Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
 
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
  20#include <linux/memremap.h>
  21#include <linux/memory_hotplug.h>
  22#include <linux/highmem.h>
  23#include <linux/vmalloc.h>
  24#include <linux/ioport.h>
  25#include <linux/delay.h>
  26#include <linux/migrate.h>
  27#include <linux/page-isolation.h>
  28#include <linux/pfn.h>
  29#include <linux/suspend.h>
  30#include <linux/mm_inline.h>
  31#include <linux/firmware-map.h>
  32#include <linux/stop_machine.h>
  33#include <linux/hugetlb.h>
  34#include <linux/memblock.h>
  35#include <linux/bootmem.h>
  36#include <linux/compaction.h>
 
 
  37
  38#include <asm/tlbflush.h>
  39
  40#include "internal.h"
 
  41
  42/*
  43 * online_page_callback contains pointer to current page onlining function.
  44 * Initially it is generic_online_page(). If it is required it could be
  45 * changed by calling set_online_page_callback() for callback registration
  46 * and restore_online_page_callback() for generic callback restore.
  47 */
  48
  49static void generic_online_page(struct page *page);
  50
  51static online_page_callback_t online_page_callback = generic_online_page;
  52static DEFINE_MUTEX(online_page_callback_lock);
  53
  54/* The same as the cpu_hotplug lock, but for memory hotplug. */
  55static struct {
  56	struct task_struct *active_writer;
  57	struct mutex lock; /* Synchronizes accesses to refcount, */
  58	/*
  59	 * Also blocks the new readers during
  60	 * an ongoing mem hotplug operation.
  61	 */
  62	int refcount;
  63
  64#ifdef CONFIG_DEBUG_LOCK_ALLOC
  65	struct lockdep_map dep_map;
  66#endif
  67} mem_hotplug = {
  68	.active_writer = NULL,
  69	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
  70	.refcount = 0,
  71#ifdef CONFIG_DEBUG_LOCK_ALLOC
  72	.dep_map = {.name = "mem_hotplug.lock" },
  73#endif
  74};
  75
  76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
  77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
  78#define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
  79#define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
  80
  81bool memhp_auto_online;
  82EXPORT_SYMBOL_GPL(memhp_auto_online);
  83
  84void get_online_mems(void)
  85{
  86	might_sleep();
  87	if (mem_hotplug.active_writer == current)
  88		return;
  89	memhp_lock_acquire_read();
  90	mutex_lock(&mem_hotplug.lock);
  91	mem_hotplug.refcount++;
  92	mutex_unlock(&mem_hotplug.lock);
  93
  94}
  95
  96void put_online_mems(void)
  97{
  98	if (mem_hotplug.active_writer == current)
  99		return;
 100	mutex_lock(&mem_hotplug.lock);
 101
 102	if (WARN_ON(!mem_hotplug.refcount))
 103		mem_hotplug.refcount++; /* try to fix things up */
 104
 105	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
 106		wake_up_process(mem_hotplug.active_writer);
 107	mutex_unlock(&mem_hotplug.lock);
 108	memhp_lock_release();
 109
 
 
 
 
 
 
 
 
 
 110}
 111
 112void mem_hotplug_begin(void)
 
 
 
 
 113{
 114	mem_hotplug.active_writer = current;
 
 115
 116	memhp_lock_acquire();
 117	for (;;) {
 118		mutex_lock(&mem_hotplug.lock);
 119		if (likely(!mem_hotplug.refcount))
 120			break;
 121		__set_current_state(TASK_UNINTERRUPTIBLE);
 122		mutex_unlock(&mem_hotplug.lock);
 123		schedule();
 
 
 124	}
 125}
 
 
 126
 127void mem_hotplug_done(void)
 128{
 129	mem_hotplug.active_writer = NULL;
 130	mutex_unlock(&mem_hotplug.lock);
 131	memhp_lock_release();
 132}
 133
 134/* add this memory to iomem resource */
 135static struct resource *register_memory_resource(u64 start, u64 size)
 136{
 137	struct resource *res;
 138	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 139	if (!res)
 140		return ERR_PTR(-ENOMEM);
 141
 142	res->name = "System RAM";
 143	res->start = start;
 144	res->end = start + size - 1;
 145	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 146	if (request_resource(&iomem_resource, res) < 0) {
 147		pr_debug("System RAM resource %pR cannot be added\n", res);
 148		kfree(res);
 149		return ERR_PTR(-EEXIST);
 150	}
 151	return res;
 152}
 153
 154static void release_memory_resource(struct resource *res)
 155{
 156	if (!res)
 157		return;
 158	release_resource(res);
 159	kfree(res);
 160	return;
 161}
 162
 163#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 164void get_page_bootmem(unsigned long info,  struct page *page,
 165		      unsigned long type)
 166{
 167	page->lru.next = (struct list_head *) type;
 168	SetPagePrivate(page);
 169	set_page_private(page, info);
 170	page_ref_inc(page);
 171}
 172
 173void put_page_bootmem(struct page *page)
 174{
 175	unsigned long type;
 176
 177	type = (unsigned long) page->lru.next;
 178	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 179	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 180
 181	if (page_ref_dec_return(page) == 1) {
 182		ClearPagePrivate(page);
 183		set_page_private(page, 0);
 184		INIT_LIST_HEAD(&page->lru);
 185		free_reserved_page(page);
 186	}
 187}
 
 188
 189#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 190#ifndef CONFIG_SPARSEMEM_VMEMMAP
 191static void register_page_bootmem_info_section(unsigned long start_pfn)
 192{
 193	unsigned long *usemap, mapsize, section_nr, i;
 194	struct mem_section *ms;
 195	struct page *page, *memmap;
 196
 197	section_nr = pfn_to_section_nr(start_pfn);
 198	ms = __nr_to_section(section_nr);
 199
 200	/* Get section's memmap address */
 201	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 202
 203	/*
 204	 * Get page for the memmap's phys address
 205	 * XXX: need more consideration for sparse_vmemmap...
 206	 */
 207	page = virt_to_page(memmap);
 208	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 209	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 210
 211	/* remember memmap's page */
 212	for (i = 0; i < mapsize; i++, page++)
 213		get_page_bootmem(section_nr, page, SECTION_INFO);
 214
 215	usemap = __nr_to_section(section_nr)->pageblock_flags;
 216	page = virt_to_page(usemap);
 217
 218	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 219
 220	for (i = 0; i < mapsize; i++, page++)
 221		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 
 
 222
 223}
 224#else /* CONFIG_SPARSEMEM_VMEMMAP */
 225static void register_page_bootmem_info_section(unsigned long start_pfn)
 226{
 227	unsigned long *usemap, mapsize, section_nr, i;
 228	struct mem_section *ms;
 229	struct page *page, *memmap;
 230
 231	if (!pfn_valid(start_pfn))
 232		return;
 233
 234	section_nr = pfn_to_section_nr(start_pfn);
 235	ms = __nr_to_section(section_nr);
 236
 237	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 238
 239	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 240
 241	usemap = __nr_to_section(section_nr)->pageblock_flags;
 242	page = virt_to_page(usemap);
 243
 244	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 245
 246	for (i = 0; i < mapsize; i++, page++)
 247		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 248}
 249#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 250
 251void register_page_bootmem_info_node(struct pglist_data *pgdat)
 252{
 253	unsigned long i, pfn, end_pfn, nr_pages;
 254	int node = pgdat->node_id;
 255	struct page *page;
 256	struct zone *zone;
 257
 258	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 259	page = virt_to_page(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260
 261	for (i = 0; i < nr_pages; i++, page++)
 262		get_page_bootmem(node, page, NODE_INFO);
 
 
 
 
 
 
 
 
 
 
 263
 264	zone = &pgdat->node_zones[0];
 265	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 266		if (zone_is_initialized(zone)) {
 267			nr_pages = zone->wait_table_hash_nr_entries
 268				* sizeof(wait_queue_head_t);
 269			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 270			page = virt_to_page(zone->wait_table);
 
 
 
 271
 272			for (i = 0; i < nr_pages; i++, page++)
 273				get_page_bootmem(node, page, NODE_INFO);
 274		}
 275	}
 
 
 276
 277	pfn = pgdat->node_start_pfn;
 278	end_pfn = pgdat_end_pfn(pgdat);
 279
 280	/* register section info */
 281	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 282		/*
 283		 * Some platforms can assign the same pfn to multiple nodes - on
 284		 * node0 as well as nodeN.  To avoid registering a pfn against
 285		 * multiple nodes we check that this pfn does not already
 286		 * reside in some other nodes.
 287		 */
 288		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 289			register_page_bootmem_info_section(pfn);
 290	}
 291}
 292#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 293
 294static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
 295				     unsigned long end_pfn)
 296{
 297	unsigned long old_zone_end_pfn;
 298
 299	zone_span_writelock(zone);
 300
 301	old_zone_end_pfn = zone_end_pfn(zone);
 302	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 303		zone->zone_start_pfn = start_pfn;
 304
 305	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 306				zone->zone_start_pfn;
 307
 308	zone_span_writeunlock(zone);
 309}
 310
 311static void resize_zone(struct zone *zone, unsigned long start_pfn,
 312		unsigned long end_pfn)
 313{
 314	zone_span_writelock(zone);
 315
 316	if (end_pfn - start_pfn) {
 317		zone->zone_start_pfn = start_pfn;
 318		zone->spanned_pages = end_pfn - start_pfn;
 319	} else {
 320		/*
 321		 * make it consist as free_area_init_core(),
 322		 * if spanned_pages = 0, then keep start_pfn = 0
 323		 */
 324		zone->zone_start_pfn = 0;
 325		zone->spanned_pages = 0;
 326	}
 327
 328	zone_span_writeunlock(zone);
 329}
 330
 331static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 332		unsigned long end_pfn)
 333{
 334	enum zone_type zid = zone_idx(zone);
 335	int nid = zone->zone_pgdat->node_id;
 336	unsigned long pfn;
 337
 338	for (pfn = start_pfn; pfn < end_pfn; pfn++)
 339		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 340}
 
 
 341
 342/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 343 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 344static int __ref ensure_zone_is_initialized(struct zone *zone,
 345			unsigned long start_pfn, unsigned long num_pages)
 346{
 347	if (!zone_is_initialized(zone))
 348		return init_currently_empty_zone(zone, start_pfn, num_pages);
 349
 350	return 0;
 
 
 
 351}
 
 352
 353static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 354		unsigned long start_pfn, unsigned long end_pfn)
 355{
 356	int ret;
 357	unsigned long flags;
 358	unsigned long z1_start_pfn;
 359
 360	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 361	if (ret)
 362		return ret;
 363
 364	pgdat_resize_lock(z1->zone_pgdat, &flags);
 365
 366	/* can't move pfns which are higher than @z2 */
 367	if (end_pfn > zone_end_pfn(z2))
 368		goto out_fail;
 369	/* the move out part must be at the left most of @z2 */
 370	if (start_pfn > z2->zone_start_pfn)
 371		goto out_fail;
 372	/* must included/overlap */
 373	if (end_pfn <= z2->zone_start_pfn)
 374		goto out_fail;
 375
 376	/* use start_pfn for z1's start_pfn if z1 is empty */
 377	if (!zone_is_empty(z1))
 378		z1_start_pfn = z1->zone_start_pfn;
 379	else
 380		z1_start_pfn = start_pfn;
 381
 382	resize_zone(z1, z1_start_pfn, end_pfn);
 383	resize_zone(z2, end_pfn, zone_end_pfn(z2));
 384
 385	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 386
 387	fix_zone_id(z1, start_pfn, end_pfn);
 388
 389	return 0;
 390out_fail:
 391	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 392	return -1;
 393}
 394
 395static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 396		unsigned long start_pfn, unsigned long end_pfn)
 397{
 398	int ret;
 399	unsigned long flags;
 400	unsigned long z2_end_pfn;
 401
 402	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 403	if (ret)
 404		return ret;
 405
 406	pgdat_resize_lock(z1->zone_pgdat, &flags);
 
 
 
 
 
