Loading...
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/ctype.h>
9#include <linux/delay.h>
10#include <linux/sched.h>
11#include <linux/init.h>
12#include <linux/kprobes.h>
13#include <linux/kgdb.h>
14#include <linux/smp.h>
15#include <linux/io.h>
16#include <linux/syscore_ops.h>
17
18#include <asm/stackprotector.h>
19#include <asm/perf_event.h>
20#include <asm/mmu_context.h>
21#include <asm/archrandom.h>
22#include <asm/hypervisor.h>
23#include <asm/processor.h>
24#include <asm/tlbflush.h>
25#include <asm/debugreg.h>
26#include <asm/sections.h>
27#include <asm/vsyscall.h>
28#include <linux/topology.h>
29#include <linux/cpumask.h>
30#include <asm/pgtable.h>
31#include <linux/atomic.h>
32#include <asm/proto.h>
33#include <asm/setup.h>
34#include <asm/apic.h>
35#include <asm/desc.h>
36#include <asm/fpu/internal.h>
37#include <asm/mtrr.h>
38#include <linux/numa.h>
39#include <asm/asm.h>
40#include <asm/cpu.h>
41#include <asm/mce.h>
42#include <asm/msr.h>
43#include <asm/pat.h>
44#include <asm/microcode.h>
45#include <asm/microcode_intel.h>
46
47#ifdef CONFIG_X86_LOCAL_APIC
48#include <asm/uv/uv.h>
49#endif
50
51#include "cpu.h"
52
53/* all of these masks are initialized in setup_cpu_local_masks() */
54cpumask_var_t cpu_initialized_mask;
55cpumask_var_t cpu_callout_mask;
56cpumask_var_t cpu_callin_mask;
57
58/* representing cpus for which sibling maps can be computed */
59cpumask_var_t cpu_sibling_setup_mask;
60
61/* correctly size the local cpu masks */
62void __init setup_cpu_local_masks(void)
63{
64 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68}
69
70static void default_init(struct cpuinfo_x86 *c)
71{
72#ifdef CONFIG_X86_64
73 cpu_detect_cache_sizes(c);
74#else
75 /* Not much we can do here... */
76 /* Check if at least it has cpuid */
77 if (c->cpuid_level == -1) {
78 /* No cpuid. It must be an ancient CPU */
79 if (c->x86 == 4)
80 strcpy(c->x86_model_id, "486");
81 else if (c->x86 == 3)
82 strcpy(c->x86_model_id, "386");
83 }
84#endif
85}
86
87static const struct cpu_dev default_cpu = {
88 .c_init = default_init,
89 .c_vendor = "Unknown",
90 .c_x86_vendor = X86_VENDOR_UNKNOWN,
91};
92
93static const struct cpu_dev *this_cpu = &default_cpu;
94
95DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96#ifdef CONFIG_X86_64
97 /*
98 * We need valid kernel segments for data and code in long mode too
99 * IRET will check the segment types kkeil 2000/10/28
100 * Also sysret mandates a special GDT layout
101 *
102 * TLS descriptors are currently at a different place compared to i386.
103 * Hopefully nobody expects them at a fixed place (Wine?)
104 */
105 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111#else
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 /*
117 * Segments used for calling PnP BIOS have byte granularity.
118 * They code segments and data segments have fixed 64k limits,
119 * the transfer segment sizes are set at run time.
120 */
121 /* 32-bit code */
122 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 /* 16-bit code */
124 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 /* 16-bit data */
128 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
129 /* 16-bit data */
130 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
131 /*
132 * The APM segments have byte granularity and their bases
133 * are set at run time. All have 64k limits.
134 */
135 /* 32-bit code */
136 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 /* 16-bit code */
138 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 /* data */
140 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141
142 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 GDT_STACK_CANARY_INIT
145#endif
146} };
147EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148
149static int __init x86_mpx_setup(char *s)
150{
151 /* require an exact match without trailing characters */
152 if (strlen(s))
153 return 0;
154
155 /* do not emit a message if the feature is not present */
156 if (!boot_cpu_has(X86_FEATURE_MPX))
157 return 1;
158
159 setup_clear_cpu_cap(X86_FEATURE_MPX);
160 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 return 1;
162}
163__setup("nompx", x86_mpx_setup);
164
165static int __init x86_noinvpcid_setup(char *s)
166{
167 /* noinvpcid doesn't accept parameters */
168 if (s)
169 return -EINVAL;
170
171 /* do not emit a message if the feature is not present */
172 if (!boot_cpu_has(X86_FEATURE_INVPCID))
173 return 0;
174
175 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
176 pr_info("noinvpcid: INVPCID feature disabled\n");
177 return 0;
178}
179early_param("noinvpcid", x86_noinvpcid_setup);
180
181#ifdef CONFIG_X86_32
182static int cachesize_override = -1;
183static int disable_x86_serial_nr = 1;
184
185static int __init cachesize_setup(char *str)
186{
187 get_option(&str, &cachesize_override);
188 return 1;
189}
190__setup("cachesize=", cachesize_setup);
191
192static int __init x86_sep_setup(char *s)
193{
194 setup_clear_cpu_cap(X86_FEATURE_SEP);
195 return 1;
196}
197__setup("nosep", x86_sep_setup);
198
199/* Standard macro to see if a specific flag is changeable */
200static inline int flag_is_changeable_p(u32 flag)
201{
202 u32 f1, f2;
203
204 /*
205 * Cyrix and IDT cpus allow disabling of CPUID
206 * so the code below may return different results
207 * when it is executed before and after enabling
208 * the CPUID. Add "volatile" to not allow gcc to
209 * optimize the subsequent calls to this function.
210 */
211 asm volatile ("pushfl \n\t"
212 "pushfl \n\t"
213 "popl %0 \n\t"
214 "movl %0, %1 \n\t"
215 "xorl %2, %0 \n\t"
216 "pushl %0 \n\t"
217 "popfl \n\t"
218 "pushfl \n\t"
219 "popl %0 \n\t"
220 "popfl \n\t"
221
222 : "=&r" (f1), "=&r" (f2)
223 : "ir" (flag));
224
225 return ((f1^f2) & flag) != 0;
226}
227
228/* Probe for the CPUID instruction */
229int have_cpuid_p(void)
230{
231 return flag_is_changeable_p(X86_EFLAGS_ID);
232}
233
234static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
235{
236 unsigned long lo, hi;
237
238 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
239 return;
240
241 /* Disable processor serial number: */
242
243 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
244 lo |= 0x200000;
245 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246
247 pr_notice("CPU serial number disabled.\n");
248 clear_cpu_cap(c, X86_FEATURE_PN);
249
250 /* Disabling the serial number may affect the cpuid level */
251 c->cpuid_level = cpuid_eax(0);
252}
253
254static int __init x86_serial_nr_setup(char *s)
255{
256 disable_x86_serial_nr = 0;
257 return 1;
258}
259__setup("serialnumber", x86_serial_nr_setup);
260#else
261static inline int flag_is_changeable_p(u32 flag)
262{
263 return 1;
264}
265static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266{
267}
268#endif
269
270static __init int setup_disable_smep(char *arg)
271{
272 setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 return 1;
274}
275__setup("nosmep", setup_disable_smep);
276
277static __always_inline void setup_smep(struct cpuinfo_x86 *c)
278{
279 if (cpu_has(c, X86_FEATURE_SMEP))
280 cr4_set_bits(X86_CR4_SMEP);
281}
282
283static __init int setup_disable_smap(char *arg)
284{
285 setup_clear_cpu_cap(X86_FEATURE_SMAP);
286 return 1;
287}
288__setup("nosmap", setup_disable_smap);
289
290static __always_inline void setup_smap(struct cpuinfo_x86 *c)
291{
292 unsigned long eflags = native_save_fl();
293
294 /* This should have been cleared long ago */
295 BUG_ON(eflags & X86_EFLAGS_AC);
296
297 if (cpu_has(c, X86_FEATURE_SMAP)) {
298#ifdef CONFIG_X86_SMAP
299 cr4_set_bits(X86_CR4_SMAP);
300#else
301 cr4_clear_bits(X86_CR4_SMAP);
302#endif
303 }
304}
305
306/*
307 * Protection Keys are not available in 32-bit mode.
308 */
309static bool pku_disabled;
310
311static __always_inline void setup_pku(struct cpuinfo_x86 *c)
312{
313 if (!cpu_has(c, X86_FEATURE_PKU))
314 return;
315 if (pku_disabled)
316 return;
317
318 cr4_set_bits(X86_CR4_PKE);
319 /*
320 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
321 * cpuid bit to be set. We need to ensure that we
322 * update that bit in this CPU's "cpu_info".
323 */
324 get_cpu_cap(c);
325}
326
327#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
328static __init int setup_disable_pku(char *arg)
329{
330 /*
331 * Do not clear the X86_FEATURE_PKU bit. All of the
332 * runtime checks are against OSPKE so clearing the
333 * bit does nothing.
334 *
335 * This way, we will see "pku" in cpuinfo, but not
336 * "ospke", which is exactly what we want. It shows
337 * that the CPU has PKU, but the OS has not enabled it.
338 * This happens to be exactly how a system would look
339 * if we disabled the config option.
340 */
341 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
342 pku_disabled = true;
343 return 1;
344}
345__setup("nopku", setup_disable_pku);
346#endif /* CONFIG_X86_64 */
347
348/*
349 * Some CPU features depend on higher CPUID levels, which may not always
350 * be available due to CPUID level capping or broken virtualization
351 * software. Add those features to this table to auto-disable them.
352 */
353struct cpuid_dependent_feature {
354 u32 feature;
355 u32 level;
356};
357
358static const struct cpuid_dependent_feature
359cpuid_dependent_features[] = {
360 { X86_FEATURE_MWAIT, 0x00000005 },
361 { X86_FEATURE_DCA, 0x00000009 },
362 { X86_FEATURE_XSAVE, 0x0000000d },
363 { 0, 0 }
364};
365
366static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
367{
368 const struct cpuid_dependent_feature *df;
369
370 for (df = cpuid_dependent_features; df->feature; df++) {
371
372 if (!cpu_has(c, df->feature))
373 continue;
374 /*
375 * Note: cpuid_level is set to -1 if unavailable, but
376 * extended_extended_level is set to 0 if unavailable
377 * and the legitimate extended levels are all negative
378 * when signed; hence the weird messing around with
379 * signs here...
380 */
381 if (!((s32)df->level < 0 ?
382 (u32)df->level > (u32)c->extended_cpuid_level :
383 (s32)df->level > (s32)c->cpuid_level))
384 continue;
385
386 clear_cpu_cap(c, df->feature);
387 if (!warn)
388 continue;
389
390 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
391 x86_cap_flag(df->feature), df->level);
392 }
393}
394
395/*
396 * Naming convention should be: <Name> [(<Codename>)]
397 * This table only is used unless init_<vendor>() below doesn't set it;
398 * in particular, if CPUID levels 0x80000002..4 are supported, this
399 * isn't used
400 */
401
402/* Look up CPU names by table lookup. */
403static const char *table_lookup_model(struct cpuinfo_x86 *c)
404{
405#ifdef CONFIG_X86_32
406 const struct legacy_cpu_model_info *info;
407
408 if (c->x86_model >= 16)
409 return NULL; /* Range check */
410
411 if (!this_cpu)
412 return NULL;
413
414 info = this_cpu->legacy_models;
415
416 while (info->family) {
417 if (info->family == c->x86)
418 return info->model_names[c->x86_model];
419 info++;
420 }
421#endif
422 return NULL; /* Not found */
423}
424
425__u32 cpu_caps_cleared[NCAPINTS];
426__u32 cpu_caps_set[NCAPINTS];
427
428void load_percpu_segment(int cpu)
429{
430#ifdef CONFIG_X86_32
431 loadsegment(fs, __KERNEL_PERCPU);
432#else
433 loadsegment(gs, 0);
434 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
435#endif
436 load_stack_canary_segment();
437}
438
439/*
440 * Current gdt points %fs at the "master" per-cpu area: after this,
441 * it's on the real one.
