Loading...
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/ctype.h>
9#include <linux/delay.h>
10#include <linux/sched.h>
11#include <linux/init.h>
12#include <linux/kprobes.h>
13#include <linux/kgdb.h>
14#include <linux/smp.h>
15#include <linux/io.h>
16#include <linux/syscore_ops.h>
17
18#include <asm/stackprotector.h>
19#include <asm/perf_event.h>
20#include <asm/mmu_context.h>
21#include <asm/archrandom.h>
22#include <asm/hypervisor.h>
23#include <asm/processor.h>
24#include <asm/tlbflush.h>
25#include <asm/debugreg.h>
26#include <asm/sections.h>
27#include <asm/vsyscall.h>
28#include <linux/topology.h>
29#include <linux/cpumask.h>
30#include <asm/pgtable.h>
31#include <linux/atomic.h>
32#include <asm/proto.h>
33#include <asm/setup.h>
34#include <asm/apic.h>
35#include <asm/desc.h>
36#include <asm/fpu/internal.h>
37#include <asm/mtrr.h>
38#include <linux/numa.h>
39#include <asm/asm.h>
40#include <asm/cpu.h>
41#include <asm/mce.h>
42#include <asm/msr.h>
43#include <asm/pat.h>
44#include <asm/microcode.h>
45#include <asm/microcode_intel.h>
46
47#ifdef CONFIG_X86_LOCAL_APIC
48#include <asm/uv/uv.h>
49#endif
50
51#include "cpu.h"
52
53/* all of these masks are initialized in setup_cpu_local_masks() */
54cpumask_var_t cpu_initialized_mask;
55cpumask_var_t cpu_callout_mask;
56cpumask_var_t cpu_callin_mask;
57
58/* representing cpus for which sibling maps can be computed */
59cpumask_var_t cpu_sibling_setup_mask;
60
61/* correctly size the local cpu masks */
62void __init setup_cpu_local_masks(void)
63{
64 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68}
69
70static void default_init(struct cpuinfo_x86 *c)
71{
72#ifdef CONFIG_X86_64
73 cpu_detect_cache_sizes(c);
74#else
75 /* Not much we can do here... */
76 /* Check if at least it has cpuid */
77 if (c->cpuid_level == -1) {
78 /* No cpuid. It must be an ancient CPU */
79 if (c->x86 == 4)
80 strcpy(c->x86_model_id, "486");
81 else if (c->x86 == 3)
82 strcpy(c->x86_model_id, "386");
83 }
84#endif
85}
86
87static const struct cpu_dev default_cpu = {
88 .c_init = default_init,
89 .c_vendor = "Unknown",
90 .c_x86_vendor = X86_VENDOR_UNKNOWN,
91};
92
93static const struct cpu_dev *this_cpu = &default_cpu;
94
95DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96#ifdef CONFIG_X86_64
97 /*
98 * We need valid kernel segments for data and code in long mode too
99 * IRET will check the segment types kkeil 2000/10/28
100 * Also sysret mandates a special GDT layout
101 *
102 * TLS descriptors are currently at a different place compared to i386.
103 * Hopefully nobody expects them at a fixed place (Wine?)
104 */
105 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111#else
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 /*
117 * Segments used for calling PnP BIOS have byte granularity.
118 * They code segments and data segments have fixed 64k limits,
119 * the transfer segment sizes are set at run time.
120 */
121 /* 32-bit code */
122 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 /* 16-bit code */
124 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 /* 16-bit data */
128 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
129 /* 16-bit data */
130 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
131 /*
132 * The APM segments have byte granularity and their bases
133 * are set at run time. All have 64k limits.
134 */
135 /* 32-bit code */
136 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 /* 16-bit code */
138 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 /* data */
140 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141
142 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 GDT_STACK_CANARY_INIT
145#endif
146} };
147EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148
149static int __init x86_mpx_setup(char *s)
150{
151 /* require an exact match without trailing characters */
152 if (strlen(s))
153 return 0;
154
155 /* do not emit a message if the feature is not present */
156 if (!boot_cpu_has(X86_FEATURE_MPX))
157 return 1;
158
159 setup_clear_cpu_cap(X86_FEATURE_MPX);
160 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 return 1;
162}
163__setup("nompx", x86_mpx_setup);
164
165static int __init x86_noinvpcid_setup(char *s)
166{
167 /* noinvpcid doesn't accept parameters */
168 if (s)
169 return -EINVAL;
170
171 /* do not emit a message if the feature is not present */
172 if (!boot_cpu_has(X86_FEATURE_INVPCID))
173 return 0;
174
175 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
176 pr_info("noinvpcid: INVPCID feature disabled\n");
177 return 0;
178}
179early_param("noinvpcid", x86_noinvpcid_setup);
180
181#ifdef CONFIG_X86_32
182static int cachesize_override = -1;
183static int disable_x86_serial_nr = 1;
184
185static int __init cachesize_setup(char *str)
186{
187 get_option(&str, &cachesize_override);
188 return 1;
189}
190__setup("cachesize=", cachesize_setup);
191
192static int __init x86_sep_setup(char *s)
193{
194 setup_clear_cpu_cap(X86_FEATURE_SEP);
195 return 1;
196}
197__setup("nosep", x86_sep_setup);
198
199/* Standard macro to see if a specific flag is changeable */
200static inline int flag_is_changeable_p(u32 flag)
201{
202 u32 f1, f2;
203
204 /*
205 * Cyrix and IDT cpus allow disabling of CPUID
206 * so the code below may return different results
207 * when it is executed before and after enabling
208 * the CPUID. Add "volatile" to not allow gcc to
209 * optimize the subsequent calls to this function.
210 */
211 asm volatile ("pushfl \n\t"
212 "pushfl \n\t"
213 "popl %0 \n\t"
214 "movl %0, %1 \n\t"
215 "xorl %2, %0 \n\t"
216 "pushl %0 \n\t"
217 "popfl \n\t"
218 "pushfl \n\t"
219 "popl %0 \n\t"
220 "popfl \n\t"
221
222 : "=&r" (f1), "=&r" (f2)
223 : "ir" (flag));
224
225 return ((f1^f2) & flag) != 0;
226}
227
228/* Probe for the CPUID instruction */
229int have_cpuid_p(void)
230{
231 return flag_is_changeable_p(X86_EFLAGS_ID);
232}
233
234static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
235{
236 unsigned long lo, hi;
237
238 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
239 return;
240
241 /* Disable processor serial number: */
242
243 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
244 lo |= 0x200000;
245 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246
247 pr_notice("CPU serial number disabled.\n");
248 clear_cpu_cap(c, X86_FEATURE_PN);
249
250 /* Disabling the serial number may affect the cpuid level */
251 c->cpuid_level = cpuid_eax(0);
252}
253
254static int __init x86_serial_nr_setup(char *s)
255{
256 disable_x86_serial_nr = 0;
257 return 1;
258}
259__setup("serialnumber", x86_serial_nr_setup);
260#else
261static inline int flag_is_changeable_p(u32 flag)
262{
263 return 1;
264}
265static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266{
267}
268#endif
269
270static __init int setup_disable_smep(char *arg)
271{
272 setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 return 1;
274}
275__setup("nosmep", setup_disable_smep);
276
277static __always_inline void setup_smep(struct cpuinfo_x86 *c)
278{
279 if (cpu_has(c, X86_FEATURE_SMEP))
280 cr4_set_bits(X86_CR4_SMEP);
281}
282
283static __init int setup_disable_smap(char *arg)
284{
285 setup_clear_cpu_cap(X86_FEATURE_SMAP);
286 return 1;
287}
288__setup("nosmap", setup_disable_smap);
289
290static __always_inline void setup_smap(struct cpuinfo_x86 *c)
291{
292 unsigned long eflags = native_save_fl();
293
294 /* This should have been cleared long ago */
295 BUG_ON(eflags & X86_EFLAGS_AC);
296
297 if (cpu_has(c, X86_FEATURE_SMAP)) {
298#ifdef CONFIG_X86_SMAP
299 cr4_set_bits(X86_CR4_SMAP);
300#else
301 cr4_clear_bits(X86_CR4_SMAP);
302#endif
303 }
304}
305
306/*
307 * Protection Keys are not available in 32-bit mode.
308 */
309static bool pku_disabled;
310
311static __always_inline void setup_pku(struct cpuinfo_x86 *c)
312{
313 if (!cpu_has(c, X86_FEATURE_PKU))
314 return;
315 if (pku_disabled)
316 return;
317
318 cr4_set_bits(X86_CR4_PKE);
319 /*
320 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
321 * cpuid bit to be set. We need to ensure that we
322 * update that bit in this CPU's "cpu_info".
323 */
324 get_cpu_cap(c);
325}
326
327#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
328static __init int setup_disable_pku(char *arg)
329{
330 /*
331 * Do not clear the X86_FEATURE_PKU bit. All of the
332 * runtime checks are against OSPKE so clearing the
333 * bit does nothing.
334 *
335 * This way, we will see "pku" in cpuinfo, but not
336 * "ospke", which is exactly what we want. It shows
337 * that the CPU has PKU, but the OS has not enabled it.
338 * This happens to be exactly how a system would look
339 * if we disabled the config option.
340 */
341 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
342 pku_disabled = true;
343 return 1;
344}
345__setup("nopku", setup_disable_pku);
346#endif /* CONFIG_X86_64 */
347
348/*
349 * Some CPU features depend on higher CPUID levels, which may not always
350 * be available due to CPUID level capping or broken virtualization
351 * software. Add those features to this table to auto-disable them.
352 */
353struct cpuid_dependent_feature {
354 u32 feature;
355 u32 level;
356};
357
358static const struct cpuid_dependent_feature
359cpuid_dependent_features[] = {
360 { X86_FEATURE_MWAIT, 0x00000005 },
361 { X86_FEATURE_DCA, 0x00000009 },
362 { X86_FEATURE_XSAVE, 0x0000000d },
363 { 0, 0 }
364};
365
366static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
367{
368 const struct cpuid_dependent_feature *df;
369
370 for (df = cpuid_dependent_features; df->feature; df++) {
371
372 if (!cpu_has(c, df->feature))
373 continue;
374 /*
375 * Note: cpuid_level is set to -1 if unavailable, but
376 * extended_extended_level is set to 0 if unavailable
377 * and the legitimate extended levels are all negative
378 * when signed; hence the weird messing around with
379 * signs here...
380 */
381 if (!((s32)df->level < 0 ?
382 (u32)df->level > (u32)c->extended_cpuid_level :
383 (s32)df->level > (s32)c->cpuid_level))
384 continue;
385
386 clear_cpu_cap(c, df->feature);
387 if (!warn)
388 continue;
389
390 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
391 x86_cap_flag(df->feature), df->level);
392 }
393}
394
395/*
396 * Naming convention should be: <Name> [(<Codename>)]
397 * This table only is used unless init_<vendor>() below doesn't set it;
398 * in particular, if CPUID levels 0x80000002..4 are supported, this
399 * isn't used
400 */
401
402/* Look up CPU names by table lookup. */
403static const char *table_lookup_model(struct cpuinfo_x86 *c)
404{
405#ifdef CONFIG_X86_32
406 const struct legacy_cpu_model_info *info;
407
408 if (c->x86_model >= 16)
409 return NULL; /* Range check */
410
411 if (!this_cpu)
412 return NULL;
413
414 info = this_cpu->legacy_models;
415
416 while (info->family) {
417 if (info->family == c->x86)
418 return info->model_names[c->x86_model];
419 info++;
420 }
421#endif
422 return NULL; /* Not found */
423}
424
425__u32 cpu_caps_cleared[NCAPINTS];
426__u32 cpu_caps_set[NCAPINTS];
427
428void load_percpu_segment(int cpu)
429{
430#ifdef CONFIG_X86_32
431 loadsegment(fs, __KERNEL_PERCPU);
432#else
433 loadsegment(gs, 0);
434 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
435#endif
436 load_stack_canary_segment();
437}
438
439/*
440 * Current gdt points %fs at the "master" per-cpu area: after this,
441 * it's on the real one.
