Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/secure_seq.h>
76#include <net/busy_poll.h>
77
78#include <linux/inet.h>
79#include <linux/ipv6.h>
80#include <linux/stddef.h>
81#include <linux/proc_fs.h>
82#include <linux/seq_file.h>
83
84#include <crypto/hash.h>
85#include <linux/scatterlist.h>
86
87int sysctl_tcp_tw_reuse __read_mostly;
88int sysctl_tcp_low_latency __read_mostly;
89EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91#ifdef CONFIG_TCP_MD5SIG
92static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94#endif
95
96struct inet_hashinfo tcp_hashinfo;
97EXPORT_SYMBOL(tcp_hashinfo);
98
99static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100{
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136}
137EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139/* This will initiate an outgoing connection. */
140int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141{
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 sock_owned_by_user(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263}
264EXPORT_SYMBOL(tcp_v4_connect);
265
266/*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271void tcp_v4_mtu_reduced(struct sock *sk)
272{
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301}
302EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312
313/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315{
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 if (seq != tcp_rsk(req)->snt_isn) {
323 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
325 /*
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
330 */
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
333 }
334 reqsk_put(req);
335}
336EXPORT_SYMBOL(tcp_req_err);
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
370
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
376 return;
377 }
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
381 }
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
390
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
396 */
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
400 }
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
403
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
407 }
408
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
418 }
419
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
433
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
438 */
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
441
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
447 sock_hold(sk);
448 }
449 goto out;
450 }
451
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
460
461 if (sock_owned_by_user(sk))
462 break;
463
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
468
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
471
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
475
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
483 }
484
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
491 }
492
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && !fastopen->sk)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541}
542
543void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544{
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568/*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
582{
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586#ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588#endif
589 } rep;
590 struct ip_reply_arg arg;
591#ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597#endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
606 */
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630#ifdef CONFIG_TCP_MD5SIG
631 hash_location = tcp_parse_md5sig_option(th);
632 if (sk && sk_fullsock(sk)) {
633 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
634 &ip_hdr(skb)->saddr, AF_INET);
635 } else if (hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
644 ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 }
660
661 if (key) {
662 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
663 (TCPOPT_NOP << 16) |
664 (TCPOPT_MD5SIG << 8) |
665 TCPOLEN_MD5SIG);
666 /* Update length and the length the header thinks exists */
667 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
668 rep.th.doff = arg.iov[0].iov_len / 4;
669
670 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
671 key, ip_hdr(skb)->saddr,
672 ip_hdr(skb)->daddr, &rep.th);
673 }
674#endif
675 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
676 ip_hdr(skb)->saddr, /* XXX */
677 arg.iov[0].iov_len, IPPROTO_TCP, 0);
678 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
679 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
680
681 /* When socket is gone, all binding information is lost.
682 * routing might fail in this case. No choice here, if we choose to force
683 * input interface, we will misroute in case of asymmetric route.
684 */
685 if (sk)
686 arg.bound_dev_if = sk->sk_bound_dev_if;
687
688 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
689 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
690
691 arg.tos = ip_hdr(skb)->tos;
692 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
693 skb, &TCP_SKB_CB(skb)->header.h4.opt,
694 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
695 &arg, arg.iov[0].iov_len);
696
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
698 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
699
700#ifdef CONFIG_TCP_MD5SIG
701release_sk1:
702 if (sk1) {
703 rcu_read_unlock();
704 sock_put(sk1);
705 }
706#endif
707}
708
709/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
710 outside socket context is ugly, certainly. What can I do?
711 */
712
713static void tcp_v4_send_ack(struct net *net,
714 struct sk_buff *skb, u32 seq, u32 ack,
715 u32 win, u32 tsval, u32 tsecr, int oif,
716 struct tcp_md5sig_key *key,
717 int reply_flags, u8 tos)
718{
719 const struct tcphdr *th = tcp_hdr(skb);
720 struct {
721 struct tcphdr th;
722 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
723#ifdef CONFIG_TCP_MD5SIG
724 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
725#endif
726 ];
727 } rep;
728 struct ip_reply_arg arg;
729
730 memset(&rep.th, 0, sizeof(struct tcphdr));
731 memset(&arg, 0, sizeof(arg));
732
733 arg.iov[0].iov_base = (unsigned char *)&rep;
734 arg.iov[0].iov_len = sizeof(rep.th);
735 if (tsecr) {
736 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
737 (TCPOPT_TIMESTAMP << 8) |
738 TCPOLEN_TIMESTAMP);
739 rep.opt[1] = htonl(tsval);
740 rep.opt[2] = htonl(tsecr);
741 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
742 }
743
744 /* Swap the send and the receive. */
745 rep.th.dest = th->source;
746 rep.th.source = th->dest;
747 rep.th.doff = arg.iov[0].iov_len / 4;
748 rep.th.seq = htonl(seq);
749 rep.th.ack_seq = htonl(ack);
750 rep.th.ack = 1;
751 rep.th.window = htons(win);
752
753#ifdef CONFIG_TCP_MD5SIG
754 if (key) {
755 int offset = (tsecr) ? 3 : 0;
756
757 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
758 (TCPOPT_NOP << 16) |
759 (TCPOPT_MD5SIG << 8) |
760 TCPOLEN_MD5SIG);
761 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
762 rep.th.doff = arg.iov[0].iov_len/4;
763
764 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
765 key, ip_hdr(skb)->saddr,
766 ip_hdr(skb)->daddr, &rep.th);
767 }
768#endif
769 arg.flags = reply_flags;
770 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
771 ip_hdr(skb)->saddr, /* XXX */
772 arg.iov[0].iov_len, IPPROTO_TCP, 0);
773 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
774 if (oif)
775 arg.bound_dev_if = oif;
776 arg.tos = tos;
777 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
778 skb, &TCP_SKB_CB(skb)->header.h4.opt,
779 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
780 &arg, arg.iov[0].iov_len);
781
782 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
783}
784
785static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
786{
787 struct inet_timewait_sock *tw = inet_twsk(sk);
788 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
789
790 tcp_v4_send_ack(sock_net(sk), skb,
791 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
792 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
793 tcp_time_stamp + tcptw->tw_ts_offset,
794 tcptw->tw_ts_recent,
795 tw->tw_bound_dev_if,
796 tcp_twsk_md5_key(tcptw),
797 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
798 tw->tw_tos
799 );
800
801 inet_twsk_put(tw);
802}
803
804static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
805 struct request_sock *req)
806{
807 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
808 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
809 */
810 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
811 tcp_sk(sk)->snd_nxt;
812
813 tcp_v4_send_ack(sock_net(sk), skb, seq,
814 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
815 tcp_time_stamp,
816 req->ts_recent,
817 0,
818 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
819 AF_INET),
820 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
821 ip_hdr(skb)->tos);
822}
823
824/*
825 * Send a SYN-ACK after having received a SYN.
826 * This still operates on a request_sock only, not on a big
827 * socket.
828 */
829static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
830 struct flowi *fl,
831 struct request_sock *req,
832 struct tcp_fastopen_cookie *foc,
833 bool attach_req)
834{
835 const struct inet_request_sock *ireq = inet_rsk(req);
836 struct flowi4 fl4;
837 int err = -1;
838 struct sk_buff *skb;
839
840 /* First, grab a route. */
841 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
842 return -1;
843
844 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
845
846 if (skb) {
847 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
848
849 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
850 ireq->ir_rmt_addr,
851 ireq->opt);
852 err = net_xmit_eval(err);
853 }
854
855 return err;
856}
857
858/*
859 * IPv4 request_sock destructor.
860 */
861static void tcp_v4_reqsk_destructor(struct request_sock *req)
862{
863 kfree(inet_rsk(req)->opt);
864}
865
866#ifdef CONFIG_TCP_MD5SIG
867/*
868 * RFC2385 MD5 checksumming requires a mapping of
869 * IP address->MD5 Key.
870 * We need to maintain these in the sk structure.
871 */
872
873/* Find the Key structure for an address. */
874struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
875 const union tcp_md5_addr *addr,
876 int family)
877{
878 const struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp_md5sig_key *key;
880 unsigned int size = sizeof(struct in_addr);
881 const struct tcp_md5sig_info *md5sig;
882
883 /* caller either holds rcu_read_lock() or socket lock */
884 md5sig = rcu_dereference_check(tp->md5sig_info,
885 sock_owned_by_user(sk) ||
886 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
887 if (!md5sig)
888 return NULL;
889#if IS_ENABLED(CONFIG_IPV6)
890 if (family == AF_INET6)
891 size = sizeof(struct in6_addr);
892#endif
893 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
894 if (key->family != family)
895 continue;
896 if (!memcmp(&key->addr, addr, size))
897 return key;
898 }
899 return NULL;
900}
901EXPORT_SYMBOL(tcp_md5_do_lookup);
902
903struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
904 const struct sock *addr_sk)
905{
906 const union tcp_md5_addr *addr;
907
908 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
909 return tcp_md5_do_lookup(sk, addr, AF_INET);
910}
911EXPORT_SYMBOL(tcp_v4_md5_lookup);
912
913/* This can be called on a newly created socket, from other files */
914int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
915 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
916{
917 /* Add Key to the list */
918 struct tcp_md5sig_key *key;
919 struct tcp_sock *tp = tcp_sk(sk);
920 struct tcp_md5sig_info *md5sig;
921
922 key = tcp_md5_do_lookup(sk, addr, family);
923 if (key) {
924 /* Pre-existing entry - just update that one. */
925 memcpy(key->key, newkey, newkeylen);
926 key->keylen = newkeylen;
927 return 0;
928 }
929
930 md5sig = rcu_dereference_protected(tp->md5sig_info,
931 sock_owned_by_user(sk) ||
932 lockdep_is_held(&sk->sk_lock.slock));
933 if (!md5sig) {
934 md5sig = kmalloc(sizeof(*md5sig), gfp);
935 if (!md5sig)
936 return -ENOMEM;
937
938 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
939 INIT_HLIST_HEAD(&md5sig->head);
940 rcu_assign_pointer(tp->md5sig_info, md5sig);
941 }
942
943 key = sock_kmalloc(sk, sizeof(*key), gfp);
944 if (!key)
945 return -ENOMEM;
946 if (!tcp_alloc_md5sig_pool()) {
947 sock_kfree_s(sk, key, sizeof(*key));
948 return -ENOMEM;
949 }
950
951 memcpy(key->key, newkey, newkeylen);
952 key->keylen = newkeylen;
953 key->family = family;
954 memcpy(&key->addr, addr,
955 (family == AF_INET6) ? sizeof(struct in6_addr) :
956 sizeof(struct in_addr));
957 hlist_add_head_rcu(&key->node, &md5sig->head);
958 return 0;
959}
960EXPORT_SYMBOL(tcp_md5_do_add);
961
962int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
963{
964 struct tcp_md5sig_key *key;
965
966 key = tcp_md5_do_lookup(sk, addr, family);
967 if (!key)
968 return -ENOENT;
969 hlist_del_rcu(&key->node);
970 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
971 kfree_rcu(key, rcu);
972 return 0;
973}
974EXPORT_SYMBOL(tcp_md5_do_del);
975
976static void tcp_clear_md5_list(struct sock *sk)
977{
978 struct tcp_sock *tp = tcp_sk(sk);
979 struct tcp_md5sig_key *key;
980 struct hlist_node *n;
981 struct tcp_md5sig_info *md5sig;
982
983 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
984
985 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
986 hlist_del_rcu(&key->node);
987 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
988 kfree_rcu(key, rcu);
989 }
990}
991
992static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
993 int optlen)
994{
995 struct tcp_md5sig cmd;
996 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_keylen)
1008 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1009 AF_INET);
1010
1011 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1012 return -EINVAL;
1013
1014 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1015 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1016 GFP_KERNEL);
1017}
1018
1019static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1020 __be32 daddr, __be32 saddr, int nbytes)
1021{
1022 struct tcp4_pseudohdr *bp;
1023 struct scatterlist sg;
1024
1025 bp = &hp->md5_blk.ip4;
1026
1027 /*
1028 * 1. the TCP pseudo-header (in the order: source IP address,
1029 * destination IP address, zero-padded protocol number, and
1030 * segment length)
1031 */
1032 bp->saddr = saddr;
1033 bp->daddr = daddr;
1034 bp->pad = 0;
1035 bp->protocol = IPPROTO_TCP;
1036 bp->len = cpu_to_be16(nbytes);
1037
1038 sg_init_one(&sg, bp, sizeof(*bp));
1039 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1040 return crypto_ahash_update(hp->md5_req);
1041}
1042
1043static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1044 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1045{
1046 struct tcp_md5sig_pool *hp;
1047 struct ahash_request *req;
1048
1049 hp = tcp_get_md5sig_pool();
1050 if (!hp)
1051 goto clear_hash_noput;
1052 req = hp->md5_req;
1053
1054 if (crypto_ahash_init(req))
1055 goto clear_hash;
1056 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1057 goto clear_hash;
1058 if (tcp_md5_hash_header(hp, th))
1059 goto clear_hash;
1060 if (tcp_md5_hash_key(hp, key))
1061 goto clear_hash;
1062 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1063 if (crypto_ahash_final(req))
1064 goto clear_hash;
1065
1066 tcp_put_md5sig_pool();
1067 return 0;
1068
1069clear_hash:
1070 tcp_put_md5sig_pool();
1071clear_hash_noput:
1072 memset(md5_hash, 0, 16);
1073 return 1;
1074}
1075
1076int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1077 const struct sock *sk,
1078 const struct sk_buff *skb)
1079{
1080 struct tcp_md5sig_pool *hp;
1081 struct ahash_request *req;
1082 const struct tcphdr *th = tcp_hdr(skb);
1083 __be32 saddr, daddr;
1084
1085 if (sk) { /* valid for establish/request sockets */
1086 saddr = sk->sk_rcv_saddr;
1087 daddr = sk->sk_daddr;
1088 } else {
1089 const struct iphdr *iph = ip_hdr(skb);
1090 saddr = iph->saddr;
1091 daddr = iph->daddr;
1092 }
1093
1094 hp = tcp_get_md5sig_pool();
1095 if (!hp)
1096 goto clear_hash_noput;
1097 req = hp->md5_req;
1098
1099 if (crypto_ahash_init(req))
1100 goto clear_hash;
1101
1102 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1103 goto clear_hash;
1104 if (tcp_md5_hash_header(hp, th))
1105 goto clear_hash;
1106 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1107 goto clear_hash;
1108 if (tcp_md5_hash_key(hp, key))
1109 goto clear_hash;
1110 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1111 if (crypto_ahash_final(req))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1124
1125#endif
1126
1127/* Called with rcu_read_lock() */
1128static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1129 const struct sk_buff *skb)
1130{
1131#ifdef CONFIG_TCP_MD5SIG
1132 /*
1133 * This gets called for each TCP segment that arrives
1134 * so we want to be efficient.
1135 * We have 3 drop cases:
1136 * o No MD5 hash and one expected.
1137 * o MD5 hash and we're not expecting one.