442 */
443void switch_to_new_gdt(int cpu)
444{
445 struct desc_ptr gdt_descr;
446
447 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
448 gdt_descr.size = GDT_SIZE - 1;
449 load_gdt(&gdt_descr);
450 /* Reload the per-cpu base */
451
452 load_percpu_segment(cpu);
453}
454
455static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
456
457static void get_model_name(struct cpuinfo_x86 *c)
458{
459 unsigned int *v;
460 char *p, *q, *s;
461
462 if (c->extended_cpuid_level < 0x80000004)
463 return;
464
465 v = (unsigned int *)c->x86_model_id;
466 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
467 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
468 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
469 c->x86_model_id[48] = 0;
470
471 /* Trim whitespace */
472 p = q = s = &c->x86_model_id[0];
473
474 while (*p == ' ')
475 p++;
476
477 while (*p) {
478 /* Note the last non-whitespace index */
479 if (!isspace(*p))
480 s = q;
481
482 *q++ = *p++;
483 }
484
485 *(s + 1) = '\0';
486}
487
488void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
489{
490 unsigned int n, dummy, ebx, ecx, edx, l2size;
491
492 n = c->extended_cpuid_level;
493
494 if (n >= 0x80000005) {
495 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
496 c->x86_cache_size = (ecx>>24) + (edx>>24);
497#ifdef CONFIG_X86_64
498 /* On K8 L1 TLB is inclusive, so don't count it */
499 c->x86_tlbsize = 0;
500#endif
501 }
502
503 if (n < 0x80000006) /* Some chips just has a large L1. */
504 return;
505
506 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
507 l2size = ecx >> 16;
508
509#ifdef CONFIG_X86_64
510 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
511#else
512 /* do processor-specific cache resizing */
513 if (this_cpu->legacy_cache_size)
514 l2size = this_cpu->legacy_cache_size(c, l2size);
515
516 /* Allow user to override all this if necessary. */
517 if (cachesize_override != -1)
518 l2size = cachesize_override;
519
520 if (l2size == 0)
521 return; /* Again, no L2 cache is possible */
522#endif
523
524 c->x86_cache_size = l2size;
525}
526
527u16 __read_mostly tlb_lli_4k[NR_INFO];
528u16 __read_mostly tlb_lli_2m[NR_INFO];
529u16 __read_mostly tlb_lli_4m[NR_INFO];
530u16 __read_mostly tlb_lld_4k[NR_INFO];
531u16 __read_mostly tlb_lld_2m[NR_INFO];
532u16 __read_mostly tlb_lld_4m[NR_INFO];
533u16 __read_mostly tlb_lld_1g[NR_INFO];
534
535static void cpu_detect_tlb(struct cpuinfo_x86 *c)
536{
537 if (this_cpu->c_detect_tlb)
538 this_cpu->c_detect_tlb(c);
539
540 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
541 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
542 tlb_lli_4m[ENTRIES]);
543
544 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
545 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
546 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
547}
548
549void detect_ht(struct cpuinfo_x86 *c)
550{
551#ifdef CONFIG_SMP
552 u32 eax, ebx, ecx, edx;
553 int index_msb, core_bits;
554 static bool printed;
555
556 if (!cpu_has(c, X86_FEATURE_HT))
557 return;
558
559 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
560 goto out;
561
562 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
563 return;
564
565 cpuid(1, &eax, &ebx, &ecx, &edx);
566
567 smp_num_siblings = (ebx & 0xff0000) >> 16;
568
569 if (smp_num_siblings == 1) {
570 pr_info_once("CPU0: Hyper-Threading is disabled\n");
571 goto out;
572 }
573
574 if (smp_num_siblings <= 1)
575 goto out;
576
577 index_msb = get_count_order(smp_num_siblings);
578 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
579
580 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
581
582 index_msb = get_count_order(smp_num_siblings);
583
584 core_bits = get_count_order(c->x86_max_cores);
585
586 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
587 ((1 << core_bits) - 1);
588
589out:
590 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
591 pr_info("CPU: Physical Processor ID: %d\n",
592 c->phys_proc_id);
593 pr_info("CPU: Processor Core ID: %d\n",
594 c->cpu_core_id);
595 printed = 1;
596 }
597#endif
598}
599
600static void get_cpu_vendor(struct cpuinfo_x86 *c)
601{
602 char *v = c->x86_vendor_id;
603 int i;
604
605 for (i = 0; i < X86_VENDOR_NUM; i++) {
606 if (!cpu_devs[i])
607 break;
608
609 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
610 (cpu_devs[i]->c_ident[1] &&
611 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
612
613 this_cpu = cpu_devs[i];
614 c->x86_vendor = this_cpu->c_x86_vendor;
615 return;
616 }
617 }
618
619 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
620 "CPU: Your system may be unstable.\n", v);
621
622 c->x86_vendor = X86_VENDOR_UNKNOWN;
623 this_cpu = &default_cpu;
624}
625
626void cpu_detect(struct cpuinfo_x86 *c)
627{
628 /* Get vendor name */
629 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
630 (unsigned int *)&c->x86_vendor_id[0],
631 (unsigned int *)&c->x86_vendor_id[8],
632 (unsigned int *)&c->x86_vendor_id[4]);
633
634 c->x86 = 4;
635 /* Intel-defined flags: level 0x00000001 */
636 if (c->cpuid_level >= 0x00000001) {
637 u32 junk, tfms, cap0, misc;
638
639 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
640 c->x86 = x86_family(tfms);
641 c->x86_model = x86_model(tfms);
642 c->x86_mask = x86_stepping(tfms);
643
644 if (cap0 & (1<<19)) {
645 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
646 c->x86_cache_alignment = c->x86_clflush_size;
647 }
648 }
649}
650
651void get_cpu_cap(struct cpuinfo_x86 *c)
652{
653 u32 eax, ebx, ecx, edx;
654
655 /* Intel-defined flags: level 0x00000001 */
656 if (c->cpuid_level >= 0x00000001) {
657 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
658
659 c->x86_capability[CPUID_1_ECX] = ecx;
660 c->x86_capability[CPUID_1_EDX] = edx;
661 }
662
663 /* Additional Intel-defined flags: level 0x00000007 */
664 if (c->cpuid_level >= 0x00000007) {
665 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
666
667 c->x86_capability[CPUID_7_0_EBX] = ebx;
668
669 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
670 c->x86_capability[CPUID_7_ECX] = ecx;
671 }
672
673 /* Extended state features: level 0x0000000d */
674 if (c->cpuid_level >= 0x0000000d) {
675 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
676
677 c->x86_capability[CPUID_D_1_EAX] = eax;
678 }
679
680 /* Additional Intel-defined flags: level 0x0000000F */
681 if (c->cpuid_level >= 0x0000000F) {
682
683 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
684 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
685 c->x86_capability[CPUID_F_0_EDX] = edx;
686
687 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
688 /* will be overridden if occupancy monitoring exists */
689 c->x86_cache_max_rmid = ebx;
690
691 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
692 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
693 c->x86_capability[CPUID_F_1_EDX] = edx;
694
695 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
696 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
697 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
698 c->x86_cache_max_rmid = ecx;
699 c->x86_cache_occ_scale = ebx;
700 }
701 } else {
702 c->x86_cache_max_rmid = -1;
703 c->x86_cache_occ_scale = -1;
704 }
705 }
706
707 /* AMD-defined flags: level 0x80000001 */
708 eax = cpuid_eax(0x80000000);
709 c->extended_cpuid_level = eax;
710
711 if ((eax & 0xffff0000) == 0x80000000) {
712 if (eax >= 0x80000001) {
713 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
714
715 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
716 c->x86_capability[CPUID_8000_0001_EDX] = edx;
717 }
718 }
719
720 if (c->extended_cpuid_level >= 0x80000008) {
721 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
722
723 c->x86_virt_bits = (eax >> 8) & 0xff;
724 c->x86_phys_bits = eax & 0xff;
725 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
726 }
727#ifdef CONFIG_X86_32
728 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
729 c->x86_phys_bits = 36;
730#endif
731
732 if (c->extended_cpuid_level >= 0x80000007)
733 c->x86_power = cpuid_edx(0x80000007);
734
735 if (c->extended_cpuid_level >= 0x8000000a)
736 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
737
738 init_scattered_cpuid_features(c);
739}
740
741static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
742{
743#ifdef CONFIG_X86_32
744 int i;
745
746 /*
747 * First of all, decide if this is a 486 or higher
748 * It's a 486 if we can modify the AC flag
749 */
750 if (flag_is_changeable_p(X86_EFLAGS_AC))
751 c->x86 = 4;
752 else
753 c->x86 = 3;
754
755 for (i = 0; i < X86_VENDOR_NUM; i++)
756 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
757 c->x86_vendor_id[0] = 0;
758 cpu_devs[i]->c_identify(c);
759 if (c->x86_vendor_id[0]) {
760 get_cpu_vendor(c);
761 break;
762 }
763 }
764#endif
765}
766
767/*
768 * Do minimum CPU detection early.
769 * Fields really needed: vendor, cpuid_level, family, model, mask,
770 * cache alignment.
771 * The others are not touched to avoid unwanted side effects.
772 *
773 * WARNING: this function is only called on the BP. Don't add code here
774 * that is supposed to run on all CPUs.
775 */
776static void __init early_identify_cpu(struct cpuinfo_x86 *c)
777{
778#ifdef CONFIG_X86_64
779 c->x86_clflush_size = 64;
780 c->x86_phys_bits = 36;
781 c->x86_virt_bits = 48;
782#else
783 c->x86_clflush_size = 32;
784 c->x86_phys_bits = 32;
785 c->x86_virt_bits = 32;
786#endif
787 c->x86_cache_alignment = c->x86_clflush_size;
788
789 memset(&c->x86_capability, 0, sizeof c->x86_capability);
790 c->extended_cpuid_level = 0;
791
792 if (!have_cpuid_p())
793 identify_cpu_without_cpuid(c);
794
795 /* cyrix could have cpuid enabled via c_identify()*/
796 if (!have_cpuid_p())
797 return;
798
799 cpu_detect(c);
800 get_cpu_vendor(c);
801 get_cpu_cap(c);
802
803 if (this_cpu->c_early_init)
804 this_cpu->c_early_init(c);
805
806 c->cpu_index = 0;
807 filter_cpuid_features(c, false);
808
809 if (this_cpu->c_bsp_init)
810 this_cpu->c_bsp_init(c);
811
812 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
813 fpu__init_system(c);
814}
815
816void __init early_cpu_init(void)
817{
818 const struct cpu_dev *const *cdev;
819 int count = 0;
820
821#ifdef CONFIG_PROCESSOR_SELECT
822 pr_info("KERNEL supported cpus:\n");
823#endif
824
825 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
826 const struct cpu_dev *cpudev = *cdev;
827
828 if (count >= X86_VENDOR_NUM)
829 break;
830 cpu_devs[count] = cpudev;
831 count++;
832
833#ifdef CONFIG_PROCESSOR_SELECT
834 {
835 unsigned int j;
836
837 for (j = 0; j < 2; j++) {
838 if (!cpudev->c_ident[j])
839 continue;
840 pr_info(" %s %s\n", cpudev->c_vendor,
841 cpudev->c_ident[j]);
842 }
843 }
844#endif
845 }
846 early_identify_cpu(&boot_cpu_data);
847}
848
849/*
850 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
851 * unfortunately, that's not true in practice because of early VIA
852 * chips and (more importantly) broken virtualizers that are not easy
853 * to detect. In the latter case it doesn't even *fail* reliably, so
854 * probing for it doesn't even work. Disable it completely on 32-bit
855 * unless we can find a reliable way to detect all the broken cases.
856 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
857 */
858static void detect_nopl(struct cpuinfo_x86 *c)
859{
860#ifdef CONFIG_X86_32
861 clear_cpu_cap(c, X86_FEATURE_NOPL);
862#else
863 set_cpu_cap(c, X86_FEATURE_NOPL);
864#endif
865
866 /*
867 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
868 * systems that run Linux at CPL > 0 may or may not have the
869 * issue, but, even if they have the issue, there's absolutely
870 * nothing we can do about it because we can't use the real IRET
871 * instruction.
872 *
873 * NB: For the time being, only 32-bit kernels support
874 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
875 * whether to apply espfix using paravirt hooks. If any
876 * non-paravirt system ever shows up that does *not* have the
877 * ESPFIX issue, we can change this.
878 */
879#ifdef CONFIG_X86_32
880#ifdef CONFIG_PARAVIRT
881 do {
882 extern void native_iret(void);
883 if (pv_cpu_ops.iret == native_iret)
884 set_cpu_bug(c, X86_BUG_ESPFIX);
885 } while (0);
886#else
887 set_cpu_bug(c, X86_BUG_ESPFIX);
888#endif
889#endif
890}
891
892static void generic_identify(struct cpuinfo_x86 *c)
893{
894 c->extended_cpuid_level = 0;
895
896 if (!have_cpuid_p())
897 identify_cpu_without_cpuid(c);
898
899 /* cyrix could have cpuid enabled via c_identify()*/
900 if (!have_cpuid_p())
901 return;
902
903 cpu_detect(c);
904
905 get_cpu_vendor(c);
906
907 get_cpu_cap(c);
908
909 if (c->cpuid_level >= 0x00000001) {
910 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
911#ifdef CONFIG_X86_32
912# ifdef CONFIG_SMP
913 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
914# else
915 c->apicid = c->initial_apicid;
916# endif
917#endif
918 c->phys_proc_id = c->initial_apicid;
919 }
920
921 get_model_name(c); /* Default name */
922
923 detect_nopl(c);
924}
925
926static void x86_init_cache_qos(struct cpuinfo_x86 *c)
927{
928 /*
929 * The heavy lifting of max_rmid and cache_occ_scale are handled
930 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
931 * in case CQM bits really aren't there in this CPU.
932 */
933 if (c != &boot_cpu_data) {
934 boot_cpu_data.x86_cache_max_rmid =
935 min(boot_cpu_data.x86_cache_max_rmid,
936 c->x86_cache_max_rmid);
937 }
938}
939
940/*
941 * This does the hard work of actually picking apart the CPU stuff...
942 */
943static void identify_cpu(struct cpuinfo_x86 *c)
944{
945 int i;
946
947 c->loops_per_jiffy = loops_per_jiffy;
948 c->x86_cache_size = -1;
949 c->x86_vendor = X86_VENDOR_UNKNOWN;
950 c->x86_model = c->x86_mask = 0; /* So far unknown... */
951 c->x86_vendor_id[0] = '\0'; /* Unset */
952 c->x86_model_id[0] = '\0'; /* Unset */
953 c->x86_max_cores = 1;
954 c->x86_coreid_bits = 0;
955#ifdef CONFIG_X86_64
956 c->x86_clflush_size = 64;
957 c->x86_phys_bits = 36;
958 c->x86_virt_bits = 48;
959#else
960 c->cpuid_level = -1; /* CPUID not detected */
961 c->x86_clflush_size = 32;
962 c->x86_phys_bits = 32;
963 c->x86_virt_bits = 32;
964#endif
965 c->x86_cache_alignment = c->x86_clflush_size;
966 memset(&c->x86_capability, 0, sizeof c->x86_capability);
967
968 generic_identify(c);
969
970 if (this_cpu->c_identify)
971 this_cpu->c_identify(c);
972
973 /* Clear/Set all flags overridden by options, after probe */
974 for (i = 0; i < NCAPINTS; i++) {
975 c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 c->x86_capability[i] |= cpu_caps_set[i];
977 }
978
979#ifdef CONFIG_X86_64
980 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
981#endif
982
983 /*
984 * Vendor-specific initialization. In this section we
985 * canonicalize the feature flags, meaning if there are
986 * features a certain CPU supports which CPUID doesn't
987 * tell us, CPUID claiming incorrect flags, or other bugs,
988 * we handle them here.