442 */
443void switch_to_new_gdt(int cpu)
444{
445 struct desc_ptr gdt_descr;
446
447 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
448 gdt_descr.size = GDT_SIZE - 1;
449 load_gdt(&gdt_descr);
450 /* Reload the per-cpu base */
451
452 load_percpu_segment(cpu);
453}
454
455static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
456
457static void get_model_name(struct cpuinfo_x86 *c)
458{
459 unsigned int *v;
460 char *p, *q, *s;
461
462 if (c->extended_cpuid_level < 0x80000004)
463 return;
464
465 v = (unsigned int *)c->x86_model_id;
466 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
467 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
468 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
469 c->x86_model_id[48] = 0;
470
471 /* Trim whitespace */
472 p = q = s = &c->x86_model_id[0];
473
474 while (*p == ' ')
475 p++;
476
477 while (*p) {
478 /* Note the last non-whitespace index */
479 if (!isspace(*p))
480 s = q;
481
482 *q++ = *p++;
483 }
484
485 *(s + 1) = '\0';
486}
487
488void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
489{
490 unsigned int n, dummy, ebx, ecx, edx, l2size;
491
492 n = c->extended_cpuid_level;
493
494 if (n >= 0x80000005) {
495 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
496 c->x86_cache_size = (ecx>>24) + (edx>>24);
497#ifdef CONFIG_X86_64
498 /* On K8 L1 TLB is inclusive, so don't count it */
499 c->x86_tlbsize = 0;
500#endif
501 }
502
503 if (n < 0x80000006) /* Some chips just has a large L1. */
504 return;
505
506 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
507 l2size = ecx >> 16;
508
509#ifdef CONFIG_X86_64
510 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
511#else
512 /* do processor-specific cache resizing */
513 if (this_cpu->legacy_cache_size)
514 l2size = this_cpu->legacy_cache_size(c, l2size);
515
516 /* Allow user to override all this if necessary. */
517 if (cachesize_override != -1)
518 l2size = cachesize_override;
519
520 if (l2size == 0)
521 return; /* Again, no L2 cache is possible */
522#endif
523
524 c->x86_cache_size = l2size;
525}
526
527u16 __read_mostly tlb_lli_4k[NR_INFO];
528u16 __read_mostly tlb_lli_2m[NR_INFO];
529u16 __read_mostly tlb_lli_4m[NR_INFO];
530u16 __read_mostly tlb_lld_4k[NR_INFO];
531u16 __read_mostly tlb_lld_2m[NR_INFO];
532u16 __read_mostly tlb_lld_4m[NR_INFO];
533u16 __read_mostly tlb_lld_1g[NR_INFO];
534
535static void cpu_detect_tlb(struct cpuinfo_x86 *c)
536{
537 if (this_cpu->c_detect_tlb)
538 this_cpu->c_detect_tlb(c);
539
540 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
541 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
542 tlb_lli_4m[ENTRIES]);
543
544 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
545 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
546 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
547}
548
549void detect_ht(struct cpuinfo_x86 *c)
550{
551#ifdef CONFIG_SMP
552 u32 eax, ebx, ecx, edx;
553 int index_msb, core_bits;
554 static bool printed;
555
556 if (!cpu_has(c, X86_FEATURE_HT))
557 return;
558
559 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
560 goto out;
561
562 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
563 return;
564
565 cpuid(1, &eax, &ebx, &ecx, &edx);
566
567 smp_num_siblings = (ebx & 0xff0000) >> 16;
568
569 if (smp_num_siblings == 1) {
570 pr_info_once("CPU0: Hyper-Threading is disabled\n");
571 goto out;
572 }
573
574 if (smp_num_siblings <= 1)
575 goto out;
576
577 index_msb = get_count_order(smp_num_siblings);
578 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
579
580 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
581
582 index_msb = get_count_order(smp_num_siblings);
583
584 core_bits = get_count_order(c->x86_max_cores);
585
586 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
587 ((1 << core_bits) - 1);
588
589out:
590 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
591 pr_info("CPU: Physical Processor ID: %d\n",
592 c->phys_proc_id);
593 pr_info("CPU: Processor Core ID: %d\n",
594 c->cpu_core_id);
595 printed = 1;
596 }
597#endif
598}
599
600static void get_cpu_vendor(struct cpuinfo_x86 *c)
601{
602 char *v = c->x86_vendor_id;
603 int i;
604
605 for (i = 0; i < X86_VENDOR_NUM; i++) {
606 if (!cpu_devs[i])
607 break;
608
609 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
610 (cpu_devs[i]->c_ident[1] &&
611 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
612
613 this_cpu = cpu_devs[i];
614 c->x86_vendor = this_cpu->c_x86_vendor;
615 return;
616 }
617 }
618
619 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
620 "CPU: Your system may be unstable.\n", v);
621
622 c->x86_vendor = X86_VENDOR_UNKNOWN;
623 this_cpu = &default_cpu;
624}
625
626void cpu_detect(struct cpuinfo_x86 *c)
627{
628 /* Get vendor name */
629 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
630 (unsigned int *)&c->x86_vendor_id[0],
631 (unsigned int *)&c->x86_vendor_id[8],
632 (unsigned int *)&c->x86_vendor_id[4]);
633
634 c->x86 = 4;
635 /* Intel-defined flags: level 0x00000001 */
636 if (c->cpuid_level >= 0x00000001) {
637 u32 junk, tfms, cap0, misc;
638
639 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
640 c->x86 = x86_family(tfms);
641 c->x86_model = x86_model(tfms);
642 c->x86_mask = x86_stepping(tfms);
643
644 if (cap0 & (1<<19)) {
645 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
646 c->x86_cache_alignment = c->x86_clflush_size;
647 }
648 }
649}
650
651void get_cpu_cap(struct cpuinfo_x86 *c)
652{
653 u32 eax, ebx, ecx, edx;
654
655 /* Intel-defined flags: level 0x00000001 */
656 if (c->cpuid_level >= 0x00000001) {
657 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
658
659 c->x86_capability[CPUID_1_ECX] = ecx;
660 c->x86_capability[CPUID_1_EDX] = edx;
661 }
662
663 /* Additional Intel-defined flags: level 0x00000007 */
664 if (c->cpuid_level >= 0x00000007) {
665 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
666
667 c->x86_capability[CPUID_7_0_EBX] = ebx;
668
669 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
670 c->x86_capability[CPUID_7_ECX] = ecx;
671 }
672
673 /* Extended state features: level 0x0000000d */
674 if (c->cpuid_level >= 0x0000000d) {
675 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
676
677 c->x86_capability[CPUID_D_1_EAX] = eax;
678 }
679
680 /* Additional Intel-defined flags: level 0x0000000F */
681 if (c->cpuid_level >= 0x0000000F) {
682
683 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
684 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
685 c->x86_capability[CPUID_F_0_EDX] = edx;
686
687 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
688 /* will be overridden if occupancy monitoring exists */
689 c->x86_cache_max_rmid = ebx;
690
691 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
692 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
693 c->x86_capability[CPUID_F_1_EDX] = edx;
694
695 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
696 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
697 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
698 c->x86_cache_max_rmid = ecx;
699 c->x86_cache_occ_scale = ebx;
700 }
701 } else {
702 c->x86_cache_max_rmid = -1;
703 c->x86_cache_occ_scale = -1;
704 }
705 }
706
707 /* AMD-defined flags: level 0x80000001 */
708 eax = cpuid_eax(0x80000000);
709 c->extended_cpuid_level = eax;
710
711 if ((eax & 0xffff0000) == 0x80000000) {
712 if (eax >= 0x80000001) {
713 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
714
715 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
716 c->x86_capability[CPUID_8000_0001_EDX] = edx;
717 }
718 }
719
720 if (c->extended_cpuid_level >= 0x80000008) {
721 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
722
723 c->x86_virt_bits = (eax >> 8) & 0xff;
724 c->x86_phys_bits = eax & 0xff;
725 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
726 }
727#ifdef CONFIG_X86_32
728 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
729 c->x86_phys_bits = 36;
730#endif
731
732 if (c->extended_cpuid_level >= 0x80000007)
733 c->x86_power = cpuid_edx(0x80000007);
734
735 if (c->extended_cpuid_level >= 0x8000000a)
736 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
737
738 init_scattered_cpuid_features(c);
739}
740
741static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
742{
743#ifdef CONFIG_X86_32
744 int i;
745
746 /*
747 * First of all, decide if this is a 486 or higher
748 * It's a 486 if we can modify the AC flag
749 */
750 if (flag_is_changeable_p(X86_EFLAGS_AC))
751 c->x86 = 4;
752 else
753 c->x86 = 3;
754
755 for (i = 0; i < X86_VENDOR_NUM; i++)
756 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
757 c->x86_vendor_id[0] = 0;
758 cpu_devs[i]->c_identify(c);
759 if (c->x86_vendor_id[0]) {
760 get_cpu_vendor(c);
761 break;
762 }
763 }
764#endif
765}
766
767/*
768 * Do minimum CPU detection early.
769 * Fields really needed: vendor, cpuid_level, family, model, mask,
770 * cache alignment.
771 * The others are not touched to avoid unwanted side effects.
772 *
773 * WARNING: this function is only called on the BP. Don't add code here
774 * that is supposed to run on all CPUs.
775 */
776static void __init early_identify_cpu(struct cpuinfo_x86 *c)
777{
778#ifdef CONFIG_X86_64
779 c->x86_clflush_size = 64;
780 c->x86_phys_bits = 36;
781 c->x86_virt_bits = 48;
782#else
783 c->x86_clflush_size = 32;
784 c->x86_phys_bits = 32;
785 c->x86_virt_bits = 32;
786#endif
787 c->x86_cache_alignment = c->x86_clflush_size;
788
789 memset(&c->x86_capability, 0, sizeof c->x86_capability);
790 c->extended_cpuid_level = 0;
791
792 if (!have_cpuid_p())
793 identify_cpu_without_cpuid(c);
794
795 /* cyrix could have cpuid enabled via c_identify()*/
796 if (!have_cpuid_p())
797 return;
798
799 cpu_detect(c);
800 get_cpu_vendor(c);
801 get_cpu_cap(c);
802
803 if (this_cpu->c_early_init)
804 this_cpu->c_early_init(c);
805
806 c->cpu_index = 0;
807 filter_cpuid_features(c, false);
808
809 if (this_cpu->c_bsp_init)
810 this_cpu->c_bsp_init(c);
811
812 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
813 fpu__init_system(c);
814}
815
816void __init early_cpu_init(void)
817{
818 const struct cpu_dev *const *cdev;
819 int count = 0;
820
821#ifdef CONFIG_PROCESSOR_SELECT
822 pr_info("KERNEL supported cpus:\n");
823#endif
824
825 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
826 const struct cpu_dev *cpudev = *cdev;
827
828 if (count >= X86_VENDOR_NUM)
829 break;
830 cpu_devs[count] = cpudev;
831 count++;
832
833#ifdef CONFIG_PROCESSOR_SELECT
834 {
835 unsigned int j;
836
837 for (j = 0; j < 2; j++) {
838 if (!cpudev->c_ident[j])
839 continue;
840 pr_info(" %s %s\n", cpudev->c_vendor,
841 cpudev->c_ident[j]);
842 }
843 }
844#endif
845 }
846 early_identify_cpu(&boot_cpu_data);
847}
848
849/*
850 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
851 * unfortunately, that's not true in practice because of early VIA
852 * chips and (more importantly) broken virtualizers that are not easy
853 * to detect. In the latter case it doesn't even *fail* reliably, so
854 * probing for it doesn't even work. Disable it completely on 32-bit
855 * unless we can find a reliable way to detect all the broken cases.
856 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
857 */
858static void detect_nopl(struct cpuinfo_x86 *c)
859{
860#ifdef CONFIG_X86_32
861 clear_cpu_cap(c, X86_FEATURE_NOPL);
862#else
863 set_cpu_cap(c, X86_FEATURE_NOPL);
864#endif
865
866 /*
867 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
868 * systems that run Linux at CPL > 0 may or may not have the
869 * issue, but, even if they have the issue, there's absolutely
870 * nothing we can do about it because we can't use the real IRET
871 * instruction.
872 *
873 * NB: For the time being, only 32-bit kernels support
874 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
875 * whether to apply espfix using paravirt hooks. If any
876 * non-paravirt system ever shows up that does *not* have the
877 * ESPFIX issue, we can change this.