1138 * o MD5 hash and its wrong.
1139 */
1140 const __u8 *hash_location = NULL;
1141 struct tcp_md5sig_key *hash_expected;
1142 const struct iphdr *iph = ip_hdr(skb);
1143 const struct tcphdr *th = tcp_hdr(skb);
1144 int genhash;
1145 unsigned char newhash[16];
1146
1147 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1148 AF_INET);
1149 hash_location = tcp_parse_md5sig_option(th);
1150
1151 /* We've parsed the options - do we have a hash? */
1152 if (!hash_expected && !hash_location)
1153 return false;
1154
1155 if (hash_expected && !hash_location) {
1156 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1157 return true;
1158 }
1159
1160 if (!hash_expected && hash_location) {
1161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1162 return true;
1163 }
1164
1165 /* Okay, so this is hash_expected and hash_location -
1166 * so we need to calculate the checksum.
1167 */
1168 genhash = tcp_v4_md5_hash_skb(newhash,
1169 hash_expected,
1170 NULL, skb);
1171
1172 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1173 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1174 &iph->saddr, ntohs(th->source),
1175 &iph->daddr, ntohs(th->dest),
1176 genhash ? " tcp_v4_calc_md5_hash failed"
1177 : "");
1178 return true;
1179 }
1180 return false;
1181#endif
1182 return false;
1183}
1184
1185static void tcp_v4_init_req(struct request_sock *req,
1186 const struct sock *sk_listener,
1187 struct sk_buff *skb)
1188{
1189 struct inet_request_sock *ireq = inet_rsk(req);
1190
1191 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1192 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1193 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1194 ireq->opt = tcp_v4_save_options(skb);
1195}
1196
1197static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1198 struct flowi *fl,
1199 const struct request_sock *req,
1200 bool *strict)
1201{
1202 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1203
1204 if (strict) {
1205 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1206 *strict = true;
1207 else
1208 *strict = false;
1209 }
1210
1211 return dst;
1212}
1213
1214struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1215 .family = PF_INET,
1216 .obj_size = sizeof(struct tcp_request_sock),
1217 .rtx_syn_ack = tcp_rtx_synack,
1218 .send_ack = tcp_v4_reqsk_send_ack,
1219 .destructor = tcp_v4_reqsk_destructor,
1220 .send_reset = tcp_v4_send_reset,
1221 .syn_ack_timeout = tcp_syn_ack_timeout,
1222};
1223
1224static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1225 .mss_clamp = TCP_MSS_DEFAULT,
1226#ifdef CONFIG_TCP_MD5SIG
1227 .req_md5_lookup = tcp_v4_md5_lookup,
1228 .calc_md5_hash = tcp_v4_md5_hash_skb,
1229#endif
1230 .init_req = tcp_v4_init_req,
1231#ifdef CONFIG_SYN_COOKIES
1232 .cookie_init_seq = cookie_v4_init_sequence,
1233#endif
1234 .route_req = tcp_v4_route_req,
1235 .init_seq = tcp_v4_init_sequence,
1236 .send_synack = tcp_v4_send_synack,
1237};
1238
1239int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1240{
1241 /* Never answer to SYNs send to broadcast or multicast */
1242 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243 goto drop;
1244
1245 return tcp_conn_request(&tcp_request_sock_ops,
1246 &tcp_request_sock_ipv4_ops, sk, skb);
1247
1248drop:
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1250 return 0;
1251}
1252EXPORT_SYMBOL(tcp_v4_conn_request);
1253
1254
1255/*
1256 * The three way handshake has completed - we got a valid synack -
1257 * now create the new socket.
1258 */
1259struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1260 struct request_sock *req,
1261 struct dst_entry *dst,
1262 struct request_sock *req_unhash,
1263 bool *own_req)
1264{
1265 struct inet_request_sock *ireq;
1266 struct inet_sock *newinet;
1267 struct tcp_sock *newtp;
1268 struct sock *newsk;
1269#ifdef CONFIG_TCP_MD5SIG
1270 struct tcp_md5sig_key *key;
1271#endif
1272 struct ip_options_rcu *inet_opt;
1273
1274 if (sk_acceptq_is_full(sk))
1275 goto exit_overflow;
1276
1277 newsk = tcp_create_openreq_child(sk, req, skb);
1278 if (!newsk)
1279 goto exit_nonewsk;
1280
1281 newsk->sk_gso_type = SKB_GSO_TCPV4;
1282 inet_sk_rx_dst_set(newsk, skb);
1283
1284 newtp = tcp_sk(newsk);
1285 newinet = inet_sk(newsk);
1286 ireq = inet_rsk(req);
1287 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1288 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1289 newsk->sk_bound_dev_if = ireq->ir_iif;
1290 newinet->inet_saddr = ireq->ir_loc_addr;
1291 inet_opt = ireq->opt;
1292 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1293 ireq->opt = NULL;
1294 newinet->mc_index = inet_iif(skb);
1295 newinet->mc_ttl = ip_hdr(skb)->ttl;
1296 newinet->rcv_tos = ip_hdr(skb)->tos;
1297 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1298 if (inet_opt)
1299 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1300 newinet->inet_id = newtp->write_seq ^ jiffies;
1301
1302 if (!dst) {
1303 dst = inet_csk_route_child_sock(sk, newsk, req);
1304 if (!dst)
1305 goto put_and_exit;
1306 } else {
1307 /* syncookie case : see end of cookie_v4_check() */
1308 }
1309 sk_setup_caps(newsk, dst);
1310
1311 tcp_ca_openreq_child(newsk, dst);
1312
1313 tcp_sync_mss(newsk, dst_mtu(dst));
1314 newtp->advmss = dst_metric_advmss(dst);
1315 if (tcp_sk(sk)->rx_opt.user_mss &&
1316 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1317 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1318
1319 tcp_initialize_rcv_mss(newsk);
1320
1321#ifdef CONFIG_TCP_MD5SIG
1322 /* Copy over the MD5 key from the original socket */
1323 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1324 AF_INET);
1325 if (key) {
1326 /*
1327 * We're using one, so create a matching key
1328 * on the newsk structure. If we fail to get
1329 * memory, then we end up not copying the key
1330 * across. Shucks.
1331 */
1332 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1333 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1334 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1335 }
1336#endif
1337
1338 if (__inet_inherit_port(sk, newsk) < 0)
1339 goto put_and_exit;
1340 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1341 if (*own_req)
1342 tcp_move_syn(newtp, req);
1343
1344 return newsk;
1345
1346exit_overflow:
1347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1348exit_nonewsk:
1349 dst_release(dst);
1350exit:
1351 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1352 return NULL;
1353put_and_exit:
1354 inet_csk_prepare_forced_close(newsk);
1355 tcp_done(newsk);
1356 goto exit;
1357}
1358EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1359
1360static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1361{
1362#ifdef CONFIG_SYN_COOKIES
1363 const struct tcphdr *th = tcp_hdr(skb);
1364
1365 if (!th->syn)
1366 sk = cookie_v4_check(sk, skb);
1367#endif
1368 return sk;
1369}
1370
1371/* The socket must have it's spinlock held when we get
1372 * here, unless it is a TCP_LISTEN socket.
1373 *
1374 * We have a potential double-lock case here, so even when
1375 * doing backlog processing we use the BH locking scheme.
1376 * This is because we cannot sleep with the original spinlock
1377 * held.
1378 */
1379int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1380{
1381 struct sock *rsk;
1382
1383 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1384 struct dst_entry *dst = sk->sk_rx_dst;
1385
1386 sock_rps_save_rxhash(sk, skb);
1387 sk_mark_napi_id(sk, skb);
1388 if (dst) {
1389 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1390 !dst->ops->check(dst, 0)) {
1391 dst_release(dst);
1392 sk->sk_rx_dst = NULL;
1393 }
1394 }
1395 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1396 return 0;
1397 }
1398
1399 if (tcp_checksum_complete(skb))
1400 goto csum_err;
1401
1402 if (sk->sk_state == TCP_LISTEN) {
1403 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1404
1405 if (!nsk)
1406 goto discard;
1407 if (nsk != sk) {
1408 sock_rps_save_rxhash(nsk, skb);
1409 sk_mark_napi_id(nsk, skb);
1410 if (tcp_child_process(sk, nsk, skb)) {
1411 rsk = nsk;
1412 goto reset;
1413 }
1414 return 0;
1415 }
1416 } else
1417 sock_rps_save_rxhash(sk, skb);
1418
1419 if (tcp_rcv_state_process(sk, skb)) {
1420 rsk = sk;
1421 goto reset;
1422 }
1423 return 0;
1424
1425reset:
1426 tcp_v4_send_reset(rsk, skb);
1427discard:
1428 kfree_skb(skb);
1429 /* Be careful here. If this function gets more complicated and
1430 * gcc suffers from register pressure on the x86, sk (in %ebx)
1431 * might be destroyed here. This current version compiles correctly,
1432 * but you have been warned.
1433 */
1434 return 0;
1435
1436csum_err:
1437 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1438 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1439 goto discard;
1440}
1441EXPORT_SYMBOL(tcp_v4_do_rcv);
1442
1443void tcp_v4_early_demux(struct sk_buff *skb)
1444{
1445 const struct iphdr *iph;
1446 const struct tcphdr *th;
1447 struct sock *sk;
1448
1449 if (skb->pkt_type != PACKET_HOST)
1450 return;
1451
1452 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1453 return;
1454
1455 iph = ip_hdr(skb);
1456 th = tcp_hdr(skb);
1457
1458 if (th->doff < sizeof(struct tcphdr) / 4)
1459 return;
1460
1461 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1462 iph->saddr, th->source,
1463 iph->daddr, ntohs(th->dest),
1464 skb->skb_iif);
1465 if (sk) {
1466 skb->sk = sk;
1467 skb->destructor = sock_edemux;
1468 if (sk_fullsock(sk)) {
1469 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1470
1471 if (dst)
1472 dst = dst_check(dst, 0);
1473 if (dst &&
1474 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1475 skb_dst_set_noref(skb, dst);
1476 }
1477 }
1478}
1479
1480/* Packet is added to VJ-style prequeue for processing in process
1481 * context, if a reader task is waiting. Apparently, this exciting
1482 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1483 * failed somewhere. Latency? Burstiness? Well, at least now we will
1484 * see, why it failed. 8)8) --ANK
1485 *
1486 */
1487bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1488{
1489 struct tcp_sock *tp = tcp_sk(sk);
1490
1491 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1492 return false;
1493
1494 if (skb->len <= tcp_hdrlen(skb) &&
1495 skb_queue_len(&tp->ucopy.prequeue) == 0)
1496 return false;
1497
1498 /* Before escaping RCU protected region, we need to take care of skb
1499 * dst. Prequeue is only enabled for established sockets.
1500 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1501 * Instead of doing full sk_rx_dst validity here, let's perform
1502 * an optimistic check.
1503 */
1504 if (likely(sk->sk_rx_dst))
1505 skb_dst_drop(skb);
1506 else
1507 skb_dst_force_safe(skb);
1508
1509 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1510 tp->ucopy.memory += skb->truesize;
1511 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1512 struct sk_buff *skb1;
1513
1514 BUG_ON(sock_owned_by_user(sk));
1515
1516 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1517 sk_backlog_rcv(sk, skb1);
1518 NET_INC_STATS_BH(sock_net(sk),
1519 LINUX_MIB_TCPPREQUEUEDROPPED);
1520 }
1521
1522 tp->ucopy.memory = 0;
1523 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1524 wake_up_interruptible_sync_poll(sk_sleep(sk),
1525 POLLIN | POLLRDNORM | POLLRDBAND);
1526 if (!inet_csk_ack_scheduled(sk))
1527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1528 (3 * tcp_rto_min(sk)) / 4,
1529 TCP_RTO_MAX);
1530 }
1531 return true;
1532}
1533EXPORT_SYMBOL(tcp_prequeue);
1534
1535/*
1536 * From tcp_input.c
1537 */
1538
1539int tcp_v4_rcv(struct sk_buff *skb)
1540{
1541 const struct iphdr *iph;
1542 const struct tcphdr *th;
1543 struct sock *sk;
1544 int ret;
1545 struct net *net = dev_net(skb->dev);
1546
1547 if (skb->pkt_type != PACKET_HOST)
1548 goto discard_it;
1549
1550 /* Count it even if it's bad */
1551 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554 goto discard_it;
1555
1556 th = tcp_hdr(skb);
1557
1558 if (th->doff < sizeof(struct tcphdr) / 4)
1559 goto bad_packet;
1560 if (!pskb_may_pull(skb, th->doff * 4))
1561 goto discard_it;
1562
1563 /* An explanation is required here, I think.
1564 * Packet length and doff are validated by header prediction,
1565 * provided case of th->doff==0 is eliminated.
1566 * So, we defer the checks. */
1567
1568 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1569 goto csum_error;
1570
1571 th = tcp_hdr(skb);
1572 iph = ip_hdr(skb);
1573 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1574 * barrier() makes sure compiler wont play fool^Waliasing games.
