture error state from the time of the error.  Fills
1077 * out a structure which becomes available in debugfs for user level tools
1078 * to pick up.
1079 */
1080static void i915_capture_error_state(struct drm_device *dev)
1081{
1082	struct drm_i915_private *dev_priv = dev->dev_private;
1083	struct drm_i915_gem_object *obj;
1084	struct drm_i915_error_state *error;
1085	unsigned long flags;
1086	int i, pipe;
 
1087
1088	spin_lock_irqsave(&dev_priv->error_lock, flags);
1089	error = dev_priv->first_error;
1090	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1091	if (error)
1092		return;
1093
1094	/* Account for pipe specific data like PIPE*STAT */
1095	error = kzalloc(sizeof(*error), GFP_ATOMIC);
1096	if (!error) {
1097		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1098		return;
1099	}
 
 
 
 
 
 
 
 
1100
1101	DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
1102		 dev->primary->index);
 
 
 
 
 
 
1103
1104	kref_init(&error->ref);
1105	error->eir = I915_READ(EIR);
1106	error->pgtbl_er = I915_READ(PGTBL_ER);
1107
1108	if (HAS_PCH_SPLIT(dev))
1109		error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1110	else if (IS_VALLEYVIEW(dev))
1111		error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1112	else if (IS_GEN2(dev))
1113		error->ier = I915_READ16(IER);
1114	else
1115		error->ier = I915_READ(IER);
1116
1117	for_each_pipe(pipe)
1118		error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
1119
1120	if (INTEL_INFO(dev)->gen >= 6) {
1121		error->error = I915_READ(ERROR_GEN6);
1122		error->done_reg = I915_READ(DONE_REG);
1123	}
1124
1125	i915_gem_record_fences(dev, error);
1126	i915_gem_record_rings(dev, error);
 
 
 
 
 
 
 
 
 
 
 
1127
1128	/* Record buffers on the active and pinned lists. */
1129	error->active_bo = NULL;
1130	error->pinned_bo = NULL;
 
 
1131
1132	i = 0;
1133	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1134		i++;
1135	error->active_bo_count = i;
1136	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
1137		if (obj->pin_count)
1138			i++;
1139	error->pinned_bo_count = i - error->active_bo_count;
1140
1141	error->active_bo = NULL;
1142	error->pinned_bo = NULL;
1143	if (i) {
1144		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1145					   GFP_ATOMIC);
1146		if (error->active_bo)
1147			error->pinned_bo =
1148				error->active_bo + error->active_bo_count;
1149	}
1150
1151	if (error->active_bo)
1152		error->active_bo_count =
1153			capture_active_bo(error->active_bo,
1154					  error->active_bo_count,
1155					  &dev_priv->mm.active_list);
1156
1157	if (error->pinned_bo)
1158		error->pinned_bo_count =
1159			capture_pinned_bo(error->pinned_bo,
1160					  error->pinned_bo_count,
1161					  &dev_priv->mm.gtt_list);
1162
1163	do_gettimeofday(&error->time);
1164
1165	error->overlay = intel_overlay_capture_error_state(dev);
1166	error->display = intel_display_capture_error_state(dev);
1167
1168	spin_lock_irqsave(&dev_priv->error_lock, flags);
1169	if (dev_priv->first_error == NULL) {
1170		dev_priv->first_error = error;
1171		error = NULL;
1172	}
1173	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1174
1175	if (error)
1176		i915_error_state_free(&error->ref);
1177}
1178
1179void i915_destroy_error_state(struct drm_device *dev)
1180{
1181	struct drm_i915_private *dev_priv = dev->dev_private;
1182	struct drm_i915_error_state *error;
1183	unsigned long flags;
1184
1185	spin_lock_irqsave(&dev_priv->error_lock, flags);
1186	error = dev_priv->first_error;
1187	dev_priv->first_error = NULL;
1188	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1189
1190	if (error)
1191		kref_put(&error->ref, i915_error_state_free);
1192}
1193#else
1194#define i915_capture_error_state(x)
1195#endif
1196
1197static void i915_report_and_clear_eir(struct drm_device *dev)
1198{
1199	struct drm_i915_private *dev_priv = dev->dev_private;
 
1200	u32 eir = I915_READ(EIR);
1201	int pipe;
1202
1203	if (!eir)
1204		return;
1205
1206	pr_err("render error detected, EIR: 0x%08x\n", eir);
1207
 
 
1208	if (IS_G4X(dev)) {
1209		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1210			u32 ipeir = I915_READ(IPEIR_I965);
1211
1212			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1213			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1214			pr_err("  INSTDONE: 0x%08x\n",
1215			       I915_READ(INSTDONE_I965));
1216			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1217			pr_err("  INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1));
1218			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1219			I915_WRITE(IPEIR_I965, ipeir);
1220			POSTING_READ(IPEIR_I965);
1221		}
1222		if (eir & GM45_ERROR_PAGE_TABLE) {
1223			u32 pgtbl_err = I915_READ(PGTBL_ER);
1224			pr_err("page table error\n");
1225			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1226			I915_WRITE(PGTBL_ER, pgtbl_err);
1227			POSTING_READ(PGTBL_ER);
1228		}
1229	}
1230
1231	if (!IS_GEN2(dev)) {
1232		if (eir & I915_ERROR_PAGE_TABLE) {
1233			u32 pgtbl_err = I915_READ(PGTBL_ER);
1234			pr_err("page table error\n");
1235			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1236			I915_WRITE(PGTBL_ER, pgtbl_err);
1237			POSTING_READ(PGTBL_ER);
1238		}
1239	}
1240
1241	if (eir & I915_ERROR_MEMORY_REFRESH) {
1242		pr_err("memory refresh error:\n");
1243		for_each_pipe(pipe)
1244			pr_err("pipe %c stat: 0x%08x\n",
1245			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1246		/* pipestat has already been acked */
1247	}
1248	if (eir & I915_ERROR_INSTRUCTION) {
1249		pr_err("instruction error\n");
1250		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
 