 407
 408	/* can't move pfns which are lower than @z1 */
 409	if (z1->zone_start_pfn > start_pfn)
 410		goto out_fail;
 411	/* the move out part mast at the right most of @z1 */
 412	if (zone_end_pfn(z1) >  end_pfn)
 413		goto out_fail;
 414	/* must included/overlap */
 415	if (start_pfn >= zone_end_pfn(z1))
 416		goto out_fail;
 417
 418	/* use end_pfn for z2's end_pfn if z2 is empty */
 419	if (!zone_is_empty(z2))
 420		z2_end_pfn = zone_end_pfn(z2);
 421	else
 422		z2_end_pfn = end_pfn;
 423
 424	resize_zone(z1, z1->zone_start_pfn, start_pfn);
 425	resize_zone(z2, start_pfn, z2_end_pfn);
 426
 427	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 
 
 
 
 
 
 
 428
 429	fix_zone_id(z2, start_pfn, end_pfn);
 
 
 
 
 
 
 430
 431	return 0;
 432out_fail:
 433	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 434	return -1;
 
 
 435}
 436
 437static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 438				      unsigned long end_pfn)
 439{
 440	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 441
 442	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 443		pgdat->node_start_pfn = start_pfn;
 444
 445	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 446					pgdat->node_start_pfn;
 447}
 448
 449static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 450{
 451	struct pglist_data *pgdat = zone->zone_pgdat;
 452	int nr_pages = PAGES_PER_SECTION;
 453	int nid = pgdat->node_id;
 454	int zone_type;
 455	unsigned long flags, pfn;
 456	int ret;
 457
 458	zone_type = zone - pgdat->node_zones;
 459	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 460	if (ret)
 461		return ret;
 462
 463	pgdat_resize_lock(zone->zone_pgdat, &flags);
 464	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 465	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 466			phys_start_pfn + nr_pages);
 467	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 468	memmap_init_zone(nr_pages, nid, zone_type,
 469			 phys_start_pfn, MEMMAP_HOTPLUG);
 470
 471	/* online_page_range is called later and expects pages reserved */
 472	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
 473		if (!pfn_valid(pfn))
 474			continue;
 475
 476		SetPageReserved(pfn_to_page(pfn));
 477	}
 
 
 
 
 478	return 0;
 479}
 480
 481static int __meminit __add_section(int nid, struct zone *zone,
 482					unsigned long phys_start_pfn)
 
 
 
 
 483{
 484	int ret;
 
 
 485
 486	if (pfn_valid(phys_start_pfn))
 487		return -EEXIST;
 488
 489	ret = sparse_add_one_section(zone, phys_start_pfn);
 
 
 490
 491	if (ret < 0)
 492		return ret;
 
 
 
 
 493
 494	ret = __add_zone(zone, phys_start_pfn);
 
 495
 496	if (ret < 0)
 497		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 500}
 
 501
 502/*
 503 * Reasonably generic function for adding memory.  It is
 504 * expected that archs that support memory hotplug will
 505 * call this function after deciding the zone to which to
 506 * add the new pages.
 507 */
 508int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 509			unsigned long nr_pages)
 510{
 511	unsigned long i;
 512	int err = 0;
 513	int start_sec, end_sec;
 514	struct vmem_altmap *altmap;
 515
 516	clear_zone_contiguous(zone);
 
 517
 518	/* during initialize mem_map, align hot-added range to section */
 519	start_sec = pfn_to_section_nr(phys_start_pfn);
 520	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 521
 522	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
 523	if (altmap) {
 524		/*
 525		 * Validate altmap is within bounds of the total request
 526		 */
 527		if (altmap->base_pfn != phys_start_pfn
 528				|| vmem_altmap_offset(altmap) > nr_pages) {
 529			pr_warn_once("memory add fail, invalid altmap\n");
 530			err = -EINVAL;
 531			goto out;
 532		}
 533		altmap->alloc = 0;
 534	}
 535
 536	for (i = start_sec; i <= end_sec; i++) {
 537		err = __add_section(nid, zone, section_nr_to_pfn(i));
 
 
 538
 539		/*
 540		 * EEXIST is finally dealt with by ioresource collision
 541		 * check. see add_memory() => register_memory_resource()
 542		 * Warning will be printed if there is collision.
 543		 */
 544		if (err && (err != -EEXIST))
 
 545			break;
 546		err = 0;
 547	}
 548	vmemmap_populate_print_last();
 549out:
 550	set_zone_contiguous(zone);
 551	return err;
 552}
 553EXPORT_SYMBOL_GPL(__add_pages);
 554
 555#ifdef CONFIG_MEMORY_HOTREMOVE
 556/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 557static int find_smallest_section_pfn(int nid, struct zone *zone,
 558				     unsigned long start_pfn,
 559				     unsigned long end_pfn)
 560{
 561	struct mem_section *ms;
 562
 563	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 564		ms = __pfn_to_section(start_pfn);
 565
 566		if (unlikely(!valid_section(ms)))
 567			continue;
 568
 569		if (unlikely(pfn_to_nid(start_pfn) != nid))
 570			continue;
 571
 572		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 573			continue;
 574
 575		return start_pfn;
 576	}
 577
 578	return 0;
 579}
 580
 581/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 582static int find_biggest_section_pfn(int nid, struct zone *zone,
 583				    unsigned long start_pfn,
 584				    unsigned long end_pfn)
 585{
 586	struct mem_section *ms;
 587	unsigned long pfn;
 588
 589	/* pfn is the end pfn of a memory section. */
 590	pfn = end_pfn - 1;
 591	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 592		ms = __pfn_to_section(pfn);
 593
 594		if (unlikely(!valid_section(ms)))
 595			continue;
 596
 597		if (unlikely(pfn_to_nid(pfn) != nid))
 598			continue;
 599
 600		if (zone && zone != page_zone(pfn_to_page(pfn)))
 601			continue;
 602
 603		return pfn;
 604	}
 605
 606	return 0;
 607}
 608
 609static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 610			     unsigned long end_pfn)
 611{
 612	unsigned long zone_start_pfn = zone->zone_start_pfn;
 613	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 614	unsigned long zone_end_pfn = z;
 615	unsigned long pfn;
 616	struct mem_section *ms;
 617	int nid = zone_to_nid(zone);
 618
 619	zone_span_writelock(zone);
 620	if (zone_start_pfn == start_pfn) {
 621		/*
 622		 * If the section is smallest section in the zone, it need
 623		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 624		 * In this case, we find second smallest valid mem_section
 625		 * for shrinking zone.
 626		 */
 627		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 628						zone_end_pfn);
 629		if (pfn) {
 
 630			zone->zone_start_pfn = pfn;
 631			zone->spanned_pages = zone_end_pfn - pfn;
 
 
 632		}
 633	} else if (zone_end_pfn == end_pfn) {
 634		/*
 635		 * If the section is biggest section in the zone, it need
 636		 * shrink zone->spanned_pages.
 637		 * In this case, we find second biggest valid mem_section for
 638		 * shrinking zone.
 639		 */
 640		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 641					       start_pfn);
 642		if (pfn)
 643			zone->spanned_pages = pfn - zone_start_pfn + 1;
 
 
 
 
 644	}
 
 645
 646	/*
 647	 * The section is not biggest or smallest mem_section in the zone, it
 648	 * only creates a hole in the zone. So in this case, we need not
 649	 * change the zone. But perhaps, the zone has only hole data. Thus
 650	 * it check the zone has only hole or not.
 651	 */
 652	pfn = zone_start_pfn;
 653	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 654		ms = __pfn_to_section(pfn);
 655
 656		if (unlikely(!valid_section(ms)))
 657			continue;
 658
 659		if (page_zone(pfn_to_page(pfn)) != zone)
 660			continue;
 661
 662		 /* If the section is current section, it continues the loop */
 663		if (start_pfn == pfn)
 
 
 
 
 
 
 
 
 664			continue;
 
 665
 666		/* If we find valid section, we have nothing to do */
 667		zone_span_writeunlock(zone);
 668		return;
 
 669	}
 670
 671	/* The zone has no valid section */
 672	zone->zone_start_pfn = 0;
 673	zone->spanned_pages = 0;
 674	zone_span_writeunlock(zone);
 675}
 676
 677static void shrink_pgdat_span(struct pglist_data *pgdat,
 678			      unsigned long start_pfn, unsigned long end_pfn)
 679{
 680	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 681	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 682	unsigned long pgdat_end_pfn = p;
 683	unsigned long pfn;
 684	struct mem_section *ms;
 685	int nid = pgdat->node_id;
 686
 687	if (pgdat_start_pfn == start_pfn) {
 688		/*
 689		 * If the section is smallest section in the pgdat, it need
 690		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 691		 * In this case, we find second smallest valid mem_section
 692		 * for shrinking zone.
 693		 */
 694		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 695						pgdat_end_pfn);
 696		if (pfn) {
 697			pgdat->node_start_pfn = pfn;
 698			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 699		}
 700	} else if (pgdat_end_pfn == end_pfn) {
 701		/*
 702		 * If the section is biggest section in the pgdat, it need
 703		 * shrink pgdat->node_spanned_pages.
 704		 * In this case, we find second biggest valid mem_section for
 705		 * shrinking zone.
 706		 */
 707		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 708					       start_pfn);
 709		if (pfn)
 710			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 711	}
 712
 713	/*
 714	 * If the section is not biggest or smallest mem_section in the pgdat,
 715	 * it only creates a hole in the pgdat. So in this case, we need not
 716	 * change the pgdat.
 717	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 718	 * has only hole or not.
 719	 */
 720	pfn = pgdat_start_pfn;
 721	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 722		ms = __pfn_to_section(pfn);
 723
 724		if (unlikely(!valid_section(ms)))
 725			continue;
 726
 727		if (pfn_to_nid(pfn) != nid)
 728			continue;
 729
 730		 /* If the section is current section, it continues the loop */
 731		if (start_pfn == pfn)
 732			continue;
 733
 734		/* If we find valid section, we have nothing to do */
 735		return;
 736	}
 737
 738	/* The pgdat has no valid section */
 739	pgdat->node_start_pfn = 0;
 740	pgdat->node_spanned_pages = 0;
 741}
 742
 743static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 744{
 745	struct pglist_data *pgdat = zone->zone_pgdat;
 746	int nr_pages = PAGES_PER_SECTION;
 747	int zone_type;
 748	unsigned long flags;
 749
 750	zone_type = zone - pgdat->node_zones;
 751
 752	pgdat_resize_lock(zone->zone_pgdat, &flags);
 753	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 754	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 755	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 756}
 757
 758static int __remove_section(struct zone *zone, struct mem_section *ms,
 759		unsigned long map_offset)
 760{
 761	unsigned long start_pfn;
 762	int scn_nr;
 763	int ret = -EINVAL;
 764
 765	if (!valid_section(ms))
 766		return ret;
 767
 768	ret = unregister_memory_section(ms);
 769	if (ret)
 770		return ret;
 771
 772	scn_nr = __section_nr(ms);
 773	start_pfn = section_nr_to_pfn(scn_nr);
 774	__remove_zone(zone, start_pfn);
 775
 776	sparse_remove_one_section(zone, ms, map_offset);
 777	return 0;
 778}
 779
 780/**
 781 * __remove_pages() - remove sections of pages from a zone
 782 * @zone: zone from which pages need to be removed
 783 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 784 * @nr_pages: number of pages to remove (must be multiple of section size)
 