1575 */
1576 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1577 sizeof(struct inet_skb_parm));
1578 barrier();
1579
1580 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1581 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1582 skb->len - th->doff * 4);
1583 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1584 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1585 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1586 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1587 TCP_SKB_CB(skb)->sacked = 0;
1588
1589lookup:
1590 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1591 th->dest);
1592 if (!sk)
1593 goto no_tcp_socket;
1594
1595process:
1596 if (sk->sk_state == TCP_TIME_WAIT)
1597 goto do_time_wait;
1598
1599 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1600 struct request_sock *req = inet_reqsk(sk);
1601 struct sock *nsk;
1602
1603 sk = req->rsk_listener;
1604 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1605 reqsk_put(req);
1606 goto discard_it;
1607 }
1608 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1609 inet_csk_reqsk_queue_drop_and_put(sk, req);
1610 goto lookup;
1611 }
1612 sock_hold(sk);
1613 nsk = tcp_check_req(sk, skb, req, false);
1614 if (!nsk) {
1615 reqsk_put(req);
1616 goto discard_and_relse;
1617 }
1618 if (nsk == sk) {
1619 reqsk_put(req);
1620 } else if (tcp_child_process(sk, nsk, skb)) {
1621 tcp_v4_send_reset(nsk, skb);
1622 goto discard_and_relse;
1623 } else {
1624 sock_put(sk);
1625 return 0;
1626 }
1627 }
1628 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1629 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1630 goto discard_and_relse;
1631 }
1632
1633 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1634 goto discard_and_relse;
1635
1636 if (tcp_v4_inbound_md5_hash(sk, skb))
1637 goto discard_and_relse;
1638
1639 nf_reset(skb);
1640
1641 if (sk_filter(sk, skb))
1642 goto discard_and_relse;
1643
1644 skb->dev = NULL;
1645
1646 if (sk->sk_state == TCP_LISTEN) {
1647 ret = tcp_v4_do_rcv(sk, skb);
1648 goto put_and_return;
1649 }
1650
1651 sk_incoming_cpu_update(sk);
1652
1653 bh_lock_sock_nested(sk);
1654 tcp_segs_in(tcp_sk(sk), skb);
1655 ret = 0;
1656 if (!sock_owned_by_user(sk)) {
1657 if (!tcp_prequeue(sk, skb))
1658 ret = tcp_v4_do_rcv(sk, skb);
1659 } else if (unlikely(sk_add_backlog(sk, skb,
1660 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1661 bh_unlock_sock(sk);
1662 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1663 goto discard_and_relse;
1664 }
1665 bh_unlock_sock(sk);
1666
1667put_and_return:
1668 sock_put(sk);
1669
1670 return ret;
1671
1672no_tcp_socket:
1673 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1674 goto discard_it;
1675
1676 if (tcp_checksum_complete(skb)) {
1677csum_error:
1678 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1679bad_packet:
1680 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1681 } else {
1682 tcp_v4_send_reset(NULL, skb);
1683 }
1684
1685discard_it:
1686 /* Discard frame. */
1687 kfree_skb(skb);
1688 return 0;
1689
1690discard_and_relse:
1691 sock_put(sk);
1692 goto discard_it;
1693
1694do_time_wait:
1695 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1696 inet_twsk_put(inet_twsk(sk));
1697 goto discard_it;
1698 }
1699
1700 if (tcp_checksum_complete(skb)) {
1701 inet_twsk_put(inet_twsk(sk));
1702 goto csum_error;
1703 }
1704 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1705 case TCP_TW_SYN: {
1706 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1707 &tcp_hashinfo, skb,
1708 __tcp_hdrlen(th),
1709 iph->saddr, th->source,
1710 iph->daddr, th->dest,
1711 inet_iif(skb));
1712 if (sk2) {
1713 inet_twsk_deschedule_put(inet_twsk(sk));
1714 sk = sk2;
1715 goto process;
1716 }
1717 /* Fall through to ACK */
1718 }
1719 case TCP_TW_ACK:
1720 tcp_v4_timewait_ack(sk, skb);
1721 break;
1722 case TCP_TW_RST:
1723 tcp_v4_send_reset(sk, skb);
1724 inet_twsk_deschedule_put(inet_twsk(sk));
1725 goto discard_it;
1726 case TCP_TW_SUCCESS:;
1727 }
1728 goto discard_it;
1729}
1730
1731static struct timewait_sock_ops tcp_timewait_sock_ops = {
1732 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1733 .twsk_unique = tcp_twsk_unique,
1734 .twsk_destructor= tcp_twsk_destructor,
1735};
1736
1737void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1738{
1739 struct dst_entry *dst = skb_dst(skb);
1740
1741 if (dst && dst_hold_safe(dst)) {
1742 sk->sk_rx_dst = dst;
1743 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1744 }
1745}
1746EXPORT_SYMBOL(inet_sk_rx_dst_set);
1747
1748const struct inet_connection_sock_af_ops ipv4_specific = {
1749 .queue_xmit = ip_queue_xmit,
1750 .send_check = tcp_v4_send_check,
1751 .rebuild_header = inet_sk_rebuild_header,
1752 .sk_rx_dst_set = inet_sk_rx_dst_set,
1753 .conn_request = tcp_v4_conn_request,
1754 .syn_recv_sock = tcp_v4_syn_recv_sock,
1755 .net_header_len = sizeof(struct iphdr),
1756 .setsockopt = ip_setsockopt,
1757 .getsockopt = ip_getsockopt,
1758 .addr2sockaddr = inet_csk_addr2sockaddr,
1759 .sockaddr_len = sizeof(struct sockaddr_in),
1760 .bind_conflict = inet_csk_bind_conflict,
1761#ifdef CONFIG_COMPAT
1762 .compat_setsockopt = compat_ip_setsockopt,
1763 .compat_getsockopt = compat_ip_getsockopt,
1764#endif
1765 .mtu_reduced = tcp_v4_mtu_reduced,
1766};
1767EXPORT_SYMBOL(ipv4_specific);
1768
1769#ifdef CONFIG_TCP_MD5SIG
1770static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1771 .md5_lookup = tcp_v4_md5_lookup,
1772 .calc_md5_hash = tcp_v4_md5_hash_skb,
1773 .md5_parse = tcp_v4_parse_md5_keys,
1774};
1775#endif
1776
1777/* NOTE: A lot of things set to zero explicitly by call to
1778 * sk_alloc() so need not be done here.
1779 */
1780static int tcp_v4_init_sock(struct sock *sk)
1781{
1782 struct inet_connection_sock *icsk = inet_csk(sk);
1783
1784 tcp_init_sock(sk);
1785
1786 icsk->icsk_af_ops = &ipv4_specific;
1787
1788#ifdef CONFIG_TCP_MD5SIG
1789 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1790#endif
1791
1792 return 0;
1793}
1794
1795void tcp_v4_destroy_sock(struct sock *sk)
1796{
1797 struct tcp_sock *tp = tcp_sk(sk);
1798
1799 tcp_clear_xmit_timers(sk);
1800
1801 tcp_cleanup_congestion_control(sk);
1802
1803 /* Cleanup up the write buffer. */
1804 tcp_write_queue_purge(sk);
1805
1806 /* Cleans up our, hopefully empty, out_of_order_queue. */
1807 __skb_queue_purge(&tp->out_of_order_queue);
1808
1809#ifdef CONFIG_TCP_MD5SIG
1810 /* Clean up the MD5 key list, if any */
1811 if (tp->md5sig_info) {
1812 tcp_clear_md5_list(sk);
1813 kfree_rcu(tp->md5sig_info, rcu);
1814 tp->md5sig_info = NULL;
1815 }
1816#endif
1817
1818 /* Clean prequeue, it must be empty really */
1819 __skb_queue_purge(&tp->ucopy.prequeue);
1820
1821 /* Clean up a referenced TCP bind bucket. */
1822 if (inet_csk(sk)->icsk_bind_hash)
1823 inet_put_port(sk);
1824
1825 BUG_ON(tp->fastopen_rsk);
1826
1827 /* If socket is aborted during connect operation */
1828 tcp_free_fastopen_req(tp);
1829 tcp_saved_syn_free(tp);
1830
1831 sk_sockets_allocated_dec(sk);
1832
1833 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1834 sock_release_memcg(sk);
1835}
1836EXPORT_SYMBOL(tcp_v4_destroy_sock);
1837
1838#ifdef CONFIG_PROC_FS
1839/* Proc filesystem TCP sock list dumping. */
1840
1841/*
1842 * Get next listener socket follow cur. If cur is NULL, get first socket
1843 * starting from bucket given in st->bucket; when st->bucket is zero the
1844 * very first socket in the hash table is returned.
1845 */
1846static void *listening_get_next(struct seq_file *seq, void *cur)
1847{
1848 struct inet_connection_sock *icsk;
1849 struct hlist_nulls_node *node;
1850 struct sock *sk = cur;
1851 struct inet_listen_hashbucket *ilb;
1852 struct tcp_iter_state *st = seq->private;
1853 struct net *net = seq_file_net(seq);
1854
1855 if (!sk) {
1856 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1857 spin_lock_bh(&ilb->lock);
1858 sk = sk_nulls_head(&ilb->head);
1859 st->offset = 0;
1860 goto get_sk;
1861 }
1862 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1863 ++st->num;
1864 ++st->offset;
1865
1866 sk = sk_nulls_next(sk);
1867get_sk:
1868 sk_nulls_for_each_from(sk, node) {
1869 if (!net_eq(sock_net(sk), net))
1870 continue;
1871 if (sk->sk_family == st->family) {
1872 cur = sk;
1873 goto out;
1874 }
1875 icsk = inet_csk(sk);
1876 }
1877 spin_unlock_bh(&ilb->lock);
1878 st->offset = 0;
1879 if (++st->bucket < INET_LHTABLE_SIZE) {
1880 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1881 spin_lock_bh(&ilb->lock);
1882 sk = sk_nulls_head(&ilb->head);
1883 goto get_sk;
1884 }
1885 cur = NULL;
1886out:
1887 return cur;
1888}
1889
1890static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1891{
1892 struct tcp_iter_state *st = seq->private;
1893 void *rc;
1894
1895 st->bucket = 0;
1896 st->offset = 0;
1897 rc = listening_get_next(seq, NULL);
1898
1899 while (rc && *pos) {
1900 rc = listening_get_next(seq, rc);
1901 --*pos;
1902 }
1903 return rc;
1904}
1905
1906static inline bool empty_bucket(const struct tcp_iter_state *st)
1907{
1908 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1909}
1910
1911/*
1912 * Get first established socket starting from bucket given in st->bucket.
1913 * If st->bucket is zero, the very first socket in the hash is returned.
1914 */
1915static void *established_get_first(struct seq_file *seq)
1916{
1917 struct tcp_iter_state *st = seq->private;
1918 struct net *net = seq_file_net(seq);
1919 void *rc = NULL;
1920
1921 st->offset = 0;
1922 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1923 struct sock *sk;
1924 struct hlist_nulls_node *node;
1925 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1926
1927 /* Lockless fast path for the common case of empty buckets */
1928 if (empty_bucket(st))
1929 continue;
1930
1931 spin_lock_bh(lock);
1932 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1933 if (sk->sk_family != st->family ||
1934 !net_eq(sock_net(sk), net)) {
1935 continue;
1936 }
1937 rc = sk;
1938 goto out;
1939 }
1940 spin_unlock_bh(lock);
1941 }
1942out:
1943 return rc;
1944}
1945
1946static void *established_get_next(struct seq_file *seq, void *cur)
1947{
1948 struct sock *sk = cur;
1949 struct hlist_nulls_node *node;
1950 struct tcp_iter_state *st = seq->private;
1951 struct net *net = seq_file_net(seq);
1952
1953 ++st->num;
1954 ++st->offset;
1955
1956 sk = sk_nulls_next(sk);
1957
1958 sk_nulls_for_each_from(sk, node) {
1959 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1960 return sk;
1961 }
1962
1963 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1964 ++st->bucket;
1965 return established_get_first(seq);
1966}
1967
1968static void *established_get_idx(struct seq_file *seq, loff_t pos)
1969{
1970 struct tcp_iter_state *st = seq->private;
1971 void *rc;
1972
1973 st->bucket = 0;
1974 rc = established_get_first(seq);
1975
1976 while (rc && pos) {
1977 rc = established_get_next(seq, rc);
1978 --pos;
1979 }
1980 return rc;
1981}
1982
1983static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1984{
1985 void *rc;
1986 struct tcp_iter_state *st = seq->private;
1987
1988 st->state = TCP_SEQ_STATE_LISTENING;
1989 rc = listening_get_idx(seq, &pos);
1990
1991 if (!rc) {
1992 st->state = TCP_SEQ_STATE_ESTABLISHED;
1993 rc = established_get_idx(seq, pos);
1994 }
1995
1996 return rc;
1997}
1998
1999static void *tcp_seek_last_pos(struct seq_file *seq)
2000{
2001 struct tcp_iter_state *st = seq->private;
2002 int offset = st->offset;
2003 int orig_num = st->num;
2004 void *rc = NULL;
2005
2006 switch (st->state) {
2007 case TCP_SEQ_STATE_LISTENING:
2008 if (st->bucket >= INET_LHTABLE_SIZE)
2009 break;
2010 st->state = TCP_SEQ_STATE_LISTENING;
2011 rc = listening_get_next(seq, NULL);
2012 while (offset-- && rc)
2013 rc = listening_get_next(seq, rc);
2014 if (rc)
2015 break;
2016 st->bucket = 0;
2017 st->state = TCP_SEQ_STATE_ESTABLISHED;
2018 /* Fallthrough */
2019 case TCP_SEQ_STATE_ESTABLISHED:
2020 if (st->bucket > tcp_hashinfo.ehash_mask)
2021 break;
2022 rc = established_get_first(seq);
2023 while (offset-- && rc)
2024 rc = established_get_next(seq, rc);
2025 }
2026
2027 st->num = orig_num;
2028
2029 return rc;
2030}
2031
2032static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2033{
2034 struct tcp_iter_state *st = seq->private;
2035 void *rc;
2036
2037 if (*pos && *pos == st->last_pos) {
2038 rc = tcp_seek_last_pos(seq);
2039 if (rc)
2040 goto out;
2041 }
2042
2043 st->state = TCP_SEQ_STATE_LISTENING;
2044 st->num = 0;
2045 st->bucket = 0;
2046 st->offset = 0;
2047 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2048
2049out:
2050 st->last_pos = *pos;
2051 return rc;
2052}
2053
2054static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055{
2056 struct tcp_iter_state *st = seq->private;
2057 void *rc = NULL;
2058
2059 if (v == SEQ_START_TOKEN) {
2060 rc = tcp_get_idx(seq, 0);
2061 goto out;
2062 }
2063
2064 switch (st->state) {
2065 case TCP_SEQ_STATE_LISTENING:
2066 rc = listening_get_next(seq, v);
2067 if (!rc) {
2068 st->state = TCP_SEQ_STATE_ESTABLISHED;
2069 st->bucket = 0;
2070 st->offset = 0;
2071 rc = established_get_first(seq);
2072 }
2073 break;
2074 case TCP_SEQ_STATE_ESTABLISHED:
2075 rc = established_get_next(seq, v);
2076 break;
2077 }
2078out:
2079 ++*pos;
2080 st->last_pos = *pos;
2081 return rc;
2082}
2083
2084static void tcp_seq_stop(struct seq_file *seq, void *v)
2085{
2086 struct tcp_iter_state *st = seq->private;
2087
2088 switch (st->state) {
2089 case TCP_SEQ_STATE_LISTENING:
2090 if (v != SEQ_START_TOKEN)
2091 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2092 break;
2093 case TCP_SEQ_STATE_ESTABLISHED:
2094 if (v)
2095 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2096 break;
2097 }
2098}
2099
2100int tcp_seq_open(struct inode *inode, struct file *file)
2101{
2102 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2103 struct tcp_iter_state *s;
2104 int err;
2105
2106 err = seq_open_net(inode, file, &afinfo->seq_ops,
2107 sizeof(struct tcp_iter_state));
2108 if (err < 0)
2109 return err;
2110
2111 s = ((struct seq_file *)file->private_data)->private;
2112 s->family = afinfo->family;
2113 s->last_pos = 0;
2114 return 0;
2115}
2116EXPORT_SYMBOL(tcp_seq_open);
2117
2118int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2119{
2120 int rc = 0;
2121 struct proc_dir_entry *p;
2122
2123 afinfo->seq_ops.start = tcp_seq_start;
2124 afinfo->seq_ops.next = tcp_seq_next;
2125 afinfo->seq_ops.stop = tcp_seq_stop;
2126
2127 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2128 afinfo->seq_fops, afinfo);
2129 if (!p)
2130 rc = -ENOMEM;
2131 return rc;
2132}
2133EXPORT_SYMBOL(tcp_proc_register);
2134
2135void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2136{
2137 remove_proc_entry(afinfo->name, net->proc_net);
2138}
2139EXPORT_SYMBOL(tcp_proc_unregister);
2140
2141static void get_openreq4(const struct request_sock *req,
2142 struct seq_file *f, int i)
2143{
2144 const struct inet_request_sock *ireq = inet_rsk(req);
2145 long delta = req->rsk_timer.expires - jiffies;
2146
2147 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2148 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2149 i,
2150 ireq->ir_loc_addr,
2151 ireq->ir_num,
2152 ireq->ir_rmt_addr,
2153 ntohs(ireq->ir_rmt_port),
2154 TCP_SYN_RECV,
2155 0, 0, /* could print option size, but that is af dependent. */
2156 1, /* timers active (only the expire timer) */
2157 jiffies_delta_to_clock_t(delta),
2158 req->num_timeout,
2159 from_kuid_munged(seq_user_ns(f),
2160 sock_i_uid(req->rsk_listener)),
2161 0, /* non standard timer */
2162 0, /* open_requests have no inode */
2163 0,
2164 req);
2165}
2166
2167static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2168{
2169 int timer_active;
2170 unsigned long timer_expires;
2171 const struct tcp_sock *tp = tcp_sk(sk);
2172 const struct inet_connection_sock *icsk = inet_csk(sk);
2173 const struct inet_sock *inet = inet_sk(sk);
2174 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2175 __be32 dest = inet->inet_daddr;
2176 __be32 src = inet->inet_rcv_saddr;
2177 __u16 destp = ntohs(inet->inet_dport);
2178 __u16 srcp = ntohs(inet->inet_sport);
2179 int rx_queue;
2180 int state;
2181
2182 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2183 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2184 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2185 timer_active = 1;
2186 timer_expires = icsk->icsk_timeout;
2187 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2188 timer_active = 4;
2189 timer_expires = icsk->icsk_timeout;
2190 } else if (timer_pending(&sk->sk_timer)) {
2191 timer_active = 2;
2192 timer_expires = sk->sk_timer.expires;
2193 } else {
2194 timer_active = 0;
2195 timer_expires = jiffies;
2196 }
2197
2198 state = sk_state_load(sk);
2199 if (state == TCP_LISTEN)
2200 rx_queue = sk->sk_ack_backlog;
2201 else
2202 /* Because we don't lock the socket,
2203 * we might find a transient negative value.