878 */
879#ifdef CONFIG_X86_32
880#ifdef CONFIG_PARAVIRT
881 do {
882 extern void native_iret(void);
883 if (pv_cpu_ops.iret == native_iret)
884 set_cpu_bug(c, X86_BUG_ESPFIX);
885 } while (0);
886#else
887 set_cpu_bug(c, X86_BUG_ESPFIX);
888#endif
889#endif
890}
891
892static void generic_identify(struct cpuinfo_x86 *c)
893{
894 c->extended_cpuid_level = 0;
895
896 if (!have_cpuid_p())
897 identify_cpu_without_cpuid(c);
898
899 /* cyrix could have cpuid enabled via c_identify()*/
900 if (!have_cpuid_p())
901 return;
902
903 cpu_detect(c);
904
905 get_cpu_vendor(c);
906
907 get_cpu_cap(c);
908
909 if (c->cpuid_level >= 0x00000001) {
910 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
911#ifdef CONFIG_X86_32
912# ifdef CONFIG_SMP
913 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
914# else
915 c->apicid = c->initial_apicid;
916# endif
917#endif
918 c->phys_proc_id = c->initial_apicid;
919 }
920
921 get_model_name(c); /* Default name */
922
923 detect_nopl(c);
924}
925
926static void x86_init_cache_qos(struct cpuinfo_x86 *c)
927{
928 /*
929 * The heavy lifting of max_rmid and cache_occ_scale are handled
930 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
931 * in case CQM bits really aren't there in this CPU.
932 */
933 if (c != &boot_cpu_data) {
934 boot_cpu_data.x86_cache_max_rmid =
935 min(boot_cpu_data.x86_cache_max_rmid,
936 c->x86_cache_max_rmid);
937 }
938}
939
940/*
941 * This does the hard work of actually picking apart the CPU stuff...
942 */
943static void identify_cpu(struct cpuinfo_x86 *c)
944{
945 int i;
946
947 c->loops_per_jiffy = loops_per_jiffy;
948 c->x86_cache_size = -1;
949 c->x86_vendor = X86_VENDOR_UNKNOWN;
950 c->x86_model = c->x86_mask = 0; /* So far unknown... */
951 c->x86_vendor_id[0] = '\0'; /* Unset */
952 c->x86_model_id[0] = '\0'; /* Unset */
953 c->x86_max_cores = 1;
954 c->x86_coreid_bits = 0;
955#ifdef CONFIG_X86_64
956 c->x86_clflush_size = 64;
957 c->x86_phys_bits = 36;
958 c->x86_virt_bits = 48;
959#else
960 c->cpuid_level = -1; /* CPUID not detected */
961 c->x86_clflush_size = 32;
962 c->x86_phys_bits = 32;
963 c->x86_virt_bits = 32;
964#endif
965 c->x86_cache_alignment = c->x86_clflush_size;
966 memset(&c->x86_capability, 0, sizeof c->x86_capability);
967
968 generic_identify(c);
969
970 if (this_cpu->c_identify)
971 this_cpu->c_identify(c);
972
973 /* Clear/Set all flags overridden by options, after probe */
974 for (i = 0; i < NCAPINTS; i++) {
975 c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 c->x86_capability[i] |= cpu_caps_set[i];
977 }
978
979#ifdef CONFIG_X86_64
980 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
981#endif
982
983 /*
984 * Vendor-specific initialization. In this section we
985 * canonicalize the feature flags, meaning if there are
986 * features a certain CPU supports which CPUID doesn't
987 * tell us, CPUID claiming incorrect flags, or other bugs,
988 * we handle them here.
989 *
990 * At the end of this section, c->x86_capability better
991 * indicate the features this CPU genuinely supports!
992 */
993 if (this_cpu->c_init)
994 this_cpu->c_init(c);
995
996 /* Disable the PN if appropriate */
997 squash_the_stupid_serial_number(c);
998
999 /* Set up SMEP/SMAP */
1000 setup_smep(c);
1001 setup_smap(c);
1002
1003 /*
1004 * The vendor-specific functions might have changed features.
1005 * Now we do "generic changes."
1006 */
1007
1008 /* Filter out anything that depends on CPUID levels we don't have */
1009 filter_cpuid_features(c, true);
1010
1011 /* If the model name is still unset, do table lookup. */
1012 if (!c->x86_model_id[0]) {
1013 const char *p;
1014 p = table_lookup_model(c);
1015 if (p)
1016 strcpy(c->x86_model_id, p);
1017 else
1018 /* Last resort... */
1019 sprintf(c->x86_model_id, "%02x/%02x",
1020 c->x86, c->x86_model);
1021 }
1022
1023#ifdef CONFIG_X86_64
1024 detect_ht(c);
1025#endif
1026
1027 init_hypervisor(c);
1028 x86_init_rdrand(c);
1029 x86_init_cache_qos(c);
1030 setup_pku(c);
1031
1032 /*
1033 * Clear/Set all flags overridden by options, need do it
1034 * before following smp all cpus cap AND.
1035 */
1036 for (i = 0; i < NCAPINTS; i++) {
1037 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1038 c->x86_capability[i] |= cpu_caps_set[i];
1039 }
1040
1041 /*
1042 * On SMP, boot_cpu_data holds the common feature set between
1043 * all CPUs; so make sure that we indicate which features are
1044 * common between the CPUs. The first time this routine gets
1045 * executed, c == &boot_cpu_data.
1046 */
1047 if (c != &boot_cpu_data) {
1048 /* AND the already accumulated flags with these */
1049 for (i = 0; i < NCAPINTS; i++)
1050 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1051
1052 /* OR, i.e. replicate the bug flags */
1053 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1054 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1055 }
1056
1057 /* Init Machine Check Exception if available. */
1058 mcheck_cpu_init(c);
1059
1060 select_idle_routine(c);
1061
1062#ifdef CONFIG_NUMA
1063 numa_add_cpu(smp_processor_id());
1064#endif
1065 /* The boot/hotplug time assigment got cleared, restore it */
1066 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1067}
1068
1069/*
1070 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1071 * on 32-bit kernels:
1072 */
1073#ifdef CONFIG_X86_32
1074void enable_sep_cpu(void)
1075{
1076 struct tss_struct *tss;
1077 int cpu;
1078
1079 cpu = get_cpu();
1080 tss = &per_cpu(cpu_tss, cpu);
1081
1082 if (!boot_cpu_has(X86_FEATURE_SEP))
1083 goto out;
1084
1085 /*
1086 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1087 * see the big comment in struct x86_hw_tss's definition.
1088 */
1089
1090 tss->x86_tss.ss1 = __KERNEL_CS;
1091 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1092
1093 wrmsr(MSR_IA32_SYSENTER_ESP,
1094 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1095 0);
1096
1097 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1098
1099out:
1100 put_cpu();
1101}
1102#endif
1103
1104void __init identify_boot_cpu(void)
1105{
1106 identify_cpu(&boot_cpu_data);
1107 init_amd_e400_c1e_mask();
1108#ifdef CONFIG_X86_32
1109 sysenter_setup();
1110 enable_sep_cpu();
1111#endif
1112 cpu_detect_tlb(&boot_cpu_data);
1113}
1114
1115void identify_secondary_cpu(struct cpuinfo_x86 *c)
1116{
1117 BUG_ON(c == &boot_cpu_data);
1118 identify_cpu(c);
1119#ifdef CONFIG_X86_32
1120 enable_sep_cpu();
1121#endif
1122 mtrr_ap_init();
1123}
1124
1125struct msr_range {
1126 unsigned min;
1127 unsigned max;
1128};
1129
1130static const struct msr_range msr_range_array[] = {
1131 { 0x00000000, 0x00000418},
1132 { 0xc0000000, 0xc000040b},
1133 { 0xc0010000, 0xc0010142},
1134 { 0xc0011000, 0xc001103b},
1135};
1136
1137static void __print_cpu_msr(void)
1138{
1139 unsigned index_min, index_max;
1140 unsigned index;
1141 u64 val;
1142 int i;
1143
1144 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1145 index_min = msr_range_array[i].min;
1146 index_max = msr_range_array[i].max;
1147
1148 for (index = index_min; index < index_max; index++) {
1149 if (rdmsrl_safe(index, &val))
1150 continue;
1151 pr_info(" MSR%08x: %016llx\n", index, val);
1152 }
1153 }
1154}
1155
1156static int show_msr;
1157
1158static __init int setup_show_msr(char *arg)
1159{
1160 int num;
1161
1162 get_option(&arg, &num);
1163
1164 if (num > 0)
1165 show_msr = num;
1166 return 1;
1167}
1168__setup("show_msr=", setup_show_msr);
1169
1170static __init int setup_noclflush(char *arg)
1171{
1172 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1173 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1174 return 1;
1175}
1176__setup("noclflush", setup_noclflush);
1177
1178void print_cpu_info(struct cpuinfo_x86 *c)
1179{
1180 const char *vendor = NULL;
1181
1182 if (c->x86_vendor < X86_VENDOR_NUM) {
1183 vendor = this_cpu->c_vendor;
1184 } else {
1185 if (c->cpuid_level >= 0)
1186 vendor = c->x86_vendor_id;
1187 }
1188
1189 if (vendor && !strstr(c->x86_model_id, vendor))
1190 pr_cont("%s ", vendor);
1191
1192 if (c->x86_model_id[0])
1193 pr_cont("%s", c->x86_model_id);
1194 else
1195 pr_cont("%d86", c->x86);
1196
1197 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1198
1199 if (c->x86_mask || c->cpuid_level >= 0)
1200 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1201 else
1202 pr_cont(")\n");
1203
1204 print_cpu_msr(c);
1205}
1206
1207void print_cpu_msr(struct cpuinfo_x86 *c)
1208{
1209 if (c->cpu_index < show_msr)
1210 __print_cpu_msr();
1211}
1212
1213static __init int setup_disablecpuid(char *arg)
1214{
1215 int bit;
1216
1217 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1218 setup_clear_cpu_cap(bit);
1219 else
1220 return 0;
1221
1222 return 1;
1223}
1224__setup("clearcpuid=", setup_disablecpuid);
1225
1226#ifdef CONFIG_X86_64
1227struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1228struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1229 (unsigned long) debug_idt_table };
1230
1231DEFINE_PER_CPU_FIRST(union irq_stack_union,
1232 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1233
1234/*
1235 * The following percpu variables are hot. Align current_task to
1236 * cacheline size such that they fall in the same cacheline.
1237 */
1238DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1239 &init_task;
1240EXPORT_PER_CPU_SYMBOL(current_task);
1241
1242DEFINE_PER_CPU(char *, irq_stack_ptr) =
1243 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1244
1245DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1246
1247DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1248EXPORT_PER_CPU_SYMBOL(__preempt_count);
1249
1250/*
1251 * Special IST stacks which the CPU switches to when it calls
1252 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1253 * limit), all of them are 4K, except the debug stack which
1254 * is 8K.
1255 */
1256static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1257 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1258 [DEBUG_STACK - 1] = DEBUG_STKSZ
1259};
1260
1261static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1262 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1263
1264/* May not be marked __init: used by software suspend */
1265void syscall_init(void)
1266{
1267 /*
1268 * LSTAR and STAR live in a bit strange symbiosis.
1269 * They both write to the same internal register. STAR allows to
1270 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1271 */
1272 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1273 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1274
1275#ifdef CONFIG_IA32_EMULATION
1276 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1277 /*
1278 * This only works on Intel CPUs.
1279 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1280 * This does not cause SYSENTER to jump to the wrong location, because
1281 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1282 */
1283 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1284 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1285 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1286#else
1287 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1288 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1289 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1290 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1291#endif
1292
1293 /* Flags to clear on syscall */
1294 wrmsrl(MSR_SYSCALL_MASK,
1295 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1296 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1297}
1298
1299/*
1300 * Copies of the original ist values from the tss are only accessed during
1301 * debugging, no special alignment required.
1302 */
1303DEFINE_PER_CPU(struct orig_ist, orig_ist);
1304
1305static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1306DEFINE_PER_CPU(int, debug_stack_usage);
1307
1308int is_debug_stack(unsigned long addr)
1309{
1310 return __this_cpu_read(debug_stack_usage) ||
1311 (addr <= __this_cpu_read(debug_stack_addr) &&
1312 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1313}
1314NOKPROBE_SYMBOL(is_debug_stack);
1315
1316DEFINE_PER_CPU(u32, debug_idt_ctr);
1317
1318void debug_stack_set_zero(void)
1319{
1320 this_cpu_inc(debug_idt_ctr);
1321 load_current_idt();
1322}
1323NOKPROBE_SYMBOL(debug_stack_set_zero);
1324
1325void debug_stack_reset(void)
1326{
1327 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1328 return;
1329 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1330 load_current_idt();
1331}
1332NOKPROBE_SYMBOL(debug_stack_reset);
1333
1334#else /* CONFIG_X86_64 */
1335
1336DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1337EXPORT_PER_CPU_SYMBOL(current_task);
1338DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1339EXPORT_PER_CPU_SYMBOL(__preempt_count);
1340
1341/*
1342 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1343 * the top of the kernel stack. Use an extra percpu variable to track the
1344 * top of the kernel stack directly.