989 *
990 * At the end of this section, c->x86_capability better
991 * indicate the features this CPU genuinely supports!
992 */
993 if (this_cpu->c_init)
994 this_cpu->c_init(c);
995
996 /* Disable the PN if appropriate */
997 squash_the_stupid_serial_number(c);
998
999 /* Set up SMEP/SMAP */
1000 setup_smep(c);
1001 setup_smap(c);
1002
1003 /*
1004 * The vendor-specific functions might have changed features.
1005 * Now we do "generic changes."
1006 */
1007
1008 /* Filter out anything that depends on CPUID levels we don't have */
1009 filter_cpuid_features(c, true);
1010
1011 /* If the model name is still unset, do table lookup. */
1012 if (!c->x86_model_id[0]) {
1013 const char *p;
1014 p = table_lookup_model(c);
1015 if (p)
1016 strcpy(c->x86_model_id, p);
1017 else
1018 /* Last resort... */
1019 sprintf(c->x86_model_id, "%02x/%02x",
1020 c->x86, c->x86_model);
1021 }
1022
1023#ifdef CONFIG_X86_64
1024 detect_ht(c);
1025#endif
1026
1027 init_hypervisor(c);
1028 x86_init_rdrand(c);
1029 x86_init_cache_qos(c);
1030 setup_pku(c);
1031
1032 /*
1033 * Clear/Set all flags overridden by options, need do it
1034 * before following smp all cpus cap AND.
1035 */
1036 for (i = 0; i < NCAPINTS; i++) {
1037 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1038 c->x86_capability[i] |= cpu_caps_set[i];
1039 }
1040
1041 /*
1042 * On SMP, boot_cpu_data holds the common feature set between
1043 * all CPUs; so make sure that we indicate which features are
1044 * common between the CPUs. The first time this routine gets
1045 * executed, c == &boot_cpu_data.
1046 */
1047 if (c != &boot_cpu_data) {
1048 /* AND the already accumulated flags with these */
1049 for (i = 0; i < NCAPINTS; i++)
1050 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1051
1052 /* OR, i.e. replicate the bug flags */
1053 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1054 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1055 }
1056
1057 /* Init Machine Check Exception if available. */
1058 mcheck_cpu_init(c);
1059
1060 select_idle_routine(c);
1061
1062#ifdef CONFIG_NUMA
1063 numa_add_cpu(smp_processor_id());
1064#endif
1065 /* The boot/hotplug time assigment got cleared, restore it */
1066 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1067}
1068
1069/*
1070 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1071 * on 32-bit kernels:
1072 */
1073#ifdef CONFIG_X86_32
1074void enable_sep_cpu(void)
1075{
1076 struct tss_struct *tss;
1077 int cpu;
1078
1079 cpu = get_cpu();
1080 tss = &per_cpu(cpu_tss, cpu);
1081
1082 if (!boot_cpu_has(X86_FEATURE_SEP))
1083 goto out;
1084
1085 /*
1086 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1087 * see the big comment in struct x86_hw_tss's definition.
1088 */
1089
1090 tss->x86_tss.ss1 = __KERNEL_CS;
1091 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1092
1093 wrmsr(MSR_IA32_SYSENTER_ESP,
1094 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1095 0);
1096
1097 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1098
1099out:
1100 put_cpu();
1101}
1102#endif
1103
1104void __init identify_boot_cpu(void)
1105{
1106 identify_cpu(&boot_cpu_data);
1107 init_amd_e400_c1e_mask();
1108#ifdef CONFIG_X86_32
1109 sysenter_setup();
1110 enable_sep_cpu();
1111#endif
1112 cpu_detect_tlb(&boot_cpu_data);
1113}
1114
1115void identify_secondary_cpu(struct cpuinfo_x86 *c)
1116{
1117 BUG_ON(c == &boot_cpu_data);
1118 identify_cpu(c);
1119#ifdef CONFIG_X86_32
1120 enable_sep_cpu();
1121#endif
1122 mtrr_ap_init();
1123}
1124
1125struct msr_range {
1126 unsigned min;
1127 unsigned max;
1128};
1129
1130static const struct msr_range msr_range_array[] = {
1131 { 0x00000000, 0x00000418},
1132 { 0xc0000000, 0xc000040b},
1133 { 0xc0010000, 0xc0010142},
1134 { 0xc0011000, 0xc001103b},
1135};
1136
1137static void __print_cpu_msr(void)
1138{
1139 unsigned index_min, index_max;
1140 unsigned index;
1141 u64 val;
1142 int i;
1143
1144 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1145 index_min = msr_range_array[i].min;
1146 index_max = msr_range_array[i].max;
1147
1148 for (index = index_min; index < index_max; index++) {
1149 if (rdmsrl_safe(index, &val))
1150 continue;
1151 pr_info(" MSR%08x: %016llx\n", index, val);
1152 }
1153 }
1154}
1155
1156static int show_msr;
1157
1158static __init int setup_show_msr(char *arg)
1159{
1160 int num;
1161
1162 get_option(&arg, &num);
1163
1164 if (num > 0)
1165 show_msr = num;
1166 return 1;
1167}
1168__setup("show_msr=", setup_show_msr);
1169
1170static __init int setup_noclflush(char *arg)
1171{
1172 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1173 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1174 return 1;
1175}
1176__setup("noclflush", setup_noclflush);
1177
1178void print_cpu_info(struct cpuinfo_x86 *c)
1179{
1180 const char *vendor = NULL;
1181
1182 if (c->x86_vendor < X86_VENDOR_NUM) {
1183 vendor = this_cpu->c_vendor;
1184 } else {
1185 if (c->cpuid_level >= 0)
1186 vendor = c->x86_vendor_id;
1187 }
1188
1189 if (vendor && !strstr(c->x86_model_id, vendor))
1190 pr_cont("%s ", vendor);
1191
1192 if (c->x86_model_id[0])
1193 pr_cont("%s", c->x86_model_id);
1194 else
1195 pr_cont("%d86", c->x86);
1196
1197 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1198
1199 if (c->x86_mask || c->cpuid_level >= 0)
1200 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1201 else
1202 pr_cont(")\n");
1203
1204 print_cpu_msr(c);
1205}
1206
1207void print_cpu_msr(struct cpuinfo_x86 *c)
1208{
1209 if (c->cpu_index < show_msr)
1210 __print_cpu_msr();
1211}
1212
1213static __init int setup_disablecpuid(char *arg)
1214{
1215 int bit;
1216
1217 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1218 setup_clear_cpu_cap(bit);
1219 else
1220 return 0;
1221
1222 return 1;
1223}
1224__setup("clearcpuid=", setup_disablecpuid);
1225
1226#ifdef CONFIG_X86_64
1227struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1228struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1229 (unsigned long) debug_idt_table };
1230
1231DEFINE_PER_CPU_FIRST(union irq_stack_union,
1232 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1233
1234/*
1235 * The following percpu variables are hot. Align current_task to
1236 * cacheline size such that they fall in the same cacheline.
1237 */
1238DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1239 &init_task;
1240EXPORT_PER_CPU_SYMBOL(current_task);
1241
1242DEFINE_PER_CPU(char *, irq_stack_ptr) =
1243 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1244
1245DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1246
1247DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1248EXPORT_PER_CPU_SYMBOL(__preempt_count);
1249
1250/*
1251 * Special IST stacks which the CPU switches to when it calls
1252 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1253 * limit), all of them are 4K, except the debug stack which
1254 * is 8K.
1255 */
1256static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1257 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1258 [DEBUG_STACK - 1] = DEBUG_STKSZ
1259};
1260
1261static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1262 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1263
1264/* May not be marked __init: used by software suspend */
1265void syscall_init(void)
1266{
1267 /*
1268 * LSTAR and STAR live in a bit strange symbiosis.
1269 * They both write to the same internal register. STAR allows to
1270 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1271 */
1272 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1273 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1274
1275#ifdef CONFIG_IA32_EMULATION
1276 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1277 /*
1278 * This only works on Intel CPUs.
1279 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1280 * This does not cause SYSENTER to jump to the wrong location, because
1281 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1282 */
1283 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1284 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1285 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1286#else
1287 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1288 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1289 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1290 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1291#endif
1292
1293 /* Flags to clear on syscall */
1294 wrmsrl(MSR_SYSCALL_MASK,
1295 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1296 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1297}
1298
1299/*
1300 * Copies of the original ist values from the tss are only accessed during
1301 * debugging, no special alignment required.
1302 */
1303DEFINE_PER_CPU(struct orig_ist, orig_ist);
1304
1305static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1306DEFINE_PER_CPU(int, debug_stack_usage);
1307
1308int is_debug_stack(unsigned long addr)
1309{
1310 return __this_cpu_read(debug_stack_usage) ||
1311 (addr <= __this_cpu_read(debug_stack_addr) &&
1312 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1313}
1314NOKPROBE_SYMBOL(is_debug_stack);
1315
1316DEFINE_PER_CPU(u32, debug_idt_ctr);
1317
1318void debug_stack_set_zero(void)
1319{
1320 this_cpu_inc(debug_idt_ctr);
1321 load_current_idt();
1322}
1323NOKPROBE_SYMBOL(debug_stack_set_zero);
1324
1325void debug_stack_reset(void)
1326{
1327 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1328 return;
1329 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1330 load_current_idt();
1331}
1332NOKPROBE_SYMBOL(debug_stack_reset);
1333
1334#else /* CONFIG_X86_64 */
1335
1336DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1337EXPORT_PER_CPU_SYMBOL(current_task);
1338DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1339EXPORT_PER_CPU_SYMBOL(__preempt_count);
1340
1341/*
1342 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1343 * the top of the kernel stack. Use an extra percpu variable to track the
1344 * top of the kernel stack directly.
1345 */
1346DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1347 (unsigned long)&init_thread_union + THREAD_SIZE;
1348EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1349
1350#ifdef CONFIG_CC_STACKPROTECTOR
1351DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1352#endif
1353
1354#endif /* CONFIG_X86_64 */
1355
1356/*
1357 * Clear all 6 debug registers:
1358 */
1359static void clear_all_debug_regs(void)
1360{
1361 int i;
1362
1363 for (i = 0; i < 8; i++) {
1364 /* Ignore db4, db5 */
1365 if ((i == 4) || (i == 5))
1366 continue;
1367
1368 set_debugreg(0, i);
1369 }
1370}
1371
1372#ifdef CONFIG_KGDB
1373/*
1374 * Restore debug regs if using kgdbwait and you have a kernel debugger
1375 * connection established.
1376 */
1377static void dbg_restore_debug_regs(void)
1378{
1379 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1380 arch_kgdb_ops.correct_hw_break();
1381}
1382#else /* ! CONFIG_KGDB */
1383#define dbg_restore_debug_regs()
1384#endif /* ! CONFIG_KGDB */
1385
1386static void wait_for_master_cpu(int cpu)
1387{
1388#ifdef CONFIG_SMP
1389 /*
1390 * wait for ACK from master CPU before continuing
1391 * with AP initialization
1392 */
1393 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1394 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1395 cpu_relax();
1396#endif
1397}
1398
1399/*
1400 * cpu_init() initializes state that is per-CPU. Some data is already
1401 * initialized (naturally) in the bootstrap process, such as the GDT
1402 * and IDT. We reload them nevertheless, this function acts as a
1403 * 'CPU state barrier', nothing should get across.
1404 * A lot of state is already set up in PDA init for 64 bit
1405 */
1406#ifdef CONFIG_X86_64
1407
1408void cpu_init(void)
1409{
1410 struct orig_ist *oist;
1411 struct task_struct *me;
1412 struct tss_struct *t;
1413 unsigned long v;
1414 int cpu = stack_smp_processor_id();
1415 int i;
1416
1417 wait_for_master_cpu(cpu);
1418
1419 /*
1420 * Initialize the CR4 shadow before doing anything that could
1421 * try to read it.
1422 */
1423 cr4_init_shadow();
1424
1425 /*
1426 * Load microcode on this cpu if a valid microcode is available.
1427 * This is early microcode loading procedure.
1428 */
1429 load_ucode_ap();
1430
1431 t = &per_cpu(cpu_tss, cpu);
1432 oist = &per_cpu(orig_ist, cpu);
1433
1434#ifdef CONFIG_NUMA
1435 if (this_cpu_read(numa_node) == 0 &&
1436 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1437 set_numa_node(early_cpu_to_node(cpu));
1438#endif
1439
1440 me = current;
1441
1442 pr_debug("Initializing CPU#%d\n", cpu);
1443
1444 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1445
1446 /*
1447 * Initialize the per-CPU GDT with the boot GDT,
1448 * and set up the GDT descriptor:
1449 */
1450
1451 switch_to_new_gdt(cpu);
1452 loadsegment(fs, 0);
1453
1454 load_current_idt();
1455
1456 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1457 syscall_init();
1458
1459 wrmsrl(MSR_FS_BASE, 0);
1460 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1461 barrier();
1462
1463 x86_configure_nx();
1464 x2apic_setup();
1465
1466 /*
1467 * set up and load the per-CPU TSS
1468 */
1469 if (!oist->ist[0]) {
1470 char *estacks = per_cpu(exception_stacks, cpu);
1471
1472 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1473 estacks += exception_stack_sizes[v];
1474 oist->ist[v] = t->x86_tss.ist[v] =
1475 (unsigned long)estacks;
1476 if (v == DEBUG_STACK-1)
1477 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1478 }
1479 }
1480
1481 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1482
1483 /*
1484 * <= is required because the CPU will access up to
1485 * 8 bits beyond the end of the IO permission bitmap.
