Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/secure_seq.h>
76#include <net/busy_poll.h>
77
78#include <linux/inet.h>
79#include <linux/ipv6.h>
80#include <linux/stddef.h>
81#include <linux/proc_fs.h>
82#include <linux/seq_file.h>
83
84#include <crypto/hash.h>
85#include <linux/scatterlist.h>
86
87int sysctl_tcp_tw_reuse __read_mostly;
88int sysctl_tcp_low_latency __read_mostly;
89EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91#ifdef CONFIG_TCP_MD5SIG
92static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94#endif
95
96struct inet_hashinfo tcp_hashinfo;
97EXPORT_SYMBOL(tcp_hashinfo);
98
99static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100{
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136}
137EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139/* This will initiate an outgoing connection. */
140int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141{
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 sock_owned_by_user(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263}
264EXPORT_SYMBOL(tcp_v4_connect);
265
266/*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271void tcp_v4_mtu_reduced(struct sock *sk)
272{
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301}
302EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312
313/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315{
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 if (seq != tcp_rsk(req)->snt_isn) {
323 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
325 /*
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
330 */
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
333 }
334 reqsk_put(req);
335}
336EXPORT_SYMBOL(tcp_req_err);
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
370
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
376 return;
377 }
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
381 }
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
390
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
396 */
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
400 }
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
403
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
407 }
408
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
418 }
419
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
433
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
438 */
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
441
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
447 sock_hold(sk);
448 }
449 goto out;
450 }
451
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
460
461 if (sock_owned_by_user(sk))
462 break;
463
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
468
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
471
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
475
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
483 }
484
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
491 }
492
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && !fastopen->sk)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541}
542
543void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544{
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568/*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
582{
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586#ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588#endif
589 } rep;
590 struct ip_reply_arg arg;
591#ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597#endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
606 */
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630#ifdef CONFIG_TCP_MD5SIG
631 hash_location = tcp_parse_md5sig_option(th);
632 if (sk && sk_fullsock(sk)) {
633 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
634 &ip_hdr(skb)->saddr, AF_INET);
635 } else if (hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
644 ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 }
660
661 if (key) {
662 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
663 (TCPOPT_NOP << 16) |
664 (TCPOPT_MD5SIG << 8) |
665 TCPOLEN_MD5SIG);
666 /* Update length and the length the header thinks exists */
667 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
668 rep.th.doff = arg.iov[0].iov_len / 4;
669
670 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
671 key, ip_hdr(skb)->saddr,
672 ip_hdr(skb)->daddr, &rep.th);
673 }
674#endif
675 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
676 ip_hdr(skb)->saddr, /* XXX */
677 arg.iov[0].iov_len, IPPROTO_TCP, 0);
678 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
679 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
680
681 /* When socket is gone, all binding information is lost.
682 * routing might fail in this case. No choice here, if we choose to force
683 * input interface, we will misroute in case of asymmetric route.
684 */
685 if (sk)
686 arg.bound_dev_if = sk->sk_bound_dev_if;
687
688 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
689 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
690
691 arg.tos = ip_hdr(skb)->tos;
692 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
693 skb, &TCP_SKB_CB(skb)->header.h4.opt,
694 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
695 &arg, arg.iov[0].iov_len);
696
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
698 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
699
700#ifdef CONFIG_TCP_MD5SIG
701release_sk1:
702 if (sk1) {
703 rcu_read_unlock();
704 sock_put(sk1);
705 }
706#endif
707}
708
709/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
710 outside socket context is ugly, certainly. What can I do?
711 */
712
713static void tcp_v4_send_ack(struct net *net,
714 struct sk_buff *skb, u32 seq, u32 ack,
715 u32 win, u32 tsval, u32 tsecr, int oif,
716 struct tcp_md5sig_key *key,
717 int reply_flags, u8 tos)
718{
719 const struct tcphdr *th = tcp_hdr(skb);
720 struct {
721 struct tcphdr th;
722 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
723#ifdef CONFIG_TCP_MD5SIG
724 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
725#endif
726 ];
727 } rep;
728 struct ip_reply_arg arg;
729
730 memset(&rep.th, 0, sizeof(struct tcphdr));
731 memset(&arg, 0, sizeof(arg));
732
733 arg.iov[0].iov_base = (unsigned char *)&rep;
734 arg.iov[0].iov_len = sizeof(rep.th);
735 if (tsecr) {
736 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
737 (TCPOPT_TIMESTAMP << 8) |
738 TCPOLEN_TIMESTAMP);
739 rep.opt[1] = htonl(tsval);
740 rep.opt[2] = htonl(tsecr);
741 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
742 }
743
744 /* Swap the send and the receive. */
745 rep.th.dest = th->source;
746 rep.th.source = th->dest;
747 rep.th.doff = arg.iov[0].iov_len / 4;
748 rep.th.seq = htonl(seq);
749 rep.th.ack_seq = htonl(ack);
750 rep.th.ack = 1;
751 rep.th.window = htons(win);
752
753#ifdef CONFIG_TCP_MD5SIG
754 if (key) {
755 int offset = (tsecr) ? 3 : 0;
756
757 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
758 (TCPOPT_NOP << 16) |
759 (TCPOPT_MD5SIG << 8) |
760 TCPOLEN_MD5SIG);
761 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
762 rep.th.doff = arg.iov[0].iov_len/4;
763
764 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
765 key, ip_hdr(skb)->saddr,
766 ip_hdr(skb)->daddr, &rep.th);
767 }
768#endif
769 arg.flags = reply_flags;
770 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
771 ip_hdr(skb)->saddr, /* XXX */
772 arg.iov[0].iov_len, IPPROTO_TCP, 0);
773 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
774 if (oif)
775 arg.bound_dev_if = oif;
776 arg.tos = tos;
777 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
778 skb, &TCP_SKB_CB(skb)->header.h4.opt,
779 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
780 &arg, arg.iov[0].iov_len);
781
782 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
783}
784
785static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
786{
787 struct inet_timewait_sock *tw = inet_twsk(sk);
788 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
789
790 tcp_v4_send_ack(sock_net(sk), skb,
791 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
792 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
793 tcp_time_stamp + tcptw->tw_ts_offset,
794 tcptw->tw_ts_recent,
795 tw->tw_bound_dev_if,
796 tcp_twsk_md5_key(tcptw),
797 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
798 tw->tw_tos
799 );
800
801 inet_twsk_put(tw);
802}
803
804static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
805 struct request_sock *req)
806{
807 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
808 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
809 */
810 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
811 tcp_sk(sk)->snd_nxt;
812
813 tcp_v4_send_ack(sock_net(sk), skb, seq,
814 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
815 tcp_time_stamp,
816 req->ts_recent,
817 0,
818 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
819 AF_INET),
820 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
821 ip_hdr(skb)->tos);
822}
823
824/*
825 * Send a SYN-ACK after having received a SYN.
826 * This still operates on a request_sock only, not on a big
827 * socket.
828 */
829static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
830 struct flowi *fl,
831 struct request_sock *req,
832 struct tcp_fastopen_cookie *foc,
833 bool attach_req)
834{
835 const struct inet_request_sock *ireq = inet_rsk(req);
836 struct flowi4 fl4;
837 int err = -1;
838 struct sk_buff *skb;
839
840 /* First, grab a route. */
841 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
842 return -1;
843
844 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
845
846 if (skb) {
847 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
848
849 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
850 ireq->ir_rmt_addr,
851 ireq->opt);
852 err = net_xmit_eval(err);
853 }
854
855 return err;
856}
857
858/*
859 * IPv4 request_sock destructor.
860 */
861static void tcp_v4_reqsk_destructor(struct request_sock *req)
862{
863 kfree(inet_rsk(req)->opt);
864}
865
866#ifdef CONFIG_TCP_MD5SIG
867/*
868 * RFC2385 MD5 checksumming requires a mapping of
869 * IP address->MD5 Key.
870 * We need to maintain these in the sk structure.
871 */
872
873/* Find the Key structure for an address. */
874struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
875 const union tcp_md5_addr *addr,
876 int family)
877{
878 const struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp_md5sig_key *key;
880 unsigned int size = sizeof(struct in_addr);
881 const struct tcp_md5sig_info *md5sig;
882
883 /* caller either holds rcu_read_lock() or socket lock */
884 md5sig = rcu_dereference_check(tp->md5sig_info,
885 sock_owned_by_user(sk) ||
886 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
887 if (!md5sig)
888 return NULL;
889#if IS_ENABLED(CONFIG_IPV6)
890 if (family == AF_INET6)
891 size = sizeof(struct in6_addr);
892#endif
893 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
894 if (key->family != family)
895 continue;
896 if (!memcmp(&key->addr, addr, size))
897 return key;
898 }
899 return NULL;
900}
901EXPORT_SYMBOL(tcp_md5_do_lookup);
902
903struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
904 const struct sock *addr_sk)
905{
906 const union tcp_md5_addr *addr;
907
908 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
909 return tcp_md5_do_lookup(sk, addr, AF_INET);
910}
911EXPORT_SYMBOL(tcp_v4_md5_lookup);
912
913/* This can be called on a newly created socket, from other files */
914int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
915 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
916{
917 /* Add Key to the list */
918 struct tcp_md5sig_key *key;
919 struct tcp_sock *tp = tcp_sk(sk);
920 struct tcp_md5sig_info *md5sig;
921
922 key = tcp_md5_do_lookup(sk, addr, family);
923 if (key) {
924 /* Pre-existing entry - just update that one. */
925 memcpy(key->key, newkey, newkeylen);
926 key->keylen = newkeylen;
927 return 0;
928 }
929
930 md5sig = rcu_dereference_protected(tp->md5sig_info,
931 sock_owned_by_user(sk) ||
932 lockdep_is_held(&sk->sk_lock.slock));
933 if (!md5sig) {
934 md5sig = kmalloc(sizeof(*md5sig), gfp);
935 if (!md5sig)
936 return -ENOMEM;
937
938 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
939 INIT_HLIST_HEAD(&md5sig->head);
940 rcu_assign_pointer(tp->md5sig_info, md5sig);
941 }
942
943 key = sock_kmalloc(sk, sizeof(*key), gfp);
944 if (!key)
945 return -ENOMEM;
946 if (!tcp_alloc_md5sig_pool()) {
947 sock_kfree_s(sk, key, sizeof(*key));
948 return -ENOMEM;
949 }
950
951 memcpy(key->key, newkey, newkeylen);
952 key->keylen = newkeylen;
953 key->family = family;
954 memcpy(&key->addr, addr,
955 (family == AF_INET6) ? sizeof(struct in6_addr) :
956 sizeof(struct in_addr));
957 hlist_add_head_rcu(&key->node, &md5sig->head);
958 return 0;
959}
960EXPORT_SYMBOL(tcp_md5_do_add);
961
962int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
963{
964 struct tcp_md5sig_key *key;
965
966 key = tcp_md5_do_lookup(sk, addr, family);
967 if (!key)
968 return -ENOENT;
969 hlist_del_rcu(&key->node);
970 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
971 kfree_rcu(key, rcu);
972 return 0;
973}
974EXPORT_SYMBOL(tcp_md5_do_del);
975
976static void tcp_clear_md5_list(struct sock *sk)
977{
978 struct tcp_sock *tp = tcp_sk(sk);
979 struct tcp_md5sig_key *key;
980 struct hlist_node *n;
981 struct tcp_md5sig_info *md5sig;
982
983 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
984
985 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
986 hlist_del_rcu(&key->node);
987 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
988 kfree_rcu(key, rcu);
989 }
990}
991
992static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
993 int optlen)
994{
995 struct tcp_md5sig cmd;
996 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_keylen)
1008 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1009 AF_INET);
1010
1011 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1012 return -EINVAL;
1013
1014 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1015 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1016 GFP_KERNEL);
1017}
1018
1019static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1020 __be32 daddr, __be32 saddr, int nbytes)
1021{
1022 struct tcp4_pseudohdr *bp;
1023 struct scatterlist sg;
1024
1025 bp = &hp->md5_blk.ip4;
1026
1027 /*
1028 * 1. the TCP pseudo-header (in the order: source IP address,
1029 * destination IP address, zero-padded protocol number, and
1030 * segment length)
1031 */
1032 bp->saddr = saddr;
1033 bp->daddr = daddr;
1034 bp->pad = 0;
1035 bp->protocol = IPPROTO_TCP;
1036 bp->len = cpu_to_be16(nbytes);
1037
1038 sg_init_one(&sg, bp, sizeof(*bp));
1039 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1040 return crypto_ahash_update(hp->md5_req);
1041}
1042
1043static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1044 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1045{
1046 struct tcp_md5sig_pool *hp;
1047 struct ahash_request *req;
1048
1049 hp = tcp_get_md5sig_pool();
1050 if (!hp)
1051 goto clear_hash_noput;
1052 req = hp->md5_req;
1053
1054 if (crypto_ahash_init(req))
1055 goto clear_hash;
1056 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1057 goto clear_hash;
1058 if (tcp_md5_hash_header(hp, th))
1059 goto clear_hash;
1060 if (tcp_md5_hash_key(hp, key))
1061 goto clear_hash;
1062 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1063 if (crypto_ahash_final(req))
1064 goto clear_hash;
1065
1066 tcp_put_md5sig_pool();
1067 return 0;
1068
1069clear_hash:
1070 tcp_put_md5sig_pool();
1071clear_hash_noput:
1072 memset(md5_hash, 0, 16);
1073 return 1;
1074}
1075
1076int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1077 const struct sock *sk,
1078 const struct sk_buff *skb)
1079{
1080 struct tcp_md5sig_pool *hp;
1081 struct ahash_request *req;
1082 const struct tcphdr *th = tcp_hdr(skb);
1083 __be32 saddr, daddr;
1084
1085 if (sk) { /* valid for establish/request sockets */
1086 saddr = sk->sk_rcv_saddr;
1087 daddr = sk->sk_daddr;
1088 } else {
1089 const struct iphdr *iph = ip_hdr(skb);
1090 saddr = iph->saddr;
1091 daddr = iph->daddr;
1092 }
1093
1094 hp = tcp_get_md5sig_pool();
1095 if (!hp)
1096 goto clear_hash_noput;
1097 req = hp->md5_req;
1098
1099 if (crypto_ahash_init(req))
1100 goto clear_hash;
1101
1102 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1103 goto clear_hash;
1104 if (tcp_md5_hash_header(hp, th))
1105 goto clear_hash;
1106 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1107 goto clear_hash;
1108 if (tcp_md5_hash_key(hp, key))
1109 goto clear_hash;
1110 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1111 if (crypto_ahash_final(req))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1124
1125#endif
1126
1127/* Called with rcu_read_lock() */
1128static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1129 const struct sk_buff *skb)
1130{
1131#ifdef CONFIG_TCP_MD5SIG
1132 /*
1133 * This gets called for each TCP segment that arrives
1134 * so we want to be efficient.
1135 * We have 3 drop cases:
1136 * o No MD5 hash and one expected.
1137 * o MD5 hash and we're not expecting one.
1138 * o MD5 hash and its wrong.
1139 */
1140 const __u8 *hash_location = NULL;
1141 struct tcp_md5sig_key *hash_expected;
1142 const struct iphdr *iph = ip_hdr(skb);
1143 const struct tcphdr *th = tcp_hdr(skb);
1144 int genhash;
1145 unsigned char newhash[16];
1146
1147 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1148 AF_INET);
1149 hash_location = tcp_parse_md5sig_option(th);
1150
1151 /* We've parsed the options - do we have a hash? */
1152 if (!hash_expected && !hash_location)
1153 return false;
1154
1155 if (hash_expected && !hash_location) {
1156 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1157 return true;
1158 }
1159
1160 if (!hash_expected && hash_location) {
1161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1162 return true;
1163 }
1164
1165 /* Okay, so this is hash_expected and hash_location -
1166 * so we need to calculate the checksum.
1167 */
1168 genhash = tcp_v4_md5_hash_skb(newhash,
1169 hash_expected,
1170 NULL, skb);
1171
1172 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1173 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1174 &iph->saddr, ntohs(th->source),
1175 &iph->daddr, ntohs(th->dest),
1176 genhash ? " tcp_v4_calc_md5_hash failed"
1177 : "");
1178 return true;
1179 }
1180 return false;
1181#endif
1182 return false;
1183}
1184
1185static void tcp_v4_init_req(struct request_sock *req,
1186 const struct sock *sk_listener,
1187 struct sk_buff *skb)
1188{
1189 struct inet_request_sock *ireq = inet_rsk(req);
1190
1191 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1192 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1193 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1194 ireq->opt = tcp_v4_save_options(skb);
1195}
1196
1197static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1198 struct flowi *fl,
1199 const struct request_sock *req,
1200 bool *strict)
1201{
1202 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1203
1204 if (strict) {
1205 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1206 *strict = true;
1207 else
1208 *strict = false;
1209 }
1210
1211 return dst;
1212}
1213
1214struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1215 .family = PF_INET,
1216 .obj_size = sizeof(struct tcp_request_sock),
1217 .rtx_syn_ack = tcp_rtx_synack,
1218 .send_ack = tcp_v4_reqsk_send_ack,
1219 .destructor = tcp_v4_reqsk_destructor,
1220 .send_reset = tcp_v4_send_reset,
1221 .syn_ack_timeout = tcp_syn_ack_timeout,
1222};
1223
1224static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1225 .mss_clamp = TCP_MSS_DEFAULT,
1226#ifdef CONFIG_TCP_MD5SIG
1227 .req_md5_lookup = tcp_v4_md5_lookup,
1228 .calc_md5_hash = tcp_v4_md5_hash_skb,
1229#endif
1230 .init_req = tcp_v4_init_req,
1231#ifdef CONFIG_SYN_COOKIES
1232 .cookie_init_seq = cookie_v4_init_sequence,
1233#endif
1234 .route_req = tcp_v4_route_req,
1235 .init_seq = tcp_v4_init_sequence,
1236 .send_synack = tcp_v4_send_synack,
1237};
1238
1239int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1240{
1241 /* Never answer to SYNs send to broadcast or multicast */
1242 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243 goto drop;
1244
1245 return tcp_conn_request(&tcp_request_sock_ops,
1246 &tcp_request_sock_ipv4_ops, sk, skb);
1247
1248drop:
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1250 return 0;
1251}
1252EXPORT_SYMBOL(tcp_v4_conn_request);
1253
1254
1255/*
1256 * The three way handshake has completed - we got a valid synack -
1257 * now create the new socket.
1258 */
1259struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1260 struct request_sock *req,
1261 struct dst_entry *dst,
1262 struct request_sock *req_unhash,
1263 bool *own_req)
1264{
1265 struct inet_request_sock *ireq;
1266 struct inet_sock *newinet;
1267 struct tcp_sock *newtp;
1268 struct sock *newsk;
1269#ifdef CONFIG_TCP_MD5SIG
1270 struct tcp_md5sig_key *key;
1271#endif
1272 struct ip_options_rcu *inet_opt;
1273
1274 if (sk_acceptq_is_full(sk))
1275 goto exit_overflow;
1276
1277 newsk = tcp_create_openreq_child(sk, req, skb);
1278 if (!newsk)
1279 goto exit_nonewsk;
1280
1281 newsk->sk_gso_type = SKB_GSO_TCPV4;
1282 inet_sk_rx_dst_set(newsk, skb);
1283
1284 newtp = tcp_sk(newsk);
1285 newinet = inet_sk(newsk);
1286 ireq = inet_rsk(req);
1287 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1288 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1289 newsk->sk_bound_dev_if = ireq->ir_iif;
1290 newinet->inet_saddr = ireq->ir_loc_addr;
1291 inet_opt = ireq->opt;
1292 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1293 ireq->opt = NULL;
1294 newinet->mc_index = inet_iif(skb);
1295 newinet->mc_ttl = ip_hdr(skb)->ttl;
1296 newinet->rcv_tos = ip_hdr(skb)->tos;
1297 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1298 if (inet_opt)
1299 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1300 newinet->inet_id = newtp->write_seq ^ jiffies;
1301
1302 if (!dst) {
1303 dst = inet_csk_route_child_sock(sk, newsk, req);
1304 if (!dst)
1305 goto put_and_exit;
1306 } else {
1307 /* syncookie case : see end of cookie_v4_check() */
1308 }
1309 sk_setup_caps(newsk, dst);
1310
1311 tcp_ca_openreq_child(newsk, dst);
1312
1313 tcp_sync_mss(newsk, dst_mtu(dst));
1314 newtp->advmss = dst_metric_advmss(dst);
1315 if (tcp_sk(sk)->rx_opt.user_mss &&
1316 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1317 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1318
1319 tcp_initialize_rcv_mss(newsk);
1320
1321#ifdef CONFIG_TCP_MD5SIG
1322 /* Copy over the MD5 key from the original socket */
1323 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1324 AF_INET);
1325 if (key) {
1326 /*
1327 * We're using one, so create a matching key
1328 * on the newsk structure. If we fail to get
1329 * memory, then we end up not copying the key
1330 * across. Shucks.
