Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/secure_seq.h>
76#include <net/busy_poll.h>
77
78#include <linux/inet.h>
79#include <linux/ipv6.h>
80#include <linux/stddef.h>
81#include <linux/proc_fs.h>
82#include <linux/seq_file.h>
83
84#include <crypto/hash.h>
85#include <linux/scatterlist.h>
86
87int sysctl_tcp_tw_reuse __read_mostly;
88int sysctl_tcp_low_latency __read_mostly;
89EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91#ifdef CONFIG_TCP_MD5SIG
92static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
93 __be32 daddr, __be32 saddr, const struct tcphdr *th);
94#endif
95
96struct inet_hashinfo tcp_hashinfo;
97EXPORT_SYMBOL(tcp_hashinfo);
98
99static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
100{
101 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
102 ip_hdr(skb)->saddr,
103 tcp_hdr(skb)->dest,
104 tcp_hdr(skb)->source);
105}
106
107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
108{
109 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
110 struct tcp_sock *tp = tcp_sk(sk);
111
112 /* With PAWS, it is safe from the viewpoint
113 of data integrity. Even without PAWS it is safe provided sequence
114 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
115
116 Actually, the idea is close to VJ's one, only timestamp cache is
117 held not per host, but per port pair and TW bucket is used as state
118 holder.
119
120 If TW bucket has been already destroyed we fall back to VJ's scheme
121 and use initial timestamp retrieved from peer table.
122 */
123 if (tcptw->tw_ts_recent_stamp &&
124 (!twp || (sysctl_tcp_tw_reuse &&
125 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
126 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
127 if (tp->write_seq == 0)
128 tp->write_seq = 1;
129 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
130 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
131 sock_hold(sktw);
132 return 1;
133 }
134
135 return 0;
136}
137EXPORT_SYMBOL_GPL(tcp_twsk_unique);
138
139/* This will initiate an outgoing connection. */
140int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
141{
142 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
143 struct inet_sock *inet = inet_sk(sk);
144 struct tcp_sock *tp = tcp_sk(sk);
145 __be16 orig_sport, orig_dport;
146 __be32 daddr, nexthop;
147 struct flowi4 *fl4;
148 struct rtable *rt;
149 int err;
150 struct ip_options_rcu *inet_opt;
151
152 if (addr_len < sizeof(struct sockaddr_in))
153 return -EINVAL;
154
155 if (usin->sin_family != AF_INET)
156 return -EAFNOSUPPORT;
157
158 nexthop = daddr = usin->sin_addr.s_addr;
159 inet_opt = rcu_dereference_protected(inet->inet_opt,
160 sock_owned_by_user(sk));
161 if (inet_opt && inet_opt->opt.srr) {
162 if (!daddr)
163 return -EINVAL;
164 nexthop = inet_opt->opt.faddr;
165 }
166
167 orig_sport = inet->inet_sport;
168 orig_dport = usin->sin_port;
169 fl4 = &inet->cork.fl.u.ip4;
170 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 orig_sport, orig_dport, sk);
174 if (IS_ERR(rt)) {
175 err = PTR_ERR(rt);
176 if (err == -ENETUNREACH)
177 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 return err;
179 }
180
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182 ip_rt_put(rt);
183 return -ENETUNREACH;
184 }
185
186 if (!inet_opt || !inet_opt->opt.srr)
187 daddr = fl4->daddr;
188
189 if (!inet->inet_saddr)
190 inet->inet_saddr = fl4->saddr;
191 sk_rcv_saddr_set(sk, inet->inet_saddr);
192
193 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
197 if (likely(!tp->repair))
198 tp->write_seq = 0;
199 }
200
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
203 tcp_fetch_timewait_stamp(sk, &rt->dst);
204
205 inet->inet_dport = usin->sin_port;
206 sk_daddr_set(sk, daddr);
207
208 inet_csk(sk)->icsk_ext_hdr_len = 0;
209 if (inet_opt)
210 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211
212 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213
214 /* Socket identity is still unknown (sport may be zero).
215 * However we set state to SYN-SENT and not releasing socket
216 * lock select source port, enter ourselves into the hash tables and
217 * complete initialization after this.
218 */
219 tcp_set_state(sk, TCP_SYN_SENT);
220 err = inet_hash_connect(&tcp_death_row, sk);
221 if (err)
222 goto failure;
223
224 sk_set_txhash(sk);
225
226 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 inet->inet_sport, inet->inet_dport, sk);
228 if (IS_ERR(rt)) {
229 err = PTR_ERR(rt);
230 rt = NULL;
231 goto failure;
232 }
233 /* OK, now commit destination to socket. */
234 sk->sk_gso_type = SKB_GSO_TCPV4;
235 sk_setup_caps(sk, &rt->dst);
236
237 if (!tp->write_seq && likely(!tp->repair))
238 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 inet->inet_daddr,
240 inet->inet_sport,
241 usin->sin_port);
242
243 inet->inet_id = tp->write_seq ^ jiffies;
244
245 err = tcp_connect(sk);
246
247 rt = NULL;
248 if (err)
249 goto failure;
250
251 return 0;
252
253failure:
254 /*
255 * This unhashes the socket and releases the local port,
256 * if necessary.
257 */
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
263}
264EXPORT_SYMBOL(tcp_v4_connect);
265
266/*
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
270 */
271void tcp_v4_mtu_reduced(struct sock *sk)
272{
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
276
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
280
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
283 */
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
286
287 mtu = dst_mtu(dst);
288
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
293
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
298 */
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
301}
302EXPORT_SYMBOL(tcp_v4_mtu_reduced);
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312
313/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314void tcp_req_err(struct sock *sk, u32 seq, bool abort)
315{
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
318
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
321 */
322 if (seq != tcp_rsk(req)->snt_isn) {
323 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
325 /*
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
330 */
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
333 }
334 reqsk_put(req);
335}
336EXPORT_SYMBOL(tcp_req_err);
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
370
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
376 return;
377 }
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
381 }
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
390
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
396 */
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
400 }
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
403
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
407 }
408
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
418 }
419
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
433
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
438 */
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
441
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
447 sock_hold(sk);
448 }
449 goto out;
450 }
451
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
460
461 if (sock_owned_by_user(sk))
462 break;
463
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
468
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
471
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
475
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
483 }
484
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
491 }
492
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
498 */
499 if (fastopen && !fastopen->sk)
500 break;
501
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
504
505 sk->sk_error_report(sk);
506
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
510 }
511 goto out;
512 }
513
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
516 *
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
520 *
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
525 *
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
528 */
529
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
536 }
537
538out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
541}
542
543void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
544{
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568/*
569 * This routine will send an RST to the other tcp.
570 *
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
579 */
580
581static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
582{
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586#ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588#endif
589 } rep;
590 struct ip_reply_arg arg;
591#ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597#endif
598 struct net *net;
599
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
603
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
606 */
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
609
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
616
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
623 }
624
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630#ifdef CONFIG_TCP_MD5SIG
631 hash_location = tcp_parse_md5sig_option(th);
632 if (sk && sk_fullsock(sk)) {
633 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
634 &ip_hdr(skb)->saddr, AF_INET);
635 } else if (hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
644 ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 }
660
661 if (key) {
662 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
663 (TCPOPT_NOP << 16) |
664 (TCPOPT_MD5SIG << 8) |
665 TCPOLEN_MD5SIG);
666 /* Update length and the length the header thinks exists */
667 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
668 rep.th.doff = arg.iov[0].iov_len / 4;
669
670 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
671 key, ip_hdr(skb)->saddr,
672 ip_hdr(skb)->daddr, &rep.th);
673 }
674#endif
675 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
676 ip_hdr(skb)->saddr, /* XXX */
677 arg.iov[0].iov_len, IPPROTO_TCP, 0);
678 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
679 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
680
681 /* When socket is gone, all binding information is lost.
682 * routing might fail in this case. No choice here, if we choose to force
683 * input interface, we will misroute in case of asymmetric route.
684 */
685 if (sk)
686 arg.bound_dev_if = sk->sk_bound_dev_if;
687
688 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
689 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
690
691 arg.tos = ip_hdr(skb)->tos;
692 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
693 skb, &TCP_SKB_CB(skb)->header.h4.opt,
694 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
695 &arg, arg.iov[0].iov_len);
696
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
698 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
699
700#ifdef CONFIG_TCP_MD5SIG
701release_sk1:
702 if (sk1) {
703 rcu_read_unlock();
704 sock_put(sk1);
705 }
706#endif
707}
708
709/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
710 outside socket context is ugly, certainly. What can I do?
711 */
712
713static void tcp_v4_send_ack(struct net *net,
714 struct sk_buff *skb, u32 seq, u32 ack,
715 u32 win, u32 tsval, u32 tsecr, int oif,
716 struct tcp_md5sig_key *key,
717 int reply_flags, u8 tos)
718{
719 const struct tcphdr *th = tcp_hdr(skb);
720 struct {
721 struct tcphdr th;
722 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
723#ifdef CONFIG_TCP_MD5SIG
724 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
725#endif
726 ];
727 } rep;
728 struct ip_reply_arg arg;
729
730 memset(&rep.th, 0, sizeof(struct tcphdr));
731 memset(&arg, 0, sizeof(arg));
732
733 arg.iov[0].iov_base = (unsigned char *)&rep;
734 arg.iov[0].iov_len = sizeof(rep.th);
735 if (tsecr) {
736 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
737 (TCPOPT_TIMESTAMP << 8) |
738 TCPOLEN_TIMESTAMP);
739 rep.opt[1] = htonl(tsval);
740 rep.opt[2] = htonl(tsecr);
741 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
742 }
743
744 /* Swap the send and the receive. */
745 rep.th.dest = th->source;
746 rep.th.source = th->dest;
747 rep.th.doff = arg.iov[0].iov_len / 4;
748 rep.th.seq = htonl(seq);
749 rep.th.ack_seq = htonl(ack);
750 rep.th.ack = 1;
751 rep.th.window = htons(win);
752
753#ifdef CONFIG_TCP_MD5SIG
754 if (key) {
755 int offset = (tsecr) ? 3 : 0;
756
757 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
758 (TCPOPT_NOP << 16) |
759 (TCPOPT_MD5SIG << 8) |
760 TCPOLEN_MD5SIG);
761 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
762 rep.th.doff = arg.iov[0].iov_len/4;
763
764 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
765 key, ip_hdr(skb)->saddr,
766 ip_hdr(skb)->daddr, &rep.th);
767 }
768#endif
769 arg.flags = reply_flags;
770 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
771 ip_hdr(skb)->saddr, /* XXX */
772 arg.iov[0].iov_len, IPPROTO_TCP, 0);
773 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
774 if (oif)
775 arg.bound_dev_if = oif;
776 arg.tos = tos;
777 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
778 skb, &TCP_SKB_CB(skb)->header.h4.opt,
779 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
780 &arg, arg.iov[0].iov_len);
781
782 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
783}
784
785static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
786{
787 struct inet_timewait_sock *tw = inet_twsk(sk);
788 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
789
790 tcp_v4_send_ack(sock_net(sk), skb,
791 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
792 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
793 tcp_time_stamp + tcptw->tw_ts_offset,
794 tcptw->tw_ts_recent,
795 tw->tw_bound_dev_if,
796 tcp_twsk_md5_key(tcptw),
797 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
798 tw->tw_tos
799 );
800
801 inet_twsk_put(tw);
802}
803
804static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
805 struct request_sock *req)
806{
807 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
808 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
809 */
810 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
811 tcp_sk(sk)->snd_nxt;
812
813 tcp_v4_send_ack(sock_net(sk), skb, seq,
814 tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
815 tcp_time_stamp,
816 req->ts_recent,
817 0,
818 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
819 AF_INET),
820 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
821 ip_hdr(skb)->tos);
822}
823
824/*
825 * Send a SYN-ACK after having received a SYN.
826 * This still operates on a request_sock only, not on a big
827 * socket.
828 */
829static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
830 struct flowi *fl,
831 struct request_sock *req,
832 struct tcp_fastopen_cookie *foc,
833 bool attach_req)
834{
835 const struct inet_request_sock *ireq = inet_rsk(req);
836 struct flowi4 fl4;
837 int err = -1;
838 struct sk_buff *skb;
839
840 /* First, grab a route. */
841 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
842 return -1;
843
844 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
845
846 if (skb) {
847 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
848
849 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
850 ireq->ir_rmt_addr,
851 ireq->opt);
852 err = net_xmit_eval(err);
853 }
854
855 return err;
856}
857
858/*
859 * IPv4 request_sock destructor.
860 */
861static void tcp_v4_reqsk_destructor(struct request_sock *req)
862{
863 kfree(inet_rsk(req)->opt);
864}
865
866#ifdef CONFIG_TCP_MD5SIG
867/*
868 * RFC2385 MD5 checksumming requires a mapping of
869 * IP address->MD5 Key.
870 * We need to maintain these in the sk structure.
871 */
872
873/* Find the Key structure for an address. */
874struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
875 const union tcp_md5_addr *addr,
876 int family)
877{
878 const struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp_md5sig_key *key;
880 unsigned int size = sizeof(struct in_addr);
881 const struct tcp_md5sig_info *md5sig;
882
883 /* caller either holds rcu_read_lock() or socket lock */
884 md5sig = rcu_dereference_check(tp->md5sig_info,
885 sock_owned_by_user(sk) ||
886 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
887 if (!md5sig)
888 return NULL;
889#if IS_ENABLED(CONFIG_IPV6)
890 if (family == AF_INET6)
891 size = sizeof(struct in6_addr);
892#endif
893 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
894 if (key->family != family)
895 continue;
896 if (!memcmp(&key->addr, addr, size))
897 return key;
898 }
899 return NULL;
900}
901EXPORT_SYMBOL(tcp_md5_do_lookup);
902
903struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
904 const struct sock *addr_sk)
905{
906 const union tcp_md5_addr *addr;
907
908 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
909 return tcp_md5_do_lookup(sk, addr, AF_INET);
910}
911EXPORT_SYMBOL(tcp_v4_md5_lookup);
912
913/* This can be called on a newly created socket, from other files */
914int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
915 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
916{
917 /* Add Key to the list */
918 struct tcp_md5sig_key *key;
919 struct tcp_sock *tp = tcp_sk(sk);
920 struct tcp_md5sig_info *md5sig;
921
922 key = tcp_md5_do_lookup(sk, addr, family);
923 if (key) {
924 /* Pre-existing entry - just update that one. */
925 memcpy(key->key, newkey, newkeylen);
926 key->keylen = newkeylen;
927 return 0;
928 }
929
930 md5sig = rcu_dereference_protected(tp->md5sig_info,
931 sock_owned_by_user(sk) ||
932 lockdep_is_held(&sk->sk_lock.slock));
933 if (!md5sig) {
934 md5sig = kmalloc(sizeof(*md5sig), gfp);
935 if (!md5sig)
936 return -ENOMEM;
937
938 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
939 INIT_HLIST_HEAD(&md5sig->head);
940 rcu_assign_pointer(tp->md5sig_info, md5sig);
941 }
942
943 key = sock_kmalloc(sk, sizeof(*key), gfp);
944 if (!key)
945 return -ENOMEM;
946 if (!tcp_alloc_md5sig_pool()) {
947 sock_kfree_s(sk, key, sizeof(*key));
948 return -ENOMEM;
949 }
950
951 memcpy(key->key, newkey, newkeylen);
952 key->keylen = newkeylen;
953 key->family = family;
954 memcpy(&key->addr, addr,
955 (family == AF_INET6) ? sizeof(struct in6_addr) :
956 sizeof(struct in_addr));
957 hlist_add_head_rcu(&key->node, &md5sig->head);
958 return 0;
959}
960EXPORT_SYMBOL(tcp_md5_do_add);
961
962int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
963{
964 struct tcp_md5sig_key *key;
965
966 key = tcp_md5_do_lookup(sk, addr, family);
967 if (!key)
968 return -ENOENT;
969 hlist_del_rcu(&key->node);
970 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
971 kfree_rcu(key, rcu);
972 return 0;
973}
974EXPORT_SYMBOL(tcp_md5_do_del);
975
976static void tcp_clear_md5_list(struct sock *sk)
977{
978 struct tcp_sock *tp = tcp_sk(sk);
979 struct tcp_md5sig_key *key;
980 struct hlist_node *n;
981 struct tcp_md5sig_info *md5sig;
982
983 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
984
985 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
986 hlist_del_rcu(&key->node);
987 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
988 kfree_rcu(key, rcu);
989 }
990}
991
992static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
993 int optlen)
994{
995 struct tcp_md5sig cmd;
996 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
997
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1000
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1003
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1006
1007 if (!cmd.tcpm_keylen)
1008 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1009 AF_INET);
1010
1011 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1012 return -EINVAL;
1013
1014 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1015 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1016 GFP_KERNEL);
1017}
1018
1019static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1020 __be32 daddr, __be32 saddr, int nbytes)
1021{
1022 struct tcp4_pseudohdr *bp;
1023 struct scatterlist sg;
1024
1025 bp = &hp->md5_blk.ip4;
1026
1027 /*
1028 * 1. the TCP pseudo-header (in the order: source IP address,
1029 * destination IP address, zero-padded protocol number, and
1030 * segment length)
1031 */
1032 bp->saddr = saddr;
1033 bp->daddr = daddr;
1034 bp->pad = 0;
1035 bp->protocol = IPPROTO_TCP;
1036 bp->len = cpu_to_be16(nbytes);
1037
1038 sg_init_one(&sg, bp, sizeof(*bp));
1039 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1040 return crypto_ahash_update(hp->md5_req);
1041}
1042
1043static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1044 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1045{
1046 struct tcp_md5sig_pool *hp;
1047 struct ahash_request *req;
1048
1049 hp = tcp_get_md5sig_pool();
1050 if (!hp)
1051 goto clear_hash_noput;
1052 req = hp->md5_req;
1053
1054 if (crypto_ahash_init(req))
1055 goto clear_hash;
1056 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1057 goto clear_hash;
1058 if (tcp_md5_hash_header(hp, th))
1059 goto clear_hash;
1060 if (tcp_md5_hash_key(hp, key))
1061 goto clear_hash;
1062 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1063 if (crypto_ahash_final(req))
1064 goto clear_hash;
1065
1066 tcp_put_md5sig_pool();
1067 return 0;
1068
1069clear_hash:
1070 tcp_put_md5sig_pool();
1071clear_hash_noput:
1072 memset(md5_hash, 0, 16);
1073 return 1;
1074}
1075
1076int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1077 const struct sock *sk,
1078 const struct sk_buff *skb)
1079{
1080 struct tcp_md5sig_pool *hp;
1081 struct ahash_request *req;
1082 const struct tcphdr *th = tcp_hdr(skb);
1083 __be32 saddr, daddr;
1084
1085 if (sk) { /* valid for establish/request sockets */
1086 saddr = sk->sk_rcv_saddr;
1087 daddr = sk->sk_daddr;
1088 } else {
1089 const struct iphdr *iph = ip_hdr(skb);
1090 saddr = iph->saddr;
1091 daddr = iph->daddr;
1092 }
1093
1094 hp = tcp_get_md5sig_pool();
1095 if (!hp)
1096 goto clear_hash_noput;
1097 req = hp->md5_req;
1098
1099 if (crypto_ahash_init(req))
1100 goto clear_hash;
1101
1102 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1103 goto clear_hash;
1104 if (tcp_md5_hash_header(hp, th))
1105 goto clear_hash;
1106 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1107 goto clear_hash;
1108 if (tcp_md5_hash_key(hp, key))
1109 goto clear_hash;
1110 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1111 if (crypto_ahash_final(req))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1124
1125#endif
1126
1127/* Called with rcu_read_lock() */
1128static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1129 const struct sk_buff *skb)
1130{
1131#ifdef CONFIG_TCP_MD5SIG
1132 /*
1133 * This gets called for each TCP segment that arrives
1134 * so we want to be efficient.