 
1251		if (INTEL_INFO(dev)->gen < 4) {
1252			u32 ipeir = I915_READ(IPEIR);
1253
1254			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
1255			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
1256			pr_err("  INSTDONE: 0x%08x\n", I915_READ(INSTDONE));
1257			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
1258			I915_WRITE(IPEIR, ipeir);
1259			POSTING_READ(IPEIR);
1260		} else {
1261			u32 ipeir = I915_READ(IPEIR_I965);
1262
1263			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1264			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1265			pr_err("  INSTDONE: 0x%08x\n",
1266			       I915_READ(INSTDONE_I965));
1267			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1268			pr_err("  INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1));
1269			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1270			I915_WRITE(IPEIR_I965, ipeir);
1271			POSTING_READ(IPEIR_I965);
1272		}
1273	}
1274
1275	I915_WRITE(EIR, eir);
1276	POSTING_READ(EIR);
1277	eir = I915_READ(EIR);
1278	if (eir) {
1279		/*
1280		 * some errors might have become stuck,
1281		 * mask them.
1282		 */
1283		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1284		I915_WRITE(EMR, I915_READ(EMR) | eir);
1285		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1286	}
1287}
1288
1289/**
1290 * i915_handle_error - handle an error interrupt
1291 * @dev: drm device
1292 *
1293 * Do some basic checking of regsiter state at error interrupt time and
1294 * dump it to the syslog.  Also call i915_capture_error_state() to make
1295 * sure we get a record and make it available in debugfs.  Fire a uevent
1296 * so userspace knows something bad happened (should trigger collection
1297 * of a ring dump etc.).
1298 */
1299void i915_handle_error(struct drm_device *dev, bool wedged)
 
1300{
1301	struct drm_i915_private *dev_priv = dev->dev_private;
1302	struct intel_ring_buffer *ring;
1303	int i;
 
 
 
 
1304
1305	i915_capture_error_state(dev);
1306	i915_report_and_clear_eir(dev);
1307
1308	if (wedged) {
1309		INIT_COMPLETION(dev_priv->error_completion);
1310		atomic_set(&dev_priv->mm.wedged, 1);
1311
1312		/*
1313		 * Wakeup waiting processes so they don't hang
 
 
 
 
 
 
 
 
 
 
1314		 */
1315		for_each_ring(ring, dev_priv, i)
1316			wake_up_all(&ring->irq_queue);
1317	}
1318
1319	queue_work(dev_priv->wq, &dev_priv->error_work);
1320}
1321
1322static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1323{
1324	drm_i915_private_t *dev_priv = dev->dev_private;
1325	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1326	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1327	struct drm_i915_gem_object *obj;
1328	struct intel_unpin_work *work;
1329	unsigned long flags;
1330	bool stall_detected;
1331
1332	/* Ignore early vblank irqs */
1333	if (intel_crtc == NULL)
1334		return;
1335
1336	spin_lock_irqsave(&dev->event_lock, flags);
1337	work = intel_crtc->unpin_work;
1338
1339	if (work == NULL || work->pending || !work->enable_stall_check) {
1340		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1341		spin_unlock_irqrestore(&dev->event_lock, flags);
1342		return;
1343	}
1344
1345	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1346	obj = work->pending_flip_obj;
1347	if (INTEL_INFO(dev)->gen >= 4) {
1348		int dspsurf = DSPSURF(intel_crtc->plane);
1349		stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1350					obj->gtt_offset;
1351	} else {
1352		int dspaddr = DSPADDR(intel_crtc->plane);
1353		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1354							crtc->y * crtc->fb->pitches[0] +
1355							crtc->x * crtc->fb->bits_per_pixel/8);
1356	}
1357
1358	spin_unlock_irqrestore(&dev->event_lock, flags);
1359
1360	if (stall_detected) {
1361		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1362		intel_prepare_page_flip(dev, intel_crtc->plane);
1363	}
1364}
1365
1366/* Called from drm generic code, passed 'crtc' which
1367 * we use as a pipe index
1368 */
1369static int i915_enable_vblank(struct drm_device *dev, int pipe)
1370{
1371	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1372	unsigned long irqflags;
1373
1374	if (!i915_pipe_enabled(dev, pipe))
1375		return -EINVAL;
1376
1377	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1378	if (INTEL_INFO(dev)->gen >= 4)
1379		i915_enable_pipestat(dev_priv, pipe,
1380				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1381	else
1382		i915_enable_pipestat(dev_priv, pipe,
1383				     PIPE_VBLANK_INTERRUPT_ENABLE);
1384
1385	/* maintain vblank delivery even in deep C-states */
1386	if (dev_priv->info->gen == 3)
1387		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1388	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1389
1390	return 0;
1391}
1392
1393static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1394{
1395	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1396	unsigned long irqflags;
1397
1398	if (!i915_pipe_enabled(dev, pipe))
1399		return -EINVAL;
1400
1401	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1402	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1403				    DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1404	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1405
1406	return 0;
1407}
1408
1409static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1410{
1411	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1412	unsigned long irqflags;
1413
1414	if (!i915_pipe_enabled(dev, pipe))
1415		return -EINVAL;
1416
1417	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1418	ironlake_enable_display_irq(dev_priv,
1419				    DE_PIPEA_VBLANK_IVB << (5 * pipe));
1420	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1421
1422	return 0;
1423}
1424
1425static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1426{
1427	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1428	unsigned long irqflags;
1429	u32 dpfl, imr;
1430
1431	if (!i915_pipe_enabled(dev, pipe))
1432		return -EINVAL;
1433
1434	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1435	dpfl = I915_READ(VLV_DPFLIPSTAT);
1436	imr = I915_READ(VLV_IMR);
1437	if (pipe == 0) {
1438		dpfl |= PIPEA_VBLANK_INT_EN;
1439		imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1440	} else {
1441		dpfl |= PIPEA_VBLANK_INT_EN;
1442		imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1443	}
1444	I915_WRITE(VLV_DPFLIPSTAT, dpfl);
1445	I915_WRITE(VLV_IMR, imr);
1446	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1447
1448	return 0;
1449}
1450
1451/* Called from drm generic code, passed 'crtc' which
1452 * we use as a pipe index
1453 */
1454static void i915_disable_vblank(struct drm_device *dev, int pipe)
1455{
1456	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1457	unsigned long irqflags;
1458
1459	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1460	if (dev_priv->info->gen == 3)
1461		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1462
1463	i915_disable_pipestat(dev_priv, pipe,
1464			      PIPE_VBLANK_INTERRUPT_ENABLE |
1465			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1466	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1467}
1468
1469static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1470{
1471	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1472	unsigned long irqflags;
 
 
1473
1474	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1475	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1476				     DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1477	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1478}
1479
1480static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1481{
1482	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1483	unsigned long irqflags;
1484
1485	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1486	ironlake_disable_display_irq(dev_priv,
1487				     DE_PIPEA_VBLANK_IVB << (pipe * 5));
1488	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1489}
1490
1491static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1492{
1493	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1494	unsigned long irqflags;
1495	u32 dpfl, imr;
1496
1497	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1498	dpfl = I915_READ(VLV_DPFLIPSTAT);
1499	imr = I915_READ(VLV_IMR);
1500	if (pipe == 0) {
1501		dpfl &= ~PIPEA_VBLANK_INT_EN;
1502		imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503	} else {
1504		dpfl &= ~PIPEB_VBLANK_INT_EN;
1505		imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
 