1331 */
1332 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1333 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1334 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1335 }
1336#endif
1337
1338 if (__inet_inherit_port(sk, newsk) < 0)
1339 goto put_and_exit;
1340 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1341 if (*own_req)
1342 tcp_move_syn(newtp, req);
1343
1344 return newsk;
1345
1346exit_overflow:
1347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1348exit_nonewsk:
1349 dst_release(dst);
1350exit:
1351 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1352 return NULL;
1353put_and_exit:
1354 inet_csk_prepare_forced_close(newsk);
1355 tcp_done(newsk);
1356 goto exit;
1357}
1358EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1359
1360static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1361{
1362#ifdef CONFIG_SYN_COOKIES
1363 const struct tcphdr *th = tcp_hdr(skb);
1364
1365 if (!th->syn)
1366 sk = cookie_v4_check(sk, skb);
1367#endif
1368 return sk;
1369}
1370
1371/* The socket must have it's spinlock held when we get
1372 * here, unless it is a TCP_LISTEN socket.
1373 *
1374 * We have a potential double-lock case here, so even when
1375 * doing backlog processing we use the BH locking scheme.
1376 * This is because we cannot sleep with the original spinlock
1377 * held.
1378 */
1379int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1380{
1381 struct sock *rsk;
1382
1383 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1384 struct dst_entry *dst = sk->sk_rx_dst;
1385
1386 sock_rps_save_rxhash(sk, skb);
1387 sk_mark_napi_id(sk, skb);
1388 if (dst) {
1389 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1390 !dst->ops->check(dst, 0)) {
1391 dst_release(dst);
1392 sk->sk_rx_dst = NULL;
1393 }
1394 }
1395 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1396 return 0;
1397 }
1398
1399 if (tcp_checksum_complete(skb))
1400 goto csum_err;
1401
1402 if (sk->sk_state == TCP_LISTEN) {
1403 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1404
1405 if (!nsk)
1406 goto discard;
1407 if (nsk != sk) {
1408 sock_rps_save_rxhash(nsk, skb);
1409 sk_mark_napi_id(nsk, skb);
1410 if (tcp_child_process(sk, nsk, skb)) {
1411 rsk = nsk;
1412 goto reset;
1413 }
1414 return 0;
1415 }
1416 } else
1417 sock_rps_save_rxhash(sk, skb);
1418
1419 if (tcp_rcv_state_process(sk, skb)) {
1420 rsk = sk;
1421 goto reset;
1422 }
1423 return 0;
1424
1425reset:
1426 tcp_v4_send_reset(rsk, skb);
1427discard:
1428 kfree_skb(skb);
1429 /* Be careful here. If this function gets more complicated and
1430 * gcc suffers from register pressure on the x86, sk (in %ebx)
1431 * might be destroyed here. This current version compiles correctly,
1432 * but you have been warned.
1433 */
1434 return 0;
1435
1436csum_err:
1437 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1438 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1439 goto discard;
1440}
1441EXPORT_SYMBOL(tcp_v4_do_rcv);
1442
1443void tcp_v4_early_demux(struct sk_buff *skb)
1444{
1445 const struct iphdr *iph;
1446 const struct tcphdr *th;
1447 struct sock *sk;
1448
1449 if (skb->pkt_type != PACKET_HOST)
1450 return;
1451
1452 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1453 return;
1454
1455 iph = ip_hdr(skb);
1456 th = tcp_hdr(skb);
1457
1458 if (th->doff < sizeof(struct tcphdr) / 4)
1459 return;
1460
1461 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1462 iph->saddr, th->source,
1463 iph->daddr, ntohs(th->dest),
1464 skb->skb_iif);
1465 if (sk) {
1466 skb->sk = sk;
1467 skb->destructor = sock_edemux;
1468 if (sk_fullsock(sk)) {
1469 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1470
1471 if (dst)
1472 dst = dst_check(dst, 0);
1473 if (dst &&
1474 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1475 skb_dst_set_noref(skb, dst);
1476 }
1477 }
1478}
1479
1480/* Packet is added to VJ-style prequeue for processing in process
1481 * context, if a reader task is waiting. Apparently, this exciting
1482 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1483 * failed somewhere. Latency? Burstiness? Well, at least now we will
1484 * see, why it failed. 8)8) --ANK
1485 *
1486 */
1487bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1488{
1489 struct tcp_sock *tp = tcp_sk(sk);
1490
1491 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1492 return false;
1493
1494 if (skb->len <= tcp_hdrlen(skb) &&
1495 skb_queue_len(&tp->ucopy.prequeue) == 0)
1496 return false;
1497
1498 /* Before escaping RCU protected region, we need to take care of skb
1499 * dst. Prequeue is only enabled for established sockets.
1500 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1501 * Instead of doing full sk_rx_dst validity here, let's perform
1502 * an optimistic check.
1503 */
1504 if (likely(sk->sk_rx_dst))
1505 skb_dst_drop(skb);
1506 else
1507 skb_dst_force_safe(skb);
1508
1509 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1510 tp->ucopy.memory += skb->truesize;
1511 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1512 struct sk_buff *skb1;
1513
1514 BUG_ON(sock_owned_by_user(sk));
1515
1516 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1517 sk_backlog_rcv(sk, skb1);
1518 NET_INC_STATS_BH(sock_net(sk),
1519 LINUX_MIB_TCPPREQUEUEDROPPED);
1520 }
1521
1522 tp->ucopy.memory = 0;
1523 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1524 wake_up_interruptible_sync_poll(sk_sleep(sk),
1525 POLLIN | POLLRDNORM | POLLRDBAND);
1526 if (!inet_csk_ack_scheduled(sk))
1527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1528 (3 * tcp_rto_min(sk)) / 4,
1529 TCP_RTO_MAX);
1530 }
1531 return true;
1532}
1533EXPORT_SYMBOL(tcp_prequeue);
1534
1535/*
1536 * From tcp_input.c
1537 */
1538
1539int tcp_v4_rcv(struct sk_buff *skb)
1540{
1541 const struct iphdr *iph;
1542 const struct tcphdr *th;
1543 struct sock *sk;
1544 int ret;
1545 struct net *net = dev_net(skb->dev);
1546
1547 if (skb->pkt_type != PACKET_HOST)
1548 goto discard_it;
1549
1550 /* Count it even if it's bad */
1551 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554 goto discard_it;
1555
1556 th = tcp_hdr(skb);
1557
1558 if (th->doff < sizeof(struct tcphdr) / 4)
1559 goto bad_packet;
1560 if (!pskb_may_pull(skb, th->doff * 4))
1561 goto discard_it;
1562
1563 /* An explanation is required here, I think.
1564 * Packet length and doff are validated by header prediction,
1565 * provided case of th->doff==0 is eliminated.
1566 * So, we defer the checks. */
1567
1568 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1569 goto csum_error;
1570
1571 th = tcp_hdr(skb);
1572 iph = ip_hdr(skb);
1573 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1574 * barrier() makes sure compiler wont play fool^Waliasing games.
1575 */
1576 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1577 sizeof(struct inet_skb_parm));
1578 barrier();
1579
1580 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1581 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1582 skb->len - th->doff * 4);
1583 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1584 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1585 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1586 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1587 TCP_SKB_CB(skb)->sacked = 0;
1588
1589lookup:
1590 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1591 th->dest);
1592 if (!sk)
1593 goto no_tcp_socket;
1594
1595process:
1596 if (sk->sk_state == TCP_TIME_WAIT)
1597 goto do_time_wait;
1598
1599 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1600 struct request_sock *req = inet_reqsk(sk);
1601 struct sock *nsk;
1602
1603 sk = req->rsk_listener;
1604 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1605 reqsk_put(req);
1606 goto discard_it;
1607 }
1608 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1609 inet_csk_reqsk_queue_drop_and_put(sk, req);
1610 goto lookup;
1611 }
1612 sock_hold(sk);
1613 nsk = tcp_check_req(sk, skb, req, false);
1614 if (!nsk) {
1615 reqsk_put(req);
1616 goto discard_and_relse;
1617 }
1618 if (nsk == sk) {
1619 reqsk_put(req);
1620 } else if (tcp_child_process(sk, nsk, skb)) {
1621 tcp_v4_send_reset(nsk, skb);
1622 goto discard_and_relse;
1623 } else {
1624 sock_put(sk);
1625 return 0;
1626 }
1627 }
1628 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1629 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1630 goto discard_and_relse;
1631 }
1632
1633 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1634 goto discard_and_relse;
1635
1636 if (tcp_v4_inbound_md5_hash(sk, skb))
1637 goto discard_and_relse;
1638
1639 nf_reset(skb);
1640
1641 if (sk_filter(sk, skb))
1642 goto discard_and_relse;
1643
1644 skb->dev = NULL;
1645
1646 if (sk->sk_state == TCP_LISTEN) {
1647 ret = tcp_v4_do_rcv(sk, skb);
1648 goto put_and_return;
1649 }
1650
1651 sk_incoming_cpu_update(sk);
1652
1653 bh_lock_sock_nested(sk);
1654 tcp_segs_in(tcp_sk(sk), skb);
1655 ret = 0;
1656 if (!sock_owned_by_user(sk)) {
1657 if (!tcp_prequeue(sk, skb))
1658 ret = tcp_v4_do_rcv(sk, skb);
1659 } else if (unlikely(sk_add_backlog(sk, skb,
1660 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1661 bh_unlock_sock(sk);
1662 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1663 goto discard_and_relse;
1664 }
1665 bh_unlock_sock(sk);
1666
1667put_and_return:
1668 sock_put(sk);
1669
1670 return ret;
1671
1672no_tcp_socket:
1673 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1674 goto discard_it;
1675
1676 if (tcp_checksum_complete(skb)) {
1677csum_error:
1678 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1679bad_packet:
1680 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1681 } else {
1682 tcp_v4_send_reset(NULL, skb);
1683 }
1684
1685discard_it:
1686 /* Discard frame. */
1687 kfree_skb(skb);
1688 return 0;
1689
1690discard_and_relse:
1691 sock_put(sk);
1692 goto discard_it;
1693
1694do_time_wait:
1695 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1696 inet_twsk_put(inet_twsk(sk));
1697 goto discard_it;
1698 }
1699
1700 if (tcp_checksum_complete(skb)) {
1701 inet_twsk_put(inet_twsk(sk));
1702 goto csum_error;
1703 }
1704 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1705 case TCP_TW_SYN: {
1706 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1707 &tcp_hashinfo, skb,
1708 __tcp_hdrlen(th),
1709 iph->saddr, th->source,
1710 iph->daddr, th->dest,
1711 inet_iif(skb));
1712 if (sk2) {
1713 inet_twsk_deschedule_put(inet_twsk(sk));
1714 sk = sk2;
1715 goto process;
1716 }
1717 /* Fall through to ACK */
1718 }
1719 case TCP_TW_ACK:
1720 tcp_v4_timewait_ack(sk, skb);
1721 break;
1722 case TCP_TW_RST:
1723 tcp_v4_send_reset(sk, skb);
1724 inet_twsk_deschedule_put(inet_twsk(sk));
1725 goto discard_it;
1726 case TCP_TW_SUCCESS:;
1727 }
1728 goto discard_it;
1729}
1730
1731static struct timewait_sock_ops tcp_timewait_sock_ops = {
1732 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1733 .twsk_unique = tcp_twsk_unique,
1734 .twsk_destructor= tcp_twsk_destructor,
1735};
1736
1737void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1738{
1739 struct dst_entry *dst = skb_dst(skb);
1740
1741 if (dst && dst_hold_safe(dst)) {
1742 sk->sk_rx_dst = dst;
1743 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1744 }
1745}
1746EXPORT_SYMBOL(inet_sk_rx_dst_set);
1747
1748const struct inet_connection_sock_af_ops ipv4_specific = {
1749 .queue_xmit = ip_queue_xmit,
1750 .send_check = tcp_v4_send_check,
1751 .rebuild_header = inet_sk_rebuild_header,
1752 .sk_rx_dst_set = inet_sk_rx_dst_set,
1753 .conn_request = tcp_v4_conn_request,
1754 .syn_recv_sock = tcp_v4_syn_recv_sock,
1755 .net_header_len = sizeof(struct iphdr),
1756 .setsockopt = ip_setsockopt,
1757 .getsockopt = ip_getsockopt,
1758 .addr2sockaddr = inet_csk_addr2sockaddr,
1759 .sockaddr_len = sizeof(struct sockaddr_in),
1760 .bind_conflict = inet_csk_bind_conflict,
1761#ifdef CONFIG_COMPAT
1762 .compat_setsockopt = compat_ip_setsockopt,
1763 .compat_getsockopt = compat_ip_getsockopt,
1764#endif
1765 .mtu_reduced = tcp_v4_mtu_reduced,
1766};
1767EXPORT_SYMBOL(ipv4_specific);
1768
1769#ifdef CONFIG_TCP_MD5SIG
1770static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1771 .md5_lookup = tcp_v4_md5_lookup,
1772 .calc_md5_hash = tcp_v4_md5_hash_skb,
1773 .md5_parse = tcp_v4_parse_md5_keys,
1774};
1775#endif
1776
1777/* NOTE: A lot of things set to zero explicitly by call to
1778 * sk_alloc() so need not be done here.
1779 */
1780static int tcp_v4_init_sock(struct sock *sk)
1781{
1782 struct inet_connection_sock *icsk = inet_csk(sk);
1783
1784 tcp_init_sock(sk);
1785
1786 icsk->icsk_af_ops = &ipv4_specific;
1787
1788#ifdef CONFIG_TCP_MD5SIG
1789 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1790#endif
1791
1792 return 0;
1793}
1794
1795void tcp_v4_destroy_sock(struct sock *sk)
1796{
1797 struct tcp_sock *tp = tcp_sk(sk);
1798
1799 tcp_clear_xmit_timers(sk);
1800
1801 tcp_cleanup_congestion_control(sk);
1802
1803 /* Cleanup up the write buffer. */
1804 tcp_write_queue_purge(sk);
1805
1806 /* Cleans up our, hopefully empty, out_of_order_queue. */
1807 __skb_queue_purge(&tp->out_of_order_queue);
1808
1809#ifdef CONFIG_TCP_MD5SIG
1810 /* Clean up the MD5 key list, if any */
1811 if (tp->md5sig_info) {
1812 tcp_clear_md5_list(sk);
1813 kfree_rcu(tp->md5sig_info, rcu);
1814 tp->md5sig_info = NULL;
1815 }
1816#endif
1817
1818 /* Clean prequeue, it must be empty really */
1819 __skb_queue_purge(&tp->ucopy.prequeue);
1820
1821 /* Clean up a referenced TCP bind bucket. */
1822 if (inet_csk(sk)->icsk_bind_hash)
1823 inet_put_port(sk);
1824
1825 BUG_ON(tp->fastopen_rsk);
1826
1827 /* If socket is aborted during connect operation */
1828 tcp_free_fastopen_req(tp);
1829 tcp_saved_syn_free(tp);
1830
1831 sk_sockets_allocated_dec(sk);
1832
1833 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1834 sock_release_memcg(sk);
1835}
1836EXPORT_SYMBOL(tcp_v4_destroy_sock);
1837
1838#ifdef CONFIG_PROC_FS
1839/* Proc filesystem TCP sock list dumping. */
1840
1841/*
1842 * Get next listener socket follow cur. If cur is NULL, get first socket
1843 * starting from bucket given in st->bucket; when st->bucket is zero the
1844 * very first socket in the hash table is returned.
1845 */
1846static void *listening_get_next(struct seq_file *seq, void *cur)
1847{
1848 struct inet_connection_sock *icsk;
1849 struct hlist_nulls_node *node;
1850 struct sock *sk = cur;
1851 struct inet_listen_hashbucket *ilb;
1852 struct tcp_iter_state *st = seq->private;
1853 struct net *net = seq_file_net(seq);
1854
1855 if (!sk) {
1856 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1857 spin_lock_bh(&ilb->lock);
1858 sk = sk_nulls_head(&ilb->head);
1859 st->offset = 0;
1860 goto get_sk;
1861 }
1862 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1863 ++st->num;
1864 ++st->offset;
1865
1866 sk = sk_nulls_next(sk);
1867get_sk:
1868 sk_nulls_for_each_from(sk, node) {
1869 if (!net_eq(sock_net(sk), net))
1870 continue;
1871 if (sk->sk_family == st->family) {
1872 cur = sk;
1873 goto out;
1874 }
1875 icsk = inet_csk(sk);
1876 }
1877 spin_unlock_bh(&ilb->lock);
1878 st->offset = 0;
1879 if (++st->bucket < INET_LHTABLE_SIZE) {
1880 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1881 spin_lock_bh(&ilb->lock);
1882 sk = sk_nulls_head(&ilb->head);
1883 goto get_sk;
1884 }
1885 cur = NULL;
1886out:
1887 return cur;
1888}
1889
1890static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1891{
1892 struct tcp_iter_state *st = seq->private;
1893 void *rc;
1894
1895 st->bucket = 0;
1896 st->offset = 0;
1897 rc = listening_get_next(seq, NULL);
1898
1899 while (rc && *pos) {
1900 rc = listening_get_next(seq, rc);
1901 --*pos;
1902 }
1903 return rc;
1904}
1905
1906static inline bool empty_bucket(const struct tcp_iter_state *st)
1907{
1908 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1909}
1910
1911/*
1912 * Get first established socket starting from bucket given in st->bucket.
1913 * If st->bucket is zero, the very first socket in the hash is returned.