1135 * We have 3 drop cases:
1136 * o No MD5 hash and one expected.
1137 * o MD5 hash and we're not expecting one.
1138 * o MD5 hash and its wrong.
1139 */
1140 const __u8 *hash_location = NULL;
1141 struct tcp_md5sig_key *hash_expected;
1142 const struct iphdr *iph = ip_hdr(skb);
1143 const struct tcphdr *th = tcp_hdr(skb);
1144 int genhash;
1145 unsigned char newhash[16];
1146
1147 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1148 AF_INET);
1149 hash_location = tcp_parse_md5sig_option(th);
1150
1151 /* We've parsed the options - do we have a hash? */
1152 if (!hash_expected && !hash_location)
1153 return false;
1154
1155 if (hash_expected && !hash_location) {
1156 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1157 return true;
1158 }
1159
1160 if (!hash_expected && hash_location) {
1161 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1162 return true;
1163 }
1164
1165 /* Okay, so this is hash_expected and hash_location -
1166 * so we need to calculate the checksum.
1167 */
1168 genhash = tcp_v4_md5_hash_skb(newhash,
1169 hash_expected,
1170 NULL, skb);
1171
1172 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1173 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1174 &iph->saddr, ntohs(th->source),
1175 &iph->daddr, ntohs(th->dest),
1176 genhash ? " tcp_v4_calc_md5_hash failed"
1177 : "");
1178 return true;
1179 }
1180 return false;
1181#endif
1182 return false;
1183}
1184
1185static void tcp_v4_init_req(struct request_sock *req,
1186 const struct sock *sk_listener,
1187 struct sk_buff *skb)
1188{
1189 struct inet_request_sock *ireq = inet_rsk(req);
1190
1191 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1192 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1193 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1194 ireq->opt = tcp_v4_save_options(skb);
1195}
1196
1197static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1198 struct flowi *fl,
1199 const struct request_sock *req,
1200 bool *strict)
1201{
1202 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1203
1204 if (strict) {
1205 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1206 *strict = true;
1207 else
1208 *strict = false;
1209 }
1210
1211 return dst;
1212}
1213
1214struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1215 .family = PF_INET,
1216 .obj_size = sizeof(struct tcp_request_sock),
1217 .rtx_syn_ack = tcp_rtx_synack,
1218 .send_ack = tcp_v4_reqsk_send_ack,
1219 .destructor = tcp_v4_reqsk_destructor,
1220 .send_reset = tcp_v4_send_reset,
1221 .syn_ack_timeout = tcp_syn_ack_timeout,
1222};
1223
1224static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1225 .mss_clamp = TCP_MSS_DEFAULT,
1226#ifdef CONFIG_TCP_MD5SIG
1227 .req_md5_lookup = tcp_v4_md5_lookup,
1228 .calc_md5_hash = tcp_v4_md5_hash_skb,
1229#endif
1230 .init_req = tcp_v4_init_req,
1231#ifdef CONFIG_SYN_COOKIES
1232 .cookie_init_seq = cookie_v4_init_sequence,
1233#endif
1234 .route_req = tcp_v4_route_req,
1235 .init_seq = tcp_v4_init_sequence,
1236 .send_synack = tcp_v4_send_synack,
1237};
1238
1239int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1240{
1241 /* Never answer to SYNs send to broadcast or multicast */
1242 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243 goto drop;
1244
1245 return tcp_conn_request(&tcp_request_sock_ops,
1246 &tcp_request_sock_ipv4_ops, sk, skb);
1247
1248drop:
1249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1250 return 0;
1251}
1252EXPORT_SYMBOL(tcp_v4_conn_request);
1253
1254
1255/*
1256 * The three way handshake has completed - we got a valid synack -
1257 * now create the new socket.
1258 */
1259struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1260 struct request_sock *req,
1261 struct dst_entry *dst,
1262 struct request_sock *req_unhash,
1263 bool *own_req)
1264{
1265 struct inet_request_sock *ireq;
1266 struct inet_sock *newinet;
1267 struct tcp_sock *newtp;
1268 struct sock *newsk;
1269#ifdef CONFIG_TCP_MD5SIG
1270 struct tcp_md5sig_key *key;
1271#endif
1272 struct ip_options_rcu *inet_opt;
1273
1274 if (sk_acceptq_is_full(sk))
1275 goto exit_overflow;
1276
1277 newsk = tcp_create_openreq_child(sk, req, skb);
1278 if (!newsk)
1279 goto exit_nonewsk;
1280
1281 newsk->sk_gso_type = SKB_GSO_TCPV4;
1282 inet_sk_rx_dst_set(newsk, skb);
1283
1284 newtp = tcp_sk(newsk);
1285 newinet = inet_sk(newsk);
1286 ireq = inet_rsk(req);
1287 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1288 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1289 newsk->sk_bound_dev_if = ireq->ir_iif;
1290 newinet->inet_saddr = ireq->ir_loc_addr;
1291 inet_opt = ireq->opt;
1292 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1293 ireq->opt = NULL;
1294 newinet->mc_index = inet_iif(skb);
1295 newinet->mc_ttl = ip_hdr(skb)->ttl;
1296 newinet->rcv_tos = ip_hdr(skb)->tos;
1297 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1298 if (inet_opt)
1299 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1300 newinet->inet_id = newtp->write_seq ^ jiffies;
1301
1302 if (!dst) {
1303 dst = inet_csk_route_child_sock(sk, newsk, req);
1304 if (!dst)
1305 goto put_and_exit;
1306 } else {
1307 /* syncookie case : see end of cookie_v4_check() */
1308 }
1309 sk_setup_caps(newsk, dst);
1310
1311 tcp_ca_openreq_child(newsk, dst);
1312
1313 tcp_sync_mss(newsk, dst_mtu(dst));
1314 newtp->advmss = dst_metric_advmss(dst);
1315 if (tcp_sk(sk)->rx_opt.user_mss &&
1316 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1317 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1318
1319 tcp_initialize_rcv_mss(newsk);
1320
1321#ifdef CONFIG_TCP_MD5SIG
1322 /* Copy over the MD5 key from the original socket */
1323 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1324 AF_INET);
1325 if (key) {
1326 /*
1327 * We're using one, so create a matching key
1328 * on the newsk structure. If we fail to get
1329 * memory, then we end up not copying the key
1330 * across. Shucks.
1331 */
1332 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1333 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1334 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1335 }
1336#endif
1337
1338 if (__inet_inherit_port(sk, newsk) < 0)
1339 goto put_and_exit;
1340 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1341 if (*own_req)
1342 tcp_move_syn(newtp, req);
1343
1344 return newsk;
1345
1346exit_overflow:
1347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1348exit_nonewsk:
1349 dst_release(dst);
1350exit:
1351 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1352 return NULL;
1353put_and_exit:
1354 inet_csk_prepare_forced_close(newsk);
1355 tcp_done(newsk);
1356 goto exit;
1357}
1358EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1359
1360static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1361{
1362#ifdef CONFIG_SYN_COOKIES
1363 const struct tcphdr *th = tcp_hdr(skb);
1364
1365 if (!th->syn)
1366 sk = cookie_v4_check(sk, skb);
1367#endif
1368 return sk;
1369}
1370
1371/* The socket must have it's spinlock held when we get
1372 * here, unless it is a TCP_LISTEN socket.
1373 *
1374 * We have a potential double-lock case here, so even when
1375 * doing backlog processing we use the BH locking scheme.
1376 * This is because we cannot sleep with the original spinlock
1377 * held.
1378 */
1379int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1380{
1381 struct sock *rsk;
1382
1383 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1384 struct dst_entry *dst = sk->sk_rx_dst;
1385
1386 sock_rps_save_rxhash(sk, skb);
1387 sk_mark_napi_id(sk, skb);
1388 if (dst) {
1389 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1390 !dst->ops->check(dst, 0)) {
1391 dst_release(dst);
1392 sk->sk_rx_dst = NULL;
1393 }
1394 }
1395 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1396 return 0;
1397 }
1398
1399 if (tcp_checksum_complete(skb))
1400 goto csum_err;
1401
1402 if (sk->sk_state == TCP_LISTEN) {
1403 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1404
1405 if (!nsk)
1406 goto discard;
1407 if (nsk != sk) {
1408 sock_rps_save_rxhash(nsk, skb);
1409 sk_mark_napi_id(nsk, skb);
1410 if (tcp_child_process(sk, nsk, skb)) {
1411 rsk = nsk;
1412 goto reset;
1413 }
1414 return 0;
1415 }
1416 } else
1417 sock_rps_save_rxhash(sk, skb);
1418
1419 if (tcp_rcv_state_process(sk, skb)) {
1420 rsk = sk;
1421 goto reset;
1422 }
1423 return 0;
1424
1425reset:
1426 tcp_v4_send_reset(rsk, skb);
1427discard:
1428 kfree_skb(skb);
1429 /* Be careful here. If this function gets more complicated and
1430 * gcc suffers from register pressure on the x86, sk (in %ebx)
1431 * might be destroyed here. This current version compiles correctly,
1432 * but you have been warned.
1433 */
1434 return 0;
1435
1436csum_err:
1437 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1438 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1439 goto discard;
1440}
1441EXPORT_SYMBOL(tcp_v4_do_rcv);
1442
1443void tcp_v4_early_demux(struct sk_buff *skb)
1444{
1445 const struct iphdr *iph;
1446 const struct tcphdr *th;
1447 struct sock *sk;
1448
1449 if (skb->pkt_type != PACKET_HOST)
1450 return;
1451
1452 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1453 return;
1454
1455 iph = ip_hdr(skb);
1456 th = tcp_hdr(skb);
1457
1458 if (th->doff < sizeof(struct tcphdr) / 4)
1459 return;
1460
1461 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1462 iph->saddr, th->source,
1463 iph->daddr, ntohs(th->dest),
1464 skb->skb_iif);
1465 if (sk) {
1466 skb->sk = sk;
1467 skb->destructor = sock_edemux;
1468 if (sk_fullsock(sk)) {
1469 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1470
1471 if (dst)
1472 dst = dst_check(dst, 0);
1473 if (dst &&
1474 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1475 skb_dst_set_noref(skb, dst);
1476 }
1477 }
1478}
1479
1480/* Packet is added to VJ-style prequeue for processing in process
1481 * context, if a reader task is waiting. Apparently, this exciting
1482 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1483 * failed somewhere. Latency? Burstiness? Well, at least now we will
1484 * see, why it failed. 8)8) --ANK
1485 *
1486 */
1487bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1488{
1489 struct tcp_sock *tp = tcp_sk(sk);
1490
1491 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1492 return false;
1493
1494 if (skb->len <= tcp_hdrlen(skb) &&
1495 skb_queue_len(&tp->ucopy.prequeue) == 0)
1496 return false;
1497
1498 /* Before escaping RCU protected region, we need to take care of skb
1499 * dst. Prequeue is only enabled for established sockets.
1500 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1501 * Instead of doing full sk_rx_dst validity here, let's perform
1502 * an optimistic check.
1503 */
1504 if (likely(sk->sk_rx_dst))
1505 skb_dst_drop(skb);
1506 else
1507 skb_dst_force_safe(skb);
1508
1509 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1510 tp->ucopy.memory += skb->truesize;
1511 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1512 struct sk_buff *skb1;
1513
1514 BUG_ON(sock_owned_by_user(sk));
1515
1516 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1517 sk_backlog_rcv(sk, skb1);
1518 NET_INC_STATS_BH(sock_net(sk),
1519 LINUX_MIB_TCPPREQUEUEDROPPED);
1520 }
1521
1522 tp->ucopy.memory = 0;
1523 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1524 wake_up_interruptible_sync_poll(sk_sleep(sk),
1525 POLLIN | POLLRDNORM | POLLRDBAND);
1526 if (!inet_csk_ack_scheduled(sk))
1527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1528 (3 * tcp_rto_min(sk)) / 4,
1529 TCP_RTO_MAX);
1530 }
1531 return true;
1532}
1533EXPORT_SYMBOL(tcp_prequeue);
1534
1535/*
1536 * From tcp_input.c
1537 */
1538
1539int tcp_v4_rcv(struct sk_buff *skb)
1540{
1541 const struct iphdr *iph;
1542 const struct tcphdr *th;
1543 struct sock *sk;
1544 int ret;
1545 struct net *net = dev_net(skb->dev);
1546
1547 if (skb->pkt_type != PACKET_HOST)
1548 goto discard_it;
1549
1550 /* Count it even if it's bad */
1551 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554 goto discard_it;
1555
1556 th = tcp_hdr(skb);
1557
1558 if (th->doff < sizeof(struct tcphdr) / 4)
1559 goto bad_packet;
1560 if (!pskb_may_pull(skb, th->doff * 4))
1561 goto discard_it;
1562
1563 /* An explanation is required here, I think.
1564 * Packet length and doff are validated by header prediction,
1565 * provided case of th->doff==0 is eliminated.
1566 * So, we defer the checks. */
1567
1568 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1569 goto csum_error;
1570
1571 th = tcp_hdr(skb);
1572 iph = ip_hdr(skb);
1573 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1574 * barrier() makes sure compiler wont play fool^Waliasing games.