1345 */
1346DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1347 (unsigned long)&init_thread_union + THREAD_SIZE;
1348EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1349
1350#ifdef CONFIG_CC_STACKPROTECTOR
1351DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1352#endif
1353
1354#endif /* CONFIG_X86_64 */
1355
1356/*
1357 * Clear all 6 debug registers:
1358 */
1359static void clear_all_debug_regs(void)
1360{
1361 int i;
1362
1363 for (i = 0; i < 8; i++) {
1364 /* Ignore db4, db5 */
1365 if ((i == 4) || (i == 5))
1366 continue;
1367
1368 set_debugreg(0, i);
1369 }
1370}
1371
1372#ifdef CONFIG_KGDB
1373/*
1374 * Restore debug regs if using kgdbwait and you have a kernel debugger
1375 * connection established.
1376 */
1377static void dbg_restore_debug_regs(void)
1378{
1379 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1380 arch_kgdb_ops.correct_hw_break();
1381}
1382#else /* ! CONFIG_KGDB */
1383#define dbg_restore_debug_regs()
1384#endif /* ! CONFIG_KGDB */
1385
1386static void wait_for_master_cpu(int cpu)
1387{
1388#ifdef CONFIG_SMP
1389 /*
1390 * wait for ACK from master CPU before continuing
1391 * with AP initialization
1392 */
1393 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1394 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1395 cpu_relax();
1396#endif
1397}
1398
1399/*
1400 * cpu_init() initializes state that is per-CPU. Some data is already
1401 * initialized (naturally) in the bootstrap process, such as the GDT
1402 * and IDT. We reload them nevertheless, this function acts as a
1403 * 'CPU state barrier', nothing should get across.
1404 * A lot of state is already set up in PDA init for 64 bit
1405 */
1406#ifdef CONFIG_X86_64
1407
1408void cpu_init(void)
1409{
1410 struct orig_ist *oist;
1411 struct task_struct *me;
1412 struct tss_struct *t;
1413 unsigned long v;
1414 int cpu = stack_smp_processor_id();
1415 int i;
1416
1417 wait_for_master_cpu(cpu);
1418
1419 /*
1420 * Initialize the CR4 shadow before doing anything that could
1421 * try to read it.
1422 */
1423 cr4_init_shadow();
1424
1425 /*
1426 * Load microcode on this cpu if a valid microcode is available.
1427 * This is early microcode loading procedure.
1428 */
1429 load_ucode_ap();
1430
1431 t = &per_cpu(cpu_tss, cpu);
1432 oist = &per_cpu(orig_ist, cpu);
1433
1434#ifdef CONFIG_NUMA
1435 if (this_cpu_read(numa_node) == 0 &&
1436 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1437 set_numa_node(early_cpu_to_node(cpu));
1438#endif
1439
1440 me = current;
1441
1442 pr_debug("Initializing CPU#%d\n", cpu);
1443
1444 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1445
1446 /*
1447 * Initialize the per-CPU GDT with the boot GDT,
1448 * and set up the GDT descriptor:
1449 */
1450
1451 switch_to_new_gdt(cpu);
1452 loadsegment(fs, 0);
1453
1454 load_current_idt();
1455
1456 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1457 syscall_init();
1458
1459 wrmsrl(MSR_FS_BASE, 0);
1460 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1461 barrier();
1462
1463 x86_configure_nx();
1464 x2apic_setup();
1465
1466 /*
1467 * set up and load the per-CPU TSS
1468 */
1469 if (!oist->ist[0]) {
1470 char *estacks = per_cpu(exception_stacks, cpu);
1471
1472 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1473 estacks += exception_stack_sizes[v];
1474 oist->ist[v] = t->x86_tss.ist[v] =
1475 (unsigned long)estacks;
1476 if (v == DEBUG_STACK-1)
1477 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1478 }
1479 }
1480
1481 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1482
1483 /*
1484 * <= is required because the CPU will access up to
1485 * 8 bits beyond the end of the IO permission bitmap.
1486 */
1487 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1488 t->io_bitmap[i] = ~0UL;
1489
1490 atomic_inc(&init_mm.mm_count);
1491 me->active_mm = &init_mm;
1492 BUG_ON(me->mm);
1493 enter_lazy_tlb(&init_mm, me);
1494
1495 load_sp0(t, ¤t->thread);
1496 set_tss_desc(cpu, t);
1497 load_TR_desc();
1498 load_mm_ldt(&init_mm);
1499
1500 clear_all_debug_regs();
1501 dbg_restore_debug_regs();
1502
1503 fpu__init_cpu();
1504
1505 if (is_uv_system())
1506 uv_cpu_init();
1507}
1508
1509#else
1510
1511void cpu_init(void)
1512{
1513 int cpu = smp_processor_id();
1514 struct task_struct *curr = current;
1515 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1516 struct thread_struct *thread = &curr->thread;
1517
1518 wait_for_master_cpu(cpu);
1519
1520 /*
1521 * Initialize the CR4 shadow before doing anything that could
1522 * try to read it.
1523 */
1524 cr4_init_shadow();
1525
1526 show_ucode_info_early();
1527
1528 pr_info("Initializing CPU#%d\n", cpu);
1529
1530 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1531 cpu_has_tsc ||
1532 boot_cpu_has(X86_FEATURE_DE))
1533 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1534
1535 load_current_idt();
1536 switch_to_new_gdt(cpu);
1537
1538 /*
1539 * Set up and load the per-CPU TSS and LDT
1540 */
1541 atomic_inc(&init_mm.mm_count);
1542 curr->active_mm = &init_mm;
1543 BUG_ON(curr->mm);
1544 enter_lazy_tlb(&init_mm, curr);
1545
1546 load_sp0(t, thread);
1547 set_tss_desc(cpu, t);
1548 load_TR_desc();
1549 load_mm_ldt(&init_mm);
1550
1551 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1552
1553#ifdef CONFIG_DOUBLEFAULT
1554 /* Set up doublefault TSS pointer in the GDT */
1555 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1556#endif
1557
1558 clear_all_debug_regs();
1559 dbg_restore_debug_regs();
1560
1561 fpu__init_cpu();
1562}
1563#endif
1564
1565static void bsp_resume(void)
1566{
1567 if (this_cpu->c_bsp_resume)
1568 this_cpu->c_bsp_resume(&boot_cpu_data);
1569}
1570
1571static struct syscore_ops cpu_syscore_ops = {
1572 .resume = bsp_resume,
1573};
1574
1575static int __init init_cpu_syscore(void)
1576{
1577 register_syscore_ops(&cpu_syscore_ops);
1578 return 0;
1579}
1580core_initcall(init_cpu_syscore);
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25
26#include <asm/cmdline.h>
27#include <asm/stackprotector.h>
28#include <asm/perf_event.h>
29#include <asm/mmu_context.h>
30#include <asm/doublefault.h>
31#include <asm/archrandom.h>
32#include <asm/hypervisor.h>
33#include <asm/processor.h>
34#include <asm/tlbflush.h>
35#include <asm/debugreg.h>
36#include <asm/sections.h>
37#include <asm/vsyscall.h>
38#include <linux/topology.h>
39#include <linux/cpumask.h>
40#include <linux/atomic.h>
41#include <asm/proto.h>
42#include <asm/setup.h>
43#include <asm/apic.h>
44#include <asm/desc.h>
45#include <asm/fpu/internal.h>
46#include <asm/mtrr.h>
47#include <asm/hwcap2.h>
48#include <linux/numa.h>
49#include <asm/numa.h>
50#include <asm/asm.h>
51#include <asm/bugs.h>
52#include <asm/cpu.h>
53#include <asm/mce.h>
54#include <asm/msr.h>
55#include <asm/memtype.h>
56#include <asm/microcode.h>
57#include <asm/microcode_intel.h>
58#include <asm/intel-family.h>
59#include <asm/cpu_device_id.h>
60#include <asm/uv/uv.h>
61#include <asm/sigframe.h>
62
63#include "cpu.h"
64
65u32 elf_hwcap2 __read_mostly;
66
67/* all of these masks are initialized in setup_cpu_local_masks() */
68cpumask_var_t cpu_initialized_mask;
69cpumask_var_t cpu_callout_mask;
70cpumask_var_t cpu_callin_mask;
71
72/* representing cpus for which sibling maps can be computed */
73cpumask_var_t cpu_sibling_setup_mask;
74
75/* Number of siblings per CPU package */
76int smp_num_siblings = 1;
77EXPORT_SYMBOL(smp_num_siblings);
78
79/* Last level cache ID of each logical CPU */
80DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82/* correctly size the local cpu masks */
83void __init setup_cpu_local_masks(void)
84{
85 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
86 alloc_bootmem_cpumask_var(&cpu_callin_mask);
87 alloc_bootmem_cpumask_var(&cpu_callout_mask);
88 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
89}
90
91static void default_init(struct cpuinfo_x86 *c)
92{
93#ifdef CONFIG_X86_64
94 cpu_detect_cache_sizes(c);
95#else
96 /* Not much we can do here... */
97 /* Check if at least it has cpuid */
98 if (c->cpuid_level == -1) {
99 /* No cpuid. It must be an ancient CPU */
100 if (c->x86 == 4)
101 strcpy(c->x86_model_id, "486");
102 else if (c->x86 == 3)
103 strcpy(c->x86_model_id, "386");
104 }
105#endif
106}
107
108static const struct cpu_dev default_cpu = {
109 .c_init = default_init,
110 .c_vendor = "Unknown",
111 .c_x86_vendor = X86_VENDOR_UNKNOWN,
112};
113
114static const struct cpu_dev *this_cpu = &default_cpu;
115
116DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
117#ifdef CONFIG_X86_64
118 /*
119 * We need valid kernel segments for data and code in long mode too
120 * IRET will check the segment types kkeil 2000/10/28
121 * Also sysret mandates a special GDT layout
122 *
123 * TLS descriptors are currently at a different place compared to i386.
124 * Hopefully nobody expects them at a fixed place (Wine?)
125 */
126 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
132#else
133 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
134 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
136 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
137 /*
138 * Segments used for calling PnP BIOS have byte granularity.
139 * They code segments and data segments have fixed 64k limits,
140 * the transfer segment sizes are set at run time.
141 */
142 /* 32-bit code */
143 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
144 /* 16-bit code */
145 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /* 16-bit data */
151 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
152 /*
153 * The APM segments have byte granularity and their bases
154 * are set at run time. All have 64k limits.
155 */
156 /* 32-bit code */
157 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
158 /* 16-bit code */
159 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
160 /* data */
161 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
162
163 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
165#endif
166} };
167EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169#ifdef CONFIG_X86_64
170static int __init x86_nopcid_setup(char *s)
171{
172 /* nopcid doesn't accept parameters */
173 if (s)
174 return -EINVAL;
175
176 /* do not emit a message if the feature is not present */
177 if (!boot_cpu_has(X86_FEATURE_PCID))
178 return 0;
179
180 setup_clear_cpu_cap(X86_FEATURE_PCID);
181 pr_info("nopcid: PCID feature disabled\n");
182 return 0;
183}
184early_param("nopcid", x86_nopcid_setup);
185#endif
186
187static int __init x86_noinvpcid_setup(char *s)
188{
189 /* noinvpcid doesn't accept parameters */
190 if (s)
191 return -EINVAL;
192
193 /* do not emit a message if the feature is not present */
194 if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 return 0;
196
197 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 pr_info("noinvpcid: INVPCID feature disabled\n");
199 return 0;
200}
201early_param("noinvpcid", x86_noinvpcid_setup);
202
203#ifdef CONFIG_X86_32
204static int cachesize_override = -1;
205static int disable_x86_serial_nr = 1;
206
207static int __init cachesize_setup(char *str)
208{
209 get_option(&str, &cachesize_override);
210 return 1;
211}
212__setup("cachesize=", cachesize_setup);
213
214static int __init x86_sep_setup(char *s)
215{
216 setup_clear_cpu_cap(X86_FEATURE_SEP);
217 return 1;
218}
219__setup("nosep", x86_sep_setup);
220
221/* Standard macro to see if a specific flag is changeable */
222static inline int flag_is_changeable_p(u32 flag)
223{
224 u32 f1, f2;
225
226 /*
227 * Cyrix and IDT cpus allow disabling of CPUID
228 * so the code below may return different results
229 * when it is executed before and after enabling
230 * the CPUID. Add "volatile" to not allow gcc to
231 * optimize the subsequent calls to this function.