2204 */
2205 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2206
2207 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2208 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2209 i, src, srcp, dest, destp, state,
2210 tp->write_seq - tp->snd_una,
2211 rx_queue,
2212 timer_active,
2213 jiffies_delta_to_clock_t(timer_expires - jiffies),
2214 icsk->icsk_retransmits,
2215 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2216 icsk->icsk_probes_out,
2217 sock_i_ino(sk),
2218 atomic_read(&sk->sk_refcnt), sk,
2219 jiffies_to_clock_t(icsk->icsk_rto),
2220 jiffies_to_clock_t(icsk->icsk_ack.ato),
2221 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2222 tp->snd_cwnd,
2223 state == TCP_LISTEN ?
2224 fastopenq->max_qlen :
2225 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2226}
2227
2228static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2229 struct seq_file *f, int i)
2230{
2231 long delta = tw->tw_timer.expires - jiffies;
2232 __be32 dest, src;
2233 __u16 destp, srcp;
2234
2235 dest = tw->tw_daddr;
2236 src = tw->tw_rcv_saddr;
2237 destp = ntohs(tw->tw_dport);
2238 srcp = ntohs(tw->tw_sport);
2239
2240 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2241 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2242 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2243 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2244 atomic_read(&tw->tw_refcnt), tw);
2245}
2246
2247#define TMPSZ 150
2248
2249static int tcp4_seq_show(struct seq_file *seq, void *v)
2250{
2251 struct tcp_iter_state *st;
2252 struct sock *sk = v;
2253
2254 seq_setwidth(seq, TMPSZ - 1);
2255 if (v == SEQ_START_TOKEN) {
2256 seq_puts(seq, " sl local_address rem_address st tx_queue "
2257 "rx_queue tr tm->when retrnsmt uid timeout "
2258 "inode");
2259 goto out;
2260 }
2261 st = seq->private;
2262
2263 if (sk->sk_state == TCP_TIME_WAIT)
2264 get_timewait4_sock(v, seq, st->num);
2265 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2266 get_openreq4(v, seq, st->num);
2267 else
2268 get_tcp4_sock(v, seq, st->num);
2269out:
2270 seq_pad(seq, '\n');
2271 return 0;
2272}
2273
2274static const struct file_operations tcp_afinfo_seq_fops = {
2275 .owner = THIS_MODULE,
2276 .open = tcp_seq_open,
2277 .read = seq_read,
2278 .llseek = seq_lseek,
2279 .release = seq_release_net
2280};
2281
2282static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2283 .name = "tcp",
2284 .family = AF_INET,
2285 .seq_fops = &tcp_afinfo_seq_fops,
2286 .seq_ops = {
2287 .show = tcp4_seq_show,
2288 },
2289};
2290
2291static int __net_init tcp4_proc_init_net(struct net *net)
2292{
2293 return tcp_proc_register(net, &tcp4_seq_afinfo);
2294}
2295
2296static void __net_exit tcp4_proc_exit_net(struct net *net)
2297{
2298 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2299}
2300
2301static struct pernet_operations tcp4_net_ops = {
2302 .init = tcp4_proc_init_net,
2303 .exit = tcp4_proc_exit_net,
2304};
2305
2306int __init tcp4_proc_init(void)
2307{
2308 return register_pernet_subsys(&tcp4_net_ops);
2309}
2310
2311void tcp4_proc_exit(void)
2312{
2313 unregister_pernet_subsys(&tcp4_net_ops);
2314}
2315#endif /* CONFIG_PROC_FS */
2316
2317struct proto tcp_prot = {
2318 .name = "TCP",
2319 .owner = THIS_MODULE,
2320 .close = tcp_close,
2321 .connect = tcp_v4_connect,
2322 .disconnect = tcp_disconnect,
2323 .accept = inet_csk_accept,
2324 .ioctl = tcp_ioctl,
2325 .init = tcp_v4_init_sock,
2326 .destroy = tcp_v4_destroy_sock,
2327 .shutdown = tcp_shutdown,
2328 .setsockopt = tcp_setsockopt,
2329 .getsockopt = tcp_getsockopt,
2330 .recvmsg = tcp_recvmsg,
2331 .sendmsg = tcp_sendmsg,
2332 .sendpage = tcp_sendpage,
2333 .backlog_rcv = tcp_v4_do_rcv,
2334 .release_cb = tcp_release_cb,
2335 .hash = inet_hash,
2336 .unhash = inet_unhash,
2337 .get_port = inet_csk_get_port,
2338 .enter_memory_pressure = tcp_enter_memory_pressure,
2339 .stream_memory_free = tcp_stream_memory_free,
2340 .sockets_allocated = &tcp_sockets_allocated,
2341 .orphan_count = &tcp_orphan_count,
2342 .memory_allocated = &tcp_memory_allocated,
2343 .memory_pressure = &tcp_memory_pressure,
2344 .sysctl_mem = sysctl_tcp_mem,
2345 .sysctl_wmem = sysctl_tcp_wmem,
2346 .sysctl_rmem = sysctl_tcp_rmem,
2347 .max_header = MAX_TCP_HEADER,
2348 .obj_size = sizeof(struct tcp_sock),
2349 .slab_flags = SLAB_DESTROY_BY_RCU,
2350 .twsk_prot = &tcp_timewait_sock_ops,
2351 .rsk_prot = &tcp_request_sock_ops,
2352 .h.hashinfo = &tcp_hashinfo,
2353 .no_autobind = true,
2354#ifdef CONFIG_COMPAT
2355 .compat_setsockopt = compat_tcp_setsockopt,
2356 .compat_getsockopt = compat_tcp_getsockopt,
2357#endif
2358 .diag_destroy = tcp_abort,
2359};
2360EXPORT_SYMBOL(tcp_prot);
2361
2362static void __net_exit tcp_sk_exit(struct net *net)
2363{
2364 int cpu;
2365
2366 for_each_possible_cpu(cpu)
2367 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2368 free_percpu(net->ipv4.tcp_sk);
2369}
2370
2371static int __net_init tcp_sk_init(struct net *net)
2372{
2373 int res, cpu;
2374
2375 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2376 if (!net->ipv4.tcp_sk)
2377 return -ENOMEM;
2378
2379 for_each_possible_cpu(cpu) {
2380 struct sock *sk;
2381
2382 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2383 IPPROTO_TCP, net);
2384 if (res)
2385 goto fail;
2386 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2387 }
2388
2389 net->ipv4.sysctl_tcp_ecn = 2;
2390 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2391
2392 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2393 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2394 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2395
2396 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2397 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2398 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2399
2400 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2401 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2402 net->ipv4.sysctl_tcp_syncookies = 1;
2403 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2404 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2405 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2406 net->ipv4.sysctl_tcp_orphan_retries = 0;
2407 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2408 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2409
2410 return 0;
2411fail:
2412 tcp_sk_exit(net);
2413
2414 return res;
2415}
2416
2417static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2418{
2419 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2420}
2421
2422static struct pernet_operations __net_initdata tcp_sk_ops = {
2423 .init = tcp_sk_init,
2424 .exit = tcp_sk_exit,
2425 .exit_batch = tcp_sk_exit_batch,
2426};
2427
2428void __init tcp_v4_init(void)
2429{
2430 inet_hashinfo_init(&tcp_hashinfo);
2431 if (register_pernet_subsys(&tcp_sk_ops))
2432 panic("Failed to create the TCP control socket.\n");
2433}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54#include <linux/bottom_half.h>
55#include <linux/types.h>
56#include <linux/fcntl.h>
57#include <linux/module.h>
58#include <linux/random.h>
59#include <linux/cache.h>
60#include <linux/jhash.h>
61#include <linux/init.h>
62#include <linux/times.h>
63#include <linux/slab.h>
64
65#include <net/net_namespace.h>
66#include <net/icmp.h>
67#include <net/inet_hashtables.h>
68#include <net/tcp.h>
69#include <net/transp_v6.h>
70#include <net/ipv6.h>
71#include <net/inet_common.h>
72#include <net/timewait_sock.h>
73#include <net/xfrm.h>
74#include <net/netdma.h>
75#include <net/secure_seq.h>
76
77#include <linux/inet.h>
78#include <linux/ipv6.h>
79#include <linux/stddef.h>
80#include <linux/proc_fs.h>
81#include <linux/seq_file.h>
82
83#include <linux/crypto.h>
84#include <linux/scatterlist.h>
85
86int sysctl_tcp_tw_reuse __read_mostly;
87int sysctl_tcp_low_latency __read_mostly;
88EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91#ifdef CONFIG_TCP_MD5SIG
92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93 __be32 addr);
94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, struct tcphdr *th);
96#else
97static inline
98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99{
100 return NULL;
101}
102#endif
103
104struct inet_hashinfo tcp_hashinfo;
105EXPORT_SYMBOL(tcp_hashinfo);
106
107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108{
109 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110 ip_hdr(skb)->saddr,
111 tcp_hdr(skb)->dest,
112 tcp_hdr(skb)->source);
113}
114
115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116{
117 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 struct tcp_sock *tp = tcp_sk(sk);
119
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
126 holder.
127
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
130 */
131 if (tcptw->tw_ts_recent_stamp &&
132 (twp == NULL || (sysctl_tcp_tw_reuse &&
133 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 if (tp->write_seq == 0)
136 tp->write_seq = 1;
137 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
138 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 sock_hold(sktw);
140 return 1;
141 }
142
143 return 0;
144}
145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147/* This will initiate an outgoing connection. */
148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149{
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct inet_sock *inet = inet_sk(sk);
152 struct tcp_sock *tp = tcp_sk(sk);
153 __be16 orig_sport, orig_dport;
154 __be32 daddr, nexthop;
155 struct flowi4 *fl4;
156 struct rtable *rt;
157 int err;
158 struct ip_options_rcu *inet_opt;
159
160 if (addr_len < sizeof(struct sockaddr_in))
161 return -EINVAL;
162
163 if (usin->sin_family != AF_INET)
164 return -EAFNOSUPPORT;
165
166 nexthop = daddr = usin->sin_addr.s_addr;
167 inet_opt = rcu_dereference_protected(inet->inet_opt,
168 sock_owned_by_user(sk));
169 if (inet_opt && inet_opt->opt.srr) {
170 if (!daddr)
171 return -EINVAL;
172 nexthop = inet_opt->opt.faddr;
173 }
174
175 orig_sport = inet->inet_sport;
176 orig_dport = usin->sin_port;
177 fl4 = &inet->cork.fl.u.ip4;
178 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180 IPPROTO_TCP,
181 orig_sport, orig_dport, sk, true);
182 if (IS_ERR(rt)) {
183 err = PTR_ERR(rt);
184 if (err == -ENETUNREACH)
185 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186 return err;
187 }
188
189 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190 ip_rt_put(rt);
191 return -ENETUNREACH;
192 }
193
194 if (!inet_opt || !inet_opt->opt.srr)
195 daddr = fl4->daddr;
196
197 if (!inet->inet_saddr)
198 inet->inet_saddr = fl4->saddr;
199 inet->inet_rcv_saddr = inet->inet_saddr;
200
201 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202 /* Reset inherited state */
203 tp->rx_opt.ts_recent = 0;
204 tp->rx_opt.ts_recent_stamp = 0;
205 tp->write_seq = 0;
206 }
207
208 if (tcp_death_row.sysctl_tw_recycle &&
209 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211 /*
212 * VJ's idea. We save last timestamp seen from
213 * the destination in peer table, when entering state
214 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215 * when trying new connection.
216 */
217 if (peer) {
218 inet_peer_refcheck(peer);
219 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221 tp->rx_opt.ts_recent = peer->tcp_ts;
222 }
223 }
224 }
225
226 inet->inet_dport = usin->sin_port;
227 inet->inet_daddr = daddr;
228
229 inet_csk(sk)->icsk_ext_hdr_len = 0;
230 if (inet_opt)
231 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235 /* Socket identity is still unknown (sport may be zero).
236 * However we set state to SYN-SENT and not releasing socket
237 * lock select source port, enter ourselves into the hash tables and
238 * complete initialization after this.
239 */
240 tcp_set_state(sk, TCP_SYN_SENT);
241 err = inet_hash_connect(&tcp_death_row, sk);
242 if (err)
243 goto failure;
244
245 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246 inet->inet_sport, inet->inet_dport, sk);
247 if (IS_ERR(rt)) {
248 err = PTR_ERR(rt);
249 rt = NULL;
250 goto failure;
251 }
252 /* OK, now commit destination to socket. */
253 sk->sk_gso_type = SKB_GSO_TCPV4;
254 sk_setup_caps(sk, &rt->dst);
255
256 if (!tp->write_seq)
257 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258 inet->inet_daddr,
259 inet->inet_sport,
260 usin->sin_port);
261
262 inet->inet_id = tp->write_seq ^ jiffies;
263
264 err = tcp_connect(sk);
265 rt = NULL;
266 if (err)
267 goto failure;
268
269 return 0;
270
271failure:
272 /*
273 * This unhashes the socket and releases the local port,
274 * if necessary.