 
 
 
 
 
 
1506	}
1507	I915_WRITE(VLV_IMR, imr);
1508	I915_WRITE(VLV_DPFLIPSTAT, dpfl);
1509	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510}
1511
1512static u32
1513ring_last_seqno(struct intel_ring_buffer *ring)
1514{
1515	return list_entry(ring->request_list.prev,
1516			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
 
1520{
1521	if (list_empty(&ring->request_list) ||
1522	    i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1523		/* Issue a wake-up to catch stuck h/w. */
1524		if (waitqueue_active(&ring->irq_queue)) {
1525			DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1526				  ring->name);
1527			wake_up_all(&ring->irq_queue);
1528			*err = true;
 
1529		}
1530		return true;
 
1531	}
1532	return false;
 
 
 
 
1533}
1534
1535static bool kick_ring(struct intel_ring_buffer *ring)
 
1536{
1537	struct drm_device *dev = ring->dev;
1538	struct drm_i915_private *dev_priv = dev->dev_private;
1539	u32 tmp = I915_READ_CTL(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540	if (tmp & RING_WAIT) {
1541		DRM_ERROR("Kicking stuck wait on %s\n",
1542			  ring->name);
 
1543		I915_WRITE_CTL(ring, tmp);
1544		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545	}
1546	return false;
 
1547}
1548
1549static bool i915_hangcheck_hung(struct drm_device *dev)
 
 
 
 
 
 
 
 
1550{
1551	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
1552
1553	if (dev_priv->hangcheck_count++ > 1) {
1554		bool hung = true;
1555
1556		DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1557		i915_handle_error(dev, true);
 
 
 
 
1558
1559		if (!IS_GEN2(dev)) {
1560			struct intel_ring_buffer *ring;
1561			int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563			/* Is the chip hanging on a WAIT_FOR_EVENT?
1564			 * If so we can simply poke the RB_WAIT bit
1565			 * and break the hang. This should work on
1566			 * all but the second generation chipsets.
1567			 */
1568			for_each_ring(ring, dev_priv, i)
1569				hung &= !kick_ring(ring);
 
 
 
 
 
 
1570		}
1571
1572		return hung;
 
 
1573	}
1574
1575	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576}
1577
1578/**
1579 * This is called when the chip hasn't reported back with completed
1580 * batchbuffers in a long time. The first time this is called we simply record
1581 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1582 * again, we assume the chip is wedged and try to fix it.
1583 */
1584void i915_hangcheck_elapsed(unsigned long data)
1585{
1586	struct drm_device *dev = (struct drm_device *)data;
1587	drm_i915_private_t *dev_priv = dev->dev_private;
1588	uint32_t acthd[I915_NUM_RINGS], instdone, instdone1;
1589	struct intel_ring_buffer *ring;
1590	bool err = false, idle;
1591	int i;
1592
1593	if (!i915_enable_hangcheck)
1594		return;
1595
1596	memset(acthd, 0, sizeof(acthd));
1597	idle = true;
1598	for_each_ring(ring, dev_priv, i) {
1599	    idle &= i915_hangcheck_ring_idle(ring, &err);
1600	    acthd[i] = intel_ring_get_active_head(ring);
1601	}
1602
1603	/* If all work is done then ACTHD clearly hasn't advanced. */
1604	if (idle) {
1605		if (err) {
1606			if (i915_hangcheck_hung(dev))
1607				return;
1608
1609			goto repeat;
1610		}
 
1611
1612		dev_priv->hangcheck_count = 0;
1613		return;
1614	}
1615
1616	if (INTEL_INFO(dev)->gen < 4) {
1617		instdone = I915_READ(INSTDONE);
1618		instdone1 = 0;
1619	} else {
1620		instdone = I915_READ(INSTDONE_I965);
1621		instdone1 = I915_READ(INSTDONE1);
1622	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624	if (memcmp(dev_priv->last_acthd, acthd, sizeof(acthd)) == 0 &&
1625	    dev_priv->last_instdone == instdone &&
1626	    dev_priv->last_instdone1 == instdone1) {
1627		if (i915_hangcheck_hung(dev))
1628			return;
1629	} else {
1630		dev_priv->hangcheck_count = 0;
1631
1632		memcpy(dev_priv->last_acthd, acthd, sizeof(acthd));
1633		dev_priv->last_instdone = instdone;
1634		dev_priv->last_instdone1 = instdone1;
1635	}
1636
1637repeat:
1638	/* Reset timer case chip hangs without another request being added */
1639	mod_timer(&dev_priv->hangcheck_timer,
1640		  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1641}
1642
1643/* drm_dma.h hooks
1644*/
1645static void ironlake_irq_preinstall(struct drm_device *dev)
1646{
1647	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
 
 
 
 
 
1648
1649	atomic_set(&dev_priv->irq_received, 0);
1650
 
 
1651
1652	I915_WRITE(HWSTAM, 0xeffe);
 
 
1653
1654	/* XXX hotplug from PCH */
 
1655
1656	I915_WRITE(DEIMR, 0xffffffff);
1657	I915_WRITE(DEIER, 0x0);
1658	POSTING_READ(DEIER);
1659
1660	/* and GT */
1661	I915_WRITE(GTIMR, 0xffffffff);
1662	I915_WRITE(GTIER, 0x0);
1663	POSTING_READ(GTIER);
1664
1665	/* south display irq */
1666	I915_WRITE(SDEIMR, 0xffffffff);
1667	I915_WRITE(SDEIER, 0x0);
1668	POSTING_READ(SDEIER);
1669}
1670
1671static void valleyview_irq_preinstall(struct drm_device *dev)
1672{
1673	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1674	int pipe;
1675
1676	atomic_set(&dev_priv->irq_received, 0);
1677
1678	/* VLV magic */
1679	I915_WRITE(VLV_IMR, 0);
1680	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
1681	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
1682	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
1683
1684	/* and GT */
1685	I915_WRITE(GTIIR, I915_READ(GTIIR));
1686	I915_WRITE(GTIIR, I915_READ(GTIIR));
1687	I915_WRITE(GTIMR, 0xffffffff);
1688	I915_WRITE(GTIER, 0x0);
1689	POSTING_READ(GTIER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690
1691	I915_WRITE(DPINVGTT, 0xff);
 