1486 */
1487 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1488 t->io_bitmap[i] = ~0UL;
1489
1490 atomic_inc(&init_mm.mm_count);
1491 me->active_mm = &init_mm;
1492 BUG_ON(me->mm);
1493 enter_lazy_tlb(&init_mm, me);
1494
1495 load_sp0(t, ¤t->thread);
1496 set_tss_desc(cpu, t);
1497 load_TR_desc();
1498 load_mm_ldt(&init_mm);
1499
1500 clear_all_debug_regs();
1501 dbg_restore_debug_regs();
1502
1503 fpu__init_cpu();
1504
1505 if (is_uv_system())
1506 uv_cpu_init();
1507}
1508
1509#else
1510
1511void cpu_init(void)
1512{
1513 int cpu = smp_processor_id();
1514 struct task_struct *curr = current;
1515 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1516 struct thread_struct *thread = &curr->thread;
1517
1518 wait_for_master_cpu(cpu);
1519
1520 /*
1521 * Initialize the CR4 shadow before doing anything that could
1522 * try to read it.
1523 */
1524 cr4_init_shadow();
1525
1526 show_ucode_info_early();
1527
1528 pr_info("Initializing CPU#%d\n", cpu);
1529
1530 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1531 cpu_has_tsc ||
1532 boot_cpu_has(X86_FEATURE_DE))
1533 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1534
1535 load_current_idt();
1536 switch_to_new_gdt(cpu);
1537
1538 /*
1539 * Set up and load the per-CPU TSS and LDT
1540 */
1541 atomic_inc(&init_mm.mm_count);
1542 curr->active_mm = &init_mm;
1543 BUG_ON(curr->mm);
1544 enter_lazy_tlb(&init_mm, curr);
1545
1546 load_sp0(t, thread);
1547 set_tss_desc(cpu, t);
1548 load_TR_desc();
1549 load_mm_ldt(&init_mm);
1550
1551 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1552
1553#ifdef CONFIG_DOUBLEFAULT
1554 /* Set up doublefault TSS pointer in the GDT */
1555 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1556#endif
1557
1558 clear_all_debug_regs();
1559 dbg_restore_debug_regs();
1560
1561 fpu__init_cpu();
1562}
1563#endif
1564
1565static void bsp_resume(void)
1566{
1567 if (this_cpu->c_bsp_resume)
1568 this_cpu->c_bsp_resume(&boot_cpu_data);
1569}
1570
1571static struct syscore_ops cpu_syscore_ops = {
1572 .resume = bsp_resume,
1573};
1574
1575static int __init init_cpu_syscore(void)
1576{
1577 register_syscore_ops(&cpu_syscore_ops);
1578 return 0;
1579}
1580core_initcall(init_cpu_syscore);
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/mem_encrypt.h>
22#include <linux/smp.h>
23#include <linux/cpu.h>
24#include <linux/io.h>
25#include <linux/syscore_ops.h>
26#include <linux/pgtable.h>
27#include <linux/stackprotector.h>
28#include <linux/utsname.h>
29
30#include <asm/alternative.h>
31#include <asm/cmdline.h>
32#include <asm/perf_event.h>
33#include <asm/mmu_context.h>
34#include <asm/doublefault.h>
35#include <asm/archrandom.h>
36#include <asm/hypervisor.h>
37#include <asm/processor.h>
38#include <asm/tlbflush.h>
39#include <asm/debugreg.h>
40#include <asm/sections.h>
41#include <asm/vsyscall.h>
42#include <linux/topology.h>
43#include <linux/cpumask.h>
44#include <linux/atomic.h>
45#include <asm/proto.h>
46#include <asm/setup.h>
47#include <asm/apic.h>
48#include <asm/desc.h>
49#include <asm/fpu/api.h>
50#include <asm/mtrr.h>
51#include <asm/hwcap2.h>
52#include <linux/numa.h>
53#include <asm/numa.h>
54#include <asm/asm.h>
55#include <asm/bugs.h>
56#include <asm/cpu.h>
57#include <asm/mce.h>
58#include <asm/msr.h>
59#include <asm/cacheinfo.h>
60#include <asm/memtype.h>
61#include <asm/microcode.h>
62#include <asm/intel-family.h>
63#include <asm/cpu_device_id.h>
64#include <asm/fred.h>
65#include <asm/uv/uv.h>
66#include <asm/ia32.h>
67#include <asm/set_memory.h>
68#include <asm/traps.h>
69#include <asm/sev.h>
70#include <asm/tdx.h>
71
72#include "cpu.h"
73
74DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
75EXPORT_PER_CPU_SYMBOL(cpu_info);
76
77u32 elf_hwcap2 __read_mostly;
78
79/* Number of siblings per CPU package */
80unsigned int __max_threads_per_core __ro_after_init = 1;
81EXPORT_SYMBOL(__max_threads_per_core);
82
83unsigned int __max_dies_per_package __ro_after_init = 1;
84EXPORT_SYMBOL(__max_dies_per_package);
85
86unsigned int __max_logical_packages __ro_after_init = 1;
87EXPORT_SYMBOL(__max_logical_packages);
88
89unsigned int __num_cores_per_package __ro_after_init = 1;
90EXPORT_SYMBOL(__num_cores_per_package);
91
92unsigned int __num_threads_per_package __ro_after_init = 1;
93EXPORT_SYMBOL(__num_threads_per_package);
94
95static struct ppin_info {
96 int feature;
97 int msr_ppin_ctl;
98 int msr_ppin;
99} ppin_info[] = {
100 [X86_VENDOR_INTEL] = {
101 .feature = X86_FEATURE_INTEL_PPIN,
102 .msr_ppin_ctl = MSR_PPIN_CTL,
103 .msr_ppin = MSR_PPIN
104 },
105 [X86_VENDOR_AMD] = {
106 .feature = X86_FEATURE_AMD_PPIN,
107 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
108 .msr_ppin = MSR_AMD_PPIN
109 },
110};
111
112static const struct x86_cpu_id ppin_cpuids[] = {
113 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
114 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
115
116 /* Legacy models without CPUID enumeration */
117 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
127 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
128
129 {}
130};
131
132static void ppin_init(struct cpuinfo_x86 *c)
133{
134 const struct x86_cpu_id *id;
135 unsigned long long val;
136 struct ppin_info *info;
137
138 id = x86_match_cpu(ppin_cpuids);
139 if (!id)
140 return;
141
142 /*
143 * Testing the presence of the MSR is not enough. Need to check
144 * that the PPIN_CTL allows reading of the PPIN.
145 */
146 info = (struct ppin_info *)id->driver_data;
147
148 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
149 goto clear_ppin;
150
151 if ((val & 3UL) == 1UL) {
152 /* PPIN locked in disabled mode */
153 goto clear_ppin;
154 }
155
156 /* If PPIN is disabled, try to enable */
157 if (!(val & 2UL)) {
158 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
159 rdmsrl_safe(info->msr_ppin_ctl, &val);
160 }
161
162 /* Is the enable bit set? */
163 if (val & 2UL) {
164 c->ppin = __rdmsr(info->msr_ppin);
165 set_cpu_cap(c, info->feature);
166 return;
167 }
168
169clear_ppin:
170 clear_cpu_cap(c, info->feature);
171}
172
173static void default_init(struct cpuinfo_x86 *c)
174{
175#ifdef CONFIG_X86_64
176 cpu_detect_cache_sizes(c);
177#else
178 /* Not much we can do here... */
179 /* Check if at least it has cpuid */
180 if (c->cpuid_level == -1) {
181 /* No cpuid. It must be an ancient CPU */
182 if (c->x86 == 4)
183 strcpy(c->x86_model_id, "486");
184 else if (c->x86 == 3)
185 strcpy(c->x86_model_id, "386");
186 }
187#endif
188}
189
190static const struct cpu_dev default_cpu = {
191 .c_init = default_init,
192 .c_vendor = "Unknown",
193 .c_x86_vendor = X86_VENDOR_UNKNOWN,
194};
195
196static const struct cpu_dev *this_cpu = &default_cpu;
197
198DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
199#ifdef CONFIG_X86_64
200 /*
201 * We need valid kernel segments for data and code in long mode too
202 * IRET will check the segment types kkeil 2000/10/28
203 * Also sysret mandates a special GDT layout
204 *
205 * TLS descriptors are currently at a different place compared to i386.
206 * Hopefully nobody expects them at a fixed place (Wine?)
207 */
208 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
209 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
210 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
211 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
212 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
213 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
214#else
215 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
217 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
219 /*
220 * Segments used for calling PnP BIOS have byte granularity.
221 * They code segments and data segments have fixed 64k limits,
222 * the transfer segment sizes are set at run time.
223 */
224 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
225 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
226 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
227 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
228 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229 /*
230 * The APM segments have byte granularity and their bases
231 * are set at run time. All have 64k limits.
232 */
233 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
234 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
235 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
236
237 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
238 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239#endif
240} };
241EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
242
243#ifdef CONFIG_X86_64
244static int __init x86_nopcid_setup(char *s)
245{
246 /* nopcid doesn't accept parameters */
247 if (s)
248 return -EINVAL;
249
250 /* do not emit a message if the feature is not present */
251 if (!boot_cpu_has(X86_FEATURE_PCID))
252 return 0;
253
254 setup_clear_cpu_cap(X86_FEATURE_PCID);
255 pr_info("nopcid: PCID feature disabled\n");
256 return 0;
257}
258early_param("nopcid", x86_nopcid_setup);
259#endif
260
261static int __init x86_noinvpcid_setup(char *s)
262{
263 /* noinvpcid doesn't accept parameters */
264 if (s)
265 return -EINVAL;
266
267 /* do not emit a message if the feature is not present */
268 if (!boot_cpu_has(X86_FEATURE_INVPCID))
269 return 0;
270
271 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
272 pr_info("noinvpcid: INVPCID feature disabled\n");
273 return 0;
274}
275early_param("noinvpcid", x86_noinvpcid_setup);
276
277#ifdef CONFIG_X86_32
278static int cachesize_override = -1;
279static int disable_x86_serial_nr = 1;
280
281static int __init cachesize_setup(char *str)
282{
283 get_option(&str, &cachesize_override);
284 return 1;
285}
286__setup("cachesize=", cachesize_setup);
287
288/* Standard macro to see if a specific flag is changeable */
289static inline int flag_is_changeable_p(u32 flag)
290{
291 u32 f1, f2;
292
293 /*
294 * Cyrix and IDT cpus allow disabling of CPUID
295 * so the code below may return different results
296 * when it is executed before and after enabling
297 * the CPUID. Add "volatile" to not allow gcc to
298 * optimize the subsequent calls to this function.
299 */
300 asm volatile ("pushfl \n\t"
301 "pushfl \n\t"
302 "popl %0 \n\t"
303 "movl %0, %1 \n\t"
304 "xorl %2, %0 \n\t"
305 "pushl %0 \n\t"
306 "popfl \n\t"
307 "pushfl \n\t"
308 "popl %0 \n\t"
309 "popfl \n\t"
310
311 : "=&r" (f1), "=&r" (f2)
312 : "ir" (flag));
313
314 return ((f1^f2) & flag) != 0;
315}
316
317/* Probe for the CPUID instruction */
318int have_cpuid_p(void)
319{
320 return flag_is_changeable_p(X86_EFLAGS_ID);
321}
322
323static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
324{
325 unsigned long lo, hi;
326
327 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
328 return;
329
330 /* Disable processor serial number: */
331
332 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
333 lo |= 0x200000;
334 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335
336 pr_notice("CPU serial number disabled.\n");
337 clear_cpu_cap(c, X86_FEATURE_PN);
338
339 /* Disabling the serial number may affect the cpuid level */
340 c->cpuid_level = cpuid_eax(0);
341}
342
343static int __init x86_serial_nr_setup(char *s)
344{
345 disable_x86_serial_nr = 0;
346 return 1;
347}
348__setup("serialnumber", x86_serial_nr_setup);
349#else
350static inline int flag_is_changeable_p(u32 flag)
351{
352 return 1;
353}
354static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
355{
356}
357#endif
358
359static __always_inline void setup_smep(struct cpuinfo_x86 *c)
360{
361 if (cpu_has(c, X86_FEATURE_SMEP))
362 cr4_set_bits(X86_CR4_SMEP);
363}
364
365static __always_inline void setup_smap(struct cpuinfo_x86 *c)
366{
367 unsigned long eflags = native_save_fl();
368
369 /* This should have been cleared long ago */
370 BUG_ON(eflags & X86_EFLAGS_AC);
371
372 if (cpu_has(c, X86_FEATURE_SMAP))
373 cr4_set_bits(X86_CR4_SMAP);
374}
375
376static __always_inline void setup_umip(struct cpuinfo_x86 *c)
377{
378 /* Check the boot processor, plus build option for UMIP. */
379 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
380 goto out;
381
382 /* Check the current processor's cpuid bits. */
383 if (!cpu_has(c, X86_FEATURE_UMIP))
384 goto out;
385
386 cr4_set_bits(X86_CR4_UMIP);
387
388 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
389
390 return;
391
392out:
393 /*
394 * Make sure UMIP is disabled in case it was enabled in a
395 * previous boot (e.g., via kexec).