 785 *
 786 * Generic helper function to remove section mappings and sysfs entries
 787 * for the section of the memory we are removing. Caller needs to make
 788 * sure that pages are marked reserved and zones are adjust properly by
 789 * calling offline_pages().
 790 */
 791int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 792		 unsigned long nr_pages)
 793{
 794	unsigned long i;
 795	unsigned long map_offset = 0;
 796	int sections_to_remove, ret = 0;
 797
 798	/* In the ZONE_DEVICE case device driver owns the memory region */
 799	if (is_dev_zone(zone)) {
 800		struct page *page = pfn_to_page(phys_start_pfn);
 801		struct vmem_altmap *altmap;
 802
 803		altmap = to_vmem_altmap((unsigned long) page);
 804		if (altmap)
 805			map_offset = vmem_altmap_offset(altmap);
 806	} else {
 807		resource_size_t start, size;
 808
 809		start = phys_start_pfn << PAGE_SHIFT;
 810		size = nr_pages * PAGE_SIZE;
 811
 812		ret = release_mem_region_adjustable(&iomem_resource, start,
 813					size);
 814		if (ret) {
 815			resource_size_t endres = start + size - 1;
 816
 817			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 818					&start, &endres, ret);
 819		}
 820	}
 821
 822	clear_zone_contiguous(zone);
 823
 824	/*
 825	 * We can only remove entire sections
 826	 */
 827	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 828	BUG_ON(nr_pages % PAGES_PER_SECTION);
 829
 830	sections_to_remove = nr_pages / PAGES_PER_SECTION;
 831	for (i = 0; i < sections_to_remove; i++) {
 832		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 833
 834		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
 835		map_offset = 0;
 836		if (ret)
 837			break;
 838	}
 839
 840	set_zone_contiguous(zone);
 841
 842	return ret;
 843}
 844EXPORT_SYMBOL_GPL(__remove_pages);
 845#endif /* CONFIG_MEMORY_HOTREMOVE */
 846
 847int set_online_page_callback(online_page_callback_t callback)
 848{
 849	int rc = -EINVAL;
 850
 851	get_online_mems();
 852	mutex_lock(&online_page_callback_lock);
 853
 854	if (online_page_callback == generic_online_page) {
 855		online_page_callback = callback;
 856		rc = 0;
 857	}
 858
 859	mutex_unlock(&online_page_callback_lock);
 860	put_online_mems();
 861
 862	return rc;
 863}
 864EXPORT_SYMBOL_GPL(set_online_page_callback);
 865
 866int restore_online_page_callback(online_page_callback_t callback)
 867{
 868	int rc = -EINVAL;
 869
 870	get_online_mems();
 871	mutex_lock(&online_page_callback_lock);
 872
 873	if (online_page_callback == callback) {
 874		online_page_callback = generic_online_page;
 875		rc = 0;
 876	}
 877
 878	mutex_unlock(&online_page_callback_lock);
 879	put_online_mems();
 880
 881	return rc;
 882}
 883EXPORT_SYMBOL_GPL(restore_online_page_callback);
 884
 885void __online_page_set_limits(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886{
 
 
 
 
 
 
 
 
 
 887}
 888EXPORT_SYMBOL_GPL(__online_page_set_limits);
 889
 890void __online_page_increment_counters(struct page *page)
 891{
 892	adjust_managed_page_count(page, 1);
 
 
 
 
 893}
 894EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 895
 896void __online_page_free(struct page *page)
 
 897{
 898	__free_reserved_page(page);
 
 
 
 
 
 899}
 900EXPORT_SYMBOL_GPL(__online_page_free);
 901
 902static void generic_online_page(struct page *page)
 
 903{
 904	__online_page_set_limits(page);
 905	__online_page_increment_counters(page);
 906	__online_page_free(page);
 
 
 
 
 907}
 908
 909static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 910			void *arg)
 
 
 
 
 
 
 
 911{
 912	unsigned long i;
 913	unsigned long onlined_pages = *(unsigned long *)arg;
 914	struct page *page;
 915	if (PageReserved(pfn_to_page(start_pfn)))
 916		for (i = 0; i < nr_pages; i++) {
 917			page = pfn_to_page(start_pfn + i);
 918			(*online_page_callback)(page);
 919			onlined_pages++;
 920		}
 921	*(unsigned long *)arg = onlined_pages;
 922	return 0;
 923}
 
 924
 925#ifdef CONFIG_MOVABLE_NODE
 926/*
 927 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 928 * normal memory.
 
 
 
 
 
 929 */
 930static bool can_online_high_movable(struct zone *zone)
 
 
 931{
 932	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933}
 934#else /* CONFIG_MOVABLE_NODE */
 935/* ensure every online node has NORMAL memory */
 936static bool can_online_high_movable(struct zone *zone)
 
 
 
 
 
 937{
 938	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 
 
 
 
 
 
 
 
 
 
 
 
 939}
 940#endif /* CONFIG_MOVABLE_NODE */
 
 
 
 941
 942/* check which state of node_states will be changed when online memory */
 943static void node_states_check_changes_online(unsigned long nr_pages,
 944	struct zone *zone, struct memory_notify *arg)
 945{
 946	int nid = zone_to_nid(zone);
 947	enum zone_type zone_last = ZONE_NORMAL;
 
 948
 949	/*
 950	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 951	 * contains nodes which have zones of 0...ZONE_NORMAL,
 952	 * set zone_last to ZONE_NORMAL.
 953	 *
 954	 * If we don't have HIGHMEM nor movable node,
 955	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 956	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 957	 */
 958	if (N_MEMORY == N_NORMAL_MEMORY)
 959		zone_last = ZONE_MOVABLE;
 960
 961	/*
 962	 * if the memory to be online is in a zone of 0...zone_last, and
 963	 * the zones of 0...zone_last don't have memory before online, we will
 964	 * need to set the node to node_states[N_NORMAL_MEMORY] after
 965	 * the memory is online.
 966	 */
 967	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 968		arg->status_change_nid_normal = nid;
 969	else
 970		arg->status_change_nid_normal = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971
 972#ifdef CONFIG_HIGHMEM
 973	/*
 974	 * If we have movable node, node_states[N_HIGH_MEMORY]
 975	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
 976	 * set zone_last to ZONE_HIGHMEM.
 977	 *
 978	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 979	 * contains nodes which have zones of 0...ZONE_MOVABLE,
 980	 * set zone_last to ZONE_MOVABLE.
 981	 */
 982	zone_last = ZONE_HIGHMEM;
 983	if (N_MEMORY == N_HIGH_MEMORY)
 984		zone_last = ZONE_MOVABLE;
 985
 986	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 987		arg->status_change_nid_high = nid;
 988	else
 989		arg->status_change_nid_high = -1;
 990#else
 991	arg->status_change_nid_high = arg->status_change_nid_normal;
 992#endif
 993
 994	/*
 995	 * if the node don't have memory befor online, we will need to
 996	 * set the node to node_states[N_MEMORY] after the memory
 997	 * is online.
 998	 */
 999	if (!node_state(nid, N_MEMORY))
1000		arg->status_change_nid = nid;
1001	else
1002		arg->status_change_nid = -1;
1003}
1004
1005static void node_states_set_node(int node, struct memory_notify *arg)
 
 
 
 
 
 
1006{
1007	if (arg->status_change_nid_normal >= 0)
1008		node_set_state(node, N_NORMAL_MEMORY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010	if (arg->status_change_nid_high >= 0)
1011		node_set_state(node, N_HIGH_MEMORY);
 
 
 
1012
1013	node_set_state(node, N_MEMORY);
 
 
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
1017/* Must be protected by mem_hotplug_begin() */
1018int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019{
1020	unsigned long flags;
1021	unsigned long onlined_pages = 0;
1022	struct zone *zone;
1023	int need_zonelists_rebuild = 0;
1024	int nid;
1025	int ret;
1026	struct memory_notify arg;
1027
1028	/*
1029	 * This doesn't need a lock to do pfn_to_page().
1030	 * The section can't be removed here because of the
1031	 * memory_block->state_mutex.
1032	 */
1033	zone = page_zone(pfn_to_page(pfn));
1034
1035	if ((zone_idx(zone) > ZONE_NORMAL ||
1036	    online_type == MMOP_ONLINE_MOVABLE) &&
1037	    !can_online_high_movable(zone))
1038		return -EINVAL;
1039
1040	if (online_type == MMOP_ONLINE_KERNEL &&
1041	    zone_idx(zone) == ZONE_MOVABLE) {
1042		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043			return -EINVAL;
1044	}
1045	if (online_type == MMOP_ONLINE_MOVABLE &&
1046	    zone_idx(zone) == ZONE_MOVABLE - 1) {
1047		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048			return -EINVAL;
1049	}
1050
1051	/* Previous code may changed the zone of the pfn range */
1052	zone = page_zone(pfn_to_page(pfn));
1053
1054	arg.start_pfn = pfn;
1055	arg.nr_pages = nr_pages;
1056	node_states_check_changes_online(nr_pages, zone, &arg);
1057
1058	nid = zone_to_nid(zone);
1059
1060	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061	ret = notifier_to_errno(ret);
1062	if (ret)
1063		goto failed_addition;
1064
1065	/*
 
 
 
 
 
 
 
 
1066	 * If this zone is not populated, then it is not in zonelist.
1067	 * This means the page allocator ignores this zone.
1068	 * So, zonelist must be updated after online.
1069	 */
1070	mutex_lock(&zonelists_mutex);
1071	if (!populated_zone(zone)) {
1072		need_zonelists_rebuild = 1;
1073		build_all_zonelists(NULL, zone);
1074	}
1075
1076	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077		online_pages_range);
1078	if (ret) {
1079		if (need_zonelists_rebuild)
1080			zone_pcp_reset(zone);
1081		mutex_unlock(&zonelists_mutex);
1082		goto failed_addition;
1083	}
1084
1085	zone->present_pages += onlined_pages;
 
 
1086
1087	pgdat_resize_lock(zone->zone_pgdat, &flags);
1088	zone->zone_pgdat->node_present_pages += onlined_pages;
1089	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090
1091	if (onlined_pages) {
1092		node_states_set_node(nid, &arg);
1093		if (need_zonelists_rebuild)
1094			build_all_zonelists(NULL, NULL);
1095		else
1096			zone_pcp_update(zone);
1097	}
1098
1099	mutex_unlock(&zonelists_mutex);
 
 
 
 
 
 
1100
 
1101	init_per_zone_wmark_min();
1102
1103	if (onlined_pages) {
1104		kswapd_run(nid);
1105		kcompactd_run(nid);
1106	}
1107
1108	vm_total_pages = nr_free_pagecache_pages();
1109
1110	writeback_set_ratelimit();
1111
1112	if (onlined_pages)
1113		memory_notify(MEM_ONLINE, &arg);
1114	return 0;
1115
1116failed_addition:
1117	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118		 (unsigned long long) pfn << PAGE_SHIFT,
1119		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120	memory_notify(MEM_CANCEL_ONLINE, &arg);
 
1121	return ret;
1122}
1123#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124
1125static void reset_node_present_pages(pg_data_t *pgdat)
1126{
1127	struct zone *z;
1128
1129	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130		z->present_pages = 0;
1131
1132	pgdat->node_present_pages = 0;
1133}
1134
1135/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137{
1138	struct pglist_data *pgdat;
1139	unsigned long zones_size[MAX_NR_ZONES] = {0};
1140	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141	unsigned long start_pfn = PFN_DOWN(start);
1142
 
 
 
 
 
 
1143	pgdat = NODE_DATA(nid);
1144	if (!pgdat) {
1145		pgdat = arch_alloc_nodedata(nid);
1146		if (!pgdat)
1147			return NULL;
1148
1149		arch_refresh_nodedata(nid, pgdat);
1150	} else {
1151		/* Reset the nr_zones and classzone_idx to 0 before reuse */
1152		pgdat->nr_zones = 0;
1153		pgdat->classzone_idx = 0;
1154	}
1155
1156	/* we can use NODE_DATA(nid) from here */
1157
1158	/* init node's zones as empty zones, we don't have any present pages.*/
1159	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160
1161	/*
1162	 * The node we allocated has no zone fallback lists. For avoiding
1163	 * to access not-initialized zonelist, build here.
1164	 */
1165	mutex_lock(&zonelists_mutex);
1166	build_all_zonelists(pgdat, NULL);
1167	mutex_unlock(&zonelists_mutex);
1168
1169	/*
1170	 * zone->managed_pages is set to an approximate value in
1171	 * free_area_init_core(), which will cause
1172	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1173	 * So reset it to 0 before any memory is onlined.
1174	 */
1175	reset_node_managed_pages(pgdat);
1176
1177	/*
1178	 * When memory is hot-added, all the memory is in offline state. So
1179	 * clear all zones' present_pages because they will be updated in
1180	 * online_pages() and offline_pages().
1181	 */
1182	reset_node_present_pages(pgdat);
1183
1184	return pgdat;
1185}
1186
1187static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188{
1189	arch_refresh_nodedata(nid, NULL);
1190	arch_free_nodedata(pgdat);
1191	return;
1192}
1193
1194
1195/**
1196 * try_online_node - online a node if offlined
1197 *
1198 * called by cpu_up() to online a node without onlined memory.
 
