Loading...
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/swap.h>
10#include <linux/interrupt.h>
11#include <linux/pagemap.h>
12#include <linux/compiler.h>
13#include <linux/export.h>
14#include <linux/pagevec.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/sysctl.h>
18#include <linux/cpu.h>
19#include <linux/memory.h>
20#include <linux/memremap.h>
21#include <linux/memory_hotplug.h>
22#include <linux/highmem.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/bootmem.h>
36#include <linux/compaction.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42/*
43 * online_page_callback contains pointer to current page onlining function.
44 * Initially it is generic_online_page(). If it is required it could be
45 * changed by calling set_online_page_callback() for callback registration
46 * and restore_online_page_callback() for generic callback restore.
47 */
48
49static void generic_online_page(struct page *page);
50
51static online_page_callback_t online_page_callback = generic_online_page;
52static DEFINE_MUTEX(online_page_callback_lock);
53
54/* The same as the cpu_hotplug lock, but for memory hotplug. */
55static struct {
56 struct task_struct *active_writer;
57 struct mutex lock; /* Synchronizes accesses to refcount, */
58 /*
59 * Also blocks the new readers during
60 * an ongoing mem hotplug operation.
61 */
62 int refcount;
63
64#ifdef CONFIG_DEBUG_LOCK_ALLOC
65 struct lockdep_map dep_map;
66#endif
67} mem_hotplug = {
68 .active_writer = NULL,
69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 .refcount = 0,
71#ifdef CONFIG_DEBUG_LOCK_ALLOC
72 .dep_map = {.name = "mem_hotplug.lock" },
73#endif
74};
75
76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
79#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
80
81bool memhp_auto_online;
82EXPORT_SYMBOL_GPL(memhp_auto_online);
83
84void get_online_mems(void)
85{
86 might_sleep();
87 if (mem_hotplug.active_writer == current)
88 return;
89 memhp_lock_acquire_read();
90 mutex_lock(&mem_hotplug.lock);
91 mem_hotplug.refcount++;
92 mutex_unlock(&mem_hotplug.lock);
93
94}
95
96void put_online_mems(void)
97{
98 if (mem_hotplug.active_writer == current)
99 return;
100 mutex_lock(&mem_hotplug.lock);
101
102 if (WARN_ON(!mem_hotplug.refcount))
103 mem_hotplug.refcount++; /* try to fix things up */
104
105 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
106 wake_up_process(mem_hotplug.active_writer);
107 mutex_unlock(&mem_hotplug.lock);
108 memhp_lock_release();
109
110}
111
112void mem_hotplug_begin(void)
113{
114 mem_hotplug.active_writer = current;
115
116 memhp_lock_acquire();
117 for (;;) {
118 mutex_lock(&mem_hotplug.lock);
119 if (likely(!mem_hotplug.refcount))
120 break;
121 __set_current_state(TASK_UNINTERRUPTIBLE);
122 mutex_unlock(&mem_hotplug.lock);
123 schedule();
124 }
125}
126
127void mem_hotplug_done(void)
128{
129 mem_hotplug.active_writer = NULL;
130 mutex_unlock(&mem_hotplug.lock);
131 memhp_lock_release();
132}
133
134/* add this memory to iomem resource */
135static struct resource *register_memory_resource(u64 start, u64 size)
136{
137 struct resource *res;
138 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
139 if (!res)
140 return ERR_PTR(-ENOMEM);
141
142 res->name = "System RAM";
143 res->start = start;
144 res->end = start + size - 1;
145 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
146 if (request_resource(&iomem_resource, res) < 0) {
147 pr_debug("System RAM resource %pR cannot be added\n", res);
148 kfree(res);
149 return ERR_PTR(-EEXIST);
150 }
151 return res;
152}
153
154static void release_memory_resource(struct resource *res)
155{
156 if (!res)
157 return;
158 release_resource(res);
159 kfree(res);
160 return;
161}
162
163#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
164void get_page_bootmem(unsigned long info, struct page *page,
165 unsigned long type)
166{
167 page->lru.next = (struct list_head *) type;
168 SetPagePrivate(page);
169 set_page_private(page, info);
170 page_ref_inc(page);
171}
172
173void put_page_bootmem(struct page *page)
174{
175 unsigned long type;
176
177 type = (unsigned long) page->lru.next;
178 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
179 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
180
181 if (page_ref_dec_return(page) == 1) {
182 ClearPagePrivate(page);
183 set_page_private(page, 0);
184 INIT_LIST_HEAD(&page->lru);
185 free_reserved_page(page);
186 }
187}
188
189#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
190#ifndef CONFIG_SPARSEMEM_VMEMMAP
191static void register_page_bootmem_info_section(unsigned long start_pfn)
192{
193 unsigned long *usemap, mapsize, section_nr, i;
194 struct mem_section *ms;
195 struct page *page, *memmap;
196
197 section_nr = pfn_to_section_nr(start_pfn);
198 ms = __nr_to_section(section_nr);
199
200 /* Get section's memmap address */
201 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
202
203 /*
204 * Get page for the memmap's phys address
205 * XXX: need more consideration for sparse_vmemmap...
206 */
207 page = virt_to_page(memmap);
208 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
209 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
210
211 /* remember memmap's page */
212 for (i = 0; i < mapsize; i++, page++)
213 get_page_bootmem(section_nr, page, SECTION_INFO);
214
215 usemap = __nr_to_section(section_nr)->pageblock_flags;
216 page = virt_to_page(usemap);
217
218 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222
223}
224#else /* CONFIG_SPARSEMEM_VMEMMAP */
225static void register_page_bootmem_info_section(unsigned long start_pfn)
226{
227 unsigned long *usemap, mapsize, section_nr, i;
228 struct mem_section *ms;
229 struct page *page, *memmap;
230
231 if (!pfn_valid(start_pfn))
232 return;
233
234 section_nr = pfn_to_section_nr(start_pfn);
235 ms = __nr_to_section(section_nr);
236
237 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
238
239 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
240
241 usemap = __nr_to_section(section_nr)->pageblock_flags;
242 page = virt_to_page(usemap);
243
244 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
245
246 for (i = 0; i < mapsize; i++, page++)
247 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
248}
249#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
250
251void register_page_bootmem_info_node(struct pglist_data *pgdat)
252{
253 unsigned long i, pfn, end_pfn, nr_pages;
254 int node = pgdat->node_id;
255 struct page *page;
256 struct zone *zone;
257
258 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
259 page = virt_to_page(pgdat);
260
261 for (i = 0; i < nr_pages; i++, page++)
262 get_page_bootmem(node, page, NODE_INFO);
263
264 zone = &pgdat->node_zones[0];
265 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
266 if (zone_is_initialized(zone)) {
267 nr_pages = zone->wait_table_hash_nr_entries
268 * sizeof(wait_queue_head_t);
269 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
270 page = virt_to_page(zone->wait_table);
271
272 for (i = 0; i < nr_pages; i++, page++)
273 get_page_bootmem(node, page, NODE_INFO);
274 }
275 }
276
277 pfn = pgdat->node_start_pfn;
278 end_pfn = pgdat_end_pfn(pgdat);
279
280 /* register section info */
281 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
282 /*
283 * Some platforms can assign the same pfn to multiple nodes - on
284 * node0 as well as nodeN. To avoid registering a pfn against
285 * multiple nodes we check that this pfn does not already
286 * reside in some other nodes.
287 */
288 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
289 register_page_bootmem_info_section(pfn);
290 }
291}
292#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
293
294static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
295 unsigned long end_pfn)
296{
297 unsigned long old_zone_end_pfn;
298
299 zone_span_writelock(zone);
300
301 old_zone_end_pfn = zone_end_pfn(zone);
302 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
303 zone->zone_start_pfn = start_pfn;
304
305 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
306 zone->zone_start_pfn;
307
308 zone_span_writeunlock(zone);
309}
310
311static void resize_zone(struct zone *zone, unsigned long start_pfn,
312 unsigned long end_pfn)
313{
314 zone_span_writelock(zone);
315
316 if (end_pfn - start_pfn) {
317 zone->zone_start_pfn = start_pfn;
318 zone->spanned_pages = end_pfn - start_pfn;
319 } else {
320 /*
321 * make it consist as free_area_init_core(),
322 * if spanned_pages = 0, then keep start_pfn = 0
323 */
324 zone->zone_start_pfn = 0;
325 zone->spanned_pages = 0;
326 }
327
328 zone_span_writeunlock(zone);
329}
330
331static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
332 unsigned long end_pfn)
333{
334 enum zone_type zid = zone_idx(zone);
335 int nid = zone->zone_pgdat->node_id;
336 unsigned long pfn;
337
338 for (pfn = start_pfn; pfn < end_pfn; pfn++)
339 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
340}
341
342/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
343 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
344static int __ref ensure_zone_is_initialized(struct zone *zone,
345 unsigned long start_pfn, unsigned long num_pages)
346{
347 if (!zone_is_initialized(zone))
348 return init_currently_empty_zone(zone, start_pfn, num_pages);
349
350 return 0;
351}
352
353static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
354 unsigned long start_pfn, unsigned long end_pfn)
355{
356 int ret;
357 unsigned long flags;
358 unsigned long z1_start_pfn;
359
360 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
361 if (ret)
362 return ret;
363
364 pgdat_resize_lock(z1->zone_pgdat, &flags);
365
366 /* can't move pfns which are higher than @z2 */
367 if (end_pfn > zone_end_pfn(z2))
368 goto out_fail;
369 /* the move out part must be at the left most of @z2 */
370 if (start_pfn > z2->zone_start_pfn)
371 goto out_fail;
372 /* must included/overlap */
373 if (end_pfn <= z2->zone_start_pfn)
374 goto out_fail;
375
376 /* use start_pfn for z1's start_pfn if z1 is empty */
377 if (!zone_is_empty(z1))
378 z1_start_pfn = z1->zone_start_pfn;
379 else
380 z1_start_pfn = start_pfn;
381
382 resize_zone(z1, z1_start_pfn, end_pfn);
383 resize_zone(z2, end_pfn, zone_end_pfn(z2));
384
385 pgdat_resize_unlock(z1->zone_pgdat, &flags);
386
387 fix_zone_id(z1, start_pfn, end_pfn);
388
389 return 0;
390out_fail:
391 pgdat_resize_unlock(z1->zone_pgdat, &flags);
392 return -1;
393}
394
395static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
396 unsigned long start_pfn, unsigned long end_pfn)
397{
398 int ret;
399 unsigned long flags;
400 unsigned long z2_end_pfn;
401
402 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
403 if (ret)
404 return ret;
405
406 pgdat_resize_lock(z1->zone_pgdat, &flags);
407
408 /* can't move pfns which are lower than @z1 */
409 if (z1->zone_start_pfn > start_pfn)
410 goto out_fail;
411 /* the move out part mast at the right most of @z1 */
412 if (zone_end_pfn(z1) > end_pfn)
413 goto out_fail;
414 /* must included/overlap */
415 if (start_pfn >= zone_end_pfn(z1))
416 goto out_fail;
417
418 /* use end_pfn for z2's end_pfn if z2 is empty */
419 if (!zone_is_empty(z2))
420 z2_end_pfn = zone_end_pfn(z2);
421 else
422 z2_end_pfn = end_pfn;
423
424 resize_zone(z1, z1->zone_start_pfn, start_pfn);
425 resize_zone(z2, start_pfn, z2_end_pfn);
426
427 pgdat_resize_unlock(z1->zone_pgdat, &flags);
428
429 fix_zone_id(z2, start_pfn, end_pfn);
430
431 return 0;
432out_fail:
433 pgdat_resize_unlock(z1->zone_pgdat, &flags);
434 return -1;
435}
436
437static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
438 unsigned long end_pfn)
439{
440 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
441
442 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
443 pgdat->node_start_pfn = start_pfn;
444
445 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
446 pgdat->node_start_pfn;
447}
448
449static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
450{
451 struct pglist_data *pgdat = zone->zone_pgdat;
452 int nr_pages = PAGES_PER_SECTION;
453 int nid = pgdat->node_id;
454 int zone_type;
455 unsigned long flags, pfn;
456 int ret;
457
458 zone_type = zone - pgdat->node_zones;
459 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
460 if (ret)
461 return ret;
462
463 pgdat_resize_lock(zone->zone_pgdat, &flags);
464 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
465 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
466 phys_start_pfn + nr_pages);
467 pgdat_resize_unlock(zone->zone_pgdat, &flags);
468 memmap_init_zone(nr_pages, nid, zone_type,
469 phys_start_pfn, MEMMAP_HOTPLUG);
470
471 /* online_page_range is called later and expects pages reserved */
472 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
473 if (!pfn_valid(pfn))
474 continue;
475
476 SetPageReserved(pfn_to_page(pfn));
477 }
478 return 0;
479}
480
481static int __meminit __add_section(int nid, struct zone *zone,
482 unsigned long phys_start_pfn)
483{
484 int ret;
485
486 if (pfn_valid(phys_start_pfn))
487 return -EEXIST;
488
489 ret = sparse_add_one_section(zone, phys_start_pfn);
490
491 if (ret < 0)
492 return ret;
493
494 ret = __add_zone(zone, phys_start_pfn);
495
496 if (ret < 0)
497 return ret;
498
499 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
500}
501
502/*
503 * Reasonably generic function for adding memory. It is
504 * expected that archs that support memory hotplug will
505 * call this function after deciding the zone to which to
506 * add the new pages.
507 */
508int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
509 unsigned long nr_pages)
510{
511 unsigned long i;
512 int err = 0;
513 int start_sec, end_sec;
514 struct vmem_altmap *altmap;
515
516 clear_zone_contiguous(zone);
517
518 /* during initialize mem_map, align hot-added range to section */
519 start_sec = pfn_to_section_nr(phys_start_pfn);
520 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
521
522 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
523 if (altmap) {
524 /*
525 * Validate altmap is within bounds of the total request
526 */
527 if (altmap->base_pfn != phys_start_pfn
528 || vmem_altmap_offset(altmap) > nr_pages) {
529 pr_warn_once("memory add fail, invalid altmap\n");
530 err = -EINVAL;
531 goto out;
532 }
533 altmap->alloc = 0;
534 }
535
536 for (i = start_sec; i <= end_sec; i++) {
537 err = __add_section(nid, zone, section_nr_to_pfn(i));
538
539 /*
540 * EEXIST is finally dealt with by ioresource collision
541 * check. see add_memory() => register_memory_resource()
542 * Warning will be printed if there is collision.