275 */
276 tcp_set_state(sk, TCP_CLOSE);
277 ip_rt_put(rt);
278 sk->sk_route_caps = 0;
279 inet->inet_dport = 0;
280 return err;
281}
282EXPORT_SYMBOL(tcp_v4_connect);
283
284/*
285 * This routine does path mtu discovery as defined in RFC1191.
286 */
287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288{
289 struct dst_entry *dst;
290 struct inet_sock *inet = inet_sk(sk);
291
292 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293 * send out by Linux are always <576bytes so they should go through
294 * unfragmented).
295 */
296 if (sk->sk_state == TCP_LISTEN)
297 return;
298
299 /* We don't check in the destentry if pmtu discovery is forbidden
300 * on this route. We just assume that no packet_to_big packets
301 * are send back when pmtu discovery is not active.
302 * There is a small race when the user changes this flag in the
303 * route, but I think that's acceptable.
304 */
305 if ((dst = __sk_dst_check(sk, 0)) == NULL)
306 return;
307
308 dst->ops->update_pmtu(dst, mtu);
309
310 /* Something is about to be wrong... Remember soft error
311 * for the case, if this connection will not able to recover.
312 */
313 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314 sk->sk_err_soft = EMSGSIZE;
315
316 mtu = dst_mtu(dst);
317
318 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320 tcp_sync_mss(sk, mtu);
321
322 /* Resend the TCP packet because it's
323 * clear that the old packet has been
324 * dropped. This is the new "fast" path mtu
325 * discovery.
326 */
327 tcp_simple_retransmit(sk);
328 } /* else let the usual retransmit timer handle it */
329}
330
331/*
332 * This routine is called by the ICMP module when it gets some
333 * sort of error condition. If err < 0 then the socket should
334 * be closed and the error returned to the user. If err > 0
335 * it's just the icmp type << 8 | icmp code. After adjustment
336 * header points to the first 8 bytes of the tcp header. We need
337 * to find the appropriate port.
338 *
339 * The locking strategy used here is very "optimistic". When
340 * someone else accesses the socket the ICMP is just dropped
341 * and for some paths there is no check at all.
342 * A more general error queue to queue errors for later handling
343 * is probably better.
344 *
345 */
346
347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348{
349 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351 struct inet_connection_sock *icsk;
352 struct tcp_sock *tp;
353 struct inet_sock *inet;
354 const int type = icmp_hdr(icmp_skb)->type;
355 const int code = icmp_hdr(icmp_skb)->code;
356 struct sock *sk;
357 struct sk_buff *skb;
358 __u32 seq;
359 __u32 remaining;
360 int err;
361 struct net *net = dev_net(icmp_skb->dev);
362
363 if (icmp_skb->len < (iph->ihl << 2) + 8) {
364 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365 return;
366 }
367
368 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369 iph->saddr, th->source, inet_iif(icmp_skb));
370 if (!sk) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374 if (sk->sk_state == TCP_TIME_WAIT) {
375 inet_twsk_put(inet_twsk(sk));
376 return;
377 }
378
379 bh_lock_sock(sk);
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
382 */
383 if (sock_owned_by_user(sk))
384 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386 if (sk->sk_state == TCP_CLOSE)
387 goto out;
388
389 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391 goto out;
392 }
393
394 icsk = inet_csk(sk);
395 tp = tcp_sk(sk);
396 seq = ntohl(th->seq);
397 if (sk->sk_state != TCP_LISTEN &&
398 !between(seq, tp->snd_una, tp->snd_nxt)) {
399 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400 goto out;
401 }
402
403 switch (type) {
404 case ICMP_SOURCE_QUENCH:
405 /* Just silently ignore these. */
406 goto out;
407 case ICMP_PARAMETERPROB:
408 err = EPROTO;
409 break;
410 case ICMP_DEST_UNREACH:
411 if (code > NR_ICMP_UNREACH)
412 goto out;
413
414 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415 if (!sock_owned_by_user(sk))
416 do_pmtu_discovery(sk, iph, info);
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 goto out;
489
490 case TCP_SYN_SENT:
491 case TCP_SYN_RECV: /* Cannot happen.
492 It can f.e. if SYNs crossed.
493 */
494 if (!sock_owned_by_user(sk)) {
495 sk->sk_err = err;
496
497 sk->sk_error_report(sk);
498
499 tcp_done(sk);
500 } else {
501 sk->sk_err_soft = err;
502 }
503 goto out;
504 }
505
506 /* If we've already connected we will keep trying
507 * until we time out, or the user gives up.
508 *
509 * rfc1122 4.2.3.9 allows to consider as hard errors
510 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511 * but it is obsoleted by pmtu discovery).
512 *
513 * Note, that in modern internet, where routing is unreliable
514 * and in each dark corner broken firewalls sit, sending random
515 * errors ordered by their masters even this two messages finally lose
516 * their original sense (even Linux sends invalid PORT_UNREACHs)
517 *
518 * Now we are in compliance with RFCs.
519 * --ANK (980905)
520 */
521
522 inet = inet_sk(sk);
523 if (!sock_owned_by_user(sk) && inet->recverr) {
524 sk->sk_err = err;
525 sk->sk_error_report(sk);
526 } else { /* Only an error on timeout */
527 sk->sk_err_soft = err;
528 }
529
530out:
531 bh_unlock_sock(sk);
532 sock_put(sk);
533}
534
535static void __tcp_v4_send_check(struct sk_buff *skb,
536 __be32 saddr, __be32 daddr)
537{
538 struct tcphdr *th = tcp_hdr(skb);
539
540 if (skb->ip_summed == CHECKSUM_PARTIAL) {
541 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542 skb->csum_start = skb_transport_header(skb) - skb->head;
543 skb->csum_offset = offsetof(struct tcphdr, check);
544 } else {
545 th->check = tcp_v4_check(skb->len, saddr, daddr,
546 csum_partial(th,
547 th->doff << 2,
548 skb->csum));
549 }
550}
551
552/* This routine computes an IPv4 TCP checksum. */
553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554{
555 struct inet_sock *inet = inet_sk(sk);
556
557 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558}
559EXPORT_SYMBOL(tcp_v4_send_check);
560
561int tcp_v4_gso_send_check(struct sk_buff *skb)
562{
563 const struct iphdr *iph;
564 struct tcphdr *th;
565
566 if (!pskb_may_pull(skb, sizeof(*th)))
567 return -EINVAL;
568
569 iph = ip_hdr(skb);
570 th = tcp_hdr(skb);
571
572 th->check = 0;
573 skb->ip_summed = CHECKSUM_PARTIAL;
574 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575 return 0;
576}
577
578/*
579 * This routine will send an RST to the other tcp.
580 *
581 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582 * for reset.
583 * Answer: if a packet caused RST, it is not for a socket
584 * existing in our system, if it is matched to a socket,
585 * it is just duplicate segment or bug in other side's TCP.
586 * So that we build reply only basing on parameters
587 * arrived with segment.
588 * Exception: precedence violation. We do not implement it in any case.
589 */
590
591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592{
593 struct tcphdr *th = tcp_hdr(skb);
594 struct {
595 struct tcphdr th;
596#ifdef CONFIG_TCP_MD5SIG
597 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598#endif
599 } rep;
600 struct ip_reply_arg arg;
601#ifdef CONFIG_TCP_MD5SIG
602 struct tcp_md5sig_key *key;
603#endif
604 struct net *net;
605
606 /* Never send a reset in response to a reset. */
607 if (th->rst)
608 return;
609
610 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 return;
612
613 /* Swap the send and the receive. */
614 memset(&rep, 0, sizeof(rep));
615 rep.th.dest = th->source;
616 rep.th.source = th->dest;
617 rep.th.doff = sizeof(struct tcphdr) / 4;
618 rep.th.rst = 1;
619
620 if (th->ack) {
621 rep.th.seq = th->ack_seq;
622 } else {
623 rep.th.ack = 1;
624 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 skb->len - (th->doff << 2));
626 }
627
628 memset(&arg, 0, sizeof(arg));
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
631
632#ifdef CONFIG_TCP_MD5SIG
633 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
634 if (key) {
635 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_MD5SIG << 8) |
638 TCPOLEN_MD5SIG);
639 /* Update length and the length the header thinks exists */
640 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641 rep.th.doff = arg.iov[0].iov_len / 4;
642
643 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644 key, ip_hdr(skb)->saddr,
645 ip_hdr(skb)->daddr, &rep.th);
646 }
647#endif
648 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649 ip_hdr(skb)->saddr, /* XXX */
650 arg.iov[0].iov_len, IPPROTO_TCP, 0);
651 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653
654 net = dev_net(skb_dst(skb)->dev);
655 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
656 &arg, arg.iov[0].iov_len);
657
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
659 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
660}
661
662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
663 outside socket context is ugly, certainly. What can I do?
664 */
665
666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
667 u32 win, u32 ts, int oif,
668 struct tcp_md5sig_key *key,
669 int reply_flags)
670{
671 struct tcphdr *th = tcp_hdr(skb);
672 struct {
673 struct tcphdr th;
674 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
675#ifdef CONFIG_TCP_MD5SIG
676 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
677#endif
678 ];
679 } rep;
680 struct ip_reply_arg arg;
681 struct net *net = dev_net(skb_dst(skb)->dev);
682
683 memset(&rep.th, 0, sizeof(struct tcphdr));
684 memset(&arg, 0, sizeof(arg));
685
686 arg.iov[0].iov_base = (unsigned char *)&rep;
687 arg.iov[0].iov_len = sizeof(rep.th);
688 if (ts) {
689 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
690 (TCPOPT_TIMESTAMP << 8) |
691 TCPOLEN_TIMESTAMP);
692 rep.opt[1] = htonl(tcp_time_stamp);
693 rep.opt[2] = htonl(ts);
694 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 /* Swap the send and the receive. */
698 rep.th.dest = th->source;
699 rep.th.source = th->dest;
700 rep.th.doff = arg.iov[0].iov_len / 4;
701 rep.th.seq = htonl(seq);
702 rep.th.ack_seq = htonl(ack);
703 rep.th.ack = 1;
704 rep.th.window = htons(win);
705
706#ifdef CONFIG_TCP_MD5SIG
707 if (key) {
708 int offset = (ts) ? 3 : 0;
709
710 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
711 (TCPOPT_NOP << 16) |
712 (TCPOPT_MD5SIG << 8) |
713 TCPOLEN_MD5SIG);
714 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
715 rep.th.doff = arg.iov[0].iov_len/4;
716
717 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
718 key, ip_hdr(skb)->saddr,
719 ip_hdr(skb)->daddr, &rep.th);
720 }
721#endif
722 arg.flags = reply_flags;
723 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
724 ip_hdr(skb)->saddr, /* XXX */
725 arg.iov[0].iov_len, IPPROTO_TCP, 0);
726 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
727 if (oif)
728 arg.bound_dev_if = oif;
729
730 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
731 &arg, arg.iov[0].iov_len);
732
733 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
734}
735
736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
737{
738 struct inet_timewait_sock *tw = inet_twsk(sk);
739 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
740
741 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
742 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
743 tcptw->tw_ts_recent,
744 tw->tw_bound_dev_if,
745 tcp_twsk_md5_key(tcptw),
746 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
747 );
748
749 inet_twsk_put(tw);
750}
751
752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
753 struct request_sock *req)
754{
755 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
756 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
757 req->ts_recent,
758 0,
759 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
760 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
761}
762
763/*
764 * Send a SYN-ACK after having received a SYN.
765 * This still operates on a request_sock only, not on a big
766 * socket.
767 */
768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
769 struct request_sock *req,
770 struct request_values *rvp)
771{
772 const struct inet_request_sock *ireq = inet_rsk(req);
773 struct flowi4 fl4;
774 int err = -1;
775 struct sk_buff * skb;
776
777 /* First, grab a route. */
778 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
779 return -1;
780
781 skb = tcp_make_synack(sk, dst, req, rvp);
782
783 if (skb) {
784 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785
786 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
787 ireq->rmt_addr,
788 ireq->opt);
789 err = net_xmit_eval(err);
790 }
791
792 dst_release(dst);
793 return err;
794}
795
796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
797 struct request_values *rvp)
798{
799 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
800 return tcp_v4_send_synack(sk, NULL, req, rvp);
801}
802
803/*
804 * IPv4 request_sock destructor.
805 */
806static void tcp_v4_reqsk_destructor(struct request_sock *req)
807{
808 kfree(inet_rsk(req)->opt);
809}
810
811/*
812 * Return 1 if a syncookie should be sent
813 */
814int tcp_syn_flood_action(struct sock *sk,
815 const struct sk_buff *skb,
816 const char *proto)
817{
818 const char *msg = "Dropping request";
819 int want_cookie = 0;
820 struct listen_sock *lopt;
821
822
823
824#ifdef CONFIG_SYN_COOKIES
825 if (sysctl_tcp_syncookies) {
826 msg = "Sending cookies";
827 want_cookie = 1;
828 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
829 } else
830#endif
831 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
832
833 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
834 if (!lopt->synflood_warned) {
835 lopt->synflood_warned = 1;
836 pr_info("%s: Possible SYN flooding on port %d. %s. "
837 " Check SNMP counters.\n",
838 proto, ntohs(tcp_hdr(skb)->dest), msg);
839 }
840 return want_cookie;
841}
842EXPORT_SYMBOL(tcp_syn_flood_action);
843
844/*
845 * Save and compile IPv4 options into the request_sock if needed.
846 */
847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
848 struct sk_buff *skb)
849{
850 const struct ip_options *opt = &(IPCB(skb)->opt);
851 struct ip_options_rcu *dopt = NULL;
852
853 if (opt && opt->optlen) {
854 int opt_size = sizeof(*dopt) + opt->optlen;
855
856 dopt = kmalloc(opt_size, GFP_ATOMIC);
857 if (dopt) {
858 if (ip_options_echo(&dopt->opt, skb)) {
859 kfree(dopt);
860 dopt = NULL;
861 }
862 }
863 }
864 return dopt;
865}
866
867#ifdef CONFIG_TCP_MD5SIG
868/*
869 * RFC2385 MD5 checksumming requires a mapping of
870 * IP address->MD5 Key.
871 * We need to maintain these in the sk structure.
