Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2012 Avionic Design GmbH
  3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 */
  9
 10#include <linux/clk.h>
 
 11
 12#include <drm/drm_atomic_helper.h>
 13#include <drm/drm_panel.h>
 
 14
 15#include "drm.h"
 16#include "dc.h"
 17
 18struct tegra_rgb {
 19	struct tegra_output output;
 20	struct tegra_dc *dc;
 21
 
 
 22	struct clk *clk_parent;
 23	struct clk *clk;
 24};
 25
 26static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 27{
 28	return container_of(output, struct tegra_rgb, output);
 29}
 30
 31struct reg_entry {
 32	unsigned long offset;
 33	unsigned long value;
 34};
 35
 36static const struct reg_entry rgb_enable[] = {
 37	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 38	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 40	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 41	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 43	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 44	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 53	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 54	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 55	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 56};
 57
 58static const struct reg_entry rgb_disable[] = {
 59	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 60	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 64	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 65	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 66	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 67	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 68	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 69	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 70	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 71	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 72	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 73	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 74	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 75	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 76	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 77	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 78};
 79
 80static void tegra_dc_write_regs(struct tegra_dc *dc,
 81				const struct reg_entry *table,
 82				unsigned int num)
 83{
 84	unsigned int i;
 85
 86	for (i = 0; i < num; i++)
 87		tegra_dc_writel(dc, table[i].value, table[i].offset);
 88}
 89
 90static const struct drm_connector_funcs tegra_rgb_connector_funcs = {
 91	.dpms = drm_atomic_helper_connector_dpms,
 92	.reset = drm_atomic_helper_connector_reset,
 93	.detect = tegra_output_connector_detect,
 94	.fill_modes = drm_helper_probe_single_connector_modes,
 95	.destroy = tegra_output_connector_destroy,
 96	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 97	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
 98};
 99
100static enum drm_mode_status
101tegra_rgb_connector_mode_valid(struct drm_connector *connector,
102			       struct drm_display_mode *mode)
103{
104	/*
105	 * FIXME: For now, always assume that the mode is okay. There are
106	 * unresolved issues with clk_round_rate(), which doesn't always
107	 * reliably report whether a frequency can be set or not.
108	 */
109	return MODE_OK;
110}
111
112static const struct drm_connector_helper_funcs tegra_rgb_connector_helper_funcs = {
113	.get_modes = tegra_output_connector_get_modes,
114	.mode_valid = tegra_rgb_connector_mode_valid,
115	.best_encoder = tegra_output_connector_best_encoder,
116};
117
118static const struct drm_encoder_funcs tegra_rgb_encoder_funcs = {
119	.destroy = tegra_output_encoder_destroy,
120};
121
122static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
123{
124	struct tegra_output *output = encoder_to_output(encoder);
125	struct tegra_rgb *rgb = to_rgb(output);
126
127	if (output->panel)
128		drm_panel_disable(output->panel);
129
130	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
131	tegra_dc_commit(rgb->dc);
132
133	if (output->panel)
134		drm_panel_unprepare(output->panel);
135}
136
137static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
138{
 
139	struct tegra_output *output = encoder_to_output(encoder);
140	struct tegra_rgb *rgb = to_rgb(output);
141	u32 value;
142
143	if (output->panel)
144		drm_panel_prepare(output->panel);
145
146	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
147
148	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
149	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
150
151	/* XXX: parameterize? */
152	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
153	value &= ~LVS_OUTPUT_POLARITY_LOW;
154	value &= ~LHS_OUTPUT_POLARITY_LOW;
 
 
 
 
 
 
 
 
 
155	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
156
157	/* XXX: parameterize? */
158	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
159		DISP_ORDER_RED_BLUE;
160	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
161
162	/* XXX: parameterize? */
163	value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
164	tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
165
166	tegra_dc_commit(rgb->dc);
 
 
 
 
 
 
 
 
 
 
167
168	if (output->panel)
169		drm_panel_enable(output->panel);
170}
171
172static int
173tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
174			       struct drm_crtc_state *crtc_state,
175			       struct drm_connector_state *conn_state)
176{
177	struct tegra_output *output = encoder_to_output(encoder);
178	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
179	unsigned long pclk = crtc_state->mode.clock * 1000;
180	struct tegra_rgb *rgb = to_rgb(output);
181	unsigned int div;
182	int err;
183
184	/*
185	 * We may not want to change the frequency of the parent clock, since
186	 * it may be a parent for other peripherals. This is due to the fact
187	 * that on Tegra20 there's only a single clock dedicated to display
188	 * (pll_d_out0), whereas later generations have a second one that can
189	 * be used to independently drive a second output (pll_d2_out0).
190	 *
191	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
192	 * typically used as the parent clock for the display controllers.
193	 * But this comes at a cost: pll_p is the parent of several other
194	 * peripherals, so its frequency shouldn't change out of the blue.
195	 *
196	 * The best we can do at this point is to use the shift clock divider
197	 * and hope that the desired frequency can be matched (or at least
198	 * matched sufficiently close that the panel will still work).
199	 */
200	div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
201	pclk = 0;
 