543 */
544 if (err && (err != -EEXIST))
545 break;
546 err = 0;
547 }
548 vmemmap_populate_print_last();
549out:
550 set_zone_contiguous(zone);
551 return err;
552}
553EXPORT_SYMBOL_GPL(__add_pages);
554
555#ifdef CONFIG_MEMORY_HOTREMOVE
556/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
557static int find_smallest_section_pfn(int nid, struct zone *zone,
558 unsigned long start_pfn,
559 unsigned long end_pfn)
560{
561 struct mem_section *ms;
562
563 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
564 ms = __pfn_to_section(start_pfn);
565
566 if (unlikely(!valid_section(ms)))
567 continue;
568
569 if (unlikely(pfn_to_nid(start_pfn) != nid))
570 continue;
571
572 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
573 continue;
574
575 return start_pfn;
576 }
577
578 return 0;
579}
580
581/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
582static int find_biggest_section_pfn(int nid, struct zone *zone,
583 unsigned long start_pfn,
584 unsigned long end_pfn)
585{
586 struct mem_section *ms;
587 unsigned long pfn;
588
589 /* pfn is the end pfn of a memory section. */
590 pfn = end_pfn - 1;
591 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
592 ms = __pfn_to_section(pfn);
593
594 if (unlikely(!valid_section(ms)))
595 continue;
596
597 if (unlikely(pfn_to_nid(pfn) != nid))
598 continue;
599
600 if (zone && zone != page_zone(pfn_to_page(pfn)))
601 continue;
602
603 return pfn;
604 }
605
606 return 0;
607}
608
609static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
610 unsigned long end_pfn)
611{
612 unsigned long zone_start_pfn = zone->zone_start_pfn;
613 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
614 unsigned long zone_end_pfn = z;
615 unsigned long pfn;
616 struct mem_section *ms;
617 int nid = zone_to_nid(zone);
618
619 zone_span_writelock(zone);
620 if (zone_start_pfn == start_pfn) {
621 /*
622 * If the section is smallest section in the zone, it need
623 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
624 * In this case, we find second smallest valid mem_section
625 * for shrinking zone.
626 */
627 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
628 zone_end_pfn);
629 if (pfn) {
630 zone->zone_start_pfn = pfn;
631 zone->spanned_pages = zone_end_pfn - pfn;
632 }
633 } else if (zone_end_pfn == end_pfn) {
634 /*
635 * If the section is biggest section in the zone, it need
636 * shrink zone->spanned_pages.
637 * In this case, we find second biggest valid mem_section for
638 * shrinking zone.
639 */
640 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
641 start_pfn);
642 if (pfn)
643 zone->spanned_pages = pfn - zone_start_pfn + 1;
644 }
645
646 /*
647 * The section is not biggest or smallest mem_section in the zone, it
648 * only creates a hole in the zone. So in this case, we need not
649 * change the zone. But perhaps, the zone has only hole data. Thus
650 * it check the zone has only hole or not.
651 */
652 pfn = zone_start_pfn;
653 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
654 ms = __pfn_to_section(pfn);
655
656 if (unlikely(!valid_section(ms)))
657 continue;
658
659 if (page_zone(pfn_to_page(pfn)) != zone)
660 continue;
661
662 /* If the section is current section, it continues the loop */
663 if (start_pfn == pfn)
664 continue;
665
666 /* If we find valid section, we have nothing to do */
667 zone_span_writeunlock(zone);
668 return;
669 }
670
671 /* The zone has no valid section */
672 zone->zone_start_pfn = 0;
673 zone->spanned_pages = 0;
674 zone_span_writeunlock(zone);
675}
676
677static void shrink_pgdat_span(struct pglist_data *pgdat,
678 unsigned long start_pfn, unsigned long end_pfn)
679{
680 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
681 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
682 unsigned long pgdat_end_pfn = p;
683 unsigned long pfn;
684 struct mem_section *ms;
685 int nid = pgdat->node_id;
686
687 if (pgdat_start_pfn == start_pfn) {
688 /*
689 * If the section is smallest section in the pgdat, it need
690 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
691 * In this case, we find second smallest valid mem_section
692 * for shrinking zone.
693 */
694 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
695 pgdat_end_pfn);
696 if (pfn) {
697 pgdat->node_start_pfn = pfn;
698 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
699 }
700 } else if (pgdat_end_pfn == end_pfn) {
701 /*
702 * If the section is biggest section in the pgdat, it need
703 * shrink pgdat->node_spanned_pages.
704 * In this case, we find second biggest valid mem_section for
705 * shrinking zone.
706 */
707 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
708 start_pfn);
709 if (pfn)
710 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
711 }
712
713 /*
714 * If the section is not biggest or smallest mem_section in the pgdat,
715 * it only creates a hole in the pgdat. So in this case, we need not
716 * change the pgdat.
717 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
718 * has only hole or not.
719 */
720 pfn = pgdat_start_pfn;
721 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
722 ms = __pfn_to_section(pfn);
723
724 if (unlikely(!valid_section(ms)))
725 continue;
726
727 if (pfn_to_nid(pfn) != nid)
728 continue;
729
730 /* If the section is current section, it continues the loop */
731 if (start_pfn == pfn)
732 continue;
733
734 /* If we find valid section, we have nothing to do */
735 return;
736 }
737
738 /* The pgdat has no valid section */
739 pgdat->node_start_pfn = 0;
740 pgdat->node_spanned_pages = 0;
741}
742
743static void __remove_zone(struct zone *zone, unsigned long start_pfn)
744{
745 struct pglist_data *pgdat = zone->zone_pgdat;
746 int nr_pages = PAGES_PER_SECTION;
747 int zone_type;
748 unsigned long flags;
749
750 zone_type = zone - pgdat->node_zones;
751
752 pgdat_resize_lock(zone->zone_pgdat, &flags);
753 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
754 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
755 pgdat_resize_unlock(zone->zone_pgdat, &flags);
756}
757
758static int __remove_section(struct zone *zone, struct mem_section *ms,
759 unsigned long map_offset)
760{
761 unsigned long start_pfn;
762 int scn_nr;
763 int ret = -EINVAL;
764
765 if (!valid_section(ms))
766 return ret;
767
768 ret = unregister_memory_section(ms);
769 if (ret)
770 return ret;
771
772 scn_nr = __section_nr(ms);
773 start_pfn = section_nr_to_pfn(scn_nr);
774 __remove_zone(zone, start_pfn);
775
776 sparse_remove_one_section(zone, ms, map_offset);
777 return 0;
778}
779
780/**
781 * __remove_pages() - remove sections of pages from a zone
782 * @zone: zone from which pages need to be removed
783 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
784 * @nr_pages: number of pages to remove (must be multiple of section size)
785 *
786 * Generic helper function to remove section mappings and sysfs entries
787 * for the section of the memory we are removing. Caller needs to make
788 * sure that pages are marked reserved and zones are adjust properly by
789 * calling offline_pages().
790 */
791int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
792 unsigned long nr_pages)
793{
794 unsigned long i;
795 unsigned long map_offset = 0;
796 int sections_to_remove, ret = 0;
797
798 /* In the ZONE_DEVICE case device driver owns the memory region */
799 if (is_dev_zone(zone)) {
800 struct page *page = pfn_to_page(phys_start_pfn);
801 struct vmem_altmap *altmap;
802
803 altmap = to_vmem_altmap((unsigned long) page);
804 if (altmap)
805 map_offset = vmem_altmap_offset(altmap);
806 } else {
807 resource_size_t start, size;
808
809 start = phys_start_pfn << PAGE_SHIFT;
810 size = nr_pages * PAGE_SIZE;
811
812 ret = release_mem_region_adjustable(&iomem_resource, start,
813 size);
814 if (ret) {
815 resource_size_t endres = start + size - 1;
816
817 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
818 &start, &endres, ret);
819 }
820 }
821
822 clear_zone_contiguous(zone);
823
824 /*
825 * We can only remove entire sections
826 */
827 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
828 BUG_ON(nr_pages % PAGES_PER_SECTION);
829
830 sections_to_remove = nr_pages / PAGES_PER_SECTION;
831 for (i = 0; i < sections_to_remove; i++) {
832 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
833
834 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
835 map_offset = 0;
836 if (ret)
837 break;
838 }
839
840 set_zone_contiguous(zone);
841
842 return ret;
843}
844EXPORT_SYMBOL_GPL(__remove_pages);
845#endif /* CONFIG_MEMORY_HOTREMOVE */
846
847int set_online_page_callback(online_page_callback_t callback)
848{
849 int rc = -EINVAL;
850
851 get_online_mems();
852 mutex_lock(&online_page_callback_lock);
853
854 if (online_page_callback == generic_online_page) {
855 online_page_callback = callback;
856 rc = 0;
857 }
858
859 mutex_unlock(&online_page_callback_lock);
860 put_online_mems();
861
862 return rc;
863}
864EXPORT_SYMBOL_GPL(set_online_page_callback);
865
866int restore_online_page_callback(online_page_callback_t callback)
867{
868 int rc = -EINVAL;
869
870 get_online_mems();
871 mutex_lock(&online_page_callback_lock);
872
873 if (online_page_callback == callback) {
874 online_page_callback = generic_online_page;
875 rc = 0;
876 }
877
878 mutex_unlock(&online_page_callback_lock);
879 put_online_mems();
880
881 return rc;
882}
883EXPORT_SYMBOL_GPL(restore_online_page_callback);
884
885void __online_page_set_limits(struct page *page)
886{
887}
888EXPORT_SYMBOL_GPL(__online_page_set_limits);
889
890void __online_page_increment_counters(struct page *page)
891{
892 adjust_managed_page_count(page, 1);
893}
894EXPORT_SYMBOL_GPL(__online_page_increment_counters);
895
896void __online_page_free(struct page *page)
897{
898 __free_reserved_page(page);
899}
900EXPORT_SYMBOL_GPL(__online_page_free);
901
902static void generic_online_page(struct page *page)
903{
904 __online_page_set_limits(page);
905 __online_page_increment_counters(page);
906 __online_page_free(page);
907}
908
909static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
910 void *arg)
911{
912 unsigned long i;
913 unsigned long onlined_pages = *(unsigned long *)arg;
914 struct page *page;
915 if (PageReserved(pfn_to_page(start_pfn)))
916 for (i = 0; i < nr_pages; i++) {
917 page = pfn_to_page(start_pfn + i);
918 (*online_page_callback)(page);
919 onlined_pages++;
920 }
921 *(unsigned long *)arg = onlined_pages;
922 return 0;
923}
924
925#ifdef CONFIG_MOVABLE_NODE
926/*
927 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
928 * normal memory.
929 */
930static bool can_online_high_movable(struct zone *zone)
931{
932 return true;
933}
934#else /* CONFIG_MOVABLE_NODE */
935/* ensure every online node has NORMAL memory */
936static bool can_online_high_movable(struct zone *zone)
937{
938 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
939}
940#endif /* CONFIG_MOVABLE_NODE */
941
942/* check which state of node_states will be changed when online memory */
943static void node_states_check_changes_online(unsigned long nr_pages,
944 struct zone *zone, struct memory_notify *arg)
945{
946 int nid = zone_to_nid(zone);
947 enum zone_type zone_last = ZONE_NORMAL;
948
949 /*
950 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
951 * contains nodes which have zones of 0...ZONE_NORMAL,
952 * set zone_last to ZONE_NORMAL.
953 *
954 * If we don't have HIGHMEM nor movable node,
955 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
956 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
957 */
958 if (N_MEMORY == N_NORMAL_MEMORY)
959 zone_last = ZONE_MOVABLE;
960
961 /*
962 * if the memory to be online is in a zone of 0...zone_last, and
963 * the zones of 0...zone_last don't have memory before online, we will
964 * need to set the node to node_states[N_NORMAL_MEMORY] after
965 * the memory is online.
966 */
967 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
968 arg->status_change_nid_normal = nid;
969 else
970 arg->status_change_nid_normal = -1;
971
972#ifdef CONFIG_HIGHMEM
973 /*
974 * If we have movable node, node_states[N_HIGH_MEMORY]
975 * contains nodes which have zones of 0...ZONE_HIGHMEM,
976 * set zone_last to ZONE_HIGHMEM.
977 *
978 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
979 * contains nodes which have zones of 0...ZONE_MOVABLE,
980 * set zone_last to ZONE_MOVABLE.
981 */
982 zone_last = ZONE_HIGHMEM;
983 if (N_MEMORY == N_HIGH_MEMORY)
984 zone_last = ZONE_MOVABLE;
985
986 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
987 arg->status_change_nid_high = nid;
988 else
989 arg->status_change_nid_high = -1;
990#else
991 arg->status_change_nid_high = arg->status_change_nid_normal;
992#endif
993
994 /*
995 * if the node don't have memory befor online, we will need to
996 * set the node to node_states[N_MEMORY] after the memory
997 * is online.
998 */
999 if (!node_state(nid, N_MEMORY))
1000 arg->status_change_nid = nid;
1001 else
1002 arg->status_change_nid = -1;
1003}
1004
1005static void node_states_set_node(int node, struct memory_notify *arg)
1006{
1007 if (arg->status_change_nid_normal >= 0)
1008 node_set_state(node, N_NORMAL_MEMORY);
1009
1010 if (arg->status_change_nid_high >= 0)
1011 node_set_state(node, N_HIGH_MEMORY);
1012
1013 node_set_state(node, N_MEMORY);
1014}
1015
1016
1017/* Must be protected by mem_hotplug_begin() */
1018int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1019{
1020 unsigned long flags;
1021 unsigned long onlined_pages = 0;
1022 struct zone *zone;
1023 int need_zonelists_rebuild = 0;
1024 int nid;
1025 int ret;
1026 struct memory_notify arg;
1027
1028 /*
1029 * This doesn't need a lock to do pfn_to_page().
1030 * The section can't be removed here because of the
1031 * memory_block->state_mutex.