872 */
873
874/* Find the Key structure for an address. */
875static struct tcp_md5sig_key *
876 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
877{
878 struct tcp_sock *tp = tcp_sk(sk);
879 int i;
880
881 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
882 return NULL;
883 for (i = 0; i < tp->md5sig_info->entries4; i++) {
884 if (tp->md5sig_info->keys4[i].addr == addr)
885 return &tp->md5sig_info->keys4[i].base;
886 }
887 return NULL;
888}
889
890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
891 struct sock *addr_sk)
892{
893 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
894}
895EXPORT_SYMBOL(tcp_v4_md5_lookup);
896
897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
898 struct request_sock *req)
899{
900 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
901}
902
903/* This can be called on a newly created socket, from other files */
904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
905 u8 *newkey, u8 newkeylen)
906{
907 /* Add Key to the list */
908 struct tcp_md5sig_key *key;
909 struct tcp_sock *tp = tcp_sk(sk);
910 struct tcp4_md5sig_key *keys;
911
912 key = tcp_v4_md5_do_lookup(sk, addr);
913 if (key) {
914 /* Pre-existing entry - just update that one. */
915 kfree(key->key);
916 key->key = newkey;
917 key->keylen = newkeylen;
918 } else {
919 struct tcp_md5sig_info *md5sig;
920
921 if (!tp->md5sig_info) {
922 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
923 GFP_ATOMIC);
924 if (!tp->md5sig_info) {
925 kfree(newkey);
926 return -ENOMEM;
927 }
928 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
929 }
930
931 md5sig = tp->md5sig_info;
932 if (md5sig->entries4 == 0 &&
933 tcp_alloc_md5sig_pool(sk) == NULL) {
934 kfree(newkey);
935 return -ENOMEM;
936 }
937
938 if (md5sig->alloced4 == md5sig->entries4) {
939 keys = kmalloc((sizeof(*keys) *
940 (md5sig->entries4 + 1)), GFP_ATOMIC);
941 if (!keys) {
942 kfree(newkey);
943 if (md5sig->entries4 == 0)
944 tcp_free_md5sig_pool();
945 return -ENOMEM;
946 }
947
948 if (md5sig->entries4)
949 memcpy(keys, md5sig->keys4,
950 sizeof(*keys) * md5sig->entries4);
951
952 /* Free old key list, and reference new one */
953 kfree(md5sig->keys4);
954 md5sig->keys4 = keys;
955 md5sig->alloced4++;
956 }
957 md5sig->entries4++;
958 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
959 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
960 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
961 }
962 return 0;
963}
964EXPORT_SYMBOL(tcp_v4_md5_do_add);
965
966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
967 u8 *newkey, u8 newkeylen)
968{
969 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
970 newkey, newkeylen);
971}
972
973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
974{
975 struct tcp_sock *tp = tcp_sk(sk);
976 int i;
977
978 for (i = 0; i < tp->md5sig_info->entries4; i++) {
979 if (tp->md5sig_info->keys4[i].addr == addr) {
980 /* Free the key */
981 kfree(tp->md5sig_info->keys4[i].base.key);
982 tp->md5sig_info->entries4--;
983
984 if (tp->md5sig_info->entries4 == 0) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 tcp_free_md5sig_pool();
989 } else if (tp->md5sig_info->entries4 != i) {
990 /* Need to do some manipulation */
991 memmove(&tp->md5sig_info->keys4[i],
992 &tp->md5sig_info->keys4[i+1],
993 (tp->md5sig_info->entries4 - i) *
994 sizeof(struct tcp4_md5sig_key));
995 }
996 return 0;
997 }
998 }
999 return -ENOENT;
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005 struct tcp_sock *tp = tcp_sk(sk);
1006
1007 /* Free each key, then the set of key keys,
1008 * the crypto element, and then decrement our
1009 * hold on the last resort crypto.
1010 */
1011 if (tp->md5sig_info->entries4) {
1012 int i;
1013 for (i = 0; i < tp->md5sig_info->entries4; i++)
1014 kfree(tp->md5sig_info->keys4[i].base.key);
1015 tp->md5sig_info->entries4 = 0;
1016 tcp_free_md5sig_pool();
1017 }
1018 if (tp->md5sig_info->keys4) {
1019 kfree(tp->md5sig_info->keys4);
1020 tp->md5sig_info->keys4 = NULL;
1021 tp->md5sig_info->alloced4 = 0;
1022 }
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026 int optlen)
1027{
1028 struct tcp_md5sig cmd;
1029 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030 u8 *newkey;
1031
1032 if (optlen < sizeof(cmd))
1033 return -EINVAL;
1034
1035 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036 return -EFAULT;
1037
1038 if (sin->sin_family != AF_INET)
1039 return -EINVAL;
1040
1041 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042 if (!tcp_sk(sk)->md5sig_info)
1043 return -ENOENT;
1044 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1045 }
1046
1047 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048 return -EINVAL;
1049
1050 if (!tcp_sk(sk)->md5sig_info) {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 struct tcp_md5sig_info *p;
1053
1054 p = kzalloc(sizeof(*p), sk->sk_allocation);
1055 if (!p)
1056 return -EINVAL;
1057
1058 tp->md5sig_info = p;
1059 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060 }
1061
1062 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063 if (!newkey)
1064 return -ENOMEM;
1065 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066 newkey, cmd.tcpm_keylen);
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070 __be32 daddr, __be32 saddr, int nbytes)
1071{
1072 struct tcp4_pseudohdr *bp;
1073 struct scatterlist sg;
1074
1075 bp = &hp->md5_blk.ip4;
1076
1077 /*
1078 * 1. the TCP pseudo-header (in the order: source IP address,
1079 * destination IP address, zero-padded protocol number, and
1080 * segment length)
1081 */
1082 bp->saddr = saddr;
1083 bp->daddr = daddr;
1084 bp->pad = 0;
1085 bp->protocol = IPPROTO_TCP;
1086 bp->len = cpu_to_be16(nbytes);
1087
1088 sg_init_one(&sg, bp, sizeof(*bp));
1089 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093 __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095 struct tcp_md5sig_pool *hp;
1096 struct hash_desc *desc;
1097
1098 hp = tcp_get_md5sig_pool();
1099 if (!hp)
1100 goto clear_hash_noput;
1101 desc = &hp->md5_desc;
1102
1103 if (crypto_hash_init(desc))
1104 goto clear_hash;
1105 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106 goto clear_hash;
1107 if (tcp_md5_hash_header(hp, th))
1108 goto clear_hash;
1109 if (tcp_md5_hash_key(hp, key))
1110 goto clear_hash;
1111 if (crypto_hash_final(desc, md5_hash))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125 struct sock *sk, struct request_sock *req,
1126 struct sk_buff *skb)
1127{
1128 struct tcp_md5sig_pool *hp;
1129 struct hash_desc *desc;
1130 struct tcphdr *th = tcp_hdr(skb);
1131 __be32 saddr, daddr;
1132
1133 if (sk) {
1134 saddr = inet_sk(sk)->inet_saddr;
1135 daddr = inet_sk(sk)->inet_daddr;
1136 } else if (req) {
1137 saddr = inet_rsk(req)->loc_addr;
1138 daddr = inet_rsk(req)->rmt_addr;
1139 } else {
1140 const struct iphdr *iph = ip_hdr(skb);
1141 saddr = iph->saddr;
1142 daddr = iph->daddr;
1143 }
1144
1145 hp = tcp_get_md5sig_pool();
1146 if (!hp)
1147 goto clear_hash_noput;
1148 desc = &hp->md5_desc;
1149
1150 if (crypto_hash_init(desc))
1151 goto clear_hash;
1152
1153 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154 goto clear_hash;
1155 if (tcp_md5_hash_header(hp, th))
1156 goto clear_hash;
1157 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158 goto clear_hash;
1159 if (tcp_md5_hash_key(hp, key))
1160 goto clear_hash;
1161 if (crypto_hash_final(desc, md5_hash))
1162 goto clear_hash;
1163
1164 tcp_put_md5sig_pool();
1165 return 0;
1166
1167clear_hash:
1168 tcp_put_md5sig_pool();
1169clear_hash_noput:
1170 memset(md5_hash, 0, 16);
1171 return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177 /*
1178 * This gets called for each TCP segment that arrives
1179 * so we want to be efficient.
1180 * We have 3 drop cases:
1181 * o No MD5 hash and one expected.
1182 * o MD5 hash and we're not expecting one.
1183 * o MD5 hash and its wrong.
1184 */
1185 __u8 *hash_location = NULL;
1186 struct tcp_md5sig_key *hash_expected;
1187 const struct iphdr *iph = ip_hdr(skb);
1188 struct tcphdr *th = tcp_hdr(skb);
1189 int genhash;
1190 unsigned char newhash[16];
1191
1192 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193 hash_location = tcp_parse_md5sig_option(th);
1194
1195 /* We've parsed the options - do we have a hash? */
1196 if (!hash_expected && !hash_location)
1197 return 0;
1198
1199 if (hash_expected && !hash_location) {
1200 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201 return 1;
1202 }
1203
1204 if (!hash_expected && hash_location) {
1205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206 return 1;
1207 }
1208
1209 /* Okay, so this is hash_expected and hash_location -
1210 * so we need to calculate the checksum.
1211 */
1212 genhash = tcp_v4_md5_hash_skb(newhash,
1213 hash_expected,
1214 NULL, NULL, skb);
1215
1216 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217 if (net_ratelimit()) {
1218 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219 &iph->saddr, ntohs(th->source),
1220 &iph->daddr, ntohs(th->dest),
1221 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222 }
1223 return 1;
1224 }
1225 return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231 .family = PF_INET,
1232 .obj_size = sizeof(struct tcp_request_sock),
1233 .rtx_syn_ack = tcp_v4_rtx_synack,
1234 .send_ack = tcp_v4_reqsk_send_ack,
1235 .destructor = tcp_v4_reqsk_destructor,
1236 .send_reset = tcp_v4_send_reset,
1237 .syn_ack_timeout = tcp_syn_ack_timeout,
1238};
1239
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1243 .calc_md5_hash = tcp_v4_md5_hash_skb,
1244};
1245#endif
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249 struct tcp_extend_values tmp_ext;
1250 struct tcp_options_received tmp_opt;
1251 u8 *hash_location;
1252 struct request_sock *req;
1253 struct inet_request_sock *ireq;
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 struct dst_entry *dst = NULL;
1256 __be32 saddr = ip_hdr(skb)->saddr;
1257 __be32 daddr = ip_hdr(skb)->daddr;
1258 __u32 isn = TCP_SKB_CB(skb)->when;
1259 int want_cookie = 0;
1260
1261 /* Never answer to SYNs send to broadcast or multicast */
1262 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263 goto drop;
1264
1265 /* TW buckets are converted to open requests without
1266 * limitations, they conserve resources and peer is
1267 * evidently real one.
1268 */
1269 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271 if (!want_cookie)
1272 goto drop;
1273 }
1274
1275 /* Accept backlog is full. If we have already queued enough
1276 * of warm entries in syn queue, drop request. It is better than
1277 * clogging syn queue with openreqs with exponentially increasing
1278 * timeout.
1279 */
1280 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281 goto drop;
1282
1283 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284 if (!req)
1285 goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291 tcp_clear_options(&tmp_opt);
1292 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293 tmp_opt.user_mss = tp->rx_opt.user_mss;
1294 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296 if (tmp_opt.cookie_plus > 0 &&
1297 tmp_opt.saw_tstamp &&
1298 !tp->rx_opt.cookie_out_never &&
1299 (sysctl_tcp_cookie_size > 0 ||
1300 (tp->cookie_values != NULL &&
1301 tp->cookie_values->cookie_desired > 0))) {
1302 u8 *c;
1303 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307 goto drop_and_release;
1308
1309 /* Secret recipe starts with IP addresses */
1310 *mess++ ^= (__force u32)daddr;
1311 *mess++ ^= (__force u32)saddr;
1312
1313 /* plus variable length Initiator Cookie */
1314 c = (u8 *)mess;
1315 while (l-- > 0)
1316 *c++ ^= *hash_location++;
1317
1318 want_cookie = 0; /* not our kind of cookie */
1319 tmp_ext.cookie_out_never = 0; /* false */
1320 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321 } else if (!tp->rx_opt.cookie_in_always) {
1322 /* redundant indications, but ensure initialization. */
1323 tmp_ext.cookie_out_never = 1; /* true */
1324 tmp_ext.cookie_plus = 0;
1325 } else {
1326 goto drop_and_release;
1327 }
1328 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330 if (want_cookie && !tmp_opt.saw_tstamp)
1331 tcp_clear_options(&tmp_opt);
1332
1333 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334 tcp_openreq_init(req, &tmp_opt, skb);
1335
1336 ireq = inet_rsk(req);
1337 ireq->loc_addr = daddr;
1338 ireq->rmt_addr = saddr;
1339 ireq->no_srccheck = inet_sk(sk)->transparent;
1340 ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342 if (security_inet_conn_request(sk, skb, req))
1343 goto drop_and_free;
1344
1345 if (!want_cookie || tmp_opt.tstamp_ok)
1346 TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348 if (want_cookie) {
1349 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350 req->cookie_ts = tmp_opt.tstamp_ok;
1351 } else if (!isn) {
1352 struct inet_peer *peer = NULL;
1353 struct flowi4 fl4;
1354
1355 /* VJ's idea. We save last timestamp seen
1356 * from the destination in peer table, when entering
1357 * state TIME-WAIT, and check against it before
1358 * accepting new connection request.
1359 *
1360 * If "isn" is not zero, this request hit alive
1361 * timewait bucket, so that all the necessary checks
1362 * are made in the function processing timewait state.
1363 */
1364 if (tmp_opt.saw_tstamp &&
1365 tcp_death_row.sysctl_tw_recycle &&
1366 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367 fl4.daddr == saddr &&
1368 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369 inet_peer_refcheck(peer);
1370 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371 (s32)(peer->tcp_ts - req->ts_recent) >
1372 TCP_PAWS_WINDOW) {
1373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374 goto drop_and_release;
1375 }
1376 }
1377 /* Kill the following clause, if you dislike this way. */
1378 else if (!sysctl_tcp_syncookies &&
1379 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380 (sysctl_max_syn_backlog >> 2)) &&
1381 (!peer || !peer->tcp_ts_stamp) &&
1382 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383 /* Without syncookies last quarter of
1384 * backlog is filled with destinations,
1385 * proven to be alive.
1386 * It means that we continue to communicate
1387 * to destinations, already remembered
1388 * to the moment of synflood.