 
 
 
 
1199 */
1200int try_online_node(int nid)
1201{
1202	pg_data_t	*pgdat;
1203	int	ret;
1204
1205	if (node_online(nid))
1206		return 0;
1207
1208	mem_hotplug_begin();
1209	pgdat = hotadd_new_pgdat(nid, 0);
1210	if (!pgdat) {
1211		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212		ret = -ENOMEM;
1213		goto out;
1214	}
1215	node_set_online(nid);
1216	ret = register_one_node(nid);
1217	BUG_ON(ret);
1218
1219	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220		mutex_lock(&zonelists_mutex);
1221		build_all_zonelists(NULL, NULL);
1222		mutex_unlock(&zonelists_mutex);
1223	}
1224
 
 
 
 
 
1225out:
 
 
 
 
 
 
 
 
 
 
 
 
1226	mem_hotplug_done();
1227	return ret;
1228}
1229
1230static int check_hotplug_memory_range(u64 start, u64 size)
1231{
1232	u64 start_pfn = PFN_DOWN(start);
1233	u64 nr_pages = size >> PAGE_SHIFT;
1234
1235	/* Memory range must be aligned with section */
1236	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239				(unsigned long long)start,
1240				(unsigned long long)size);
1241		return -EINVAL;
1242	}
1243
1244	return 0;
1245}
1246
1247/*
1248 * If movable zone has already been setup, newly added memory should be check.
1249 * If its address is higher than movable zone, it should be added as movable.
1250 * Without this check, movable zone may overlap with other zone.
1251 */
1252static int should_add_memory_movable(int nid, u64 start, u64 size)
1253{
1254	unsigned long start_pfn = start >> PAGE_SHIFT;
1255	pg_data_t *pgdat = NODE_DATA(nid);
1256	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257
1258	if (zone_is_empty(movable_zone))
1259		return 0;
 
 
 
 
 
 
 
 
 
1260
1261	if (movable_zone->zone_start_pfn <= start_pfn)
1262		return 1;
 
 
1263
1264	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265}
 
1266
1267int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268		bool for_device)
1269{
1270#ifdef CONFIG_ZONE_DEVICE
1271	if (for_device)
1272		return ZONE_DEVICE;
1273#endif
1274	if (should_add_memory_movable(nid, start, size))
1275		return ZONE_MOVABLE;
 
 
 
 
 
 
 
 
 
1276
1277	return zone_default;
 
 
 
 
 
 
 
 
 
 
1278}
1279
1280static int online_memory_block(struct memory_block *mem, void *arg)
 
1281{
1282	return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
1285/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286int __ref add_memory_resource(int nid, struct resource *res, bool online)
 
 
 
 
 
1287{
 
 
 
1288	u64 start, size;
1289	pg_data_t *pgdat = NULL;
1290	bool new_pgdat;
1291	bool new_node;
1292	int ret;
1293
1294	start = res->start;
1295	size = resource_size(res);
1296
1297	ret = check_hotplug_memory_range(start, size);
1298	if (ret)
1299		return ret;
1300
1301	{	/* Stupid hack to suppress address-never-null warning */
1302		void *p = NODE_DATA(nid);
1303		new_pgdat = !p;
 
 
1304	}
1305
1306	mem_hotplug_begin();
 
 
 
1307
1308	/*
1309	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1310	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311	 * this new range and calculate total pages correctly.  The range will
1312	 * be removed at hot-remove time.
1313	 */
1314	memblock_add_node(start, size, nid);
1315
1316	new_node = !node_online(nid);
1317	if (new_node) {
1318		pgdat = hotadd_new_pgdat(nid, start);
1319		ret = -ENOMEM;
1320		if (!pgdat)
1321			goto error;
1322	}
1323
1324	/* call arch's memory hotadd */
1325	ret = arch_add_memory(nid, start, size, false);
1326
1327	if (ret < 0)
1328		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329
1330	/* we online node here. we can't roll back from here. */
1331	node_set_online(nid);
 
 
 
 
 
1332
1333	if (new_node) {
1334		ret = register_one_node(nid);
1335		/*
1336		 * If sysfs file of new node can't create, cpu on the node
1337		 * can't be hot-added. There is no rollback way now.
1338		 * So, check by BUG_ON() to catch it reluctantly..
 
1339		 */
 
 
1340		BUG_ON(ret);
1341	}
1342
 
 
 
 
1343	/* create new memmap entry */
1344	firmware_map_add_hotplug(start, start + size, "System RAM");
 
1345
1346	/* online pages if requested */
1347	if (online)
1348		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349				  NULL, online_memory_block);
 
 
 
 
 
1350
1351	goto out;
 
 
1352
 
1353error:
1354	/* rollback pgdat allocation and others */
1355	if (new_pgdat)
1356		rollback_node_hotadd(nid, pgdat);
1357	memblock_remove(start, size);
1358
1359out:
1360	mem_hotplug_done();
1361	return ret;
1362}
1363EXPORT_SYMBOL_GPL(add_memory_resource);
1364
1365int __ref add_memory(int nid, u64 start, u64 size)
 
1366{
1367	struct resource *res;
1368	int ret;
1369
1370	res = register_memory_resource(start, size);
1371	if (IS_ERR(res))
1372		return PTR_ERR(res);
1373
1374	ret = add_memory_resource(nid, res, memhp_auto_online);
1375	if (ret < 0)
1376		release_memory_resource(res);
1377	return ret;
1378}
1379EXPORT_SYMBOL_GPL(add_memory);
1380
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382/*
1383 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384 * set and the size of the free page is given by page_order(). Using this,
1385 * the function determines if the pageblock contains only free pages.
1386 * Due to buddy contraints, a free page at least the size of a pageblock will
1387 * be located at the start of the pageblock
1388 */
1389static inline int pageblock_free(struct page *page)
1390{
1391	return PageBuddy(page) && page_order(page) >= pageblock_order;
1392}
1393
1394/* Return the start of the next active pageblock after a given page */
1395static struct page *next_active_pageblock(struct page *page)
1396{
1397	/* Ensure the starting page is pageblock-aligned */
1398	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399
1400	/* If the entire pageblock is free, move to the end of free page */
1401	if (pageblock_free(page)) {
1402		int order;
1403		/* be careful. we don't have locks, page_order can be changed.*/
1404		order = page_order(page);
1405		if ((order < MAX_ORDER) && (order >= pageblock_order))
1406			return page + (1 << order);
1407	}
1408
1409	return page + pageblock_nr_pages;
1410}
 
1411
1412/* Checks if this range of memory is likely to be hot-removable. */
1413int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414{
1415	struct page *page = pfn_to_page(start_pfn);
1416	struct page *end_page = page + nr_pages;
1417
1418	/* Check the starting page of each pageblock within the range */
1419	for (; page < end_page; page = next_active_pageblock(page)) {
1420		if (!is_pageblock_removable_nolock(page))
1421			return 0;
1422		cond_resched();
 
 
 
 
 
 
1423	}
1424
1425	/* All pageblocks in the memory block are likely to be hot-removable */
1426	return 1;
 
 
 
 
 
1427}
 
1428
1429/*
1430 * Confirm all pages in a range [start, end) is belongs to the same zone.
 
 
 
 
 
 
 
 
 
 
1431 */
1432int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433{
1434	unsigned long pfn, sec_end_pfn;
1435	struct zone *zone = NULL;
1436	struct page *page;
1437	int i;
1438	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439	     pfn < end_pfn;
1440	     pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441		/* Make sure the memory section is present first */
1442		if (!present_section_nr(pfn_to_section_nr(pfn)))
1443			continue;
1444		for (; pfn < sec_end_pfn && pfn < end_pfn;
1445		     pfn += MAX_ORDER_NR_PAGES) {
1446			i = 0;
1447			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448			while ((i < MAX_ORDER_NR_PAGES) &&
1449				!pfn_valid_within(pfn + i))
1450				i++;
1451			if (i == MAX_ORDER_NR_PAGES)
1452				continue;
1453			page = pfn_to_page(pfn + i);
1454			if (zone && page_zone(page) != zone)
1455				return 0;
1456			zone = page_zone(page);
1457		}
 
 
 
 
1458	}
1459	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
 
1462/*
1463 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464 * and hugepages). We scan pfn because it's much easier than scanning over
1465 * linked list. This function returns the pfn of the first found movable
1466 * page if it's found, otherwise 0.
 
 
 
 
 
1467 */
1468static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
 
1469{
1470	unsigned long pfn;
1471	struct page *page;
1472	for (pfn = start; pfn < end; pfn++) {
1473		if (pfn_valid(pfn)) {
1474			page = pfn_to_page(pfn);
1475			if (PageLRU(page))
1476				return pfn;
1477			if (PageHuge(page)) {
1478				if (page_huge_active(page))
1479					return pfn;
1480				else
1481					pfn = round_up(pfn + 1,
1482						1 << compound_order(page)) - 1;
1483			}
1484		}
1485	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486	return 0;
1487}
1488
1489#define NR_OFFLINE_AT_ONCE_PAGES	(256)
1490static int
1491do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492{
 
1493	unsigned long pfn;
1494	struct page *page;
1495	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496	int not_managed = 0;
1497	int ret = 0;
1498	LIST_HEAD(source);
 
 
 
 
 
1499
1500	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501		if (!pfn_valid(pfn))
1502			continue;
1503		page = pfn_to_page(pfn);
 
1504
1505		if (PageHuge(page)) {
1506			struct page *head = compound_head(page);
1507			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508			if (compound_order(head) > PFN_SECTION_SHIFT) {
1509				ret = -EBUSY;
1510				break;
1511			}
1512			if (isolate_huge_page(page, &source))
1513				move_pages -= 1 << compound_order(head);
1514			continue;
1515		}
1516
1517		if (!get_page_unless_zero(page))
1518			continue;
1519		/*
1520		 * We can skip free pages. And we can only deal with pages on
1521		 * LRU.
 
 
1522		 */
1523		ret = isolate_lru_page(page);
1524		if (!ret) { /* Success */
1525			put_page(page);
1526			list_add_tail(&page->lru, &source);
1527			move_pages--;
1528			inc_zone_page_state(page, NR_ISOLATED_ANON +
1529					    page_is_file_cache(page));
1530
1531		} else {
1532#ifdef CONFIG_DEBUG_VM
1533			pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534			dump_page(page, "failed to remove from LRU");
1535#endif
1536			put_page(page);
1537			/* Because we don't have big zone->lock. we should
1538			   check this again here. */
1539			if (page_count(page)) {
1540				not_managed++;
1541				ret = -EBUSY;
1542				break;
 
 
 
 
 
 
 
 
 
 
 
 
1543			}
1544		}
 
 
1545	}
1546	if (!list_empty(&source)) {
1547		if (not_managed) {
1548			putback_movable_pages(&source);
1549			goto out;
1550		}
 
 
 
1551
1552		/*
1553		 * alloc_migrate_target should be improooooved!!
1554		 * migrate_pages returns # of failed pages.
1555		 */
1556		ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559			putback_movable_pages(&source);
 