1575 */
1576 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1577 sizeof(struct inet_skb_parm));
1578 barrier();
1579
1580 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1581 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1582 skb->len - th->doff * 4);
1583 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1584 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1585 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1586 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1587 TCP_SKB_CB(skb)->sacked = 0;
1588
1589lookup:
1590 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1591 th->dest);
1592 if (!sk)
1593 goto no_tcp_socket;
1594
1595process:
1596 if (sk->sk_state == TCP_TIME_WAIT)
1597 goto do_time_wait;
1598
1599 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1600 struct request_sock *req = inet_reqsk(sk);
1601 struct sock *nsk;
1602
1603 sk = req->rsk_listener;
1604 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1605 reqsk_put(req);
1606 goto discard_it;
1607 }
1608 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1609 inet_csk_reqsk_queue_drop_and_put(sk, req);
1610 goto lookup;
1611 }
1612 sock_hold(sk);
1613 nsk = tcp_check_req(sk, skb, req, false);
1614 if (!nsk) {
1615 reqsk_put(req);
1616 goto discard_and_relse;
1617 }
1618 if (nsk == sk) {
1619 reqsk_put(req);
1620 } else if (tcp_child_process(sk, nsk, skb)) {
1621 tcp_v4_send_reset(nsk, skb);
1622 goto discard_and_relse;
1623 } else {
1624 sock_put(sk);
1625 return 0;
1626 }
1627 }
1628 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1629 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1630 goto discard_and_relse;
1631 }
1632
1633 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1634 goto discard_and_relse;
1635
1636 if (tcp_v4_inbound_md5_hash(sk, skb))
1637 goto discard_and_relse;
1638
1639 nf_reset(skb);
1640
1641 if (sk_filter(sk, skb))
1642 goto discard_and_relse;
1643
1644 skb->dev = NULL;
1645
1646 if (sk->sk_state == TCP_LISTEN) {
1647 ret = tcp_v4_do_rcv(sk, skb);
1648 goto put_and_return;
1649 }
1650
1651 sk_incoming_cpu_update(sk);
1652
1653 bh_lock_sock_nested(sk);
1654 tcp_segs_in(tcp_sk(sk), skb);
1655 ret = 0;
1656 if (!sock_owned_by_user(sk)) {
1657 if (!tcp_prequeue(sk, skb))
1658 ret = tcp_v4_do_rcv(sk, skb);
1659 } else if (unlikely(sk_add_backlog(sk, skb,
1660 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1661 bh_unlock_sock(sk);
1662 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1663 goto discard_and_relse;
1664 }
1665 bh_unlock_sock(sk);
1666
1667put_and_return:
1668 sock_put(sk);
1669
1670 return ret;
1671
1672no_tcp_socket:
1673 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1674 goto discard_it;
1675
1676 if (tcp_checksum_complete(skb)) {
1677csum_error:
1678 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1679bad_packet:
1680 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1681 } else {
1682 tcp_v4_send_reset(NULL, skb);
1683 }
1684
1685discard_it:
1686 /* Discard frame. */
1687 kfree_skb(skb);
1688 return 0;
1689
1690discard_and_relse:
1691 sock_put(sk);
1692 goto discard_it;
1693
1694do_time_wait:
1695 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1696 inet_twsk_put(inet_twsk(sk));
1697 goto discard_it;
1698 }
1699
1700 if (tcp_checksum_complete(skb)) {
1701 inet_twsk_put(inet_twsk(sk));
1702 goto csum_error;
1703 }
1704 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1705 case TCP_TW_SYN: {
1706 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1707 &tcp_hashinfo, skb,
1708 __tcp_hdrlen(th),
1709 iph->saddr, th->source,
1710 iph->daddr, th->dest,
1711 inet_iif(skb));
1712 if (sk2) {
1713 inet_twsk_deschedule_put(inet_twsk(sk));
1714 sk = sk2;
1715 goto process;
1716 }
1717 /* Fall through to ACK */
1718 }
1719 case TCP_TW_ACK:
1720 tcp_v4_timewait_ack(sk, skb);
1721 break;
1722 case TCP_TW_RST:
1723 tcp_v4_send_reset(sk, skb);
1724 inet_twsk_deschedule_put(inet_twsk(sk));
1725 goto discard_it;
1726 case TCP_TW_SUCCESS:;
1727 }
1728 goto discard_it;
1729}
1730
1731static struct timewait_sock_ops tcp_timewait_sock_ops = {
1732 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1733 .twsk_unique = tcp_twsk_unique,
1734 .twsk_destructor= tcp_twsk_destructor,
1735};
1736
1737void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1738{
1739 struct dst_entry *dst = skb_dst(skb);
1740
1741 if (dst && dst_hold_safe(dst)) {
1742 sk->sk_rx_dst = dst;
1743 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1744 }
1745}
1746EXPORT_SYMBOL(inet_sk_rx_dst_set);
1747
1748const struct inet_connection_sock_af_ops ipv4_specific = {
1749 .queue_xmit = ip_queue_xmit,
1750 .send_check = tcp_v4_send_check,
1751 .rebuild_header = inet_sk_rebuild_header,
1752 .sk_rx_dst_set = inet_sk_rx_dst_set,
1753 .conn_request = tcp_v4_conn_request,
1754 .syn_recv_sock = tcp_v4_syn_recv_sock,
1755 .net_header_len = sizeof(struct iphdr),
1756 .setsockopt = ip_setsockopt,
1757 .getsockopt = ip_getsockopt,
1758 .addr2sockaddr = inet_csk_addr2sockaddr,
1759 .sockaddr_len = sizeof(struct sockaddr_in),
1760 .bind_conflict = inet_csk_bind_conflict,
1761#ifdef CONFIG_COMPAT
1762 .compat_setsockopt = compat_ip_setsockopt,
1763 .compat_getsockopt = compat_ip_getsockopt,
1764#endif
1765 .mtu_reduced = tcp_v4_mtu_reduced,
1766};
1767EXPORT_SYMBOL(ipv4_specific);
1768
1769#ifdef CONFIG_TCP_MD5SIG
1770static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1771 .md5_lookup = tcp_v4_md5_lookup,
1772 .calc_md5_hash = tcp_v4_md5_hash_skb,
1773 .md5_parse = tcp_v4_parse_md5_keys,
1774};
1775#endif
1776
1777/* NOTE: A lot of things set to zero explicitly by call to
1778 * sk_alloc() so need not be done here.
1779 */
1780static int tcp_v4_init_sock(struct sock *sk)
1781{
1782 struct inet_connection_sock *icsk = inet_csk(sk);
1783
1784 tcp_init_sock(sk);
1785
1786 icsk->icsk_af_ops = &ipv4_specific;
1787
1788#ifdef CONFIG_TCP_MD5SIG
1789 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1790#endif
1791
1792 return 0;
1793}
1794
1795void tcp_v4_destroy_sock(struct sock *sk)
1796{
1797 struct tcp_sock *tp = tcp_sk(sk);
1798
1799 tcp_clear_xmit_timers(sk);
1800
1801 tcp_cleanup_congestion_control(sk);
1802
1803 /* Cleanup up the write buffer. */
1804 tcp_write_queue_purge(sk);
1805
1806 /* Cleans up our, hopefully empty, out_of_order_queue. */
1807 __skb_queue_purge(&tp->out_of_order_queue);
1808
1809#ifdef CONFIG_TCP_MD5SIG
1810 /* Clean up the MD5 key list, if any */
1811 if (tp->md5sig_info) {
1812 tcp_clear_md5_list(sk);
1813 kfree_rcu(tp->md5sig_info, rcu);
1814 tp->md5sig_info = NULL;
1815 }
1816#endif
1817
1818 /* Clean prequeue, it must be empty really */
1819 __skb_queue_purge(&tp->ucopy.prequeue);
1820
1821 /* Clean up a referenced TCP bind bucket. */
1822 if (inet_csk(sk)->icsk_bind_hash)
1823 inet_put_port(sk);
1824
1825 BUG_ON(tp->fastopen_rsk);
1826
1827 /* If socket is aborted during connect operation */
1828 tcp_free_fastopen_req(tp);
1829 tcp_saved_syn_free(tp);
1830
1831 sk_sockets_allocated_dec(sk);
1832
1833 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1834 sock_release_memcg(sk);
1835}
1836EXPORT_SYMBOL(tcp_v4_destroy_sock);
1837
1838#ifdef CONFIG_PROC_FS
1839/* Proc filesystem TCP sock list dumping. */
1840
1841/*
1842 * Get next listener socket follow cur. If cur is NULL, get first socket
1843 * starting from bucket given in st->bucket; when st->bucket is zero the
1844 * very first socket in the hash table is returned.
1845 */
1846static void *listening_get_next(struct seq_file *seq, void *cur)
1847{
1848 struct inet_connection_sock *icsk;
1849 struct hlist_nulls_node *node;
1850 struct sock *sk = cur;
1851 struct inet_listen_hashbucket *ilb;
1852 struct tcp_iter_state *st = seq->private;
1853 struct net *net = seq_file_net(seq);
1854
1855 if (!sk) {
1856 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1857 spin_lock_bh(&ilb->lock);
1858 sk = sk_nulls_head(&ilb->head);
1859 st->offset = 0;
1860 goto get_sk;
1861 }
1862 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1863 ++st->num;
1864 ++st->offset;
1865
1866 sk = sk_nulls_next(sk);
1867get_sk:
1868 sk_nulls_for_each_from(sk, node) {
1869 if (!net_eq(sock_net(sk), net))
1870 continue;
1871 if (sk->sk_family == st->family) {
1872 cur = sk;
1873 goto out;
1874 }
1875 icsk = inet_csk(sk);
1876 }
1877 spin_unlock_bh(&ilb->lock);
1878 st->offset = 0;
1879 if (++st->bucket < INET_LHTABLE_SIZE) {
1880 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1881 spin_lock_bh(&ilb->lock);
1882 sk = sk_nulls_head(&ilb->head);
1883 goto get_sk;
1884 }
1885 cur = NULL;
1886out:
1887 return cur;
1888}
1889
1890static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1891{
1892 struct tcp_iter_state *st = seq->private;
1893 void *rc;
1894
1895 st->bucket = 0;
1896 st->offset = 0;
1897 rc = listening_get_next(seq, NULL);
1898
1899 while (rc && *pos) {
1900 rc = listening_get_next(seq, rc);
1901 --*pos;
1902 }
1903 return rc;
1904}
1905
1906static inline bool empty_bucket(const struct tcp_iter_state *st)
1907{
1908 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1909}
1910
1911/*
1912 * Get first established socket starting from bucket given in st->bucket.
1913 * If st->bucket is zero, the very first socket in the hash is returned.
1914 */
1915static void *established_get_first(struct seq_file *seq)
1916{
1917 struct tcp_iter_state *st = seq->private;
1918 struct net *net = seq_file_net(seq);
1919 void *rc = NULL;
1920
1921 st->offset = 0;
1922 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1923 struct sock *sk;
1924 struct hlist_nulls_node *node;
1925 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1926
1927 /* Lockless fast path for the common case of empty buckets */
1928 if (empty_bucket(st))
1929 continue;
1930
1931 spin_lock_bh(lock);
1932 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1933 if (sk->sk_family != st->family ||
1934 !net_eq(sock_net(sk), net)) {
1935 continue;
1936 }
1937 rc = sk;
1938 goto out;
1939 }
1940 spin_unlock_bh(lock);
1941 }
1942out:
1943 return rc;
1944}
1945
1946static void *established_get_next(struct seq_file *seq, void *cur)
1947{
1948 struct sock *sk = cur;
1949 struct hlist_nulls_node *node;
1950 struct tcp_iter_state *st = seq->private;
1951 struct net *net = seq_file_net(seq);
1952
1953 ++st->num;
1954 ++st->offset;
1955
1956 sk = sk_nulls_next(sk);
1957
1958 sk_nulls_for_each_from(sk, node) {
1959 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1960 return sk;
1961 }
1962
1963 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1964 ++st->bucket;
1965 return established_get_first(seq);
1966}
1967
1968static void *established_get_idx(struct seq_file *seq, loff_t pos)
1969{
1970 struct tcp_iter_state *st = seq->private;
1971 void *rc;
1972
1973 st->bucket = 0;
1974 rc = established_get_first(seq);
1975
1976 while (rc && pos) {
1977 rc = established_get_next(seq, rc);
1978 --pos;
1979 }
1980 return rc;
1981}
1982
1983static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1984{
1985 void *rc;
1986 struct tcp_iter_state *st = seq->private;
1987
1988 st->state = TCP_SEQ_STATE_LISTENING;
1989 rc = listening_get_idx(seq, &pos);
1990
1991 if (!rc) {
1992 st->state = TCP_SEQ_STATE_ESTABLISHED;
1993 rc = established_get_idx(seq, pos);
1994 }
1995
1996 return rc;
1997}
1998
1999static void *tcp_seek_last_pos(struct seq_file *seq)
2000{
2001 struct tcp_iter_state *st = seq->private;
2002 int offset = st->offset;
2003 int orig_num = st->num;
2004 void *rc = NULL;
2005
2006 switch (st->state) {
2007 case TCP_SEQ_STATE_LISTENING:
2008 if (st->bucket >= INET_LHTABLE_SIZE)
2009 break;
2010 st->state = TCP_SEQ_STATE_LISTENING;
2011 rc = listening_get_next(seq, NULL);
2012 while (offset-- && rc)
2013 rc = listening_get_next(seq, rc);
2014 if (rc)
2015 break;
2016 st->bucket = 0;
2017 st->state = TCP_SEQ_STATE_ESTABLISHED;
2018 /* Fallthrough */
2019 case TCP_SEQ_STATE_ESTABLISHED:
2020 if (st->bucket > tcp_hashinfo.ehash_mask)
2021 break;
2022 rc = established_get_first(seq);
2023 while (offset-- && rc)
2024 rc = established_get_next(seq, rc);
2025 }
2026
2027 st->num = orig_num;
2028
2029 return rc;
2030}
2031
2032static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2033{
2034 struct tcp_iter_state *st = seq->private;
2035 void *rc;
2036
2037 if (*pos && *pos == st->last_pos) {
2038 rc = tcp_seek_last_pos(seq);
2039 if (rc)
2040 goto out;
2041 }
2042
2043 st->state = TCP_SEQ_STATE_LISTENING;
2044 st->num = 0;
2045 st->bucket = 0;
2046 st->offset = 0;
2047 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2048
2049out:
2050 st->last_pos = *pos;
2051 return rc;
2052}
2053
2054static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055{
2056 struct tcp_iter_state *st = seq->private;
2057 void *rc = NULL;
2058
2059 if (v == SEQ_START_TOKEN) {
2060 rc = tcp_get_idx(seq, 0);
2061 goto out;
2062 }
2063
2064 switch (st->state) {
2065 case TCP_SEQ_STATE_LISTENING:
2066 rc = listening_get_next(seq, v);
2067 if (!rc) {
2068 st->state = TCP_SEQ_STATE_ESTABLISHED;
2069 st->bucket = 0;
2070 st->offset = 0;
2071 rc = established_get_first(seq);
2072 }
2073 break;
2074 case TCP_SEQ_STATE_ESTABLISHED:
2075 rc = established_get_next(seq, v);
2076 break;
2077 }
2078out:
2079 ++*pos;
2080 st->last_pos = *pos;
2081 return rc;
2082}
2083
2084static void tcp_seq_stop(struct seq_file *seq, void *v)
2085{
2086 struct tcp_iter_state *st = seq->private;
2087
2088 switch (st->state) {
2089 case TCP_SEQ_STATE_LISTENING:
2090 if (v != SEQ_START_TOKEN)
2091 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2092 break;
2093 case TCP_SEQ_STATE_ESTABLISHED:
2094 if (v)
2095 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2096 break;
2097 }
2098}
2099
2100int tcp_seq_open(struct inode *inode, struct file *file)
2101{
2102 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2103 struct tcp_iter_state *s;
2104 int err;
2105
2106 err = seq_open_net(inode, file, &afinfo->seq_ops,
2107 sizeof(struct tcp_iter_state));
2108 if (err < 0)
2109 return err;
2110
2111 s = ((struct seq_file *)file->private_data)->private;
2112 s->family = afinfo->family;
2113 s->last_pos = 0;
2114 return 0;
2115}
2116EXPORT_SYMBOL(tcp_seq_open);
2117
2118int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2119{
2120 int rc = 0;
2121 struct proc_dir_entry *p;
2122
2123 afinfo->seq_ops.start = tcp_seq_start;
2124 afinfo->seq_ops.next = tcp_seq_next;
2125 afinfo->seq_ops.stop = tcp_seq_stop;
2126
2127 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2128 afinfo->seq_fops, afinfo);
2129 if (!p)
2130 rc = -ENOMEM;
2131 return rc;
2132}
2133EXPORT_SYMBOL(tcp_proc_register);
2134
2135void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2136{
2137 remove_proc_entry(afinfo->name, net->proc_net);
2138}
2139EXPORT_SYMBOL(tcp_proc_unregister);
2140
2141static void get_openreq4(const struct request_sock *req,
2142 struct seq_file *f, int i)
2143{
2144 const struct inet_request_sock *ireq = inet_rsk(req);
2145 long delta = req->rsk_timer.expires - jiffies;
2146
2147 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2148 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2149 i,
2150 ireq->ir_loc_addr,
2151 ireq->ir_num,
2152 ireq->ir_rmt_addr,
2153 ntohs(ireq->ir_rmt_port),
2154 TCP_SYN_RECV,
2155 0, 0, /* could print option size, but that is af dependent. */
2156 1, /* timers active (only the expire timer) */
2157 jiffies_delta_to_clock_t(delta),
2158 req->num_timeout,
2159 from_kuid_munged(seq_user_ns(f),
2160 sock_i_uid(req->rsk_listener)),
2161 0, /* non standard timer */
2162 0, /* open_requests have no inode */
2163 0,
2164 req);
2165}
2166
2167static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2168{
2169 int timer_active;
2170 unsigned long timer_expires;
2171 const struct tcp_sock *tp = tcp_sk(sk);
2172 const struct inet_connection_sock *icsk = inet_csk(sk);
2173 const struct inet_sock *inet = inet_sk(sk);
2174 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2175 __be32 dest = inet->inet_daddr;
2176 __be32 src = inet->inet_rcv_saddr;
2177 __u16 destp = ntohs(inet->inet_dport);
2178 __u16 srcp = ntohs(inet->inet_sport);
2179 int rx_queue;
2180 int state;
2181
2182 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2183 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2184 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2185 timer_active = 1;
2186 timer_expires = icsk->icsk_timeout;
2187 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2188 timer_active = 4;
2189 timer_expires = icsk->icsk_timeout;
2190 } else if (timer_pending(&sk->sk_timer)) {
2191 timer_active = 2;
2192 timer_expires = sk->sk_timer.expires;
2193 } else {
2194 timer_active = 0;
2195 timer_expires = jiffies;
2196 }
2197
2198 state = sk_state_load(sk);
2199 if (state == TCP_LISTEN)
2200 rx_queue = sk->sk_ack_backlog;
2201 else
2202 /* Because we don't lock the socket,
2203 * we might find a transient negative value.