1032 */
1033 zone = page_zone(pfn_to_page(pfn));
1034
1035 if ((zone_idx(zone) > ZONE_NORMAL ||
1036 online_type == MMOP_ONLINE_MOVABLE) &&
1037 !can_online_high_movable(zone))
1038 return -EINVAL;
1039
1040 if (online_type == MMOP_ONLINE_KERNEL &&
1041 zone_idx(zone) == ZONE_MOVABLE) {
1042 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043 return -EINVAL;
1044 }
1045 if (online_type == MMOP_ONLINE_MOVABLE &&
1046 zone_idx(zone) == ZONE_MOVABLE - 1) {
1047 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048 return -EINVAL;
1049 }
1050
1051 /* Previous code may changed the zone of the pfn range */
1052 zone = page_zone(pfn_to_page(pfn));
1053
1054 arg.start_pfn = pfn;
1055 arg.nr_pages = nr_pages;
1056 node_states_check_changes_online(nr_pages, zone, &arg);
1057
1058 nid = zone_to_nid(zone);
1059
1060 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061 ret = notifier_to_errno(ret);
1062 if (ret)
1063 goto failed_addition;
1064
1065 /*
1066 * If this zone is not populated, then it is not in zonelist.
1067 * This means the page allocator ignores this zone.
1068 * So, zonelist must be updated after online.
1069 */
1070 mutex_lock(&zonelists_mutex);
1071 if (!populated_zone(zone)) {
1072 need_zonelists_rebuild = 1;
1073 build_all_zonelists(NULL, zone);
1074 }
1075
1076 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077 online_pages_range);
1078 if (ret) {
1079 if (need_zonelists_rebuild)
1080 zone_pcp_reset(zone);
1081 mutex_unlock(&zonelists_mutex);
1082 goto failed_addition;
1083 }
1084
1085 zone->present_pages += onlined_pages;
1086
1087 pgdat_resize_lock(zone->zone_pgdat, &flags);
1088 zone->zone_pgdat->node_present_pages += onlined_pages;
1089 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090
1091 if (onlined_pages) {
1092 node_states_set_node(nid, &arg);
1093 if (need_zonelists_rebuild)
1094 build_all_zonelists(NULL, NULL);
1095 else
1096 zone_pcp_update(zone);
1097 }
1098
1099 mutex_unlock(&zonelists_mutex);
1100
1101 init_per_zone_wmark_min();
1102
1103 if (onlined_pages) {
1104 kswapd_run(nid);
1105 kcompactd_run(nid);
1106 }
1107
1108 vm_total_pages = nr_free_pagecache_pages();
1109
1110 writeback_set_ratelimit();
1111
1112 if (onlined_pages)
1113 memory_notify(MEM_ONLINE, &arg);
1114 return 0;
1115
1116failed_addition:
1117 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118 (unsigned long long) pfn << PAGE_SHIFT,
1119 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120 memory_notify(MEM_CANCEL_ONLINE, &arg);
1121 return ret;
1122}
1123#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124
1125static void reset_node_present_pages(pg_data_t *pgdat)
1126{
1127 struct zone *z;
1128
1129 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130 z->present_pages = 0;
1131
1132 pgdat->node_present_pages = 0;
1133}
1134
1135/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137{
1138 struct pglist_data *pgdat;
1139 unsigned long zones_size[MAX_NR_ZONES] = {0};
1140 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141 unsigned long start_pfn = PFN_DOWN(start);
1142
1143 pgdat = NODE_DATA(nid);
1144 if (!pgdat) {
1145 pgdat = arch_alloc_nodedata(nid);
1146 if (!pgdat)
1147 return NULL;
1148
1149 arch_refresh_nodedata(nid, pgdat);
1150 } else {
1151 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1152 pgdat->nr_zones = 0;
1153 pgdat->classzone_idx = 0;
1154 }
1155
1156 /* we can use NODE_DATA(nid) from here */
1157
1158 /* init node's zones as empty zones, we don't have any present pages.*/
1159 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160
1161 /*
1162 * The node we allocated has no zone fallback lists. For avoiding
1163 * to access not-initialized zonelist, build here.
1164 */
1165 mutex_lock(&zonelists_mutex);
1166 build_all_zonelists(pgdat, NULL);
1167 mutex_unlock(&zonelists_mutex);
1168
1169 /*
1170 * zone->managed_pages is set to an approximate value in
1171 * free_area_init_core(), which will cause
1172 * /sys/device/system/node/nodeX/meminfo has wrong data.
1173 * So reset it to 0 before any memory is onlined.
1174 */
1175 reset_node_managed_pages(pgdat);
1176
1177 /*
1178 * When memory is hot-added, all the memory is in offline state. So
1179 * clear all zones' present_pages because they will be updated in
1180 * online_pages() and offline_pages().
1181 */
1182 reset_node_present_pages(pgdat);
1183
1184 return pgdat;
1185}
1186
1187static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188{
1189 arch_refresh_nodedata(nid, NULL);
1190 arch_free_nodedata(pgdat);
1191 return;
1192}
1193
1194
1195/**
1196 * try_online_node - online a node if offlined
1197 *
1198 * called by cpu_up() to online a node without onlined memory.
1199 */
1200int try_online_node(int nid)
1201{
1202 pg_data_t *pgdat;
1203 int ret;
1204
1205 if (node_online(nid))
1206 return 0;
1207
1208 mem_hotplug_begin();
1209 pgdat = hotadd_new_pgdat(nid, 0);
1210 if (!pgdat) {
1211 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212 ret = -ENOMEM;
1213 goto out;
1214 }
1215 node_set_online(nid);
1216 ret = register_one_node(nid);
1217 BUG_ON(ret);
1218
1219 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220 mutex_lock(&zonelists_mutex);
1221 build_all_zonelists(NULL, NULL);
1222 mutex_unlock(&zonelists_mutex);
1223 }
1224
1225out:
1226 mem_hotplug_done();
1227 return ret;
1228}
1229
1230static int check_hotplug_memory_range(u64 start, u64 size)
1231{
1232 u64 start_pfn = PFN_DOWN(start);
1233 u64 nr_pages = size >> PAGE_SHIFT;
1234
1235 /* Memory range must be aligned with section */
1236 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239 (unsigned long long)start,
1240 (unsigned long long)size);
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245}
1246
1247/*
1248 * If movable zone has already been setup, newly added memory should be check.
1249 * If its address is higher than movable zone, it should be added as movable.
1250 * Without this check, movable zone may overlap with other zone.
1251 */
1252static int should_add_memory_movable(int nid, u64 start, u64 size)
1253{
1254 unsigned long start_pfn = start >> PAGE_SHIFT;
1255 pg_data_t *pgdat = NODE_DATA(nid);
1256 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257
1258 if (zone_is_empty(movable_zone))
1259 return 0;
1260
1261 if (movable_zone->zone_start_pfn <= start_pfn)
1262 return 1;
1263
1264 return 0;
1265}
1266
1267int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268 bool for_device)
1269{
1270#ifdef CONFIG_ZONE_DEVICE
1271 if (for_device)
1272 return ZONE_DEVICE;
1273#endif
1274 if (should_add_memory_movable(nid, start, size))
1275 return ZONE_MOVABLE;
1276
1277 return zone_default;
1278}
1279
1280static int online_memory_block(struct memory_block *mem, void *arg)
1281{
1282 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1283}
1284
1285/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286int __ref add_memory_resource(int nid, struct resource *res, bool online)
1287{
1288 u64 start, size;
1289 pg_data_t *pgdat = NULL;
1290 bool new_pgdat;
1291 bool new_node;
1292 int ret;
1293
1294 start = res->start;
1295 size = resource_size(res);
1296
1297 ret = check_hotplug_memory_range(start, size);
1298 if (ret)
1299 return ret;
1300
1301 { /* Stupid hack to suppress address-never-null warning */
1302 void *p = NODE_DATA(nid);
1303 new_pgdat = !p;
1304 }
1305
1306 mem_hotplug_begin();
1307
1308 /*
1309 * Add new range to memblock so that when hotadd_new_pgdat() is called
1310 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311 * this new range and calculate total pages correctly. The range will
1312 * be removed at hot-remove time.
1313 */
1314 memblock_add_node(start, size, nid);
1315
1316 new_node = !node_online(nid);
1317 if (new_node) {
1318 pgdat = hotadd_new_pgdat(nid, start);
1319 ret = -ENOMEM;
1320 if (!pgdat)
1321 goto error;
1322 }
1323
1324 /* call arch's memory hotadd */
1325 ret = arch_add_memory(nid, start, size, false);
1326
1327 if (ret < 0)
1328 goto error;
1329
1330 /* we online node here. we can't roll back from here. */
1331 node_set_online(nid);
1332
1333 if (new_node) {
1334 ret = register_one_node(nid);
1335 /*
1336 * If sysfs file of new node can't create, cpu on the node
1337 * can't be hot-added. There is no rollback way now.
1338 * So, check by BUG_ON() to catch it reluctantly..
1339 */
1340 BUG_ON(ret);
1341 }
1342
1343 /* create new memmap entry */
1344 firmware_map_add_hotplug(start, start + size, "System RAM");
1345
1346 /* online pages if requested */
1347 if (online)
1348 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349 NULL, online_memory_block);
1350
1351 goto out;
1352
1353error:
1354 /* rollback pgdat allocation and others */
1355 if (new_pgdat)
1356 rollback_node_hotadd(nid, pgdat);
1357 memblock_remove(start, size);
1358
1359out:
1360 mem_hotplug_done();
1361 return ret;
1362}
1363EXPORT_SYMBOL_GPL(add_memory_resource);
1364
1365int __ref add_memory(int nid, u64 start, u64 size)
1366{
1367 struct resource *res;
1368 int ret;
1369
1370 res = register_memory_resource(start, size);
1371 if (IS_ERR(res))
1372 return PTR_ERR(res);
1373
1374 ret = add_memory_resource(nid, res, memhp_auto_online);
1375 if (ret < 0)
1376 release_memory_resource(res);
1377 return ret;
1378}
1379EXPORT_SYMBOL_GPL(add_memory);
1380
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382/*
1383 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384 * set and the size of the free page is given by page_order(). Using this,
1385 * the function determines if the pageblock contains only free pages.
1386 * Due to buddy contraints, a free page at least the size of a pageblock will
1387 * be located at the start of the pageblock
1388 */
1389static inline int pageblock_free(struct page *page)
1390{
1391 return PageBuddy(page) && page_order(page) >= pageblock_order;
1392}
1393
1394/* Return the start of the next active pageblock after a given page */
1395static struct page *next_active_pageblock(struct page *page)
1396{
1397 /* Ensure the starting page is pageblock-aligned */
1398 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399
1400 /* If the entire pageblock is free, move to the end of free page */
1401 if (pageblock_free(page)) {
1402 int order;
1403 /* be careful. we don't have locks, page_order can be changed.*/
1404 order = page_order(page);
1405 if ((order < MAX_ORDER) && (order >= pageblock_order))
1406 return page + (1 << order);
1407 }
1408
1409 return page + pageblock_nr_pages;
1410}
1411
1412/* Checks if this range of memory is likely to be hot-removable. */
1413int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1414{
1415 struct page *page = pfn_to_page(start_pfn);
1416 struct page *end_page = page + nr_pages;
1417
1418 /* Check the starting page of each pageblock within the range */
1419 for (; page < end_page; page = next_active_pageblock(page)) {
1420 if (!is_pageblock_removable_nolock(page))
1421 return 0;
1422 cond_resched();
1423 }
1424
1425 /* All pageblocks in the memory block are likely to be hot-removable */
1426 return 1;
1427}
1428
1429/*
1430 * Confirm all pages in a range [start, end) is belongs to the same zone.
1431 */
1432int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433{
1434 unsigned long pfn, sec_end_pfn;
1435 struct zone *zone = NULL;
1436 struct page *page;
1437 int i;
1438 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439 pfn < end_pfn;
1440 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441 /* Make sure the memory section is present first */
1442 if (!present_section_nr(pfn_to_section_nr(pfn)))
1443 continue;
1444 for (; pfn < sec_end_pfn && pfn < end_pfn;
1445 pfn += MAX_ORDER_NR_PAGES) {
1446 i = 0;
1447 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448 while ((i < MAX_ORDER_NR_PAGES) &&
1449 !pfn_valid_within(pfn + i))
1450 i++;
1451 if (i == MAX_ORDER_NR_PAGES)
1452 continue;
1453 page = pfn_to_page(pfn + i);
1454 if (zone && page_zone(page) != zone)
1455 return 0;
1456 zone = page_zone(page);
1457 }
1458 }
1459 return 1;
1460}
1461
1462/*
1463 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464 * and hugepages). We scan pfn because it's much easier than scanning over
1465 * linked list. This function returns the pfn of the first found movable
1466 * page if it's found, otherwise 0.
1467 */
1468static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1469{
1470 unsigned long pfn;
1471 struct page *page;
1472 for (pfn = start; pfn < end; pfn++) {
1473 if (pfn_valid(pfn)) {
1474 page = pfn_to_page(pfn);
1475 if (PageLRU(page))
1476 return pfn;
1477 if (PageHuge(page)) {
1478 if (page_huge_active(page))
1479 return pfn;
1480 else
1481 pfn = round_up(pfn + 1,
1482 1 << compound_order(page)) - 1;
1483 }
1484 }
1485 }
1486 return 0;
1487}
1488
1489#define NR_OFFLINE_AT_ONCE_PAGES (256)
1490static int
1491do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492{
1493 unsigned long pfn;
1494 struct page *page;
1495 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496 int not_managed = 0;
1497 int ret = 0;
1498 LIST_HEAD(source);
1499
1500 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501 if (!pfn_valid(pfn))
1502 continue;
1503 page = pfn_to_page(pfn);
1504
1505 if (PageHuge(page)) {
1506 struct page *head = compound_head(page);
1507 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508 if (compound_order(head) > PFN_SECTION_SHIFT) {
1509 ret = -EBUSY;
1510 break;
1511 }
1512 if (isolate_huge_page(page, &source))
1513 move_pages -= 1 << compound_order(head);
1514 continue;
1515 }
1516
1517 if (!get_page_unless_zero(page))
1518 continue;
1519 /*
1520 * We can skip free pages. And we can only deal with pages on
1521 * LRU.