1560	}
1561out:
1562	return ret;
1563}
1564
1565/*
1566 * remove from free_area[] and mark all as Reserved.
1567 */
1568static int
1569offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570			void *data)
1571{
1572	__offline_isolated_pages(start, start + nr_pages);
1573	return 0;
1574}
1575
1576static void
1577offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578{
1579	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580				offline_isolated_pages_cb);
1581}
1582
1583/*
1584 * Check all pages in range, recoreded as memory resource, are isolated.
1585 */
1586static int
1587check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588			void *data)
1589{
1590	int ret;
1591	long offlined = *(long *)data;
1592	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593	offlined = nr_pages;
1594	if (!ret)
1595		*(long *)data += offlined;
1596	return ret;
1597}
1598
1599static long
1600check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602	long offlined = 0;
1603	int ret;
1604
1605	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606			check_pages_isolated_cb);
1607	if (ret < 0)
1608		offlined = (long)ret;
1609	return offlined;
1610}
1611
1612#ifdef CONFIG_MOVABLE_NODE
1613/*
1614 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615 * normal memory.
1616 */
1617static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618{
1619	return true;
1620}
1621#else /* CONFIG_MOVABLE_NODE */
1622/* ensure the node has NORMAL memory if it is still online */
1623static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624{
1625	struct pglist_data *pgdat = zone->zone_pgdat;
1626	unsigned long present_pages = 0;
1627	enum zone_type zt;
1628
1629	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630		present_pages += pgdat->node_zones[zt].present_pages;
1631
1632	if (present_pages > nr_pages)
1633		return true;
1634
1635	present_pages = 0;
1636	for (; zt <= ZONE_MOVABLE; zt++)
1637		present_pages += pgdat->node_zones[zt].present_pages;
1638
1639	/*
1640	 * we can't offline the last normal memory until all
1641	 * higher memory is offlined.
1642	 */
1643	return present_pages == 0;
1644}
1645#endif /* CONFIG_MOVABLE_NODE */
1646
1647static int __init cmdline_parse_movable_node(char *p)
1648{
1649#ifdef CONFIG_MOVABLE_NODE
1650	/*
1651	 * Memory used by the kernel cannot be hot-removed because Linux
1652	 * cannot migrate the kernel pages. When memory hotplug is
1653	 * enabled, we should prevent memblock from allocating memory
1654	 * for the kernel.
1655	 *
1656	 * ACPI SRAT records all hotpluggable memory ranges. But before
1657	 * SRAT is parsed, we don't know about it.
1658	 *
1659	 * The kernel image is loaded into memory at very early time. We
1660	 * cannot prevent this anyway. So on NUMA system, we set any
1661	 * node the kernel resides in as un-hotpluggable.
1662	 *
1663	 * Since on modern servers, one node could have double-digit
1664	 * gigabytes memory, we can assume the memory around the kernel
1665	 * image is also un-hotpluggable. So before SRAT is parsed, just
1666	 * allocate memory near the kernel image to try the best to keep
1667	 * the kernel away from hotpluggable memory.
1668	 */
1669	memblock_set_bottom_up(true);
1670	movable_node_enabled = true;
1671#else
1672	pr_warn("movable_node option not supported\n");
1673#endif
1674	return 0;
1675}
1676early_param("movable_node", cmdline_parse_movable_node);
1677
1678/* check which state of node_states will be changed when offline memory */
1679static void node_states_check_changes_offline(unsigned long nr_pages,
1680		struct zone *zone, struct memory_notify *arg)
1681{
1682	struct pglist_data *pgdat = zone->zone_pgdat;
1683	unsigned long present_pages = 0;
1684	enum zone_type zt, zone_last = ZONE_NORMAL;
1685
1686	/*
1687	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688	 * contains nodes which have zones of 0...ZONE_NORMAL,
1689	 * set zone_last to ZONE_NORMAL.
1690	 *
1691	 * If we don't have HIGHMEM nor movable node,
1692	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694	 */
1695	if (N_MEMORY == N_NORMAL_MEMORY)
1696		zone_last = ZONE_MOVABLE;
1697
1698	/*
1699	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700	 * If the memory to be offline is in a zone of 0...zone_last,
1701	 * and it is the last present memory, 0...zone_last will
1702	 * become empty after offline , thus we can determind we will
1703	 * need to clear the node from node_states[N_NORMAL_MEMORY].
 
1704	 */
1705	for (zt = 0; zt <= zone_last; zt++)
1706		present_pages += pgdat->node_zones[zt].present_pages;
1707	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708		arg->status_change_nid_normal = zone_to_nid(zone);
1709	else
1710		arg->status_change_nid_normal = -1;
1711
1712#ifdef CONFIG_HIGHMEM
1713	/*
1714	 * If we have movable node, node_states[N_HIGH_MEMORY]
1715	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716	 * set zone_last to ZONE_HIGHMEM.
1717	 *
1718	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1720	 * set zone_last to ZONE_MOVABLE.
1721	 */
1722	zone_last = ZONE_HIGHMEM;
1723	if (N_MEMORY == N_HIGH_MEMORY)
1724		zone_last = ZONE_MOVABLE;
1725
1726	for (; zt <= zone_last; zt++)
1727		present_pages += pgdat->node_zones[zt].present_pages;
1728	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729		arg->status_change_nid_high = zone_to_nid(zone);
1730	else
1731		arg->status_change_nid_high = -1;
1732#else
1733	arg->status_change_nid_high = arg->status_change_nid_normal;
1734#endif
1735
1736	/*
1737	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
 
 
 
 
 
 
1738	 */
1739	zone_last = ZONE_MOVABLE;
1740
1741	/*
1742	 * check whether node_states[N_HIGH_MEMORY] will be changed
1743	 * If we try to offline the last present @nr_pages from the node,
1744	 * we can determind we will need to clear the node from
1745	 * node_states[N_HIGH_MEMORY].
1746	 */
1747	for (; zt <= zone_last; zt++)
1748		present_pages += pgdat->node_zones[zt].present_pages;
1749	if (nr_pages >= present_pages)
1750		arg->status_change_nid = zone_to_nid(zone);
1751	else
1752		arg->status_change_nid = -1;
1753}
1754
1755static void node_states_clear_node(int node, struct memory_notify *arg)
1756{
1757	if (arg->status_change_nid_normal >= 0)
1758		node_clear_state(node, N_NORMAL_MEMORY);
1759
1760	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761	    (arg->status_change_nid_high >= 0))
1762		node_clear_state(node, N_HIGH_MEMORY);
1763
1764	if ((N_MEMORY != N_HIGH_MEMORY) &&
1765	    (arg->status_change_nid >= 0))
1766		node_clear_state(node, N_MEMORY);
1767}
1768
1769static int __ref __offline_pages(unsigned long start_pfn,
1770		  unsigned long end_pfn, unsigned long timeout)
 
 
 
 
 
 
 
 
 
 
 
 
1771{
1772	unsigned long pfn, nr_pages, expire;
1773	long offlined_pages;
1774	int ret, drain, retry_max, node;
1775	unsigned long flags;
1776	struct zone *zone;
1777	struct memory_notify arg;
 
 
1778
1779	/* at least, alignment against pageblock is necessary */
1780	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781		return -EINVAL;
1782	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783		return -EINVAL;
1784	/* This makes hotplug much easier...and readable.
1785	   we assume this for now. .*/
1786	if (!test_pages_in_a_zone(start_pfn, end_pfn))
 
1787		return -EINVAL;
1788
1789	zone = page_zone(pfn_to_page(start_pfn));
1790	node = zone_to_nid(zone);
1791	nr_pages = end_pfn - start_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
1792
1793	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796	/* set above range as isolated */
1797	ret = start_isolate_page_range(start_pfn, end_pfn,
1798				       MIGRATE_MOVABLE, true);
1799	if (ret)
1800		return ret;
 
 
 
 
1801
1802	arg.start_pfn = start_pfn;
1803	arg.nr_pages = nr_pages;
1804	node_states_check_changes_offline(nr_pages, zone, &arg);
1805
1806	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807	ret = notifier_to_errno(ret);
1808	if (ret)
1809		goto failed_removal;
1810
1811	pfn = start_pfn;
1812	expire = jiffies + timeout;
1813	drain = 0;
1814	retry_max = 5;
1815repeat:
1816	/* start memory hot removal */
1817	ret = -EAGAIN;
1818	if (time_after(jiffies, expire))
1819		goto failed_removal;
1820	ret = -EINTR;
1821	if (signal_pending(current))
1822		goto failed_removal;
1823	ret = 0;
1824	if (drain) {
1825		lru_add_drain_all();
1826		cond_resched();
1827		drain_all_pages(zone);
1828	}
1829
1830	pfn = scan_movable_pages(start_pfn, end_pfn);
1831	if (pfn) { /* We have movable pages */
1832		ret = do_migrate_range(pfn, end_pfn);
1833		if (!ret) {
1834			drain = 1;
1835			goto repeat;
1836		} else {
1837			if (ret < 0)
1838				if (--retry_max == 0)
1839					goto failed_removal;
1840			yield();
1841			drain = 1;
1842			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843		}
1844	}
1845	/* drain all zone's lru pagevec, this is asynchronous... */
1846	lru_add_drain_all();
1847	yield();
1848	/* drain pcp pages, this is synchronous. */
1849	drain_all_pages(zone);
1850	/*
1851	 * dissolve free hugepages in the memory block before doing offlining
1852	 * actually in order to make hugetlbfs's object counting consistent.
1853	 */
1854	dissolve_free_huge_pages(start_pfn, end_pfn);
1855	/* check again */
1856	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857	if (offlined_pages < 0) {
1858		ret = -EBUSY;
1859		goto failed_removal;
1860	}
1861	pr_info("Offlined Pages %ld\n", offlined_pages);
1862	/* Ok, all of our target is isolated.
1863	   We cannot do rollback at this point. */
1864	offline_isolated_pages(start_pfn, end_pfn);
1865	/* reset pagetype flags and makes migrate type to be MOVABLE */
1866	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867	/* removal success */
1868	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869	zone->present_pages -= offlined_pages;
1870
1871	pgdat_resize_lock(zone->zone_pgdat, &flags);
1872	zone->zone_pgdat->node_present_pages -= offlined_pages;
1873	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 
 
 
 
 
 
 
 
 
 
 
1874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875	init_per_zone_wmark_min();
1876
 
 
 
 
 
1877	if (!populated_zone(zone)) {
1878		zone_pcp_reset(zone);
1879		mutex_lock(&zonelists_mutex);
1880		build_all_zonelists(NULL, NULL);
1881		mutex_unlock(&zonelists_mutex);
1882	} else
1883		zone_pcp_update(zone);
1884
1885	node_states_clear_node(node, &arg);
1886	if (arg.status_change_nid >= 0) {
1887		kswapd_stop(node);
1888		kcompactd_stop(node);
 
1889	}
1890
1891	vm_total_pages = nr_free_pagecache_pages();
1892	writeback_set_ratelimit();
1893
1894	memory_notify(MEM_OFFLINE, &arg);
 
1895	return 0;
1896
1897failed_removal:
1898	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899		 (unsigned long long) start_pfn << PAGE_SHIFT,
1900		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902	/* pushback to free area */
1903	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
1904	return ret;
1905}
1906
1907/* Must be protected by mem_hotplug_begin() */
1908int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909{
1910	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911}
1912#endif /* CONFIG_MEMORY_HOTREMOVE */
1913
1914/**
1915 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916 * @start_pfn: start pfn of the memory range
1917 * @end_pfn: end pfn of the memory range
1918 * @arg: argument passed to func
1919 * @func: callback for each memory section walked
1920 *
1921 * This function walks through all present mem sections in range
1922 * [start_pfn, end_pfn) and call func on each mem section.
1923 *
1924 * Returns the return value of func.
1925 */
1926int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927		void *arg, int (*func)(struct memory_block *, void *))
1928{
1929	struct memory_block *mem = NULL;
1930	struct mem_section *section;
1931	unsigned long pfn, section_nr;
1932	int ret;
1933
1934	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935		section_nr = pfn_to_section_nr(pfn);
1936		if (!present_section_nr(section_nr))
1937			continue;
1938
1939		section = __nr_to_section(section_nr);
1940		/* same memblock? */
1941		if (mem)
1942			if ((section_nr >= mem->start_section_nr) &&
1943			    (section_nr <= mem->end_section_nr))
1944				continue;
1945
1946		mem = find_memory_block_hinted(section, mem);
1947		if (!mem)
1948			continue;
 
1949
1950		ret = func(mem, arg);
1951		if (ret) {
1952			kobject_put(&mem->dev.kobj);
1953			return ret;
1954		}
1955	}
1956
1957	if (mem)
1958		kobject_put(&mem->dev.kobj);
1959
1960	return 0;
1961}
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965{
1966	int ret = !is_memblock_offlined(mem);
1967
1968	if (unlikely(ret)) {
1969		phys_addr_t beginpa, endpa;
1970
1971		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974			&beginpa, &endpa);
1975	}
1976
1977	return ret;
1978}
1979
1980static int check_cpu_on_node(pg_data_t *pgdat)
1981{
1982	int cpu;
1983
1984	for_each_present_cpu(cpu) {
1985		if (cpu_to_node(cpu) == pgdat->node_id)
1986			/*
1987			 * the cpu on this node isn't removed, and we can't
1988			 * offline this node.
1989			 */
1990			return -EBUSY;
1991	}
1992
1993	return 0;
1994}
1995
1996static void unmap_cpu_on_node(pg_data_t *pgdat)
1997{
1998#ifdef CONFIG_ACPI_NUMA
1999	int cpu;
2000
2001	for_each_possible_cpu(cpu)
2002		if (cpu_to_node(cpu) == pgdat->node_id)
2003			numa_clear_node(cpu);
2004#endif
2005}
2006
2007static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008{
2009	int ret;
2010
2011	ret = check_cpu_on_node(pgdat);
2012	if (ret)
2013		return ret;
2014
2015	/*
2016	 * the node will be offlined when we come here, so we can clear
2017	 * the cpu_to_node() now.
 