 
 
1692
1693	I915_WRITE(PORT_HOTPLUG_EN, 0);
1694	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1695	for_each_pipe(pipe)
1696		I915_WRITE(PIPESTAT(pipe), 0xffff);
1697	I915_WRITE(VLV_IIR, 0xffffffff);
1698	I915_WRITE(VLV_IMR, 0xffffffff);
1699	I915_WRITE(VLV_IER, 0x0);
1700	POSTING_READ(VLV_IER);
1701}
1702
1703/*
1704 * Enable digital hotplug on the PCH, and configure the DP short pulse
1705 * duration to 2ms (which is the minimum in the Display Port spec)
1706 *
1707 * This register is the same on all known PCH chips.
1708 */
 
 
 
 
 
 
 
 
 
1709
1710static void ironlake_enable_pch_hotplug(struct drm_device *dev)
 
1711{
1712	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1713	u32	hotplug;
 
1714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715	hotplug = I915_READ(PCH_PORT_HOTPLUG);
1716	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
1717	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
1718	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
1719	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
1721}
1722
1723static int ironlake_irq_postinstall(struct drm_device *dev)
1724{
1725	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1726	/* enable kind of interrupts always enabled */
1727	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1728			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1729	u32 render_irqs;
1730	u32 hotplug_mask;
 
 
 
 
1731
1732	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
1733
1734	/* should always can generate irq */
1735	I915_WRITE(DEIIR, I915_READ(DEIIR));
1736	I915_WRITE(DEIMR, dev_priv->irq_mask);
1737	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1738	POSTING_READ(DEIER);
1739
1740	dev_priv->gt_irq_mask = ~0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741
1742	I915_WRITE(GTIIR, I915_READ(GTIIR));
1743	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745	if (IS_GEN6(dev))
1746		render_irqs =
1747			GT_USER_INTERRUPT |
1748			GEN6_BSD_USER_INTERRUPT |
1749			GEN6_BLITTER_USER_INTERRUPT;
1750	else
1751		render_irqs =
1752			GT_USER_INTERRUPT |
1753			GT_PIPE_NOTIFY |
1754			GT_BSD_USER_INTERRUPT;
1755	I915_WRITE(GTIER, render_irqs);
1756	POSTING_READ(GTIER);
1757
1758	if (HAS_PCH_CPT(dev)) {
1759		hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1760				SDE_PORTB_HOTPLUG_CPT |
1761				SDE_PORTC_HOTPLUG_CPT |
1762				SDE_PORTD_HOTPLUG_CPT);
1763	} else {
1764		hotplug_mask = (SDE_CRT_HOTPLUG |
1765				SDE_PORTB_HOTPLUG |
1766				SDE_PORTC_HOTPLUG |
1767				SDE_PORTD_HOTPLUG |
1768				SDE_AUX_MASK);
 
 
 
1769	}
1770
1771	dev_priv->pch_irq_mask = ~hotplug_mask;
1772
1773	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1774	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1775	I915_WRITE(SDEIER, hotplug_mask);
1776	POSTING_READ(SDEIER);
 
 
 
1777
1778	ironlake_enable_pch_hotplug(dev);
1779
1780	if (IS_IRONLAKE_M(dev)) {
1781		/* Clear & enable PCU event interrupts */
1782		I915_WRITE(DEIIR, DE_PCU_EVENT);
1783		I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1784		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
 
 
 
 
1785	}
1786
1787	return 0;
1788}
1789
1790static int ivybridge_irq_postinstall(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791{
1792	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1793	/* enable kind of interrupts always enabled */
1794	u32 display_mask =
1795		DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
1796		DE_PLANEC_FLIP_DONE_IVB |
1797		DE_PLANEB_FLIP_DONE_IVB |
1798		DE_PLANEA_FLIP_DONE_IVB;
1799	u32 render_irqs;
1800	u32 hotplug_mask;
1801
1802	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804	/* should always can generate irq */
1805	I915_WRITE(DEIIR, I915_READ(DEIIR));
1806	I915_WRITE(DEIMR, dev_priv->irq_mask);
1807	I915_WRITE(DEIER,
1808		   display_mask |
1809		   DE_PIPEC_VBLANK_IVB |
1810		   DE_PIPEB_VBLANK_IVB |
1811		   DE_PIPEA_VBLANK_IVB);
1812	POSTING_READ(DEIER);
1813
1814	dev_priv->gt_irq_mask = ~0;
 
 
 
1815
1816	I915_WRITE(GTIIR, I915_READ(GTIIR));
1817	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 
1818
1819	render_irqs = GT_USER_INTERRUPT | GEN6_BSD_USER_INTERRUPT |
1820		GEN6_BLITTER_USER_INTERRUPT;
1821	I915_WRITE(GTIER, render_irqs);
1822	POSTING_READ(GTIER);
1823
1824	hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1825			SDE_PORTB_HOTPLUG_CPT |
1826			SDE_PORTC_HOTPLUG_CPT |
1827			SDE_PORTD_HOTPLUG_CPT);
1828	dev_priv->pch_irq_mask = ~hotplug_mask;
1829
1830	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1831	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1832	I915_WRITE(SDEIER, hotplug_mask);
1833	POSTING_READ(SDEIER);
1834
1835	ironlake_enable_pch_hotplug(dev);
1836
1837	return 0;
 
1838}
1839
1840static int valleyview_irq_postinstall(struct drm_device *dev)
1841{
1842	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1843	u32 render_irqs;
1844	u32 enable_mask;
1845	u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1846	u16 msid;
 
 
 
 
 