1522 */
1523 ret = isolate_lru_page(page);
1524 if (!ret) { /* Success */
1525 put_page(page);
1526 list_add_tail(&page->lru, &source);
1527 move_pages--;
1528 inc_zone_page_state(page, NR_ISOLATED_ANON +
1529 page_is_file_cache(page));
1530
1531 } else {
1532#ifdef CONFIG_DEBUG_VM
1533 pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534 dump_page(page, "failed to remove from LRU");
1535#endif
1536 put_page(page);
1537 /* Because we don't have big zone->lock. we should
1538 check this again here. */
1539 if (page_count(page)) {
1540 not_managed++;
1541 ret = -EBUSY;
1542 break;
1543 }
1544 }
1545 }
1546 if (!list_empty(&source)) {
1547 if (not_managed) {
1548 putback_movable_pages(&source);
1549 goto out;
1550 }
1551
1552 /*
1553 * alloc_migrate_target should be improooooved!!
1554 * migrate_pages returns # of failed pages.
1555 */
1556 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558 if (ret)
1559 putback_movable_pages(&source);
1560 }
1561out:
1562 return ret;
1563}
1564
1565/*
1566 * remove from free_area[] and mark all as Reserved.
1567 */
1568static int
1569offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570 void *data)
1571{
1572 __offline_isolated_pages(start, start + nr_pages);
1573 return 0;
1574}
1575
1576static void
1577offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578{
1579 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580 offline_isolated_pages_cb);
1581}
1582
1583/*
1584 * Check all pages in range, recoreded as memory resource, are isolated.
1585 */
1586static int
1587check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588 void *data)
1589{
1590 int ret;
1591 long offlined = *(long *)data;
1592 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593 offlined = nr_pages;
1594 if (!ret)
1595 *(long *)data += offlined;
1596 return ret;
1597}
1598
1599static long
1600check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602 long offlined = 0;
1603 int ret;
1604
1605 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606 check_pages_isolated_cb);
1607 if (ret < 0)
1608 offlined = (long)ret;
1609 return offlined;
1610}
1611
1612#ifdef CONFIG_MOVABLE_NODE
1613/*
1614 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615 * normal memory.
1616 */
1617static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618{
1619 return true;
1620}
1621#else /* CONFIG_MOVABLE_NODE */
1622/* ensure the node has NORMAL memory if it is still online */
1623static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624{
1625 struct pglist_data *pgdat = zone->zone_pgdat;
1626 unsigned long present_pages = 0;
1627 enum zone_type zt;
1628
1629 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630 present_pages += pgdat->node_zones[zt].present_pages;
1631
1632 if (present_pages > nr_pages)
1633 return true;
1634
1635 present_pages = 0;
1636 for (; zt <= ZONE_MOVABLE; zt++)
1637 present_pages += pgdat->node_zones[zt].present_pages;
1638
1639 /*
1640 * we can't offline the last normal memory until all
1641 * higher memory is offlined.
1642 */
1643 return present_pages == 0;
1644}
1645#endif /* CONFIG_MOVABLE_NODE */
1646
1647static int __init cmdline_parse_movable_node(char *p)
1648{
1649#ifdef CONFIG_MOVABLE_NODE
1650 /*
1651 * Memory used by the kernel cannot be hot-removed because Linux
1652 * cannot migrate the kernel pages. When memory hotplug is
1653 * enabled, we should prevent memblock from allocating memory
1654 * for the kernel.
1655 *
1656 * ACPI SRAT records all hotpluggable memory ranges. But before
1657 * SRAT is parsed, we don't know about it.
1658 *
1659 * The kernel image is loaded into memory at very early time. We
1660 * cannot prevent this anyway. So on NUMA system, we set any
1661 * node the kernel resides in as un-hotpluggable.
1662 *
1663 * Since on modern servers, one node could have double-digit
1664 * gigabytes memory, we can assume the memory around the kernel
1665 * image is also un-hotpluggable. So before SRAT is parsed, just
1666 * allocate memory near the kernel image to try the best to keep
1667 * the kernel away from hotpluggable memory.
1668 */
1669 memblock_set_bottom_up(true);
1670 movable_node_enabled = true;
1671#else
1672 pr_warn("movable_node option not supported\n");
1673#endif
1674 return 0;
1675}
1676early_param("movable_node", cmdline_parse_movable_node);
1677
1678/* check which state of node_states will be changed when offline memory */
1679static void node_states_check_changes_offline(unsigned long nr_pages,
1680 struct zone *zone, struct memory_notify *arg)
1681{
1682 struct pglist_data *pgdat = zone->zone_pgdat;
1683 unsigned long present_pages = 0;
1684 enum zone_type zt, zone_last = ZONE_NORMAL;
1685
1686 /*
1687 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688 * contains nodes which have zones of 0...ZONE_NORMAL,
1689 * set zone_last to ZONE_NORMAL.
1690 *
1691 * If we don't have HIGHMEM nor movable node,
1692 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694 */
1695 if (N_MEMORY == N_NORMAL_MEMORY)
1696 zone_last = ZONE_MOVABLE;
1697
1698 /*
1699 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700 * If the memory to be offline is in a zone of 0...zone_last,
1701 * and it is the last present memory, 0...zone_last will
1702 * become empty after offline , thus we can determind we will
1703 * need to clear the node from node_states[N_NORMAL_MEMORY].
1704 */
1705 for (zt = 0; zt <= zone_last; zt++)
1706 present_pages += pgdat->node_zones[zt].present_pages;
1707 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708 arg->status_change_nid_normal = zone_to_nid(zone);
1709 else
1710 arg->status_change_nid_normal = -1;
1711
1712#ifdef CONFIG_HIGHMEM
1713 /*
1714 * If we have movable node, node_states[N_HIGH_MEMORY]
1715 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716 * set zone_last to ZONE_HIGHMEM.
1717 *
1718 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719 * contains nodes which have zones of 0...ZONE_MOVABLE,
1720 * set zone_last to ZONE_MOVABLE.
1721 */
1722 zone_last = ZONE_HIGHMEM;
1723 if (N_MEMORY == N_HIGH_MEMORY)
1724 zone_last = ZONE_MOVABLE;
1725
1726 for (; zt <= zone_last; zt++)
1727 present_pages += pgdat->node_zones[zt].present_pages;
1728 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729 arg->status_change_nid_high = zone_to_nid(zone);
1730 else
1731 arg->status_change_nid_high = -1;
1732#else
1733 arg->status_change_nid_high = arg->status_change_nid_normal;
1734#endif
1735
1736 /*
1737 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1738 */
1739 zone_last = ZONE_MOVABLE;
1740
1741 /*
1742 * check whether node_states[N_HIGH_MEMORY] will be changed
1743 * If we try to offline the last present @nr_pages from the node,
1744 * we can determind we will need to clear the node from
1745 * node_states[N_HIGH_MEMORY].
1746 */
1747 for (; zt <= zone_last; zt++)
1748 present_pages += pgdat->node_zones[zt].present_pages;
1749 if (nr_pages >= present_pages)
1750 arg->status_change_nid = zone_to_nid(zone);
1751 else
1752 arg->status_change_nid = -1;
1753}
1754
1755static void node_states_clear_node(int node, struct memory_notify *arg)
1756{
1757 if (arg->status_change_nid_normal >= 0)
1758 node_clear_state(node, N_NORMAL_MEMORY);
1759
1760 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761 (arg->status_change_nid_high >= 0))
1762 node_clear_state(node, N_HIGH_MEMORY);
1763
1764 if ((N_MEMORY != N_HIGH_MEMORY) &&
1765 (arg->status_change_nid >= 0))
1766 node_clear_state(node, N_MEMORY);
1767}
1768
1769static int __ref __offline_pages(unsigned long start_pfn,
1770 unsigned long end_pfn, unsigned long timeout)
1771{
1772 unsigned long pfn, nr_pages, expire;
1773 long offlined_pages;
1774 int ret, drain, retry_max, node;
1775 unsigned long flags;
1776 struct zone *zone;
1777 struct memory_notify arg;
1778
1779 /* at least, alignment against pageblock is necessary */
1780 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781 return -EINVAL;
1782 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783 return -EINVAL;
1784 /* This makes hotplug much easier...and readable.
1785 we assume this for now. .*/
1786 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1787 return -EINVAL;
1788
1789 zone = page_zone(pfn_to_page(start_pfn));
1790 node = zone_to_nid(zone);
1791 nr_pages = end_pfn - start_pfn;
1792
1793 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794 return -EINVAL;
1795
1796 /* set above range as isolated */
1797 ret = start_isolate_page_range(start_pfn, end_pfn,
1798 MIGRATE_MOVABLE, true);
1799 if (ret)
1800 return ret;
1801
1802 arg.start_pfn = start_pfn;
1803 arg.nr_pages = nr_pages;
1804 node_states_check_changes_offline(nr_pages, zone, &arg);
1805
1806 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807 ret = notifier_to_errno(ret);
1808 if (ret)
1809 goto failed_removal;
1810
1811 pfn = start_pfn;
1812 expire = jiffies + timeout;
1813 drain = 0;
1814 retry_max = 5;
1815repeat:
1816 /* start memory hot removal */
1817 ret = -EAGAIN;
1818 if (time_after(jiffies, expire))
1819 goto failed_removal;
1820 ret = -EINTR;
1821 if (signal_pending(current))
1822 goto failed_removal;
1823 ret = 0;
1824 if (drain) {
1825 lru_add_drain_all();
1826 cond_resched();
1827 drain_all_pages(zone);
1828 }
1829
1830 pfn = scan_movable_pages(start_pfn, end_pfn);
1831 if (pfn) { /* We have movable pages */
1832 ret = do_migrate_range(pfn, end_pfn);
1833 if (!ret) {
1834 drain = 1;
1835 goto repeat;
1836 } else {
1837 if (ret < 0)
1838 if (--retry_max == 0)
1839 goto failed_removal;
1840 yield();
1841 drain = 1;
1842 goto repeat;
1843 }
1844 }
1845 /* drain all zone's lru pagevec, this is asynchronous... */
1846 lru_add_drain_all();
1847 yield();
1848 /* drain pcp pages, this is synchronous. */
1849 drain_all_pages(zone);
1850 /*
1851 * dissolve free hugepages in the memory block before doing offlining
1852 * actually in order to make hugetlbfs's object counting consistent.
1853 */
1854 dissolve_free_huge_pages(start_pfn, end_pfn);
1855 /* check again */
1856 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857 if (offlined_pages < 0) {
1858 ret = -EBUSY;
1859 goto failed_removal;
1860 }
1861 pr_info("Offlined Pages %ld\n", offlined_pages);
1862 /* Ok, all of our target is isolated.
1863 We cannot do rollback at this point. */
1864 offline_isolated_pages(start_pfn, end_pfn);
1865 /* reset pagetype flags and makes migrate type to be MOVABLE */
1866 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867 /* removal success */
1868 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869 zone->present_pages -= offlined_pages;
1870
1871 pgdat_resize_lock(zone->zone_pgdat, &flags);
1872 zone->zone_pgdat->node_present_pages -= offlined_pages;
1873 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1874
1875 init_per_zone_wmark_min();
1876
1877 if (!populated_zone(zone)) {
1878 zone_pcp_reset(zone);
1879 mutex_lock(&zonelists_mutex);
1880 build_all_zonelists(NULL, NULL);
1881 mutex_unlock(&zonelists_mutex);
1882 } else
1883 zone_pcp_update(zone);
1884
1885 node_states_clear_node(node, &arg);
1886 if (arg.status_change_nid >= 0) {
1887 kswapd_stop(node);
1888 kcompactd_stop(node);
1889 }
1890
1891 vm_total_pages = nr_free_pagecache_pages();
1892 writeback_set_ratelimit();
1893
1894 memory_notify(MEM_OFFLINE, &arg);
1895 return 0;
1896
1897failed_removal:
1898 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899 (unsigned long long) start_pfn << PAGE_SHIFT,
1900 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902 /* pushback to free area */
1903 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1904 return ret;
1905}
1906
1907/* Must be protected by mem_hotplug_begin() */
1908int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909{
1910 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911}
1912#endif /* CONFIG_MEMORY_HOTREMOVE */
1913
1914/**
1915 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916 * @start_pfn: start pfn of the memory range
1917 * @end_pfn: end pfn of the memory range
1918 * @arg: argument passed to func
1919 * @func: callback for each memory section walked
1920 *
1921 * This function walks through all present mem sections in range
1922 * [start_pfn, end_pfn) and call func on each mem section.
1923 *
1924 * Returns the return value of func.
1925 */
1926int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927 void *arg, int (*func)(struct memory_block *, void *))
1928{
1929 struct memory_block *mem = NULL;
1930 struct mem_section *section;
1931 unsigned long pfn, section_nr;
1932 int ret;
1933
1934 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935 section_nr = pfn_to_section_nr(pfn);
1936 if (!present_section_nr(section_nr))
1937 continue;
1938
1939 section = __nr_to_section(section_nr);
1940 /* same memblock? */
1941 if (mem)
1942 if ((section_nr >= mem->start_section_nr) &&
1943 (section_nr <= mem->end_section_nr))
1944 continue;
1945
1946 mem = find_memory_block_hinted(section, mem);
1947 if (!mem)
1948 continue;
1949
1950 ret = func(mem, arg);
1951 if (ret) {
1952 kobject_put(&mem->dev.kobj);
1953 return ret;
1954 }
1955 }
1956
1957 if (mem)
1958 kobject_put(&mem->dev.kobj);
1959
1960 return 0;
1961}
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965{
1966 int ret = !is_memblock_offlined(mem);
1967
1968 if (unlikely(ret)) {
1969 phys_addr_t beginpa, endpa;
1970
1971 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974 &beginpa, &endpa);
1975 }
1976
1977 return ret;
1978}
1979
1980static int check_cpu_on_node(pg_data_t *pgdat)
1981{
1982 int cpu;
1983
1984 for_each_present_cpu(cpu) {
1985 if (cpu_to_node(cpu) == pgdat->node_id)
1986 /*
1987 * the cpu on this node isn't removed, and we can't
1988 * offline this node.