1389 */
1390 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391 &saddr, ntohs(tcp_hdr(skb)->source));
1392 goto drop_and_release;
1393 }
1394
1395 isn = tcp_v4_init_sequence(skb);
1396 }
1397 tcp_rsk(req)->snt_isn = isn;
1398 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400 if (tcp_v4_send_synack(sk, dst, req,
1401 (struct request_values *)&tmp_ext) ||
1402 want_cookie)
1403 goto drop_and_free;
1404
1405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406 return 0;
1407
1408drop_and_release:
1409 dst_release(dst);
1410drop_and_free:
1411 reqsk_free(req);
1412drop:
1413 return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423 struct request_sock *req,
1424 struct dst_entry *dst)
1425{
1426 struct inet_request_sock *ireq;
1427 struct inet_sock *newinet;
1428 struct tcp_sock *newtp;
1429 struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
1431 struct tcp_md5sig_key *key;
1432#endif
1433 struct ip_options_rcu *inet_opt;
1434
1435 if (sk_acceptq_is_full(sk))
1436 goto exit_overflow;
1437
1438 newsk = tcp_create_openreq_child(sk, req, skb);
1439 if (!newsk)
1440 goto exit_nonewsk;
1441
1442 newsk->sk_gso_type = SKB_GSO_TCPV4;
1443
1444 newtp = tcp_sk(newsk);
1445 newinet = inet_sk(newsk);
1446 ireq = inet_rsk(req);
1447 newinet->inet_daddr = ireq->rmt_addr;
1448 newinet->inet_rcv_saddr = ireq->loc_addr;
1449 newinet->inet_saddr = ireq->loc_addr;
1450 inet_opt = ireq->opt;
1451 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452 ireq->opt = NULL;
1453 newinet->mc_index = inet_iif(skb);
1454 newinet->mc_ttl = ip_hdr(skb)->ttl;
1455 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456 if (inet_opt)
1457 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458 newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461 goto put_and_exit;
1462
1463 sk_setup_caps(newsk, dst);
1464
1465 tcp_mtup_init(newsk);
1466 tcp_sync_mss(newsk, dst_mtu(dst));
1467 newtp->advmss = dst_metric_advmss(dst);
1468 if (tcp_sk(sk)->rx_opt.user_mss &&
1469 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472 tcp_initialize_rcv_mss(newsk);
1473 if (tcp_rsk(req)->snt_synack)
1474 tcp_valid_rtt_meas(newsk,
1475 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476 newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
1479 /* Copy over the MD5 key from the original socket */
1480 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481 if (key != NULL) {
1482 /*
1483 * We're using one, so create a matching key
1484 * on the newsk structure. If we fail to get
1485 * memory, then we end up not copying the key
1486 * across. Shucks.
1487 */
1488 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489 if (newkey != NULL)
1490 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491 newkey, key->keylen);
1492 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493 }
1494#endif
1495
1496 if (__inet_inherit_port(sk, newsk) < 0)
1497 goto put_and_exit;
1498 __inet_hash_nolisten(newsk, NULL);
1499
1500 return newsk;
1501
1502exit_overflow:
1503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505 dst_release(dst);
1506exit:
1507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508 return NULL;
1509put_and_exit:
1510 sock_put(newsk);
1511 goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517 struct tcphdr *th = tcp_hdr(skb);
1518 const struct iphdr *iph = ip_hdr(skb);
1519 struct sock *nsk;
1520 struct request_sock **prev;
1521 /* Find possible connection requests. */
1522 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523 iph->saddr, iph->daddr);
1524 if (req)
1525 return tcp_check_req(sk, skb, req, prev);
1526
1527 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528 th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530 if (nsk) {
1531 if (nsk->sk_state != TCP_TIME_WAIT) {
1532 bh_lock_sock(nsk);
1533 return nsk;
1534 }
1535 inet_twsk_put(inet_twsk(nsk));
1536 return NULL;
1537 }
1538
1539#ifdef CONFIG_SYN_COOKIES
1540 if (!th->syn)
1541 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543 return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1547{
1548 const struct iphdr *iph = ip_hdr(skb);
1549
1550 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551 if (!tcp_v4_check(skb->len, iph->saddr,
1552 iph->daddr, skb->csum)) {
1553 skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 return 0;
1555 }
1556 }
1557
1558 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559 skb->len, IPPROTO_TCP, 0);
1560
1561 if (skb->len <= 76) {
1562 return __skb_checksum_complete(skb);
1563 }
1564 return 0;
1565}
1566
1567
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
1578 struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580 /*
1581 * We really want to reject the packet as early as possible
1582 * if:
1583 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1584 * o There is an MD5 option and we're not expecting one
1585 */
1586 if (tcp_v4_inbound_md5_hash(sk, skb))
1587 goto discard;
1588#endif
1589
1590 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591 sock_rps_save_rxhash(sk, skb->rxhash);
1592 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593 rsk = sk;
1594 goto reset;
1595 }
1596 return 0;
1597 }
1598
1599 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600 goto csum_err;
1601
1602 if (sk->sk_state == TCP_LISTEN) {
1603 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604 if (!nsk)
1605 goto discard;
1606
1607 if (nsk != sk) {
1608 sock_rps_save_rxhash(nsk, skb->rxhash);
1609 if (tcp_child_process(sk, nsk, skb)) {
1610 rsk = nsk;
1611 goto reset;
1612 }
1613 return 0;
1614 }
1615 } else
1616 sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619 rsk = sk;
1620 goto reset;
1621 }
1622 return 0;
1623
1624reset:
1625 tcp_v4_send_reset(rsk, skb);
1626discard:
1627 kfree_skb(skb);
1628 /* Be careful here. If this function gets more complicated and
1629 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630 * might be destroyed here. This current version compiles correctly,
1631 * but you have been warned.
1632 */
1633 return 0;
1634
1635csum_err:
1636 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1637 goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
1641/*
1642 * From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
1647 const struct iphdr *iph;
1648 struct tcphdr *th;
1649 struct sock *sk;
1650 int ret;
1651 struct net *net = dev_net(skb->dev);
1652
1653 if (skb->pkt_type != PACKET_HOST)
1654 goto discard_it;
1655
1656 /* Count it even if it's bad */
1657 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660 goto discard_it;
1661
1662 th = tcp_hdr(skb);
1663
1664 if (th->doff < sizeof(struct tcphdr) / 4)
1665 goto bad_packet;
1666 if (!pskb_may_pull(skb, th->doff * 4))
1667 goto discard_it;
1668
1669 /* An explanation is required here, I think.
1670 * Packet length and doff are validated by header prediction,
1671 * provided case of th->doff==0 is eliminated.
1672 * So, we defer the checks. */
1673 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674 goto bad_packet;
1675
1676 th = tcp_hdr(skb);
1677 iph = ip_hdr(skb);
1678 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680 skb->len - th->doff * 4);
1681 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682 TCP_SKB_CB(skb)->when = 0;
1683 TCP_SKB_CB(skb)->flags = iph->tos;
1684 TCP_SKB_CB(skb)->sacked = 0;
1685
1686 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1687 if (!sk)
1688 goto no_tcp_socket;
1689
1690process:
1691 if (sk->sk_state == TCP_TIME_WAIT)
1692 goto do_time_wait;
1693
1694 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1696 goto discard_and_relse;
1697 }
1698
1699 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1700 goto discard_and_relse;
1701 nf_reset(skb);
1702
1703 if (sk_filter(sk, skb))
1704 goto discard_and_relse;
1705
1706 skb->dev = NULL;
1707
1708 bh_lock_sock_nested(sk);
1709 ret = 0;
1710 if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715 if (tp->ucopy.dma_chan)
1716 ret = tcp_v4_do_rcv(sk, skb);
1717 else
1718#endif
1719 {
1720 if (!tcp_prequeue(sk, skb))
1721 ret = tcp_v4_do_rcv(sk, skb);
1722 }
1723 } else if (unlikely(sk_add_backlog(sk, skb))) {
1724 bh_unlock_sock(sk);
1725 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726 goto discard_and_relse;
1727 }
1728 bh_unlock_sock(sk);
1729
1730 sock_put(sk);
1731
1732 return ret;
1733
1734no_tcp_socket:
1735 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736 goto discard_it;
1737
1738 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1739bad_packet:
1740 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741 } else {
1742 tcp_v4_send_reset(NULL, skb);
1743 }
1744
1745discard_it:
1746 /* Discard frame. */
1747 kfree_skb(skb);
1748 return 0;
1749
1750discard_and_relse:
1751 sock_put(sk);
1752 goto discard_it;
1753
1754do_time_wait:
1755 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1756 inet_twsk_put(inet_twsk(sk));
1757 goto discard_it;
1758 }
1759
1760 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1762 inet_twsk_put(inet_twsk(sk));
1763 goto discard_it;
1764 }
1765 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766 case TCP_TW_SYN: {
1767 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768 &tcp_hashinfo,
1769 iph->daddr, th->dest,
1770 inet_iif(skb));
1771 if (sk2) {
1772 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773 inet_twsk_put(inet_twsk(sk));
1774 sk = sk2;
1775 goto process;
1776 }
1777 /* Fall through to ACK */
1778 }
1779 case TCP_TW_ACK:
1780 tcp_v4_timewait_ack(sk, skb);
1781 break;
1782 case TCP_TW_RST:
1783 goto no_tcp_socket;
1784 case TCP_TW_SUCCESS:;
1785 }
1786 goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792 struct inet_sock *inet = inet_sk(sk);
1793 struct inet_peer *peer;
1794
1795 if (!rt ||
1796 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798 *release_it = true;
1799 } else {
1800 if (!rt->peer)
1801 rt_bind_peer(rt, inet->inet_daddr, 1);
1802 peer = rt->peer;
1803 *release_it = false;
1804 }
1805
1806 return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812 struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814 return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1820 .twsk_unique = tcp_twsk_unique,
1821 .twsk_destructor= tcp_twsk_destructor,
1822 .twsk_getpeer = tcp_v4_tw_get_peer,
1823};
1824
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826 .queue_xmit = ip_queue_xmit,
1827 .send_check = tcp_v4_send_check,
1828 .rebuild_header = inet_sk_rebuild_header,
1829 .conn_request = tcp_v4_conn_request,
1830 .syn_recv_sock = tcp_v4_syn_recv_sock,
1831 .get_peer = tcp_v4_get_peer,
1832 .net_header_len = sizeof(struct iphdr),
1833 .setsockopt = ip_setsockopt,
1834 .getsockopt = ip_getsockopt,
1835 .addr2sockaddr = inet_csk_addr2sockaddr,
1836 .sockaddr_len = sizeof(struct sockaddr_in),
1837 .bind_conflict = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839 .compat_setsockopt = compat_ip_setsockopt,
1840 .compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1847 .md5_lookup = tcp_v4_md5_lookup,
1848 .calc_md5_hash = tcp_v4_md5_hash_skb,
1849 .md5_add = tcp_v4_md5_add_func,
1850 .md5_parse = tcp_v4_parse_md5_keys,
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 * sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859 struct inet_connection_sock *icsk = inet_csk(sk);
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 skb_queue_head_init(&tp->out_of_order_queue);
1863 tcp_init_xmit_timers(sk);
1864 tcp_prequeue_init(tp);
1865
1866 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867 tp->mdev = TCP_TIMEOUT_INIT;
1868
1869 /* So many TCP implementations out there (incorrectly) count the
1870 * initial SYN frame in their delayed-ACK and congestion control
1871 * algorithms that we must have the following bandaid to talk
1872 * efficiently to them. -DaveM
1873 */
1874 tp->snd_cwnd = TCP_INIT_CWND;
1875
1876 /* See draft-stevens-tcpca-spec-01 for discussion of the
1877 * initialization of these values.
1878 */
1879 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880 tp->snd_cwnd_clamp = ~0;
1881 tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883 tp->reordering = sysctl_tcp_reordering;
1884 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886 sk->sk_state = TCP_CLOSE;
1887
1888 sk->sk_write_space = sk_stream_write_space;
1889 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891 icsk->icsk_af_ops = &ipv4_specific;
1892 icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894 tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897 /* TCP Cookie Transactions */
1898 if (sysctl_tcp_cookie_size > 0) {
1899 /* Default, cookies without s_data_payload. */
1900 tp->cookie_values =
1901 kzalloc(sizeof(*tp->cookie_values),
1902 sk->sk_allocation);
1903 if (tp->cookie_values != NULL)
1904 kref_init(&tp->cookie_values->kref);
1905 }
1906 /* Presumed zeroed, in order of appearance:
1907 * cookie_in_always, cookie_out_never,
1908 * s_data_constant, s_data_in, s_data_out
1909 */
1910 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913 local_bh_disable();
1914 percpu_counter_inc(&tcp_sockets_allocated);
1915 local_bh_enable();
1916
1917 return 0;
1918}
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922 struct tcp_sock *tp = tcp_sk(sk);
1923
1924 tcp_clear_xmit_timers(sk);
1925
1926 tcp_cleanup_congestion_control(sk);
1927
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk);
1930
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp->md5sig_info) {
1937 tcp_v4_clear_md5_list(sk);
1938 kfree(tp->md5sig_info);
1939 tp->md5sig_info = NULL;
1940 }
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946#endif
1947
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp->ucopy.prequeue);
1950
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk)->icsk_bind_hash)
1953 inet_put_port(sk);
1954
1955 /*
1956 * If sendmsg cached page exists, toss it.
1957 */
1958 if (sk->sk_sndmsg_page) {
1959 __free_page(sk->sk_sndmsg_page);
1960 sk->sk_sndmsg_page = NULL;
1961 }
1962
1963 /* TCP Cookie Transactions */
1964 if (tp->cookie_values != NULL) {
1965 kref_put(&tp->cookie_values->kref,
1966 tcp_cookie_values_release);
1967 tp->cookie_values = NULL;
1968 }
1969
1970 percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1978{
1979 return hlist_nulls_empty(head) ? NULL :
1980 list_entry(head->first, struct inet_timewait_sock, tw_node);
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1984{
1985 return !is_a_nulls(tw->tw_node.next) ?