1847
1848	enable_mask = I915_DISPLAY_PORT_INTERRUPT;
1849	enable_mask |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
1850		I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1851
1852	dev_priv->irq_mask = ~enable_mask;
1853
1854	dev_priv->pipestat[0] = 0;
1855	dev_priv->pipestat[1] = 0;
1856
1857	/* Hack for broken MSIs on VLV */
1858	pci_write_config_dword(dev_priv->dev->pdev, 0x94, 0xfee00000);
1859	pci_read_config_word(dev->pdev, 0x98, &msid);
1860	msid &= 0xff; /* mask out delivery bits */
1861	msid |= (1<<14);
1862	pci_write_config_word(dev_priv->dev->pdev, 0x98, msid);
1863
1864	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
1865	I915_WRITE(VLV_IER, enable_mask);
1866	I915_WRITE(VLV_IIR, 0xffffffff);
1867	I915_WRITE(PIPESTAT(0), 0xffff);
1868	I915_WRITE(PIPESTAT(1), 0xffff);
1869	POSTING_READ(VLV_IER);
1870
1871	I915_WRITE(VLV_IIR, 0xffffffff);
1872	I915_WRITE(VLV_IIR, 0xffffffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873
1874	render_irqs = GT_GEN6_BLT_FLUSHDW_NOTIFY_INTERRUPT |
1875		GT_GEN6_BLT_CS_ERROR_INTERRUPT |
1876		GT_GEN6_BLT_USER_INTERRUPT |
1877		GT_GEN6_BSD_USER_INTERRUPT |
1878		GT_GEN6_BSD_CS_ERROR_INTERRUPT |
1879		GT_GEN7_L3_PARITY_ERROR_INTERRUPT |
1880		GT_PIPE_NOTIFY |
1881		GT_RENDER_CS_ERROR_INTERRUPT |
1882		GT_SYNC_STATUS |
1883		GT_USER_INTERRUPT;
1884
1885	dev_priv->gt_irq_mask = ~render_irqs;
1886
1887	I915_WRITE(GTIIR, I915_READ(GTIIR));
1888	I915_WRITE(GTIIR, I915_READ(GTIIR));
1889	I915_WRITE(GTIMR, 0);
1890	I915_WRITE(GTIER, render_irqs);
1891	POSTING_READ(GTIER);
1892
1893	/* ack & enable invalid PTE error interrupts */
1894#if 0 /* FIXME: add support to irq handler for checking these bits */
1895	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
1896	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
1897#endif
1898
1899	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1900#if 0 /* FIXME: check register definitions; some have moved */
1901	/* Note HDMI and DP share bits */
1902	if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1903		hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1904	if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1905		hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1906	if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1907		hotplug_en |= HDMID_HOTPLUG_INT_EN;
1908	if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1909		hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1910	if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1911		hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1912	if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1913		hotplug_en |= CRT_HOTPLUG_INT_EN;
1914		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915	}
1916#endif
1917
1918	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919
1920	return 0;
1921}
1922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923static void valleyview_irq_uninstall(struct drm_device *dev)
1924{
1925	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1926	int pipe;
1927
1928	if (!dev_priv)
1929		return;
1930
1931	for_each_pipe(pipe)
1932		I915_WRITE(PIPESTAT(pipe), 0xffff);
 
1933
1934	I915_WRITE(HWSTAM, 0xffffffff);
1935	I915_WRITE(PORT_HOTPLUG_EN, 0);
1936	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1937	for_each_pipe(pipe)
1938		I915_WRITE(PIPESTAT(pipe), 0xffff);
1939	I915_WRITE(VLV_IIR, 0xffffffff);
1940	I915_WRITE(VLV_IMR, 0xffffffff);
1941	I915_WRITE(VLV_IER, 0x0);
1942	POSTING_READ(VLV_IER);
 
 
 
 
 
 
 
 
 
 
 
1943}
1944
1945static void ironlake_irq_uninstall(struct drm_device *dev)
1946{
1947	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1948
1949	if (!dev_priv)
1950		return;
1951
1952	I915_WRITE(HWSTAM, 0xffffffff);
1953
1954	I915_WRITE(DEIMR, 0xffffffff);
1955	I915_WRITE(DEIER, 0x0);
1956	I915_WRITE(DEIIR, I915_READ(DEIIR));
1957
1958	I915_WRITE(GTIMR, 0xffffffff);
1959	I915_WRITE(GTIER, 0x0);
1960	I915_WRITE(GTIIR, I915_READ(GTIIR));
1961
1962	I915_WRITE(SDEIMR, 0xffffffff);
1963	I915_WRITE(SDEIER, 0x0);
1964	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1965}
1966
1967static void i8xx_irq_preinstall(struct drm_device * dev)
1968{
1969	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1970	int pipe;
1971
1972	atomic_set(&dev_priv->irq_received, 0);
1973
1974	for_each_pipe(pipe)
1975		I915_WRITE(PIPESTAT(pipe), 0);
1976	I915_WRITE16(IMR, 0xffff);
1977	I915_WRITE16(IER, 0x0);
1978	POSTING_READ16(IER);
1979}
1980
1981static int i8xx_irq_postinstall(struct drm_device *dev)
1982{
1983	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1984
1985	dev_priv->pipestat[0] = 0;
1986	dev_priv->pipestat[1] = 0;
1987
1988	I915_WRITE16(EMR,
1989		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
1990
1991	/* Unmask the interrupts that we always want on. */
1992	dev_priv->irq_mask =
1993		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
1994		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
1995		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
1996		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
1997		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1998	I915_WRITE16(IMR, dev_priv->irq_mask);
1999
2000	I915_WRITE16(IER,
2001		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2002		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2003		     I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2004		     I915_USER_INTERRUPT);
2005	POSTING_READ16(IER);
2006
 
 
 
 
 
 
 
2007	return 0;
2008}
2009
2010static irqreturn_t i8xx_irq_handler(DRM_IRQ_ARGS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011{
2012	struct drm_device *dev = (struct drm_device *) arg;
2013	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2014	u16 iir, new_iir;
2015	u32 pipe_stats[2];
2016	unsigned long irqflags;
2017	int irq_received;
2018	int pipe;
2019	u16 flip_mask =
2020		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2021		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
 
2022
2023	atomic_inc(&dev_priv->irq_received);
 
2024
 
 
 
 
2025	iir = I915_READ16(IIR);
2026	if (iir == 0)
2027		return IRQ_NONE;
2028
2029	while (iir & ~flip_mask) {
2030		/* Can't rely on pipestat interrupt bit in iir as it might
2031		 * have been cleared after the pipestat interrupt was received.
2032		 * It doesn't set the bit in iir again, but it still produces
2033		 * interrupts (for non-MSI).
2034		 */
2035		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2036		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2037			i915_handle_error(dev, false);
2038
2039		for_each_pipe(pipe) {
2040			int reg = PIPESTAT(pipe);
2041			pipe_stats[pipe] = I915_READ(reg);
2042
2043			/*
2044			 * Clear the PIPE*STAT regs before the IIR
2045			 */
2046			if (pipe_stats[pipe] & 0x8000ffff) {
2047				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2048					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2049							 pipe_name(pipe));
2050				I915_WRITE(reg, pipe_stats[pipe]);
2051				irq_received = 1;
2052			}
2053		}
2054		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2055
2056		I915_WRITE16(IIR, iir & ~flip_mask);
2057		new_iir = I915_READ16(IIR); /* Flush posted writes */
2058
2059		i915_update_dri1_breadcrumb(dev);
 
 
 
 
 