1914 */
1915static void *established_get_first(struct seq_file *seq)
1916{
1917 struct tcp_iter_state *st = seq->private;
1918 struct net *net = seq_file_net(seq);
1919 void *rc = NULL;
1920
1921 st->offset = 0;
1922 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1923 struct sock *sk;
1924 struct hlist_nulls_node *node;
1925 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1926
1927 /* Lockless fast path for the common case of empty buckets */
1928 if (empty_bucket(st))
1929 continue;
1930
1931 spin_lock_bh(lock);
1932 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1933 if (sk->sk_family != st->family ||
1934 !net_eq(sock_net(sk), net)) {
1935 continue;
1936 }
1937 rc = sk;
1938 goto out;
1939 }
1940 spin_unlock_bh(lock);
1941 }
1942out:
1943 return rc;
1944}
1945
1946static void *established_get_next(struct seq_file *seq, void *cur)
1947{
1948 struct sock *sk = cur;
1949 struct hlist_nulls_node *node;
1950 struct tcp_iter_state *st = seq->private;
1951 struct net *net = seq_file_net(seq);
1952
1953 ++st->num;
1954 ++st->offset;
1955
1956 sk = sk_nulls_next(sk);
1957
1958 sk_nulls_for_each_from(sk, node) {
1959 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1960 return sk;
1961 }
1962
1963 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1964 ++st->bucket;
1965 return established_get_first(seq);
1966}
1967
1968static void *established_get_idx(struct seq_file *seq, loff_t pos)
1969{
1970 struct tcp_iter_state *st = seq->private;
1971 void *rc;
1972
1973 st->bucket = 0;
1974 rc = established_get_first(seq);
1975
1976 while (rc && pos) {
1977 rc = established_get_next(seq, rc);
1978 --pos;
1979 }
1980 return rc;
1981}
1982
1983static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1984{
1985 void *rc;
1986 struct tcp_iter_state *st = seq->private;
1987
1988 st->state = TCP_SEQ_STATE_LISTENING;
1989 rc = listening_get_idx(seq, &pos);
1990
1991 if (!rc) {
1992 st->state = TCP_SEQ_STATE_ESTABLISHED;
1993 rc = established_get_idx(seq, pos);
1994 }
1995
1996 return rc;
1997}
1998
1999static void *tcp_seek_last_pos(struct seq_file *seq)
2000{
2001 struct tcp_iter_state *st = seq->private;
2002 int offset = st->offset;
2003 int orig_num = st->num;
2004 void *rc = NULL;
2005
2006 switch (st->state) {
2007 case TCP_SEQ_STATE_LISTENING:
2008 if (st->bucket >= INET_LHTABLE_SIZE)
2009 break;
2010 st->state = TCP_SEQ_STATE_LISTENING;
2011 rc = listening_get_next(seq, NULL);
2012 while (offset-- && rc)
2013 rc = listening_get_next(seq, rc);
2014 if (rc)
2015 break;
2016 st->bucket = 0;
2017 st->state = TCP_SEQ_STATE_ESTABLISHED;
2018 /* Fallthrough */
2019 case TCP_SEQ_STATE_ESTABLISHED:
2020 if (st->bucket > tcp_hashinfo.ehash_mask)
2021 break;
2022 rc = established_get_first(seq);
2023 while (offset-- && rc)
2024 rc = established_get_next(seq, rc);
2025 }
2026
2027 st->num = orig_num;
2028
2029 return rc;
2030}
2031
2032static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2033{
2034 struct tcp_iter_state *st = seq->private;
2035 void *rc;
2036
2037 if (*pos && *pos == st->last_pos) {
2038 rc = tcp_seek_last_pos(seq);
2039 if (rc)
2040 goto out;
2041 }
2042
2043 st->state = TCP_SEQ_STATE_LISTENING;
2044 st->num = 0;
2045 st->bucket = 0;
2046 st->offset = 0;
2047 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2048
2049out:
2050 st->last_pos = *pos;
2051 return rc;
2052}
2053
2054static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055{
2056 struct tcp_iter_state *st = seq->private;
2057 void *rc = NULL;
2058
2059 if (v == SEQ_START_TOKEN) {
2060 rc = tcp_get_idx(seq, 0);
2061 goto out;
2062 }
2063
2064 switch (st->state) {
2065 case TCP_SEQ_STATE_LISTENING:
2066 rc = listening_get_next(seq, v);
2067 if (!rc) {
2068 st->state = TCP_SEQ_STATE_ESTABLISHED;
2069 st->bucket = 0;
2070 st->offset = 0;
2071 rc = established_get_first(seq);
2072 }
2073 break;
2074 case TCP_SEQ_STATE_ESTABLISHED:
2075 rc = established_get_next(seq, v);
2076 break;
2077 }
2078out:
2079 ++*pos;
2080 st->last_pos = *pos;
2081 return rc;
2082}
2083
2084static void tcp_seq_stop(struct seq_file *seq, void *v)
2085{
2086 struct tcp_iter_state *st = seq->private;
2087
2088 switch (st->state) {
2089 case TCP_SEQ_STATE_LISTENING:
2090 if (v != SEQ_START_TOKEN)
2091 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2092 break;
2093 case TCP_SEQ_STATE_ESTABLISHED:
2094 if (v)
2095 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2096 break;
2097 }
2098}
2099
2100int tcp_seq_open(struct inode *inode, struct file *file)
2101{
2102 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2103 struct tcp_iter_state *s;
2104 int err;
2105
2106 err = seq_open_net(inode, file, &afinfo->seq_ops,
2107 sizeof(struct tcp_iter_state));
2108 if (err < 0)
2109 return err;
2110
2111 s = ((struct seq_file *)file->private_data)->private;
2112 s->family = afinfo->family;
2113 s->last_pos = 0;
2114 return 0;
2115}
2116EXPORT_SYMBOL(tcp_seq_open);
2117
2118int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2119{
2120 int rc = 0;
2121 struct proc_dir_entry *p;
2122
2123 afinfo->seq_ops.start = tcp_seq_start;
2124 afinfo->seq_ops.next = tcp_seq_next;
2125 afinfo->seq_ops.stop = tcp_seq_stop;
2126
2127 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2128 afinfo->seq_fops, afinfo);
2129 if (!p)
2130 rc = -ENOMEM;
2131 return rc;
2132}
2133EXPORT_SYMBOL(tcp_proc_register);
2134
2135void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2136{
2137 remove_proc_entry(afinfo->name, net->proc_net);
2138}
2139EXPORT_SYMBOL(tcp_proc_unregister);
2140
2141static void get_openreq4(const struct request_sock *req,
2142 struct seq_file *f, int i)
2143{
2144 const struct inet_request_sock *ireq = inet_rsk(req);
2145 long delta = req->rsk_timer.expires - jiffies;
2146
2147 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2148 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2149 i,
2150 ireq->ir_loc_addr,
2151 ireq->ir_num,
2152 ireq->ir_rmt_addr,
2153 ntohs(ireq->ir_rmt_port),
2154 TCP_SYN_RECV,
2155 0, 0, /* could print option size, but that is af dependent. */
2156 1, /* timers active (only the expire timer) */
2157 jiffies_delta_to_clock_t(delta),
2158 req->num_timeout,
2159 from_kuid_munged(seq_user_ns(f),
2160 sock_i_uid(req->rsk_listener)),
2161 0, /* non standard timer */
2162 0, /* open_requests have no inode */
2163 0,
2164 req);
2165}
2166
2167static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2168{
2169 int timer_active;
2170 unsigned long timer_expires;
2171 const struct tcp_sock *tp = tcp_sk(sk);
2172 const struct inet_connection_sock *icsk = inet_csk(sk);
2173 const struct inet_sock *inet = inet_sk(sk);
2174 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2175 __be32 dest = inet->inet_daddr;
2176 __be32 src = inet->inet_rcv_saddr;
2177 __u16 destp = ntohs(inet->inet_dport);
2178 __u16 srcp = ntohs(inet->inet_sport);
2179 int rx_queue;
2180 int state;
2181
2182 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2183 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2184 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2185 timer_active = 1;
2186 timer_expires = icsk->icsk_timeout;
2187 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2188 timer_active = 4;
2189 timer_expires = icsk->icsk_timeout;
2190 } else if (timer_pending(&sk->sk_timer)) {
2191 timer_active = 2;
2192 timer_expires = sk->sk_timer.expires;
2193 } else {
2194 timer_active = 0;
2195 timer_expires = jiffies;
2196 }
2197
2198 state = sk_state_load(sk);
2199 if (state == TCP_LISTEN)
2200 rx_queue = sk->sk_ack_backlog;
2201 else
2202 /* Because we don't lock the socket,
2203 * we might find a transient negative value.
2204 */
2205 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2206
2207 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2208 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2209 i, src, srcp, dest, destp, state,
2210 tp->write_seq - tp->snd_una,
2211 rx_queue,
2212 timer_active,
2213 jiffies_delta_to_clock_t(timer_expires - jiffies),
2214 icsk->icsk_retransmits,
2215 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2216 icsk->icsk_probes_out,
2217 sock_i_ino(sk),
2218 atomic_read(&sk->sk_refcnt), sk,
2219 jiffies_to_clock_t(icsk->icsk_rto),
2220 jiffies_to_clock_t(icsk->icsk_ack.ato),
2221 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2222 tp->snd_cwnd,
2223 state == TCP_LISTEN ?
2224 fastopenq->max_qlen :
2225 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2226}
2227
2228static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2229 struct seq_file *f, int i)
2230{
2231 long delta = tw->tw_timer.expires - jiffies;
2232 __be32 dest, src;
2233 __u16 destp, srcp;
2234
2235 dest = tw->tw_daddr;
2236 src = tw->tw_rcv_saddr;
2237 destp = ntohs(tw->tw_dport);
2238 srcp = ntohs(tw->tw_sport);
2239
2240 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2241 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2242 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2243 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2244 atomic_read(&tw->tw_refcnt), tw);
2245}
2246
2247#define TMPSZ 150
2248
2249static int tcp4_seq_show(struct seq_file *seq, void *v)
2250{
2251 struct tcp_iter_state *st;
2252 struct sock *sk = v;
2253
2254 seq_setwidth(seq, TMPSZ - 1);
2255 if (v == SEQ_START_TOKEN) {
2256 seq_puts(seq, " sl local_address rem_address st tx_queue "
2257 "rx_queue tr tm->when retrnsmt uid timeout "
2258 "inode");
2259 goto out;
2260 }
2261 st = seq->private;
2262
2263 if (sk->sk_state == TCP_TIME_WAIT)
2264 get_timewait4_sock(v, seq, st->num);
2265 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2266 get_openreq4(v, seq, st->num);
2267 else
2268 get_tcp4_sock(v, seq, st->num);
2269out:
2270 seq_pad(seq, '\n');
2271 return 0;
2272}
2273
2274static const struct file_operations tcp_afinfo_seq_fops = {
2275 .owner = THIS_MODULE,
2276 .open = tcp_seq_open,
2277 .read = seq_read,
2278 .llseek = seq_lseek,
2279 .release = seq_release_net
2280};
2281
2282static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2283 .name = "tcp",
2284 .family = AF_INET,
2285 .seq_fops = &tcp_afinfo_seq_fops,
2286 .seq_ops = {
2287 .show = tcp4_seq_show,
2288 },
2289};
2290
2291static int __net_init tcp4_proc_init_net(struct net *net)
2292{
2293 return tcp_proc_register(net, &tcp4_seq_afinfo);
2294}
2295
2296static void __net_exit tcp4_proc_exit_net(struct net *net)
2297{
2298 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2299}
2300
2301static struct pernet_operations tcp4_net_ops = {
2302 .init = tcp4_proc_init_net,
2303 .exit = tcp4_proc_exit_net,
2304};
2305
2306int __init tcp4_proc_init(void)
2307{
2308 return register_pernet_subsys(&tcp4_net_ops);
2309}
2310
2311void tcp4_proc_exit(void)
2312{
2313 unregister_pernet_subsys(&tcp4_net_ops);
2314}
2315#endif /* CONFIG_PROC_FS */
2316
2317struct proto tcp_prot = {
2318 .name = "TCP",
2319 .owner = THIS_MODULE,
2320 .close = tcp_close,
2321 .connect = tcp_v4_connect,
2322 .disconnect = tcp_disconnect,
2323 .accept = inet_csk_accept,
2324 .ioctl = tcp_ioctl,
2325 .init = tcp_v4_init_sock,
2326 .destroy = tcp_v4_destroy_sock,
2327 .shutdown = tcp_shutdown,
2328 .setsockopt = tcp_setsockopt,
2329 .getsockopt = tcp_getsockopt,
2330 .recvmsg = tcp_recvmsg,
2331 .sendmsg = tcp_sendmsg,
2332 .sendpage = tcp_sendpage,
2333 .backlog_rcv = tcp_v4_do_rcv,
2334 .release_cb = tcp_release_cb,
2335 .hash = inet_hash,
2336 .unhash = inet_unhash,
2337 .get_port = inet_csk_get_port,
2338 .enter_memory_pressure = tcp_enter_memory_pressure,
2339 .stream_memory_free = tcp_stream_memory_free,
2340 .sockets_allocated = &tcp_sockets_allocated,
2341 .orphan_count = &tcp_orphan_count,
2342 .memory_allocated = &tcp_memory_allocated,
2343 .memory_pressure = &tcp_memory_pressure,
2344 .sysctl_mem = sysctl_tcp_mem,
2345 .sysctl_wmem = sysctl_tcp_wmem,
2346 .sysctl_rmem = sysctl_tcp_rmem,
2347 .max_header = MAX_TCP_HEADER,
2348 .obj_size = sizeof(struct tcp_sock),
2349 .slab_flags = SLAB_DESTROY_BY_RCU,
2350 .twsk_prot = &tcp_timewait_sock_ops,
2351 .rsk_prot = &tcp_request_sock_ops,
2352 .h.hashinfo = &tcp_hashinfo,
2353 .no_autobind = true,
2354#ifdef CONFIG_COMPAT
2355 .compat_setsockopt = compat_tcp_setsockopt,
2356 .compat_getsockopt = compat_tcp_getsockopt,
2357#endif
2358 .diag_destroy = tcp_abort,
2359};
2360EXPORT_SYMBOL(tcp_prot);
2361
2362static void __net_exit tcp_sk_exit(struct net *net)
2363{
2364 int cpu;
2365
2366 for_each_possible_cpu(cpu)
2367 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2368 free_percpu(net->ipv4.tcp_sk);
2369}
2370
2371static int __net_init tcp_sk_init(struct net *net)
2372{
2373 int res, cpu;
2374
2375 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2376 if (!net->ipv4.tcp_sk)
2377 return -ENOMEM;
2378
2379 for_each_possible_cpu(cpu) {
2380 struct sock *sk;
2381
2382 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2383 IPPROTO_TCP, net);
2384 if (res)
2385 goto fail;
2386 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2387 }
2388
2389 net->ipv4.sysctl_tcp_ecn = 2;
2390 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2391
2392 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2393 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2394 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2395
2396 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2397 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2398 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2399
2400 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2401 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2402 net->ipv4.sysctl_tcp_syncookies = 1;
2403 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2404 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2405 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2406 net->ipv4.sysctl_tcp_orphan_retries = 0;
2407 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2408 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2409
2410 return 0;
2411fail:
2412 tcp_sk_exit(net);
2413
2414 return res;
2415}
2416
2417static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2418{
2419 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2420}
2421
2422static struct pernet_operations __net_initdata tcp_sk_ops = {
2423 .init = tcp_sk_init,
2424 .exit = tcp_sk_exit,
2425 .exit_batch = tcp_sk_exit_batch,
2426};
2427
2428void __init tcp_v4_init(void)
2429{
2430 inet_hashinfo_init(&tcp_hashinfo);
2431 if (register_pernet_subsys(&tcp_sk_ops))
2432 panic("Failed to create the TCP control socket.\n");
2433}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * IPv4 specific functions
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 */
18
19/*
20 * Changes:
21 * David S. Miller : New socket lookup architecture.
22 * This code is dedicated to John Dyson.
23 * David S. Miller : Change semantics of established hash,
24 * half is devoted to TIME_WAIT sockets
25 * and the rest go in the other half.
26 * Andi Kleen : Add support for syncookies and fixed
27 * some bugs: ip options weren't passed to
28 * the TCP layer, missed a check for an
29 * ACK bit.
30 * Andi Kleen : Implemented fast path mtu discovery.
31 * Fixed many serious bugs in the
32 * request_sock handling and moved
33 * most of it into the af independent code.
34 * Added tail drop and some other bugfixes.
35 * Added new listen semantics.
36 * Mike McLagan : Routing by source
37 * Juan Jose Ciarlante: ip_dynaddr bits
38 * Andi Kleen: various fixes.
39 * Vitaly E. Lavrov : Transparent proxy revived after year
40 * coma.
41 * Andi Kleen : Fix new listen.
42 * Andi Kleen : Fix accept error reporting.
43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
45 * a single port at the same time.
46 */
47
48#define pr_fmt(fmt) "TCP: " fmt
49
50#include <linux/bottom_half.h>
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/module.h>
54#include <linux/random.h>
55#include <linux/cache.h>
56#include <linux/jhash.h>
57#include <linux/init.h>
58#include <linux/times.h>
59#include <linux/slab.h>
60#include <linux/sched.h>
61
62#include <net/net_namespace.h>
63#include <net/icmp.h>
64#include <net/inet_hashtables.h>
65#include <net/tcp.h>
66#include <net/transp_v6.h>
67#include <net/ipv6.h>
68#include <net/inet_common.h>
69#include <net/timewait_sock.h>
70#include <net/xfrm.h>
71#include <net/secure_seq.h>
72#include <net/busy_poll.h>
73
74#include <linux/inet.h>
75#include <linux/ipv6.h>
76#include <linux/stddef.h>
77#include <linux/proc_fs.h>
78#include <linux/seq_file.h>
79#include <linux/inetdevice.h>
80#include <linux/btf_ids.h>
81
82#include <crypto/hash.h>
83#include <linux/scatterlist.h>
84
85#include <trace/events/tcp.h>
86
87#ifdef CONFIG_TCP_MD5SIG
88static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 __be32 daddr, __be32 saddr, const struct tcphdr *th);
90#endif
91
92struct inet_hashinfo tcp_hashinfo;
93EXPORT_SYMBOL(tcp_hashinfo);
94
95static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96
97static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98{
99 return secure_tcp_seq(ip_hdr(skb)->daddr,
100 ip_hdr(skb)->saddr,
101 tcp_hdr(skb)->dest,
102 tcp_hdr(skb)->source);
103}
104
105static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106{
107 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108}
109
110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111{
112 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
116
117 if (reuse == 2) {
118 /* Still does not detect *everything* that goes through
119 * lo, since we require a loopback src or dst address
120 * or direct binding to 'lo' interface.
121 */
122 bool loopback = false;
123 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 loopback = true;
125#if IS_ENABLED(CONFIG_IPV6)
126 if (tw->tw_family == AF_INET6) {
127 if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 loopback = true;
132 } else
133#endif
134 {
135 if (ipv4_is_loopback(tw->tw_daddr) ||
136 ipv4_is_loopback(tw->tw_rcv_saddr))
137 loopback = true;
138 }
139 if (!loopback)
140 reuse = 0;
141 }
142
143 /* With PAWS, it is safe from the viewpoint
144 of data integrity. Even without PAWS it is safe provided sequence
145 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146
147 Actually, the idea is close to VJ's one, only timestamp cache is
148 held not per host, but per port pair and TW bucket is used as state
149 holder.
150
151 If TW bucket has been already destroyed we fall back to VJ's scheme
152 and use initial timestamp retrieved from peer table.
153 */
154 if (tcptw->tw_ts_recent_stamp &&
155 (!twp || (reuse && time_after32(ktime_get_seconds(),
156 tcptw->tw_ts_recent_stamp)))) {
157 /* In case of repair and re-using TIME-WAIT sockets we still
158 * want to be sure that it is safe as above but honor the
159 * sequence numbers and time stamps set as part of the repair
160 * process.
161 *
162 * Without this check re-using a TIME-WAIT socket with TCP
163 * repair would accumulate a -1 on the repair assigned
164 * sequence number. The first time it is reused the sequence
165 * is -1, the second time -2, etc. This fixes that issue
166 * without appearing to create any others.
167 */
168 if (likely(!tp->repair)) {
169 u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170
171 if (!seq)
172 seq = 1;
173 WRITE_ONCE(tp->write_seq, seq);
174 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
175 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 }
177 sock_hold(sktw);
178 return 1;
179 }
180
181 return 0;
182}
183EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184
185static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 int addr_len)
187{
188 /* This check is replicated from tcp_v4_connect() and intended to
189 * prevent BPF program called below from accessing bytes that are out
190 * of the bound specified by user in addr_len.
191 */
192 if (addr_len < sizeof(struct sockaddr_in))
193 return -EINVAL;
194
195 sock_owned_by_me(sk);
196
197 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
198}
199
200/* This will initiate an outgoing connection. */
201int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202{
203 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 struct inet_timewait_death_row *tcp_death_row;
205 struct inet_sock *inet = inet_sk(sk);
206 struct tcp_sock *tp = tcp_sk(sk);
207 struct ip_options_rcu *inet_opt;
208 struct net *net = sock_net(sk);
209 __be16 orig_sport, orig_dport;
210 __be32 daddr, nexthop;
211 struct flowi4 *fl4;
212 struct rtable *rt;
213 int err;
214
215 if (addr_len < sizeof(struct sockaddr_in))
216 return -EINVAL;
217
218 if (usin->sin_family != AF_INET)
219 return -EAFNOSUPPORT;
220
221 nexthop = daddr = usin->sin_addr.s_addr;
222 inet_opt = rcu_dereference_protected(inet->inet_opt,
223 lockdep_sock_is_held(sk));
224 if (inet_opt && inet_opt->opt.srr) {
225 if (!daddr)
226 return -EINVAL;
227 nexthop = inet_opt->opt.faddr;
228 }
229
230 orig_sport = inet->inet_sport;
231 orig_dport = usin->sin_port;
232 fl4 = &inet->cork.fl.u.ip4;
233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 orig_dport, sk);
236 if (IS_ERR(rt)) {
237 err = PTR_ERR(rt);
238 if (err == -ENETUNREACH)
239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 return err;
241 }
242
243 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 ip_rt_put(rt);
245 return -ENETUNREACH;
246 }
247
248 if (!inet_opt || !inet_opt->opt.srr)
249 daddr = fl4->daddr;
250
251 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252
253 if (!inet->inet_saddr) {
254 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET);
255 if (err) {
256 ip_rt_put(rt);
257 return err;
258 }
259 } else {
260 sk_rcv_saddr_set(sk, inet->inet_saddr);
261 }
262
263 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 /* Reset inherited state */
265 tp->rx_opt.ts_recent = 0;
266 tp->rx_opt.ts_recent_stamp = 0;
267 if (likely(!tp->repair))
268 WRITE_ONCE(tp->write_seq, 0);
269 }
270
271 inet->inet_dport = usin->sin_port;
272 sk_daddr_set(sk, daddr);
273
274 inet_csk(sk)->icsk_ext_hdr_len = 0;
275 if (inet_opt)
276 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277
278 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279
280 /* Socket identity is still unknown (sport may be zero).