2204 */
2205 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2206
2207 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2208 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2209 i, src, srcp, dest, destp, state,
2210 tp->write_seq - tp->snd_una,
2211 rx_queue,
2212 timer_active,
2213 jiffies_delta_to_clock_t(timer_expires - jiffies),
2214 icsk->icsk_retransmits,
2215 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2216 icsk->icsk_probes_out,
2217 sock_i_ino(sk),
2218 atomic_read(&sk->sk_refcnt), sk,
2219 jiffies_to_clock_t(icsk->icsk_rto),
2220 jiffies_to_clock_t(icsk->icsk_ack.ato),
2221 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2222 tp->snd_cwnd,
2223 state == TCP_LISTEN ?
2224 fastopenq->max_qlen :
2225 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2226}
2227
2228static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2229 struct seq_file *f, int i)
2230{
2231 long delta = tw->tw_timer.expires - jiffies;
2232 __be32 dest, src;
2233 __u16 destp, srcp;
2234
2235 dest = tw->tw_daddr;
2236 src = tw->tw_rcv_saddr;
2237 destp = ntohs(tw->tw_dport);
2238 srcp = ntohs(tw->tw_sport);
2239
2240 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2241 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2242 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2243 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2244 atomic_read(&tw->tw_refcnt), tw);
2245}
2246
2247#define TMPSZ 150
2248
2249static int tcp4_seq_show(struct seq_file *seq, void *v)
2250{
2251 struct tcp_iter_state *st;
2252 struct sock *sk = v;
2253
2254 seq_setwidth(seq, TMPSZ - 1);
2255 if (v == SEQ_START_TOKEN) {
2256 seq_puts(seq, " sl local_address rem_address st tx_queue "
2257 "rx_queue tr tm->when retrnsmt uid timeout "
2258 "inode");
2259 goto out;
2260 }
2261 st = seq->private;
2262
2263 if (sk->sk_state == TCP_TIME_WAIT)
2264 get_timewait4_sock(v, seq, st->num);
2265 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2266 get_openreq4(v, seq, st->num);
2267 else
2268 get_tcp4_sock(v, seq, st->num);
2269out:
2270 seq_pad(seq, '\n');
2271 return 0;
2272}
2273
2274static const struct file_operations tcp_afinfo_seq_fops = {
2275 .owner = THIS_MODULE,
2276 .open = tcp_seq_open,
2277 .read = seq_read,
2278 .llseek = seq_lseek,
2279 .release = seq_release_net
2280};
2281
2282static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2283 .name = "tcp",
2284 .family = AF_INET,
2285 .seq_fops = &tcp_afinfo_seq_fops,
2286 .seq_ops = {
2287 .show = tcp4_seq_show,
2288 },
2289};
2290
2291static int __net_init tcp4_proc_init_net(struct net *net)
2292{
2293 return tcp_proc_register(net, &tcp4_seq_afinfo);
2294}
2295
2296static void __net_exit tcp4_proc_exit_net(struct net *net)
2297{
2298 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2299}
2300
2301static struct pernet_operations tcp4_net_ops = {
2302 .init = tcp4_proc_init_net,
2303 .exit = tcp4_proc_exit_net,
2304};
2305
2306int __init tcp4_proc_init(void)
2307{
2308 return register_pernet_subsys(&tcp4_net_ops);
2309}
2310
2311void tcp4_proc_exit(void)
2312{
2313 unregister_pernet_subsys(&tcp4_net_ops);
2314}
2315#endif /* CONFIG_PROC_FS */
2316
2317struct proto tcp_prot = {
2318 .name = "TCP",
2319 .owner = THIS_MODULE,
2320 .close = tcp_close,
2321 .connect = tcp_v4_connect,
2322 .disconnect = tcp_disconnect,
2323 .accept = inet_csk_accept,
2324 .ioctl = tcp_ioctl,
2325 .init = tcp_v4_init_sock,
2326 .destroy = tcp_v4_destroy_sock,
2327 .shutdown = tcp_shutdown,
2328 .setsockopt = tcp_setsockopt,
2329 .getsockopt = tcp_getsockopt,
2330 .recvmsg = tcp_recvmsg,
2331 .sendmsg = tcp_sendmsg,
2332 .sendpage = tcp_sendpage,
2333 .backlog_rcv = tcp_v4_do_rcv,
2334 .release_cb = tcp_release_cb,
2335 .hash = inet_hash,
2336 .unhash = inet_unhash,
2337 .get_port = inet_csk_get_port,
2338 .enter_memory_pressure = tcp_enter_memory_pressure,
2339 .stream_memory_free = tcp_stream_memory_free,
2340 .sockets_allocated = &tcp_sockets_allocated,
2341 .orphan_count = &tcp_orphan_count,
2342 .memory_allocated = &tcp_memory_allocated,
2343 .memory_pressure = &tcp_memory_pressure,
2344 .sysctl_mem = sysctl_tcp_mem,
2345 .sysctl_wmem = sysctl_tcp_wmem,
2346 .sysctl_rmem = sysctl_tcp_rmem,
2347 .max_header = MAX_TCP_HEADER,
2348 .obj_size = sizeof(struct tcp_sock),
2349 .slab_flags = SLAB_DESTROY_BY_RCU,
2350 .twsk_prot = &tcp_timewait_sock_ops,
2351 .rsk_prot = &tcp_request_sock_ops,
2352 .h.hashinfo = &tcp_hashinfo,
2353 .no_autobind = true,
2354#ifdef CONFIG_COMPAT
2355 .compat_setsockopt = compat_tcp_setsockopt,
2356 .compat_getsockopt = compat_tcp_getsockopt,
2357#endif
2358 .diag_destroy = tcp_abort,
2359};
2360EXPORT_SYMBOL(tcp_prot);
2361
2362static void __net_exit tcp_sk_exit(struct net *net)
2363{
2364 int cpu;
2365
2366 for_each_possible_cpu(cpu)
2367 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2368 free_percpu(net->ipv4.tcp_sk);
2369}
2370
2371static int __net_init tcp_sk_init(struct net *net)
2372{
2373 int res, cpu;
2374
2375 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2376 if (!net->ipv4.tcp_sk)
2377 return -ENOMEM;
2378
2379 for_each_possible_cpu(cpu) {
2380 struct sock *sk;
2381
2382 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2383 IPPROTO_TCP, net);
2384 if (res)
2385 goto fail;
2386 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2387 }
2388
2389 net->ipv4.sysctl_tcp_ecn = 2;
2390 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2391
2392 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2393 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2394 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2395
2396 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2397 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2398 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2399
2400 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2401 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2402 net->ipv4.sysctl_tcp_syncookies = 1;
2403 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2404 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2405 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2406 net->ipv4.sysctl_tcp_orphan_retries = 0;
2407 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2408 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2409
2410 return 0;
2411fail:
2412 tcp_sk_exit(net);
2413
2414 return res;
2415}
2416
2417static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2418{
2419 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2420}
2421
2422static struct pernet_operations __net_initdata tcp_sk_ops = {
2423 .init = tcp_sk_init,
2424 .exit = tcp_sk_exit,
2425 .exit_batch = tcp_sk_exit_batch,
2426};
2427
2428void __init tcp_v4_init(void)
2429{
2430 inet_hashinfo_init(&tcp_hashinfo);
2431 if (register_pernet_subsys(&tcp_sk_ops))
2432 panic("Failed to create the TCP control socket.\n");
2433}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78#include <net/busy_poll.h>
79
80#include <linux/inet.h>
81#include <linux/ipv6.h>
82#include <linux/stddef.h>
83#include <linux/proc_fs.h>
84#include <linux/seq_file.h>
85
86#include <linux/crypto.h>
87#include <linux/scatterlist.h>
88
89int sysctl_tcp_tw_reuse __read_mostly;
90int sysctl_tcp_low_latency __read_mostly;
91EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94#ifdef CONFIG_TCP_MD5SIG
95static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97#endif
98
99struct inet_hashinfo tcp_hashinfo;
100EXPORT_SYMBOL(tcp_hashinfo);
101
102static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103{
104 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105 ip_hdr(skb)->saddr,
106 tcp_hdr(skb)->dest,
107 tcp_hdr(skb)->source);
108}
109
110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111{
112 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113 struct tcp_sock *tp = tcp_sk(sk);
114
115 /* With PAWS, it is safe from the viewpoint
116 of data integrity. Even without PAWS it is safe provided sequence
117 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119 Actually, the idea is close to VJ's one, only timestamp cache is
120 held not per host, but per port pair and TW bucket is used as state
121 holder.
122
123 If TW bucket has been already destroyed we fall back to VJ's scheme
124 and use initial timestamp retrieved from peer table.
125 */
126 if (tcptw->tw_ts_recent_stamp &&
127 (twp == NULL || (sysctl_tcp_tw_reuse &&
128 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130 if (tp->write_seq == 0)
131 tp->write_seq = 1;
132 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
133 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134 sock_hold(sktw);
135 return 1;
136 }
137
138 return 0;
139}
140EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142/* This will initiate an outgoing connection. */
143int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144{
145 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146 struct inet_sock *inet = inet_sk(sk);
147 struct tcp_sock *tp = tcp_sk(sk);
148 __be16 orig_sport, orig_dport;
149 __be32 daddr, nexthop;
150 struct flowi4 *fl4;
151 struct rtable *rt;
152 int err;
153 struct ip_options_rcu *inet_opt;
154
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
157
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
160
161 nexthop = daddr = usin->sin_addr.s_addr;
162 inet_opt = rcu_dereference_protected(inet->inet_opt,
163 sock_owned_by_user(sk));
164 if (inet_opt && inet_opt->opt.srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet_opt->opt.faddr;
168 }
169
170 orig_sport = inet->inet_sport;
171 orig_dport = usin->sin_port;
172 fl4 = &inet->cork.fl.u.ip4;
173 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 IPPROTO_TCP,
176 orig_sport, orig_dport, sk);
177 if (IS_ERR(rt)) {
178 err = PTR_ERR(rt);
179 if (err == -ENETUNREACH)
180 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 return err;
182 }
183
184 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185 ip_rt_put(rt);
186 return -ENETUNREACH;
187 }
188
189 if (!inet_opt || !inet_opt->opt.srr)
190 daddr = fl4->daddr;
191
192 if (!inet->inet_saddr)
193 inet->inet_saddr = fl4->saddr;
194 inet->inet_rcv_saddr = inet->inet_saddr;
195
196 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197 /* Reset inherited state */
198 tp->rx_opt.ts_recent = 0;
199 tp->rx_opt.ts_recent_stamp = 0;
200 if (likely(!tp->repair))
201 tp->write_seq = 0;
202 }
203
204 if (tcp_death_row.sysctl_tw_recycle &&
205 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208 inet->inet_dport = usin->sin_port;
209 inet->inet_daddr = daddr;
210
211 inet_csk(sk)->icsk_ext_hdr_len = 0;
212 if (inet_opt)
213 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217 /* Socket identity is still unknown (sport may be zero).
218 * However we set state to SYN-SENT and not releasing socket
219 * lock select source port, enter ourselves into the hash tables and
220 * complete initialization after this.
221 */
222 tcp_set_state(sk, TCP_SYN_SENT);
223 err = inet_hash_connect(&tcp_death_row, sk);
224 if (err)
225 goto failure;
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264}
265EXPORT_SYMBOL(tcp_v4_connect);
266
267/*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272static void tcp_v4_mtu_reduced(struct sock *sk)
273{
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
276 u32 mtu = tcp_sk(sk)->mtu_info;
277
278 dst = inet_csk_update_pmtu(sk, mtu);
279 if (!dst)
280 return;
281
282 /* Something is about to be wrong... Remember soft error
283 * for the case, if this connection will not able to recover.
284 */
285 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286 sk->sk_err_soft = EMSGSIZE;
287
288 mtu = dst_mtu(dst);
289
290 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291 ip_sk_accept_pmtu(sk) &&
292 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
293 tcp_sync_mss(sk, mtu);
294
295 /* Resend the TCP packet because it's
296 * clear that the old packet has been
297 * dropped. This is the new "fast" path mtu
298 * discovery.
299 */
300 tcp_simple_retransmit(sk);
301 } /* else let the usual retransmit timer handle it */
302}
303
304static void do_redirect(struct sk_buff *skb, struct sock *sk)
305{
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
307
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
310}
311
312/*
313 * This routine is called by the ICMP module when it gets some
314 * sort of error condition. If err < 0 then the socket should
315 * be closed and the error returned to the user. If err > 0
316 * it's just the icmp type << 8 | icmp code. After adjustment
317 * header points to the first 8 bytes of the tcp header. We need
318 * to find the appropriate port.
319 *
320 * The locking strategy used here is very "optimistic". When
321 * someone else accesses the socket the ICMP is just dropped
322 * and for some paths there is no check at all.
323 * A more general error queue to queue errors for later handling
324 * is probably better.
325 *
326 */
327
328void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
329{
330 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
331 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
332 struct inet_connection_sock *icsk;
333 struct tcp_sock *tp;
334 struct inet_sock *inet;
335 const int type = icmp_hdr(icmp_skb)->type;
336 const int code = icmp_hdr(icmp_skb)->code;
337 struct sock *sk;
338 struct sk_buff *skb;
339 struct request_sock *req;
340 __u32 seq;
341 __u32 remaining;
342 int err;
343 struct net *net = dev_net(icmp_skb->dev);
344
345 if (icmp_skb->len < (iph->ihl << 2) + 8) {
346 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
347 return;
348 }
349
350 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
351 iph->saddr, th->source, inet_iif(icmp_skb));
352 if (!sk) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
355 }
356 if (sk->sk_state == TCP_TIME_WAIT) {
357 inet_twsk_put(inet_twsk(sk));
358 return;
359 }
360
361 bh_lock_sock(sk);
362 /* If too many ICMPs get dropped on busy
363 * servers this needs to be solved differently.
364 * We do take care of PMTU discovery (RFC1191) special case :
365 * we can receive locally generated ICMP messages while socket is held.
366 */
367 if (sock_owned_by_user(sk)) {
368 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
369 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 }
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
373
374 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376 goto out;
377 }
378
379 icsk = inet_csk(sk);
380 tp = tcp_sk(sk);
381 req = tp->fastopen_rsk;
382 seq = ntohl(th->seq);
383 if (sk->sk_state != TCP_LISTEN &&
384 !between(seq, tp->snd_una, tp->snd_nxt) &&
385 (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
386 /* For a Fast Open socket, allow seq to be snt_isn. */
387 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
388 goto out;
389 }
390
391 switch (type) {
392 case ICMP_REDIRECT:
393 do_redirect(icmp_skb, sk);
394 goto out;
395 case ICMP_SOURCE_QUENCH:
396 /* Just silently ignore these. */
397 goto out;
398 case ICMP_PARAMETERPROB:
399 err = EPROTO;
400 break;
401 case ICMP_DEST_UNREACH:
402 if (code > NR_ICMP_UNREACH)
403 goto out;
404
405 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
406 /* We are not interested in TCP_LISTEN and open_requests
407 * (SYN-ACKs send out by Linux are always <576bytes so
408 * they should go through unfragmented).
409 */
410 if (sk->sk_state == TCP_LISTEN)
411 goto out;
412
413 tp->mtu_info = info;
414 if (!sock_owned_by_user(sk)) {
415 tcp_v4_mtu_reduced(sk);
416 } else {
417 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
418 sock_hold(sk);
419 }
420 goto out;
421 }
422
423 err = icmp_err_convert[code].errno;
424 /* check if icmp_skb allows revert of backoff
425 * (see draft-zimmermann-tcp-lcd) */
426 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
427 break;
428 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
429 !icsk->icsk_backoff)
430 break;
431
432 /* XXX (TFO) - revisit the following logic for TFO */
433
434 if (sock_owned_by_user(sk))
435 break;
436
437 icsk->icsk_backoff--;
438 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
439 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
440 tcp_bound_rto(sk);
441
442 skb = tcp_write_queue_head(sk);
443 BUG_ON(!skb);
444
445 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
446 tcp_time_stamp - TCP_SKB_CB(skb)->when);
447
448 if (remaining) {
449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 remaining, TCP_RTO_MAX);
451 } else {
452 /* RTO revert clocked out retransmission.