396 */
397 cr4_clear_bits(X86_CR4_UMIP);
398}
399
400/* These bits should not change their value after CPU init is finished. */
401static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
402 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
403static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
404static unsigned long cr4_pinned_bits __ro_after_init;
405
406void native_write_cr0(unsigned long val)
407{
408 unsigned long bits_missing = 0;
409
410set_register:
411 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
412
413 if (static_branch_likely(&cr_pinning)) {
414 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
415 bits_missing = X86_CR0_WP;
416 val |= bits_missing;
417 goto set_register;
418 }
419 /* Warn after we've set the missing bits. */
420 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
421 }
422}
423EXPORT_SYMBOL(native_write_cr0);
424
425void __no_profile native_write_cr4(unsigned long val)
426{
427 unsigned long bits_changed = 0;
428
429set_register:
430 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
431
432 if (static_branch_likely(&cr_pinning)) {
433 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
434 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
435 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
436 goto set_register;
437 }
438 /* Warn after we've corrected the changed bits. */
439 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
440 bits_changed);
441 }
442}
443#if IS_MODULE(CONFIG_LKDTM)
444EXPORT_SYMBOL_GPL(native_write_cr4);
445#endif
446
447void cr4_update_irqsoff(unsigned long set, unsigned long clear)
448{
449 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
450
451 lockdep_assert_irqs_disabled();
452
453 newval = (cr4 & ~clear) | set;
454 if (newval != cr4) {
455 this_cpu_write(cpu_tlbstate.cr4, newval);
456 __write_cr4(newval);
457 }
458}
459EXPORT_SYMBOL(cr4_update_irqsoff);
460
461/* Read the CR4 shadow. */
462unsigned long cr4_read_shadow(void)
463{
464 return this_cpu_read(cpu_tlbstate.cr4);
465}
466EXPORT_SYMBOL_GPL(cr4_read_shadow);
467
468void cr4_init(void)
469{
470 unsigned long cr4 = __read_cr4();
471
472 if (boot_cpu_has(X86_FEATURE_PCID))
473 cr4 |= X86_CR4_PCIDE;
474 if (static_branch_likely(&cr_pinning))
475 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
476
477 __write_cr4(cr4);
478
479 /* Initialize cr4 shadow for this CPU. */
480 this_cpu_write(cpu_tlbstate.cr4, cr4);
481}
482
483/*
484 * Once CPU feature detection is finished (and boot params have been
485 * parsed), record any of the sensitive CR bits that are set, and
486 * enable CR pinning.
487 */
488static void __init setup_cr_pinning(void)
489{
490 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
491 static_key_enable(&cr_pinning.key);
492}
493
494static __init int x86_nofsgsbase_setup(char *arg)
495{
496 /* Require an exact match without trailing characters. */
497 if (strlen(arg))
498 return 0;
499
500 /* Do not emit a message if the feature is not present. */
501 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
502 return 1;
503
504 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
505 pr_info("FSGSBASE disabled via kernel command line\n");
506 return 1;
507}
508__setup("nofsgsbase", x86_nofsgsbase_setup);
509
510/*
511 * Protection Keys are not available in 32-bit mode.
512 */
513static bool pku_disabled;
514
515static __always_inline void setup_pku(struct cpuinfo_x86 *c)
516{
517 if (c == &boot_cpu_data) {
518 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
519 return;
520 /*
521 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
522 * bit to be set. Enforce it.
523 */
524 setup_force_cpu_cap(X86_FEATURE_OSPKE);
525
526 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
527 return;
528 }
529
530 cr4_set_bits(X86_CR4_PKE);
531 /* Load the default PKRU value */
532 pkru_write_default();
533}
534
535#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
536static __init int setup_disable_pku(char *arg)
537{
538 /*
539 * Do not clear the X86_FEATURE_PKU bit. All of the
540 * runtime checks are against OSPKE so clearing the
541 * bit does nothing.
542 *
543 * This way, we will see "pku" in cpuinfo, but not
544 * "ospke", which is exactly what we want. It shows
545 * that the CPU has PKU, but the OS has not enabled it.
546 * This happens to be exactly how a system would look
547 * if we disabled the config option.
548 */
549 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
550 pku_disabled = true;
551 return 1;
552}
553__setup("nopku", setup_disable_pku);
554#endif
555
556#ifdef CONFIG_X86_KERNEL_IBT
557
558__noendbr u64 ibt_save(bool disable)
559{
560 u64 msr = 0;
561
562 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
563 rdmsrl(MSR_IA32_S_CET, msr);
564 if (disable)
565 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
566 }
567
568 return msr;
569}
570
571__noendbr void ibt_restore(u64 save)
572{
573 u64 msr;
574
575 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
576 rdmsrl(MSR_IA32_S_CET, msr);
577 msr &= ~CET_ENDBR_EN;
578 msr |= (save & CET_ENDBR_EN);
579 wrmsrl(MSR_IA32_S_CET, msr);
580 }
581}
582
583#endif
584
585static __always_inline void setup_cet(struct cpuinfo_x86 *c)
586{
587 bool user_shstk, kernel_ibt;
588
589 if (!IS_ENABLED(CONFIG_X86_CET))
590 return;
591
592 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
593 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
594 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
595
596 if (!kernel_ibt && !user_shstk)
597 return;
598
599 if (user_shstk)
600 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
601
602 if (kernel_ibt)
603 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
604 else
605 wrmsrl(MSR_IA32_S_CET, 0);
606
607 cr4_set_bits(X86_CR4_CET);
608
609 if (kernel_ibt && ibt_selftest()) {
610 pr_err("IBT selftest: Failed!\n");
611 wrmsrl(MSR_IA32_S_CET, 0);
612 setup_clear_cpu_cap(X86_FEATURE_IBT);
613 }
614}
615
616__noendbr void cet_disable(void)
617{
618 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
619 cpu_feature_enabled(X86_FEATURE_SHSTK)))
620 return;
621
622 wrmsrl(MSR_IA32_S_CET, 0);
623 wrmsrl(MSR_IA32_U_CET, 0);
624}
625
626/*
627 * Some CPU features depend on higher CPUID levels, which may not always
628 * be available due to CPUID level capping or broken virtualization
629 * software. Add those features to this table to auto-disable them.
630 */
631struct cpuid_dependent_feature {
632 u32 feature;
633 u32 level;
634};
635
636static const struct cpuid_dependent_feature
637cpuid_dependent_features[] = {
638 { X86_FEATURE_MWAIT, 0x00000005 },
639 { X86_FEATURE_DCA, 0x00000009 },
640 { X86_FEATURE_XSAVE, 0x0000000d },
641 { 0, 0 }
642};
643
644static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645{
646 const struct cpuid_dependent_feature *df;
647
648 for (df = cpuid_dependent_features; df->feature; df++) {
649
650 if (!cpu_has(c, df->feature))
651 continue;
652 /*
653 * Note: cpuid_level is set to -1 if unavailable, but
654 * extended_extended_level is set to 0 if unavailable
655 * and the legitimate extended levels are all negative
656 * when signed; hence the weird messing around with
657 * signs here...
658 */
659 if (!((s32)df->level < 0 ?
660 (u32)df->level > (u32)c->extended_cpuid_level :
661 (s32)df->level > (s32)c->cpuid_level))
662 continue;
663
664 clear_cpu_cap(c, df->feature);
665 if (!warn)
666 continue;
667
668 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
669 x86_cap_flag(df->feature), df->level);
670 }
671}
672
673/*
674 * Naming convention should be: <Name> [(<Codename>)]
675 * This table only is used unless init_<vendor>() below doesn't set it;
676 * in particular, if CPUID levels 0x80000002..4 are supported, this
677 * isn't used
678 */
679
680/* Look up CPU names by table lookup. */
681static const char *table_lookup_model(struct cpuinfo_x86 *c)
682{
683#ifdef CONFIG_X86_32
684 const struct legacy_cpu_model_info *info;
685
686 if (c->x86_model >= 16)
687 return NULL; /* Range check */
688
689 if (!this_cpu)
690 return NULL;
691
692 info = this_cpu->legacy_models;
693
694 while (info->family) {
695 if (info->family == c->x86)
696 return info->model_names[c->x86_model];
697 info++;
698 }
699#endif
700 return NULL; /* Not found */
701}
702
703/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
704__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706
707#ifdef CONFIG_X86_32
708/* The 32-bit entry code needs to find cpu_entry_area. */
709DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
710#endif
711
712/* Load the original GDT from the per-cpu structure */
713void load_direct_gdt(int cpu)
714{
715 struct desc_ptr gdt_descr;
716
717 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
718 gdt_descr.size = GDT_SIZE - 1;
719 load_gdt(&gdt_descr);
720}
721EXPORT_SYMBOL_GPL(load_direct_gdt);
722
723/* Load a fixmap remapping of the per-cpu GDT */
724void load_fixmap_gdt(int cpu)
725{
726 struct desc_ptr gdt_descr;
727
728 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
729 gdt_descr.size = GDT_SIZE - 1;
730 load_gdt(&gdt_descr);
731}
732EXPORT_SYMBOL_GPL(load_fixmap_gdt);
733
734/**
735 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
736 * @cpu: The CPU number for which this is invoked
737 *
738 * Invoked during early boot to switch from early GDT and early per CPU to
739 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
740 * switch is implicit by loading the direct GDT. On 64bit this requires
741 * to update GSBASE.
742 */
743void __init switch_gdt_and_percpu_base(int cpu)
744{
745 load_direct_gdt(cpu);
746
747#ifdef CONFIG_X86_64
748 /*
749 * No need to load %gs. It is already correct.
750 *
751 * Writing %gs on 64bit would zero GSBASE which would make any per
752 * CPU operation up to the point of the wrmsrl() fault.
753 *
754 * Set GSBASE to the new offset. Until the wrmsrl() happens the
755 * early mapping is still valid. That means the GSBASE update will
756 * lose any prior per CPU data which was not copied over in
757 * setup_per_cpu_areas().
758 *
759 * This works even with stackprotector enabled because the
760 * per CPU stack canary is 0 in both per CPU areas.
761 */
762 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
763#else
764 /*
765 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
766 * it is required to load FS again so that the 'hidden' part is
767 * updated from the new GDT. Up to this point the early per CPU
768 * translation is active. Any content of the early per CPU data
769 * which was not copied over in setup_per_cpu_areas() is lost.
770 */
771 loadsegment(fs, __KERNEL_PERCPU);
772#endif
773}
774
775static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776
777static void get_model_name(struct cpuinfo_x86 *c)
778{
779 unsigned int *v;
780 char *p, *q, *s;
781
782 if (c->extended_cpuid_level < 0x80000004)
783 return;
784
785 v = (unsigned int *)c->x86_model_id;
786 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
787 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
788 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
789 c->x86_model_id[48] = 0;
790
791 /* Trim whitespace */
792 p = q = s = &c->x86_model_id[0];
793
794 while (*p == ' ')
795 p++;
796
797 while (*p) {
798 /* Note the last non-whitespace index */
799 if (!isspace(*p))
800 s = q;
801
802 *q++ = *p++;
803 }
804
805 *(s + 1) = '\0';
806}
807
808void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809{
810 unsigned int n, dummy, ebx, ecx, edx, l2size;
811
812 n = c->extended_cpuid_level;
813
814 if (n >= 0x80000005) {
815 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816 c->x86_cache_size = (ecx>>24) + (edx>>24);
817#ifdef CONFIG_X86_64
818 /* On K8 L1 TLB is inclusive, so don't count it */
819 c->x86_tlbsize = 0;
820#endif
821 }
822
823 if (n < 0x80000006) /* Some chips just has a large L1. */
824 return;
825
826 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827 l2size = ecx >> 16;
828
829#ifdef CONFIG_X86_64
830 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831#else
832 /* do processor-specific cache resizing */
833 if (this_cpu->legacy_cache_size)
834 l2size = this_cpu->legacy_cache_size(c, l2size);
835
836 /* Allow user to override all this if necessary. */
837 if (cachesize_override != -1)
838 l2size = cachesize_override;
839
840 if (l2size == 0)
841 return; /* Again, no L2 cache is possible */
842#endif
843
844 c->x86_cache_size = l2size;
845}
846
847u16 __read_mostly tlb_lli_4k[NR_INFO];
848u16 __read_mostly tlb_lli_2m[NR_INFO];
849u16 __read_mostly tlb_lli_4m[NR_INFO];
850u16 __read_mostly tlb_lld_4k[NR_INFO];
851u16 __read_mostly tlb_lld_2m[NR_INFO];
852u16 __read_mostly tlb_lld_4m[NR_INFO];
853u16 __read_mostly tlb_lld_1g[NR_INFO];
854
855static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856{
857 if (this_cpu->c_detect_tlb)
858 this_cpu->c_detect_tlb(c);
859
860 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862 tlb_lli_4m[ENTRIES]);
863
864 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867}
868
869static void get_cpu_vendor(struct cpuinfo_x86 *c)
870{
871 char *v = c->x86_vendor_id;
872 int i;
873
874 for (i = 0; i < X86_VENDOR_NUM; i++) {
875 if (!cpu_devs[i])
876 break;
877
878 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
879 (cpu_devs[i]->c_ident[1] &&
880 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
881
882 this_cpu = cpu_devs[i];
883 c->x86_vendor = this_cpu->c_x86_vendor;
884 return;
885 }
886 }
887
888 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
889 "CPU: Your system may be unstable.\n", v);
890
891 c->x86_vendor = X86_VENDOR_UNKNOWN;
892 this_cpu = &default_cpu;
893}
894
895void cpu_detect(struct cpuinfo_x86 *c)
896{
897 /* Get vendor name */
898 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899 (unsigned int *)&c->x86_vendor_id[0],
900 (unsigned int *)&c->x86_vendor_id[8],
901 (unsigned int *)&c->x86_vendor_id[4]);
902
903 c->x86 = 4;
904 /* Intel-defined flags: level 0x00000001 */
905 if (c->cpuid_level >= 0x00000001) {
906 u32 junk, tfms, cap0, misc;
907
908 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
909 c->x86 = x86_family(tfms);
910 c->x86_model = x86_model(tfms);
911 c->x86_stepping = x86_stepping(tfms);
912
913 if (cap0 & (1<<19)) {
914 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
915 c->x86_cache_alignment = c->x86_clflush_size;
916 }
917 }
918}
919
920static void apply_forced_caps(struct cpuinfo_x86 *c)
921{
922 int i;
923
924 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
925 c->x86_capability[i] &= ~cpu_caps_cleared[i];
926 c->x86_capability[i] |= cpu_caps_set[i];
927 }
928}
929
930static void init_speculation_control(struct cpuinfo_x86 *c)
931{
932 /*
933 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
934 * and they also have a different bit for STIBP support. Also,
935 * a hypervisor might have set the individual AMD bits even on
936 * Intel CPUs, for finer-grained selection of what's available.