281 * However we set state to SYN-SENT and not releasing socket
282 * lock select source port, enter ourselves into the hash tables and
283 * complete initialization after this.
284 */
285 tcp_set_state(sk, TCP_SYN_SENT);
286 err = inet_hash_connect(tcp_death_row, sk);
287 if (err)
288 goto failure;
289
290 sk_set_txhash(sk);
291
292 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 inet->inet_sport, inet->inet_dport, sk);
294 if (IS_ERR(rt)) {
295 err = PTR_ERR(rt);
296 rt = NULL;
297 goto failure;
298 }
299 tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
300 /* OK, now commit destination to socket. */
301 sk->sk_gso_type = SKB_GSO_TCPV4;
302 sk_setup_caps(sk, &rt->dst);
303 rt = NULL;
304
305 if (likely(!tp->repair)) {
306 if (!tp->write_seq)
307 WRITE_ONCE(tp->write_seq,
308 secure_tcp_seq(inet->inet_saddr,
309 inet->inet_daddr,
310 inet->inet_sport,
311 usin->sin_port));
312 WRITE_ONCE(tp->tsoffset,
313 secure_tcp_ts_off(net, inet->inet_saddr,
314 inet->inet_daddr));
315 }
316
317 atomic_set(&inet->inet_id, get_random_u16());
318
319 if (tcp_fastopen_defer_connect(sk, &err))
320 return err;
321 if (err)
322 goto failure;
323
324 err = tcp_connect(sk);
325
326 if (err)
327 goto failure;
328
329 return 0;
330
331failure:
332 /*
333 * This unhashes the socket and releases the local port,
334 * if necessary.
335 */
336 tcp_set_state(sk, TCP_CLOSE);
337 inet_bhash2_reset_saddr(sk);
338 ip_rt_put(rt);
339 sk->sk_route_caps = 0;
340 inet->inet_dport = 0;
341 return err;
342}
343EXPORT_SYMBOL(tcp_v4_connect);
344
345/*
346 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
347 * It can be called through tcp_release_cb() if socket was owned by user
348 * at the time tcp_v4_err() was called to handle ICMP message.
349 */
350void tcp_v4_mtu_reduced(struct sock *sk)
351{
352 struct inet_sock *inet = inet_sk(sk);
353 struct dst_entry *dst;
354 u32 mtu;
355
356 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
357 return;
358 mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
359 dst = inet_csk_update_pmtu(sk, mtu);
360 if (!dst)
361 return;
362
363 /* Something is about to be wrong... Remember soft error
364 * for the case, if this connection will not able to recover.
365 */
366 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
367 WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
368
369 mtu = dst_mtu(dst);
370
371 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
372 ip_sk_accept_pmtu(sk) &&
373 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
374 tcp_sync_mss(sk, mtu);
375
376 /* Resend the TCP packet because it's
377 * clear that the old packet has been
378 * dropped. This is the new "fast" path mtu
379 * discovery.
380 */
381 tcp_simple_retransmit(sk);
382 } /* else let the usual retransmit timer handle it */
383}
384EXPORT_SYMBOL(tcp_v4_mtu_reduced);
385
386static void do_redirect(struct sk_buff *skb, struct sock *sk)
387{
388 struct dst_entry *dst = __sk_dst_check(sk, 0);
389
390 if (dst)
391 dst->ops->redirect(dst, sk, skb);
392}
393
394
395/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
396void tcp_req_err(struct sock *sk, u32 seq, bool abort)
397{
398 struct request_sock *req = inet_reqsk(sk);
399 struct net *net = sock_net(sk);
400
401 /* ICMPs are not backlogged, hence we cannot get
402 * an established socket here.
403 */
404 if (seq != tcp_rsk(req)->snt_isn) {
405 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
406 } else if (abort) {
407 /*
408 * Still in SYN_RECV, just remove it silently.
409 * There is no good way to pass the error to the newly
410 * created socket, and POSIX does not want network
411 * errors returned from accept().
412 */
413 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
414 tcp_listendrop(req->rsk_listener);
415 }
416 reqsk_put(req);
417}
418EXPORT_SYMBOL(tcp_req_err);
419
420/* TCP-LD (RFC 6069) logic */
421void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
422{
423 struct inet_connection_sock *icsk = inet_csk(sk);
424 struct tcp_sock *tp = tcp_sk(sk);
425 struct sk_buff *skb;
426 s32 remaining;
427 u32 delta_us;
428
429 if (sock_owned_by_user(sk))
430 return;
431
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 return;
435
436 skb = tcp_rtx_queue_head(sk);
437 if (WARN_ON_ONCE(!skb))
438 return;
439
440 icsk->icsk_backoff--;
441 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
442 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
443
444 tcp_mstamp_refresh(tp);
445 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
446 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
447
448 if (remaining > 0) {
449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 remaining, TCP_RTO_MAX);
451 } else {
452 /* RTO revert clocked out retransmission.
453 * Will retransmit now.
454 */
455 tcp_retransmit_timer(sk);
456 }
457}
458EXPORT_SYMBOL(tcp_ld_RTO_revert);
459
460/*
461 * This routine is called by the ICMP module when it gets some
462 * sort of error condition. If err < 0 then the socket should
463 * be closed and the error returned to the user. If err > 0
464 * it's just the icmp type << 8 | icmp code. After adjustment
465 * header points to the first 8 bytes of the tcp header. We need
466 * to find the appropriate port.
467 *
468 * The locking strategy used here is very "optimistic". When
469 * someone else accesses the socket the ICMP is just dropped
470 * and for some paths there is no check at all.
471 * A more general error queue to queue errors for later handling
472 * is probably better.
473 *
474 */
475
476int tcp_v4_err(struct sk_buff *skb, u32 info)
477{
478 const struct iphdr *iph = (const struct iphdr *)skb->data;
479 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
480 struct tcp_sock *tp;
481 const int type = icmp_hdr(skb)->type;
482 const int code = icmp_hdr(skb)->code;
483 struct sock *sk;
484 struct request_sock *fastopen;
485 u32 seq, snd_una;
486 int err;
487 struct net *net = dev_net(skb->dev);
488
489 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
490 iph->daddr, th->dest, iph->saddr,
491 ntohs(th->source), inet_iif(skb), 0);
492 if (!sk) {
493 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
494 return -ENOENT;
495 }
496 if (sk->sk_state == TCP_TIME_WAIT) {
497 /* To increase the counter of ignored icmps for TCP-AO */
498 tcp_ao_ignore_icmp(sk, AF_INET, type, code);
499 inet_twsk_put(inet_twsk(sk));
500 return 0;
501 }
502 seq = ntohl(th->seq);
503 if (sk->sk_state == TCP_NEW_SYN_RECV) {
504 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
505 type == ICMP_TIME_EXCEEDED ||
506 (type == ICMP_DEST_UNREACH &&
507 (code == ICMP_NET_UNREACH ||
508 code == ICMP_HOST_UNREACH)));
509 return 0;
510 }
511
512 if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
513 sock_put(sk);
514 return 0;
515 }
516
517 bh_lock_sock(sk);
518 /* If too many ICMPs get dropped on busy
519 * servers this needs to be solved differently.
520 * We do take care of PMTU discovery (RFC1191) special case :
521 * we can receive locally generated ICMP messages while socket is held.
522 */
523 if (sock_owned_by_user(sk)) {
524 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
525 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
526 }
527 if (sk->sk_state == TCP_CLOSE)
528 goto out;
529
530 if (static_branch_unlikely(&ip4_min_ttl)) {
531 /* min_ttl can be changed concurrently from do_ip_setsockopt() */
532 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
533 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
534 goto out;
535 }
536 }
537
538 tp = tcp_sk(sk);
539 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
540 fastopen = rcu_dereference(tp->fastopen_rsk);
541 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
542 if (sk->sk_state != TCP_LISTEN &&
543 !between(seq, snd_una, tp->snd_nxt)) {
544 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
545 goto out;
546 }
547
548 switch (type) {
549 case ICMP_REDIRECT:
550 if (!sock_owned_by_user(sk))
551 do_redirect(skb, sk);
552 goto out;
553 case ICMP_SOURCE_QUENCH:
554 /* Just silently ignore these. */
555 goto out;
556 case ICMP_PARAMETERPROB:
557 err = EPROTO;
558 break;
559 case ICMP_DEST_UNREACH:
560 if (code > NR_ICMP_UNREACH)
561 goto out;
562
563 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
564 /* We are not interested in TCP_LISTEN and open_requests
565 * (SYN-ACKs send out by Linux are always <576bytes so
566 * they should go through unfragmented).
567 */
568 if (sk->sk_state == TCP_LISTEN)
569 goto out;
570
571 WRITE_ONCE(tp->mtu_info, info);
572 if (!sock_owned_by_user(sk)) {
573 tcp_v4_mtu_reduced(sk);
574 } else {
575 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
576 sock_hold(sk);
577 }
578 goto out;
579 }
580
581 err = icmp_err_convert[code].errno;
582 /* check if this ICMP message allows revert of backoff.
583 * (see RFC 6069)
584 */
585 if (!fastopen &&
586 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
587 tcp_ld_RTO_revert(sk, seq);
588 break;
589 case ICMP_TIME_EXCEEDED:
590 err = EHOSTUNREACH;
591 break;
592 default:
593 goto out;
594 }
595
596 switch (sk->sk_state) {
597 case TCP_SYN_SENT:
598 case TCP_SYN_RECV:
599 /* Only in fast or simultaneous open. If a fast open socket is
600 * already accepted it is treated as a connected one below.
601 */
602 if (fastopen && !fastopen->sk)
603 break;
604
605 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
606
607 if (!sock_owned_by_user(sk)) {
608 WRITE_ONCE(sk->sk_err, err);
609
610 sk_error_report(sk);
611
612 tcp_done(sk);
613 } else {
614 WRITE_ONCE(sk->sk_err_soft, err);
615 }
616 goto out;
617 }
618
619 /* If we've already connected we will keep trying
620 * until we time out, or the user gives up.
621 *
622 * rfc1122 4.2.3.9 allows to consider as hard errors
623 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
624 * but it is obsoleted by pmtu discovery).
625 *
626 * Note, that in modern internet, where routing is unreliable
627 * and in each dark corner broken firewalls sit, sending random
628 * errors ordered by their masters even this two messages finally lose
629 * their original sense (even Linux sends invalid PORT_UNREACHs)
630 *
631 * Now we are in compliance with RFCs.
632 * --ANK (980905)
633 */
634
635 if (!sock_owned_by_user(sk) &&
636 inet_test_bit(RECVERR, sk)) {
637 WRITE_ONCE(sk->sk_err, err);
638 sk_error_report(sk);
639 } else { /* Only an error on timeout */
640 WRITE_ONCE(sk->sk_err_soft, err);
641 }
642
643out:
644 bh_unlock_sock(sk);
645 sock_put(sk);
646 return 0;
647}
648
649void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
650{
651 struct tcphdr *th = tcp_hdr(skb);
652
653 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
654 skb->csum_start = skb_transport_header(skb) - skb->head;
655 skb->csum_offset = offsetof(struct tcphdr, check);
656}
657
658/* This routine computes an IPv4 TCP checksum. */
659void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
660{
661 const struct inet_sock *inet = inet_sk(sk);
662
663 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
664}
665EXPORT_SYMBOL(tcp_v4_send_check);
666
667#define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32))
668
669static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
670 const struct tcp_ao_hdr *aoh,
671 struct ip_reply_arg *arg, struct tcphdr *reply,
672 __be32 reply_options[REPLY_OPTIONS_LEN])
673{
674#ifdef CONFIG_TCP_AO
675 int sdif = tcp_v4_sdif(skb);
676 int dif = inet_iif(skb);
677 int l3index = sdif ? dif : 0;
678 bool allocated_traffic_key;
679 struct tcp_ao_key *key;
680 char *traffic_key;
681 bool drop = true;
682 u32 ao_sne = 0;
683 u8 keyid;
684
685 rcu_read_lock();
686 if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
687 &key, &traffic_key, &allocated_traffic_key,
688 &keyid, &ao_sne))
689 goto out;
690
691 reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
692 (aoh->rnext_keyid << 8) | keyid);
693 arg->iov[0].iov_len += tcp_ao_len_aligned(key);
694 reply->doff = arg->iov[0].iov_len / 4;
695
696 if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
697 key, traffic_key,
698 (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
699 (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
700 reply, ao_sne))
701 goto out;
702 drop = false;
703out:
704 rcu_read_unlock();
705 if (allocated_traffic_key)
706 kfree(traffic_key);
707 return drop;
708#else
709 return true;
710#endif
711}
712
713/*
714 * This routine will send an RST to the other tcp.
715 *
716 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
717 * for reset.
718 * Answer: if a packet caused RST, it is not for a socket
719 * existing in our system, if it is matched to a socket,
720 * it is just duplicate segment or bug in other side's TCP.
721 * So that we build reply only basing on parameters
722 * arrived with segment.
723 * Exception: precedence violation. We do not implement it in any case.
724 */
725
726static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
727{
728 const struct tcphdr *th = tcp_hdr(skb);
729 struct {
730 struct tcphdr th;
731 __be32 opt[REPLY_OPTIONS_LEN];
732 } rep;
733 const __u8 *md5_hash_location = NULL;
734 const struct tcp_ao_hdr *aoh;
735 struct ip_reply_arg arg;
736#ifdef CONFIG_TCP_MD5SIG
737 struct tcp_md5sig_key *key = NULL;
738 unsigned char newhash[16];
739 struct sock *sk1 = NULL;
740 int genhash;
741#endif
742 u64 transmit_time = 0;
743 struct sock *ctl_sk;
744 struct net *net;
745 u32 txhash = 0;
746
747 /* Never send a reset in response to a reset. */
748 if (th->rst)
749 return;
750
751 /* If sk not NULL, it means we did a successful lookup and incoming
752 * route had to be correct. prequeue might have dropped our dst.
753 */
754 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
755 return;
756
757 /* Swap the send and the receive. */
758 memset(&rep, 0, sizeof(rep));
759 rep.th.dest = th->source;
760 rep.th.source = th->dest;
761 rep.th.doff = sizeof(struct tcphdr) / 4;
762 rep.th.rst = 1;
763
764 if (th->ack) {
765 rep.th.seq = th->ack_seq;
766 } else {
767 rep.th.ack = 1;
768 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
769 skb->len - (th->doff << 2));
770 }
771
772 memset(&arg, 0, sizeof(arg));
773 arg.iov[0].iov_base = (unsigned char *)&rep;
774 arg.iov[0].iov_len = sizeof(rep.th);
775
776 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
777
778 /* Invalid TCP option size or twice included auth */
779 if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
780 return;
781
782 if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
783 return;
784
785#ifdef CONFIG_TCP_MD5SIG
786 rcu_read_lock();
787 if (sk && sk_fullsock(sk)) {
788 const union tcp_md5_addr *addr;
789 int l3index;
790
791 /* sdif set, means packet ingressed via a device
792 * in an L3 domain and inet_iif is set to it.
793 */
794 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
795 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
796 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
797 } else if (md5_hash_location) {
798 const union tcp_md5_addr *addr;
799 int sdif = tcp_v4_sdif(skb);
800 int dif = inet_iif(skb);
801 int l3index;
802
803 /*
804 * active side is lost. Try to find listening socket through
805 * source port, and then find md5 key through listening socket.
806 * we are not loose security here:
807 * Incoming packet is checked with md5 hash with finding key,
808 * no RST generated if md5 hash doesn't match.
809 */
810 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
811 NULL, 0, ip_hdr(skb)->saddr,
812 th->source, ip_hdr(skb)->daddr,
813 ntohs(th->source), dif, sdif);
814 /* don't send rst if it can't find key */
815 if (!sk1)
816 goto out;
817
818 /* sdif set, means packet ingressed via a device
819 * in an L3 domain and dif is set to it.
820 */
821 l3index = sdif ? dif : 0;
822 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
823 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
824 if (!key)
825 goto out;
826
827
828 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
829 if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
830 goto out;
831
832 }
833
834 if (key) {
835 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
836 (TCPOPT_NOP << 16) |
837 (TCPOPT_MD5SIG << 8) |
838 TCPOLEN_MD5SIG);
839 /* Update length and the length the header thinks exists */
840 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
841 rep.th.doff = arg.iov[0].iov_len / 4;
842
843 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
844 key, ip_hdr(skb)->saddr,
845 ip_hdr(skb)->daddr, &rep.th);
846 }
847#endif
848 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */
849 if (rep.opt[0] == 0) {
850 __be32 mrst = mptcp_reset_option(skb);
851
852 if (mrst) {
853 rep.opt[0] = mrst;
854 arg.iov[0].iov_len += sizeof(mrst);
855 rep.th.doff = arg.iov[0].iov_len / 4;
856 }
857 }
858
859 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
860 ip_hdr(skb)->saddr, /* XXX */
861 arg.iov[0].iov_len, IPPROTO_TCP, 0);
862 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
863 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
864
865 /* When socket is gone, all binding information is lost.
866 * routing might fail in this case. No choice here, if we choose to force
867 * input interface, we will misroute in case of asymmetric route.
868 */
869 if (sk) {
870 arg.bound_dev_if = sk->sk_bound_dev_if;
871 if (sk_fullsock(sk))
872 trace_tcp_send_reset(sk, skb);
873 }
874
875 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
876 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
877
878 arg.tos = ip_hdr(skb)->tos;
879 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
880 local_bh_disable();
881 ctl_sk = this_cpu_read(ipv4_tcp_sk);
882 sock_net_set(ctl_sk, net);
883 if (sk) {
884 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
885 inet_twsk(sk)->tw_mark : sk->sk_mark;
886 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
887 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
888 transmit_time = tcp_transmit_time(sk);
889 xfrm_sk_clone_policy(ctl_sk, sk);
890 txhash = (sk->sk_state == TCP_TIME_WAIT) ?
891 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
892 } else {
893 ctl_sk->sk_mark = 0;
894 ctl_sk->sk_priority = 0;
895 }
896 ip_send_unicast_reply(ctl_sk,
897 skb, &TCP_SKB_CB(skb)->header.h4.opt,
898 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
899 &arg, arg.iov[0].iov_len,
900 transmit_time, txhash);
901
902 xfrm_sk_free_policy(ctl_sk);
903 sock_net_set(ctl_sk, &init_net);
904 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
905 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
906 local_bh_enable();
907
908#ifdef CONFIG_TCP_MD5SIG
909out:
910 rcu_read_unlock();
911#endif
912}
913
914/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
915 outside socket context is ugly, certainly. What can I do?