 
2060
2061		if (iir & I915_USER_INTERRUPT)
2062			notify_ring(dev, &dev_priv->ring[RCS]);
 
2063
2064		if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2065		    drm_handle_vblank(dev, 0)) {
2066			if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
2067				intel_prepare_page_flip(dev, 0);
2068				intel_finish_page_flip(dev, 0);
2069				flip_mask &= ~I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
2070			}
2071		}
2072
2073		if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2074		    drm_handle_vblank(dev, 1)) {
2075			if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
2076				intel_prepare_page_flip(dev, 1);
2077				intel_finish_page_flip(dev, 1);
2078				flip_mask &= ~I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2079			}
2080		}
2081
2082		iir = new_iir;
2083	}
 
 
 
 
2084
2085	return IRQ_HANDLED;
2086}
2087
2088static void i8xx_irq_uninstall(struct drm_device * dev)
2089{
2090	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2091	int pipe;
2092
2093	for_each_pipe(pipe) {
2094		/* Clear enable bits; then clear status bits */
2095		I915_WRITE(PIPESTAT(pipe), 0);
2096		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2097	}
2098	I915_WRITE16(IMR, 0xffff);
2099	I915_WRITE16(IER, 0x0);
2100	I915_WRITE16(IIR, I915_READ16(IIR));
2101}
2102
2103static void i915_irq_preinstall(struct drm_device * dev)
2104{
2105	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2106	int pipe;
2107
2108	atomic_set(&dev_priv->irq_received, 0);
2109
2110	if (I915_HAS_HOTPLUG(dev)) {
2111		I915_WRITE(PORT_HOTPLUG_EN, 0);
2112		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2113	}
2114
2115	I915_WRITE16(HWSTAM, 0xeffe);
2116	for_each_pipe(pipe)
2117		I915_WRITE(PIPESTAT(pipe), 0);
2118	I915_WRITE(IMR, 0xffffffff);
2119	I915_WRITE(IER, 0x0);
2120	POSTING_READ(IER);
2121}
2122
2123static int i915_irq_postinstall(struct drm_device *dev)
2124{
2125	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2126	u32 enable_mask;
2127
2128	dev_priv->pipestat[0] = 0;
2129	dev_priv->pipestat[1] = 0;
2130
2131	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2132
2133	/* Unmask the interrupts that we always want on. */
2134	dev_priv->irq_mask =
2135		~(I915_ASLE_INTERRUPT |
2136		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2137		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2138		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2139		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2140		  I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2141
2142	enable_mask =
2143		I915_ASLE_INTERRUPT |
2144		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2145		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2146		I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2147		I915_USER_INTERRUPT;
2148
2149	if (I915_HAS_HOTPLUG(dev)) {
 
 
 
2150		/* Enable in IER... */
2151		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2152		/* and unmask in IMR */
2153		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2154	}
2155
2156	I915_WRITE(IMR, dev_priv->irq_mask);
2157	I915_WRITE(IER, enable_mask);
2158	POSTING_READ(IER);
2159
2160	if (I915_HAS_HOTPLUG(dev)) {
2161		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162
2163		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
2164			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
2165		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
2166			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
2167		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
2168			hotplug_en |= HDMID_HOTPLUG_INT_EN;
2169		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
2170			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
2171		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
2172			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
2173		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
2174			hotplug_en |= CRT_HOTPLUG_INT_EN;
2175			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2176		}
2177
2178		/* Ignore TV since it's buggy */
 
2179
2180		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2181	}
 
 
 
 
 
 
2182
2183	intel_opregion_enable_asle(dev);
 
 
2184
2185	return 0;
 
 
2186}
2187
2188static irqreturn_t i915_irq_handler(DRM_IRQ_ARGS)
2189{
2190	struct drm_device *dev = (struct drm_device *) arg;
2191	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2192	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2193	unsigned long irqflags;
2194	u32 flip_mask =
2195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2197	u32 flip[2] = {
2198		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT,
2199		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT
2200	};
2201	int pipe, ret = IRQ_NONE;
2202
2203	atomic_inc(&dev_priv->irq_received);
 
 
 
 
2204
2205	iir = I915_READ(IIR);
2206	do {
2207		bool irq_received = (iir & ~flip_mask) != 0;
2208		bool blc_event = false;
2209
2210		/* Can't rely on pipestat interrupt bit in iir as it might
2211		 * have been cleared after the pipestat interrupt was received.
2212		 * It doesn't set the bit in iir again, but it still produces
2213		 * interrupts (for non-MSI).
2214		 */
2215		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2217			i915_handle_error(dev, false);
2218
2219		for_each_pipe(pipe) {
2220			int reg = PIPESTAT(pipe);
2221			pipe_stats[pipe] = I915_READ(reg);
2222
2223			/* Clear the PIPE*STAT regs before the IIR */
2224			if (pipe_stats[pipe] & 0x8000ffff) {
2225				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2226					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2227							 pipe_name(pipe));
2228				I915_WRITE(reg, pipe_stats[pipe]);
2229				irq_received = true;
2230			}
2231		}
2232		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2233
2234		if (!irq_received)
2235			break;
2236
2237		/* Consume port.  Then clear IIR or we'll miss events */
2238		if ((I915_HAS_HOTPLUG(dev)) &&
2239		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2240			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2241
2242			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2243				  hotplug_status);
2244			if (hotplug_status & dev_priv->hotplug_supported_mask)
2245				queue_work(dev_priv->wq,
2246					   &dev_priv->hotplug_work);
2247
2248			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2249			POSTING_READ(PORT_HOTPLUG_STAT);
2250		}
2251
2252		I915_WRITE(IIR, iir & ~flip_mask);
2253		new_iir = I915_READ(IIR); /* Flush posted writes */
2254
2255		if (iir & I915_USER_INTERRUPT)
2256			notify_ring(dev, &dev_priv->ring[RCS]);
2257
2258		for_each_pipe(pipe) {
2259			int plane = pipe;
2260			if (IS_MOBILE(dev))
2261				plane = !plane;
 
2262			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2263			    drm_handle_vblank(dev, pipe)) {
2264				if (iir & flip[plane]) {
2265					intel_prepare_page_flip(dev, plane);
2266					intel_finish_page_flip(dev, pipe);
2267					flip_mask &= ~flip[plane];
2268				}
2269			}
2270
2271			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2272				blc_event = true;
 
 
 
 
 
 
 