453 * Will retransmit now */
454 tcp_retransmit_timer(sk);
455 }
456
457 break;
458 case ICMP_TIME_EXCEEDED:
459 err = EHOSTUNREACH;
460 break;
461 default:
462 goto out;
463 }
464
465 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
466 * than following the TCP_SYN_RECV case and closing the socket,
467 * we ignore the ICMP error and keep trying like a fully established
468 * socket. Is this the right thing to do?
469 */
470 if (req && req->sk == NULL)
471 goto out;
472
473 switch (sk->sk_state) {
474 struct request_sock *req, **prev;
475 case TCP_LISTEN:
476 if (sock_owned_by_user(sk))
477 goto out;
478
479 req = inet_csk_search_req(sk, &prev, th->dest,
480 iph->daddr, iph->saddr);
481 if (!req)
482 goto out;
483
484 /* ICMPs are not backlogged, hence we cannot get
485 an established socket here.
486 */
487 WARN_ON(req->sk);
488
489 if (seq != tcp_rsk(req)->snt_isn) {
490 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
491 goto out;
492 }
493
494 /*
495 * Still in SYN_RECV, just remove it silently.
496 * There is no good way to pass the error to the newly
497 * created socket, and POSIX does not want network
498 * errors returned from accept().
499 */
500 inet_csk_reqsk_queue_drop(sk, req, prev);
501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
502 goto out;
503
504 case TCP_SYN_SENT:
505 case TCP_SYN_RECV: /* Cannot happen.
506 It can f.e. if SYNs crossed,
507 or Fast Open.
508 */
509 if (!sock_owned_by_user(sk)) {
510 sk->sk_err = err;
511
512 sk->sk_error_report(sk);
513
514 tcp_done(sk);
515 } else {
516 sk->sk_err_soft = err;
517 }
518 goto out;
519 }
520
521 /* If we've already connected we will keep trying
522 * until we time out, or the user gives up.
523 *
524 * rfc1122 4.2.3.9 allows to consider as hard errors
525 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
526 * but it is obsoleted by pmtu discovery).
527 *
528 * Note, that in modern internet, where routing is unreliable
529 * and in each dark corner broken firewalls sit, sending random
530 * errors ordered by their masters even this two messages finally lose
531 * their original sense (even Linux sends invalid PORT_UNREACHs)
532 *
533 * Now we are in compliance with RFCs.
534 * --ANK (980905)
535 */
536
537 inet = inet_sk(sk);
538 if (!sock_owned_by_user(sk) && inet->recverr) {
539 sk->sk_err = err;
540 sk->sk_error_report(sk);
541 } else { /* Only an error on timeout */
542 sk->sk_err_soft = err;
543 }
544
545out:
546 bh_unlock_sock(sk);
547 sock_put(sk);
548}
549
550void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
551{
552 struct tcphdr *th = tcp_hdr(skb);
553
554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
555 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
556 skb->csum_start = skb_transport_header(skb) - skb->head;
557 skb->csum_offset = offsetof(struct tcphdr, check);
558 } else {
559 th->check = tcp_v4_check(skb->len, saddr, daddr,
560 csum_partial(th,
561 th->doff << 2,
562 skb->csum));
563 }
564}
565
566/* This routine computes an IPv4 TCP checksum. */
567void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
568{
569 const struct inet_sock *inet = inet_sk(sk);
570
571 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
572}
573EXPORT_SYMBOL(tcp_v4_send_check);
574
575/*
576 * This routine will send an RST to the other tcp.
577 *
578 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
579 * for reset.
580 * Answer: if a packet caused RST, it is not for a socket
581 * existing in our system, if it is matched to a socket,
582 * it is just duplicate segment or bug in other side's TCP.
583 * So that we build reply only basing on parameters
584 * arrived with segment.
585 * Exception: precedence violation. We do not implement it in any case.
586 */
587
588static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
589{
590 const struct tcphdr *th = tcp_hdr(skb);
591 struct {
592 struct tcphdr th;
593#ifdef CONFIG_TCP_MD5SIG
594 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
595#endif
596 } rep;
597 struct ip_reply_arg arg;
598#ifdef CONFIG_TCP_MD5SIG
599 struct tcp_md5sig_key *key;
600 const __u8 *hash_location = NULL;
601 unsigned char newhash[16];
602 int genhash;
603 struct sock *sk1 = NULL;
604#endif
605 struct net *net;
606
607 /* Never send a reset in response to a reset. */
608 if (th->rst)
609 return;
610
611 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612 return;
613
614 /* Swap the send and the receive. */
615 memset(&rep, 0, sizeof(rep));
616 rep.th.dest = th->source;
617 rep.th.source = th->dest;
618 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.rst = 1;
620
621 if (th->ack) {
622 rep.th.seq = th->ack_seq;
623 } else {
624 rep.th.ack = 1;
625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626 skb->len - (th->doff << 2));
627 }
628
629 memset(&arg, 0, sizeof(arg));
630 arg.iov[0].iov_base = (unsigned char *)&rep;
631 arg.iov[0].iov_len = sizeof(rep.th);
632
633#ifdef CONFIG_TCP_MD5SIG
634 hash_location = tcp_parse_md5sig_option(th);
635 if (!sk && hash_location) {
636 /*
637 * active side is lost. Try to find listening socket through
638 * source port, and then find md5 key through listening socket.
639 * we are not loose security here:
640 * Incoming packet is checked with md5 hash with finding key,
641 * no RST generated if md5 hash doesn't match.
642 */
643 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
644 &tcp_hashinfo, ip_hdr(skb)->saddr,
645 th->source, ip_hdr(skb)->daddr,
646 ntohs(th->source), inet_iif(skb));
647 /* don't send rst if it can't find key */
648 if (!sk1)
649 return;
650 rcu_read_lock();
651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
652 &ip_hdr(skb)->saddr, AF_INET);
653 if (!key)
654 goto release_sk1;
655
656 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
657 if (genhash || memcmp(hash_location, newhash, 16) != 0)
658 goto release_sk1;
659 } else {
660 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr,
662 AF_INET) : NULL;
663 }
664
665 if (key) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
667 (TCPOPT_NOP << 16) |
668 (TCPOPT_MD5SIG << 8) |
669 TCPOLEN_MD5SIG);
670 /* Update length and the length the header thinks exists */
671 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
672 rep.th.doff = arg.iov[0].iov_len / 4;
673
674 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
675 key, ip_hdr(skb)->saddr,
676 ip_hdr(skb)->daddr, &rep.th);
677 }
678#endif
679 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
680 ip_hdr(skb)->saddr, /* XXX */
681 arg.iov[0].iov_len, IPPROTO_TCP, 0);
682 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
683 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
687 */
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
690
691 net = dev_net(skb_dst(skb)->dev);
692 arg.tos = ip_hdr(skb)->tos;
693 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
694 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
695
696 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
697 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
698
699#ifdef CONFIG_TCP_MD5SIG
700release_sk1:
701 if (sk1) {
702 rcu_read_unlock();
703 sock_put(sk1);
704 }
705#endif
706}
707
708/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
709 outside socket context is ugly, certainly. What can I do?
710 */
711
712static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
713 u32 win, u32 tsval, u32 tsecr, int oif,
714 struct tcp_md5sig_key *key,
715 int reply_flags, u8 tos)
716{
717 const struct tcphdr *th = tcp_hdr(skb);
718 struct {
719 struct tcphdr th;
720 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
721#ifdef CONFIG_TCP_MD5SIG
722 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
723#endif
724 ];
725 } rep;
726 struct ip_reply_arg arg;
727 struct net *net = dev_net(skb_dst(skb)->dev);
728
729 memset(&rep.th, 0, sizeof(struct tcphdr));
730 memset(&arg, 0, sizeof(arg));
731
732 arg.iov[0].iov_base = (unsigned char *)&rep;
733 arg.iov[0].iov_len = sizeof(rep.th);
734 if (tsecr) {
735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
736 (TCPOPT_TIMESTAMP << 8) |
737 TCPOLEN_TIMESTAMP);
738 rep.opt[1] = htonl(tsval);
739 rep.opt[2] = htonl(tsecr);
740 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
741 }
742
743 /* Swap the send and the receive. */
744 rep.th.dest = th->source;
745 rep.th.source = th->dest;
746 rep.th.doff = arg.iov[0].iov_len / 4;
747 rep.th.seq = htonl(seq);
748 rep.th.ack_seq = htonl(ack);
749 rep.th.ack = 1;
750 rep.th.window = htons(win);
751
752#ifdef CONFIG_TCP_MD5SIG
753 if (key) {
754 int offset = (tsecr) ? 3 : 0;
755
756 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
757 (TCPOPT_NOP << 16) |
758 (TCPOPT_MD5SIG << 8) |
759 TCPOLEN_MD5SIG);
760 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
761 rep.th.doff = arg.iov[0].iov_len/4;
762
763 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
764 key, ip_hdr(skb)->saddr,
765 ip_hdr(skb)->daddr, &rep.th);
766 }
767#endif
768 arg.flags = reply_flags;
769 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
770 ip_hdr(skb)->saddr, /* XXX */
771 arg.iov[0].iov_len, IPPROTO_TCP, 0);
772 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
773 if (oif)
774 arg.bound_dev_if = oif;
775 arg.tos = tos;
776 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
777 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
778
779 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
780}
781
782static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
783{
784 struct inet_timewait_sock *tw = inet_twsk(sk);
785 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
786
787 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
788 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
789 tcp_time_stamp + tcptw->tw_ts_offset,
790 tcptw->tw_ts_recent,
791 tw->tw_bound_dev_if,
792 tcp_twsk_md5_key(tcptw),
793 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
794 tw->tw_tos
795 );
796
797 inet_twsk_put(tw);
798}
799
800static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
801 struct request_sock *req)
802{
803 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
804 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
805 */
806 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
807 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
808 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
809 tcp_time_stamp,
810 req->ts_recent,
811 0,
812 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
813 AF_INET),
814 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
815 ip_hdr(skb)->tos);
816}
817
818/*
819 * Send a SYN-ACK after having received a SYN.
820 * This still operates on a request_sock only, not on a big
821 * socket.
822 */
823static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
824 struct request_sock *req,
825 u16 queue_mapping)
826{
827 const struct inet_request_sock *ireq = inet_rsk(req);
828 struct flowi4 fl4;
829 int err = -1;
830 struct sk_buff *skb;
831
832 /* First, grab a route. */
833 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834 return -1;
835
836 skb = tcp_make_synack(sk, dst, req, NULL);
837
838 if (skb) {
839 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
840
841 skb_set_queue_mapping(skb, queue_mapping);
842 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
843 ireq->ir_rmt_addr,
844 ireq->opt);
845 err = net_xmit_eval(err);
846 if (!tcp_rsk(req)->snt_synack && !err)
847 tcp_rsk(req)->snt_synack = tcp_time_stamp;
848 }
849
850 return err;
851}
852
853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854{
855 int res = tcp_v4_send_synack(sk, NULL, req, 0);
856
857 if (!res) {
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
860 }
861 return res;
862}
863
864/*
865 * IPv4 request_sock destructor.
866 */
867static void tcp_v4_reqsk_destructor(struct request_sock *req)
868{
869 kfree(inet_rsk(req)->opt);
870}
871
872/*
873 * Return true if a syncookie should be sent
874 */
875bool tcp_syn_flood_action(struct sock *sk,
876 const struct sk_buff *skb,
877 const char *proto)
878{
879 const char *msg = "Dropping request";
880 bool want_cookie = false;
881 struct listen_sock *lopt;
882
883#ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889#endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899}
900EXPORT_SYMBOL(tcp_syn_flood_action);
901
902/*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906{
907 const struct ip_options *opt = &(IPCB(skb)->opt);
908 struct ip_options_rcu *dopt = NULL;
909
910 if (opt && opt->optlen) {
911 int opt_size = sizeof(*dopt) + opt->optlen;
912
913 dopt = kmalloc(opt_size, GFP_ATOMIC);
914 if (dopt) {
915 if (ip_options_echo(&dopt->opt, skb)) {
916 kfree(dopt);
917 dopt = NULL;
918 }
919 }
920 }
921 return dopt;
922}
923
924#ifdef CONFIG_TCP_MD5SIG
925/*
926 * RFC2385 MD5 checksumming requires a mapping of
927 * IP address->MD5 Key.
928 * We need to maintain these in the sk structure.
929 */
930
931/* Find the Key structure for an address. */
932struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933 const union tcp_md5_addr *addr,
934 int family)
935{
936 struct tcp_sock *tp = tcp_sk(sk);
937 struct tcp_md5sig_key *key;
938 unsigned int size = sizeof(struct in_addr);
939 struct tcp_md5sig_info *md5sig;
940
941 /* caller either holds rcu_read_lock() or socket lock */
942 md5sig = rcu_dereference_check(tp->md5sig_info,
943 sock_owned_by_user(sk) ||
944 lockdep_is_held(&sk->sk_lock.slock));
945 if (!md5sig)
946 return NULL;
947#if IS_ENABLED(CONFIG_IPV6)
948 if (family == AF_INET6)
949 size = sizeof(struct in6_addr);
950#endif
951 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952 if (key->family != family)
953 continue;
954 if (!memcmp(&key->addr, addr, size))
955 return key;
956 }
957 return NULL;
958}
959EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962 struct sock *addr_sk)
963{
964 union tcp_md5_addr *addr;
965
966 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967 return tcp_md5_do_lookup(sk, addr, AF_INET);
968}
969EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972 struct request_sock *req)
973{
974 union tcp_md5_addr *addr;
975
976 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
977 return tcp_md5_do_lookup(sk, addr, AF_INET);
978}
979
980/* This can be called on a newly created socket, from other files */
981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983{
984 /* Add Key to the list */
985 struct tcp_md5sig_key *key;
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *md5sig;
988
989 key = tcp_md5_do_lookup(sk, addr, family);
990 if (key) {
991 /* Pre-existing entry - just update that one. */
992 memcpy(key->key, newkey, newkeylen);
993 key->keylen = newkeylen;
994 return 0;
995 }
996
997 md5sig = rcu_dereference_protected(tp->md5sig_info,
998 sock_owned_by_user(sk));
999 if (!md5sig) {
1000 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001 if (!md5sig)
1002 return -ENOMEM;
1003
1004 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005 INIT_HLIST_HEAD(&md5sig->head);
1006 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007 }
1008
1009 key = sock_kmalloc(sk, sizeof(*key), gfp);
1010 if (!key)
1011 return -ENOMEM;
1012 if (!tcp_alloc_md5sig_pool()) {
1013 sock_kfree_s(sk, key, sizeof(*key));
1014 return -ENOMEM;
1015 }
1016
1017 memcpy(key->key, newkey, newkeylen);
1018 key->keylen = newkeylen;
1019 key->family = family;
1020 memcpy(&key->addr, addr,
1021 (family == AF_INET6) ? sizeof(struct in6_addr) :
1022 sizeof(struct in_addr));
1023 hlist_add_head_rcu(&key->node, &md5sig->head);
1024 return 0;
1025}
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029{
1030 struct tcp_md5sig_key *key;
1031
1032 key = tcp_md5_do_lookup(sk, addr, family);
1033 if (!key)
1034 return -ENOENT;
1035 hlist_del_rcu(&key->node);
1036 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037 kfree_rcu(key, rcu);
1038 return 0;
1039}
1040EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042static void tcp_clear_md5_list(struct sock *sk)
1043{
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 struct tcp_md5sig_key *key;
1046 struct hlist_node *n;
1047 struct tcp_md5sig_info *md5sig;
1048
1049 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052 hlist_del_rcu(&key->node);
1053 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054 kfree_rcu(key, rcu);
1055 }
1056}
1057
1058static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059 int optlen)
1060{
1061 struct tcp_md5sig cmd;
1062 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064 if (optlen < sizeof(cmd))
1065 return -EINVAL;
1066
1067 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068 return -EFAULT;
1069
1070 if (sin->sin_family != AF_INET)
1071 return -EINVAL;
1072
1073 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075 AF_INET);
1076
1077 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078 return -EINVAL;
1079
1080 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082 GFP_KERNEL);
1083}
1084
1085static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086 __be32 daddr, __be32 saddr, int nbytes)
1087{
1088 struct tcp4_pseudohdr *bp;
1089 struct scatterlist sg;
1090
1091 bp = &hp->md5_blk.ip4;
1092
1093 /*
1094 * 1. the TCP pseudo-header (in the order: source IP address,
1095 * destination IP address, zero-padded protocol number, and
1096 * segment length)
1097 */
1098 bp->saddr = saddr;
1099 bp->daddr = daddr;
1100 bp->pad = 0;
1101 bp->protocol = IPPROTO_TCP;
1102 bp->len = cpu_to_be16(nbytes);
1103
1104 sg_init_one(&sg, bp, sizeof(*bp));
1105 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106}
1107
1108static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110{
1111 struct tcp_md5sig_pool *hp;
1112 struct hash_desc *desc;
1113
1114 hp = tcp_get_md5sig_pool();
1115 if (!hp)
1116 goto clear_hash_noput;
1117 desc = &hp->md5_desc;
1118
1119 if (crypto_hash_init(desc))
1120 goto clear_hash;
1121 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122 goto clear_hash;
1123 if (tcp_md5_hash_header(hp, th))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1129
1130 tcp_put_md5sig_pool();
1131 return 0;
1132
1133clear_hash:
1134 tcp_put_md5sig_pool();
1135clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1138}
1139
1140int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141 const struct sock *sk, const struct request_sock *req,
1142 const struct sk_buff *skb)
1143{
1144 struct tcp_md5sig_pool *hp;
1145 struct hash_desc *desc;
1146 const struct tcphdr *th = tcp_hdr(skb);
1147 __be32 saddr, daddr;
1148
1149 if (sk) {
1150 saddr = inet_sk(sk)->inet_saddr;
1151 daddr = inet_sk(sk)->inet_daddr;
1152 } else if (req) {
1153 saddr = inet_rsk(req)->ir_loc_addr;
1154 daddr = inet_rsk(req)->ir_rmt_addr;
1155 } else {
1156 const struct iphdr *iph = ip_hdr(skb);
1157 saddr = iph->saddr;
1158 daddr = iph->daddr;
1159 }
1160
1161 hp = tcp_get_md5sig_pool();
1162 if (!hp)
1163 goto clear_hash_noput;
1164 desc = &hp->md5_desc;
1165
1166 if (crypto_hash_init(desc))
1167 goto clear_hash;
1168
1169 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170 goto clear_hash;
1171 if (tcp_md5_hash_header(hp, th))
1172 goto clear_hash;
1173 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174 goto clear_hash;
1175 if (tcp_md5_hash_key(hp, key))
1176 goto clear_hash;
1177 if (crypto_hash_final(desc, md5_hash))
1178 goto clear_hash;
1179
1180 tcp_put_md5sig_pool();
1181 return 0;
1182
1183clear_hash:
1184 tcp_put_md5sig_pool();
1185clear_hash_noput:
1186 memset(md5_hash, 0, 16);
1187 return 1;
1188}
1189EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192{
1193 /*
1194 * This gets called for each TCP segment that arrives
1195 * so we want to be efficient.