232 */
233 asm volatile ("pushfl \n\t"
234 "pushfl \n\t"
235 "popl %0 \n\t"
236 "movl %0, %1 \n\t"
237 "xorl %2, %0 \n\t"
238 "pushl %0 \n\t"
239 "popfl \n\t"
240 "pushfl \n\t"
241 "popl %0 \n\t"
242 "popfl \n\t"
243
244 : "=&r" (f1), "=&r" (f2)
245 : "ir" (flag));
246
247 return ((f1^f2) & flag) != 0;
248}
249
250/* Probe for the CPUID instruction */
251int have_cpuid_p(void)
252{
253 return flag_is_changeable_p(X86_EFLAGS_ID);
254}
255
256static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257{
258 unsigned long lo, hi;
259
260 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 return;
262
263 /* Disable processor serial number: */
264
265 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 lo |= 0x200000;
267 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269 pr_notice("CPU serial number disabled.\n");
270 clear_cpu_cap(c, X86_FEATURE_PN);
271
272 /* Disabling the serial number may affect the cpuid level */
273 c->cpuid_level = cpuid_eax(0);
274}
275
276static int __init x86_serial_nr_setup(char *s)
277{
278 disable_x86_serial_nr = 0;
279 return 1;
280}
281__setup("serialnumber", x86_serial_nr_setup);
282#else
283static inline int flag_is_changeable_p(u32 flag)
284{
285 return 1;
286}
287static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288{
289}
290#endif
291
292static __init int setup_disable_smep(char *arg)
293{
294 setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 return 1;
296}
297__setup("nosmep", setup_disable_smep);
298
299static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300{
301 if (cpu_has(c, X86_FEATURE_SMEP))
302 cr4_set_bits(X86_CR4_SMEP);
303}
304
305static __init int setup_disable_smap(char *arg)
306{
307 setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 return 1;
309}
310__setup("nosmap", setup_disable_smap);
311
312static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313{
314 unsigned long eflags = native_save_fl();
315
316 /* This should have been cleared long ago */
317 BUG_ON(eflags & X86_EFLAGS_AC);
318
319 if (cpu_has(c, X86_FEATURE_SMAP)) {
320#ifdef CONFIG_X86_SMAP
321 cr4_set_bits(X86_CR4_SMAP);
322#else
323 clear_cpu_cap(c, X86_FEATURE_SMAP);
324 cr4_clear_bits(X86_CR4_SMAP);
325#endif
326 }
327}
328
329static __always_inline void setup_umip(struct cpuinfo_x86 *c)
330{
331 /* Check the boot processor, plus build option for UMIP. */
332 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
333 goto out;
334
335 /* Check the current processor's cpuid bits. */
336 if (!cpu_has(c, X86_FEATURE_UMIP))
337 goto out;
338
339 cr4_set_bits(X86_CR4_UMIP);
340
341 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
342
343 return;
344
345out:
346 /*
347 * Make sure UMIP is disabled in case it was enabled in a
348 * previous boot (e.g., via kexec).
349 */
350 cr4_clear_bits(X86_CR4_UMIP);
351}
352
353/* These bits should not change their value after CPU init is finished. */
354static const unsigned long cr4_pinned_mask =
355 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
356static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
357static unsigned long cr4_pinned_bits __ro_after_init;
358
359void native_write_cr0(unsigned long val)
360{
361 unsigned long bits_missing = 0;
362
363set_register:
364 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
365
366 if (static_branch_likely(&cr_pinning)) {
367 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
368 bits_missing = X86_CR0_WP;
369 val |= bits_missing;
370 goto set_register;
371 }
372 /* Warn after we've set the missing bits. */
373 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
374 }
375}
376EXPORT_SYMBOL(native_write_cr0);
377
378void native_write_cr4(unsigned long val)
379{
380 unsigned long bits_changed = 0;
381
382set_register:
383 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
384
385 if (static_branch_likely(&cr_pinning)) {
386 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
387 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
388 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
389 goto set_register;
390 }
391 /* Warn after we've corrected the changed bits. */
392 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
393 bits_changed);
394 }
395}
396#if IS_MODULE(CONFIG_LKDTM)
397EXPORT_SYMBOL_GPL(native_write_cr4);
398#endif
399
400void cr4_update_irqsoff(unsigned long set, unsigned long clear)
401{
402 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
403
404 lockdep_assert_irqs_disabled();
405
406 newval = (cr4 & ~clear) | set;
407 if (newval != cr4) {
408 this_cpu_write(cpu_tlbstate.cr4, newval);
409 __write_cr4(newval);
410 }
411}
412EXPORT_SYMBOL(cr4_update_irqsoff);
413
414/* Read the CR4 shadow. */
415unsigned long cr4_read_shadow(void)
416{
417 return this_cpu_read(cpu_tlbstate.cr4);
418}
419EXPORT_SYMBOL_GPL(cr4_read_shadow);
420
421void cr4_init(void)
422{
423 unsigned long cr4 = __read_cr4();
424
425 if (boot_cpu_has(X86_FEATURE_PCID))
426 cr4 |= X86_CR4_PCIDE;
427 if (static_branch_likely(&cr_pinning))
428 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
429
430 __write_cr4(cr4);
431
432 /* Initialize cr4 shadow for this CPU. */
433 this_cpu_write(cpu_tlbstate.cr4, cr4);
434}
435
436/*
437 * Once CPU feature detection is finished (and boot params have been
438 * parsed), record any of the sensitive CR bits that are set, and
439 * enable CR pinning.
440 */
441static void __init setup_cr_pinning(void)
442{
443 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
444 static_key_enable(&cr_pinning.key);
445}
446
447static __init int x86_nofsgsbase_setup(char *arg)
448{
449 /* Require an exact match without trailing characters. */
450 if (strlen(arg))
451 return 0;
452
453 /* Do not emit a message if the feature is not present. */
454 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
455 return 1;
456
457 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
458 pr_info("FSGSBASE disabled via kernel command line\n");
459 return 1;
460}
461__setup("nofsgsbase", x86_nofsgsbase_setup);
462
463/*
464 * Protection Keys are not available in 32-bit mode.
465 */
466static bool pku_disabled;
467
468static __always_inline void setup_pku(struct cpuinfo_x86 *c)
469{
470 if (c == &boot_cpu_data) {
471 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
472 return;
473 /*
474 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
475 * bit to be set. Enforce it.
476 */
477 setup_force_cpu_cap(X86_FEATURE_OSPKE);
478
479 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
480 return;
481 }
482
483 cr4_set_bits(X86_CR4_PKE);
484 /* Load the default PKRU value */
485 pkru_write_default();
486}
487
488#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
489static __init int setup_disable_pku(char *arg)
490{
491 /*
492 * Do not clear the X86_FEATURE_PKU bit. All of the
493 * runtime checks are against OSPKE so clearing the
494 * bit does nothing.
495 *
496 * This way, we will see "pku" in cpuinfo, but not
497 * "ospke", which is exactly what we want. It shows
498 * that the CPU has PKU, but the OS has not enabled it.
499 * This happens to be exactly how a system would look
500 * if we disabled the config option.
501 */
502 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
503 pku_disabled = true;
504 return 1;
505}
506__setup("nopku", setup_disable_pku);
507#endif /* CONFIG_X86_64 */
508
509/*
510 * Some CPU features depend on higher CPUID levels, which may not always
511 * be available due to CPUID level capping or broken virtualization
512 * software. Add those features to this table to auto-disable them.
513 */
514struct cpuid_dependent_feature {
515 u32 feature;
516 u32 level;
517};
518
519static const struct cpuid_dependent_feature
520cpuid_dependent_features[] = {
521 { X86_FEATURE_MWAIT, 0x00000005 },
522 { X86_FEATURE_DCA, 0x00000009 },
523 { X86_FEATURE_XSAVE, 0x0000000d },
524 { 0, 0 }
525};
526
527static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
528{
529 const struct cpuid_dependent_feature *df;
530
531 for (df = cpuid_dependent_features; df->feature; df++) {
532
533 if (!cpu_has(c, df->feature))
534 continue;
535 /*
536 * Note: cpuid_level is set to -1 if unavailable, but
537 * extended_extended_level is set to 0 if unavailable
538 * and the legitimate extended levels are all negative
539 * when signed; hence the weird messing around with
540 * signs here...
541 */
542 if (!((s32)df->level < 0 ?
543 (u32)df->level > (u32)c->extended_cpuid_level :
544 (s32)df->level > (s32)c->cpuid_level))
545 continue;
546
547 clear_cpu_cap(c, df->feature);
548 if (!warn)
549 continue;
550
551 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
552 x86_cap_flag(df->feature), df->level);
553 }
554}
555
556/*
557 * Naming convention should be: <Name> [(<Codename>)]
558 * This table only is used unless init_<vendor>() below doesn't set it;
559 * in particular, if CPUID levels 0x80000002..4 are supported, this
560 * isn't used
561 */
562
563/* Look up CPU names by table lookup. */
564static const char *table_lookup_model(struct cpuinfo_x86 *c)
565{
566#ifdef CONFIG_X86_32
567 const struct legacy_cpu_model_info *info;
568
569 if (c->x86_model >= 16)
570 return NULL; /* Range check */
571
572 if (!this_cpu)
573 return NULL;
574
575 info = this_cpu->legacy_models;
576
577 while (info->family) {
578 if (info->family == c->x86)
579 return info->model_names[c->x86_model];
580 info++;
581 }
582#endif
583 return NULL; /* Not found */
584}
585
586/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
587__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
588__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
589
590void load_percpu_segment(int cpu)
591{
592#ifdef CONFIG_X86_32
593 loadsegment(fs, __KERNEL_PERCPU);
594#else
595 __loadsegment_simple(gs, 0);
596 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
597#endif
598}
599
600#ifdef CONFIG_X86_32
601/* The 32-bit entry code needs to find cpu_entry_area. */
602DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
603#endif
604
605/* Load the original GDT from the per-cpu structure */
606void load_direct_gdt(int cpu)
607{
608 struct desc_ptr gdt_descr;
609
610 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
611 gdt_descr.size = GDT_SIZE - 1;
612 load_gdt(&gdt_descr);
613}
614EXPORT_SYMBOL_GPL(load_direct_gdt);
615
616/* Load a fixmap remapping of the per-cpu GDT */
617void load_fixmap_gdt(int cpu)
618{
619 struct desc_ptr gdt_descr;
620
621 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
622 gdt_descr.size = GDT_SIZE - 1;
623 load_gdt(&gdt_descr);
624}
625EXPORT_SYMBOL_GPL(load_fixmap_gdt);
626
627/*
628 * Current gdt points %fs at the "master" per-cpu area: after this,
629 * it's on the real one.