2018	 */
2019
2020	unmap_cpu_on_node(pgdat);
2021	return 0;
2022}
2023
2024/**
2025 * try_offline_node
 
2026 *
2027 * Offline a node if all memory sections and cpus of the node are removed.
2028 *
2029 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030 * and online/offline operations before this call.
2031 */
2032void try_offline_node(int nid)
2033{
2034	pg_data_t *pgdat = NODE_DATA(nid);
2035	unsigned long start_pfn = pgdat->node_start_pfn;
2036	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037	unsigned long pfn;
2038	int i;
2039
2040	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041		unsigned long section_nr = pfn_to_section_nr(pfn);
2042
2043		if (!present_section_nr(section_nr))
2044			continue;
2045
2046		if (pfn_to_nid(pfn) != nid)
2047			continue;
 
 
 
 
 
2048
2049		/*
2050		 * some memory sections of this node are not removed, and we
2051		 * can't offline node now.
2052		 */
 
 
 
2053		return;
2054	}
2055
2056	if (check_and_unmap_cpu_on_node(pgdat))
2057		return;
2058
2059	/*
2060	 * all memory/cpu of this node are removed, we can offline this
2061	 * node now.
2062	 */
2063	node_set_offline(nid);
2064	unregister_one_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065
2066	/* free waittable in each zone */
2067	for (i = 0; i < MAX_NR_ZONES; i++) {
2068		struct zone *zone = pgdat->node_zones + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069
 
 
 
 
 
 
 
 
 
 
2070		/*
2071		 * wait_table may be allocated from boot memory,
2072		 * here only free if it's allocated by vmalloc.
 
2073		 */
2074		if (is_vmalloc_addr(zone->wait_table)) {
2075			vfree(zone->wait_table);
2076			zone->wait_table = NULL;
2077		}
 
2078	}
 
 
 
 
 
 
 
 
 
 
 
2079}
2080EXPORT_SYMBOL(try_offline_node);
2081
2082/**
2083 * remove_memory
 
 
2084 *
2085 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086 * and online/offline operations before this call, as required by
2087 * try_offline_node().
2088 */
2089void __ref remove_memory(int nid, u64 start, u64 size)
2090{
2091	int ret;
2092
2093	BUG_ON(check_hotplug_memory_range(start, size));
 
 
 
 
 
 
2094
2095	mem_hotplug_begin();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096
2097	/*
2098	 * All memory blocks must be offlined before removing memory.  Check
2099	 * whether all memory blocks in question are offline and trigger a BUG()
2100	 * if this is not the case.
2101	 */
2102	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103				check_memblock_offlined_cb);
2104	if (ret)
2105		BUG();
2106
2107	/* remove memmap entry */
2108	firmware_map_remove(start, start + size, "System RAM");
2109	memblock_free(start, size);
2110	memblock_remove(start, size);
 
 
 
2111
2112	arch_remove_memory(start, size);
 
 
 
2113
2114	try_offline_node(nid);
 
 
 
2115
2116	mem_hotplug_done();
 
 
 
 
 
 
 
 
 
 
2117}
2118EXPORT_SYMBOL_GPL(remove_memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119#endif /* CONFIG_MEMORY_HOTREMOVE */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
 
  16#include <linux/writeback.h>
  17#include <linux/slab.h>
  18#include <linux/sysctl.h>
  19#include <linux/cpu.h>
  20#include <linux/memory.h>
  21#include <linux/memremap.h>
  22#include <linux/memory_hotplug.h>
 
  23#include <linux/vmalloc.h>
  24#include <linux/ioport.h>
  25#include <linux/delay.h>
  26#include <linux/migrate.h>
  27#include <linux/page-isolation.h>
  28#include <linux/pfn.h>
  29#include <linux/suspend.h>
  30#include <linux/mm_inline.h>
  31#include <linux/firmware-map.h>
  32#include <linux/stop_machine.h>
  33#include <linux/hugetlb.h>
  34#include <linux/memblock.h>
 
  35#include <linux/compaction.h>
  36#include <linux/rmap.h>
  37#include <linux/module.h>
  38
  39#include <asm/tlbflush.h>
  40
  41#include "internal.h"
  42#include "shuffle.h"
  43
  44enum {
  45	MEMMAP_ON_MEMORY_DISABLE = 0,
  46	MEMMAP_ON_MEMORY_ENABLE,
  47	MEMMAP_ON_MEMORY_FORCE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48};
  49
  50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
 
 
 
  51
  52static inline unsigned long memory_block_memmap_size(void)
 
 
 
  53{
  54	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
 
 
 
 
 
 
 
  55}
  56
  57static inline unsigned long memory_block_memmap_on_memory_pages(void)
  58{
  59	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
 
 
 
 
 
 
 
 
 
 
  60
  61	/*
  62	 * In "forced" memmap_on_memory mode, we add extra pages to align the
  63	 * vmemmap size to cover full pageblocks. That way, we can add memory
  64	 * even if the vmemmap size is not properly aligned, however, we might waste
  65	 * memory.
  66	 */
  67	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
  68		return pageblock_align(nr_pages);
  69	return nr_pages;
  70}
  71
  72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  73/*
  74 * memory_hotplug.memmap_on_memory parameter
  75 */
  76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
  77{
  78	int ret, mode;
  79	bool enabled;
  80
  81	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
  82		mode = MEMMAP_ON_MEMORY_FORCE;
  83	} else {
  84		ret = kstrtobool(val, &enabled);
  85		if (ret < 0)
  86			return ret;
  87		if (enabled)
  88			mode = MEMMAP_ON_MEMORY_ENABLE;
  89		else
  90			mode = MEMMAP_ON_MEMORY_DISABLE;
  91	}
  92	*((int *)kp->arg) = mode;
  93	if (mode == MEMMAP_ON_MEMORY_FORCE) {
  94		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
  95
  96		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
  97			     memmap_pages - PFN_UP(memory_block_memmap_size()));
  98	}
  99	return 0;
 
 100}
 101
 102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
 
 103{
 104	int mode = *((int *)kp->arg);
 
 
 
 105
 106	if (mode == MEMMAP_ON_MEMORY_FORCE)
 107		return sprintf(buffer, "force\n");
 108	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
 
 
 
 
 
 
 
 109}
 110
 111static const struct kernel_param_ops memmap_mode_ops = {
 112	.set = set_memmap_mode,
 113	.get = get_memmap_mode,
 114};
 115module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
 116MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
 117		 "With value \"force\" it could result in memory wastage due "
 118		 "to memmap size limitations (Y/N/force)");
 119
 120static inline bool mhp_memmap_on_memory(void)
 
 
 121{
 122	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
 
 
 
 123}
 124#else
 125static inline bool mhp_memmap_on_memory(void)
 126{
 127	return false;
 
 
 
 
 
 
 
 
 
 
 
 128}
 129#endif
 130
 131enum {
 132	ONLINE_POLICY_CONTIG_ZONES = 0,
 133	ONLINE_POLICY_AUTO_MOVABLE,
 134};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135
 136static const char * const online_policy_to_str[] = {
 137	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
 138	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
 139};
 140
 141static int set_online_policy(const char *val, const struct kernel_param *kp)
 
 
 142{
 143	int ret = sysfs_match_string(online_policy_to_str, val);
 
 
 144
 145	if (ret < 0)
 146		return ret;
 147	*((int *)kp->arg) = ret;
 148	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 149}
 
 150
 151static int get_online_policy(char *buffer, const struct kernel_param *kp)
 152{
 153	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
 154}
 
 
 155
 156/*
 157 * memory_hotplug.online_policy: configure online behavior when onlining without
 158 * specifying a zone (MMOP_ONLINE)
 159 *
 160 * "contig-zones": keep zone contiguous
 161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
 162 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
 163 */
 164static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
 165static const struct kernel_param_ops online_policy_ops = {
 166	.set = set_online_policy,
 167	.get = get_online_policy,
 168};
 169module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
 170MODULE_PARM_DESC(online_policy,
 171		"Set the online policy (\"contig-zones\", \"auto-movable\") "
 172		"Default: \"contig-zones\"");
 173
 174/*
 175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
 176 *
 177 * The ratio represent an upper limit and the kernel might decide to not
 178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
 179 * doesn't allow for more MOVABLE memory.
 180 */
 181static unsigned int auto_movable_ratio __read_mostly = 301;
 182module_param(auto_movable_ratio, uint, 0644);
 183MODULE_PARM_DESC(auto_movable_ratio,
 184		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
 185		"in percent for \"auto-movable\" online policy. Default: 301");
 186
 187/*
 188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
 189 */
 190#ifdef CONFIG_NUMA
 191static bool auto_movable_numa_aware __read_mostly = true;
 192module_param(auto_movable_numa_aware, bool, 0644);
 193MODULE_PARM_DESC(auto_movable_numa_aware,
 194		"Consider numa node stats in addition to global stats in "
 195		"\"auto-movable\" online policy. Default: true");
 196#endif /* CONFIG_NUMA */
 197
 198/*
 199 * online_page_callback contains pointer to current page onlining function.
 200 * Initially it is generic_online_page(). If it is required it could be
 201 * changed by calling set_online_page_callback() for callback registration
 202 * and restore_online_page_callback() for generic callback restore.
 203 */
 204
 205static online_page_callback_t online_page_callback = generic_online_page;
 206static DEFINE_MUTEX(online_page_callback_lock);
 207
 208DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 209
 210void get_online_mems(void)
 
 211{
 212	percpu_down_read(&mem_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 213}
 214
 215void put_online_mems(void)
 
 216{
 217	percpu_up_read(&mem_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218}
 219
 220bool movable_node_enabled = false;
 
 
 
 
 
 221
 222#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
 223int mhp_default_online_type = MMOP_OFFLINE;
 224#else
 225int mhp_default_online_type = MMOP_ONLINE;
 226#endif
 227
 228static int __init setup_memhp_default_state(char *str)
 
 
 
 229{
 230	const int online_type = mhp_online_type_from_str(str);
 
 231
 232	if (online_type >= 0)
 233		mhp_default_online_type = online_type;
 234
 235	return 1;
 236}
 237__setup("memhp_default_state=", setup_memhp_default_state);
 238
 239void mem_hotplug_begin(void)
 
 240{
 241	cpus_read_lock();
 242	percpu_down_write(&mem_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245void mem_hotplug_done(void)
 
 246{
 247	percpu_up_write(&mem_hotplug_lock);
 248	cpus_read_unlock();
 249}
 250
 251u64 max_mem_size = U64_MAX;
 