 
 
 
 
 
 
 
 
202
203	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
204					 pclk, div);
205	if (err < 0) {
206		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
207		return err;
208	}
209
210	return err;
211}
212
213static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
214	.disable = tegra_rgb_encoder_disable,
215	.enable = tegra_rgb_encoder_enable,
216	.atomic_check = tegra_rgb_encoder_atomic_check,
217};
218
219int tegra_dc_rgb_probe(struct tegra_dc *dc)
220{
221	struct device_node *np;
222	struct tegra_rgb *rgb;
223	int err;
224
225	np = of_get_child_by_name(dc->dev->of_node, "rgb");
226	if (!np || !of_device_is_available(np))
227		return -ENODEV;
228
229	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
230	if (!rgb)
231		return -ENOMEM;
232
233	rgb->output.dev = dc->dev;
234	rgb->output.of_node = np;
235	rgb->dc = dc;
236
237	err = tegra_output_probe(&rgb->output);
238	if (err < 0)
239		return err;
240
241	rgb->clk = devm_clk_get(dc->dev, NULL);
242	if (IS_ERR(rgb->clk)) {
243		dev_err(dc->dev, "failed to get clock\n");
244		return PTR_ERR(rgb->clk);
245	}
246
247	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
248	if (IS_ERR(rgb->clk_parent)) {
249		dev_err(dc->dev, "failed to get parent clock\n");
250		return PTR_ERR(rgb->clk_parent);
251	}
252
253	err = clk_set_parent(rgb->clk, rgb->clk_parent);
254	if (err < 0) {
255		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
256		return err;
257	}
258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259	dc->rgb = &rgb->output;
260
261	return 0;
262}
263
264int tegra_dc_rgb_remove(struct tegra_dc *dc)
265{
 
 
266	if (!dc->rgb)
267		return 0;
 
 
 
 
268
269	tegra_output_remove(dc->rgb);
270	dc->rgb = NULL;
271
272	return 0;
273}
274
275int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
276{
277	struct tegra_output *output = dc->rgb;
 
278	int err;
279
280	if (!dc->rgb)
281		return -ENODEV;
282
283	drm_connector_init(drm, &output->connector, &tegra_rgb_connector_funcs,
284			   DRM_MODE_CONNECTOR_LVDS);
285	drm_connector_helper_add(&output->connector,
286				 &tegra_rgb_connector_helper_funcs);
287	output->connector.dpms = DRM_MODE_DPMS_OFF;
288
289	drm_encoder_init(drm, &output->encoder, &tegra_rgb_encoder_funcs,
290			 DRM_MODE_ENCODER_LVDS, NULL);
291	drm_encoder_helper_add(&output->encoder,
292			       &tegra_rgb_encoder_helper_funcs);
293
294	drm_mode_connector_attach_encoder(&output->connector,
295					  &output->encoder);
296	drm_connector_register(&output->connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298	err = tegra_output_init(drm, output);
299	if (err < 0) {
300		dev_err(output->dev, "failed to initialize output: %d\n", err);
301		return err;
302	}
303
304	/*
305	 * Other outputs can be attached to either display controller. The RGB
306	 * outputs are an exception and work only with their parent display
307	 * controller.
308	 */
309	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
310
311	return 0;
312}
313
314int tegra_dc_rgb_exit(struct tegra_dc *dc)
315{
316	if (dc->rgb)
317		tegra_output_exit(dc->rgb);
318
319	return 0;
320}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Avionic Design GmbH
  4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
 
 
 