630 */
631void switch_to_new_gdt(int cpu)
632{
633 /* Load the original GDT */
634 load_direct_gdt(cpu);
635 /* Reload the per-cpu base */
636 load_percpu_segment(cpu);
637}
638
639static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
640
641static void get_model_name(struct cpuinfo_x86 *c)
642{
643 unsigned int *v;
644 char *p, *q, *s;
645
646 if (c->extended_cpuid_level < 0x80000004)
647 return;
648
649 v = (unsigned int *)c->x86_model_id;
650 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
651 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
652 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
653 c->x86_model_id[48] = 0;
654
655 /* Trim whitespace */
656 p = q = s = &c->x86_model_id[0];
657
658 while (*p == ' ')
659 p++;
660
661 while (*p) {
662 /* Note the last non-whitespace index */
663 if (!isspace(*p))
664 s = q;
665
666 *q++ = *p++;
667 }
668
669 *(s + 1) = '\0';
670}
671
672void detect_num_cpu_cores(struct cpuinfo_x86 *c)
673{
674 unsigned int eax, ebx, ecx, edx;
675
676 c->x86_max_cores = 1;
677 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
678 return;
679
680 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
681 if (eax & 0x1f)
682 c->x86_max_cores = (eax >> 26) + 1;
683}
684
685void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
686{
687 unsigned int n, dummy, ebx, ecx, edx, l2size;
688
689 n = c->extended_cpuid_level;
690
691 if (n >= 0x80000005) {
692 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
693 c->x86_cache_size = (ecx>>24) + (edx>>24);
694#ifdef CONFIG_X86_64
695 /* On K8 L1 TLB is inclusive, so don't count it */
696 c->x86_tlbsize = 0;
697#endif
698 }
699
700 if (n < 0x80000006) /* Some chips just has a large L1. */
701 return;
702
703 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
704 l2size = ecx >> 16;
705
706#ifdef CONFIG_X86_64
707 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
708#else
709 /* do processor-specific cache resizing */
710 if (this_cpu->legacy_cache_size)
711 l2size = this_cpu->legacy_cache_size(c, l2size);
712
713 /* Allow user to override all this if necessary. */
714 if (cachesize_override != -1)
715 l2size = cachesize_override;
716
717 if (l2size == 0)
718 return; /* Again, no L2 cache is possible */
719#endif
720
721 c->x86_cache_size = l2size;
722}
723
724u16 __read_mostly tlb_lli_4k[NR_INFO];
725u16 __read_mostly tlb_lli_2m[NR_INFO];
726u16 __read_mostly tlb_lli_4m[NR_INFO];
727u16 __read_mostly tlb_lld_4k[NR_INFO];
728u16 __read_mostly tlb_lld_2m[NR_INFO];
729u16 __read_mostly tlb_lld_4m[NR_INFO];
730u16 __read_mostly tlb_lld_1g[NR_INFO];
731
732static void cpu_detect_tlb(struct cpuinfo_x86 *c)
733{
734 if (this_cpu->c_detect_tlb)
735 this_cpu->c_detect_tlb(c);
736
737 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
738 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
739 tlb_lli_4m[ENTRIES]);
740
741 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
742 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
743 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
744}
745
746int detect_ht_early(struct cpuinfo_x86 *c)
747{
748#ifdef CONFIG_SMP
749 u32 eax, ebx, ecx, edx;
750
751 if (!cpu_has(c, X86_FEATURE_HT))
752 return -1;
753
754 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
755 return -1;
756
757 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
758 return -1;
759
760 cpuid(1, &eax, &ebx, &ecx, &edx);
761
762 smp_num_siblings = (ebx & 0xff0000) >> 16;
763 if (smp_num_siblings == 1)
764 pr_info_once("CPU0: Hyper-Threading is disabled\n");
765#endif
766 return 0;
767}
768
769void detect_ht(struct cpuinfo_x86 *c)
770{
771#ifdef CONFIG_SMP
772 int index_msb, core_bits;
773
774 if (detect_ht_early(c) < 0)
775 return;
776
777 index_msb = get_count_order(smp_num_siblings);
778 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
779
780 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
781
782 index_msb = get_count_order(smp_num_siblings);
783
784 core_bits = get_count_order(c->x86_max_cores);
785
786 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
787 ((1 << core_bits) - 1);
788#endif
789}
790
791static void get_cpu_vendor(struct cpuinfo_x86 *c)
792{
793 char *v = c->x86_vendor_id;
794 int i;
795
796 for (i = 0; i < X86_VENDOR_NUM; i++) {
797 if (!cpu_devs[i])
798 break;
799
800 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
801 (cpu_devs[i]->c_ident[1] &&
802 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
803
804 this_cpu = cpu_devs[i];
805 c->x86_vendor = this_cpu->c_x86_vendor;
806 return;
807 }
808 }
809
810 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
811 "CPU: Your system may be unstable.\n", v);
812
813 c->x86_vendor = X86_VENDOR_UNKNOWN;
814 this_cpu = &default_cpu;
815}
816
817void cpu_detect(struct cpuinfo_x86 *c)
818{
819 /* Get vendor name */
820 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
821 (unsigned int *)&c->x86_vendor_id[0],
822 (unsigned int *)&c->x86_vendor_id[8],
823 (unsigned int *)&c->x86_vendor_id[4]);
824
825 c->x86 = 4;
826 /* Intel-defined flags: level 0x00000001 */
827 if (c->cpuid_level >= 0x00000001) {
828 u32 junk, tfms, cap0, misc;
829
830 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
831 c->x86 = x86_family(tfms);
832 c->x86_model = x86_model(tfms);
833 c->x86_stepping = x86_stepping(tfms);
834
835 if (cap0 & (1<<19)) {
836 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
837 c->x86_cache_alignment = c->x86_clflush_size;
838 }
839 }
840}
841
842static void apply_forced_caps(struct cpuinfo_x86 *c)
843{
844 int i;
845
846 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
847 c->x86_capability[i] &= ~cpu_caps_cleared[i];
848 c->x86_capability[i] |= cpu_caps_set[i];
849 }
850}
851
852static void init_speculation_control(struct cpuinfo_x86 *c)
853{
854 /*
855 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
856 * and they also have a different bit for STIBP support. Also,
857 * a hypervisor might have set the individual AMD bits even on
858 * Intel CPUs, for finer-grained selection of what's available.
859 */
860 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
861 set_cpu_cap(c, X86_FEATURE_IBRS);
862 set_cpu_cap(c, X86_FEATURE_IBPB);
863 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
864 }
865
866 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
867 set_cpu_cap(c, X86_FEATURE_STIBP);
868
869 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
870 cpu_has(c, X86_FEATURE_VIRT_SSBD))
871 set_cpu_cap(c, X86_FEATURE_SSBD);
872
873 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
874 set_cpu_cap(c, X86_FEATURE_IBRS);
875 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
876 }
877
878 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
879 set_cpu_cap(c, X86_FEATURE_IBPB);
880
881 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
882 set_cpu_cap(c, X86_FEATURE_STIBP);
883 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
884 }
885
886 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
887 set_cpu_cap(c, X86_FEATURE_SSBD);
888 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
890 }
891}
892
893void get_cpu_cap(struct cpuinfo_x86 *c)
894{
895 u32 eax, ebx, ecx, edx;
896
897 /* Intel-defined flags: level 0x00000001 */
898 if (c->cpuid_level >= 0x00000001) {
899 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
900
901 c->x86_capability[CPUID_1_ECX] = ecx;
902 c->x86_capability[CPUID_1_EDX] = edx;
903 }
904
905 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
906 if (c->cpuid_level >= 0x00000006)
907 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
908
909 /* Additional Intel-defined flags: level 0x00000007 */
910 if (c->cpuid_level >= 0x00000007) {
911 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
912 c->x86_capability[CPUID_7_0_EBX] = ebx;
913 c->x86_capability[CPUID_7_ECX] = ecx;
914 c->x86_capability[CPUID_7_EDX] = edx;
915
916 /* Check valid sub-leaf index before accessing it */
917 if (eax >= 1) {
918 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
919 c->x86_capability[CPUID_7_1_EAX] = eax;
920 }
921 }
922
923 /* Extended state features: level 0x0000000d */
924 if (c->cpuid_level >= 0x0000000d) {
925 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
926
927 c->x86_capability[CPUID_D_1_EAX] = eax;
928 }
929
930 /* AMD-defined flags: level 0x80000001 */
931 eax = cpuid_eax(0x80000000);
932 c->extended_cpuid_level = eax;
933
934 if ((eax & 0xffff0000) == 0x80000000) {
935 if (eax >= 0x80000001) {
936 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
937
938 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
939 c->x86_capability[CPUID_8000_0001_EDX] = edx;
940 }
941 }
942
943 if (c->extended_cpuid_level >= 0x80000007) {
944 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
945
946 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
947 c->x86_power = edx;
948 }
949
950 if (c->extended_cpuid_level >= 0x80000008) {
951 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
952 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
953 }
954
955 if (c->extended_cpuid_level >= 0x8000000a)
956 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
957
958 if (c->extended_cpuid_level >= 0x8000001f)
959 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
960
961 init_scattered_cpuid_features(c);
962 init_speculation_control(c);
963
964 /*
965 * Clear/Set all flags overridden by options, after probe.
966 * This needs to happen each time we re-probe, which may happen
967 * several times during CPU initialization.
968 */
969 apply_forced_caps(c);
970}
971
972void get_cpu_address_sizes(struct cpuinfo_x86 *c)
973{
974 u32 eax, ebx, ecx, edx;
975
976 if (c->extended_cpuid_level >= 0x80000008) {
977 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
978
979 c->x86_virt_bits = (eax >> 8) & 0xff;
980 c->x86_phys_bits = eax & 0xff;
981 }
982#ifdef CONFIG_X86_32
983 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
984 c->x86_phys_bits = 36;
985#endif
986 c->x86_cache_bits = c->x86_phys_bits;
987}
988
989static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
990{
991#ifdef CONFIG_X86_32
992 int i;
993
994 /*
995 * First of all, decide if this is a 486 or higher
996 * It's a 486 if we can modify the AC flag
997 */
998 if (flag_is_changeable_p(X86_EFLAGS_AC))
999 c->x86 = 4;
1000 else
1001 c->x86 = 3;
1002
1003 for (i = 0; i < X86_VENDOR_NUM; i++)
1004 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1005 c->x86_vendor_id[0] = 0;
1006 cpu_devs[i]->c_identify(c);
1007 if (c->x86_vendor_id[0]) {
1008 get_cpu_vendor(c);
1009 break;
1010 }
1011 }
1012#endif
1013}
1014
1015#define NO_SPECULATION BIT(0)
1016#define NO_MELTDOWN BIT(1)
1017#define NO_SSB BIT(2)
1018#define NO_L1TF BIT(3)
1019#define NO_MDS BIT(4)
1020#define MSBDS_ONLY BIT(5)
1021#define NO_SWAPGS BIT(6)
1022#define NO_ITLB_MULTIHIT BIT(7)
1023#define NO_SPECTRE_V2 BIT(8)
1024
1025#define VULNWL(vendor, family, model, whitelist) \
1026 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1027
1028#define VULNWL_INTEL(model, whitelist) \
1029 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1030
1031#define VULNWL_AMD(family, whitelist) \
1032 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1033
1034#define VULNWL_HYGON(family, whitelist) \
1035 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1036
1037static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1038 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1039 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1042
1043 /* Intel Family 6 */
1044 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1045 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049
1050 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056
1057 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1058
1059 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061
1062 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066 /*
1067 * Technically, swapgs isn't serializing on AMD (despite it previously
1068 * being documented as such in the APM). But according to AMD, %gs is
1069 * updated non-speculatively, and the issuing of %gs-relative memory
1070 * operands will be blocked until the %gs update completes, which is
1071 * good enough for our purposes.
1072 */
1073
1074 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1075
1076 /* AMD Family 0xf - 0x12 */
1077 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081
1082 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1083 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085
1086 /* Zhaoxin Family 7 */
1087 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1088 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1089 {}
1090};
1091
1092#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1093 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1094 INTEL_FAM6_##model, steppings, \
1095 X86_FEATURE_ANY, issues)
1096
1097#define SRBDS BIT(0)
1098
1099static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1100 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1101 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1102 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1109 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1110 {}
1111};
1112
1113static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1114{
1115 const struct x86_cpu_id *m = x86_match_cpu(table);
1116
1117 return m && !!(m->driver_data & which);
1118}
1119
1120u64 x86_read_arch_cap_msr(void)
1121{
1122 u64 ia32_cap = 0;
1123
1124 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1125 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1126
1127 return ia32_cap;
1128}
1129
1130static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1131{
1132 u64 ia32_cap = x86_read_arch_cap_msr();
1133
1134 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1135 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1136 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1137 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1138
1139 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1140 return;
1141
1142 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1143
1144 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1145 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1146
1147 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1148 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1149 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1150 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1151
1152 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1153 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1154
1155 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1156 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1157 setup_force_cpu_bug(X86_BUG_MDS);
1158 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1159 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1160 }
1161
1162 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1163 setup_force_cpu_bug(X86_BUG_SWAPGS);
1164
1165 /*
1166 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1167 * - TSX is supported or
1168 * - TSX_CTRL is present
1169 *
1170 * TSX_CTRL check is needed for cases when TSX could be disabled before
1171 * the kernel boot e.g. kexec.
1172 * TSX_CTRL check alone is not sufficient for cases when the microcode
1173 * update is not present or running as guest that don't get TSX_CTRL.
1174 */
1175 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1176 (cpu_has(c, X86_FEATURE_RTM) ||
1177 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1178 setup_force_cpu_bug(X86_BUG_TAA);
1179
1180 /*
1181 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1182 * in the vulnerability blacklist.