916 */
917
918static void tcp_v4_send_ack(const struct sock *sk,
919 struct sk_buff *skb, u32 seq, u32 ack,
920 u32 win, u32 tsval, u32 tsecr, int oif,
921 struct tcp_key *key,
922 int reply_flags, u8 tos, u32 txhash)
923{
924 const struct tcphdr *th = tcp_hdr(skb);
925 struct {
926 struct tcphdr th;
927 __be32 opt[(MAX_TCP_OPTION_SPACE >> 2)];
928 } rep;
929 struct net *net = sock_net(sk);
930 struct ip_reply_arg arg;
931 struct sock *ctl_sk;
932 u64 transmit_time;
933
934 memset(&rep.th, 0, sizeof(struct tcphdr));
935 memset(&arg, 0, sizeof(arg));
936
937 arg.iov[0].iov_base = (unsigned char *)&rep;
938 arg.iov[0].iov_len = sizeof(rep.th);
939 if (tsecr) {
940 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
941 (TCPOPT_TIMESTAMP << 8) |
942 TCPOLEN_TIMESTAMP);
943 rep.opt[1] = htonl(tsval);
944 rep.opt[2] = htonl(tsecr);
945 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
946 }
947
948 /* Swap the send and the receive. */
949 rep.th.dest = th->source;
950 rep.th.source = th->dest;
951 rep.th.doff = arg.iov[0].iov_len / 4;
952 rep.th.seq = htonl(seq);
953 rep.th.ack_seq = htonl(ack);
954 rep.th.ack = 1;
955 rep.th.window = htons(win);
956
957#ifdef CONFIG_TCP_MD5SIG
958 if (tcp_key_is_md5(key)) {
959 int offset = (tsecr) ? 3 : 0;
960
961 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
962 (TCPOPT_NOP << 16) |
963 (TCPOPT_MD5SIG << 8) |
964 TCPOLEN_MD5SIG);
965 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
966 rep.th.doff = arg.iov[0].iov_len/4;
967
968 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
969 key->md5_key, ip_hdr(skb)->saddr,
970 ip_hdr(skb)->daddr, &rep.th);
971 }
972#endif
973#ifdef CONFIG_TCP_AO
974 if (tcp_key_is_ao(key)) {
975 int offset = (tsecr) ? 3 : 0;
976
977 rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
978 (tcp_ao_len(key->ao_key) << 16) |
979 (key->ao_key->sndid << 8) |
980 key->rcv_next);
981 arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
982 rep.th.doff = arg.iov[0].iov_len / 4;
983
984 tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
985 key->ao_key, key->traffic_key,
986 (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
987 (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
988 &rep.th, key->sne);
989 }
990#endif
991 arg.flags = reply_flags;
992 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
993 ip_hdr(skb)->saddr, /* XXX */
994 arg.iov[0].iov_len, IPPROTO_TCP, 0);
995 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
996 if (oif)
997 arg.bound_dev_if = oif;
998 arg.tos = tos;
999 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1000 local_bh_disable();
1001 ctl_sk = this_cpu_read(ipv4_tcp_sk);
1002 sock_net_set(ctl_sk, net);
1003 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1004 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1005 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1006 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1007 transmit_time = tcp_transmit_time(sk);
1008 ip_send_unicast_reply(ctl_sk,
1009 skb, &TCP_SKB_CB(skb)->header.h4.opt,
1010 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1011 &arg, arg.iov[0].iov_len,
1012 transmit_time, txhash);
1013
1014 sock_net_set(ctl_sk, &init_net);
1015 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1016 local_bh_enable();
1017}
1018
1019static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1020{
1021 struct inet_timewait_sock *tw = inet_twsk(sk);
1022 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1023 struct tcp_key key = {};
1024#ifdef CONFIG_TCP_AO
1025 struct tcp_ao_info *ao_info;
1026
1027 if (static_branch_unlikely(&tcp_ao_needed.key)) {
1028 /* FIXME: the segment to-be-acked is not verified yet */
1029 ao_info = rcu_dereference(tcptw->ao_info);
1030 if (ao_info) {
1031 const struct tcp_ao_hdr *aoh;
1032
1033 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1034 inet_twsk_put(tw);
1035 return;
1036 }
1037
1038 if (aoh)
1039 key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1040 }
1041 }
1042 if (key.ao_key) {
1043 struct tcp_ao_key *rnext_key;
1044
1045 key.traffic_key = snd_other_key(key.ao_key);
1046 key.sne = READ_ONCE(ao_info->snd_sne);
1047 rnext_key = READ_ONCE(ao_info->rnext_key);
1048 key.rcv_next = rnext_key->rcvid;
1049 key.type = TCP_KEY_AO;
1050#else
1051 if (0) {
1052#endif
1053#ifdef CONFIG_TCP_MD5SIG
1054 } else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1055 key.md5_key = tcp_twsk_md5_key(tcptw);
1056 if (key.md5_key)
1057 key.type = TCP_KEY_MD5;
1058#endif
1059 }
1060
1061 tcp_v4_send_ack(sk, skb,
1062 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1063 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1064 tcp_tw_tsval(tcptw),
1065 tcptw->tw_ts_recent,
1066 tw->tw_bound_dev_if, &key,
1067 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1068 tw->tw_tos,
1069 tw->tw_txhash);
1070
1071 inet_twsk_put(tw);
1072}
1073
1074static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1075 struct request_sock *req)
1076{
1077 struct tcp_key key = {};
1078
1079 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1080 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1081 */
1082 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1083 tcp_sk(sk)->snd_nxt;
1084
1085#ifdef CONFIG_TCP_AO
1086 if (static_branch_unlikely(&tcp_ao_needed.key) &&
1087 tcp_rsk_used_ao(req)) {
1088 const union tcp_md5_addr *addr;
1089 const struct tcp_ao_hdr *aoh;
1090 int l3index;
1091
1092 /* Invalid TCP option size or twice included auth */
1093 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1094 return;
1095 if (!aoh)
1096 return;
1097
1098 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1099 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1100 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1101 aoh->rnext_keyid, -1);
1102 if (unlikely(!key.ao_key)) {
1103 /* Send ACK with any matching MKT for the peer */
1104 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1105 /* Matching key disappeared (user removed the key?)
1106 * let the handshake timeout.
1107 */
1108 if (!key.ao_key) {
1109 net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1110 addr,
1111 ntohs(tcp_hdr(skb)->source),
1112 &ip_hdr(skb)->daddr,
1113 ntohs(tcp_hdr(skb)->dest));
1114 return;
1115 }
1116 }
1117 key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1118 if (!key.traffic_key)
1119 return;
1120
1121 key.type = TCP_KEY_AO;
1122 key.rcv_next = aoh->keyid;
1123 tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1124#else
1125 if (0) {
1126#endif
1127#ifdef CONFIG_TCP_MD5SIG
1128 } else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1129 const union tcp_md5_addr *addr;
1130 int l3index;
1131
1132 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1133 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1134 key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1135 if (key.md5_key)
1136 key.type = TCP_KEY_MD5;
1137#endif
1138 }
1139
1140 /* RFC 7323 2.3
1141 * The window field (SEG.WND) of every outgoing segment, with the
1142 * exception of <SYN> segments, MUST be right-shifted by
1143 * Rcv.Wind.Shift bits:
1144 */
1145 tcp_v4_send_ack(sk, skb, seq,
1146 tcp_rsk(req)->rcv_nxt,
1147 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1148 tcp_rsk_tsval(tcp_rsk(req)),
1149 READ_ONCE(req->ts_recent),
1150 0, &key,
1151 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1152 ip_hdr(skb)->tos,
1153 READ_ONCE(tcp_rsk(req)->txhash));
1154 if (tcp_key_is_ao(&key))
1155 kfree(key.traffic_key);
1156}
1157
1158/*
1159 * Send a SYN-ACK after having received a SYN.
1160 * This still operates on a request_sock only, not on a big
1161 * socket.
1162 */
1163static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1164 struct flowi *fl,
1165 struct request_sock *req,
1166 struct tcp_fastopen_cookie *foc,
1167 enum tcp_synack_type synack_type,
1168 struct sk_buff *syn_skb)
1169{
1170 const struct inet_request_sock *ireq = inet_rsk(req);
1171 struct flowi4 fl4;
1172 int err = -1;
1173 struct sk_buff *skb;
1174 u8 tos;
1175
1176 /* First, grab a route. */
1177 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1178 return -1;
1179
1180 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1181
1182 if (skb) {
1183 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1184
1185 tos = READ_ONCE(inet_sk(sk)->tos);
1186
1187 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1188 tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1189 (tos & INET_ECN_MASK);
1190
1191 if (!INET_ECN_is_capable(tos) &&
1192 tcp_bpf_ca_needs_ecn((struct sock *)req))
1193 tos |= INET_ECN_ECT_0;
1194
1195 rcu_read_lock();
1196 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1197 ireq->ir_rmt_addr,
1198 rcu_dereference(ireq->ireq_opt),
1199 tos);
1200 rcu_read_unlock();
1201 err = net_xmit_eval(err);
1202 }
1203
1204 return err;
1205}
1206
1207/*
1208 * IPv4 request_sock destructor.
1209 */
1210static void tcp_v4_reqsk_destructor(struct request_sock *req)
1211{
1212 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1213}
1214
1215#ifdef CONFIG_TCP_MD5SIG
1216/*
1217 * RFC2385 MD5 checksumming requires a mapping of
1218 * IP address->MD5 Key.
1219 * We need to maintain these in the sk structure.
1220 */
1221
1222DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1223EXPORT_SYMBOL(tcp_md5_needed);
1224
1225static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1226{
1227 if (!old)
1228 return true;
1229
1230 /* l3index always overrides non-l3index */
1231 if (old->l3index && new->l3index == 0)
1232 return false;
1233 if (old->l3index == 0 && new->l3index)
1234 return true;
1235
1236 return old->prefixlen < new->prefixlen;
1237}
1238
1239/* Find the Key structure for an address. */
1240struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1241 const union tcp_md5_addr *addr,
1242 int family, bool any_l3index)
1243{
1244 const struct tcp_sock *tp = tcp_sk(sk);
1245 struct tcp_md5sig_key *key;
1246 const struct tcp_md5sig_info *md5sig;
1247 __be32 mask;
1248 struct tcp_md5sig_key *best_match = NULL;
1249 bool match;
1250
1251 /* caller either holds rcu_read_lock() or socket lock */
1252 md5sig = rcu_dereference_check(tp->md5sig_info,
1253 lockdep_sock_is_held(sk));
1254 if (!md5sig)
1255 return NULL;
1256
1257 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1258 lockdep_sock_is_held(sk)) {
1259 if (key->family != family)
1260 continue;
1261 if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1262 key->l3index != l3index)
1263 continue;
1264 if (family == AF_INET) {
1265 mask = inet_make_mask(key->prefixlen);
1266 match = (key->addr.a4.s_addr & mask) ==
1267 (addr->a4.s_addr & mask);
1268#if IS_ENABLED(CONFIG_IPV6)
1269 } else if (family == AF_INET6) {
1270 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1271 key->prefixlen);
1272#endif
1273 } else {
1274 match = false;
1275 }
1276
1277 if (match && better_md5_match(best_match, key))
1278 best_match = key;
1279 }
1280 return best_match;
1281}
1282EXPORT_SYMBOL(__tcp_md5_do_lookup);
1283
1284static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1285 const union tcp_md5_addr *addr,
1286 int family, u8 prefixlen,
1287 int l3index, u8 flags)
1288{
1289 const struct tcp_sock *tp = tcp_sk(sk);
1290 struct tcp_md5sig_key *key;
1291 unsigned int size = sizeof(struct in_addr);
1292 const struct tcp_md5sig_info *md5sig;
1293
1294 /* caller either holds rcu_read_lock() or socket lock */
1295 md5sig = rcu_dereference_check(tp->md5sig_info,
1296 lockdep_sock_is_held(sk));
1297 if (!md5sig)
1298 return NULL;
1299#if IS_ENABLED(CONFIG_IPV6)
1300 if (family == AF_INET6)
1301 size = sizeof(struct in6_addr);
1302#endif
1303 hlist_for_each_entry_rcu(key, &md5sig->head, node,
1304 lockdep_sock_is_held(sk)) {
1305 if (key->family != family)
1306 continue;
1307 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1308 continue;
1309 if (key->l3index != l3index)
1310 continue;
1311 if (!memcmp(&key->addr, addr, size) &&
1312 key->prefixlen == prefixlen)
1313 return key;
1314 }
1315 return NULL;
1316}
1317
1318struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1319 const struct sock *addr_sk)
1320{
1321 const union tcp_md5_addr *addr;
1322 int l3index;
1323
1324 l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1325 addr_sk->sk_bound_dev_if);
1326 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1327 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1328}
1329EXPORT_SYMBOL(tcp_v4_md5_lookup);
1330
1331static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1332{
1333 struct tcp_sock *tp = tcp_sk(sk);
1334 struct tcp_md5sig_info *md5sig;
1335
1336 md5sig = kmalloc(sizeof(*md5sig), gfp);
1337 if (!md5sig)
1338 return -ENOMEM;
1339
1340 sk_gso_disable(sk);
1341 INIT_HLIST_HEAD(&md5sig->head);
1342 rcu_assign_pointer(tp->md5sig_info, md5sig);
1343 return 0;
1344}
1345
1346/* This can be called on a newly created socket, from other files */
1347static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1348 int family, u8 prefixlen, int l3index, u8 flags,
1349 const u8 *newkey, u8 newkeylen, gfp_t gfp)
1350{
1351 /* Add Key to the list */
1352 struct tcp_md5sig_key *key;
1353 struct tcp_sock *tp = tcp_sk(sk);
1354 struct tcp_md5sig_info *md5sig;
1355
1356 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1357 if (key) {
1358 /* Pre-existing entry - just update that one.
1359 * Note that the key might be used concurrently.
1360 * data_race() is telling kcsan that we do not care of
1361 * key mismatches, since changing MD5 key on live flows
1362 * can lead to packet drops.
1363 */
1364 data_race(memcpy(key->key, newkey, newkeylen));
1365
1366 /* Pairs with READ_ONCE() in tcp_md5_hash_key().
1367 * Also note that a reader could catch new key->keylen value
1368 * but old key->key[], this is the reason we use __GFP_ZERO
1369 * at sock_kmalloc() time below these lines.
1370 */
1371 WRITE_ONCE(key->keylen, newkeylen);
1372
1373 return 0;
1374 }
1375
1376 md5sig = rcu_dereference_protected(tp->md5sig_info,
1377 lockdep_sock_is_held(sk));
1378
1379 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1380 if (!key)
1381 return -ENOMEM;
1382
1383 memcpy(key->key, newkey, newkeylen);
1384 key->keylen = newkeylen;
1385 key->family = family;
1386 key->prefixlen = prefixlen;
1387 key->l3index = l3index;
1388 key->flags = flags;
1389 memcpy(&key->addr, addr,
1390 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1391 sizeof(struct in_addr));
1392 hlist_add_head_rcu(&key->node, &md5sig->head);
1393 return 0;
1394}
1395
1396int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1397 int family, u8 prefixlen, int l3index, u8 flags,
1398 const u8 *newkey, u8 newkeylen)
1399{
1400 struct tcp_sock *tp = tcp_sk(sk);
1401
1402 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1403 if (tcp_md5_alloc_sigpool())
1404 return -ENOMEM;
1405
1406 if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1407 tcp_md5_release_sigpool();
1408 return -ENOMEM;
1409 }
1410
1411 if (!static_branch_inc(&tcp_md5_needed.key)) {
1412 struct tcp_md5sig_info *md5sig;
1413
1414 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1415 rcu_assign_pointer(tp->md5sig_info, NULL);
1416 kfree_rcu(md5sig, rcu);
1417 tcp_md5_release_sigpool();
1418 return -EUSERS;
1419 }
1420 }
1421
1422 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1423 newkey, newkeylen, GFP_KERNEL);
1424}
1425EXPORT_SYMBOL(tcp_md5_do_add);
1426
1427int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1428 int family, u8 prefixlen, int l3index,
1429 struct tcp_md5sig_key *key)
1430{
1431 struct tcp_sock *tp = tcp_sk(sk);
1432
1433 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1434 tcp_md5_add_sigpool();
1435
1436 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1437 tcp_md5_release_sigpool();
1438 return -ENOMEM;
1439 }
1440
1441 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1442 struct tcp_md5sig_info *md5sig;
1443
1444 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1445 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1446 rcu_assign_pointer(tp->md5sig_info, NULL);
1447 kfree_rcu(md5sig, rcu);
1448 tcp_md5_release_sigpool();
1449 return -EUSERS;
1450 }
1451 }
1452
1453 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1454 key->flags, key->key, key->keylen,
1455 sk_gfp_mask(sk, GFP_ATOMIC));
1456}
1457EXPORT_SYMBOL(tcp_md5_key_copy);
1458
1459int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1460 u8 prefixlen, int l3index, u8 flags)
1461{
1462 struct tcp_md5sig_key *key;
1463
1464 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1465 if (!key)
1466 return -ENOENT;
1467 hlist_del_rcu(&key->node);
1468 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1469 kfree_rcu(key, rcu);
1470 return 0;
1471}
1472EXPORT_SYMBOL(tcp_md5_do_del);
1473
1474void tcp_clear_md5_list(struct sock *sk)
1475{
1476 struct tcp_sock *tp = tcp_sk(sk);
1477 struct tcp_md5sig_key *key;
1478 struct hlist_node *n;
1479 struct tcp_md5sig_info *md5sig;
1480
1481 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1482
1483 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1484 hlist_del_rcu(&key->node);
1485 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1486 kfree_rcu(key, rcu);
1487 }
1488}
1489
1490static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1491 sockptr_t optval, int optlen)
1492{
1493 struct tcp_md5sig cmd;
1494 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1495 const union tcp_md5_addr *addr;
1496 u8 prefixlen = 32;
1497 int l3index = 0;
1498 bool l3flag;
1499 u8 flags;
1500
1501 if (optlen < sizeof(cmd))
1502 return -EINVAL;
1503
1504 if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1505 return -EFAULT;
1506
1507 if (sin->sin_family != AF_INET)
1508 return -EINVAL;
1509
1510 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1511 l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1512
1513 if (optname == TCP_MD5SIG_EXT &&
1514 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1515 prefixlen = cmd.tcpm_prefixlen;
1516 if (prefixlen > 32)
1517 return -EINVAL;
1518 }
1519
1520 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1521 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1522 struct net_device *dev;
1523
1524 rcu_read_lock();
1525 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1526 if (dev && netif_is_l3_master(dev))
1527 l3index = dev->ifindex;
1528
1529 rcu_read_unlock();
1530
1531 /* ok to reference set/not set outside of rcu;
1532 * right now device MUST be an L3 master
1533 */
1534 if (!dev || !l3index)
1535 return -EINVAL;
1536 }
1537
1538 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1539
1540 if (!cmd.tcpm_keylen)
1541 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1542
1543 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1544 return -EINVAL;
1545
1546 /* Don't allow keys for peers that have a matching TCP-AO key.