2273		}
2274
2275		if (blc_event || (iir & I915_ASLE_INTERRUPT))
2276			intel_opregion_asle_intr(dev);
2277
2278		/* With MSI, interrupts are only generated when iir
2279		 * transitions from zero to nonzero.  If another bit got
2280		 * set while we were handling the existing iir bits, then
2281		 * we would never get another interrupt.
2282		 *
2283		 * This is fine on non-MSI as well, as if we hit this path
2284		 * we avoid exiting the interrupt handler only to generate
2285		 * another one.
2286		 *
2287		 * Note that for MSI this could cause a stray interrupt report
2288		 * if an interrupt landed in the time between writing IIR and
2289		 * the posting read.  This should be rare enough to never
2290		 * trigger the 99% of 100,000 interrupts test for disabling
2291		 * stray interrupts.
2292		 */
2293		ret = IRQ_HANDLED;
2294		iir = new_iir;
2295	} while (iir & ~flip_mask);
2296
2297	i915_update_dri1_breadcrumb(dev);
2298
2299	return ret;
2300}
2301
2302static void i915_irq_uninstall(struct drm_device * dev)
2303{
2304	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2305	int pipe;
2306
2307	if (I915_HAS_HOTPLUG(dev)) {
2308		I915_WRITE(PORT_HOTPLUG_EN, 0);
2309		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2310	}
2311
2312	I915_WRITE16(HWSTAM, 0xffff);
2313	for_each_pipe(pipe) {
2314		/* Clear enable bits; then clear status bits */
2315		I915_WRITE(PIPESTAT(pipe), 0);
2316		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2317	}
2318	I915_WRITE(IMR, 0xffffffff);
2319	I915_WRITE(IER, 0x0);
2320
2321	I915_WRITE(IIR, I915_READ(IIR));
2322}
2323
2324static void i965_irq_preinstall(struct drm_device * dev)
2325{
2326	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2327	int pipe;
2328
2329	atomic_set(&dev_priv->irq_received, 0);
2330
2331	if (I915_HAS_HOTPLUG(dev)) {
2332		I915_WRITE(PORT_HOTPLUG_EN, 0);
2333		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2334	}
2335
2336	I915_WRITE(HWSTAM, 0xeffe);
2337	for_each_pipe(pipe)
2338		I915_WRITE(PIPESTAT(pipe), 0);
2339	I915_WRITE(IMR, 0xffffffff);
2340	I915_WRITE(IER, 0x0);
2341	POSTING_READ(IER);
2342}
2343
2344static int i965_irq_postinstall(struct drm_device *dev)
2345{
2346	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2347	u32 enable_mask;
2348	u32 error_mask;
2349
2350	/* Unmask the interrupts that we always want on. */
2351	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
 
2352			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2353			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2354			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2355			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2356			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2357
2358	enable_mask = ~dev_priv->irq_mask;
 
 
2359	enable_mask |= I915_USER_INTERRUPT;
2360
2361	if (IS_G4X(dev))
2362		enable_mask |= I915_BSD_USER_INTERRUPT;
2363
2364	dev_priv->pipestat[0] = 0;
2365	dev_priv->pipestat[1] = 0;
2366
2367	if (I915_HAS_HOTPLUG(dev)) {
2368		/* Enable in IER... */
2369		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2370		/* and unmask in IMR */
2371		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2372	}
2373
2374	/*
2375	 * Enable some error detection, note the instruction error mask
2376	 * bit is reserved, so we leave it masked.
2377	 */
2378	if (IS_G4X(dev)) {
2379		error_mask = ~(GM45_ERROR_PAGE_TABLE |
2380			       GM45_ERROR_MEM_PRIV |
2381			       GM45_ERROR_CP_PRIV |
2382			       I915_ERROR_MEMORY_REFRESH);
2383	} else {
2384		error_mask = ~(I915_ERROR_PAGE_TABLE |
2385			       I915_ERROR_MEMORY_REFRESH);
2386	}
2387	I915_WRITE(EMR, error_mask);
2388
2389	I915_WRITE(IMR, dev_priv->irq_mask);
2390	I915_WRITE(IER, enable_mask);
2391	POSTING_READ(IER);
2392
2393	if (I915_HAS_HOTPLUG(dev)) {
2394		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
 
 
2395
2396		/* Note HDMI and DP share bits */
2397		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
2398			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
2399		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
2400			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
2401		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
2402			hotplug_en |= HDMID_HOTPLUG_INT_EN;
2403		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
2404			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
2405		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
2406			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
2407		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
2408			hotplug_en |= CRT_HOTPLUG_INT_EN;
2409
2410			/* Programming the CRT detection parameters tends
2411			   to generate a spurious hotplug event about three
2412			   seconds later.  So just do it once.
2413			*/
2414			if (IS_G4X(dev))
2415				hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2416			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2417		}
2418
2419		/* Ignore TV since it's buggy */
 
 
 
2420
2421		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2422	}
2423
2424	intel_opregion_enable_asle(dev);
 
 
 
 
 
 
 
 
 
2425
2426	return 0;
 
 
 
 
 
2427}
2428
2429static irqreturn_t i965_irq_handler(DRM_IRQ_ARGS)
2430{
2431	struct drm_device *dev = (struct drm_device *) arg;
2432	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2433	u32 iir, new_iir;
2434	u32 pipe_stats[I915_MAX_PIPES];
2435	unsigned long irqflags;
2436	int irq_received;
2437	int ret = IRQ_NONE, pipe;
 
 
 
2438
2439	atomic_inc(&dev_priv->irq_received);
 
 
 