1183 */
1184 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1185 cpu_has(c, X86_FEATURE_RDSEED)) &&
1186 cpu_matches(cpu_vuln_blacklist, SRBDS))
1187 setup_force_cpu_bug(X86_BUG_SRBDS);
1188
1189 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1190 return;
1191
1192 /* Rogue Data Cache Load? No! */
1193 if (ia32_cap & ARCH_CAP_RDCL_NO)
1194 return;
1195
1196 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1197
1198 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1199 return;
1200
1201 setup_force_cpu_bug(X86_BUG_L1TF);
1202}
1203
1204/*
1205 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1206 * unfortunately, that's not true in practice because of early VIA
1207 * chips and (more importantly) broken virtualizers that are not easy
1208 * to detect. In the latter case it doesn't even *fail* reliably, so
1209 * probing for it doesn't even work. Disable it completely on 32-bit
1210 * unless we can find a reliable way to detect all the broken cases.
1211 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1212 */
1213static void detect_nopl(void)
1214{
1215#ifdef CONFIG_X86_32
1216 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1217#else
1218 setup_force_cpu_cap(X86_FEATURE_NOPL);
1219#endif
1220}
1221
1222/*
1223 * We parse cpu parameters early because fpu__init_system() is executed
1224 * before parse_early_param().
1225 */
1226static void __init cpu_parse_early_param(void)
1227{
1228 char arg[128];
1229 char *argptr = arg;
1230 int arglen, res, bit;
1231
1232#ifdef CONFIG_X86_32
1233 if (cmdline_find_option_bool(boot_command_line, "no387"))
1234#ifdef CONFIG_MATH_EMULATION
1235 setup_clear_cpu_cap(X86_FEATURE_FPU);
1236#else
1237 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1238#endif
1239
1240 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1241 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1242#endif
1243
1244 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1245 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1246
1247 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1248 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1249
1250 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1251 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1252
1253 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1254 if (arglen <= 0)
1255 return;
1256
1257 pr_info("Clearing CPUID bits:");
1258 do {
1259 res = get_option(&argptr, &bit);
1260 if (res == 0 || res == 3)
1261 break;
1262
1263 /* If the argument was too long, the last bit may be cut off */
1264 if (res == 1 && arglen >= sizeof(arg))
1265 break;
1266
1267 if (bit >= 0 && bit < NCAPINTS * 32) {
1268 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1269 setup_clear_cpu_cap(bit);
1270 }
1271 } while (res == 2);
1272 pr_cont("\n");
1273}
1274
1275/*
1276 * Do minimum CPU detection early.
1277 * Fields really needed: vendor, cpuid_level, family, model, mask,
1278 * cache alignment.
1279 * The others are not touched to avoid unwanted side effects.
1280 *
1281 * WARNING: this function is only called on the boot CPU. Don't add code
1282 * here that is supposed to run on all CPUs.
1283 */
1284static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1285{
1286#ifdef CONFIG_X86_64
1287 c->x86_clflush_size = 64;
1288 c->x86_phys_bits = 36;
1289 c->x86_virt_bits = 48;
1290#else
1291 c->x86_clflush_size = 32;
1292 c->x86_phys_bits = 32;
1293 c->x86_virt_bits = 32;
1294#endif
1295 c->x86_cache_alignment = c->x86_clflush_size;
1296
1297 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1298 c->extended_cpuid_level = 0;
1299
1300 if (!have_cpuid_p())
1301 identify_cpu_without_cpuid(c);
1302
1303 /* cyrix could have cpuid enabled via c_identify()*/
1304 if (have_cpuid_p()) {
1305 cpu_detect(c);
1306 get_cpu_vendor(c);
1307 get_cpu_cap(c);
1308 get_cpu_address_sizes(c);
1309 setup_force_cpu_cap(X86_FEATURE_CPUID);
1310 cpu_parse_early_param();
1311
1312 if (this_cpu->c_early_init)
1313 this_cpu->c_early_init(c);
1314
1315 c->cpu_index = 0;
1316 filter_cpuid_features(c, false);
1317
1318 if (this_cpu->c_bsp_init)
1319 this_cpu->c_bsp_init(c);
1320 } else {
1321 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1322 }
1323
1324 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1325
1326 cpu_set_bug_bits(c);
1327
1328 sld_setup(c);
1329
1330 fpu__init_system(c);
1331
1332 init_sigframe_size();
1333
1334#ifdef CONFIG_X86_32
1335 /*
1336 * Regardless of whether PCID is enumerated, the SDM says
1337 * that it can't be enabled in 32-bit mode.
1338 */
1339 setup_clear_cpu_cap(X86_FEATURE_PCID);
1340#endif
1341
1342 /*
1343 * Later in the boot process pgtable_l5_enabled() relies on
1344 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345 * enabled by this point we need to clear the feature bit to avoid
1346 * false-positives at the later stage.
1347 *
1348 * pgtable_l5_enabled() can be false here for several reasons:
1349 * - 5-level paging is disabled compile-time;
1350 * - it's 32-bit kernel;
1351 * - machine doesn't support 5-level paging;
1352 * - user specified 'no5lvl' in kernel command line.
1353 */
1354 if (!pgtable_l5_enabled())
1355 setup_clear_cpu_cap(X86_FEATURE_LA57);
1356
1357 detect_nopl();
1358}
1359
1360void __init early_cpu_init(void)
1361{
1362 const struct cpu_dev *const *cdev;
1363 int count = 0;
1364
1365#ifdef CONFIG_PROCESSOR_SELECT
1366 pr_info("KERNEL supported cpus:\n");
1367#endif
1368
1369 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370 const struct cpu_dev *cpudev = *cdev;
1371
1372 if (count >= X86_VENDOR_NUM)
1373 break;
1374 cpu_devs[count] = cpudev;
1375 count++;
1376
1377#ifdef CONFIG_PROCESSOR_SELECT
1378 {
1379 unsigned int j;
1380
1381 for (j = 0; j < 2; j++) {
1382 if (!cpudev->c_ident[j])
1383 continue;
1384 pr_info(" %s %s\n", cpudev->c_vendor,
1385 cpudev->c_ident[j]);
1386 }
1387 }
1388#endif
1389 }
1390 early_identify_cpu(&boot_cpu_data);
1391}
1392
1393static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394{
1395#ifdef CONFIG_X86_64
1396 /*
1397 * Empirically, writing zero to a segment selector on AMD does
1398 * not clear the base, whereas writing zero to a segment
1399 * selector on Intel does clear the base. Intel's behavior
1400 * allows slightly faster context switches in the common case
1401 * where GS is unused by the prev and next threads.
1402 *
1403 * Since neither vendor documents this anywhere that I can see,
1404 * detect it directly instead of hard-coding the choice by
1405 * vendor.
1406 *
1407 * I've designated AMD's behavior as the "bug" because it's
1408 * counterintuitive and less friendly.
1409 */
1410
1411 unsigned long old_base, tmp;
1412 rdmsrl(MSR_FS_BASE, old_base);
1413 wrmsrl(MSR_FS_BASE, 1);
1414 loadsegment(fs, 0);
1415 rdmsrl(MSR_FS_BASE, tmp);
1416 if (tmp != 0)
1417 set_cpu_bug(c, X86_BUG_NULL_SEG);
1418 wrmsrl(MSR_FS_BASE, old_base);
1419#endif
1420}
1421
1422static void generic_identify(struct cpuinfo_x86 *c)
1423{
1424 c->extended_cpuid_level = 0;
1425
1426 if (!have_cpuid_p())
1427 identify_cpu_without_cpuid(c);
1428
1429 /* cyrix could have cpuid enabled via c_identify()*/
1430 if (!have_cpuid_p())
1431 return;
1432
1433 cpu_detect(c);
1434
1435 get_cpu_vendor(c);
1436
1437 get_cpu_cap(c);
1438
1439 get_cpu_address_sizes(c);
1440
1441 if (c->cpuid_level >= 0x00000001) {
1442 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443#ifdef CONFIG_X86_32
1444# ifdef CONFIG_SMP
1445 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446# else
1447 c->apicid = c->initial_apicid;
1448# endif
1449#endif
1450 c->phys_proc_id = c->initial_apicid;
1451 }
1452
1453 get_model_name(c); /* Default name */
1454
1455 detect_null_seg_behavior(c);
1456
1457 /*
1458 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1459 * systems that run Linux at CPL > 0 may or may not have the
1460 * issue, but, even if they have the issue, there's absolutely
1461 * nothing we can do about it because we can't use the real IRET
1462 * instruction.
1463 *
1464 * NB: For the time being, only 32-bit kernels support
1465 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1466 * whether to apply espfix using paravirt hooks. If any
1467 * non-paravirt system ever shows up that does *not* have the
1468 * ESPFIX issue, we can change this.
1469 */
1470#ifdef CONFIG_X86_32
1471 set_cpu_bug(c, X86_BUG_ESPFIX);
1472#endif
1473}
1474
1475/*
1476 * Validate that ACPI/mptables have the same information about the
1477 * effective APIC id and update the package map.
1478 */
1479static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480{
1481#ifdef CONFIG_SMP
1482 unsigned int apicid, cpu = smp_processor_id();
1483
1484 apicid = apic->cpu_present_to_apicid(cpu);
1485
1486 if (apicid != c->apicid) {
1487 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488 cpu, apicid, c->initial_apicid);
1489 }
1490 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492#else
1493 c->logical_proc_id = 0;
1494#endif
1495}
1496
1497/*
1498 * This does the hard work of actually picking apart the CPU stuff...
1499 */
1500static void identify_cpu(struct cpuinfo_x86 *c)
1501{
1502 int i;
1503
1504 c->loops_per_jiffy = loops_per_jiffy;
1505 c->x86_cache_size = 0;
1506 c->x86_vendor = X86_VENDOR_UNKNOWN;
1507 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1508 c->x86_vendor_id[0] = '\0'; /* Unset */
1509 c->x86_model_id[0] = '\0'; /* Unset */
1510 c->x86_max_cores = 1;
1511 c->x86_coreid_bits = 0;
1512 c->cu_id = 0xff;
1513#ifdef CONFIG_X86_64
1514 c->x86_clflush_size = 64;
1515 c->x86_phys_bits = 36;
1516 c->x86_virt_bits = 48;
1517#else
1518 c->cpuid_level = -1; /* CPUID not detected */
1519 c->x86_clflush_size = 32;
1520 c->x86_phys_bits = 32;
1521 c->x86_virt_bits = 32;
1522#endif
1523 c->x86_cache_alignment = c->x86_clflush_size;
1524 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527#endif
1528
1529 generic_identify(c);
1530
1531 if (this_cpu->c_identify)
1532 this_cpu->c_identify(c);
1533
1534 /* Clear/Set all flags overridden by options, after probe */
1535 apply_forced_caps(c);
1536
1537#ifdef CONFIG_X86_64
1538 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539#endif
1540
1541 /*
1542 * Vendor-specific initialization. In this section we
1543 * canonicalize the feature flags, meaning if there are
1544 * features a certain CPU supports which CPUID doesn't
1545 * tell us, CPUID claiming incorrect flags, or other bugs,
1546 * we handle them here.
1547 *
1548 * At the end of this section, c->x86_capability better
1549 * indicate the features this CPU genuinely supports!
1550 */
1551 if (this_cpu->c_init)
1552 this_cpu->c_init(c);
1553
1554 /* Disable the PN if appropriate */
1555 squash_the_stupid_serial_number(c);
1556
1557 /* Set up SMEP/SMAP/UMIP */
1558 setup_smep(c);
1559 setup_smap(c);
1560 setup_umip(c);
1561
1562 /* Enable FSGSBASE instructions if available. */
1563 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564 cr4_set_bits(X86_CR4_FSGSBASE);
1565 elf_hwcap2 |= HWCAP2_FSGSBASE;
1566 }
1567
1568 /*
1569 * The vendor-specific functions might have changed features.
1570 * Now we do "generic changes."
1571 */
1572
1573 /* Filter out anything that depends on CPUID levels we don't have */
1574 filter_cpuid_features(c, true);
1575
1576 /* If the model name is still unset, do table lookup. */
1577 if (!c->x86_model_id[0]) {
1578 const char *p;
1579 p = table_lookup_model(c);
1580 if (p)
1581 strcpy(c->x86_model_id, p);
1582 else
1583 /* Last resort... */
1584 sprintf(c->x86_model_id, "%02x/%02x",
1585 c->x86, c->x86_model);
1586 }
1587
1588#ifdef CONFIG_X86_64
1589 detect_ht(c);
1590#endif
1591
1592 x86_init_rdrand(c);
1593 setup_pku(c);
1594
1595 /*
1596 * Clear/Set all flags overridden by options, need do it
1597 * before following smp all cpus cap AND.