1196 * We have 3 drop cases:
1197 * o No MD5 hash and one expected.
1198 * o MD5 hash and we're not expecting one.
1199 * o MD5 hash and its wrong.
1200 */
1201 const __u8 *hash_location = NULL;
1202 struct tcp_md5sig_key *hash_expected;
1203 const struct iphdr *iph = ip_hdr(skb);
1204 const struct tcphdr *th = tcp_hdr(skb);
1205 int genhash;
1206 unsigned char newhash[16];
1207
1208 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209 AF_INET);
1210 hash_location = tcp_parse_md5sig_option(th);
1211
1212 /* We've parsed the options - do we have a hash? */
1213 if (!hash_expected && !hash_location)
1214 return false;
1215
1216 if (hash_expected && !hash_location) {
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218 return true;
1219 }
1220
1221 if (!hash_expected && hash_location) {
1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223 return true;
1224 }
1225
1226 /* Okay, so this is hash_expected and hash_location -
1227 * so we need to calculate the checksum.
1228 */
1229 genhash = tcp_v4_md5_hash_skb(newhash,
1230 hash_expected,
1231 NULL, NULL, skb);
1232
1233 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235 &iph->saddr, ntohs(th->source),
1236 &iph->daddr, ntohs(th->dest),
1237 genhash ? " tcp_v4_calc_md5_hash failed"
1238 : "");
1239 return true;
1240 }
1241 return false;
1242}
1243
1244#endif
1245
1246struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247 .family = PF_INET,
1248 .obj_size = sizeof(struct tcp_request_sock),
1249 .rtx_syn_ack = tcp_v4_rtx_synack,
1250 .send_ack = tcp_v4_reqsk_send_ack,
1251 .destructor = tcp_v4_reqsk_destructor,
1252 .send_reset = tcp_v4_send_reset,
1253 .syn_ack_timeout = tcp_syn_ack_timeout,
1254};
1255
1256#ifdef CONFIG_TCP_MD5SIG
1257static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1259 .calc_md5_hash = tcp_v4_md5_hash_skb,
1260};
1261#endif
1262
1263static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264 struct request_sock *req,
1265 struct tcp_fastopen_cookie *foc,
1266 struct tcp_fastopen_cookie *valid_foc)
1267{
1268 bool skip_cookie = false;
1269 struct fastopen_queue *fastopenq;
1270
1271 if (likely(!fastopen_cookie_present(foc))) {
1272 /* See include/net/tcp.h for the meaning of these knobs */
1273 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276 skip_cookie = true; /* no cookie to validate */
1277 else
1278 return false;
1279 }
1280 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281 /* A FO option is present; bump the counter. */
1282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284 /* Make sure the listener has enabled fastopen, and we don't
1285 * exceed the max # of pending TFO requests allowed before trying
1286 * to validating the cookie in order to avoid burning CPU cycles
1287 * unnecessarily.
1288 *
1289 * XXX (TFO) - The implication of checking the max_qlen before
1290 * processing a cookie request is that clients can't differentiate
1291 * between qlen overflow causing Fast Open to be disabled
1292 * temporarily vs a server not supporting Fast Open at all.
1293 */
1294 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295 fastopenq == NULL || fastopenq->max_qlen == 0)
1296 return false;
1297
1298 if (fastopenq->qlen >= fastopenq->max_qlen) {
1299 struct request_sock *req1;
1300 spin_lock(&fastopenq->lock);
1301 req1 = fastopenq->rskq_rst_head;
1302 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303 spin_unlock(&fastopenq->lock);
1304 NET_INC_STATS_BH(sock_net(sk),
1305 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307 foc->len = -1;
1308 return false;
1309 }
1310 fastopenq->rskq_rst_head = req1->dl_next;
1311 fastopenq->qlen--;
1312 spin_unlock(&fastopenq->lock);
1313 reqsk_free(req1);
1314 }
1315 if (skip_cookie) {
1316 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317 return true;
1318 }
1319
1320 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1321 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1322 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1323 ip_hdr(skb)->daddr, valid_foc);
1324 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1325 memcmp(&foc->val[0], &valid_foc->val[0],
1326 TCP_FASTOPEN_COOKIE_SIZE) != 0)
1327 return false;
1328 valid_foc->len = -1;
1329 }
1330 /* Acknowledge the data received from the peer. */
1331 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1332 return true;
1333 } else if (foc->len == 0) { /* Client requesting a cookie */
1334 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1335 ip_hdr(skb)->daddr, valid_foc);
1336 NET_INC_STATS_BH(sock_net(sk),
1337 LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1338 } else {
1339 /* Client sent a cookie with wrong size. Treat it
1340 * the same as invalid and return a valid one.
1341 */
1342 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr,
1343 ip_hdr(skb)->daddr, valid_foc);
1344 }
1345 return false;
1346}
1347
1348static int tcp_v4_conn_req_fastopen(struct sock *sk,
1349 struct sk_buff *skb,
1350 struct sk_buff *skb_synack,
1351 struct request_sock *req)
1352{
1353 struct tcp_sock *tp = tcp_sk(sk);
1354 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1355 const struct inet_request_sock *ireq = inet_rsk(req);
1356 struct sock *child;
1357 int err;
1358
1359 req->num_retrans = 0;
1360 req->num_timeout = 0;
1361 req->sk = NULL;
1362
1363 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1364 if (child == NULL) {
1365 NET_INC_STATS_BH(sock_net(sk),
1366 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1367 kfree_skb(skb_synack);
1368 return -1;
1369 }
1370 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1371 ireq->ir_rmt_addr, ireq->opt);
1372 err = net_xmit_eval(err);
1373 if (!err)
1374 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1375 /* XXX (TFO) - is it ok to ignore error and continue? */
1376
1377 spin_lock(&queue->fastopenq->lock);
1378 queue->fastopenq->qlen++;
1379 spin_unlock(&queue->fastopenq->lock);
1380
1381 /* Initialize the child socket. Have to fix some values to take
1382 * into account the child is a Fast Open socket and is created
1383 * only out of the bits carried in the SYN packet.
1384 */
1385 tp = tcp_sk(child);
1386
1387 tp->fastopen_rsk = req;
1388 /* Do a hold on the listner sk so that if the listener is being
1389 * closed, the child that has been accepted can live on and still
1390 * access listen_lock.
1391 */
1392 sock_hold(sk);
1393 tcp_rsk(req)->listener = sk;
1394
1395 /* RFC1323: The window in SYN & SYN/ACK segments is never
1396 * scaled. So correct it appropriately.
1397 */
1398 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1399
1400 /* Activate the retrans timer so that SYNACK can be retransmitted.
1401 * The request socket is not added to the SYN table of the parent
1402 * because it's been added to the accept queue directly.
1403 */
1404 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1405 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1406
1407 /* Add the child socket directly into the accept queue */
1408 inet_csk_reqsk_queue_add(sk, req, child);
1409
1410 /* Now finish processing the fastopen child socket. */
1411 inet_csk(child)->icsk_af_ops->rebuild_header(child);
1412 tcp_init_congestion_control(child);
1413 tcp_mtup_init(child);
1414 tcp_init_metrics(child);
1415 tcp_init_buffer_space(child);
1416
1417 /* Queue the data carried in the SYN packet. We need to first
1418 * bump skb's refcnt because the caller will attempt to free it.
1419 *
1420 * XXX (TFO) - we honor a zero-payload TFO request for now.
1421 * (Any reason not to?)
1422 */
1423 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1424 /* Don't queue the skb if there is no payload in SYN.
1425 * XXX (TFO) - How about SYN+FIN?
1426 */
1427 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1428 } else {
1429 skb = skb_get(skb);
1430 skb_dst_drop(skb);
1431 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1432 skb_set_owner_r(skb, child);
1433 __skb_queue_tail(&child->sk_receive_queue, skb);
1434 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1435 tp->syn_data_acked = 1;
1436 }
1437 sk->sk_data_ready(sk);
1438 bh_unlock_sock(child);
1439 sock_put(child);
1440 WARN_ON(req->sk == NULL);
1441 return 0;
1442}
1443
1444int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1445{
1446 struct tcp_options_received tmp_opt;
1447 struct request_sock *req;
1448 struct inet_request_sock *ireq;
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 struct dst_entry *dst = NULL;
1451 __be32 saddr = ip_hdr(skb)->saddr;
1452 __be32 daddr = ip_hdr(skb)->daddr;
1453 __u32 isn = TCP_SKB_CB(skb)->when;
1454 bool want_cookie = false;
1455 struct flowi4 fl4;
1456 struct tcp_fastopen_cookie foc = { .len = -1 };
1457 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1458 struct sk_buff *skb_synack;
1459 int do_fastopen;
1460
1461 /* Never answer to SYNs send to broadcast or multicast */
1462 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1463 goto drop;
1464
1465 /* TW buckets are converted to open requests without
1466 * limitations, they conserve resources and peer is
1467 * evidently real one.
1468 */
1469 if ((sysctl_tcp_syncookies == 2 ||
1470 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1471 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1472 if (!want_cookie)
1473 goto drop;
1474 }
1475
1476 /* Accept backlog is full. If we have already queued enough
1477 * of warm entries in syn queue, drop request. It is better than
1478 * clogging syn queue with openreqs with exponentially increasing
1479 * timeout.
1480 */
1481 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1483 goto drop;
1484 }
1485
1486 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1487 if (!req)
1488 goto drop;
1489
1490#ifdef CONFIG_TCP_MD5SIG
1491 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1492#endif
1493
1494 tcp_clear_options(&tmp_opt);
1495 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1496 tmp_opt.user_mss = tp->rx_opt.user_mss;
1497 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1498
1499 if (want_cookie && !tmp_opt.saw_tstamp)
1500 tcp_clear_options(&tmp_opt);
1501
1502 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1503 tcp_openreq_init(req, &tmp_opt, skb);
1504
1505 ireq = inet_rsk(req);
1506 ireq->ir_loc_addr = daddr;
1507 ireq->ir_rmt_addr = saddr;
1508 ireq->no_srccheck = inet_sk(sk)->transparent;
1509 ireq->opt = tcp_v4_save_options(skb);
1510
1511 if (security_inet_conn_request(sk, skb, req))
1512 goto drop_and_free;
1513
1514 if (!want_cookie || tmp_opt.tstamp_ok)
1515 TCP_ECN_create_request(req, skb, sock_net(sk));
1516
1517 if (want_cookie) {
1518 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1519 req->cookie_ts = tmp_opt.tstamp_ok;
1520 } else if (!isn) {
1521 /* VJ's idea. We save last timestamp seen
1522 * from the destination in peer table, when entering
1523 * state TIME-WAIT, and check against it before
1524 * accepting new connection request.
1525 *
1526 * If "isn" is not zero, this request hit alive
1527 * timewait bucket, so that all the necessary checks
1528 * are made in the function processing timewait state.
1529 */
1530 if (tmp_opt.saw_tstamp &&
1531 tcp_death_row.sysctl_tw_recycle &&
1532 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1533 fl4.daddr == saddr) {
1534 if (!tcp_peer_is_proven(req, dst, true)) {
1535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1536 goto drop_and_release;
1537 }
1538 }
1539 /* Kill the following clause, if you dislike this way. */
1540 else if (!sysctl_tcp_syncookies &&
1541 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1542 (sysctl_max_syn_backlog >> 2)) &&
1543 !tcp_peer_is_proven(req, dst, false)) {
1544 /* Without syncookies last quarter of
1545 * backlog is filled with destinations,
1546 * proven to be alive.
1547 * It means that we continue to communicate
1548 * to destinations, already remembered
1549 * to the moment of synflood.
1550 */
1551 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1552 &saddr, ntohs(tcp_hdr(skb)->source));
1553 goto drop_and_release;
1554 }
1555
1556 isn = tcp_v4_init_sequence(skb);
1557 }
1558 tcp_rsk(req)->snt_isn = isn;
1559
1560 if (dst == NULL) {
1561 dst = inet_csk_route_req(sk, &fl4, req);
1562 if (dst == NULL)
1563 goto drop_and_free;
1564 }
1565 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1566
1567 /* We don't call tcp_v4_send_synack() directly because we need
1568 * to make sure a child socket can be created successfully before
1569 * sending back synack!
1570 *
1571 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1572 * (or better yet, call tcp_send_synack() in the child context
1573 * directly, but will have to fix bunch of other code first)
1574 * after syn_recv_sock() except one will need to first fix the
1575 * latter to remove its dependency on the current implementation
1576 * of tcp_v4_send_synack()->tcp_select_initial_window().
1577 */
1578 skb_synack = tcp_make_synack(sk, dst, req,
1579 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1580
1581 if (skb_synack) {
1582 __tcp_v4_send_check(skb_synack, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1583 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1584 } else
1585 goto drop_and_free;
1586
1587 if (likely(!do_fastopen)) {
1588 int err;
1589 err = ip_build_and_send_pkt(skb_synack, sk, ireq->ir_loc_addr,
1590 ireq->ir_rmt_addr, ireq->opt);
1591 err = net_xmit_eval(err);
1592 if (err || want_cookie)
1593 goto drop_and_free;
1594
1595 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1596 tcp_rsk(req)->listener = NULL;
1597 /* Add the request_sock to the SYN table */
1598 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1599 if (fastopen_cookie_present(&foc) && foc.len != 0)
1600 NET_INC_STATS_BH(sock_net(sk),
1601 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1602 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1603 goto drop_and_free;
1604
1605 return 0;
1606
1607drop_and_release:
1608 dst_release(dst);
1609drop_and_free:
1610 reqsk_free(req);
1611drop:
1612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1613 return 0;
1614}
1615EXPORT_SYMBOL(tcp_v4_conn_request);
1616
1617
1618/*
1619 * The three way handshake has completed - we got a valid synack -
1620 * now create the new socket.
1621 */
1622struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1623 struct request_sock *req,
1624 struct dst_entry *dst)
1625{
1626 struct inet_request_sock *ireq;
1627 struct inet_sock *newinet;
1628 struct tcp_sock *newtp;
1629 struct sock *newsk;
1630#ifdef CONFIG_TCP_MD5SIG
1631 struct tcp_md5sig_key *key;
1632#endif
1633 struct ip_options_rcu *inet_opt;
1634
1635 if (sk_acceptq_is_full(sk))
1636 goto exit_overflow;
1637
1638 newsk = tcp_create_openreq_child(sk, req, skb);
1639 if (!newsk)
1640 goto exit_nonewsk;
1641
1642 newsk->sk_gso_type = SKB_GSO_TCPV4;
1643 inet_sk_rx_dst_set(newsk, skb);
1644
1645 newtp = tcp_sk(newsk);
1646 newinet = inet_sk(newsk);
1647 ireq = inet_rsk(req);
1648 newinet->inet_daddr = ireq->ir_rmt_addr;
1649 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1650 newinet->inet_saddr = ireq->ir_loc_addr;
1651 inet_opt = ireq->opt;
1652 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1653 ireq->opt = NULL;
1654 newinet->mc_index = inet_iif(skb);
1655 newinet->mc_ttl = ip_hdr(skb)->ttl;
1656 newinet->rcv_tos = ip_hdr(skb)->tos;
1657 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1658 if (inet_opt)
1659 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1660 newinet->inet_id = newtp->write_seq ^ jiffies;
1661
1662 if (!dst) {
1663 dst = inet_csk_route_child_sock(sk, newsk, req);
1664 if (!dst)
1665 goto put_and_exit;
1666 } else {
1667 /* syncookie case : see end of cookie_v4_check() */
1668 }
1669 sk_setup_caps(newsk, dst);
1670
1671 tcp_sync_mss(newsk, dst_mtu(dst));
1672 newtp->advmss = dst_metric_advmss(dst);
1673 if (tcp_sk(sk)->rx_opt.user_mss &&
1674 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1675 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1676
1677 tcp_initialize_rcv_mss(newsk);
1678
1679#ifdef CONFIG_TCP_MD5SIG
1680 /* Copy over the MD5 key from the original socket */
1681 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1682 AF_INET);
1683 if (key != NULL) {
1684 /*
1685 * We're using one, so create a matching key
1686 * on the newsk structure. If we fail to get
1687 * memory, then we end up not copying the key
1688 * across. Shucks.