1547 * See the comment in tcp_ao_add_cmd()
1548 */
1549 if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1550 return -EKEYREJECTED;
1551
1552 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1553 cmd.tcpm_key, cmd.tcpm_keylen);
1554}
1555
1556static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1557 __be32 daddr, __be32 saddr,
1558 const struct tcphdr *th, int nbytes)
1559{
1560 struct tcp4_pseudohdr *bp;
1561 struct scatterlist sg;
1562 struct tcphdr *_th;
1563
1564 bp = hp->scratch;
1565 bp->saddr = saddr;
1566 bp->daddr = daddr;
1567 bp->pad = 0;
1568 bp->protocol = IPPROTO_TCP;
1569 bp->len = cpu_to_be16(nbytes);
1570
1571 _th = (struct tcphdr *)(bp + 1);
1572 memcpy(_th, th, sizeof(*th));
1573 _th->check = 0;
1574
1575 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1576 ahash_request_set_crypt(hp->req, &sg, NULL,
1577 sizeof(*bp) + sizeof(*th));
1578 return crypto_ahash_update(hp->req);
1579}
1580
1581static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1582 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1583{
1584 struct tcp_sigpool hp;
1585
1586 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1587 goto clear_hash_nostart;
1588
1589 if (crypto_ahash_init(hp.req))
1590 goto clear_hash;
1591 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1592 goto clear_hash;
1593 if (tcp_md5_hash_key(&hp, key))
1594 goto clear_hash;
1595 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1596 if (crypto_ahash_final(hp.req))
1597 goto clear_hash;
1598
1599 tcp_sigpool_end(&hp);
1600 return 0;
1601
1602clear_hash:
1603 tcp_sigpool_end(&hp);
1604clear_hash_nostart:
1605 memset(md5_hash, 0, 16);
1606 return 1;
1607}
1608
1609int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1610 const struct sock *sk,
1611 const struct sk_buff *skb)
1612{
1613 const struct tcphdr *th = tcp_hdr(skb);
1614 struct tcp_sigpool hp;
1615 __be32 saddr, daddr;
1616
1617 if (sk) { /* valid for establish/request sockets */
1618 saddr = sk->sk_rcv_saddr;
1619 daddr = sk->sk_daddr;
1620 } else {
1621 const struct iphdr *iph = ip_hdr(skb);
1622 saddr = iph->saddr;
1623 daddr = iph->daddr;
1624 }
1625
1626 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1627 goto clear_hash_nostart;
1628
1629 if (crypto_ahash_init(hp.req))
1630 goto clear_hash;
1631
1632 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1633 goto clear_hash;
1634 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1635 goto clear_hash;
1636 if (tcp_md5_hash_key(&hp, key))
1637 goto clear_hash;
1638 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1639 if (crypto_ahash_final(hp.req))
1640 goto clear_hash;
1641
1642 tcp_sigpool_end(&hp);
1643 return 0;
1644
1645clear_hash:
1646 tcp_sigpool_end(&hp);
1647clear_hash_nostart:
1648 memset(md5_hash, 0, 16);
1649 return 1;
1650}
1651EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1652
1653#endif
1654
1655static void tcp_v4_init_req(struct request_sock *req,
1656 const struct sock *sk_listener,
1657 struct sk_buff *skb)
1658{
1659 struct inet_request_sock *ireq = inet_rsk(req);
1660 struct net *net = sock_net(sk_listener);
1661
1662 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1663 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1664 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1665}
1666
1667static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1668 struct sk_buff *skb,
1669 struct flowi *fl,
1670 struct request_sock *req)
1671{
1672 tcp_v4_init_req(req, sk, skb);
1673
1674 if (security_inet_conn_request(sk, skb, req))
1675 return NULL;
1676
1677 return inet_csk_route_req(sk, &fl->u.ip4, req);
1678}
1679
1680struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1681 .family = PF_INET,
1682 .obj_size = sizeof(struct tcp_request_sock),
1683 .rtx_syn_ack = tcp_rtx_synack,
1684 .send_ack = tcp_v4_reqsk_send_ack,
1685 .destructor = tcp_v4_reqsk_destructor,
1686 .send_reset = tcp_v4_send_reset,
1687 .syn_ack_timeout = tcp_syn_ack_timeout,
1688};
1689
1690const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1691 .mss_clamp = TCP_MSS_DEFAULT,
1692#ifdef CONFIG_TCP_MD5SIG
1693 .req_md5_lookup = tcp_v4_md5_lookup,
1694 .calc_md5_hash = tcp_v4_md5_hash_skb,
1695#endif
1696#ifdef CONFIG_TCP_AO
1697 .ao_lookup = tcp_v4_ao_lookup_rsk,
1698 .ao_calc_key = tcp_v4_ao_calc_key_rsk,
1699 .ao_synack_hash = tcp_v4_ao_synack_hash,
1700#endif
1701#ifdef CONFIG_SYN_COOKIES
1702 .cookie_init_seq = cookie_v4_init_sequence,
1703#endif
1704 .route_req = tcp_v4_route_req,
1705 .init_seq = tcp_v4_init_seq,
1706 .init_ts_off = tcp_v4_init_ts_off,
1707 .send_synack = tcp_v4_send_synack,
1708};
1709
1710int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1711{
1712 /* Never answer to SYNs send to broadcast or multicast */
1713 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1714 goto drop;
1715
1716 return tcp_conn_request(&tcp_request_sock_ops,
1717 &tcp_request_sock_ipv4_ops, sk, skb);
1718
1719drop:
1720 tcp_listendrop(sk);
1721 return 0;
1722}
1723EXPORT_SYMBOL(tcp_v4_conn_request);
1724
1725
1726/*
1727 * The three way handshake has completed - we got a valid synack -
1728 * now create the new socket.
1729 */
1730struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1731 struct request_sock *req,
1732 struct dst_entry *dst,
1733 struct request_sock *req_unhash,
1734 bool *own_req)
1735{
1736 struct inet_request_sock *ireq;
1737 bool found_dup_sk = false;
1738 struct inet_sock *newinet;
1739 struct tcp_sock *newtp;
1740 struct sock *newsk;
1741#ifdef CONFIG_TCP_MD5SIG
1742 const union tcp_md5_addr *addr;
1743 struct tcp_md5sig_key *key;
1744 int l3index;
1745#endif
1746 struct ip_options_rcu *inet_opt;
1747
1748 if (sk_acceptq_is_full(sk))
1749 goto exit_overflow;
1750
1751 newsk = tcp_create_openreq_child(sk, req, skb);
1752 if (!newsk)
1753 goto exit_nonewsk;
1754
1755 newsk->sk_gso_type = SKB_GSO_TCPV4;
1756 inet_sk_rx_dst_set(newsk, skb);
1757
1758 newtp = tcp_sk(newsk);
1759 newinet = inet_sk(newsk);
1760 ireq = inet_rsk(req);
1761 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1762 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1763 newsk->sk_bound_dev_if = ireq->ir_iif;
1764 newinet->inet_saddr = ireq->ir_loc_addr;
1765 inet_opt = rcu_dereference(ireq->ireq_opt);
1766 RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1767 newinet->mc_index = inet_iif(skb);
1768 newinet->mc_ttl = ip_hdr(skb)->ttl;
1769 newinet->rcv_tos = ip_hdr(skb)->tos;
1770 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1771 if (inet_opt)
1772 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1773 atomic_set(&newinet->inet_id, get_random_u16());
1774
1775 /* Set ToS of the new socket based upon the value of incoming SYN.
1776 * ECT bits are set later in tcp_init_transfer().
1777 */
1778 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1779 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1780
1781 if (!dst) {
1782 dst = inet_csk_route_child_sock(sk, newsk, req);
1783 if (!dst)
1784 goto put_and_exit;
1785 } else {
1786 /* syncookie case : see end of cookie_v4_check() */
1787 }
1788 sk_setup_caps(newsk, dst);
1789
1790 tcp_ca_openreq_child(newsk, dst);
1791
1792 tcp_sync_mss(newsk, dst_mtu(dst));
1793 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1794
1795 tcp_initialize_rcv_mss(newsk);
1796
1797#ifdef CONFIG_TCP_MD5SIG
1798 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1799 /* Copy over the MD5 key from the original socket */
1800 addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1801 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1802 if (key && !tcp_rsk_used_ao(req)) {
1803 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1804 goto put_and_exit;
1805 sk_gso_disable(newsk);
1806 }
1807#endif
1808#ifdef CONFIG_TCP_AO
1809 if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1810 goto put_and_exit; /* OOM, release back memory */
1811#endif
1812
1813 if (__inet_inherit_port(sk, newsk) < 0)
1814 goto put_and_exit;
1815 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1816 &found_dup_sk);
1817 if (likely(*own_req)) {
1818 tcp_move_syn(newtp, req);
1819 ireq->ireq_opt = NULL;
1820 } else {
1821 newinet->inet_opt = NULL;
1822
1823 if (!req_unhash && found_dup_sk) {
1824 /* This code path should only be executed in the
1825 * syncookie case only
1826 */
1827 bh_unlock_sock(newsk);
1828 sock_put(newsk);
1829 newsk = NULL;
1830 }
1831 }
1832 return newsk;
1833
1834exit_overflow:
1835 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1836exit_nonewsk:
1837 dst_release(dst);
1838exit:
1839 tcp_listendrop(sk);
1840 return NULL;
1841put_and_exit:
1842 newinet->inet_opt = NULL;
1843 inet_csk_prepare_forced_close(newsk);
1844 tcp_done(newsk);
1845 goto exit;
1846}
1847EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1848
1849static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1850{
1851#ifdef CONFIG_SYN_COOKIES
1852 const struct tcphdr *th = tcp_hdr(skb);
1853
1854 if (!th->syn)
1855 sk = cookie_v4_check(sk, skb);
1856#endif
1857 return sk;
1858}
1859
1860u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1861 struct tcphdr *th, u32 *cookie)
1862{
1863 u16 mss = 0;
1864#ifdef CONFIG_SYN_COOKIES
1865 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1866 &tcp_request_sock_ipv4_ops, sk, th);
1867 if (mss) {
1868 *cookie = __cookie_v4_init_sequence(iph, th, &mss);
1869 tcp_synq_overflow(sk);
1870 }
1871#endif
1872 return mss;
1873}
1874
1875INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1876 u32));
1877/* The socket must have it's spinlock held when we get
1878 * here, unless it is a TCP_LISTEN socket.
1879 *
1880 * We have a potential double-lock case here, so even when
1881 * doing backlog processing we use the BH locking scheme.
1882 * This is because we cannot sleep with the original spinlock
1883 * held.
1884 */
1885int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1886{
1887 enum skb_drop_reason reason;
1888 struct sock *rsk;
1889
1890 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1891 struct dst_entry *dst;
1892
1893 dst = rcu_dereference_protected(sk->sk_rx_dst,
1894 lockdep_sock_is_held(sk));
1895
1896 sock_rps_save_rxhash(sk, skb);
1897 sk_mark_napi_id(sk, skb);
1898 if (dst) {
1899 if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1900 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1901 dst, 0)) {
1902 RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1903 dst_release(dst);
1904 }
1905 }
1906 tcp_rcv_established(sk, skb);
1907 return 0;
1908 }
1909
1910 reason = SKB_DROP_REASON_NOT_SPECIFIED;
1911 if (tcp_checksum_complete(skb))
1912 goto csum_err;
1913
1914 if (sk->sk_state == TCP_LISTEN) {
1915 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1916
1917 if (!nsk)
1918 goto discard;
1919 if (nsk != sk) {
1920 if (tcp_child_process(sk, nsk, skb)) {
1921 rsk = nsk;
1922 goto reset;
1923 }
1924 return 0;
1925 }
1926 } else
1927 sock_rps_save_rxhash(sk, skb);
1928
1929 if (tcp_rcv_state_process(sk, skb)) {
1930 rsk = sk;
1931 goto reset;
1932 }
1933 return 0;
1934
1935reset:
1936 tcp_v4_send_reset(rsk, skb);
1937discard:
1938 kfree_skb_reason(skb, reason);
1939 /* Be careful here. If this function gets more complicated and
1940 * gcc suffers from register pressure on the x86, sk (in %ebx)
1941 * might be destroyed here. This current version compiles correctly,
1942 * but you have been warned.
1943 */
1944 return 0;
1945
1946csum_err:
1947 reason = SKB_DROP_REASON_TCP_CSUM;
1948 trace_tcp_bad_csum(skb);
1949 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1950 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1951 goto discard;
1952}
1953EXPORT_SYMBOL(tcp_v4_do_rcv);
1954
1955int tcp_v4_early_demux(struct sk_buff *skb)
1956{
1957 struct net *net = dev_net(skb->dev);
1958 const struct iphdr *iph;
1959 const struct tcphdr *th;
1960 struct sock *sk;
1961
1962 if (skb->pkt_type != PACKET_HOST)
1963 return 0;
1964
1965 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1966 return 0;
1967
1968 iph = ip_hdr(skb);
1969 th = tcp_hdr(skb);
1970
1971 if (th->doff < sizeof(struct tcphdr) / 4)
1972 return 0;
1973
1974 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1975 iph->saddr, th->source,
1976 iph->daddr, ntohs(th->dest),
1977 skb->skb_iif, inet_sdif(skb));
1978 if (sk) {
1979 skb->sk = sk;
1980 skb->destructor = sock_edemux;
1981 if (sk_fullsock(sk)) {
1982 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1983
1984 if (dst)
1985 dst = dst_check(dst, 0);
1986 if (dst &&
1987 sk->sk_rx_dst_ifindex == skb->skb_iif)
1988 skb_dst_set_noref(skb, dst);
1989 }
1990 }
1991 return 0;
1992}
1993
1994bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1995 enum skb_drop_reason *reason)
1996{
1997 u32 limit, tail_gso_size, tail_gso_segs;
1998 struct skb_shared_info *shinfo;
1999 const struct tcphdr *th;
2000 struct tcphdr *thtail;
2001 struct sk_buff *tail;
2002 unsigned int hdrlen;
2003 bool fragstolen;
2004 u32 gso_segs;
2005 u32 gso_size;
2006 int delta;
2007
2008 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2009 * we can fix skb->truesize to its real value to avoid future drops.
2010 * This is valid because skb is not yet charged to the socket.
2011 * It has been noticed pure SACK packets were sometimes dropped
2012 * (if cooked by drivers without copybreak feature).
2013 */
2014 skb_condense(skb);
2015
2016 skb_dst_drop(skb);
2017
2018 if (unlikely(tcp_checksum_complete(skb))) {
2019 bh_unlock_sock(sk);
2020 trace_tcp_bad_csum(skb);
2021 *reason = SKB_DROP_REASON_TCP_CSUM;
2022 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2023 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2024 return true;
2025 }
2026
2027 /* Attempt coalescing to last skb in backlog, even if we are
2028 * above the limits.
2029 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2030 */
2031 th = (const struct tcphdr *)skb->data;
2032 hdrlen = th->doff * 4;
2033
2034 tail = sk->sk_backlog.tail;
2035 if (!tail)
2036 goto no_coalesce;
2037 thtail = (struct tcphdr *)tail->data;
2038
2039 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2040 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2041 ((TCP_SKB_CB(tail)->tcp_flags |
2042 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2043 !((TCP_SKB_CB(tail)->tcp_flags &
2044 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2045 ((TCP_SKB_CB(tail)->tcp_flags ^
2046 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2047#ifdef CONFIG_TLS_DEVICE
2048 tail->decrypted != skb->decrypted ||
2049#endif
2050 !mptcp_skb_can_collapse(tail, skb) ||
2051 thtail->doff != th->doff ||
2052 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2053 goto no_coalesce;
2054
2055 __skb_pull(skb, hdrlen);
2056
2057 shinfo = skb_shinfo(skb);
2058 gso_size = shinfo->gso_size ?: skb->len;
2059 gso_segs = shinfo->gso_segs ?: 1;
2060
2061 shinfo = skb_shinfo(tail);
2062 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2063 tail_gso_segs = shinfo->gso_segs ?: 1;
2064
2065 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2066 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2067
2068 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2069 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2070 thtail->window = th->window;
2071 }
2072
2073 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2074 * thtail->fin, so that the fast path in tcp_rcv_established()
2075 * is not entered if we append a packet with a FIN.
2076 * SYN, RST, URG are not present.
2077 * ACK is set on both packets.
2078 * PSH : we do not really care in TCP stack,
2079 * at least for 'GRO' packets.
2080 */
2081 thtail->fin |= th->fin;
2082 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2083
2084 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2085 TCP_SKB_CB(tail)->has_rxtstamp = true;
2086 tail->tstamp = skb->tstamp;
2087 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2088 }
2089
2090 /* Not as strict as GRO. We only need to carry mss max value */
2091 shinfo->gso_size = max(gso_size, tail_gso_size);
2092 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2093
2094 sk->sk_backlog.len += delta;
2095 __NET_INC_STATS(sock_net(sk),
2096 LINUX_MIB_TCPBACKLOGCOALESCE);
2097 kfree_skb_partial(skb, fragstolen);
2098 return false;
2099 }
2100 __skb_push(skb, hdrlen);
2101
2102no_coalesce:
2103 limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
2104
2105 /* Only socket owner can try to collapse/prune rx queues
2106 * to reduce memory overhead, so add a little headroom here.
2107 * Few sockets backlog are possibly concurrently non empty.
2108 */
2109 limit += 64 * 1024;
2110
2111 if (unlikely(sk_add_backlog(sk, skb, limit))) {
2112 bh_unlock_sock(sk);
2113 *reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2114 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2115 return true;
2116 }
2117 return false;
2118}
2119EXPORT_SYMBOL(tcp_add_backlog);
2120
2121int tcp_filter(struct sock *sk, struct sk_buff *skb)
2122{
2123 struct tcphdr *th = (struct tcphdr *)skb->data;
2124
2125 return sk_filter_trim_cap(sk, skb, th->doff * 4);
2126}
2127EXPORT_SYMBOL(tcp_filter);
2128
2129static void tcp_v4_restore_cb(struct sk_buff *skb)
2130{
2131 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2132 sizeof(struct inet_skb_parm));
2133}
2134
2135static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2136 const struct tcphdr *th)
2137{
2138 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2139 * barrier() makes sure compiler wont play fool^Waliasing games.
2140 */
2141 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2142 sizeof(struct inet_skb_parm));
2143 barrier();
2144
2145 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2146 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2147 skb->len - th->doff * 4);
2148 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2149 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2150 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
2151 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2152 TCP_SKB_CB(skb)->sacked = 0;
2153 TCP_SKB_CB(skb)->has_rxtstamp =
2154 skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2155}
2156
2157/*
2158 * From tcp_input.c
2159 */
2160
2161int tcp_v4_rcv(struct sk_buff *skb)
2162{
2163 struct net *net = dev_net(skb->dev);
2164 enum skb_drop_reason drop_reason;
2165 int sdif = inet_sdif(skb);
2166 int dif = inet_iif(skb);
2167 const struct iphdr *iph;
2168 const struct tcphdr *th;
2169 bool refcounted;
2170 struct sock *sk;
2171 int ret;
2172
2173 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2174 if (skb->pkt_type != PACKET_HOST)
2175 goto discard_it;
2176
2177 /* Count it even if it's bad */
2178 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
2179
2180 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2181 goto discard_it;
2182
2183 th = (const struct tcphdr *)skb->data;
2184
2185 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2186 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2187 goto bad_packet;
2188 }
2189 if (!pskb_may_pull(skb, th->doff * 4))
2190 goto discard_it;
2191
2192 /* An explanation is required here, I think.
2193 * Packet length and doff are validated by header prediction,
2194 * provided case of th->doff==0 is eliminated.
2195 * So, we defer the checks. */
2196
2197 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2198 goto csum_error;
2199
2200 th = (const struct tcphdr *)skb->data;
2201 iph = ip_hdr(skb);
2202lookup:
2203 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2204 skb, __tcp_hdrlen(th), th->source,
2205 th->dest, sdif, &refcounted);
2206 if (!sk)
2207 goto no_tcp_socket;
2208
2209process:
2210 if (sk->sk_state == TCP_TIME_WAIT)
2211 goto do_time_wait;
2212
2213 if (sk->sk_state == TCP_NEW_SYN_RECV) {
2214 struct request_sock *req = inet_reqsk(sk);
2215 bool req_stolen = false;
2216 struct sock *nsk;
2217
2218 sk = req->rsk_listener;
2219 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2220 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2221 else
2222 drop_reason = tcp_inbound_hash(sk, req, skb,
2223 &iph->saddr, &iph->daddr,
2224 AF_INET, dif, sdif);
2225 if (unlikely(drop_reason)) {
2226 sk_drops_add(sk, skb);
2227 reqsk_put(req);
2228 goto discard_it;
2229 }
2230 if (tcp_checksum_complete(skb)) {
2231 reqsk_put(req);
2232 goto csum_error;
2233 }
2234 if (unlikely(sk->sk_state != TCP_LISTEN)) {
2235 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2236 if (!nsk) {
2237 inet_csk_reqsk_queue_drop_and_put(sk, req);
2238 goto lookup;
2239 }
2240 sk = nsk;
2241 /* reuseport_migrate_sock() has already held one sk_refcnt
2242 * before returning.
2243 */
2244 } else {
2245 /* We own a reference on the listener, increase it again
2246 * as we might lose it too soon.
2247 */
2248 sock_hold(sk);
2249 }
2250 refcounted = true;
2251 nsk = NULL;
2252 if (!tcp_filter(sk, skb)) {
2253 th = (const struct tcphdr *)skb->data;
2254 iph = ip_hdr(skb);
2255 tcp_v4_fill_cb(skb, iph, th);
2256 nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2257 } else {
2258 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2259 }
2260 if (!nsk) {
2261 reqsk_put(req);
2262 if (req_stolen) {
2263 /* Another cpu got exclusive access to req
2264 * and created a full blown socket.
2265 * Try to feed this packet to this socket
2266 * instead of discarding it.