1598 */
1599 apply_forced_caps(c);
1600
1601 /*
1602 * On SMP, boot_cpu_data holds the common feature set between
1603 * all CPUs; so make sure that we indicate which features are
1604 * common between the CPUs. The first time this routine gets
1605 * executed, c == &boot_cpu_data.
1606 */
1607 if (c != &boot_cpu_data) {
1608 /* AND the already accumulated flags with these */
1609 for (i = 0; i < NCAPINTS; i++)
1610 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611
1612 /* OR, i.e. replicate the bug flags */
1613 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615 }
1616
1617 /* Init Machine Check Exception if available. */
1618 mcheck_cpu_init(c);
1619
1620 select_idle_routine(c);
1621
1622#ifdef CONFIG_NUMA
1623 numa_add_cpu(smp_processor_id());
1624#endif
1625}
1626
1627/*
1628 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629 * on 32-bit kernels:
1630 */
1631#ifdef CONFIG_X86_32
1632void enable_sep_cpu(void)
1633{
1634 struct tss_struct *tss;
1635 int cpu;
1636
1637 if (!boot_cpu_has(X86_FEATURE_SEP))
1638 return;
1639
1640 cpu = get_cpu();
1641 tss = &per_cpu(cpu_tss_rw, cpu);
1642
1643 /*
1644 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645 * see the big comment in struct x86_hw_tss's definition.
1646 */
1647
1648 tss->x86_tss.ss1 = __KERNEL_CS;
1649 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652
1653 put_cpu();
1654}
1655#endif
1656
1657void __init identify_boot_cpu(void)
1658{
1659 identify_cpu(&boot_cpu_data);
1660#ifdef CONFIG_X86_32
1661 sysenter_setup();
1662 enable_sep_cpu();
1663#endif
1664 cpu_detect_tlb(&boot_cpu_data);
1665 setup_cr_pinning();
1666
1667 tsx_init();
1668}
1669
1670void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671{
1672 BUG_ON(c == &boot_cpu_data);
1673 identify_cpu(c);
1674#ifdef CONFIG_X86_32
1675 enable_sep_cpu();
1676#endif
1677 mtrr_ap_init();
1678 validate_apic_and_package_id(c);
1679 x86_spec_ctrl_setup_ap();
1680 update_srbds_msr();
1681}
1682
1683static __init int setup_noclflush(char *arg)
1684{
1685 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687 return 1;
1688}
1689__setup("noclflush", setup_noclflush);
1690
1691void print_cpu_info(struct cpuinfo_x86 *c)
1692{
1693 const char *vendor = NULL;
1694
1695 if (c->x86_vendor < X86_VENDOR_NUM) {
1696 vendor = this_cpu->c_vendor;
1697 } else {
1698 if (c->cpuid_level >= 0)
1699 vendor = c->x86_vendor_id;
1700 }
1701
1702 if (vendor && !strstr(c->x86_model_id, vendor))
1703 pr_cont("%s ", vendor);
1704
1705 if (c->x86_model_id[0])
1706 pr_cont("%s", c->x86_model_id);
1707 else
1708 pr_cont("%d86", c->x86);
1709
1710 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711
1712 if (c->x86_stepping || c->cpuid_level >= 0)
1713 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714 else
1715 pr_cont(")\n");
1716}
1717
1718/*
1719 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1720 * function prevents it from becoming an environment variable for init.
1721 */
1722static __init int setup_clearcpuid(char *arg)
1723{
1724 return 1;
1725}
1726__setup("clearcpuid=", setup_clearcpuid);
1727
1728#ifdef CONFIG_X86_64
1729DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1730 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1731EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1732
1733/*
1734 * The following percpu variables are hot. Align current_task to
1735 * cacheline size such that they fall in the same cacheline.
1736 */
1737DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1738 &init_task;
1739EXPORT_PER_CPU_SYMBOL(current_task);
1740
1741DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1742DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1743
1744DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1745EXPORT_PER_CPU_SYMBOL(__preempt_count);
1746
1747DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1748
1749/* May not be marked __init: used by software suspend */
1750void syscall_init(void)
1751{
1752 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1753 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1754
1755#ifdef CONFIG_IA32_EMULATION
1756 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1757 /*
1758 * This only works on Intel CPUs.
1759 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1760 * This does not cause SYSENTER to jump to the wrong location, because
1761 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1762 */
1763 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1764 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1765 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1766 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1767#else
1768 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1769 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1770 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1771 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1772#endif
1773
1774 /*
1775 * Flags to clear on syscall; clear as much as possible
1776 * to minimize user space-kernel interference.
1777 */
1778 wrmsrl(MSR_SYSCALL_MASK,
1779 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1780 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1781 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1782 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1783 X86_EFLAGS_AC|X86_EFLAGS_ID);
1784}
1785
1786#else /* CONFIG_X86_64 */
1787
1788DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1789EXPORT_PER_CPU_SYMBOL(current_task);
1790DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1791EXPORT_PER_CPU_SYMBOL(__preempt_count);
1792
1793/*
1794 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1795 * the top of the kernel stack. Use an extra percpu variable to track the
1796 * top of the kernel stack directly.
1797 */
1798DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1799 (unsigned long)&init_thread_union + THREAD_SIZE;
1800EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1801
1802#ifdef CONFIG_STACKPROTECTOR
1803DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1804EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1805#endif
1806
1807#endif /* CONFIG_X86_64 */
1808
1809/*
1810 * Clear all 6 debug registers:
1811 */
1812static void clear_all_debug_regs(void)
1813{
1814 int i;
1815
1816 for (i = 0; i < 8; i++) {
1817 /* Ignore db4, db5 */
1818 if ((i == 4) || (i == 5))
1819 continue;
1820
1821 set_debugreg(0, i);
1822 }
1823}
1824
1825#ifdef CONFIG_KGDB
1826/*
1827 * Restore debug regs if using kgdbwait and you have a kernel debugger
1828 * connection established.
1829 */
1830static void dbg_restore_debug_regs(void)
1831{
1832 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1833 arch_kgdb_ops.correct_hw_break();
1834}
1835#else /* ! CONFIG_KGDB */
1836#define dbg_restore_debug_regs()
1837#endif /* ! CONFIG_KGDB */
1838
1839static void wait_for_master_cpu(int cpu)
1840{
1841#ifdef CONFIG_SMP
1842 /*
1843 * wait for ACK from master CPU before continuing
1844 * with AP initialization
1845 */
1846 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1847 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1848 cpu_relax();
1849#endif
1850}
1851
1852#ifdef CONFIG_X86_64
1853static inline void setup_getcpu(int cpu)
1854{
1855 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1856 struct desc_struct d = { };
1857
1858 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1859 wrmsr(MSR_TSC_AUX, cpudata, 0);
1860
1861 /* Store CPU and node number in limit. */
1862 d.limit0 = cpudata;
1863 d.limit1 = cpudata >> 16;
1864
1865 d.type = 5; /* RO data, expand down, accessed */
1866 d.dpl = 3; /* Visible to user code */
1867 d.s = 1; /* Not a system segment */
1868 d.p = 1; /* Present */
1869 d.d = 1; /* 32-bit */
1870
1871 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1872}
1873
1874static inline void ucode_cpu_init(int cpu)
1875{
1876 if (cpu)
1877 load_ucode_ap();
1878}
1879
1880static inline void tss_setup_ist(struct tss_struct *tss)
1881{
1882 /* Set up the per-CPU TSS IST stacks */
1883 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1884 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1885 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1886 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1887 /* Only mapped when SEV-ES is active */
1888 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1889}
1890
1891#else /* CONFIG_X86_64 */
1892
1893static inline void setup_getcpu(int cpu) { }
1894
1895static inline void ucode_cpu_init(int cpu)
1896{
1897 show_ucode_info_early();
1898}
1899
1900static inline void tss_setup_ist(struct tss_struct *tss) { }
1901
1902#endif /* !CONFIG_X86_64 */
1903
1904static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1905{
1906 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1907
1908#ifdef CONFIG_X86_IOPL_IOPERM
1909 tss->io_bitmap.prev_max = 0;
1910 tss->io_bitmap.prev_sequence = 0;
1911 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1912 /*
1913 * Invalidate the extra array entry past the end of the all
1914 * permission bitmap as required by the hardware.
1915 */
1916 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1917#endif
1918}
1919
1920/*
1921 * Setup everything needed to handle exceptions from the IDT, including the IST
1922 * exceptions which use paranoid_entry().
1923 */
1924void cpu_init_exception_handling(void)
1925{
1926 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1927 int cpu = raw_smp_processor_id();
1928
1929 /* paranoid_entry() gets the CPU number from the GDT */
1930 setup_getcpu(cpu);
1931
1932 /* IST vectors need TSS to be set up. */
1933 tss_setup_ist(tss);
1934 tss_setup_io_bitmap(tss);
1935 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1936
1937 load_TR_desc();
1938
1939 /* Finally load the IDT */
1940 load_current_idt();
1941}
1942
1943/*
1944 * cpu_init() initializes state that is per-CPU. Some data is already
1945 * initialized (naturally) in the bootstrap process, such as the GDT. We
1946 * reload it nevertheless, this function acts as a 'CPU state barrier',
1947 * nothing should get across.
1948 */
1949void cpu_init(void)
1950{
1951 struct task_struct *cur = current;
1952 int cpu = raw_smp_processor_id();
1953
1954 wait_for_master_cpu(cpu);
1955
1956 ucode_cpu_init(cpu);
1957
1958#ifdef CONFIG_NUMA
1959 if (this_cpu_read(numa_node) == 0 &&
1960 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1961 set_numa_node(early_cpu_to_node(cpu));
1962#endif
1963 pr_debug("Initializing CPU#%d\n", cpu);
1964
1965 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1966 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1967 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1968
1969 /*
1970 * Initialize the per-CPU GDT with the boot GDT,
1971 * and set up the GDT descriptor:
1972 */
1973 switch_to_new_gdt(cpu);
1974
1975 if (IS_ENABLED(CONFIG_X86_64)) {
1976 loadsegment(fs, 0);
1977 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1978 syscall_init();
1979
1980 wrmsrl(MSR_FS_BASE, 0);
1981 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1982 barrier();
1983
1984 x2apic_setup();
1985 }
1986
1987 mmgrab(&init_mm);
1988 cur->active_mm = &init_mm;
1989 BUG_ON(cur->mm);
1990 initialize_tlbstate_and_flush();
1991 enter_lazy_tlb(&init_mm, cur);
1992
1993 /*
1994 * sp0 points to the entry trampoline stack regardless of what task
1995 * is running.
1996 */
1997 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1998
1999 load_mm_ldt(&init_mm);
2000
2001 clear_all_debug_regs();
2002 dbg_restore_debug_regs();
2003
2004 doublefault_init_cpu_tss();
2005
2006 fpu__init_cpu();
2007
2008 if (is_uv_system())
2009 uv_cpu_init();
2010
2011 load_fixmap_gdt(cpu);
2012}
2013
2014#ifdef CONFIG_SMP
2015void cpu_init_secondary(void)
2016{
2017 /*
2018 * Relies on the BP having set-up the IDT tables, which are loaded
2019 * on this CPU in cpu_init_exception_handling().
2020 */
2021 cpu_init_exception_handling();
2022 cpu_init();
2023}
2024#endif
2025
2026/*
2027 * The microcode loader calls this upon late microcode load to recheck features,
2028 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2029 * hotplug lock.
2030 */
2031void microcode_check(void)
2032{
2033 struct cpuinfo_x86 info;
2034
2035 perf_check_microcode();
2036
2037 /* Reload CPUID max function as it might've changed. */
2038 info.cpuid_level = cpuid_eax(0);
2039
2040 /*
2041 * Copy all capability leafs to pick up the synthetic ones so that
2042 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2043 * get overwritten in get_cpu_cap().
2044 */
2045 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2046
2047 get_cpu_cap(&info);
2048
2049 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2050 return;
2051
2052 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2053 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2054}
2055
2056/*
2057 * Invoked from core CPU hotplug code after hotplug operations
2058 */
2059void arch_smt_update(void)
2060{
2061 /* Handle the speculative execution misfeatures */
2062 cpu_bugs_smt_update();
2063 /* Check whether IPI broadcasting can be enabled */
2064 apic_smt_update();
2065}