 
 252
 253/* add this memory to iomem resource */
 254static struct resource *register_memory_resource(u64 start, u64 size,
 255						 const char *resource_name)
 256{
 257	struct resource *res;
 258	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 259
 260	if (strcmp(resource_name, "System RAM"))
 261		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263	if (!mhp_range_allowed(start, size, true))
 264		return ERR_PTR(-E2BIG);
 265
 266	/*
 267	 * Make sure value parsed from 'mem=' only restricts memory adding
 268	 * while booting, so that memory hotplug won't be impacted. Please
 269	 * refer to document of 'mem=' in kernel-parameters.txt for more
 270	 * details.
 271	 */
 272	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 273		return ERR_PTR(-E2BIG);
 274
 275	/*
 276	 * Request ownership of the new memory range.  This might be
 277	 * a child of an existing resource that was present but
 278	 * not marked as busy.
 279	 */
 280	res = __request_region(&iomem_resource, start, size,
 281			       resource_name, flags);
 282
 283	if (!res) {
 284		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 285				start, start + size);
 286		return ERR_PTR(-EEXIST);
 287	}
 288	return res;
 289}
 290
 291static void release_memory_resource(struct resource *res)
 
 292{
 293	if (!res)
 294		return;
 295	release_resource(res);
 296	kfree(res);
 
 
 
 297}
 298
 299static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
 300{
 301	/*
 302	 * Disallow all operations smaller than a sub-section and only
 303	 * allow operations smaller than a section for
 304	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 305	 * enforces a larger memory_block_size_bytes() granularity for
 306	 * memory that will be marked online, so this check should only
 307	 * fire for direct arch_{add,remove}_memory() users outside of
 308	 * add_memory_resource().
 309	 */
 310	unsigned long min_align;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311
 312	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 313		min_align = PAGES_PER_SUBSECTION;
 314	else
 315		min_align = PAGES_PER_SECTION;
 316	if (!IS_ALIGNED(pfn | nr_pages, min_align))
 317		return -EINVAL;
 318	return 0;
 319}
 320
 321/*
 322 * Return page for the valid pfn only if the page is online. All pfn
 323 * walkers which rely on the fully initialized page->flags and others
 324 * should use this rather than pfn_valid && pfn_to_page
 325 */
 326struct page *pfn_to_online_page(unsigned long pfn)
 327{
 328	unsigned long nr = pfn_to_section_nr(pfn);
 329	struct dev_pagemap *pgmap;
 330	struct mem_section *ms;
 331
 332	if (nr >= NR_MEM_SECTIONS)
 333		return NULL;
 334
 335	ms = __nr_to_section(nr);
 336	if (!online_section(ms))
 337		return NULL;
 338
 339	/*
 340	 * Save some code text when online_section() +
 341	 * pfn_section_valid() are sufficient.
 342	 */
 343	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 344		return NULL;
 345
 346	if (!pfn_section_valid(ms, pfn))
 347		return NULL;
 348
 349	if (!online_device_section(ms))
 350		return pfn_to_page(pfn);
 351
 352	/*
 353	 * Slowpath: when ZONE_DEVICE collides with
 354	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 355	 * the section may be 'offline' but 'valid'. Only
 356	 * get_dev_pagemap() can determine sub-section online status.
 357	 */
 358	pgmap = get_dev_pagemap(pfn, NULL);
 359	put_dev_pagemap(pgmap);
 360
 361	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 362	if (pgmap)
 363		return NULL;
 364
 365	return pfn_to_page(pfn);
 366}
 367EXPORT_SYMBOL_GPL(pfn_to_online_page);
 368
 369int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 370		struct mhp_params *params)
 
 
 
 
 
 
 371{
 372	const unsigned long end_pfn = pfn + nr_pages;
 373	unsigned long cur_nr_pages;
 374	int err;
 375	struct vmem_altmap *altmap = params->altmap;
 376
 377	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
 378		return -EINVAL;
 379
 380	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 
 
 381
 
 382	if (altmap) {
 383		/*
 384		 * Validate altmap is within bounds of the total request
 385		 */
 386		if (altmap->base_pfn != pfn
 387				|| vmem_altmap_offset(altmap) > nr_pages) {
 388			pr_warn_once("memory add fail, invalid altmap\n");
 389			return -EINVAL;
 
 390		}
 391		altmap->alloc = 0;
 392	}
 393
 394	if (check_pfn_span(pfn, nr_pages)) {
 395		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
 396		return -EINVAL;
 397	}
 398
 399	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 400		/* Select all remaining pages up to the next section boundary */
 401		cur_nr_pages = min(end_pfn - pfn,
 402				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 403		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
 404					 params->pgmap);
 405		if (err)
 406			break;
 407		cond_resched();
 408	}
 409	vmemmap_populate_print_last();
 
 
 410	return err;
 411}
 
 412
 
 413/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 414static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 415				     unsigned long start_pfn,
 416				     unsigned long end_pfn)
 417{
 418	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 419		if (unlikely(!pfn_to_online_page(start_pfn)))
 
 
 
 
 420			continue;
 421
 422		if (unlikely(pfn_to_nid(start_pfn) != nid))
 423			continue;
 424
 425		if (zone != page_zone(pfn_to_page(start_pfn)))
 426			continue;
 427
 428		return start_pfn;
 429	}
 430
 431	return 0;
 432}
 433
 434/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 435static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 436				    unsigned long start_pfn,
 437				    unsigned long end_pfn)
 438{
 
 439	unsigned long pfn;
 440
 441	/* pfn is the end pfn of a memory section. */
 442	pfn = end_pfn - 1;
 443	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 444		if (unlikely(!pfn_to_online_page(pfn)))
 
 
 445			continue;
 446
 447		if (unlikely(pfn_to_nid(pfn) != nid))
 448			continue;
 449
 450		if (zone != page_zone(pfn_to_page(pfn)))
 451			continue;
 452
 453		return pfn;
 454	}
 455
 456	return 0;
 457}
 458
 459static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 460			     unsigned long end_pfn)
 461{
 
 
 
 462	unsigned long pfn;
 
 463	int nid = zone_to_nid(zone);
 464
 465	if (zone->zone_start_pfn == start_pfn) {
 
 466		/*
 467		 * If the section is smallest section in the zone, it need
 468		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 469		 * In this case, we find second smallest valid mem_section
 470		 * for shrinking zone.
 471		 */
 472		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 473						zone_end_pfn(zone));
 474		if (pfn) {
 475			zone->spanned_pages = zone_end_pfn(zone) - pfn;
 476			zone->zone_start_pfn = pfn;
 477		} else {
 478			zone->zone_start_pfn = 0;
 479			zone->spanned_pages = 0;
 480		}
 481	} else if (zone_end_pfn(zone) == end_pfn) {
 482		/*
 483		 * If the section is biggest section in the zone, it need
 484		 * shrink zone->spanned_pages.
 485		 * In this case, we find second biggest valid mem_section for
 486		 * shrinking zone.
 487		 */
 488		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 489					       start_pfn);
 490		if (pfn)
 491			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 492		else {
 493			zone->zone_start_pfn = 0;
 494			zone->spanned_pages = 0;
 495		}
 496	}
 497}
 498
 499static void update_pgdat_span(struct pglist_data *pgdat)
 500{
 501	unsigned long node_start_pfn = 0, node_end_pfn = 0;
 502	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 503
 504	for (zone = pgdat->node_zones;
 505	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 506		unsigned long end_pfn = zone_end_pfn(zone);
 507
 508		/* No need to lock the zones, they can't change. */
 509		if (!zone->spanned_pages)
 510			continue;
 511		if (!node_end_pfn) {
 512			node_start_pfn = zone->zone_start_pfn;
 513			node_end_pfn = end_pfn;
 514			continue;
 515		}
 516
 517		if (end_pfn > node_end_pfn)
 518			node_end_pfn = end_pfn;
 519		if (zone->zone_start_pfn < node_start_pfn)
 520			node_start_pfn = zone->zone_start_pfn;
 521	}
 522
 523	pgdat->node_start_pfn = node_start_pfn;
 524	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 
 
 525}
 526
 527void remove_pfn_range_from_zone(struct zone *zone,
 528				      unsigned long start_pfn,
 529				      unsigned long nr_pages)
 530{
 531	const unsigned long end_pfn = start_pfn + nr_pages;
 532	struct pglist_data *pgdat = zone->zone_pgdat;
 533	unsigned long pfn, cur_nr_pages;
 
 
 534
 535	/* Poison struct pages because they are now uninitialized again. */
 536	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 537		cond_resched();
 538
 539		/* Select all remaining pages up to the next section boundary */
 540		cur_nr_pages =
 541			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 542		page_init_poison(pfn_to_page(pfn),
 543				 sizeof(struct page) * cur_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544	}
 545
 546	/*
 547	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 548	 * we will not try to shrink the zones - which is okay as
 549	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 
 
 550	 */
 551	if (zone_is_zone_device(zone))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552		return;
 
 
 
 
 
 
 553
 554	clear_zone_contiguous(zone);
 
 
 
 
 
 
 
 555
 
 556	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 557	update_pgdat_span(pgdat);
 
 
 
 
 
 
 
 
 
 558
 559	set_zone_contiguous(zone);
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561
 562/**
 563 * __remove_pages() - remove sections of pages
 564 * @pfn: starting pageframe (must be aligned to start of a section)
 
 565 * @nr_pages: number of pages to remove (must be multiple of section size)
 566 * @altmap: alternative device page map or %NULL if default memmap is used
 567 *
 568 * Generic helper function to remove section mappings and sysfs entries
 569 * for the section of the memory we are removing. Caller needs to make
 570 * sure that pages are marked reserved and zones are adjust properly by
 571 * calling offline_pages().
 572 */
 573void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 574		    struct vmem_altmap *altmap)
 575{
 576	const unsigned long end_pfn = pfn + nr_pages;
 577	unsigned long cur_nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579	if (check_pfn_span(pfn, nr_pages)) {
 580		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
 581		return;
 582	}
 583
 584	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 585		cond_resched();
 586		/* Select all remaining pages up to the next section boundary */
 587		cur_nr_pages = min(end_pfn - pfn,
 588				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 589		sparse_remove_section(pfn, cur_nr_pages, altmap);
 
 
 
 
 
 
 
 
 
 
 590	}
 
 
 
 
 591}
 
 
 592
 593int set_online_page_callback(online_page_callback_t callback)
 594{
 595	int rc = -EINVAL;
 596
 597	get_online_mems();
 598	mutex_lock(&online_page_callback_lock);
 599
 600	if (online_page_callback == generic_online_page) {
 601		online_page_callback = callback;
 602		rc = 0;
 603	}
 604
 605	mutex_unlock(&online_page_callback_lock);
 606	put_online_mems();
 607
 608	return rc;
 609}
 610EXPORT_SYMBOL_GPL(set_online_page_callback);
 611
 612int restore_online_page_callback(online_page_callback_t callback)
 613{
 614	int rc = -EINVAL;
 615
 616	get_online_mems();
 617	mutex_lock(&online_page_callback_lock);
 618
 619	if (online_page_callback == callback) {
 620		online_page_callback = generic_online_page;
 621		rc = 0;
 622	}
 623
 624	mutex_unlock(&online_page_callback_lock);
 625	put_online_mems();
 626
 627	return rc;
 628}
 629EXPORT_SYMBOL_GPL(restore_online_page_callback);
 630
 631/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 632void generic_online_page(struct page *page, unsigned int order)
 633{
 634	__free_pages_core(page, order, MEMINIT_HOTPLUG);
 635}
 636EXPORT_SYMBOL_GPL(generic_online_page);
 637
 638static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 639{
 640	const unsigned long end_pfn = start_pfn + nr_pages;
 641	unsigned long pfn;
 642
 643	/*
 644	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
 645	 * decide to not expose all pages to the buddy (e.g., expose them
 646	 * later). We account all pages as being online and belonging to this
 647	 * zone ("present").
 648	 * When using memmap_on_memory, the range might not be aligned to
 649	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 650	 * this and the first chunk to online will be pageblock_nr_pages.
 651	 */
 652	for (pfn = start_pfn; pfn < end_pfn;) {
 653		int order;
 654
 655		/*
 656		 * Free to online pages in the largest chunks alignment allows.
 657		 *
 658		 * __ffs() behaviour is undefined for 0. start == 0 is
 659		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
 660		 * the case.
 661		 */
 662		if (pfn)
 663			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
 664		else
 665			order = MAX_PAGE_ORDER;
 666
 667		(*online_page_callback)(pfn_to_page(pfn), order);
 668		pfn += (1UL << order);
 669	}
 670
 671	/* mark all involved sections as online */
 672	online_mem_sections(start_pfn, end_pfn);
 673}
 674
 675/* check which state of node_states will be changed when online memory */
 676static void node_states_check_changes_online(unsigned long nr_pages,
 677	struct zone *zone, struct memory_notify *arg)
 678{
 679	int nid = zone_to_nid(zone);
 680
 681	arg->status_change_nid = NUMA_NO_NODE;
 682	arg->status_change_nid_normal = NUMA_NO_NODE;
 683
 684	if (!node_state(nid, N_MEMORY))
 685		arg->status_change_nid = nid;
 686	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 687		arg->status_change_nid_normal = nid;
 688}
 