1989 */
1990 return -EBUSY;
1991 }
1992
1993 return 0;
1994}
1995
1996static void unmap_cpu_on_node(pg_data_t *pgdat)
1997{
1998#ifdef CONFIG_ACPI_NUMA
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu)
2002 if (cpu_to_node(cpu) == pgdat->node_id)
2003 numa_clear_node(cpu);
2004#endif
2005}
2006
2007static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008{
2009 int ret;
2010
2011 ret = check_cpu_on_node(pgdat);
2012 if (ret)
2013 return ret;
2014
2015 /*
2016 * the node will be offlined when we come here, so we can clear
2017 * the cpu_to_node() now.
2018 */
2019
2020 unmap_cpu_on_node(pgdat);
2021 return 0;
2022}
2023
2024/**
2025 * try_offline_node
2026 *
2027 * Offline a node if all memory sections and cpus of the node are removed.
2028 *
2029 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030 * and online/offline operations before this call.
2031 */
2032void try_offline_node(int nid)
2033{
2034 pg_data_t *pgdat = NODE_DATA(nid);
2035 unsigned long start_pfn = pgdat->node_start_pfn;
2036 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037 unsigned long pfn;
2038 int i;
2039
2040 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041 unsigned long section_nr = pfn_to_section_nr(pfn);
2042
2043 if (!present_section_nr(section_nr))
2044 continue;
2045
2046 if (pfn_to_nid(pfn) != nid)
2047 continue;
2048
2049 /*
2050 * some memory sections of this node are not removed, and we
2051 * can't offline node now.
2052 */
2053 return;
2054 }
2055
2056 if (check_and_unmap_cpu_on_node(pgdat))
2057 return;
2058
2059 /*
2060 * all memory/cpu of this node are removed, we can offline this
2061 * node now.
2062 */
2063 node_set_offline(nid);
2064 unregister_one_node(nid);
2065
2066 /* free waittable in each zone */
2067 for (i = 0; i < MAX_NR_ZONES; i++) {
2068 struct zone *zone = pgdat->node_zones + i;
2069
2070 /*
2071 * wait_table may be allocated from boot memory,
2072 * here only free if it's allocated by vmalloc.
2073 */
2074 if (is_vmalloc_addr(zone->wait_table)) {
2075 vfree(zone->wait_table);
2076 zone->wait_table = NULL;
2077 }
2078 }
2079}
2080EXPORT_SYMBOL(try_offline_node);
2081
2082/**
2083 * remove_memory
2084 *
2085 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086 * and online/offline operations before this call, as required by
2087 * try_offline_node().
2088 */
2089void __ref remove_memory(int nid, u64 start, u64 size)
2090{
2091 int ret;
2092
2093 BUG_ON(check_hotplug_memory_range(start, size));
2094
2095 mem_hotplug_begin();
2096
2097 /*
2098 * All memory blocks must be offlined before removing memory. Check
2099 * whether all memory blocks in question are offline and trigger a BUG()
2100 * if this is not the case.
2101 */
2102 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103 check_memblock_offlined_cb);
2104 if (ret)
2105 BUG();
2106
2107 /* remove memmap entry */
2108 firmware_map_remove(start, start + size, "System RAM");
2109 memblock_free(start, size);
2110 memblock_remove(start, size);
2111
2112 arch_remove_memory(start, size);
2113
2114 try_offline_node(nid);
2115
2116 mem_hotplug_done();
2117}
2118EXPORT_SYMBOL_GPL(remove_memory);
2119#endif /* CONFIG_MEMORY_HOTREMOVE */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/compaction.h>
36#include <linux/rmap.h>
37#include <linux/module.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42#include "shuffle.h"
43
44enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48};
49
50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52static inline unsigned long memory_block_memmap_size(void)
53{
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55}
56
57static inline unsigned long memory_block_memmap_on_memory_pages(void)
58{
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70}
71
72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73/*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77{
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100}
101
102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103{
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109}
110
111static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114};
115module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
120static inline bool mhp_memmap_on_memory(void)
121{
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123}
124#else
125static inline bool mhp_memmap_on_memory(void)
126{
127 return false;
128}
129#endif
130
131enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134};
135
136static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139};
140
141static int set_online_policy(const char *val, const struct kernel_param *kp)
142{
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149}
150
151static int get_online_policy(char *buffer, const struct kernel_param *kp)
152{
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154}
155
156/*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168};
169module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174/*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181static unsigned int auto_movable_ratio __read_mostly = 301;
182module_param(auto_movable_ratio, uint, 0644);
183MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187/*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190#ifdef CONFIG_NUMA
191static bool auto_movable_numa_aware __read_mostly = true;
192module_param(auto_movable_numa_aware, bool, 0644);
193MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196#endif /* CONFIG_NUMA */
197
198/*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205static online_page_callback_t online_page_callback = generic_online_page;
206static DEFINE_MUTEX(online_page_callback_lock);
207
208DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
210void get_online_mems(void)
211{
212 percpu_down_read(&mem_hotplug_lock);
213}
214
215void put_online_mems(void)
216{
217 percpu_up_read(&mem_hotplug_lock);
218}
219
220bool movable_node_enabled = false;
221
222#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223int mhp_default_online_type = MMOP_OFFLINE;
224#else
225int mhp_default_online_type = MMOP_ONLINE;
226#endif
227
228static int __init setup_memhp_default_state(char *str)
229{
230 const int online_type = mhp_online_type_from_str(str);
231
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
234
235 return 1;
236}
237__setup("memhp_default_state=", setup_memhp_default_state);
238
239void mem_hotplug_begin(void)
240{
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
243}
244
245void mem_hotplug_done(void)
246{
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
249}
250
251u64 max_mem_size = U64_MAX;
252
253/* add this memory to iomem resource */
254static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
256{
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
265
266 /*
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
271 */
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
274
275 /*
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
279 */
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
282
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
287 }
288 return res;
289}
290
291static void release_memory_resource(struct resource *res)
292{
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
297}
298
299static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300{
301 /*
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
309 */
310 unsigned long min_align;
311
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
319}
320
321/*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
326struct page *pfn_to_online_page(unsigned long pfn)
327{
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
331
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
334
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
338
339 /*
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
342 */
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
345
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
348
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
351
352 /*
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
357 */
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
360
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
364
365 return pfn_to_page(pfn);
366}
367EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
369int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
371{
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
376
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
379
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382 if (altmap) {
383 /*
384 * Validate altmap is within bounds of the total request
385 */
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
390 }
391 altmap->alloc = 0;
392 }
393
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
397 }
398
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
408 }
409 vmemmap_populate_print_last();
410 return err;
411}
412
413/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
417{
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
421
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
424
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
427
428 return start_pfn;
429 }
430
431 return 0;
432}
433
434/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
438{
439 unsigned long pfn;
440
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
446
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
449
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
452
453 return pfn;
454 }
455
456 return 0;
457}
458
459static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
461{
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
464
465 if (zone->zone_start_pfn == start_pfn) {
466 /*
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
471 */
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
480 }
481 } else if (zone_end_pfn(zone) == end_pfn) {
482 /*
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
487 */
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
495 }
496 }
497}
498
499static void update_pgdat_span(struct pglist_data *pgdat)
500{
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
503
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
507
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
515 }
516
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
521 }
522
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525}
526
527void __ref remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
530{
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
534
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
538
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
544 }
545
546 /*
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 */
551 if (zone_is_zone_device(zone))
552 return;
553
554 clear_zone_contiguous(zone);
555
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
558
559 set_zone_contiguous(zone);
560}
561
562/**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
573void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
575{
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
578
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
582 }
583
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
590 }
591}
592
593int set_online_page_callback(online_page_callback_t callback)
594{
595 int rc = -EINVAL;
596
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
599
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
603 }
604
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
607
608 return rc;
609}
610EXPORT_SYMBOL_GPL(set_online_page_callback);
611
612int restore_online_page_callback(online_page_callback_t callback)
613{
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628}
629EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
631void generic_online_page(struct page *page, unsigned int order)
632{
633 /*
634 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 * so we should map it first. This is better than introducing a special
636 * case in page freeing fast path.
637 */
638 debug_pagealloc_map_pages(page, 1 << order);
639 __free_pages_core(page, order);
640 totalram_pages_add(1UL << order);
641}
642EXPORT_SYMBOL_GPL(generic_online_page);
643
644static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645{
646 const unsigned long end_pfn = start_pfn + nr_pages;
647 unsigned long pfn;
648
649 /*
650 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 * decide to not expose all pages to the buddy (e.g., expose them
652 * later). We account all pages as being online and belonging to this
653 * zone ("present").
654 * When using memmap_on_memory, the range might not be aligned to
655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 * this and the first chunk to online will be pageblock_nr_pages.
657 */
658 for (pfn = start_pfn; pfn < end_pfn;) {
659 int order;
660
661 /*
662 * Free to online pages in the largest chunks alignment allows.
663 *
664 * __ffs() behaviour is undefined for 0. start == 0 is
665 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 * the case.
667 */
668 if (pfn)
669 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 else
671 order = MAX_PAGE_ORDER;
672
673 (*online_page_callback)(pfn_to_page(pfn), order);
674 pfn += (1UL << order);
675 }
676
677 /* mark all involved sections as online */
678 online_mem_sections(start_pfn, end_pfn);
679}
680
681/* check which state of node_states will be changed when online memory */
682static void node_states_check_changes_online(unsigned long nr_pages,
683 struct zone *zone, struct memory_notify *arg)
684{
685 int nid = zone_to_nid(zone);
686
687 arg->status_change_nid = NUMA_NO_NODE;
688 arg->status_change_nid_normal = NUMA_NO_NODE;
689
690 if (!node_state(nid, N_MEMORY))
691 arg->status_change_nid = nid;
692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 arg->status_change_nid_normal = nid;
694}
695
696static void node_states_set_node(int node, struct memory_notify *arg)
697{
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid >= 0)
702 node_set_state(node, N_MEMORY);
703}
704
705static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long old_end_pfn = zone_end_pfn(zone);
709
710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 zone->zone_start_pfn = start_pfn;
712
713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714}
715
716static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717 unsigned long nr_pages)
718{
719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 pgdat->node_start_pfn = start_pfn;
723
724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726}
727
728#ifdef CONFIG_ZONE_DEVICE
729static void section_taint_zone_device(unsigned long pfn)
730{
731 struct mem_section *ms = __pfn_to_section(pfn);
732
733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734}
735#else
736static inline void section_taint_zone_device(unsigned long pfn)
737{
738}
739#endif
740
741/*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
750void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 unsigned long nr_pages,
752 struct vmem_altmap *altmap, int migratetype)
753{
754 struct pglist_data *pgdat = zone->zone_pgdat;
755 int nid = pgdat->node_id;
756
757 clear_zone_contiguous(zone);
758
759 if (zone_is_empty(zone))
760 init_currently_empty_zone(zone, start_pfn, nr_pages);
761 resize_zone_range(zone, start_pfn, nr_pages);
762 resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764 /*
765 * Subsection population requires care in pfn_to_online_page().
766 * Set the taint to enable the slow path detection of
767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
768 * section.
769 */
770 if (zone_is_zone_device(zone)) {
771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 section_taint_zone_device(start_pfn);
773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 section_taint_zone_device(start_pfn + nr_pages);
775 }
776
777 /*
778 * TODO now we have a visible range of pages which are not associated
779 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 * expects the zone spans the pfn range. All the pages in the range
781 * are reserved so nobody should be touching them so we should be safe
782 */
783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 MEMINIT_HOTPLUG, altmap, migratetype);
785
786 set_zone_contiguous(zone);
787}
788
789struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792};
793
794static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796{
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801#ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808#endif /* CONFIG_CMA */
809 }
810}
811struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814};
815
816static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818{
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841}
842
843static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845{
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 pg_data_t *pgdat = NODE_DATA(nid);
850 struct zone *zone;
851 int i;
852
853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 if (nid == NUMA_NO_NODE) {
855 /* TODO: cache values */
856 for_each_populated_zone(zone)
857 auto_movable_stats_account_zone(&stats, zone);
858 } else {
859 for (i = 0; i < MAX_NR_ZONES; i++) {
860 zone = pgdat->node_zones + i;
861 if (populated_zone(zone))
862 auto_movable_stats_account_zone(&stats, zone);
863 }
864 }
865
866 kernel_early_pages = stats.kernel_early_pages;
867 movable_pages = stats.movable_pages;
868
869 /*
870 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 * memory within the same group. Remove the effect of all but the
872 * current group from the stats.
873 */
874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 group, &group_stats);
876 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 return false;
878 kernel_early_pages -= group_stats.req_kernel_early_pages;
879 movable_pages -= group_stats.movable_pages;
880
881 if (group && group->is_dynamic)
882 kernel_early_pages += group->present_kernel_pages;
883
884 /*
885 * Test if we could online the given number of pages to ZONE_MOVABLE
886 * and still stay in the configured ratio.
887 */
888 movable_pages += nr_pages;
889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890}
891
892/*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
897static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 unsigned long nr_pages)
899{
900 struct pglist_data *pgdat = NODE_DATA(nid);
901 int zid;
902
903 for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 struct zone *zone = &pgdat->node_zones[zid];
905
906 if (zone_intersects(zone, start_pfn, nr_pages))
907 return zone;
908 }
909
910 return &pgdat->node_zones[ZONE_NORMAL];
911}
912
913/*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 * MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 * MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 * hotunplugged, especially when hot(un)plugging individual memory blocks.
933 * There is no coordination across memory devices, therefore "automatic"
934 * hotunplugging, as implemented in hypervisors, could result in zone
935 * imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 * with unmovable allocations). While there are corner cases where it might
939 * still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 * effectively unused by the kernel, yet they account to "present pages".
955 * Fortunately, these allocations are comparatively small in relevant setups
956 * (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 * hotplugged by virtio-mem, look like they are completely present, however,
959 * only parts of the memory block are actually currently usable.