1689 */
1690 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1691 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1692 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1693 }
1694#endif
1695
1696 if (__inet_inherit_port(sk, newsk) < 0)
1697 goto put_and_exit;
1698 __inet_hash_nolisten(newsk, NULL);
1699
1700 return newsk;
1701
1702exit_overflow:
1703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1704exit_nonewsk:
1705 dst_release(dst);
1706exit:
1707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1708 return NULL;
1709put_and_exit:
1710 inet_csk_prepare_forced_close(newsk);
1711 tcp_done(newsk);
1712 goto exit;
1713}
1714EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1715
1716static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1717{
1718 struct tcphdr *th = tcp_hdr(skb);
1719 const struct iphdr *iph = ip_hdr(skb);
1720 struct sock *nsk;
1721 struct request_sock **prev;
1722 /* Find possible connection requests. */
1723 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1724 iph->saddr, iph->daddr);
1725 if (req)
1726 return tcp_check_req(sk, skb, req, prev, false);
1727
1728 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1729 th->source, iph->daddr, th->dest, inet_iif(skb));
1730
1731 if (nsk) {
1732 if (nsk->sk_state != TCP_TIME_WAIT) {
1733 bh_lock_sock(nsk);
1734 return nsk;
1735 }
1736 inet_twsk_put(inet_twsk(nsk));
1737 return NULL;
1738 }
1739
1740#ifdef CONFIG_SYN_COOKIES
1741 if (!th->syn)
1742 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1743#endif
1744 return sk;
1745}
1746
1747static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1748{
1749 const struct iphdr *iph = ip_hdr(skb);
1750
1751 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1752 if (!tcp_v4_check(skb->len, iph->saddr,
1753 iph->daddr, skb->csum)) {
1754 skb->ip_summed = CHECKSUM_UNNECESSARY;
1755 return 0;
1756 }
1757 }
1758
1759 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1760 skb->len, IPPROTO_TCP, 0);
1761
1762 if (skb->len <= 76) {
1763 return __skb_checksum_complete(skb);
1764 }
1765 return 0;
1766}
1767
1768
1769/* The socket must have it's spinlock held when we get
1770 * here.
1771 *
1772 * We have a potential double-lock case here, so even when
1773 * doing backlog processing we use the BH locking scheme.
1774 * This is because we cannot sleep with the original spinlock
1775 * held.
1776 */
1777int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1778{
1779 struct sock *rsk;
1780#ifdef CONFIG_TCP_MD5SIG
1781 /*
1782 * We really want to reject the packet as early as possible
1783 * if:
1784 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1785 * o There is an MD5 option and we're not expecting one
1786 */
1787 if (tcp_v4_inbound_md5_hash(sk, skb))
1788 goto discard;
1789#endif
1790
1791 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1792 struct dst_entry *dst = sk->sk_rx_dst;
1793
1794 sock_rps_save_rxhash(sk, skb);
1795 if (dst) {
1796 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1797 dst->ops->check(dst, 0) == NULL) {
1798 dst_release(dst);
1799 sk->sk_rx_dst = NULL;
1800 }
1801 }
1802 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1803 return 0;
1804 }
1805
1806 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807 goto csum_err;
1808
1809 if (sk->sk_state == TCP_LISTEN) {
1810 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811 if (!nsk)
1812 goto discard;
1813
1814 if (nsk != sk) {
1815 sock_rps_save_rxhash(nsk, skb);
1816 if (tcp_child_process(sk, nsk, skb)) {
1817 rsk = nsk;
1818 goto reset;
1819 }
1820 return 0;
1821 }
1822 } else
1823 sock_rps_save_rxhash(sk, skb);
1824
1825 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826 rsk = sk;
1827 goto reset;
1828 }
1829 return 0;
1830
1831reset:
1832 tcp_v4_send_reset(rsk, skb);
1833discard:
1834 kfree_skb(skb);
1835 /* Be careful here. If this function gets more complicated and
1836 * gcc suffers from register pressure on the x86, sk (in %ebx)
1837 * might be destroyed here. This current version compiles correctly,
1838 * but you have been warned.
1839 */
1840 return 0;
1841
1842csum_err:
1843 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845 goto discard;
1846}
1847EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849void tcp_v4_early_demux(struct sk_buff *skb)
1850{
1851 const struct iphdr *iph;
1852 const struct tcphdr *th;
1853 struct sock *sk;
1854
1855 if (skb->pkt_type != PACKET_HOST)
1856 return;
1857
1858 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859 return;
1860
1861 iph = ip_hdr(skb);
1862 th = tcp_hdr(skb);
1863
1864 if (th->doff < sizeof(struct tcphdr) / 4)
1865 return;
1866
1867 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868 iph->saddr, th->source,
1869 iph->daddr, ntohs(th->dest),
1870 skb->skb_iif);
1871 if (sk) {
1872 skb->sk = sk;
1873 skb->destructor = sock_edemux;
1874 if (sk->sk_state != TCP_TIME_WAIT) {
1875 struct dst_entry *dst = sk->sk_rx_dst;
1876
1877 if (dst)
1878 dst = dst_check(dst, 0);
1879 if (dst &&
1880 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881 skb_dst_set_noref(skb, dst);
1882 }
1883 }
1884}
1885
1886/* Packet is added to VJ-style prequeue for processing in process
1887 * context, if a reader task is waiting. Apparently, this exciting
1888 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889 * failed somewhere. Latency? Burstiness? Well, at least now we will
1890 * see, why it failed. 8)8) --ANK
1891 *
1892 */
1893bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894{
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898 return false;
1899
1900 if (skb->len <= tcp_hdrlen(skb) &&
1901 skb_queue_len(&tp->ucopy.prequeue) == 0)
1902 return false;
1903
1904 skb_dst_force(skb);
1905 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1906 tp->ucopy.memory += skb->truesize;
1907 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908 struct sk_buff *skb1;
1909
1910 BUG_ON(sock_owned_by_user(sk));
1911
1912 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913 sk_backlog_rcv(sk, skb1);
1914 NET_INC_STATS_BH(sock_net(sk),
1915 LINUX_MIB_TCPPREQUEUEDROPPED);
1916 }
1917
1918 tp->ucopy.memory = 0;
1919 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920 wake_up_interruptible_sync_poll(sk_sleep(sk),
1921 POLLIN | POLLRDNORM | POLLRDBAND);
1922 if (!inet_csk_ack_scheduled(sk))
1923 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924 (3 * tcp_rto_min(sk)) / 4,
1925 TCP_RTO_MAX);
1926 }
1927 return true;
1928}
1929EXPORT_SYMBOL(tcp_prequeue);
1930
1931/*
1932 * From tcp_input.c
1933 */
1934
1935int tcp_v4_rcv(struct sk_buff *skb)
1936{
1937 const struct iphdr *iph;
1938 const struct tcphdr *th;
1939 struct sock *sk;
1940 int ret;
1941 struct net *net = dev_net(skb->dev);
1942
1943 if (skb->pkt_type != PACKET_HOST)
1944 goto discard_it;
1945
1946 /* Count it even if it's bad */
1947 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950 goto discard_it;
1951
1952 th = tcp_hdr(skb);
1953
1954 if (th->doff < sizeof(struct tcphdr) / 4)
1955 goto bad_packet;
1956 if (!pskb_may_pull(skb, th->doff * 4))
1957 goto discard_it;
1958
1959 /* An explanation is required here, I think.
1960 * Packet length and doff are validated by header prediction,
1961 * provided case of th->doff==0 is eliminated.
1962 * So, we defer the checks. */
1963 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964 goto csum_error;
1965
1966 th = tcp_hdr(skb);
1967 iph = ip_hdr(skb);
1968 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970 skb->len - th->doff * 4);
1971 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972 TCP_SKB_CB(skb)->when = 0;
1973 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974 TCP_SKB_CB(skb)->sacked = 0;
1975
1976 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977 if (!sk)
1978 goto no_tcp_socket;
1979
1980process:
1981 if (sk->sk_state == TCP_TIME_WAIT)
1982 goto do_time_wait;
1983
1984 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986 goto discard_and_relse;
1987 }
1988
1989 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990 goto discard_and_relse;
1991 nf_reset(skb);
1992
1993 if (sk_filter(sk, skb))
1994 goto discard_and_relse;
1995
1996 sk_mark_napi_id(sk, skb);
1997 skb->dev = NULL;
1998
1999 bh_lock_sock_nested(sk);
2000 ret = 0;
2001 if (!sock_owned_by_user(sk)) {
2002#ifdef CONFIG_NET_DMA
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005 tp->ucopy.dma_chan = net_dma_find_channel();
2006 if (tp->ucopy.dma_chan)
2007 ret = tcp_v4_do_rcv(sk, skb);
2008 else
2009#endif
2010 {
2011 if (!tcp_prequeue(sk, skb))
2012 ret = tcp_v4_do_rcv(sk, skb);
2013 }
2014 } else if (unlikely(sk_add_backlog(sk, skb,
2015 sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016 bh_unlock_sock(sk);
2017 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018 goto discard_and_relse;
2019 }
2020 bh_unlock_sock(sk);
2021
2022 sock_put(sk);
2023
2024 return ret;
2025
2026no_tcp_socket:
2027 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028 goto discard_it;
2029
2030 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031csum_error:
2032 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033bad_packet:
2034 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035 } else {
2036 tcp_v4_send_reset(NULL, skb);
2037 }
2038
2039discard_it:
2040 /* Discard frame. */
2041 kfree_skb(skb);
2042 return 0;
2043
2044discard_and_relse:
2045 sock_put(sk);
2046 goto discard_it;
2047
2048do_time_wait:
2049 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050 inet_twsk_put(inet_twsk(sk));
2051 goto discard_it;
2052 }
2053
2054 if (skb->len < (th->doff << 2)) {
2055 inet_twsk_put(inet_twsk(sk));
2056 goto bad_packet;
2057 }
2058 if (tcp_checksum_complete(skb)) {
2059 inet_twsk_put(inet_twsk(sk));
2060 goto csum_error;
2061 }
2062 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063 case TCP_TW_SYN: {
2064 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065 &tcp_hashinfo,
2066 iph->saddr, th->source,
2067 iph->daddr, th->dest,
2068 inet_iif(skb));
2069 if (sk2) {
2070 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071 inet_twsk_put(inet_twsk(sk));
2072 sk = sk2;
2073 goto process;
2074 }
2075 /* Fall through to ACK */
2076 }
2077 case TCP_TW_ACK:
2078 tcp_v4_timewait_ack(sk, skb);
2079 break;
2080 case TCP_TW_RST:
2081 goto no_tcp_socket;
2082 case TCP_TW_SUCCESS:;
2083 }
2084 goto discard_it;
2085}
2086
2087static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
2089 .twsk_unique = tcp_twsk_unique,
2090 .twsk_destructor= tcp_twsk_destructor,
2091};
2092
2093void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094{
2095 struct dst_entry *dst = skb_dst(skb);
2096
2097 dst_hold(dst);
2098 sk->sk_rx_dst = dst;
2099 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100}
2101EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103const struct inet_connection_sock_af_ops ipv4_specific = {
2104 .queue_xmit = ip_queue_xmit,
2105 .send_check = tcp_v4_send_check,
2106 .rebuild_header = inet_sk_rebuild_header,
2107 .sk_rx_dst_set = inet_sk_rx_dst_set,
2108 .conn_request = tcp_v4_conn_request,
2109 .syn_recv_sock = tcp_v4_syn_recv_sock,
2110 .net_header_len = sizeof(struct iphdr),
2111 .setsockopt = ip_setsockopt,
2112 .getsockopt = ip_getsockopt,
2113 .addr2sockaddr = inet_csk_addr2sockaddr,
2114 .sockaddr_len = sizeof(struct sockaddr_in),
2115 .bind_conflict = inet_csk_bind_conflict,
2116#ifdef CONFIG_COMPAT
2117 .compat_setsockopt = compat_ip_setsockopt,
2118 .compat_getsockopt = compat_ip_getsockopt,
2119#endif
2120};
2121EXPORT_SYMBOL(ipv4_specific);
2122
2123#ifdef CONFIG_TCP_MD5SIG
2124static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125 .md5_lookup = tcp_v4_md5_lookup,
2126 .calc_md5_hash = tcp_v4_md5_hash_skb,
2127 .md5_parse = tcp_v4_parse_md5_keys,
2128};
2129#endif
2130
2131/* NOTE: A lot of things set to zero explicitly by call to
2132 * sk_alloc() so need not be done here.
2133 */
2134static int tcp_v4_init_sock(struct sock *sk)
2135{
2136 struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138 tcp_init_sock(sk);
2139
2140 icsk->icsk_af_ops = &ipv4_specific;
2141
2142#ifdef CONFIG_TCP_MD5SIG
2143 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144#endif
2145
2146 return 0;
2147}
2148
2149void tcp_v4_destroy_sock(struct sock *sk)
2150{
2151 struct tcp_sock *tp = tcp_sk(sk);
2152
2153 tcp_clear_xmit_timers(sk);
2154
2155 tcp_cleanup_congestion_control(sk);
2156
2157 /* Cleanup up the write buffer. */
2158 tcp_write_queue_purge(sk);
2159
2160 /* Cleans up our, hopefully empty, out_of_order_queue. */
2161 __skb_queue_purge(&tp->out_of_order_queue);
2162
2163#ifdef CONFIG_TCP_MD5SIG
2164 /* Clean up the MD5 key list, if any */
2165 if (tp->md5sig_info) {
2166 tcp_clear_md5_list(sk);
2167 kfree_rcu(tp->md5sig_info, rcu);
2168 tp->md5sig_info = NULL;
2169 }
2170#endif
2171
2172#ifdef CONFIG_NET_DMA
2173 /* Cleans up our sk_async_wait_queue */
2174 __skb_queue_purge(&sk->sk_async_wait_queue);
2175#endif
2176
2177 /* Clean prequeue, it must be empty really */
2178 __skb_queue_purge(&tp->ucopy.prequeue);
2179
2180 /* Clean up a referenced TCP bind bucket. */
2181 if (inet_csk(sk)->icsk_bind_hash)
2182 inet_put_port(sk);
2183
2184 BUG_ON(tp->fastopen_rsk != NULL);
2185
2186 /* If socket is aborted during connect operation */
2187 tcp_free_fastopen_req(tp);
2188
2189 sk_sockets_allocated_dec(sk);
2190 sock_release_memcg(sk);
2191}
2192EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194#ifdef CONFIG_PROC_FS
2195/* Proc filesystem TCP sock list dumping. */
2196
2197/*
2198 * Get next listener socket follow cur. If cur is NULL, get first socket
2199 * starting from bucket given in st->bucket; when st->bucket is zero the
2200 * very first socket in the hash table is returned.
2201 */
2202static void *listening_get_next(struct seq_file *seq, void *cur)
2203{
2204 struct inet_connection_sock *icsk;
2205 struct hlist_nulls_node *node;
2206 struct sock *sk = cur;
2207 struct inet_listen_hashbucket *ilb;
2208 struct tcp_iter_state *st = seq->private;
2209 struct net *net = seq_file_net(seq);
2210
2211 if (!sk) {
2212 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2213 spin_lock_bh(&ilb->lock);
2214 sk = sk_nulls_head(&ilb->head);
2215 st->offset = 0;
2216 goto get_sk;
2217 }
2218 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2219 ++st->num;
2220 ++st->offset;
2221
2222 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2223 struct request_sock *req = cur;
2224
2225 icsk = inet_csk(st->syn_wait_sk);
2226 req = req->dl_next;
2227 while (1) {
2228 while (req) {
2229 if (req->rsk_ops->family == st->family) {
2230 cur = req;
2231 goto out;
2232 }
2233 req = req->dl_next;
2234 }
2235 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2236 break;
2237get_req:
2238 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2239 }
2240 sk = sk_nulls_next(st->syn_wait_sk);
2241 st->state = TCP_SEQ_STATE_LISTENING;
2242 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2243 } else {
2244 icsk = inet_csk(sk);
2245 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2246 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2247 goto start_req;
2248 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2249 sk = sk_nulls_next(sk);
2250 }
2251get_sk:
2252 sk_nulls_for_each_from(sk, node) {
2253 if (!net_eq(sock_net(sk), net))
2254 continue;
2255 if (sk->sk_family == st->family) {
2256 cur = sk;
2257 goto out;
2258 }
2259 icsk = inet_csk(sk);
2260 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2262start_req:
2263 st->uid = sock_i_uid(sk);
2264 st->syn_wait_sk = sk;
2265 st->state = TCP_SEQ_STATE_OPENREQ;
2266 st->sbucket = 0;
2267 goto get_req;
2268 }
2269 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2270 }
2271 spin_unlock_bh(&ilb->lock);
2272 st->offset = 0;
2273 if (++st->bucket < INET_LHTABLE_SIZE) {
2274 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2275 spin_lock_bh(&ilb->lock);
2276 sk = sk_nulls_head(&ilb->head);
2277 goto get_sk;
2278 }
2279 cur = NULL;
2280out:
2281 return cur;
2282}
2283
2284static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2285{
2286 struct tcp_iter_state *st = seq->private;
2287 void *rc;
2288
2289 st->bucket = 0;
2290 st->offset = 0;
2291 rc = listening_get_next(seq, NULL);
2292
2293 while (rc && *pos) {
2294 rc = listening_get_next(seq, rc);
2295 --*pos;
2296 }
2297 return rc;
2298}
2299
2300static inline bool empty_bucket(const struct tcp_iter_state *st)
2301{
2302 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
2303}
2304
2305/*
2306 * Get first established socket starting from bucket given in st->bucket.