 
  5 */
  6
  7#include <linux/clk.h>
  8#include <linux/of.h>
  9
 10#include <drm/drm_atomic_helper.h>
 11#include <drm/drm_bridge_connector.h>
 12#include <drm/drm_simple_kms_helper.h>
 13
 14#include "drm.h"
 15#include "dc.h"
 16
 17struct tegra_rgb {
 18	struct tegra_output output;
 19	struct tegra_dc *dc;
 20
 21	struct clk *pll_d_out0;
 22	struct clk *pll_d2_out0;
 23	struct clk *clk_parent;
 24	struct clk *clk;
 25};
 26
 27static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
 28{
 29	return container_of(output, struct tegra_rgb, output);
 30}
 31
 32struct reg_entry {
 33	unsigned long offset;
 34	unsigned long value;
 35};
 36
 37static const struct reg_entry rgb_enable[] = {
 38	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
 39	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
 40	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
 41	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
 42	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 43	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
 44	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 45	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 46	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
 47	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
 48	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
 49	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
 50	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 51	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 52	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 53	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 54	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
 55	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
 56	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
 57};
 58
 59static const struct reg_entry rgb_disable[] = {
 60	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
 61	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
 62	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
 63	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
 64	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
 65	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
 66	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
 67	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
 68	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
 69	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
 70	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
 71	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
 72	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
 73	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
 74	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
 75	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
 76	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
 77	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
 78	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
 79};
 80
 81static void tegra_dc_write_regs(struct tegra_dc *dc,
 82				const struct reg_entry *table,
 83				unsigned int num)
 84{
 85	unsigned int i;
 86
 87	for (i = 0; i < num; i++)
 88		tegra_dc_writel(dc, table[i].value, table[i].offset);
 89}
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
 92{
 93	struct tegra_output *output = encoder_to_output(encoder);
 94	struct tegra_rgb *rgb = to_rgb(output);
 95
 
 
 
 96	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
 97	tegra_dc_commit(rgb->dc);
 
 
 
 98}
 99
100static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
101{
102	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
103	struct tegra_output *output = encoder_to_output(encoder);
104	struct tegra_rgb *rgb = to_rgb(output);
105	u32 value;
106
 
 
 
107	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
108
109	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
110	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
111
112	/* configure H- and V-sync signal polarities */
113	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
114
115	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
116		value |= LHS_OUTPUT_POLARITY_LOW;
117	else
118		value &= ~LHS_OUTPUT_POLARITY_LOW;
119
120	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
121		value |= LVS_OUTPUT_POLARITY_LOW;
122	else
123		value &= ~LVS_OUTPUT_POLARITY_LOW;
124
125	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
126
127	/* XXX: parameterize? */
128	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
129		DISP_ORDER_RED_BLUE;
130	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
131
 
 
 
 
132	tegra_dc_commit(rgb->dc);
133}
134
135static bool tegra_rgb_pll_rate_change_allowed(struct tegra_rgb *rgb)
136{
137	if (!rgb->pll_d2_out0)
138		return false;
139
140	if (!clk_is_match(rgb->clk_parent, rgb->pll_d_out0) &&
141	    !clk_is_match(rgb->clk_parent, rgb->pll_d2_out0))
142		return false;
143
144	return true;
 
145}
146
147static int
148tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
149			       struct drm_crtc_state *crtc_state,
150			       struct drm_connector_state *conn_state)
151{
152	struct tegra_output *output = encoder_to_output(encoder);
153	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
154	unsigned long pclk = crtc_state->mode.clock * 1000;
155	struct tegra_rgb *rgb = to_rgb(output);
156	unsigned int div;
157	int err;
158
159	/*
160	 * We may not want to change the frequency of the parent clock, since
161	 * it may be a parent for other peripherals. This is due to the fact
162	 * that on Tegra20 there's only a single clock dedicated to display
163	 * (pll_d_out0), whereas later generations have a second one that can
164	 * be used to independently drive a second output (pll_d2_out0).
165	 *
166	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
167	 * typically used as the parent clock for the display controllers.
168	 * But this comes at a cost: pll_p is the parent of several other
169	 * peripherals, so its frequency shouldn't change out of the blue.
170	 *
171	 * The best we can do at this point is to use the shift clock divider
172	 * and hope that the desired frequency can be matched (or at least
173	 * matched sufficiently close that the panel will still work).
174	 */
175	if (tegra_rgb_pll_rate_change_allowed(rgb)) {
176		/*
177		 * Set display controller clock to x2 of PCLK in order to
178		 * produce higher resolution pulse positions.
179		 */
180		div = 2;
181		pclk *= 2;
182	} else {
183		div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
184		pclk = 0;
185	}
186
187	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
188					 pclk, div);
189	if (err < 0) {
190		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
191		return err;
192	}
193
194	return err;
195}
196
197static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
198	.disable = tegra_rgb_encoder_disable,
199	.enable = tegra_rgb_encoder_enable,
200	.atomic_check = tegra_rgb_encoder_atomic_check,
201};
202
203int tegra_dc_rgb_probe(struct tegra_dc *dc)
204{
205	struct device_node *np;
206	struct tegra_rgb *rgb;
207	int err;
208
209	np = of_get_child_by_name(dc->dev->of_node, "rgb");
210	if (!np || !of_device_is_available(np))
211		return -ENODEV;
212
213	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
214	if (!rgb)
215		return -ENOMEM;
216
217	rgb->output.dev = dc->dev;
218	rgb->output.of_node = np;
219	rgb->dc = dc;
220
221	err = tegra_output_probe(&rgb->output);
222	if (err < 0)
223		return err;
224
225	rgb->clk = devm_clk_get(dc->dev, NULL);
226	if (IS_ERR(rgb->clk)) {
227		dev_err(dc->dev, "failed to get clock\n");
228		return PTR_ERR(rgb->clk);
229	}
230
231	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
232	if (IS_ERR(rgb->clk_parent)) {
233		dev_err(dc->dev, "failed to get parent clock\n");
234		return PTR_ERR(rgb->clk_parent);
235	}
236
237	err = clk_set_parent(rgb->clk, rgb->clk_parent);
238	if (err < 0) {
239		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
240		return err;
241	}
242
243	rgb->pll_d_out0 = clk_get_sys(NULL, "pll_d_out0");
244	if (IS_ERR(rgb->pll_d_out0)) {
245		err = PTR_ERR(rgb->pll_d_out0);
246		dev_err(dc->dev, "failed to get pll_d_out0: %d\n", err);
247		return err;
248	}
249
250	if (dc->soc->has_pll_d2_out0) {
251		rgb->pll_d2_out0 = clk_get_sys(NULL, "pll_d2_out0");
252		if (IS_ERR(rgb->pll_d2_out0)) {
253			err = PTR_ERR(rgb->pll_d2_out0);
254			dev_err(dc->dev, "failed to get pll_d2_out0: %d\n", err);
255			return err;
256		}
257	}
258
259	dc->rgb = &rgb->output;
260
261	return 0;
262}
263
264void tegra_dc_rgb_remove(struct tegra_dc *dc)
265{
266	struct tegra_rgb *rgb;
267
268	if (!dc->rgb)
269		return;
270
271	rgb = to_rgb(dc->rgb);
272	clk_put(rgb->pll_d2_out0);
273	clk_put(rgb->pll_d_out0);
274
275	tegra_output_remove(dc->rgb);
276	dc->rgb = NULL;
 