937 */
938 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
939 set_cpu_cap(c, X86_FEATURE_IBRS);
940 set_cpu_cap(c, X86_FEATURE_IBPB);
941 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
942 }
943
944 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
945 set_cpu_cap(c, X86_FEATURE_STIBP);
946
947 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
948 cpu_has(c, X86_FEATURE_VIRT_SSBD))
949 set_cpu_cap(c, X86_FEATURE_SSBD);
950
951 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
952 set_cpu_cap(c, X86_FEATURE_IBRS);
953 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
954 }
955
956 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
957 set_cpu_cap(c, X86_FEATURE_IBPB);
958
959 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
960 set_cpu_cap(c, X86_FEATURE_STIBP);
961 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
962 }
963
964 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
965 set_cpu_cap(c, X86_FEATURE_SSBD);
966 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
967 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
968 }
969}
970
971void get_cpu_cap(struct cpuinfo_x86 *c)
972{
973 u32 eax, ebx, ecx, edx;
974
975 /* Intel-defined flags: level 0x00000001 */
976 if (c->cpuid_level >= 0x00000001) {
977 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
978
979 c->x86_capability[CPUID_1_ECX] = ecx;
980 c->x86_capability[CPUID_1_EDX] = edx;
981 }
982
983 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
984 if (c->cpuid_level >= 0x00000006)
985 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
986
987 /* Additional Intel-defined flags: level 0x00000007 */
988 if (c->cpuid_level >= 0x00000007) {
989 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
990 c->x86_capability[CPUID_7_0_EBX] = ebx;
991 c->x86_capability[CPUID_7_ECX] = ecx;
992 c->x86_capability[CPUID_7_EDX] = edx;
993
994 /* Check valid sub-leaf index before accessing it */
995 if (eax >= 1) {
996 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
997 c->x86_capability[CPUID_7_1_EAX] = eax;
998 }
999 }
1000
1001 /* Extended state features: level 0x0000000d */
1002 if (c->cpuid_level >= 0x0000000d) {
1003 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1004
1005 c->x86_capability[CPUID_D_1_EAX] = eax;
1006 }
1007
1008 /* AMD-defined flags: level 0x80000001 */
1009 eax = cpuid_eax(0x80000000);
1010 c->extended_cpuid_level = eax;
1011
1012 if ((eax & 0xffff0000) == 0x80000000) {
1013 if (eax >= 0x80000001) {
1014 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1015
1016 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1017 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1018 }
1019 }
1020
1021 if (c->extended_cpuid_level >= 0x80000007) {
1022 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1023
1024 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1025 c->x86_power = edx;
1026 }
1027
1028 if (c->extended_cpuid_level >= 0x80000008) {
1029 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1030 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1031 }
1032
1033 if (c->extended_cpuid_level >= 0x8000000a)
1034 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1035
1036 if (c->extended_cpuid_level >= 0x8000001f)
1037 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1038
1039 if (c->extended_cpuid_level >= 0x80000021)
1040 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1041
1042 init_scattered_cpuid_features(c);
1043 init_speculation_control(c);
1044
1045 /*
1046 * Clear/Set all flags overridden by options, after probe.
1047 * This needs to happen each time we re-probe, which may happen
1048 * several times during CPU initialization.
1049 */
1050 apply_forced_caps(c);
1051}
1052
1053void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1054{
1055 u32 eax, ebx, ecx, edx;
1056 bool vp_bits_from_cpuid = true;
1057
1058 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059 (c->extended_cpuid_level < 0x80000008))
1060 vp_bits_from_cpuid = false;
1061
1062 if (vp_bits_from_cpuid) {
1063 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1064
1065 c->x86_virt_bits = (eax >> 8) & 0xff;
1066 c->x86_phys_bits = eax & 0xff;
1067 } else {
1068 if (IS_ENABLED(CONFIG_X86_64)) {
1069 c->x86_clflush_size = 64;
1070 c->x86_phys_bits = 36;
1071 c->x86_virt_bits = 48;
1072 } else {
1073 c->x86_clflush_size = 32;
1074 c->x86_virt_bits = 32;
1075 c->x86_phys_bits = 32;
1076
1077 if (cpu_has(c, X86_FEATURE_PAE) ||
1078 cpu_has(c, X86_FEATURE_PSE36))
1079 c->x86_phys_bits = 36;
1080 }
1081 }
1082 c->x86_cache_bits = c->x86_phys_bits;
1083 c->x86_cache_alignment = c->x86_clflush_size;
1084}
1085
1086static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1087{
1088#ifdef CONFIG_X86_32
1089 int i;
1090
1091 /*
1092 * First of all, decide if this is a 486 or higher
1093 * It's a 486 if we can modify the AC flag
1094 */
1095 if (flag_is_changeable_p(X86_EFLAGS_AC))
1096 c->x86 = 4;
1097 else
1098 c->x86 = 3;
1099
1100 for (i = 0; i < X86_VENDOR_NUM; i++)
1101 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1102 c->x86_vendor_id[0] = 0;
1103 cpu_devs[i]->c_identify(c);
1104 if (c->x86_vendor_id[0]) {
1105 get_cpu_vendor(c);
1106 break;
1107 }
1108 }
1109#endif
1110}
1111
1112#define NO_SPECULATION BIT(0)
1113#define NO_MELTDOWN BIT(1)
1114#define NO_SSB BIT(2)
1115#define NO_L1TF BIT(3)
1116#define NO_MDS BIT(4)
1117#define MSBDS_ONLY BIT(5)
1118#define NO_SWAPGS BIT(6)
1119#define NO_ITLB_MULTIHIT BIT(7)
1120#define NO_SPECTRE_V2 BIT(8)
1121#define NO_MMIO BIT(9)
1122#define NO_EIBRS_PBRSB BIT(10)
1123#define NO_BHI BIT(11)
1124
1125#define VULNWL(vendor, family, model, whitelist) \
1126 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1127
1128#define VULNWL_INTEL(model, whitelist) \
1129 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1130
1131#define VULNWL_AMD(family, whitelist) \
1132 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1133
1134#define VULNWL_HYGON(family, whitelist) \
1135 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1136
1137static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1138 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1139 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1140 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1141 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1142 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1143 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1144
1145 /* Intel Family 6 */
1146 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1147 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1148 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1149 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1150
1151 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1152 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1156
1157 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163
1164 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1165
1166 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1168
1169 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1172
1173 /*
1174 * Technically, swapgs isn't serializing on AMD (despite it previously
1175 * being documented as such in the APM). But according to AMD, %gs is
1176 * updated non-speculatively, and the issuing of %gs-relative memory
1177 * operands will be blocked until the %gs update completes, which is
1178 * good enough for our purposes.
1179 */
1180
1181 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1182 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1183 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1184
1185 /* AMD Family 0xf - 0x12 */
1186 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1187 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190
1191 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1192 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1193 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194
1195 /* Zhaoxin Family 7 */
1196 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1197 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198 {}
1199};
1200
1201#define VULNBL(vendor, family, model, blacklist) \
1202 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1203
1204#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1205 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1206 INTEL_FAM6_##model, steppings, \
1207 X86_FEATURE_ANY, issues)
1208
1209#define VULNBL_AMD(family, blacklist) \
1210 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211
1212#define VULNBL_HYGON(family, blacklist) \
1213 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214
1215#define SRBDS BIT(0)
1216/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217#define MMIO BIT(1)
1218/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219#define MMIO_SBDS BIT(2)
1220/* CPU is affected by RETbleed, speculating where you would not expect it */
1221#define RETBLEED BIT(3)
1222/* CPU is affected by SMT (cross-thread) return predictions */
1223#define SMT_RSB BIT(4)
1224/* CPU is affected by SRSO */
1225#define SRSO BIT(5)
1226/* CPU is affected by GDS */
1227#define GDS BIT(6)
1228/* CPU is affected by Register File Data Sampling */
1229#define RFDS BIT(7)
1230
1231static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1233 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1234 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1235 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1236 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1237 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1238 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1239 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1240 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1241 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1242 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1243 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1244 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1245 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1246 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1247 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1248 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1249 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1250 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1251 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1252 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1253 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1254 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1255 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1256 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1257 VULNBL_INTEL_STEPPINGS(ALDERLAKE, X86_STEPPING_ANY, RFDS),
1258 VULNBL_INTEL_STEPPINGS(ALDERLAKE_L, X86_STEPPING_ANY, RFDS),
1259 VULNBL_INTEL_STEPPINGS(RAPTORLAKE, X86_STEPPING_ANY, RFDS),
1260 VULNBL_INTEL_STEPPINGS(RAPTORLAKE_P, X86_STEPPING_ANY, RFDS),
1261 VULNBL_INTEL_STEPPINGS(RAPTORLAKE_S, X86_STEPPING_ANY, RFDS),
1262 VULNBL_INTEL_STEPPINGS(ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS),
1263 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1264 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS),
1265 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1266 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS),
1267 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS),
1268 VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS),
1269
1270 VULNBL_AMD(0x15, RETBLEED),
1271 VULNBL_AMD(0x16, RETBLEED),
1272 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274 VULNBL_AMD(0x19, SRSO),
1275 {}
1276};
1277
1278static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279{
1280 const struct x86_cpu_id *m = x86_match_cpu(table);
1281
1282 return m && !!(m->driver_data & which);
1283}
1284
1285u64 x86_read_arch_cap_msr(void)
1286{
1287 u64 x86_arch_cap_msr = 0;
1288
1289 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291
1292 return x86_arch_cap_msr;
1293}
1294
1295static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296{
1297 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300}
1301
1302static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303{
1304 /* The "immunity" bit trumps everything else: */
1305 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306 return false;
1307
1308 /*
1309 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310 * indicate that mitigation is needed because guest is running on a
1311 * vulnerable hardware or may migrate to such hardware:
1312 */
1313 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314 return true;
1315
1316 /* Only consult the blacklist when there is no enumeration: */
1317 return cpu_matches(cpu_vuln_blacklist, RFDS);
1318}
1319
1320static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321{
1322 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323
1324 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328
1329 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330 return;
1331
1332 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333
1334 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336
1337 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341
1342 /*
1343 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344 * flag and protect from vendor-specific bugs via the whitelist.
1345 *
1346 * Don't use AutoIBRS when SNP is enabled because it degrades host
1347 * userspace indirect branch performance.
1348 */
1349 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350 (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356 }
1357
1358 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360 setup_force_cpu_bug(X86_BUG_MDS);
1361 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363 }
1364
1365 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366 setup_force_cpu_bug(X86_BUG_SWAPGS);
1367
1368 /*
1369 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370 * - TSX is supported or
1371 * - TSX_CTRL is present
1372 *
1373 * TSX_CTRL check is needed for cases when TSX could be disabled before
1374 * the kernel boot e.g. kexec.
1375 * TSX_CTRL check alone is not sufficient for cases when the microcode
1376 * update is not present or running as guest that don't get TSX_CTRL.
1377 */
1378 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379 (cpu_has(c, X86_FEATURE_RTM) ||
1380 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381 setup_force_cpu_bug(X86_BUG_TAA);
1382
1383 /*
1384 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385 * in the vulnerability blacklist.
1386 *
1387 * Some of the implications and mitigation of Shared Buffers Data
1388 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389 * SRBDS.
1390 */
1391 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392 cpu_has(c, X86_FEATURE_RDSEED)) &&
1393 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394 setup_force_cpu_bug(X86_BUG_SRBDS);
1395
1396 /*
1397 * Processor MMIO Stale Data bug enumeration
1398 *
1399 * Affected CPU list is generally enough to enumerate the vulnerability,
1400 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401 * not want the guest to enumerate the bug.
1402 *
1403 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405 */
1406 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411 }
1412
1413 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415 setup_force_cpu_bug(X86_BUG_RETBLEED);
1416 }
1417
1418 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420
1421 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423 setup_force_cpu_bug(X86_BUG_SRSO);
1424 }
1425
1426 /*
1427 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428 * an affected processor, the VMM may have disabled the use of GATHER by
1429 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430 * which means that AVX will be disabled.