1986 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1987}
1988
1989/*
1990 * Get next listener socket follow cur. If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996 struct inet_connection_sock *icsk;
1997 struct hlist_nulls_node *node;
1998 struct sock *sk = cur;
1999 struct inet_listen_hashbucket *ilb;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2002
2003 if (!sk) {
2004 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005 spin_lock_bh(&ilb->lock);
2006 sk = sk_nulls_head(&ilb->head);
2007 st->offset = 0;
2008 goto get_sk;
2009 }
2010 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011 ++st->num;
2012 ++st->offset;
2013
2014 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015 struct request_sock *req = cur;
2016
2017 icsk = inet_csk(st->syn_wait_sk);
2018 req = req->dl_next;
2019 while (1) {
2020 while (req) {
2021 if (req->rsk_ops->family == st->family) {
2022 cur = req;
2023 goto out;
2024 }
2025 req = req->dl_next;
2026 }
2027 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028 break;
2029get_req:
2030 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031 }
2032 sk = sk_nulls_next(st->syn_wait_sk);
2033 st->state = TCP_SEQ_STATE_LISTENING;
2034 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035 } else {
2036 icsk = inet_csk(sk);
2037 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039 goto start_req;
2040 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041 sk = sk_nulls_next(sk);
2042 }
2043get_sk:
2044 sk_nulls_for_each_from(sk, node) {
2045 if (!net_eq(sock_net(sk), net))
2046 continue;
2047 if (sk->sk_family == st->family) {
2048 cur = sk;
2049 goto out;
2050 }
2051 icsk = inet_csk(sk);
2052 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055 st->uid = sock_i_uid(sk);
2056 st->syn_wait_sk = sk;
2057 st->state = TCP_SEQ_STATE_OPENREQ;
2058 st->sbucket = 0;
2059 goto get_req;
2060 }
2061 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062 }
2063 spin_unlock_bh(&ilb->lock);
2064 st->offset = 0;
2065 if (++st->bucket < INET_LHTABLE_SIZE) {
2066 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067 spin_lock_bh(&ilb->lock);
2068 sk = sk_nulls_head(&ilb->head);
2069 goto get_sk;
2070 }
2071 cur = NULL;
2072out:
2073 return cur;
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078 struct tcp_iter_state *st = seq->private;
2079 void *rc;
2080
2081 st->bucket = 0;
2082 st->offset = 0;
2083 rc = listening_get_next(seq, NULL);
2084
2085 while (rc && *pos) {
2086 rc = listening_get_next(seq, rc);
2087 --*pos;
2088 }
2089 return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
2093{
2094 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
2104 struct tcp_iter_state *st = seq->private;
2105 struct net *net = seq_file_net(seq);
2106 void *rc = NULL;
2107
2108 st->offset = 0;
2109 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110 struct sock *sk;
2111 struct hlist_nulls_node *node;
2112 struct inet_timewait_sock *tw;
2113 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2114
2115 /* Lockless fast path for the common case of empty buckets */
2116 if (empty_bucket(st))
2117 continue;
2118
2119 spin_lock_bh(lock);
2120 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121 if (sk->sk_family != st->family ||
2122 !net_eq(sock_net(sk), net)) {
2123 continue;
2124 }
2125 rc = sk;
2126 goto out;
2127 }
2128 st->state = TCP_SEQ_STATE_TIME_WAIT;
2129 inet_twsk_for_each(tw, node,
2130 &tcp_hashinfo.ehash[st->bucket].twchain) {
2131 if (tw->tw_family != st->family ||
2132 !net_eq(twsk_net(tw), net)) {
2133 continue;
2134 }
2135 rc = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(lock);
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140 }
2141out:
2142 return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147 struct sock *sk = cur;
2148 struct inet_timewait_sock *tw;
2149 struct hlist_nulls_node *node;
2150 struct tcp_iter_state *st = seq->private;
2151 struct net *net = seq_file_net(seq);
2152
2153 ++st->num;
2154 ++st->offset;
2155
2156 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157 tw = cur;
2158 tw = tw_next(tw);
2159get_tw:
2160 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161 tw = tw_next(tw);
2162 }
2163 if (tw) {
2164 cur = tw;
2165 goto out;
2166 }
2167 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168 st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170 /* Look for next non empty bucket */
2171 st->offset = 0;
2172 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173 empty_bucket(st))
2174 ;
2175 if (st->bucket > tcp_hashinfo.ehash_mask)
2176 return NULL;
2177
2178 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180 } else
2181 sk = sk_nulls_next(sk);
2182
2183 sk_nulls_for_each_from(sk, node) {
2184 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185 goto found;
2186 }
2187
2188 st->state = TCP_SEQ_STATE_TIME_WAIT;
2189 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190 goto get_tw;
2191found:
2192 cur = sk;
2193out:
2194 return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199 struct tcp_iter_state *st = seq->private;
2200 void *rc;
2201
2202 st->bucket = 0;
2203 rc = established_get_first(seq);
2204
2205 while (rc && pos) {
2206 rc = established_get_next(seq, rc);
2207 --pos;
2208 }
2209 return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214 void *rc;
2215 struct tcp_iter_state *st = seq->private;
2216
2217 st->state = TCP_SEQ_STATE_LISTENING;
2218 rc = listening_get_idx(seq, &pos);
2219
2220 if (!rc) {
2221 st->state = TCP_SEQ_STATE_ESTABLISHED;
2222 rc = established_get_idx(seq, pos);
2223 }
2224
2225 return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
2230 struct tcp_iter_state *st = seq->private;
2231 int offset = st->offset;
2232 int orig_num = st->num;
2233 void *rc = NULL;
2234
2235 switch (st->state) {
2236 case TCP_SEQ_STATE_OPENREQ:
2237 case TCP_SEQ_STATE_LISTENING:
2238 if (st->bucket >= INET_LHTABLE_SIZE)
2239 break;
2240 st->state = TCP_SEQ_STATE_LISTENING;
2241 rc = listening_get_next(seq, NULL);
2242 while (offset-- && rc)
2243 rc = listening_get_next(seq, rc);
2244 if (rc)
2245 break;
2246 st->bucket = 0;
2247 /* Fallthrough */
2248 case TCP_SEQ_STATE_ESTABLISHED:
2249 case TCP_SEQ_STATE_TIME_WAIT:
2250 st->state = TCP_SEQ_STATE_ESTABLISHED;
2251 if (st->bucket > tcp_hashinfo.ehash_mask)
2252 break;
2253 rc = established_get_first(seq);
2254 while (offset-- && rc)
2255 rc = established_get_next(seq, rc);
2256 }
2257
2258 st->num = orig_num;
2259
2260 return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265 struct tcp_iter_state *st = seq->private;
2266 void *rc;
2267
2268 if (*pos && *pos == st->last_pos) {
2269 rc = tcp_seek_last_pos(seq);
2270 if (rc)
2271 goto out;
2272 }
2273
2274 st->state = TCP_SEQ_STATE_LISTENING;
2275 st->num = 0;
2276 st->bucket = 0;
2277 st->offset = 0;
2278 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281 st->last_pos = *pos;
2282 return rc;
2283}
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287 struct tcp_iter_state *st = seq->private;
2288 void *rc = NULL;
2289
2290 if (v == SEQ_START_TOKEN) {
2291 rc = tcp_get_idx(seq, 0);
2292 goto out;
2293 }
2294
2295 switch (st->state) {
2296 case TCP_SEQ_STATE_OPENREQ:
2297 case TCP_SEQ_STATE_LISTENING:
2298 rc = listening_get_next(seq, v);
2299 if (!rc) {
2300 st->state = TCP_SEQ_STATE_ESTABLISHED;
2301 st->bucket = 0;
2302 st->offset = 0;
2303 rc = established_get_first(seq);
2304 }
2305 break;
2306 case TCP_SEQ_STATE_ESTABLISHED:
2307 case TCP_SEQ_STATE_TIME_WAIT:
2308 rc = established_get_next(seq, v);
2309 break;
2310 }
2311out:
2312 ++*pos;
2313 st->last_pos = *pos;
2314 return rc;
2315}
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
2319 struct tcp_iter_state *st = seq->private;
2320
2321 switch (st->state) {
2322 case TCP_SEQ_STATE_OPENREQ:
2323 if (v) {
2324 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326 }
2327 case TCP_SEQ_STATE_LISTENING:
2328 if (v != SEQ_START_TOKEN)
2329 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330 break;
2331 case TCP_SEQ_STATE_TIME_WAIT:
2332 case TCP_SEQ_STATE_ESTABLISHED:
2333 if (v)
2334 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335 break;
2336 }
2337}
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342 struct tcp_iter_state *s;
2343 int err;
2344
2345 err = seq_open_net(inode, file, &afinfo->seq_ops,
2346 sizeof(struct tcp_iter_state));
2347 if (err < 0)
2348 return err;
2349
2350 s = ((struct seq_file *)file->private_data)->private;
2351 s->family = afinfo->family;
2352 s->last_pos = 0;
2353 return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358 int rc = 0;
2359 struct proc_dir_entry *p;
2360
2361 afinfo->seq_fops.open = tcp_seq_open;
2362 afinfo->seq_fops.read = seq_read;
2363 afinfo->seq_fops.llseek = seq_lseek;
2364 afinfo->seq_fops.release = seq_release_net;
2365
2366 afinfo->seq_ops.start = tcp_seq_start;
2367 afinfo->seq_ops.next = tcp_seq_next;
2368 afinfo->seq_ops.stop = tcp_seq_stop;
2369
2370 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371 &afinfo->seq_fops, afinfo);
2372 if (!p)
2373 rc = -ENOMEM;
2374 return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380 proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385 struct seq_file *f, int i, int uid, int *len)
2386{
2387 const struct inet_request_sock *ireq = inet_rsk(req);
2388 int ttd = req->expires - jiffies;
2389
2390 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392 i,
2393 ireq->loc_addr,
2394 ntohs(inet_sk(sk)->inet_sport),
2395 ireq->rmt_addr,
2396 ntohs(ireq->rmt_port),
2397 TCP_SYN_RECV,
2398 0, 0, /* could print option size, but that is af dependent. */
2399 1, /* timers active (only the expire timer) */
2400 jiffies_to_clock_t(ttd),
2401 req->retrans,
2402 uid,
2403 0, /* non standard timer */
2404 0, /* open_requests have no inode */
2405 atomic_read(&sk->sk_refcnt),
2406 req,
2407 len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412 int timer_active;
2413 unsigned long timer_expires;
2414 struct tcp_sock *tp = tcp_sk(sk);
2415 const struct inet_connection_sock *icsk = inet_csk(sk);
2416 struct inet_sock *inet = inet_sk(sk);
2417 __be32 dest = inet->inet_daddr;
2418 __be32 src = inet->inet_rcv_saddr;
2419 __u16 destp = ntohs(inet->inet_dport);
2420 __u16 srcp = ntohs(inet->inet_sport);
2421 int rx_queue;
2422
2423 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424 timer_active = 1;
2425 timer_expires = icsk->icsk_timeout;
2426 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427 timer_active = 4;
2428 timer_expires = icsk->icsk_timeout;
2429 } else if (timer_pending(&sk->sk_timer)) {
2430 timer_active = 2;
2431 timer_expires = sk->sk_timer.expires;
2432 } else {
2433 timer_active = 0;
2434 timer_expires = jiffies;
2435 }
2436
2437 if (sk->sk_state == TCP_LISTEN)
2438 rx_queue = sk->sk_ack_backlog;
2439 else
2440 /*
2441 * because we dont lock socket, we might find a transient negative value
2442 */
2443 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447 i, src, srcp, dest, destp, sk->sk_state,
2448 tp->write_seq - tp->snd_una,
2449 rx_queue,
2450 timer_active,
2451 jiffies_to_clock_t(timer_expires - jiffies),
2452 icsk->icsk_retransmits,
2453 sock_i_uid(sk),
2454 icsk->icsk_probes_out,
2455 sock_i_ino(sk),
2456 atomic_read(&sk->sk_refcnt), sk,
2457 jiffies_to_clock_t(icsk->icsk_rto),
2458 jiffies_to_clock_t(icsk->icsk_ack.ato),
2459 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460 tp->snd_cwnd,
2461 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462 len);
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466 struct seq_file *f, int i, int *len)
2467{
2468 __be32 dest, src;
2469 __u16 destp, srcp;
2470 int ttd = tw->tw_ttd - jiffies;
2471
2472 if (ttd < 0)
2473 ttd = 0;
2474
2475 dest = tw->tw_daddr;
2476 src = tw->tw_rcv_saddr;
2477 destp = ntohs(tw->tw_dport);
2478 srcp = ntohs(tw->tw_sport);
2479
2480 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484 atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491 struct tcp_iter_state *st;
2492 int len;
2493
2494 if (v == SEQ_START_TOKEN) {
2495 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496 " sl local_address rem_address st tx_queue "
2497 "rx_queue tr tm->when retrnsmt uid timeout "
2498 "inode");
2499 goto out;
2500 }
2501 st = seq->private;
2502
2503 switch (st->state) {
2504 case TCP_SEQ_STATE_LISTENING:
2505 case TCP_SEQ_STATE_ESTABLISHED:
2506 get_tcp4_sock(v, seq, st->num, &len);
2507 break;
2508 case TCP_SEQ_STATE_OPENREQ:
2509 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510 break;
2511 case TCP_SEQ_STATE_TIME_WAIT:
2512 get_timewait4_sock(v, seq, st->num, &len);
2513 break;
2514 }
2515 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
2517 return 0;
2518}
2519
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521 .name = "tcp",
2522 .family = AF_INET,
2523 .seq_fops = {
2524 .owner = THIS_MODULE,
2525 },
2526 .seq_ops = {
2527 .show = tcp4_seq_show,
2528 },
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533 return tcp_proc_register(net, &tcp4_seq_afinfo);
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542 .init = tcp4_proc_init_net,
2543 .exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548 return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553 unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559 const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561 switch (skb->ip_summed) {
2562 case CHECKSUM_COMPLETE:
2563 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564 skb->csum)) {
2565 skb->ip_summed = CHECKSUM_UNNECESSARY;
2566 break;
2567 }
2568
2569 /* fall through */
2570 case CHECKSUM_NONE:
2571 NAPI_GRO_CB(skb)->flush = 1;
2572 return NULL;
2573 }
2574
2575 return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580 const struct iphdr *iph = ip_hdr(skb);
2581 struct tcphdr *th = tcp_hdr(skb);
2582
2583 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584 iph->saddr, iph->daddr, 0);
2585 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587 return tcp_gro_complete(skb);
2588}
2589
2590struct proto tcp_prot = {
2591 .name = "TCP",
2592 .owner = THIS_MODULE,
2593 .close = tcp_close,
2594 .connect = tcp_v4_connect,
2595 .disconnect = tcp_disconnect,
2596 .accept = inet_csk_accept,
2597 .ioctl = tcp_ioctl,
2598 .init = tcp_v4_init_sock,
2599 .destroy = tcp_v4_destroy_sock,
2600 .shutdown = tcp_shutdown,
2601 .setsockopt = tcp_setsockopt,
2602 .getsockopt = tcp_getsockopt,
2603 .recvmsg = tcp_recvmsg,
2604 .sendmsg = tcp_sendmsg,
2605 .sendpage = tcp_sendpage,
2606 .backlog_rcv = tcp_v4_do_rcv,
2607 .hash = inet_hash,
2608 .unhash = inet_unhash,
2609 .get_port = inet_csk_get_port,
2610 .enter_memory_pressure = tcp_enter_memory_pressure,
2611 .sockets_allocated = &tcp_sockets_allocated,
2612 .orphan_count = &tcp_orphan_count,
2613 .memory_allocated = &tcp_memory_allocated,
2614 .memory_pressure = &tcp_memory_pressure,
2615 .sysctl_mem = sysctl_tcp_mem,
2616 .sysctl_wmem = sysctl_tcp_wmem,
2617 .sysctl_rmem = sysctl_tcp_rmem,
2618 .max_header = MAX_TCP_HEADER,
2619 .obj_size = sizeof(struct tcp_sock),
2620 .slab_flags = SLAB_DESTROY_BY_RCU,
2621 .twsk_prot = &tcp_timewait_sock_ops,
2622 .rsk_prot = &tcp_request_sock_ops,
2623 .h.hashinfo = &tcp_hashinfo,
2624 .no_autobind = true,
2625#ifdef CONFIG_COMPAT
2626 .compat_setsockopt = compat_tcp_setsockopt,
2627 .compat_getsockopt = compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650 .init = tcp_sk_init,
2651 .exit = tcp_sk_exit,
2652 .exit_batch = tcp_sk_exit_batch,
2653};
2654
2655void __init tcp_v4_init(void)
2656{
2657 inet_hashinfo_init(&tcp_hashinfo);
2658 if (register_pernet_subsys(&tcp_sk_ops))
2659 panic("Failed to create the TCP control socket.\n");
2660}