2267 */
2268 tcp_v4_restore_cb(skb);
2269 sock_put(sk);
2270 goto lookup;
2271 }
2272 goto discard_and_relse;
2273 }
2274 nf_reset_ct(skb);
2275 if (nsk == sk) {
2276 reqsk_put(req);
2277 tcp_v4_restore_cb(skb);
2278 } else if (tcp_child_process(sk, nsk, skb)) {
2279 tcp_v4_send_reset(nsk, skb);
2280 goto discard_and_relse;
2281 } else {
2282 sock_put(sk);
2283 return 0;
2284 }
2285 }
2286
2287 if (static_branch_unlikely(&ip4_min_ttl)) {
2288 /* min_ttl can be changed concurrently from do_ip_setsockopt() */
2289 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2290 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2291 drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2292 goto discard_and_relse;
2293 }
2294 }
2295
2296 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2297 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2298 goto discard_and_relse;
2299 }
2300
2301 drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2302 AF_INET, dif, sdif);
2303 if (drop_reason)
2304 goto discard_and_relse;
2305
2306 nf_reset_ct(skb);
2307
2308 if (tcp_filter(sk, skb)) {
2309 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2310 goto discard_and_relse;
2311 }
2312 th = (const struct tcphdr *)skb->data;
2313 iph = ip_hdr(skb);
2314 tcp_v4_fill_cb(skb, iph, th);
2315
2316 skb->dev = NULL;
2317
2318 if (sk->sk_state == TCP_LISTEN) {
2319 ret = tcp_v4_do_rcv(sk, skb);
2320 goto put_and_return;
2321 }
2322
2323 sk_incoming_cpu_update(sk);
2324
2325 bh_lock_sock_nested(sk);
2326 tcp_segs_in(tcp_sk(sk), skb);
2327 ret = 0;
2328 if (!sock_owned_by_user(sk)) {
2329 ret = tcp_v4_do_rcv(sk, skb);
2330 } else {
2331 if (tcp_add_backlog(sk, skb, &drop_reason))
2332 goto discard_and_relse;
2333 }
2334 bh_unlock_sock(sk);
2335
2336put_and_return:
2337 if (refcounted)
2338 sock_put(sk);
2339
2340 return ret;
2341
2342no_tcp_socket:
2343 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2344 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2345 goto discard_it;
2346
2347 tcp_v4_fill_cb(skb, iph, th);
2348
2349 if (tcp_checksum_complete(skb)) {
2350csum_error:
2351 drop_reason = SKB_DROP_REASON_TCP_CSUM;
2352 trace_tcp_bad_csum(skb);
2353 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2354bad_packet:
2355 __TCP_INC_STATS(net, TCP_MIB_INERRS);
2356 } else {
2357 tcp_v4_send_reset(NULL, skb);
2358 }
2359
2360discard_it:
2361 SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2362 /* Discard frame. */
2363 kfree_skb_reason(skb, drop_reason);
2364 return 0;
2365
2366discard_and_relse:
2367 sk_drops_add(sk, skb);
2368 if (refcounted)
2369 sock_put(sk);
2370 goto discard_it;
2371
2372do_time_wait:
2373 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2374 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2375 inet_twsk_put(inet_twsk(sk));
2376 goto discard_it;
2377 }
2378
2379 tcp_v4_fill_cb(skb, iph, th);
2380
2381 if (tcp_checksum_complete(skb)) {
2382 inet_twsk_put(inet_twsk(sk));
2383 goto csum_error;
2384 }
2385 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2386 case TCP_TW_SYN: {
2387 struct sock *sk2 = inet_lookup_listener(net,
2388 net->ipv4.tcp_death_row.hashinfo,
2389 skb, __tcp_hdrlen(th),
2390 iph->saddr, th->source,
2391 iph->daddr, th->dest,
2392 inet_iif(skb),
2393 sdif);
2394 if (sk2) {
2395 inet_twsk_deschedule_put(inet_twsk(sk));
2396 sk = sk2;
2397 tcp_v4_restore_cb(skb);
2398 refcounted = false;
2399 goto process;
2400 }
2401 }
2402 /* to ACK */
2403 fallthrough;
2404 case TCP_TW_ACK:
2405 tcp_v4_timewait_ack(sk, skb);
2406 break;
2407 case TCP_TW_RST:
2408 tcp_v4_send_reset(sk, skb);
2409 inet_twsk_deschedule_put(inet_twsk(sk));
2410 goto discard_it;
2411 case TCP_TW_SUCCESS:;
2412 }
2413 goto discard_it;
2414}
2415
2416static struct timewait_sock_ops tcp_timewait_sock_ops = {
2417 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2418 .twsk_unique = tcp_twsk_unique,
2419 .twsk_destructor= tcp_twsk_destructor,
2420};
2421
2422void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2423{
2424 struct dst_entry *dst = skb_dst(skb);
2425
2426 if (dst && dst_hold_safe(dst)) {
2427 rcu_assign_pointer(sk->sk_rx_dst, dst);
2428 sk->sk_rx_dst_ifindex = skb->skb_iif;
2429 }
2430}
2431EXPORT_SYMBOL(inet_sk_rx_dst_set);
2432
2433const struct inet_connection_sock_af_ops ipv4_specific = {
2434 .queue_xmit = ip_queue_xmit,
2435 .send_check = tcp_v4_send_check,
2436 .rebuild_header = inet_sk_rebuild_header,
2437 .sk_rx_dst_set = inet_sk_rx_dst_set,
2438 .conn_request = tcp_v4_conn_request,
2439 .syn_recv_sock = tcp_v4_syn_recv_sock,
2440 .net_header_len = sizeof(struct iphdr),
2441 .setsockopt = ip_setsockopt,
2442 .getsockopt = ip_getsockopt,
2443 .addr2sockaddr = inet_csk_addr2sockaddr,
2444 .sockaddr_len = sizeof(struct sockaddr_in),
2445 .mtu_reduced = tcp_v4_mtu_reduced,
2446};
2447EXPORT_SYMBOL(ipv4_specific);
2448
2449#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2450static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2451#ifdef CONFIG_TCP_MD5SIG
2452 .md5_lookup = tcp_v4_md5_lookup,
2453 .calc_md5_hash = tcp_v4_md5_hash_skb,
2454 .md5_parse = tcp_v4_parse_md5_keys,
2455#endif
2456#ifdef CONFIG_TCP_AO
2457 .ao_lookup = tcp_v4_ao_lookup,
2458 .calc_ao_hash = tcp_v4_ao_hash_skb,
2459 .ao_parse = tcp_v4_parse_ao,
2460 .ao_calc_key_sk = tcp_v4_ao_calc_key_sk,
2461#endif
2462};
2463#endif
2464
2465/* NOTE: A lot of things set to zero explicitly by call to
2466 * sk_alloc() so need not be done here.
2467 */
2468static int tcp_v4_init_sock(struct sock *sk)
2469{
2470 struct inet_connection_sock *icsk = inet_csk(sk);
2471
2472 tcp_init_sock(sk);
2473
2474 icsk->icsk_af_ops = &ipv4_specific;
2475
2476#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2477 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2478#endif
2479
2480 return 0;
2481}
2482
2483#ifdef CONFIG_TCP_MD5SIG
2484static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2485{
2486 struct tcp_md5sig_info *md5sig;
2487
2488 md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2489 kfree(md5sig);
2490 static_branch_slow_dec_deferred(&tcp_md5_needed);
2491 tcp_md5_release_sigpool();
2492}
2493#endif
2494
2495void tcp_v4_destroy_sock(struct sock *sk)
2496{
2497 struct tcp_sock *tp = tcp_sk(sk);
2498
2499 trace_tcp_destroy_sock(sk);
2500
2501 tcp_clear_xmit_timers(sk);
2502
2503 tcp_cleanup_congestion_control(sk);
2504
2505 tcp_cleanup_ulp(sk);
2506
2507 /* Cleanup up the write buffer. */
2508 tcp_write_queue_purge(sk);
2509
2510 /* Check if we want to disable active TFO */
2511 tcp_fastopen_active_disable_ofo_check(sk);
2512
2513 /* Cleans up our, hopefully empty, out_of_order_queue. */
2514 skb_rbtree_purge(&tp->out_of_order_queue);
2515
2516#ifdef CONFIG_TCP_MD5SIG
2517 /* Clean up the MD5 key list, if any */
2518 if (tp->md5sig_info) {
2519 struct tcp_md5sig_info *md5sig;
2520
2521 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2522 tcp_clear_md5_list(sk);
2523 call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2524 rcu_assign_pointer(tp->md5sig_info, NULL);
2525 }
2526#endif
2527 tcp_ao_destroy_sock(sk, false);
2528
2529 /* Clean up a referenced TCP bind bucket. */
2530 if (inet_csk(sk)->icsk_bind_hash)
2531 inet_put_port(sk);
2532
2533 BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2534
2535 /* If socket is aborted during connect operation */
2536 tcp_free_fastopen_req(tp);
2537 tcp_fastopen_destroy_cipher(sk);
2538 tcp_saved_syn_free(tp);
2539
2540 sk_sockets_allocated_dec(sk);
2541}
2542EXPORT_SYMBOL(tcp_v4_destroy_sock);
2543
2544#ifdef CONFIG_PROC_FS
2545/* Proc filesystem TCP sock list dumping. */
2546
2547static unsigned short seq_file_family(const struct seq_file *seq);
2548
2549static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2550{
2551 unsigned short family = seq_file_family(seq);
2552
2553 /* AF_UNSPEC is used as a match all */
2554 return ((family == AF_UNSPEC || family == sk->sk_family) &&
2555 net_eq(sock_net(sk), seq_file_net(seq)));
2556}
2557
2558/* Find a non empty bucket (starting from st->bucket)
2559 * and return the first sk from it.
2560 */
2561static void *listening_get_first(struct seq_file *seq)
2562{
2563 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2564 struct tcp_iter_state *st = seq->private;
2565
2566 st->offset = 0;
2567 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2568 struct inet_listen_hashbucket *ilb2;
2569 struct hlist_nulls_node *node;
2570 struct sock *sk;
2571
2572 ilb2 = &hinfo->lhash2[st->bucket];
2573 if (hlist_nulls_empty(&ilb2->nulls_head))
2574 continue;
2575
2576 spin_lock(&ilb2->lock);
2577 sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2578 if (seq_sk_match(seq, sk))
2579 return sk;
2580 }
2581 spin_unlock(&ilb2->lock);
2582 }
2583
2584 return NULL;
2585}
2586
2587/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2588 * If "cur" is the last one in the st->bucket,
2589 * call listening_get_first() to return the first sk of the next
2590 * non empty bucket.
2591 */
2592static void *listening_get_next(struct seq_file *seq, void *cur)
2593{
2594 struct tcp_iter_state *st = seq->private;
2595 struct inet_listen_hashbucket *ilb2;
2596 struct hlist_nulls_node *node;
2597 struct inet_hashinfo *hinfo;
2598 struct sock *sk = cur;
2599
2600 ++st->num;
2601 ++st->offset;
2602
2603 sk = sk_nulls_next(sk);
2604 sk_nulls_for_each_from(sk, node) {
2605 if (seq_sk_match(seq, sk))
2606 return sk;
2607 }
2608
2609 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2610 ilb2 = &hinfo->lhash2[st->bucket];
2611 spin_unlock(&ilb2->lock);
2612 ++st->bucket;
2613 return listening_get_first(seq);
2614}
2615
2616static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2617{
2618 struct tcp_iter_state *st = seq->private;
2619 void *rc;
2620
2621 st->bucket = 0;
2622 st->offset = 0;
2623 rc = listening_get_first(seq);
2624
2625 while (rc && *pos) {
2626 rc = listening_get_next(seq, rc);
2627 --*pos;
2628 }
2629 return rc;
2630}
2631
2632static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2633 const struct tcp_iter_state *st)
2634{
2635 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2636}
2637
2638/*
2639 * Get first established socket starting from bucket given in st->bucket.
2640 * If st->bucket is zero, the very first socket in the hash is returned.
2641 */
2642static void *established_get_first(struct seq_file *seq)
2643{
2644 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2645 struct tcp_iter_state *st = seq->private;
2646
2647 st->offset = 0;
2648 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2649 struct sock *sk;
2650 struct hlist_nulls_node *node;
2651 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2652
2653 cond_resched();
2654
2655 /* Lockless fast path for the common case of empty buckets */
2656 if (empty_bucket(hinfo, st))
2657 continue;
2658
2659 spin_lock_bh(lock);
2660 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2661 if (seq_sk_match(seq, sk))
2662 return sk;
2663 }
2664 spin_unlock_bh(lock);
2665 }
2666
2667 return NULL;
2668}
2669
2670static void *established_get_next(struct seq_file *seq, void *cur)
2671{
2672 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2673 struct tcp_iter_state *st = seq->private;
2674 struct hlist_nulls_node *node;
2675 struct sock *sk = cur;
2676
2677 ++st->num;
2678 ++st->offset;
2679
2680 sk = sk_nulls_next(sk);
2681
2682 sk_nulls_for_each_from(sk, node) {
2683 if (seq_sk_match(seq, sk))
2684 return sk;
2685 }
2686
2687 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2688 ++st->bucket;
2689 return established_get_first(seq);
2690}
2691
2692static void *established_get_idx(struct seq_file *seq, loff_t pos)
2693{
2694 struct tcp_iter_state *st = seq->private;
2695 void *rc;
2696
2697 st->bucket = 0;
2698 rc = established_get_first(seq);
2699
2700 while (rc && pos) {
2701 rc = established_get_next(seq, rc);
2702 --pos;
2703 }
2704 return rc;
2705}
2706
2707static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2708{
2709 void *rc;
2710 struct tcp_iter_state *st = seq->private;
2711
2712 st->state = TCP_SEQ_STATE_LISTENING;
2713 rc = listening_get_idx(seq, &pos);
2714
2715 if (!rc) {
2716 st->state = TCP_SEQ_STATE_ESTABLISHED;
2717 rc = established_get_idx(seq, pos);
2718 }
2719
2720 return rc;
2721}
2722
2723static void *tcp_seek_last_pos(struct seq_file *seq)
2724{
2725 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2726 struct tcp_iter_state *st = seq->private;
2727 int bucket = st->bucket;
2728 int offset = st->offset;
2729 int orig_num = st->num;
2730 void *rc = NULL;
2731
2732 switch (st->state) {
2733 case TCP_SEQ_STATE_LISTENING:
2734 if (st->bucket > hinfo->lhash2_mask)
2735 break;
2736 rc = listening_get_first(seq);
2737 while (offset-- && rc && bucket == st->bucket)
2738 rc = listening_get_next(seq, rc);
2739 if (rc)
2740 break;
2741 st->bucket = 0;
2742 st->state = TCP_SEQ_STATE_ESTABLISHED;
2743 fallthrough;
2744 case TCP_SEQ_STATE_ESTABLISHED:
2745 if (st->bucket > hinfo->ehash_mask)
2746 break;
2747 rc = established_get_first(seq);
2748 while (offset-- && rc && bucket == st->bucket)
2749 rc = established_get_next(seq, rc);
2750 }
2751
2752 st->num = orig_num;
2753
2754 return rc;
2755}
2756
2757void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2758{
2759 struct tcp_iter_state *st = seq->private;
2760 void *rc;
2761
2762 if (*pos && *pos == st->last_pos) {
2763 rc = tcp_seek_last_pos(seq);
2764 if (rc)
2765 goto out;
2766 }
2767
2768 st->state = TCP_SEQ_STATE_LISTENING;
2769 st->num = 0;
2770 st->bucket = 0;
2771 st->offset = 0;
2772 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2773
2774out:
2775 st->last_pos = *pos;
2776 return rc;
2777}
2778EXPORT_SYMBOL(tcp_seq_start);
2779
2780void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2781{
2782 struct tcp_iter_state *st = seq->private;
2783 void *rc = NULL;
2784
2785 if (v == SEQ_START_TOKEN) {
2786 rc = tcp_get_idx(seq, 0);
2787 goto out;
2788 }
2789
2790 switch (st->state) {
2791 case TCP_SEQ_STATE_LISTENING:
2792 rc = listening_get_next(seq, v);
2793 if (!rc) {
2794 st->state = TCP_SEQ_STATE_ESTABLISHED;
2795 st->bucket = 0;
2796 st->offset = 0;
2797 rc = established_get_first(seq);
2798 }
2799 break;
2800 case TCP_SEQ_STATE_ESTABLISHED:
2801 rc = established_get_next(seq, v);
2802 break;
2803 }
2804out:
2805 ++*pos;
2806 st->last_pos = *pos;
2807 return rc;
2808}
2809EXPORT_SYMBOL(tcp_seq_next);
2810
2811void tcp_seq_stop(struct seq_file *seq, void *v)
2812{
2813 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2814 struct tcp_iter_state *st = seq->private;
2815
2816 switch (st->state) {
2817 case TCP_SEQ_STATE_LISTENING:
2818 if (v != SEQ_START_TOKEN)
2819 spin_unlock(&hinfo->lhash2[st->bucket].lock);
2820 break;
2821 case TCP_SEQ_STATE_ESTABLISHED:
2822 if (v)
2823 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2824 break;
2825 }
2826}
2827EXPORT_SYMBOL(tcp_seq_stop);
2828
2829static void get_openreq4(const struct request_sock *req,
2830 struct seq_file *f, int i)
2831{
2832 const struct inet_request_sock *ireq = inet_rsk(req);
2833 long delta = req->rsk_timer.expires - jiffies;
2834
2835 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2836 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2837 i,
2838 ireq->ir_loc_addr,
2839 ireq->ir_num,
2840 ireq->ir_rmt_addr,
2841 ntohs(ireq->ir_rmt_port),
2842 TCP_SYN_RECV,
2843 0, 0, /* could print option size, but that is af dependent. */
2844 1, /* timers active (only the expire timer) */
2845 jiffies_delta_to_clock_t(delta),
2846 req->num_timeout,
2847 from_kuid_munged(seq_user_ns(f),
2848 sock_i_uid(req->rsk_listener)),
2849 0, /* non standard timer */
2850 0, /* open_requests have no inode */
2851 0,
2852 req);
2853}
2854
2855static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2856{
2857 int timer_active;
2858 unsigned long timer_expires;
2859 const struct tcp_sock *tp = tcp_sk(sk);
2860 const struct inet_connection_sock *icsk = inet_csk(sk);
2861 const struct inet_sock *inet = inet_sk(sk);
2862 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2863 __be32 dest = inet->inet_daddr;
2864 __be32 src = inet->inet_rcv_saddr;
2865 __u16 destp = ntohs(inet->inet_dport);
2866 __u16 srcp = ntohs(inet->inet_sport);
2867 int rx_queue;
2868 int state;
2869
2870 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2871 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2872 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2873 timer_active = 1;
2874 timer_expires = icsk->icsk_timeout;
2875 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2876 timer_active = 4;
2877 timer_expires = icsk->icsk_timeout;
2878 } else if (timer_pending(&sk->sk_timer)) {
2879 timer_active = 2;
2880 timer_expires = sk->sk_timer.expires;
2881 } else {
2882 timer_active = 0;
2883 timer_expires = jiffies;
2884 }
2885
2886 state = inet_sk_state_load(sk);
2887 if (state == TCP_LISTEN)
2888 rx_queue = READ_ONCE(sk->sk_ack_backlog);
2889 else
2890 /* Because we don't lock the socket,
2891 * we might find a transient negative value.
2892 */
2893 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2894 READ_ONCE(tp->copied_seq), 0);
2895
2896 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2897 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2898 i, src, srcp, dest, destp, state,
2899 READ_ONCE(tp->write_seq) - tp->snd_una,
2900 rx_queue,
2901 timer_active,
2902 jiffies_delta_to_clock_t(timer_expires - jiffies),
2903 icsk->icsk_retransmits,
2904 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2905 icsk->icsk_probes_out,
2906 sock_i_ino(sk),
2907 refcount_read(&sk->sk_refcnt), sk,
2908 jiffies_to_clock_t(icsk->icsk_rto),
2909 jiffies_to_clock_t(icsk->icsk_ack.ato),
2910 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2911 tcp_snd_cwnd(tp),
2912 state == TCP_LISTEN ?