1431 */
1432 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433 boot_cpu_has(X86_FEATURE_AVX))
1434 setup_force_cpu_bug(X86_BUG_GDS);
1435
1436 if (vulnerable_to_rfds(x86_arch_cap_msr))
1437 setup_force_cpu_bug(X86_BUG_RFDS);
1438
1439 /* When virtualized, eIBRS could be hidden, assume vulnerable */
1440 if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441 !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444 setup_force_cpu_bug(X86_BUG_BHI);
1445
1446 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447 return;
1448
1449 /* Rogue Data Cache Load? No! */
1450 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1451 return;
1452
1453 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454
1455 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456 return;
1457
1458 setup_force_cpu_bug(X86_BUG_L1TF);
1459}
1460
1461/*
1462 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463 * unfortunately, that's not true in practice because of early VIA
1464 * chips and (more importantly) broken virtualizers that are not easy
1465 * to detect. In the latter case it doesn't even *fail* reliably, so
1466 * probing for it doesn't even work. Disable it completely on 32-bit
1467 * unless we can find a reliable way to detect all the broken cases.
1468 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469 */
1470static void detect_nopl(void)
1471{
1472#ifdef CONFIG_X86_32
1473 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474#else
1475 setup_force_cpu_cap(X86_FEATURE_NOPL);
1476#endif
1477}
1478
1479/*
1480 * We parse cpu parameters early because fpu__init_system() is executed
1481 * before parse_early_param().
1482 */
1483static void __init cpu_parse_early_param(void)
1484{
1485 char arg[128];
1486 char *argptr = arg, *opt;
1487 int arglen, taint = 0;
1488
1489#ifdef CONFIG_X86_32
1490 if (cmdline_find_option_bool(boot_command_line, "no387"))
1491#ifdef CONFIG_MATH_EMULATION
1492 setup_clear_cpu_cap(X86_FEATURE_FPU);
1493#else
1494 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495#endif
1496
1497 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499#endif
1500
1501 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503
1504 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506
1507 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509
1510 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512
1513 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1514 if (arglen <= 0)
1515 return;
1516
1517 pr_info("Clearing CPUID bits:");
1518
1519 while (argptr) {
1520 bool found __maybe_unused = false;
1521 unsigned int bit;
1522
1523 opt = strsep(&argptr, ",");
1524
1525 /*
1526 * Handle naked numbers first for feature flags which don't
1527 * have names.
1528 */
1529 if (!kstrtouint(opt, 10, &bit)) {
1530 if (bit < NCAPINTS * 32) {
1531
1532 /* empty-string, i.e., ""-defined feature flags */
1533 if (!x86_cap_flags[bit])
1534 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1535 else
1536 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1537
1538 setup_clear_cpu_cap(bit);
1539 taint++;
1540 }
1541 /*
1542 * The assumption is that there are no feature names with only
1543 * numbers in the name thus go to the next argument.
1544 */
1545 continue;
1546 }
1547
1548 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1549 if (!x86_cap_flag(bit))
1550 continue;
1551
1552 if (strcmp(x86_cap_flag(bit), opt))
1553 continue;
1554
1555 pr_cont(" %s", opt);
1556 setup_clear_cpu_cap(bit);
1557 taint++;
1558 found = true;
1559 break;
1560 }
1561
1562 if (!found)
1563 pr_cont(" (unknown: %s)", opt);
1564 }
1565 pr_cont("\n");
1566
1567 if (taint)
1568 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1569}
1570
1571/*
1572 * Do minimum CPU detection early.
1573 * Fields really needed: vendor, cpuid_level, family, model, mask,
1574 * cache alignment.
1575 * The others are not touched to avoid unwanted side effects.
1576 *
1577 * WARNING: this function is only called on the boot CPU. Don't add code
1578 * here that is supposed to run on all CPUs.
1579 */
1580static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1581{
1582 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1583 c->extended_cpuid_level = 0;
1584
1585 if (!have_cpuid_p())
1586 identify_cpu_without_cpuid(c);
1587
1588 /* cyrix could have cpuid enabled via c_identify()*/
1589 if (have_cpuid_p()) {
1590 cpu_detect(c);
1591 get_cpu_vendor(c);
1592 intel_unlock_cpuid_leafs(c);
1593 get_cpu_cap(c);
1594 setup_force_cpu_cap(X86_FEATURE_CPUID);
1595 get_cpu_address_sizes(c);
1596 cpu_parse_early_param();
1597
1598 cpu_init_topology(c);
1599
1600 if (this_cpu->c_early_init)
1601 this_cpu->c_early_init(c);
1602
1603 c->cpu_index = 0;
1604 filter_cpuid_features(c, false);
1605
1606 if (this_cpu->c_bsp_init)
1607 this_cpu->c_bsp_init(c);
1608 } else {
1609 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1610 get_cpu_address_sizes(c);
1611 cpu_init_topology(c);
1612 }
1613
1614 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1615
1616 cpu_set_bug_bits(c);
1617
1618 sld_setup(c);
1619
1620#ifdef CONFIG_X86_32
1621 /*
1622 * Regardless of whether PCID is enumerated, the SDM says
1623 * that it can't be enabled in 32-bit mode.
1624 */
1625 setup_clear_cpu_cap(X86_FEATURE_PCID);
1626#endif
1627
1628 /*
1629 * Later in the boot process pgtable_l5_enabled() relies on
1630 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1631 * enabled by this point we need to clear the feature bit to avoid
1632 * false-positives at the later stage.
1633 *
1634 * pgtable_l5_enabled() can be false here for several reasons:
1635 * - 5-level paging is disabled compile-time;
1636 * - it's 32-bit kernel;
1637 * - machine doesn't support 5-level paging;
1638 * - user specified 'no5lvl' in kernel command line.
1639 */
1640 if (!pgtable_l5_enabled())
1641 setup_clear_cpu_cap(X86_FEATURE_LA57);
1642
1643 detect_nopl();
1644}
1645
1646void __init early_cpu_init(void)
1647{
1648 const struct cpu_dev *const *cdev;
1649 int count = 0;
1650
1651#ifdef CONFIG_PROCESSOR_SELECT
1652 pr_info("KERNEL supported cpus:\n");
1653#endif
1654
1655 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1656 const struct cpu_dev *cpudev = *cdev;
1657
1658 if (count >= X86_VENDOR_NUM)
1659 break;
1660 cpu_devs[count] = cpudev;
1661 count++;
1662
1663#ifdef CONFIG_PROCESSOR_SELECT
1664 {
1665 unsigned int j;
1666
1667 for (j = 0; j < 2; j++) {
1668 if (!cpudev->c_ident[j])
1669 continue;
1670 pr_info(" %s %s\n", cpudev->c_vendor,
1671 cpudev->c_ident[j]);
1672 }
1673 }
1674#endif
1675 }
1676 early_identify_cpu(&boot_cpu_data);
1677}
1678
1679static bool detect_null_seg_behavior(void)
1680{
1681 /*
1682 * Empirically, writing zero to a segment selector on AMD does
1683 * not clear the base, whereas writing zero to a segment
1684 * selector on Intel does clear the base. Intel's behavior
1685 * allows slightly faster context switches in the common case
1686 * where GS is unused by the prev and next threads.
1687 *
1688 * Since neither vendor documents this anywhere that I can see,
1689 * detect it directly instead of hard-coding the choice by
1690 * vendor.
1691 *
1692 * I've designated AMD's behavior as the "bug" because it's
1693 * counterintuitive and less friendly.
1694 */
1695
1696 unsigned long old_base, tmp;
1697 rdmsrl(MSR_FS_BASE, old_base);
1698 wrmsrl(MSR_FS_BASE, 1);
1699 loadsegment(fs, 0);
1700 rdmsrl(MSR_FS_BASE, tmp);
1701 wrmsrl(MSR_FS_BASE, old_base);
1702 return tmp == 0;
1703}
1704
1705void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1706{
1707 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1708 if (!IS_ENABLED(CONFIG_X86_64))
1709 return;
1710
1711 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1712 return;
1713
1714 /*
1715 * CPUID bit above wasn't set. If this kernel is still running
1716 * as a HV guest, then the HV has decided not to advertize
1717 * that CPUID bit for whatever reason. For example, one
1718 * member of the migration pool might be vulnerable. Which
1719 * means, the bug is present: set the BUG flag and return.
1720 */
1721 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1722 set_cpu_bug(c, X86_BUG_NULL_SEG);
1723 return;
1724 }
1725
1726 /*
1727 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1728 * 0x18 is the respective family for Hygon.
1729 */
1730 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1731 detect_null_seg_behavior())
1732 return;
1733
1734 /* All the remaining ones are affected */
1735 set_cpu_bug(c, X86_BUG_NULL_SEG);
1736}
1737
1738static void generic_identify(struct cpuinfo_x86 *c)
1739{
1740 c->extended_cpuid_level = 0;
1741
1742 if (!have_cpuid_p())
1743 identify_cpu_without_cpuid(c);
1744
1745 /* cyrix could have cpuid enabled via c_identify()*/
1746 if (!have_cpuid_p())
1747 return;
1748
1749 cpu_detect(c);
1750
1751 get_cpu_vendor(c);
1752 intel_unlock_cpuid_leafs(c);
1753 get_cpu_cap(c);
1754
1755 get_cpu_address_sizes(c);
1756
1757 get_model_name(c); /* Default name */
1758
1759 /*
1760 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1761 * systems that run Linux at CPL > 0 may or may not have the
1762 * issue, but, even if they have the issue, there's absolutely
1763 * nothing we can do about it because we can't use the real IRET
1764 * instruction.
1765 *
1766 * NB: For the time being, only 32-bit kernels support
1767 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1768 * whether to apply espfix using paravirt hooks. If any
1769 * non-paravirt system ever shows up that does *not* have the
1770 * ESPFIX issue, we can change this.
1771 */
1772#ifdef CONFIG_X86_32
1773 set_cpu_bug(c, X86_BUG_ESPFIX);
1774#endif
1775}
1776
1777/*
1778 * This does the hard work of actually picking apart the CPU stuff...
1779 */
1780static void identify_cpu(struct cpuinfo_x86 *c)
1781{
1782 int i;
1783
1784 c->loops_per_jiffy = loops_per_jiffy;
1785 c->x86_cache_size = 0;
1786 c->x86_vendor = X86_VENDOR_UNKNOWN;
1787 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1788 c->x86_vendor_id[0] = '\0'; /* Unset */
1789 c->x86_model_id[0] = '\0'; /* Unset */
1790#ifdef CONFIG_X86_64
1791 c->x86_clflush_size = 64;
1792 c->x86_phys_bits = 36;
1793 c->x86_virt_bits = 48;
1794#else
1795 c->cpuid_level = -1; /* CPUID not detected */
1796 c->x86_clflush_size = 32;
1797 c->x86_phys_bits = 32;
1798 c->x86_virt_bits = 32;
1799#endif
1800 c->x86_cache_alignment = c->x86_clflush_size;
1801 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1802#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1803 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1804#endif
1805
1806 generic_identify(c);
1807
1808 cpu_parse_topology(c);
1809
1810 if (this_cpu->c_identify)
1811 this_cpu->c_identify(c);
1812
1813 /* Clear/Set all flags overridden by options, after probe */
1814 apply_forced_caps(c);
1815
1816 /*
1817 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1818 * Hygon will clear it in ->c_init() below.
1819 */
1820 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1821
1822 /*
1823 * Vendor-specific initialization. In this section we
1824 * canonicalize the feature flags, meaning if there are
1825 * features a certain CPU supports which CPUID doesn't
1826 * tell us, CPUID claiming incorrect flags, or other bugs,
1827 * we handle them here.
1828 *
1829 * At the end of this section, c->x86_capability better
1830 * indicate the features this CPU genuinely supports!
1831 */
1832 if (this_cpu->c_init)
1833 this_cpu->c_init(c);
1834
1835 /* Disable the PN if appropriate */
1836 squash_the_stupid_serial_number(c);
1837
1838 /* Set up SMEP/SMAP/UMIP */
1839 setup_smep(c);
1840 setup_smap(c);
1841 setup_umip(c);
1842
1843 /* Enable FSGSBASE instructions if available. */
1844 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1845 cr4_set_bits(X86_CR4_FSGSBASE);
1846 elf_hwcap2 |= HWCAP2_FSGSBASE;
1847 }
1848
1849 /*
1850 * The vendor-specific functions might have changed features.
1851 * Now we do "generic changes."
1852 */
1853
1854 /* Filter out anything that depends on CPUID levels we don't have */
1855 filter_cpuid_features(c, true);
1856
1857 /* If the model name is still unset, do table lookup. */
1858 if (!c->x86_model_id[0]) {
1859 const char *p;
1860 p = table_lookup_model(c);
1861 if (p)
1862 strcpy(c->x86_model_id, p);
1863 else
1864 /* Last resort... */
1865 sprintf(c->x86_model_id, "%02x/%02x",
1866 c->x86, c->x86_model);
1867 }
1868
1869 x86_init_rdrand(c);
1870 setup_pku(c);
1871 setup_cet(c);
1872
1873 /*
1874 * Clear/Set all flags overridden by options, need do it
1875 * before following smp all cpus cap AND.
1876 */
1877 apply_forced_caps(c);
1878
1879 /*
1880 * On SMP, boot_cpu_data holds the common feature set between
1881 * all CPUs; so make sure that we indicate which features are
1882 * common between the CPUs. The first time this routine gets
1883 * executed, c == &boot_cpu_data.