2307 * If st->bucket is zero, the very first socket in the hash is returned.
2308 */
2309static void *established_get_first(struct seq_file *seq)
2310{
2311 struct tcp_iter_state *st = seq->private;
2312 struct net *net = seq_file_net(seq);
2313 void *rc = NULL;
2314
2315 st->offset = 0;
2316 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2317 struct sock *sk;
2318 struct hlist_nulls_node *node;
2319 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2320
2321 /* Lockless fast path for the common case of empty buckets */
2322 if (empty_bucket(st))
2323 continue;
2324
2325 spin_lock_bh(lock);
2326 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2327 if (sk->sk_family != st->family ||
2328 !net_eq(sock_net(sk), net)) {
2329 continue;
2330 }
2331 rc = sk;
2332 goto out;
2333 }
2334 spin_unlock_bh(lock);
2335 }
2336out:
2337 return rc;
2338}
2339
2340static void *established_get_next(struct seq_file *seq, void *cur)
2341{
2342 struct sock *sk = cur;
2343 struct hlist_nulls_node *node;
2344 struct tcp_iter_state *st = seq->private;
2345 struct net *net = seq_file_net(seq);
2346
2347 ++st->num;
2348 ++st->offset;
2349
2350 sk = sk_nulls_next(sk);
2351
2352 sk_nulls_for_each_from(sk, node) {
2353 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2354 return sk;
2355 }
2356
2357 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2358 ++st->bucket;
2359 return established_get_first(seq);
2360}
2361
2362static void *established_get_idx(struct seq_file *seq, loff_t pos)
2363{
2364 struct tcp_iter_state *st = seq->private;
2365 void *rc;
2366
2367 st->bucket = 0;
2368 rc = established_get_first(seq);
2369
2370 while (rc && pos) {
2371 rc = established_get_next(seq, rc);
2372 --pos;
2373 }
2374 return rc;
2375}
2376
2377static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2378{
2379 void *rc;
2380 struct tcp_iter_state *st = seq->private;
2381
2382 st->state = TCP_SEQ_STATE_LISTENING;
2383 rc = listening_get_idx(seq, &pos);
2384
2385 if (!rc) {
2386 st->state = TCP_SEQ_STATE_ESTABLISHED;
2387 rc = established_get_idx(seq, pos);
2388 }
2389
2390 return rc;
2391}
2392
2393static void *tcp_seek_last_pos(struct seq_file *seq)
2394{
2395 struct tcp_iter_state *st = seq->private;
2396 int offset = st->offset;
2397 int orig_num = st->num;
2398 void *rc = NULL;
2399
2400 switch (st->state) {
2401 case TCP_SEQ_STATE_OPENREQ:
2402 case TCP_SEQ_STATE_LISTENING:
2403 if (st->bucket >= INET_LHTABLE_SIZE)
2404 break;
2405 st->state = TCP_SEQ_STATE_LISTENING;
2406 rc = listening_get_next(seq, NULL);
2407 while (offset-- && rc)
2408 rc = listening_get_next(seq, rc);
2409 if (rc)
2410 break;
2411 st->bucket = 0;
2412 st->state = TCP_SEQ_STATE_ESTABLISHED;
2413 /* Fallthrough */
2414 case TCP_SEQ_STATE_ESTABLISHED:
2415 if (st->bucket > tcp_hashinfo.ehash_mask)
2416 break;
2417 rc = established_get_first(seq);
2418 while (offset-- && rc)
2419 rc = established_get_next(seq, rc);
2420 }
2421
2422 st->num = orig_num;
2423
2424 return rc;
2425}
2426
2427static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2428{
2429 struct tcp_iter_state *st = seq->private;
2430 void *rc;
2431
2432 if (*pos && *pos == st->last_pos) {
2433 rc = tcp_seek_last_pos(seq);
2434 if (rc)
2435 goto out;
2436 }
2437
2438 st->state = TCP_SEQ_STATE_LISTENING;
2439 st->num = 0;
2440 st->bucket = 0;
2441 st->offset = 0;
2442 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2443
2444out:
2445 st->last_pos = *pos;
2446 return rc;
2447}
2448
2449static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451 struct tcp_iter_state *st = seq->private;
2452 void *rc = NULL;
2453
2454 if (v == SEQ_START_TOKEN) {
2455 rc = tcp_get_idx(seq, 0);
2456 goto out;
2457 }
2458
2459 switch (st->state) {
2460 case TCP_SEQ_STATE_OPENREQ:
2461 case TCP_SEQ_STATE_LISTENING:
2462 rc = listening_get_next(seq, v);
2463 if (!rc) {
2464 st->state = TCP_SEQ_STATE_ESTABLISHED;
2465 st->bucket = 0;
2466 st->offset = 0;
2467 rc = established_get_first(seq);
2468 }
2469 break;
2470 case TCP_SEQ_STATE_ESTABLISHED:
2471 rc = established_get_next(seq, v);
2472 break;
2473 }
2474out:
2475 ++*pos;
2476 st->last_pos = *pos;
2477 return rc;
2478}
2479
2480static void tcp_seq_stop(struct seq_file *seq, void *v)
2481{
2482 struct tcp_iter_state *st = seq->private;
2483
2484 switch (st->state) {
2485 case TCP_SEQ_STATE_OPENREQ:
2486 if (v) {
2487 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2488 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2489 }
2490 case TCP_SEQ_STATE_LISTENING:
2491 if (v != SEQ_START_TOKEN)
2492 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2493 break;
2494 case TCP_SEQ_STATE_ESTABLISHED:
2495 if (v)
2496 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2497 break;
2498 }
2499}
2500
2501int tcp_seq_open(struct inode *inode, struct file *file)
2502{
2503 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2504 struct tcp_iter_state *s;
2505 int err;
2506
2507 err = seq_open_net(inode, file, &afinfo->seq_ops,
2508 sizeof(struct tcp_iter_state));
2509 if (err < 0)
2510 return err;
2511
2512 s = ((struct seq_file *)file->private_data)->private;
2513 s->family = afinfo->family;
2514 s->last_pos = 0;
2515 return 0;
2516}
2517EXPORT_SYMBOL(tcp_seq_open);
2518
2519int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2520{
2521 int rc = 0;
2522 struct proc_dir_entry *p;
2523
2524 afinfo->seq_ops.start = tcp_seq_start;
2525 afinfo->seq_ops.next = tcp_seq_next;
2526 afinfo->seq_ops.stop = tcp_seq_stop;
2527
2528 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2529 afinfo->seq_fops, afinfo);
2530 if (!p)
2531 rc = -ENOMEM;
2532 return rc;
2533}
2534EXPORT_SYMBOL(tcp_proc_register);
2535
2536void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2537{
2538 remove_proc_entry(afinfo->name, net->proc_net);
2539}
2540EXPORT_SYMBOL(tcp_proc_unregister);
2541
2542static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2543 struct seq_file *f, int i, kuid_t uid)
2544{
2545 const struct inet_request_sock *ireq = inet_rsk(req);
2546 long delta = req->expires - jiffies;
2547
2548 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2549 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2550 i,
2551 ireq->ir_loc_addr,
2552 ntohs(inet_sk(sk)->inet_sport),
2553 ireq->ir_rmt_addr,
2554 ntohs(ireq->ir_rmt_port),
2555 TCP_SYN_RECV,
2556 0, 0, /* could print option size, but that is af dependent. */
2557 1, /* timers active (only the expire timer) */
2558 jiffies_delta_to_clock_t(delta),
2559 req->num_timeout,
2560 from_kuid_munged(seq_user_ns(f), uid),
2561 0, /* non standard timer */
2562 0, /* open_requests have no inode */
2563 atomic_read(&sk->sk_refcnt),
2564 req);
2565}
2566
2567static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2568{
2569 int timer_active;
2570 unsigned long timer_expires;
2571 const struct tcp_sock *tp = tcp_sk(sk);
2572 const struct inet_connection_sock *icsk = inet_csk(sk);
2573 const struct inet_sock *inet = inet_sk(sk);
2574 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2575 __be32 dest = inet->inet_daddr;
2576 __be32 src = inet->inet_rcv_saddr;
2577 __u16 destp = ntohs(inet->inet_dport);
2578 __u16 srcp = ntohs(inet->inet_sport);
2579 int rx_queue;
2580
2581 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2582 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2583 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2584 timer_active = 1;
2585 timer_expires = icsk->icsk_timeout;
2586 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2587 timer_active = 4;
2588 timer_expires = icsk->icsk_timeout;
2589 } else if (timer_pending(&sk->sk_timer)) {
2590 timer_active = 2;
2591 timer_expires = sk->sk_timer.expires;
2592 } else {
2593 timer_active = 0;
2594 timer_expires = jiffies;
2595 }
2596
2597 if (sk->sk_state == TCP_LISTEN)
2598 rx_queue = sk->sk_ack_backlog;
2599 else
2600 /*
2601 * because we dont lock socket, we might find a transient negative value
2602 */
2603 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2604
2605 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2606 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2607 i, src, srcp, dest, destp, sk->sk_state,
2608 tp->write_seq - tp->snd_una,
2609 rx_queue,
2610 timer_active,
2611 jiffies_delta_to_clock_t(timer_expires - jiffies),
2612 icsk->icsk_retransmits,
2613 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2614 icsk->icsk_probes_out,
2615 sock_i_ino(sk),
2616 atomic_read(&sk->sk_refcnt), sk,
2617 jiffies_to_clock_t(icsk->icsk_rto),
2618 jiffies_to_clock_t(icsk->icsk_ack.ato),
2619 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2620 tp->snd_cwnd,
2621 sk->sk_state == TCP_LISTEN ?
2622 (fastopenq ? fastopenq->max_qlen : 0) :
2623 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2624}
2625
2626static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2627 struct seq_file *f, int i)
2628{
2629 __be32 dest, src;
2630 __u16 destp, srcp;
2631 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2632
2633 dest = tw->tw_daddr;
2634 src = tw->tw_rcv_saddr;
2635 destp = ntohs(tw->tw_dport);
2636 srcp = ntohs(tw->tw_sport);
2637
2638 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2639 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2640 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2641 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2642 atomic_read(&tw->tw_refcnt), tw);
2643}
2644
2645#define TMPSZ 150
2646
2647static int tcp4_seq_show(struct seq_file *seq, void *v)
2648{
2649 struct tcp_iter_state *st;
2650 struct sock *sk = v;
2651
2652 seq_setwidth(seq, TMPSZ - 1);
2653 if (v == SEQ_START_TOKEN) {
2654 seq_puts(seq, " sl local_address rem_address st tx_queue "
2655 "rx_queue tr tm->when retrnsmt uid timeout "
2656 "inode");
2657 goto out;
2658 }
2659 st = seq->private;
2660
2661 switch (st->state) {
2662 case TCP_SEQ_STATE_LISTENING:
2663 case TCP_SEQ_STATE_ESTABLISHED:
2664 if (sk->sk_state == TCP_TIME_WAIT)
2665 get_timewait4_sock(v, seq, st->num);
2666 else
2667 get_tcp4_sock(v, seq, st->num);
2668 break;
2669 case TCP_SEQ_STATE_OPENREQ:
2670 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2671 break;
2672 }
2673out:
2674 seq_pad(seq, '\n');
2675 return 0;
2676}
2677
2678static const struct file_operations tcp_afinfo_seq_fops = {
2679 .owner = THIS_MODULE,
2680 .open = tcp_seq_open,
2681 .read = seq_read,
2682 .llseek = seq_lseek,
2683 .release = seq_release_net
2684};
2685
2686static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2687 .name = "tcp",
2688 .family = AF_INET,
2689 .seq_fops = &tcp_afinfo_seq_fops,
2690 .seq_ops = {
2691 .show = tcp4_seq_show,
2692 },
2693};
2694
2695static int __net_init tcp4_proc_init_net(struct net *net)
2696{
2697 return tcp_proc_register(net, &tcp4_seq_afinfo);
2698}
2699
2700static void __net_exit tcp4_proc_exit_net(struct net *net)
2701{
2702 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2703}
2704
2705static struct pernet_operations tcp4_net_ops = {
2706 .init = tcp4_proc_init_net,
2707 .exit = tcp4_proc_exit_net,
2708};
2709
2710int __init tcp4_proc_init(void)
2711{
2712 return register_pernet_subsys(&tcp4_net_ops);
2713}
2714
2715void tcp4_proc_exit(void)
2716{
2717 unregister_pernet_subsys(&tcp4_net_ops);
2718}
2719#endif /* CONFIG_PROC_FS */
2720
2721struct proto tcp_prot = {
2722 .name = "TCP",
2723 .owner = THIS_MODULE,
2724 .close = tcp_close,
2725 .connect = tcp_v4_connect,
2726 .disconnect = tcp_disconnect,
2727 .accept = inet_csk_accept,
2728 .ioctl = tcp_ioctl,
2729 .init = tcp_v4_init_sock,
2730 .destroy = tcp_v4_destroy_sock,
2731 .shutdown = tcp_shutdown,
2732 .setsockopt = tcp_setsockopt,
2733 .getsockopt = tcp_getsockopt,
2734 .recvmsg = tcp_recvmsg,
2735 .sendmsg = tcp_sendmsg,
2736 .sendpage = tcp_sendpage,
2737 .backlog_rcv = tcp_v4_do_rcv,
2738 .release_cb = tcp_release_cb,
2739 .mtu_reduced = tcp_v4_mtu_reduced,
2740 .hash = inet_hash,
2741 .unhash = inet_unhash,
2742 .get_port = inet_csk_get_port,
2743 .enter_memory_pressure = tcp_enter_memory_pressure,
2744 .stream_memory_free = tcp_stream_memory_free,
2745 .sockets_allocated = &tcp_sockets_allocated,
2746 .orphan_count = &tcp_orphan_count,
2747 .memory_allocated = &tcp_memory_allocated,
2748 .memory_pressure = &tcp_memory_pressure,
2749 .sysctl_mem = sysctl_tcp_mem,
2750 .sysctl_wmem = sysctl_tcp_wmem,
2751 .sysctl_rmem = sysctl_tcp_rmem,
2752 .max_header = MAX_TCP_HEADER,
2753 .obj_size = sizeof(struct tcp_sock),
2754 .slab_flags = SLAB_DESTROY_BY_RCU,
2755 .twsk_prot = &tcp_timewait_sock_ops,
2756 .rsk_prot = &tcp_request_sock_ops,
2757 .h.hashinfo = &tcp_hashinfo,
2758 .no_autobind = true,
2759#ifdef CONFIG_COMPAT
2760 .compat_setsockopt = compat_tcp_setsockopt,
2761 .compat_getsockopt = compat_tcp_getsockopt,
2762#endif
2763#ifdef CONFIG_MEMCG_KMEM
2764 .init_cgroup = tcp_init_cgroup,
2765 .destroy_cgroup = tcp_destroy_cgroup,
2766 .proto_cgroup = tcp_proto_cgroup,
2767#endif
2768};
2769EXPORT_SYMBOL(tcp_prot);
2770
2771static int __net_init tcp_sk_init(struct net *net)
2772{
2773 net->ipv4.sysctl_tcp_ecn = 2;
2774 return 0;
2775}
2776
2777static void __net_exit tcp_sk_exit(struct net *net)
2778{
2779}
2780
2781static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2782{
2783 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2784}
2785
2786static struct pernet_operations __net_initdata tcp_sk_ops = {
2787 .init = tcp_sk_init,
2788 .exit = tcp_sk_exit,
2789 .exit_batch = tcp_sk_exit_batch,
2790};
2791
2792void __init tcp_v4_init(void)
2793{
2794 inet_hashinfo_init(&tcp_hashinfo);
2795 if (register_pernet_subsys(&tcp_sk_ops))
2796 panic("Failed to create the TCP control socket.\n");
2797}