 
2440
2441	iir = I915_READ(IIR);
2442
2443	for (;;) {
 
2444		bool blc_event = false;
2445
2446		irq_received = iir != 0;
2447
2448		/* Can't rely on pipestat interrupt bit in iir as it might
2449		 * have been cleared after the pipestat interrupt was received.
2450		 * It doesn't set the bit in iir again, but it still produces
2451		 * interrupts (for non-MSI).
2452		 */
2453		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2454		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2455			i915_handle_error(dev, false);
2456
2457		for_each_pipe(pipe) {
2458			int reg = PIPESTAT(pipe);
2459			pipe_stats[pipe] = I915_READ(reg);
2460
2461			/*
2462			 * Clear the PIPE*STAT regs before the IIR
2463			 */
2464			if (pipe_stats[pipe] & 0x8000ffff) {
2465				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2466					DRM_DEBUG_DRIVER("pipe %c underrun\n",
2467							 pipe_name(pipe));
2468				I915_WRITE(reg, pipe_stats[pipe]);
2469				irq_received = 1;
2470			}
2471		}
2472		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2473
2474		if (!irq_received)
2475			break;
2476
2477		ret = IRQ_HANDLED;
2478
2479		/* Consume port.  Then clear IIR or we'll miss events */
2480		if ((I915_HAS_HOTPLUG(dev)) &&
2481		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2482			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2483
2484			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2485				  hotplug_status);
2486			if (hotplug_status & dev_priv->hotplug_supported_mask)
2487				queue_work(dev_priv->wq,
2488					   &dev_priv->hotplug_work);
2489
2490			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2491			I915_READ(PORT_HOTPLUG_STAT);
2492		}
2493
2494		I915_WRITE(IIR, iir);
2495		new_iir = I915_READ(IIR); /* Flush posted writes */
2496
2497		if (iir & I915_USER_INTERRUPT)
2498			notify_ring(dev, &dev_priv->ring[RCS]);
2499		if (iir & I915_BSD_USER_INTERRUPT)
2500			notify_ring(dev, &dev_priv->ring[VCS]);
2501
2502		if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT)
2503			intel_prepare_page_flip(dev, 0);
2504
2505		if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT)
2506			intel_prepare_page_flip(dev, 1);
2507
2508		for_each_pipe(pipe) {
2509			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2510			    drm_handle_vblank(dev, pipe)) {
2511				i915_pageflip_stall_check(dev, pipe);
2512				intel_finish_page_flip(dev, pipe);
2513			}
2514
2515			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2516				blc_event = true;
 
 
 
 
 
 
2517		}
2518
2519
2520		if (blc_event || (iir & I915_ASLE_INTERRUPT))
2521			intel_opregion_asle_intr(dev);
2522
 
 
 
2523		/* With MSI, interrupts are only generated when iir
2524		 * transitions from zero to nonzero.  If another bit got
2525		 * set while we were handling the existing iir bits, then
2526		 * we would never get another interrupt.
2527		 *
2528		 * This is fine on non-MSI as well, as if we hit this path
2529		 * we avoid exiting the interrupt handler only to generate
2530		 * another one.
2531		 *
2532		 * Note that for MSI this could cause a stray interrupt report
2533		 * if an interrupt landed in the time between writing IIR and
2534		 * the posting read.  This should be rare enough to never
2535		 * trigger the 99% of 100,000 interrupts test for disabling
2536		 * stray interrupts.
2537		 */
2538		iir = new_iir;
2539	}
2540
2541	i915_update_dri1_breadcrumb(dev);
2542
2543	return ret;
2544}
2545
2546static void i965_irq_uninstall(struct drm_device * dev)
2547{
2548	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2549	int pipe;
2550
2551	if (!dev_priv)
2552		return;
2553
2554	if (I915_HAS_HOTPLUG(dev)) {
2555		I915_WRITE(PORT_HOTPLUG_EN, 0);
2556		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2557	}
2558
2559	I915_WRITE(HWSTAM, 0xffffffff);
2560	for_each_pipe(pipe)
2561		I915_WRITE(PIPESTAT(pipe), 0);
2562	I915_WRITE(IMR, 0xffffffff);
2563	I915_WRITE(IER, 0x0);
2564
2565	for_each_pipe(pipe)
2566		I915_WRITE(PIPESTAT(pipe),
2567			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2568	I915_WRITE(IIR, I915_READ(IIR));
2569}
2570
2571void intel_irq_init(struct drm_device *dev)
 
 
 
 
 
 
 
2572{
2573	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574
2575	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
2576	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
2577	INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
2578
2579	dev->driver->get_vblank_counter = i915_get_vblank_counter;
2580	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2581	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 
2582		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2583		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
 
 
 
2584	}
2585
2586	if (drm_core_check_feature(dev, DRIVER_MODESET))
2587		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2588	else
2589		dev->driver->get_vblank_timestamp = NULL;
 
 
 
 
 
2590	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
2591
2592	if (IS_VALLEYVIEW(dev)) {
 
 
 
 
 
 
 
 
2593		dev->driver->irq_handler = valleyview_irq_handler;
2594		dev->driver->irq_preinstall = valleyview_irq_preinstall;
2595		dev->driver->irq_postinstall = valleyview_irq_postinstall;
2596		dev->driver->irq_uninstall = valleyview_irq_uninstall;
2597		dev->driver->enable_vblank = valleyview_enable_vblank;
2598		dev->driver->disable_vblank = valleyview_disable_vblank;
2599	} else if (IS_IVYBRIDGE(dev)) {
2600		/* Share pre & uninstall handlers with ILK/SNB */
2601		dev->driver->irq_handler = ivybridge_irq_handler;
2602		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2603		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2604		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2605		dev->driver->enable_vblank = ivybridge_enable_vblank;
2606		dev->driver->disable_vblank = ivybridge_disable_vblank;
2607	} else if (IS_HASWELL(dev)) {
2608		/* Share interrupts handling with IVB */
2609		dev->driver->irq_handler = ivybridge_irq_handler;
2610		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2611		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2612		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2613		dev->driver->enable_vblank = ivybridge_enable_vblank;
2614		dev->driver->disable_vblank = ivybridge_disable_vblank;
2615	} else if (HAS_PCH_SPLIT(dev)) {
2616		dev->driver->irq_handler = ironlake_irq_handler;
2617		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2618		dev->driver->irq_postinstall = ironlake_irq_postinstall;
2619		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2620		dev->driver->enable_vblank = ironlake_enable_vblank;
2621		dev->driver->disable_vblank = ironlake_disable_vblank;
 
2622	} else {
2623		if (INTEL_INFO(dev)->gen == 2) {
2624			dev->driver->irq_preinstall = i8xx_irq_preinstall;
2625			dev->driver->irq_postinstall = i8xx_irq_postinstall;
2626			dev->driver->irq_handler = i8xx_irq_handler;
2627			dev->driver->irq_uninstall = i8xx_irq_uninstall;
2628		} else if (INTEL_INFO(dev)->gen == 3) {
2629			dev->driver->irq_preinstall = i915_irq_preinstall;
2630			dev->driver->irq_postinstall = i915_irq_postinstall;
2631			dev->driver->irq_uninstall = i915_irq_uninstall;
2632			dev->driver->irq_handler = i915_irq_handler;
2633		} else {
2634			dev->driver->irq_preinstall = i965_irq_preinstall;
2635			dev->driver->irq_postinstall = i965_irq_postinstall;
2636			dev->driver->irq_uninstall = i965_irq_uninstall;
2637			dev->driver->irq_handler = i965_irq_handler;
2638		}
 
 
2639		dev->driver->enable_vblank = i915_enable_vblank;
2640		dev->driver->disable_vblank = i915_disable_vblank;
2641	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}