1884 */
1885 if (c != &boot_cpu_data) {
1886 /* AND the already accumulated flags with these */
1887 for (i = 0; i < NCAPINTS; i++)
1888 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1889
1890 /* OR, i.e. replicate the bug flags */
1891 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1892 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1893 }
1894
1895 ppin_init(c);
1896
1897 /* Init Machine Check Exception if available. */
1898 mcheck_cpu_init(c);
1899
1900#ifdef CONFIG_NUMA
1901 numa_add_cpu(smp_processor_id());
1902#endif
1903}
1904
1905/*
1906 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1907 * on 32-bit kernels:
1908 */
1909#ifdef CONFIG_X86_32
1910void enable_sep_cpu(void)
1911{
1912 struct tss_struct *tss;
1913 int cpu;
1914
1915 if (!boot_cpu_has(X86_FEATURE_SEP))
1916 return;
1917
1918 cpu = get_cpu();
1919 tss = &per_cpu(cpu_tss_rw, cpu);
1920
1921 /*
1922 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1923 * see the big comment in struct x86_hw_tss's definition.
1924 */
1925
1926 tss->x86_tss.ss1 = __KERNEL_CS;
1927 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1928 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1929 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1930
1931 put_cpu();
1932}
1933#endif
1934
1935static __init void identify_boot_cpu(void)
1936{
1937 identify_cpu(&boot_cpu_data);
1938 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1939 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1940#ifdef CONFIG_X86_32
1941 enable_sep_cpu();
1942#endif
1943 cpu_detect_tlb(&boot_cpu_data);
1944 setup_cr_pinning();
1945
1946 tsx_init();
1947 tdx_init();
1948 lkgs_init();
1949}
1950
1951void identify_secondary_cpu(struct cpuinfo_x86 *c)
1952{
1953 BUG_ON(c == &boot_cpu_data);
1954 identify_cpu(c);
1955#ifdef CONFIG_X86_32
1956 enable_sep_cpu();
1957#endif
1958 x86_spec_ctrl_setup_ap();
1959 update_srbds_msr();
1960 if (boot_cpu_has_bug(X86_BUG_GDS))
1961 update_gds_msr();
1962
1963 tsx_ap_init();
1964}
1965
1966void print_cpu_info(struct cpuinfo_x86 *c)
1967{
1968 const char *vendor = NULL;
1969
1970 if (c->x86_vendor < X86_VENDOR_NUM) {
1971 vendor = this_cpu->c_vendor;
1972 } else {
1973 if (c->cpuid_level >= 0)
1974 vendor = c->x86_vendor_id;
1975 }
1976
1977 if (vendor && !strstr(c->x86_model_id, vendor))
1978 pr_cont("%s ", vendor);
1979
1980 if (c->x86_model_id[0])
1981 pr_cont("%s", c->x86_model_id);
1982 else
1983 pr_cont("%d86", c->x86);
1984
1985 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1986
1987 if (c->x86_stepping || c->cpuid_level >= 0)
1988 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1989 else
1990 pr_cont(")\n");
1991}
1992
1993/*
1994 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1995 * function prevents it from becoming an environment variable for init.
1996 */
1997static __init int setup_clearcpuid(char *arg)
1998{
1999 return 1;
2000}
2001__setup("clearcpuid=", setup_clearcpuid);
2002
2003DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2004 .current_task = &init_task,
2005 .preempt_count = INIT_PREEMPT_COUNT,
2006 .top_of_stack = TOP_OF_INIT_STACK,
2007};
2008EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2009EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2010
2011#ifdef CONFIG_X86_64
2012DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2013 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2014EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2015
2016static void wrmsrl_cstar(unsigned long val)
2017{
2018 /*
2019 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2020 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2021 * guest. Avoid the pointless write on all Intel CPUs.
2022 */
2023 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2024 wrmsrl(MSR_CSTAR, val);
2025}
2026
2027static inline void idt_syscall_init(void)
2028{
2029 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2030
2031 if (ia32_enabled()) {
2032 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2033 /*
2034 * This only works on Intel CPUs.
2035 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2036 * This does not cause SYSENTER to jump to the wrong location, because
2037 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2038 */
2039 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2040 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2041 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2042 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2043 } else {
2044 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2045 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2046 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2047 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2048 }
2049
2050 /*
2051 * Flags to clear on syscall; clear as much as possible
2052 * to minimize user space-kernel interference.
2053 */
2054 wrmsrl(MSR_SYSCALL_MASK,
2055 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2056 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2057 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2058 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2059 X86_EFLAGS_AC|X86_EFLAGS_ID);
2060}
2061
2062/* May not be marked __init: used by software suspend */
2063void syscall_init(void)
2064{
2065 /* The default user and kernel segments */
2066 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2067
2068 /*
2069 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2070 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2071 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2072 * instruction to return to ring 3 (both sysexit and sysret cause
2073 * #UD when FRED is enabled).
2074 */
2075 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2076 idt_syscall_init();
2077}
2078
2079#else /* CONFIG_X86_64 */
2080
2081#ifdef CONFIG_STACKPROTECTOR
2082DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2083EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2084#endif
2085
2086#endif /* CONFIG_X86_64 */
2087
2088/*
2089 * Clear all 6 debug registers:
2090 */
2091static void clear_all_debug_regs(void)
2092{
2093 int i;
2094
2095 for (i = 0; i < 8; i++) {
2096 /* Ignore db4, db5 */
2097 if ((i == 4) || (i == 5))
2098 continue;
2099
2100 set_debugreg(0, i);
2101 }
2102}
2103
2104#ifdef CONFIG_KGDB
2105/*
2106 * Restore debug regs if using kgdbwait and you have a kernel debugger
2107 * connection established.
2108 */
2109static void dbg_restore_debug_regs(void)
2110{
2111 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2112 arch_kgdb_ops.correct_hw_break();
2113}
2114#else /* ! CONFIG_KGDB */
2115#define dbg_restore_debug_regs()
2116#endif /* ! CONFIG_KGDB */
2117
2118static inline void setup_getcpu(int cpu)
2119{
2120 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2121 struct desc_struct d = { };
2122
2123 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2124 wrmsr(MSR_TSC_AUX, cpudata, 0);
2125
2126 /* Store CPU and node number in limit. */
2127 d.limit0 = cpudata;
2128 d.limit1 = cpudata >> 16;
2129
2130 d.type = 5; /* RO data, expand down, accessed */
2131 d.dpl = 3; /* Visible to user code */
2132 d.s = 1; /* Not a system segment */
2133 d.p = 1; /* Present */
2134 d.d = 1; /* 32-bit */
2135
2136 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2137}
2138
2139#ifdef CONFIG_X86_64
2140static inline void tss_setup_ist(struct tss_struct *tss)
2141{
2142 /* Set up the per-CPU TSS IST stacks */
2143 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2144 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2145 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2146 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2147 /* Only mapped when SEV-ES is active */
2148 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2149}
2150#else /* CONFIG_X86_64 */
2151static inline void tss_setup_ist(struct tss_struct *tss) { }
2152#endif /* !CONFIG_X86_64 */
2153
2154static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2155{
2156 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2157
2158#ifdef CONFIG_X86_IOPL_IOPERM
2159 tss->io_bitmap.prev_max = 0;
2160 tss->io_bitmap.prev_sequence = 0;
2161 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2162 /*
2163 * Invalidate the extra array entry past the end of the all
2164 * permission bitmap as required by the hardware.
2165 */
2166 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2167#endif
2168}
2169
2170/*
2171 * Setup everything needed to handle exceptions from the IDT, including the IST
2172 * exceptions which use paranoid_entry().
2173 */
2174void cpu_init_exception_handling(void)
2175{
2176 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2177 int cpu = raw_smp_processor_id();
2178
2179 /* paranoid_entry() gets the CPU number from the GDT */
2180 setup_getcpu(cpu);
2181
2182 /* For IDT mode, IST vectors need to be set in TSS. */
2183 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2184 tss_setup_ist(tss);
2185 tss_setup_io_bitmap(tss);
2186 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2187
2188 load_TR_desc();
2189
2190 /* GHCB needs to be setup to handle #VC. */
2191 setup_ghcb();
2192
2193 if (cpu_feature_enabled(X86_FEATURE_FRED))
2194 cpu_init_fred_exceptions();
2195 else
2196 load_current_idt();
2197}
2198
2199/*
2200 * cpu_init() initializes state that is per-CPU. Some data is already
2201 * initialized (naturally) in the bootstrap process, such as the GDT. We
2202 * reload it nevertheless, this function acts as a 'CPU state barrier',
2203 * nothing should get across.
2204 */
2205void cpu_init(void)
2206{
2207 struct task_struct *cur = current;
2208 int cpu = raw_smp_processor_id();
2209
2210#ifdef CONFIG_NUMA
2211 if (this_cpu_read(numa_node) == 0 &&
2212 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2213 set_numa_node(early_cpu_to_node(cpu));
2214#endif
2215 pr_debug("Initializing CPU#%d\n", cpu);
2216
2217 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2218 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2219 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2220
2221 if (IS_ENABLED(CONFIG_X86_64)) {
2222 loadsegment(fs, 0);
2223 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2224 syscall_init();
2225
2226 wrmsrl(MSR_FS_BASE, 0);
2227 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2228 barrier();
2229
2230 x2apic_setup();
2231 }
2232
2233 mmgrab(&init_mm);
2234 cur->active_mm = &init_mm;
2235 BUG_ON(cur->mm);
2236 initialize_tlbstate_and_flush();
2237 enter_lazy_tlb(&init_mm, cur);
2238
2239 /*
2240 * sp0 points to the entry trampoline stack regardless of what task
2241 * is running.
2242 */
2243 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2244
2245 load_mm_ldt(&init_mm);
2246
2247 clear_all_debug_regs();
2248 dbg_restore_debug_regs();
2249
2250 doublefault_init_cpu_tss();
2251
2252 if (is_uv_system())
2253 uv_cpu_init();
2254
2255 load_fixmap_gdt(cpu);
2256}
2257
2258#ifdef CONFIG_MICROCODE_LATE_LOADING
2259/**
2260 * store_cpu_caps() - Store a snapshot of CPU capabilities
2261 * @curr_info: Pointer where to store it
2262 *
2263 * Returns: None
2264 */
2265void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2266{
2267 /* Reload CPUID max function as it might've changed. */
2268 curr_info->cpuid_level = cpuid_eax(0);
2269
2270 /* Copy all capability leafs and pick up the synthetic ones. */
2271 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2272 sizeof(curr_info->x86_capability));
2273
2274 /* Get the hardware CPUID leafs */
2275 get_cpu_cap(curr_info);
2276}
2277
2278/**
2279 * microcode_check() - Check if any CPU capabilities changed after an update.
2280 * @prev_info: CPU capabilities stored before an update.
2281 *
2282 * The microcode loader calls this upon late microcode load to recheck features,
2283 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2284 *
2285 * Return: None
2286 */
2287void microcode_check(struct cpuinfo_x86 *prev_info)
2288{
2289 struct cpuinfo_x86 curr_info;
2290
2291 perf_check_microcode();
2292
2293 amd_check_microcode();
2294
2295 store_cpu_caps(&curr_info);
2296
2297 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2298 sizeof(prev_info->x86_capability)))
2299 return;
2300
2301 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2302 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2303}
2304#endif
2305
2306/*
2307 * Invoked from core CPU hotplug code after hotplug operations
2308 */
2309void arch_smt_update(void)
2310{
2311 /* Handle the speculative execution misfeatures */
2312 cpu_bugs_smt_update();
2313 /* Check whether IPI broadcasting can be enabled */
2314 apic_smt_update();
2315}
2316
2317void __init arch_cpu_finalize_init(void)
2318{
2319 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2320
2321 identify_boot_cpu();
2322
2323 select_idle_routine();
2324
2325 /*
2326 * identify_boot_cpu() initialized SMT support information, let the
2327 * core code know.
2328 */
2329 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2330
2331 if (!IS_ENABLED(CONFIG_SMP)) {
2332 pr_info("CPU: ");
2333 print_cpu_info(&boot_cpu_data);
2334 }
2335
2336 cpu_select_mitigations();
2337
2338 arch_smt_update();
2339
2340 if (IS_ENABLED(CONFIG_X86_32)) {
2341 /*
2342 * Check whether this is a real i386 which is not longer
2343 * supported and fixup the utsname.
2344 */
2345 if (boot_cpu_data.x86 < 4)
2346 panic("Kernel requires i486+ for 'invlpg' and other features");
2347
2348 init_utsname()->machine[1] =
2349 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2350 }
2351
2352 /*
2353 * Must be before alternatives because it might set or clear
2354 * feature bits.
2355 */
2356 fpu__init_system();
2357 fpu__init_cpu();
2358
2359 /*
2360 * Ensure that access to the per CPU representation has the initial
2361 * boot CPU configuration.
2362 */
2363 *c = boot_cpu_data;
2364 c->initialized = true;
2365
2366 alternative_instructions();
2367
2368 if (IS_ENABLED(CONFIG_X86_64)) {
2369 /*
2370 * Make sure the first 2MB area is not mapped by huge pages
2371 * There are typically fixed size MTRRs in there and overlapping
2372 * MTRRs into large pages causes slow downs.
2373 *
2374 * Right now we don't do that with gbpages because there seems
2375 * very little benefit for that case.
2376 */
2377 if (!direct_gbpages)
2378 set_memory_4k((unsigned long)__va(0), 1);
2379 } else {
2380 fpu__init_check_bugs();
2381 }
2382
2383 /*
2384 * This needs to be called before any devices perform DMA
2385 * operations that might use the SWIOTLB bounce buffers. It will
2386 * mark the bounce buffers as decrypted so that their usage will
2387 * not cause "plain-text" data to be decrypted when accessed. It
2388 * must be called after late_time_init() so that Hyper-V x86/x64
2389 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2390 */
2391 mem_encrypt_init();
2392}