960 * "present pages" is an upper limit that can get reached at runtime. As
961 * we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
963static struct zone *auto_movable_zone_for_pfn(int nid,
964 struct memory_group *group,
965 unsigned long pfn,
966 unsigned long nr_pages)
967{
968 unsigned long online_pages = 0, max_pages, end_pfn;
969 struct page *page;
970
971 if (!auto_movable_ratio)
972 goto kernel_zone;
973
974 if (group && !group->is_dynamic) {
975 max_pages = group->s.max_pages;
976 online_pages = group->present_movable_pages;
977
978 /* If anything is !MOVABLE online the rest !MOVABLE. */
979 if (group->present_kernel_pages)
980 goto kernel_zone;
981 } else if (!group || group->d.unit_pages == nr_pages) {
982 max_pages = nr_pages;
983 } else {
984 max_pages = group->d.unit_pages;
985 /*
986 * Take a look at all online sections in the current unit.
987 * We can safely assume that all pages within a section belong
988 * to the same zone, because dynamic memory groups only deal
989 * with hotplugged memory.
990 */
991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 end_pfn = pfn + group->d.unit_pages;
993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 page = pfn_to_online_page(pfn);
995 if (!page)
996 continue;
997 /* If anything is !MOVABLE online the rest !MOVABLE. */
998 if (!is_zone_movable_page(page))
999 goto kernel_zone;
1000 online_pages += PAGES_PER_SECTION;
1001 }
1002 }
1003
1004 /*
1005 * Online MOVABLE if we could *currently* online all remaining parts
1006 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 * nobody interferes, all will be MOVABLE if possible.
1008 */
1009 nr_pages = max_pages - online_pages;
1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 goto kernel_zone;
1012
1013#ifdef CONFIG_NUMA
1014 if (auto_movable_numa_aware &&
1015 !auto_movable_can_online_movable(nid, group, nr_pages))
1016 goto kernel_zone;
1017#endif /* CONFIG_NUMA */
1018
1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020kernel_zone:
1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022}
1023
1024static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 unsigned long nr_pages)
1026{
1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 nr_pages);
1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033 /*
1034 * We inherit the existing zone in a simple case where zones do not
1035 * overlap in the given range
1036 */
1037 if (in_kernel ^ in_movable)
1038 return (in_kernel) ? kernel_zone : movable_zone;
1039
1040 /*
1041 * If the range doesn't belong to any zone or two zones overlap in the
1042 * given range then we use movable zone only if movable_node is
1043 * enabled because we always online to a kernel zone by default.
1044 */
1045 return movable_node_enabled ? movable_zone : kernel_zone;
1046}
1047
1048struct zone *zone_for_pfn_range(int online_type, int nid,
1049 struct memory_group *group, unsigned long start_pfn,
1050 unsigned long nr_pages)
1051{
1052 if (online_type == MMOP_ONLINE_KERNEL)
1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055 if (online_type == MMOP_ONLINE_MOVABLE)
1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062}
1063
1064/*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
1068void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 long nr_pages)
1070{
1071 struct zone *zone = page_zone(page);
1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074 /*
1075 * We only support onlining/offlining/adding/removing of complete
1076 * memory blocks; therefore, either all is either early or hotplugged.
1077 */
1078 if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 zone->present_early_pages += nr_pages;
1080 zone->present_pages += nr_pages;
1081 zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083 if (group && movable)
1084 group->present_movable_pages += nr_pages;
1085 else if (group && !movable)
1086 group->present_kernel_pages += nr_pages;
1087}
1088
1089int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 struct zone *zone)
1091{
1092 unsigned long end_pfn = pfn + nr_pages;
1093 int ret, i;
1094
1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 if (ret)
1097 return ret;
1098
1099 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1100
1101 for (i = 0; i < nr_pages; i++)
1102 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1103
1104 /*
1105 * It might be that the vmemmap_pages fully span sections. If that is
1106 * the case, mark those sections online here as otherwise they will be
1107 * left offline.
1108 */
1109 if (nr_pages >= PAGES_PER_SECTION)
1110 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1111
1112 return ret;
1113}
1114
1115void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1116{
1117 unsigned long end_pfn = pfn + nr_pages;
1118
1119 /*
1120 * It might be that the vmemmap_pages fully span sections. If that is
1121 * the case, mark those sections offline here as otherwise they will be
1122 * left online.
1123 */
1124 if (nr_pages >= PAGES_PER_SECTION)
1125 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1126
1127 /*
1128 * The pages associated with this vmemmap have been offlined, so
1129 * we can reset its state here.
1130 */
1131 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1132 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1133}
1134
1135/*
1136 * Must be called with mem_hotplug_lock in write mode.
1137 */
1138int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1139 struct zone *zone, struct memory_group *group)
1140{
1141 unsigned long flags;
1142 int need_zonelists_rebuild = 0;
1143 const int nid = zone_to_nid(zone);
1144 int ret;
1145 struct memory_notify arg;
1146
1147 /*
1148 * {on,off}lining is constrained to full memory sections (or more
1149 * precisely to memory blocks from the user space POV).
1150 * memmap_on_memory is an exception because it reserves initial part
1151 * of the physical memory space for vmemmaps. That space is pageblock
1152 * aligned.
1153 */
1154 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1155 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1156 return -EINVAL;
1157
1158
1159 /* associate pfn range with the zone */
1160 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1161
1162 arg.start_pfn = pfn;
1163 arg.nr_pages = nr_pages;
1164 node_states_check_changes_online(nr_pages, zone, &arg);
1165
1166 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1167 ret = notifier_to_errno(ret);
1168 if (ret)
1169 goto failed_addition;
1170
1171 /*
1172 * Fixup the number of isolated pageblocks before marking the sections
1173 * onlining, such that undo_isolate_page_range() works correctly.
1174 */
1175 spin_lock_irqsave(&zone->lock, flags);
1176 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1177 spin_unlock_irqrestore(&zone->lock, flags);
1178
1179 /*
1180 * If this zone is not populated, then it is not in zonelist.
1181 * This means the page allocator ignores this zone.
1182 * So, zonelist must be updated after online.
1183 */
1184 if (!populated_zone(zone)) {
1185 need_zonelists_rebuild = 1;
1186 setup_zone_pageset(zone);
1187 }
1188
1189 online_pages_range(pfn, nr_pages);
1190 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1191
1192 node_states_set_node(nid, &arg);
1193 if (need_zonelists_rebuild)
1194 build_all_zonelists(NULL);
1195
1196 /* Basic onlining is complete, allow allocation of onlined pages. */
1197 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1198
1199 /*
1200 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1201 * the tail of the freelist when undoing isolation). Shuffle the whole
1202 * zone to make sure the just onlined pages are properly distributed
1203 * across the whole freelist - to create an initial shuffle.
1204 */
1205 shuffle_zone(zone);
1206
1207 /* reinitialise watermarks and update pcp limits */
1208 init_per_zone_wmark_min();
1209
1210 kswapd_run(nid);
1211 kcompactd_run(nid);
1212
1213 writeback_set_ratelimit();
1214
1215 memory_notify(MEM_ONLINE, &arg);
1216 return 0;
1217
1218failed_addition:
1219 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1220 (unsigned long long) pfn << PAGE_SHIFT,
1221 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1222 memory_notify(MEM_CANCEL_ONLINE, &arg);
1223 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1224 return ret;
1225}
1226
1227/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1228static pg_data_t __ref *hotadd_init_pgdat(int nid)
1229{
1230 struct pglist_data *pgdat;
1231
1232 /*
1233 * NODE_DATA is preallocated (free_area_init) but its internal
1234 * state is not allocated completely. Add missing pieces.
1235 * Completely offline nodes stay around and they just need
1236 * reintialization.
1237 */
1238 pgdat = NODE_DATA(nid);
1239
1240 /* init node's zones as empty zones, we don't have any present pages.*/
1241 free_area_init_core_hotplug(pgdat);
1242
1243 /*
1244 * The node we allocated has no zone fallback lists. For avoiding
1245 * to access not-initialized zonelist, build here.
1246 */
1247 build_all_zonelists(pgdat);
1248
1249 return pgdat;
1250}
1251
1252/*
1253 * __try_online_node - online a node if offlined
1254 * @nid: the node ID
1255 * @set_node_online: Whether we want to online the node
1256 * called by cpu_up() to online a node without onlined memory.
1257 *
1258 * Returns:
1259 * 1 -> a new node has been allocated
1260 * 0 -> the node is already online
1261 * -ENOMEM -> the node could not be allocated
1262 */
1263static int __try_online_node(int nid, bool set_node_online)
1264{
1265 pg_data_t *pgdat;
1266 int ret = 1;
1267
1268 if (node_online(nid))
1269 return 0;
1270
1271 pgdat = hotadd_init_pgdat(nid);
1272 if (!pgdat) {
1273 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277
1278 if (set_node_online) {
1279 node_set_online(nid);
1280 ret = register_one_node(nid);
1281 BUG_ON(ret);
1282 }
1283out:
1284 return ret;
1285}
1286
1287/*
1288 * Users of this function always want to online/register the node
1289 */
1290int try_online_node(int nid)
1291{
1292 int ret;
1293
1294 mem_hotplug_begin();
1295 ret = __try_online_node(nid, true);
1296 mem_hotplug_done();
1297 return ret;
1298}
1299
1300static int check_hotplug_memory_range(u64 start, u64 size)
1301{
1302 /* memory range must be block size aligned */
1303 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1304 !IS_ALIGNED(size, memory_block_size_bytes())) {
1305 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1306 memory_block_size_bytes(), start, size);
1307 return -EINVAL;
1308 }
1309
1310 return 0;
1311}
1312
1313static int online_memory_block(struct memory_block *mem, void *arg)
1314{
1315 mem->online_type = mhp_default_online_type;
1316 return device_online(&mem->dev);
1317}
1318
1319#ifndef arch_supports_memmap_on_memory
1320static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1321{
1322 /*
1323 * As default, we want the vmemmap to span a complete PMD such that we
1324 * can map the vmemmap using a single PMD if supported by the
1325 * architecture.
1326 */
1327 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1328}
1329#endif
1330
1331static bool mhp_supports_memmap_on_memory(unsigned long size)
1332{
1333 unsigned long vmemmap_size = memory_block_memmap_size();
1334 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1335
1336 /*
1337 * Besides having arch support and the feature enabled at runtime, we
1338 * need a few more assumptions to hold true:
1339 *
1340 * a) We span a single memory block: memory onlining/offlinin;g happens
1341 * in memory block granularity. We don't want the vmemmap of online
1342 * memory blocks to reside on offline memory blocks. In the future,
1343 * we might want to support variable-sized memory blocks to make the
1344 * feature more versatile.
1345 *
1346 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1347 * to populate memory from the altmap for unrelated parts (i.e.,
1348 * other memory blocks)
1349 *
1350 * c) The vmemmap pages (and thereby the pages that will be exposed to
1351 * the buddy) have to cover full pageblocks: memory onlining/offlining
1352 * code requires applicable ranges to be page-aligned, for example, to
1353 * set the migratetypes properly.
1354 *
1355 * TODO: Although we have a check here to make sure that vmemmap pages
1356 * fully populate a PMD, it is not the right place to check for
1357 * this. A much better solution involves improving vmemmap code
1358 * to fallback to base pages when trying to populate vmemmap using
1359 * altmap as an alternative source of memory, and we do not exactly
1360 * populate a single PMD.
1361 */
1362 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1363 return false;
1364
1365 /*
1366 * Make sure the vmemmap allocation is fully contained
1367 * so that we always allocate vmemmap memory from altmap area.
1368 */
1369 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1370 return false;
1371
1372 /*
1373 * start pfn should be pageblock_nr_pages aligned for correctly
1374 * setting migrate types
1375 */
1376 if (!pageblock_aligned(memmap_pages))
1377 return false;
1378
1379 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1380 /* No effective hotplugged memory doesn't make sense. */
1381 return false;
1382
1383 return arch_supports_memmap_on_memory(vmemmap_size);
1384}
1385
1386static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1387{
1388 unsigned long memblock_size = memory_block_size_bytes();
1389 u64 cur_start;
1390
1391 /*
1392 * For memmap_on_memory, the altmaps were added on a per-memblock
1393 * basis; we have to process each individual memory block.
1394 */
1395 for (cur_start = start; cur_start < start + size;
1396 cur_start += memblock_size) {
1397 struct vmem_altmap *altmap = NULL;
1398 struct memory_block *mem;
1399
1400 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1401 if (WARN_ON_ONCE(!mem))
1402 continue;
1403
1404 altmap = mem->altmap;
1405 mem->altmap = NULL;
1406
1407 remove_memory_block_devices(cur_start, memblock_size);
1408
1409 arch_remove_memory(cur_start, memblock_size, altmap);
1410
1411 /* Verify that all vmemmap pages have actually been freed. */
1412 WARN(altmap->alloc, "Altmap not fully unmapped");
1413 kfree(altmap);
1414 }
1415}
1416
1417static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1418 u64 start, u64 size)
1419{
1420 unsigned long memblock_size = memory_block_size_bytes();
1421 u64 cur_start;
1422 int ret;
1423
1424 for (cur_start = start; cur_start < start + size;
1425 cur_start += memblock_size) {
1426 struct mhp_params params = { .pgprot =
1427 pgprot_mhp(PAGE_KERNEL) };
1428 struct vmem_altmap mhp_altmap = {
1429 .base_pfn = PHYS_PFN(cur_start),
1430 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1431 };
1432
1433 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1434 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1435 GFP_KERNEL);
1436 if (!params.altmap) {
1437 ret = -ENOMEM;
1438 goto out;
1439 }
1440
1441 /* call arch's memory hotadd */
1442 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms);
1443 if (ret < 0) {
1444 kfree(params.altmap);
1445 goto out;
1446 }
1447
1448 /* create memory block devices after memory was added */
1449 ret = create_memory_block_devices(cur_start, memblock_size,
1450 params.altmap, group);
1451 if (ret) {
1452 arch_remove_memory(cur_start, memblock_size, NULL);
1453 kfree(params.altmap);
1454 goto out;
1455 }
1456 }
1457
1458 return 0;
1459out:
1460 if (ret && cur_start != start)
1461 remove_memory_blocks_and_altmaps(start, cur_start - start);
1462 return ret;
1463}
1464
1465/*
1466 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1467 * and online/offline operations (triggered e.g. by sysfs).