2913 fastopenq->max_qlen :
2914 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2915}
2916
2917static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2918 struct seq_file *f, int i)
2919{
2920 long delta = tw->tw_timer.expires - jiffies;
2921 __be32 dest, src;
2922 __u16 destp, srcp;
2923
2924 dest = tw->tw_daddr;
2925 src = tw->tw_rcv_saddr;
2926 destp = ntohs(tw->tw_dport);
2927 srcp = ntohs(tw->tw_sport);
2928
2929 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2930 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2931 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2932 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2933 refcount_read(&tw->tw_refcnt), tw);
2934}
2935
2936#define TMPSZ 150
2937
2938static int tcp4_seq_show(struct seq_file *seq, void *v)
2939{
2940 struct tcp_iter_state *st;
2941 struct sock *sk = v;
2942
2943 seq_setwidth(seq, TMPSZ - 1);
2944 if (v == SEQ_START_TOKEN) {
2945 seq_puts(seq, " sl local_address rem_address st tx_queue "
2946 "rx_queue tr tm->when retrnsmt uid timeout "
2947 "inode");
2948 goto out;
2949 }
2950 st = seq->private;
2951
2952 if (sk->sk_state == TCP_TIME_WAIT)
2953 get_timewait4_sock(v, seq, st->num);
2954 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2955 get_openreq4(v, seq, st->num);
2956 else
2957 get_tcp4_sock(v, seq, st->num);
2958out:
2959 seq_pad(seq, '\n');
2960 return 0;
2961}
2962
2963#ifdef CONFIG_BPF_SYSCALL
2964struct bpf_tcp_iter_state {
2965 struct tcp_iter_state state;
2966 unsigned int cur_sk;
2967 unsigned int end_sk;
2968 unsigned int max_sk;
2969 struct sock **batch;
2970 bool st_bucket_done;
2971};
2972
2973struct bpf_iter__tcp {
2974 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2975 __bpf_md_ptr(struct sock_common *, sk_common);
2976 uid_t uid __aligned(8);
2977};
2978
2979static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2980 struct sock_common *sk_common, uid_t uid)
2981{
2982 struct bpf_iter__tcp ctx;
2983
2984 meta->seq_num--; /* skip SEQ_START_TOKEN */
2985 ctx.meta = meta;
2986 ctx.sk_common = sk_common;
2987 ctx.uid = uid;
2988 return bpf_iter_run_prog(prog, &ctx);
2989}
2990
2991static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2992{
2993 while (iter->cur_sk < iter->end_sk)
2994 sock_gen_put(iter->batch[iter->cur_sk++]);
2995}
2996
2997static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2998 unsigned int new_batch_sz)
2999{
3000 struct sock **new_batch;
3001
3002 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3003 GFP_USER | __GFP_NOWARN);
3004 if (!new_batch)
3005 return -ENOMEM;
3006
3007 bpf_iter_tcp_put_batch(iter);
3008 kvfree(iter->batch);
3009 iter->batch = new_batch;
3010 iter->max_sk = new_batch_sz;
3011
3012 return 0;
3013}
3014
3015static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3016 struct sock *start_sk)
3017{
3018 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3019 struct bpf_tcp_iter_state *iter = seq->private;
3020 struct tcp_iter_state *st = &iter->state;
3021 struct hlist_nulls_node *node;
3022 unsigned int expected = 1;
3023 struct sock *sk;
3024
3025 sock_hold(start_sk);
3026 iter->batch[iter->end_sk++] = start_sk;
3027
3028 sk = sk_nulls_next(start_sk);
3029 sk_nulls_for_each_from(sk, node) {
3030 if (seq_sk_match(seq, sk)) {
3031 if (iter->end_sk < iter->max_sk) {
3032 sock_hold(sk);
3033 iter->batch[iter->end_sk++] = sk;
3034 }
3035 expected++;
3036 }
3037 }
3038 spin_unlock(&hinfo->lhash2[st->bucket].lock);
3039
3040 return expected;
3041}
3042
3043static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3044 struct sock *start_sk)
3045{
3046 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3047 struct bpf_tcp_iter_state *iter = seq->private;
3048 struct tcp_iter_state *st = &iter->state;
3049 struct hlist_nulls_node *node;
3050 unsigned int expected = 1;
3051 struct sock *sk;
3052
3053 sock_hold(start_sk);
3054 iter->batch[iter->end_sk++] = start_sk;
3055
3056 sk = sk_nulls_next(start_sk);
3057 sk_nulls_for_each_from(sk, node) {
3058 if (seq_sk_match(seq, sk)) {
3059 if (iter->end_sk < iter->max_sk) {
3060 sock_hold(sk);
3061 iter->batch[iter->end_sk++] = sk;
3062 }
3063 expected++;
3064 }
3065 }
3066 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3067
3068 return expected;
3069}
3070
3071static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3072{
3073 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3074 struct bpf_tcp_iter_state *iter = seq->private;
3075 struct tcp_iter_state *st = &iter->state;
3076 unsigned int expected;
3077 bool resized = false;
3078 struct sock *sk;
3079
3080 /* The st->bucket is done. Directly advance to the next
3081 * bucket instead of having the tcp_seek_last_pos() to skip
3082 * one by one in the current bucket and eventually find out
3083 * it has to advance to the next bucket.
3084 */
3085 if (iter->st_bucket_done) {
3086 st->offset = 0;
3087 st->bucket++;
3088 if (st->state == TCP_SEQ_STATE_LISTENING &&
3089 st->bucket > hinfo->lhash2_mask) {
3090 st->state = TCP_SEQ_STATE_ESTABLISHED;
3091 st->bucket = 0;
3092 }
3093 }
3094
3095again:
3096 /* Get a new batch */
3097 iter->cur_sk = 0;
3098 iter->end_sk = 0;
3099 iter->st_bucket_done = false;
3100
3101 sk = tcp_seek_last_pos(seq);
3102 if (!sk)
3103 return NULL; /* Done */
3104
3105 if (st->state == TCP_SEQ_STATE_LISTENING)
3106 expected = bpf_iter_tcp_listening_batch(seq, sk);
3107 else
3108 expected = bpf_iter_tcp_established_batch(seq, sk);
3109
3110 if (iter->end_sk == expected) {
3111 iter->st_bucket_done = true;
3112 return sk;
3113 }
3114
3115 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3116 resized = true;
3117 goto again;
3118 }
3119
3120 return sk;
3121}
3122
3123static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3124{
3125 /* bpf iter does not support lseek, so it always
3126 * continue from where it was stop()-ped.
3127 */
3128 if (*pos)
3129 return bpf_iter_tcp_batch(seq);
3130
3131 return SEQ_START_TOKEN;
3132}
3133
3134static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3135{
3136 struct bpf_tcp_iter_state *iter = seq->private;
3137 struct tcp_iter_state *st = &iter->state;
3138 struct sock *sk;
3139
3140 /* Whenever seq_next() is called, the iter->cur_sk is
3141 * done with seq_show(), so advance to the next sk in
3142 * the batch.
3143 */
3144 if (iter->cur_sk < iter->end_sk) {
3145 /* Keeping st->num consistent in tcp_iter_state.
3146 * bpf_iter_tcp does not use st->num.
3147 * meta.seq_num is used instead.
3148 */
3149 st->num++;
3150 /* Move st->offset to the next sk in the bucket such that
3151 * the future start() will resume at st->offset in
3152 * st->bucket. See tcp_seek_last_pos().
3153 */
3154 st->offset++;
3155 sock_gen_put(iter->batch[iter->cur_sk++]);
3156 }
3157
3158 if (iter->cur_sk < iter->end_sk)
3159 sk = iter->batch[iter->cur_sk];
3160 else
3161 sk = bpf_iter_tcp_batch(seq);
3162
3163 ++*pos;
3164 /* Keeping st->last_pos consistent in tcp_iter_state.
3165 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3166 */
3167 st->last_pos = *pos;
3168 return sk;
3169}
3170
3171static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3172{
3173 struct bpf_iter_meta meta;
3174 struct bpf_prog *prog;
3175 struct sock *sk = v;
3176 uid_t uid;
3177 int ret;
3178
3179 if (v == SEQ_START_TOKEN)
3180 return 0;
3181
3182 if (sk_fullsock(sk))
3183 lock_sock(sk);
3184
3185 if (unlikely(sk_unhashed(sk))) {
3186 ret = SEQ_SKIP;
3187 goto unlock;
3188 }
3189
3190 if (sk->sk_state == TCP_TIME_WAIT) {
3191 uid = 0;
3192 } else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3193 const struct request_sock *req = v;
3194
3195 uid = from_kuid_munged(seq_user_ns(seq),
3196 sock_i_uid(req->rsk_listener));
3197 } else {
3198 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3199 }
3200
3201 meta.seq = seq;
3202 prog = bpf_iter_get_info(&meta, false);
3203 ret = tcp_prog_seq_show(prog, &meta, v, uid);
3204
3205unlock:
3206 if (sk_fullsock(sk))
3207 release_sock(sk);
3208 return ret;
3209
3210}
3211
3212static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3213{
3214 struct bpf_tcp_iter_state *iter = seq->private;
3215 struct bpf_iter_meta meta;
3216 struct bpf_prog *prog;
3217
3218 if (!v) {
3219 meta.seq = seq;
3220 prog = bpf_iter_get_info(&meta, true);
3221 if (prog)
3222 (void)tcp_prog_seq_show(prog, &meta, v, 0);
3223 }
3224
3225 if (iter->cur_sk < iter->end_sk) {
3226 bpf_iter_tcp_put_batch(iter);
3227 iter->st_bucket_done = false;
3228 }
3229}
3230
3231static const struct seq_operations bpf_iter_tcp_seq_ops = {
3232 .show = bpf_iter_tcp_seq_show,
3233 .start = bpf_iter_tcp_seq_start,
3234 .next = bpf_iter_tcp_seq_next,
3235 .stop = bpf_iter_tcp_seq_stop,
3236};
3237#endif
3238static unsigned short seq_file_family(const struct seq_file *seq)
3239{
3240 const struct tcp_seq_afinfo *afinfo;
3241
3242#ifdef CONFIG_BPF_SYSCALL
3243 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */
3244 if (seq->op == &bpf_iter_tcp_seq_ops)
3245 return AF_UNSPEC;
3246#endif
3247
3248 /* Iterated from proc fs */
3249 afinfo = pde_data(file_inode(seq->file));
3250 return afinfo->family;
3251}
3252
3253static const struct seq_operations tcp4_seq_ops = {
3254 .show = tcp4_seq_show,
3255 .start = tcp_seq_start,
3256 .next = tcp_seq_next,
3257 .stop = tcp_seq_stop,
3258};
3259
3260static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3261 .family = AF_INET,
3262};
3263
3264static int __net_init tcp4_proc_init_net(struct net *net)
3265{
3266 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3267 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3268 return -ENOMEM;
3269 return 0;
3270}
3271
3272static void __net_exit tcp4_proc_exit_net(struct net *net)
3273{
3274 remove_proc_entry("tcp", net->proc_net);
3275}
3276
3277static struct pernet_operations tcp4_net_ops = {
3278 .init = tcp4_proc_init_net,
3279 .exit = tcp4_proc_exit_net,
3280};
3281
3282int __init tcp4_proc_init(void)
3283{
3284 return register_pernet_subsys(&tcp4_net_ops);
3285}
3286
3287void tcp4_proc_exit(void)
3288{
3289 unregister_pernet_subsys(&tcp4_net_ops);
3290}
3291#endif /* CONFIG_PROC_FS */
3292
3293/* @wake is one when sk_stream_write_space() calls us.
3294 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3295 * This mimics the strategy used in sock_def_write_space().
3296 */
3297bool tcp_stream_memory_free(const struct sock *sk, int wake)
3298{
3299 const struct tcp_sock *tp = tcp_sk(sk);
3300 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3301 READ_ONCE(tp->snd_nxt);
3302
3303 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3304}
3305EXPORT_SYMBOL(tcp_stream_memory_free);
3306
3307struct proto tcp_prot = {
3308 .name = "TCP",
3309 .owner = THIS_MODULE,
3310 .close = tcp_close,
3311 .pre_connect = tcp_v4_pre_connect,
3312 .connect = tcp_v4_connect,
3313 .disconnect = tcp_disconnect,
3314 .accept = inet_csk_accept,
3315 .ioctl = tcp_ioctl,
3316 .init = tcp_v4_init_sock,
3317 .destroy = tcp_v4_destroy_sock,
3318 .shutdown = tcp_shutdown,
3319 .setsockopt = tcp_setsockopt,
3320 .getsockopt = tcp_getsockopt,
3321 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt,
3322 .keepalive = tcp_set_keepalive,
3323 .recvmsg = tcp_recvmsg,
3324 .sendmsg = tcp_sendmsg,
3325 .splice_eof = tcp_splice_eof,
3326 .backlog_rcv = tcp_v4_do_rcv,
3327 .release_cb = tcp_release_cb,
3328 .hash = inet_hash,
3329 .unhash = inet_unhash,
3330 .get_port = inet_csk_get_port,
3331 .put_port = inet_put_port,
3332#ifdef CONFIG_BPF_SYSCALL
3333 .psock_update_sk_prot = tcp_bpf_update_proto,
3334#endif
3335 .enter_memory_pressure = tcp_enter_memory_pressure,
3336 .leave_memory_pressure = tcp_leave_memory_pressure,
3337 .stream_memory_free = tcp_stream_memory_free,
3338 .sockets_allocated = &tcp_sockets_allocated,
3339 .orphan_count = &tcp_orphan_count,
3340
3341 .memory_allocated = &tcp_memory_allocated,
3342 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3343
3344 .memory_pressure = &tcp_memory_pressure,
3345 .sysctl_mem = sysctl_tcp_mem,
3346 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3347 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3348 .max_header = MAX_TCP_HEADER,
3349 .obj_size = sizeof(struct tcp_sock),
3350 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3351 .twsk_prot = &tcp_timewait_sock_ops,
3352 .rsk_prot = &tcp_request_sock_ops,
3353 .h.hashinfo = NULL,
3354 .no_autobind = true,
3355 .diag_destroy = tcp_abort,
3356};
3357EXPORT_SYMBOL(tcp_prot);
3358
3359static void __net_exit tcp_sk_exit(struct net *net)
3360{
3361 if (net->ipv4.tcp_congestion_control)
3362 bpf_module_put(net->ipv4.tcp_congestion_control,
3363 net->ipv4.tcp_congestion_control->owner);
3364}
3365
3366static void __net_init tcp_set_hashinfo(struct net *net)
3367{
3368 struct inet_hashinfo *hinfo;
3369 unsigned int ehash_entries;
3370 struct net *old_net;
3371
3372 if (net_eq(net, &init_net))
3373 goto fallback;
3374
3375 old_net = current->nsproxy->net_ns;
3376 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3377 if (!ehash_entries)
3378 goto fallback;
3379
3380 ehash_entries = roundup_pow_of_two(ehash_entries);
3381 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3382 if (!hinfo) {
3383 pr_warn("Failed to allocate TCP ehash (entries: %u) "
3384 "for a netns, fallback to the global one\n",
3385 ehash_entries);
3386fallback:
3387 hinfo = &tcp_hashinfo;
3388 ehash_entries = tcp_hashinfo.ehash_mask + 1;
3389 }
3390
3391 net->ipv4.tcp_death_row.hashinfo = hinfo;
3392 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3393 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3394}
3395
3396static int __net_init tcp_sk_init(struct net *net)
3397{
3398 net->ipv4.sysctl_tcp_ecn = 2;
3399 net->ipv4.sysctl_tcp_ecn_fallback = 1;
3400
3401 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3402 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3403 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3404 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3405 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3406
3407 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3408 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3409 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3410
3411 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3412 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3413 net->ipv4.sysctl_tcp_syncookies = 1;
3414 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3415 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3416 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3417 net->ipv4.sysctl_tcp_orphan_retries = 0;
3418 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3419 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3420 net->ipv4.sysctl_tcp_tw_reuse = 2;
3421 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3422
3423 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3424 tcp_set_hashinfo(net);
3425
3426 net->ipv4.sysctl_tcp_sack = 1;
3427 net->ipv4.sysctl_tcp_window_scaling = 1;
3428 net->ipv4.sysctl_tcp_timestamps = 1;
3429 net->ipv4.sysctl_tcp_early_retrans = 3;
3430 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3431 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */
3432 net->ipv4.sysctl_tcp_retrans_collapse = 1;
3433 net->ipv4.sysctl_tcp_max_reordering = 300;
3434 net->ipv4.sysctl_tcp_dsack = 1;
3435 net->ipv4.sysctl_tcp_app_win = 31;
3436 net->ipv4.sysctl_tcp_adv_win_scale = 1;
3437 net->ipv4.sysctl_tcp_frto = 2;
3438 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3439 /* This limits the percentage of the congestion window which we
3440 * will allow a single TSO frame to consume. Building TSO frames
3441 * which are too large can cause TCP streams to be bursty.
3442 */
3443 net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3444 /* Default TSQ limit of 16 TSO segments */
3445 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3446
3447 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3448 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3449
3450 net->ipv4.sysctl_tcp_min_tso_segs = 2;
3451 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */
3452 net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3453 net->ipv4.sysctl_tcp_autocorking = 1;
3454 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3455 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3456 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3457 if (net != &init_net) {
3458 memcpy(net->ipv4.sysctl_tcp_rmem,
3459 init_net.ipv4.sysctl_tcp_rmem,
3460 sizeof(init_net.ipv4.sysctl_tcp_rmem));
3461 memcpy(net->ipv4.sysctl_tcp_wmem,
3462 init_net.ipv4.sysctl_tcp_wmem,
3463 sizeof(init_net.ipv4.sysctl_tcp_wmem));
3464 }
3465 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3466 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3467 net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3468 net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3469 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3470 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3471 atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3472
3473 /* Set default values for PLB */
3474 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3475 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3476 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3477 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3478 /* Default congestion threshold for PLB to mark a round is 50% */
3479 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3480
3481 /* Reno is always built in */
3482 if (!net_eq(net, &init_net) &&
3483 bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3484 init_net.ipv4.tcp_congestion_control->owner))
3485 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3486 else
3487 net->ipv4.tcp_congestion_control = &tcp_reno;
3488
3489 net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3490 net->ipv4.sysctl_tcp_shrink_window = 0;
3491
3492 net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3493
3494 return 0;
3495}
3496
3497static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3498{
3499 struct net *net;
3500
3501 tcp_twsk_purge(net_exit_list, AF_INET);
3502
3503 list_for_each_entry(net, net_exit_list, exit_list) {
3504 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3505 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3506 tcp_fastopen_ctx_destroy(net);
3507 }
3508}
3509
3510static struct pernet_operations __net_initdata tcp_sk_ops = {
3511 .init = tcp_sk_init,
3512 .exit = tcp_sk_exit,
3513 .exit_batch = tcp_sk_exit_batch,
3514};
3515
3516#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3517DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3518 struct sock_common *sk_common, uid_t uid)
3519
3520#define INIT_BATCH_SZ 16
3521
3522static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3523{
3524 struct bpf_tcp_iter_state *iter = priv_data;
3525 int err;
3526
3527 err = bpf_iter_init_seq_net(priv_data, aux);
3528 if (err)
3529 return err;
3530
3531 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3532 if (err) {
3533 bpf_iter_fini_seq_net(priv_data);
3534 return err;
3535 }
3536
3537 return 0;
3538}
3539
3540static void bpf_iter_fini_tcp(void *priv_data)
3541{
3542 struct bpf_tcp_iter_state *iter = priv_data;
3543
3544 bpf_iter_fini_seq_net(priv_data);
3545 kvfree(iter->batch);
3546}
3547
3548static const struct bpf_iter_seq_info tcp_seq_info = {
3549 .seq_ops = &bpf_iter_tcp_seq_ops,
3550 .init_seq_private = bpf_iter_init_tcp,
3551 .fini_seq_private = bpf_iter_fini_tcp,
3552 .seq_priv_size = sizeof(struct bpf_tcp_iter_state),
3553};
3554
3555static const struct bpf_func_proto *
3556bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3557 const struct bpf_prog *prog)
3558{
3559 switch (func_id) {
3560 case BPF_FUNC_setsockopt:
3561 return &bpf_sk_setsockopt_proto;
3562 case BPF_FUNC_getsockopt:
3563 return &bpf_sk_getsockopt_proto;
3564 default:
3565 return NULL;
3566 }
3567}
3568
3569static struct bpf_iter_reg tcp_reg_info = {
3570 .target = "tcp",
3571 .ctx_arg_info_size = 1,
3572 .ctx_arg_info = {
3573 { offsetof(struct bpf_iter__tcp, sk_common),
3574 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3575 },
3576 .get_func_proto = bpf_iter_tcp_get_func_proto,
3577 .seq_info = &tcp_seq_info,
3578};
3579
3580static void __init bpf_iter_register(void)
3581{
3582 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3583 if (bpf_iter_reg_target(&tcp_reg_info))
3584 pr_warn("Warning: could not register bpf iterator tcp\n");
3585}
3586
3587#endif
3588
3589void __init tcp_v4_init(void)
3590{
3591 int cpu, res;
3592
3593 for_each_possible_cpu(cpu) {
3594 struct sock *sk;
3595
3596 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3597 IPPROTO_TCP, &init_net);
3598 if (res)
3599 panic("Failed to create the TCP control socket.\n");
3600 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3601
3602 /* Please enforce IP_DF and IPID==0 for RST and
3603 * ACK sent in SYN-RECV and TIME-WAIT state.
3604 */
3605 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3606
3607 per_cpu(ipv4_tcp_sk, cpu) = sk;
3608 }
3609 if (register_pernet_subsys(&tcp_sk_ops))
3610 panic("Failed to create the TCP control socket.\n");
3611
3612#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3613 bpf_iter_register();
3614#endif
3615}