 
277}
278
279int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
280{
281	struct tegra_output *output = dc->rgb;
282	struct drm_connector *connector;
283	int err;
284
285	if (!dc->rgb)
286		return -ENODEV;
287
288	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
 
 
 
 
 
 
 
289	drm_encoder_helper_add(&output->encoder,
290			       &tegra_rgb_encoder_helper_funcs);
291
292	/*
293	 * Wrap directly-connected panel into DRM bridge in order to let
294	 * DRM core to handle panel for us.
295	 */
296	if (output->panel) {
297		output->bridge = devm_drm_panel_bridge_add(output->dev,
298							   output->panel);
299		if (IS_ERR(output->bridge)) {
300			dev_err(output->dev,
301				"failed to wrap panel into bridge: %pe\n",
302				output->bridge);
303			return PTR_ERR(output->bridge);
304		}
305
306		output->panel = NULL;
307	}
308
309	/*
310	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
311	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
312	 * go to display panel's receiver.
313	 *
314	 * Encoder usually have a power-down control which needs to be enabled
315	 * in order to transmit data to the panel.  Historically devices that
316	 * use an older device-tree version didn't model the bridge, assuming
317	 * that encoder is turned ON by default, while today's DRM allows us
318	 * to model LVDS encoder properly.
319	 *
320	 * Newer device-trees utilize LVDS encoder bridge, which provides
321	 * us with a connector and handles the display panel.
322	 *
323	 * For older device-trees we wrapped panel into the panel-bridge.
324	 */
325	if (output->bridge) {
326		err = drm_bridge_attach(&output->encoder, output->bridge,
327					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
328		if (err)
329			return err;
330
331		connector = drm_bridge_connector_init(drm, &output->encoder);
332		if (IS_ERR(connector)) {
333			dev_err(output->dev,
334				"failed to initialize bridge connector: %pe\n",
335				connector);
336			return PTR_ERR(connector);
337		}
338
339		drm_connector_attach_encoder(connector, &output->encoder);
340	}
341
342	err = tegra_output_init(drm, output);
343	if (err < 0) {
344		dev_err(output->dev, "failed to initialize output: %d\n", err);
345		return err;
346	}
347
348	/*
349	 * Other outputs can be attached to either display controller. The RGB
350	 * outputs are an exception and work only with their parent display
351	 * controller.
352	 */
353	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
354
355	return 0;
356}
357
358int tegra_dc_rgb_exit(struct tegra_dc *dc)
359{
360	if (dc->rgb)
361		tegra_output_exit(dc->rgb);
362
363	return 0;
364}