1468 *
1469 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1470 */
1471int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1472{
1473 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1474 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1475 struct memory_group *group = NULL;
1476 u64 start, size;
1477 bool new_node = false;
1478 int ret;
1479
1480 start = res->start;
1481 size = resource_size(res);
1482
1483 ret = check_hotplug_memory_range(start, size);
1484 if (ret)
1485 return ret;
1486
1487 if (mhp_flags & MHP_NID_IS_MGID) {
1488 group = memory_group_find_by_id(nid);
1489 if (!group)
1490 return -EINVAL;
1491 nid = group->nid;
1492 }
1493
1494 if (!node_possible(nid)) {
1495 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1496 return -EINVAL;
1497 }
1498
1499 mem_hotplug_begin();
1500
1501 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1502 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1503 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1504 ret = memblock_add_node(start, size, nid, memblock_flags);
1505 if (ret)
1506 goto error_mem_hotplug_end;
1507 }
1508
1509 ret = __try_online_node(nid, false);
1510 if (ret < 0)
1511 goto error;
1512 new_node = ret;
1513
1514 /*
1515 * Self hosted memmap array
1516 */
1517 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1518 mhp_supports_memmap_on_memory(memory_block_size_bytes())) {
1519 ret = create_altmaps_and_memory_blocks(nid, group, start, size);
1520 if (ret)
1521 goto error;
1522 } else {
1523 ret = arch_add_memory(nid, start, size, ¶ms);
1524 if (ret < 0)
1525 goto error;
1526
1527 /* create memory block devices after memory was added */
1528 ret = create_memory_block_devices(start, size, NULL, group);
1529 if (ret) {
1530 arch_remove_memory(start, size, params.altmap);
1531 goto error;
1532 }
1533 }
1534
1535 if (new_node) {
1536 /* If sysfs file of new node can't be created, cpu on the node
1537 * can't be hot-added. There is no rollback way now.
1538 * So, check by BUG_ON() to catch it reluctantly..
1539 * We online node here. We can't roll back from here.
1540 */
1541 node_set_online(nid);
1542 ret = __register_one_node(nid);
1543 BUG_ON(ret);
1544 }
1545
1546 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1547 PFN_UP(start + size - 1),
1548 MEMINIT_HOTPLUG);
1549
1550 /* create new memmap entry */
1551 if (!strcmp(res->name, "System RAM"))
1552 firmware_map_add_hotplug(start, start + size, "System RAM");
1553
1554 /* device_online() will take the lock when calling online_pages() */
1555 mem_hotplug_done();
1556
1557 /*
1558 * In case we're allowed to merge the resource, flag it and trigger
1559 * merging now that adding succeeded.
1560 */
1561 if (mhp_flags & MHP_MERGE_RESOURCE)
1562 merge_system_ram_resource(res);
1563
1564 /* online pages if requested */
1565 if (mhp_default_online_type != MMOP_OFFLINE)
1566 walk_memory_blocks(start, size, NULL, online_memory_block);
1567
1568 return ret;
1569error:
1570 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1571 memblock_remove(start, size);
1572error_mem_hotplug_end:
1573 mem_hotplug_done();
1574 return ret;
1575}
1576
1577/* requires device_hotplug_lock, see add_memory_resource() */
1578int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1579{
1580 struct resource *res;
1581 int ret;
1582
1583 res = register_memory_resource(start, size, "System RAM");
1584 if (IS_ERR(res))
1585 return PTR_ERR(res);
1586
1587 ret = add_memory_resource(nid, res, mhp_flags);
1588 if (ret < 0)
1589 release_memory_resource(res);
1590 return ret;
1591}
1592
1593int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1594{
1595 int rc;
1596
1597 lock_device_hotplug();
1598 rc = __add_memory(nid, start, size, mhp_flags);
1599 unlock_device_hotplug();
1600
1601 return rc;
1602}
1603EXPORT_SYMBOL_GPL(add_memory);
1604
1605/*
1606 * Add special, driver-managed memory to the system as system RAM. Such
1607 * memory is not exposed via the raw firmware-provided memmap as system
1608 * RAM, instead, it is detected and added by a driver - during cold boot,
1609 * after a reboot, and after kexec.
1610 *
1611 * Reasons why this memory should not be used for the initial memmap of a
1612 * kexec kernel or for placing kexec images:
1613 * - The booting kernel is in charge of determining how this memory will be
1614 * used (e.g., use persistent memory as system RAM)
1615 * - Coordination with a hypervisor is required before this memory
1616 * can be used (e.g., inaccessible parts).
1617 *
1618 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1619 * memory map") are created. Also, the created memory resource is flagged
1620 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1621 * this memory as well (esp., not place kexec images onto it).
1622 *
1623 * The resource_name (visible via /proc/iomem) has to have the format
1624 * "System RAM ($DRIVER)".
1625 */
1626int add_memory_driver_managed(int nid, u64 start, u64 size,
1627 const char *resource_name, mhp_t mhp_flags)
1628{
1629 struct resource *res;
1630 int rc;
1631
1632 if (!resource_name ||
1633 strstr(resource_name, "System RAM (") != resource_name ||
1634 resource_name[strlen(resource_name) - 1] != ')')
1635 return -EINVAL;
1636
1637 lock_device_hotplug();
1638
1639 res = register_memory_resource(start, size, resource_name);
1640 if (IS_ERR(res)) {
1641 rc = PTR_ERR(res);
1642 goto out_unlock;
1643 }
1644
1645 rc = add_memory_resource(nid, res, mhp_flags);
1646 if (rc < 0)
1647 release_memory_resource(res);
1648
1649out_unlock:
1650 unlock_device_hotplug();
1651 return rc;
1652}
1653EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1654
1655/*
1656 * Platforms should define arch_get_mappable_range() that provides
1657 * maximum possible addressable physical memory range for which the
1658 * linear mapping could be created. The platform returned address
1659 * range must adhere to these following semantics.
1660 *
1661 * - range.start <= range.end
1662 * - Range includes both end points [range.start..range.end]
1663 *
1664 * There is also a fallback definition provided here, allowing the
1665 * entire possible physical address range in case any platform does
1666 * not define arch_get_mappable_range().
1667 */
1668struct range __weak arch_get_mappable_range(void)
1669{
1670 struct range mhp_range = {
1671 .start = 0UL,
1672 .end = -1ULL,
1673 };
1674 return mhp_range;
1675}
1676
1677struct range mhp_get_pluggable_range(bool need_mapping)
1678{
1679 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1680 struct range mhp_range;
1681
1682 if (need_mapping) {
1683 mhp_range = arch_get_mappable_range();
1684 if (mhp_range.start > max_phys) {
1685 mhp_range.start = 0;
1686 mhp_range.end = 0;
1687 }
1688 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1689 } else {
1690 mhp_range.start = 0;
1691 mhp_range.end = max_phys;
1692 }
1693 return mhp_range;
1694}
1695EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1696
1697bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1698{
1699 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1700 u64 end = start + size;
1701
1702 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1703 return true;
1704
1705 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1706 start, end, mhp_range.start, mhp_range.end);
1707 return false;
1708}
1709
1710#ifdef CONFIG_MEMORY_HOTREMOVE
1711/*
1712 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1713 * non-lru movable pages and hugepages). Will skip over most unmovable
1714 * pages (esp., pages that can be skipped when offlining), but bail out on
1715 * definitely unmovable pages.
1716 *
1717 * Returns:
1718 * 0 in case a movable page is found and movable_pfn was updated.
1719 * -ENOENT in case no movable page was found.
1720 * -EBUSY in case a definitely unmovable page was found.
1721 */
1722static int scan_movable_pages(unsigned long start, unsigned long end,
1723 unsigned long *movable_pfn)
1724{
1725 unsigned long pfn;
1726
1727 for (pfn = start; pfn < end; pfn++) {
1728 struct page *page, *head;
1729 unsigned long skip;
1730
1731 if (!pfn_valid(pfn))
1732 continue;
1733 page = pfn_to_page(pfn);
1734 if (PageLRU(page))
1735 goto found;
1736 if (__PageMovable(page))
1737 goto found;
1738
1739 /*
1740 * PageOffline() pages that are not marked __PageMovable() and
1741 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1742 * definitely unmovable. If their reference count would be 0,
1743 * they could at least be skipped when offlining memory.
1744 */
1745 if (PageOffline(page) && page_count(page))
1746 return -EBUSY;
1747
1748 if (!PageHuge(page))
1749 continue;
1750 head = compound_head(page);
1751 /*
1752 * This test is racy as we hold no reference or lock. The
1753 * hugetlb page could have been free'ed and head is no longer
1754 * a hugetlb page before the following check. In such unlikely
1755 * cases false positives and negatives are possible. Calling
1756 * code must deal with these scenarios.
1757 */
1758 if (HPageMigratable(head))
1759 goto found;
1760 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1761 pfn += skip - 1;
1762 }
1763 return -ENOENT;
1764found:
1765 *movable_pfn = pfn;
1766 return 0;
1767}
1768
1769static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1770{
1771 unsigned long pfn;
1772 struct page *page, *head;
1773 LIST_HEAD(source);
1774 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1775 DEFAULT_RATELIMIT_BURST);
1776
1777 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 struct folio *folio;
1779 bool isolated;
1780
1781 if (!pfn_valid(pfn))
1782 continue;
1783 page = pfn_to_page(pfn);
1784 folio = page_folio(page);
1785 head = &folio->page;
1786
1787 if (PageHuge(page)) {
1788 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1789 isolate_hugetlb(folio, &source);
1790 continue;
1791 } else if (PageTransHuge(page))
1792 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1793
1794 /*
1795 * HWPoison pages have elevated reference counts so the migration would
1796 * fail on them. It also doesn't make any sense to migrate them in the
1797 * first place. Still try to unmap such a page in case it is still mapped
1798 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1799 * the unmap as the catch all safety net).
1800 */
1801 if (PageHWPoison(page)) {
1802 if (WARN_ON(folio_test_lru(folio)))
1803 folio_isolate_lru(folio);
1804 if (folio_mapped(folio))
1805 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1806 continue;
1807 }
1808
1809 if (!get_page_unless_zero(page))
1810 continue;
1811 /*
1812 * We can skip free pages. And we can deal with pages on
1813 * LRU and non-lru movable pages.
1814 */
1815 if (PageLRU(page))
1816 isolated = isolate_lru_page(page);
1817 else
1818 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1819 if (isolated) {
1820 list_add_tail(&page->lru, &source);
1821 if (!__PageMovable(page))
1822 inc_node_page_state(page, NR_ISOLATED_ANON +
1823 page_is_file_lru(page));
1824
1825 } else {
1826 if (__ratelimit(&migrate_rs)) {
1827 pr_warn("failed to isolate pfn %lx\n", pfn);
1828 dump_page(page, "isolation failed");
1829 }
1830 }
1831 put_page(page);
1832 }
1833 if (!list_empty(&source)) {
1834 nodemask_t nmask = node_states[N_MEMORY];
1835 struct migration_target_control mtc = {
1836 .nmask = &nmask,
1837 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1838 };
1839 int ret;
1840
1841 /*
1842 * We have checked that migration range is on a single zone so
1843 * we can use the nid of the first page to all the others.
1844 */
1845 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1846
1847 /*
1848 * try to allocate from a different node but reuse this node
1849 * if there are no other online nodes to be used (e.g. we are
1850 * offlining a part of the only existing node)
1851 */
1852 node_clear(mtc.nid, nmask);
1853 if (nodes_empty(nmask))
1854 node_set(mtc.nid, nmask);
1855 ret = migrate_pages(&source, alloc_migration_target, NULL,
1856 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1857 if (ret) {
1858 list_for_each_entry(page, &source, lru) {
1859 if (__ratelimit(&migrate_rs)) {
1860 pr_warn("migrating pfn %lx failed ret:%d\n",
1861 page_to_pfn(page), ret);
1862 dump_page(page, "migration failure");
1863 }
1864 }
1865 putback_movable_pages(&source);
1866 }
1867 }
1868}
1869
1870static int __init cmdline_parse_movable_node(char *p)
1871{
1872 movable_node_enabled = true;
1873 return 0;
1874}
1875early_param("movable_node", cmdline_parse_movable_node);
1876
1877/* check which state of node_states will be changed when offline memory */
1878static void node_states_check_changes_offline(unsigned long nr_pages,
1879 struct zone *zone, struct memory_notify *arg)
1880{
1881 struct pglist_data *pgdat = zone->zone_pgdat;
1882 unsigned long present_pages = 0;
1883 enum zone_type zt;
1884
1885 arg->status_change_nid = NUMA_NO_NODE;
1886 arg->status_change_nid_normal = NUMA_NO_NODE;
1887
1888 /*
1889 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1890 * If the memory to be offline is within the range
1891 * [0..ZONE_NORMAL], and it is the last present memory there,
1892 * the zones in that range will become empty after the offlining,
1893 * thus we can determine that we need to clear the node from
1894 * node_states[N_NORMAL_MEMORY].
1895 */
1896 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1897 present_pages += pgdat->node_zones[zt].present_pages;
1898 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1899 arg->status_change_nid_normal = zone_to_nid(zone);
1900
1901 /*
1902 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1903 * does not apply as we don't support 32bit.
1904 * Here we count the possible pages from ZONE_MOVABLE.
1905 * If after having accounted all the pages, we see that the nr_pages
1906 * to be offlined is over or equal to the accounted pages,
1907 * we know that the node will become empty, and so, we can clear
1908 * it for N_MEMORY as well.
1909 */
1910 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1911
1912 if (nr_pages >= present_pages)
1913 arg->status_change_nid = zone_to_nid(zone);
1914}
1915
1916static void node_states_clear_node(int node, struct memory_notify *arg)
1917{
1918 if (arg->status_change_nid_normal >= 0)
1919 node_clear_state(node, N_NORMAL_MEMORY);
1920
1921 if (arg->status_change_nid >= 0)
1922 node_clear_state(node, N_MEMORY);
1923}
1924
1925static int count_system_ram_pages_cb(unsigned long start_pfn,
1926 unsigned long nr_pages, void *data)
1927{
1928 unsigned long *nr_system_ram_pages = data;
1929
1930 *nr_system_ram_pages += nr_pages;
1931 return 0;
1932}
1933
1934/*
1935 * Must be called with mem_hotplug_lock in write mode.
1936 */
1937int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1938 struct zone *zone, struct memory_group *group)
1939{
1940 const unsigned long end_pfn = start_pfn + nr_pages;
1941 unsigned long pfn, system_ram_pages = 0;
1942 const int node = zone_to_nid(zone);
1943 unsigned long flags;
1944 struct memory_notify arg;
1945 char *reason;
1946 int ret;
1947
1948 /*
1949 * {on,off}lining is constrained to full memory sections (or more
1950 * precisely to memory blocks from the user space POV).
1951 * memmap_on_memory is an exception because it reserves initial part
1952 * of the physical memory space for vmemmaps. That space is pageblock
1953 * aligned.
1954 */
1955 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1956 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1957 return -EINVAL;
1958
1959 /*
1960 * Don't allow to offline memory blocks that contain holes.
1961 * Consequently, memory blocks with holes can never get onlined
1962 * via the hotplug path - online_pages() - as hotplugged memory has
1963 * no holes. This way, we e.g., don't have to worry about marking
1964 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1965 * avoid using walk_system_ram_range() later.
1966 */
1967 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1968 count_system_ram_pages_cb);
1969 if (system_ram_pages != nr_pages) {
1970 ret = -EINVAL;
1971 reason = "memory holes";
1972 goto failed_removal;
1973 }
1974
1975 /*
1976 * We only support offlining of memory blocks managed by a single zone,
1977 * checked by calling code. This is just a sanity check that we might
1978 * want to remove in the future.
1979 */
1980 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1981 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1982 ret = -EINVAL;
1983 reason = "multizone range";
1984 goto failed_removal;
1985 }
1986
1987 /*
1988 * Disable pcplists so that page isolation cannot race with freeing
1989 * in a way that pages from isolated pageblock are left on pcplists.
1990 */
1991 zone_pcp_disable(zone);
1992 lru_cache_disable();
1993
1994 /* set above range as isolated */
1995 ret = start_isolate_page_range(start_pfn, end_pfn,
1996 MIGRATE_MOVABLE,
1997 MEMORY_OFFLINE | REPORT_FAILURE,
1998 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1999 if (ret) {
2000 reason = "failure to isolate range";
2001 goto failed_removal_pcplists_disabled;
2002 }
2003
2004 arg.start_pfn = start_pfn;
2005 arg.nr_pages = nr_pages;
2006 node_states_check_changes_offline(nr_pages, zone, &arg);
2007
2008 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2009 ret = notifier_to_errno(ret);
2010 if (ret) {
2011 reason = "notifier failure";
2012 goto failed_removal_isolated;
2013 }
2014
2015 do {
2016 pfn = start_pfn;
2017 do {
2018 /*
2019 * Historically we always checked for any signal and
2020 * can't limit it to fatal signals without eventually
2021 * breaking user space.
2022 */
2023 if (signal_pending(current)) {
2024 ret = -EINTR;
2025 reason = "signal backoff";
2026 goto failed_removal_isolated;
2027 }
2028
2029 cond_resched();
2030
2031 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2032 if (!ret) {
2033 /*
2034 * TODO: fatal migration failures should bail
2035 * out
2036 */
2037 do_migrate_range(pfn, end_pfn);
2038 }
2039 } while (!ret);
2040
2041 if (ret != -ENOENT) {
2042 reason = "unmovable page";
2043 goto failed_removal_isolated;
2044 }
2045
2046 /*
2047 * Dissolve free hugepages in the memory block before doing
2048 * offlining actually in order to make hugetlbfs's object
2049 * counting consistent.
2050 */
2051 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
2052 if (ret) {
2053 reason = "failure to dissolve huge pages";
2054 goto failed_removal_isolated;
2055 }
2056
2057 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2058
2059 } while (ret);
2060
2061 /* Mark all sections offline and remove free pages from the buddy. */
2062 __offline_isolated_pages(start_pfn, end_pfn);
2063 pr_debug("Offlined Pages %ld\n", nr_pages);
2064
2065 /*
2066 * The memory sections are marked offline, and the pageblock flags
2067 * effectively stale; nobody should be touching them. Fixup the number
2068 * of isolated pageblocks, memory onlining will properly revert this.
2069 */
2070 spin_lock_irqsave(&zone->lock, flags);
2071 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2072 spin_unlock_irqrestore(&zone->lock, flags);
2073
2074 lru_cache_enable();
2075 zone_pcp_enable(zone);
2076
2077 /* removal success */
2078 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2079 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2080
2081 /* reinitialise watermarks and update pcp limits */
2082 init_per_zone_wmark_min();
2083
2084 /*
2085 * Make sure to mark the node as memory-less before rebuilding the zone
2086 * list. Otherwise this node would still appear in the fallback lists.
2087 */
2088 node_states_clear_node(node, &arg);
2089 if (!populated_zone(zone)) {
2090 zone_pcp_reset(zone);
2091 build_all_zonelists(NULL);
2092 }
2093
2094 if (arg.status_change_nid >= 0) {
2095 kcompactd_stop(node);
2096 kswapd_stop(node);
2097 }
2098
2099 writeback_set_ratelimit();
2100
2101 memory_notify(MEM_OFFLINE, &arg);
2102 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2103 return 0;
2104
2105failed_removal_isolated:
2106 /* pushback to free area */
2107 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2108 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2109failed_removal_pcplists_disabled:
2110 lru_cache_enable();
2111 zone_pcp_enable(zone);
2112failed_removal:
2113 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2114 (unsigned long long) start_pfn << PAGE_SHIFT,
2115 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2116 reason);
2117 return ret;
2118}
2119
2120static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2121{
2122 int *nid = arg;
2123
2124 *nid = mem->nid;
2125 if (unlikely(mem->state != MEM_OFFLINE)) {
2126 phys_addr_t beginpa, endpa;
2127
2128 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2129 endpa = beginpa + memory_block_size_bytes() - 1;
2130 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2131 &beginpa, &endpa);
2132
2133 return -EBUSY;
2134 }
2135 return 0;
2136}
2137
2138static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2139{
2140 u64 *num_altmaps = (u64 *)arg;
2141
2142 if (mem->altmap)
2143 *num_altmaps += 1;
2144
2145 return 0;
2146}
2147
2148static int check_cpu_on_node(int nid)
2149{
2150 int cpu;
2151
2152 for_each_present_cpu(cpu) {
2153 if (cpu_to_node(cpu) == nid)
2154 /*
2155 * the cpu on this node isn't removed, and we can't
2156 * offline this node.
2157 */
2158 return -EBUSY;
2159 }
2160
2161 return 0;
2162}
2163
2164static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2165{
2166 int nid = *(int *)arg;
2167
2168 /*
2169 * If a memory block belongs to multiple nodes, the stored nid is not
2170 * reliable. However, such blocks are always online (e.g., cannot get
2171 * offlined) and, therefore, are still spanned by the node.
2172 */
2173 return mem->nid == nid ? -EEXIST : 0;
2174}
2175
2176/**
2177 * try_offline_node
2178 * @nid: the node ID
2179 *
2180 * Offline a node if all memory sections and cpus of the node are removed.
2181 *
2182 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2183 * and online/offline operations before this call.
2184 */
2185void try_offline_node(int nid)
2186{
2187 int rc;
2188
2189 /*
2190 * If the node still spans pages (especially ZONE_DEVICE), don't
2191 * offline it. A node spans memory after move_pfn_range_to_zone(),
2192 * e.g., after the memory block was onlined.
2193 */
2194 if (node_spanned_pages(nid))
2195 return;
2196
2197 /*
2198 * Especially offline memory blocks might not be spanned by the
2199 * node. They will get spanned by the node once they get onlined.
2200 * However, they link to the node in sysfs and can get onlined later.
2201 */
2202 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2203 if (rc)
2204 return;
2205
2206 if (check_cpu_on_node(nid))
2207 return;
2208
2209 /*
2210 * all memory/cpu of this node are removed, we can offline this
2211 * node now.
2212 */
2213 node_set_offline(nid);
2214 unregister_one_node(nid);
2215}
2216EXPORT_SYMBOL(try_offline_node);
2217
2218static int memory_blocks_have_altmaps(u64 start, u64 size)
2219{
2220 u64 num_memblocks = size / memory_block_size_bytes();
2221 u64 num_altmaps = 0;
2222
2223 if (!mhp_memmap_on_memory())
2224 return 0;
2225
2226 walk_memory_blocks(start, size, &num_altmaps,
2227 count_memory_range_altmaps_cb);
2228
2229 if (num_altmaps == 0)
2230 return 0;
2231
2232 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2233 return -EINVAL;
2234
2235 return 1;
2236}
2237
2238static int __ref try_remove_memory(u64 start, u64 size)
2239{
2240 int rc, nid = NUMA_NO_NODE;
2241
2242 BUG_ON(check_hotplug_memory_range(start, size));
2243
2244 /*
2245 * All memory blocks must be offlined before removing memory. Check
2246 * whether all memory blocks in question are offline and return error
2247 * if this is not the case.
2248 *
2249 * While at it, determine the nid. Note that if we'd have mixed nodes,
2250 * we'd only try to offline the last determined one -- which is good
2251 * enough for the cases we care about.
2252 */
2253 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2254 if (rc)
2255 return rc;
2256
2257 /* remove memmap entry */
2258 firmware_map_remove(start, start + size, "System RAM");
2259
2260 mem_hotplug_begin();
2261
2262 rc = memory_blocks_have_altmaps(start, size);
2263 if (rc < 0) {
2264 mem_hotplug_done();
2265 return rc;
2266 } else if (!rc) {
2267 /*
2268 * Memory block device removal under the device_hotplug_lock is
2269 * a barrier against racing online attempts.
2270 * No altmaps present, do the removal directly
2271 */
2272 remove_memory_block_devices(start, size);
2273 arch_remove_memory(start, size, NULL);
2274 } else {
2275 /* all memblocks in the range have altmaps */
2276 remove_memory_blocks_and_altmaps(start, size);
2277 }
2278
2279 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2280 memblock_phys_free(start, size);
2281 memblock_remove(start, size);
2282 }
2283
2284 release_mem_region_adjustable(start, size);
2285
2286 if (nid != NUMA_NO_NODE)
2287 try_offline_node(nid);
2288
2289 mem_hotplug_done();
2290 return 0;
2291}
2292
2293/**
2294 * __remove_memory - Remove memory if every memory block is offline
2295 * @start: physical address of the region to remove
2296 * @size: size of the region to remove
2297 *
2298 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2299 * and online/offline operations before this call, as required by
2300 * try_offline_node().
2301 */
2302void __remove_memory(u64 start, u64 size)
2303{
2304
2305 /*
2306 * trigger BUG() if some memory is not offlined prior to calling this
2307 * function
2308 */
2309 if (try_remove_memory(start, size))
2310 BUG();
2311}
2312
2313/*
2314 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2315 * some memory is not offline
2316 */
2317int remove_memory(u64 start, u64 size)
2318{
2319 int rc;
2320
2321 lock_device_hotplug();
2322 rc = try_remove_memory(start, size);
2323 unlock_device_hotplug();
2324
2325 return rc;
2326}
2327EXPORT_SYMBOL_GPL(remove_memory);
2328
2329static int try_offline_memory_block(struct memory_block *mem, void *arg)
2330{
2331 uint8_t online_type = MMOP_ONLINE_KERNEL;
2332 uint8_t **online_types = arg;
2333 struct page *page;
2334 int rc;
2335
2336 /*
2337 * Sense the online_type via the zone of the memory block. Offlining
2338 * with multiple zones within one memory block will be rejected
2339 * by offlining code ... so we don't care about that.
2340 */
2341 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2342 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2343 online_type = MMOP_ONLINE_MOVABLE;
2344
2345 rc = device_offline(&mem->dev);
2346 /*
2347 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2348 * so try_reonline_memory_block() can do the right thing.
2349 */
2350 if (!rc)
2351 **online_types = online_type;
2352
2353 (*online_types)++;
2354 /* Ignore if already offline. */
2355 return rc < 0 ? rc : 0;
2356}
2357
2358static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2359{
2360 uint8_t **online_types = arg;
2361 int rc;
2362
2363 if (**online_types != MMOP_OFFLINE) {
2364 mem->online_type = **online_types;
2365 rc = device_online(&mem->dev);
2366 if (rc < 0)
2367 pr_warn("%s: Failed to re-online memory: %d",
2368 __func__, rc);
2369 }
2370
2371 /* Continue processing all remaining memory blocks. */
2372 (*online_types)++;
2373 return 0;
2374}
2375
2376/*
2377 * Try to offline and remove memory. Might take a long time to finish in case
2378 * memory is still in use. Primarily useful for memory devices that logically
2379 * unplugged all memory (so it's no longer in use) and want to offline + remove
2380 * that memory.
2381 */
2382int offline_and_remove_memory(u64 start, u64 size)
2383{
2384 const unsigned long mb_count = size / memory_block_size_bytes();
2385 uint8_t *online_types, *tmp;
2386 int rc;
2387
2388 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2389 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2390 return -EINVAL;
2391
2392 /*
2393 * We'll remember the old online type of each memory block, so we can
2394 * try to revert whatever we did when offlining one memory block fails
2395 * after offlining some others succeeded.
2396 */
2397 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2398 GFP_KERNEL);
2399 if (!online_types)
2400 return -ENOMEM;
2401 /*
2402 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2403 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2404 * try_reonline_memory_block().
2405 */
2406 memset(online_types, MMOP_OFFLINE, mb_count);
2407
2408 lock_device_hotplug();
2409
2410 tmp = online_types;
2411 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2412
2413 /*
2414 * In case we succeeded to offline all memory, remove it.
2415 * This cannot fail as it cannot get onlined in the meantime.
2416 */
2417 if (!rc) {
2418 rc = try_remove_memory(start, size);
2419 if (rc)
2420 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2421 }
2422
2423 /*
2424 * Rollback what we did. While memory onlining might theoretically fail
2425 * (nacked by a notifier), it barely ever happens.
2426 */
2427 if (rc) {
2428 tmp = online_types;
2429 walk_memory_blocks(start, size, &tmp,
2430 try_reonline_memory_block);
2431 }
2432 unlock_device_hotplug();
2433
2434 kfree(online_types);
2435 return rc;
2436}
2437EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2438#endif /* CONFIG_MEMORY_HOTREMOVE */