 689
 690static void node_states_set_node(int node, struct memory_notify *arg)
 691{
 692	if (arg->status_change_nid_normal >= 0)
 693		node_set_state(node, N_NORMAL_MEMORY);
 694
 695	if (arg->status_change_nid >= 0)
 696		node_set_state(node, N_MEMORY);
 697}
 
 698
 699static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 700		unsigned long nr_pages)
 701{
 702	unsigned long old_end_pfn = zone_end_pfn(zone);
 703
 704	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 705		zone->zone_start_pfn = start_pfn;
 706
 707	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 708}
 
 709
 710static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 711                                     unsigned long nr_pages)
 712{
 713	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 714
 715	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 716		pgdat->node_start_pfn = start_pfn;
 717
 718	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 719
 720}
 721
 722#ifdef CONFIG_ZONE_DEVICE
 723static void section_taint_zone_device(unsigned long pfn)
 724{
 725	struct mem_section *ms = __pfn_to_section(pfn);
 726
 727	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 728}
 729#else
 730static inline void section_taint_zone_device(unsigned long pfn)
 731{
 
 
 
 
 
 
 
 
 
 
 
 732}
 733#endif
 734
 
 735/*
 736 * Associate the pfn range with the given zone, initializing the memmaps
 737 * and resizing the pgdat/zone data to span the added pages. After this
 738 * call, all affected pages are PageOffline().
 739 *
 740 * All aligned pageblocks are initialized to the specified migratetype
 741 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 742 * zone stats (e.g., nr_isolate_pageblock) are touched.
 743 */
 744void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 745				  unsigned long nr_pages,
 746				  struct vmem_altmap *altmap, int migratetype)
 747{
 748	struct pglist_data *pgdat = zone->zone_pgdat;
 749	int nid = pgdat->node_id;
 750
 751	clear_zone_contiguous(zone);
 752
 753	if (zone_is_empty(zone))
 754		init_currently_empty_zone(zone, start_pfn, nr_pages);
 755	resize_zone_range(zone, start_pfn, nr_pages);
 756	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 757
 758	/*
 759	 * Subsection population requires care in pfn_to_online_page().
 760	 * Set the taint to enable the slow path detection of
 761	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 762	 * section.
 763	 */
 764	if (zone_is_zone_device(zone)) {
 765		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 766			section_taint_zone_device(start_pfn);
 767		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 768			section_taint_zone_device(start_pfn + nr_pages);
 769	}
 770
 771	/*
 772	 * TODO now we have a visible range of pages which are not associated
 773	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 774	 * expects the zone spans the pfn range. All the pages in the range
 775	 * are reserved so nobody should be touching them so we should be safe
 776	 */
 777	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 778			 MEMINIT_HOTPLUG, altmap, migratetype);
 779
 780	set_zone_contiguous(zone);
 781}
 782
 783struct auto_movable_stats {
 784	unsigned long kernel_early_pages;
 785	unsigned long movable_pages;
 786};
 787
 788static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
 789					    struct zone *zone)
 790{
 791	if (zone_idx(zone) == ZONE_MOVABLE) {
 792		stats->movable_pages += zone->present_pages;
 793	} else {
 794		stats->kernel_early_pages += zone->present_early_pages;
 795#ifdef CONFIG_CMA
 796		/*
 797		 * CMA pages (never on hotplugged memory) behave like
 798		 * ZONE_MOVABLE.
 799		 */
 800		stats->movable_pages += zone->cma_pages;
 801		stats->kernel_early_pages -= zone->cma_pages;
 802#endif /* CONFIG_CMA */
 803	}
 804}
 805struct auto_movable_group_stats {
 806	unsigned long movable_pages;
 807	unsigned long req_kernel_early_pages;
 808};
 809
 810static int auto_movable_stats_account_group(struct memory_group *group,
 811					   void *arg)
 
 812{
 813	const int ratio = READ_ONCE(auto_movable_ratio);
 814	struct auto_movable_group_stats *stats = arg;
 815	long pages;
 816
 817	/*
 818	 * We don't support modifying the config while the auto-movable online
 819	 * policy is already enabled. Just avoid the division by zero below.
 
 
 
 
 
 820	 */
 821	if (!ratio)
 822		return 0;
 823
 824	/*
 825	 * Calculate how many early kernel pages this group requires to
 826	 * satisfy the configured zone ratio.
 
 
 827	 */
 828	pages = group->present_movable_pages * 100 / ratio;
 829	pages -= group->present_kernel_pages;
 830
 831	if (pages > 0)
 832		stats->req_kernel_early_pages += pages;
 833	stats->movable_pages += group->present_movable_pages;
 834	return 0;
 835}
 836
 837static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
 838					    unsigned long nr_pages)
 839{
 840	unsigned long kernel_early_pages, movable_pages;
 841	struct auto_movable_group_stats group_stats = {};
 842	struct auto_movable_stats stats = {};
 843	struct zone *zone;
 844	int i;
 845
 846	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
 847	if (nid == NUMA_NO_NODE) {
 848		/* TODO: cache values */
 849		for_each_populated_zone(zone)
 850			auto_movable_stats_account_zone(&stats, zone);
 851	} else {
 852		for (i = 0; i < MAX_NR_ZONES; i++) {
 853			pg_data_t *pgdat = NODE_DATA(nid);
 854
 855			zone = pgdat->node_zones + i;
 856			if (populated_zone(zone))
 857				auto_movable_stats_account_zone(&stats, zone);
 858		}
 859	}
 860
 861	kernel_early_pages = stats.kernel_early_pages;
 862	movable_pages = stats.movable_pages;
 863
 
 864	/*
 865	 * Kernel memory inside dynamic memory group allows for more MOVABLE
 866	 * memory within the same group. Remove the effect of all but the
 867	 * current group from the stats.
 868	 */
 869	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
 870				   group, &group_stats);
 871	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
 872		return false;
 873	kernel_early_pages -= group_stats.req_kernel_early_pages;
 874	movable_pages -= group_stats.movable_pages;
 
 875
 876	if (group && group->is_dynamic)
 877		kernel_early_pages += group->present_kernel_pages;
 
 
 
 
 
 878
 879	/*
 880	 * Test if we could online the given number of pages to ZONE_MOVABLE
 881	 * and still stay in the configured ratio.
 
 882	 */
 883	movable_pages += nr_pages;
 884	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
 
 
 885}
 886
 887/*
 888 * Returns a default kernel memory zone for the given pfn range.
 889 * If no kernel zone covers this pfn range it will automatically go
 890 * to the ZONE_NORMAL.
 891 */
 892static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 893		unsigned long nr_pages)
 894{
 895	struct pglist_data *pgdat = NODE_DATA(nid);
 896	int zid;
 897
 898	for (zid = 0; zid < ZONE_NORMAL; zid++) {
 899		struct zone *zone = &pgdat->node_zones[zid];
 900
 901		if (zone_intersects(zone, start_pfn, nr_pages))
 902			return zone;
 903	}
 904
 905	return &pgdat->node_zones[ZONE_NORMAL];
 906}
 907
 908/*
 909 * Determine to which zone to online memory dynamically based on user
 910 * configuration and system stats. We care about the following ratio:
 911 *
 912 *   MOVABLE : KERNEL
 913 *
 914 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
 915 * one of the kernel zones. CMA pages inside one of the kernel zones really
 916 * behaves like ZONE_MOVABLE, so we treat them accordingly.
 917 *
 918 * We don't allow for hotplugged memory in a KERNEL zone to increase the
 919 * amount of MOVABLE memory we can have, so we end up with:
 920 *
 921 *   MOVABLE : KERNEL_EARLY
 922 *
 923 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
 924 * boot. We base our calculation on KERNEL_EARLY internally, because:
 925 *
 926 * a) Hotplugged memory in one of the kernel zones can sometimes still get
 927 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
 928 *    There is no coordination across memory devices, therefore "automatic"
 929 *    hotunplugging, as implemented in hypervisors, could result in zone
 930 *    imbalances.
 931 * b) Early/boot memory in one of the kernel zones can usually not get
 932 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
 933 *    with unmovable allocations). While there are corner cases where it might
 934 *    still work, it is barely relevant in practice.
 935 *
 936 * Exceptions are dynamic memory groups, which allow for more MOVABLE
 937 * memory within the same memory group -- because in that case, there is
 938 * coordination within the single memory device managed by a single driver.
 939 *
 940 * We rely on "present pages" instead of "managed pages", as the latter is
 941 * highly unreliable and dynamic in virtualized environments, and does not
 942 * consider boot time allocations. For example, memory ballooning adjusts the
 943 * managed pages when inflating/deflating the balloon, and balloon compaction
 944 * can even migrate inflated pages between zones.
 945 *
 946 * Using "present pages" is better but some things to keep in mind are:
 947 *
 948 * a) Some memblock allocations, such as for the crashkernel area, are
 949 *    effectively unused by the kernel, yet they account to "present pages".
 950 *    Fortunately, these allocations are comparatively small in relevant setups
 951 *    (e.g., fraction of system memory).
 952 * b) Some hotplugged memory blocks in virtualized environments, esecially
 953 *    hotplugged by virtio-mem, look like they are completely present, however,
 954 *    only parts of the memory block are actually currently usable.
 955 *    "present pages" is an upper limit that can get reached at runtime. As
 956 *    we base our calculations on KERNEL_EARLY, this is not an issue.
 957 */
 958static struct zone *auto_movable_zone_for_pfn(int nid,
 959					      struct memory_group *group,
 960					      unsigned long pfn,
 961					      unsigned long nr_pages)
 962{
 963	unsigned long online_pages = 0, max_pages, end_pfn;
 964	struct page *page;
 965
 966	if (!auto_movable_ratio)
 967		goto kernel_zone;
 968
 969	if (group && !group->is_dynamic) {
 970		max_pages = group->s.max_pages;
 971		online_pages = group->present_movable_pages;
 972
 973		/* If anything is !MOVABLE online the rest !MOVABLE. */
 974		if (group->present_kernel_pages)
 975			goto kernel_zone;
 976	} else if (!group || group->d.unit_pages == nr_pages) {
 977		max_pages = nr_pages;
 978	} else {
 979		max_pages = group->d.unit_pages;
 980		/*
 981		 * Take a look at all online sections in the current unit.
 982		 * We can safely assume that all pages within a section belong
 983		 * to the same zone, because dynamic memory groups only deal
 984		 * with hotplugged memory.
 985		 */
 986		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
 987		end_pfn = pfn + group->d.unit_pages;
 988		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 989			page = pfn_to_online_page(pfn);
 990			if (!page)
 991				continue;
 992			/* If anything is !MOVABLE online the rest !MOVABLE. */
 993			if (!is_zone_movable_page(page))
 994				goto kernel_zone;
 995			online_pages += PAGES_PER_SECTION;
 996		}
 997	}
 998
 999	/*
1000	 * Online MOVABLE if we could *currently* online all remaining parts
1001	 * MOVABLE. We expect to (add+) online them immediately next, so if
1002	 * nobody interferes, all will be MOVABLE if possible.
1003	 */
1004	nr_pages = max_pages - online_pages;
1005	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1006		goto kernel_zone;
1007
1008#ifdef CONFIG_NUMA
1009	if (auto_movable_numa_aware &&
1010	    !auto_movable_can_online_movable(nid, group, nr_pages))
1011		goto kernel_zone;
1012#endif /* CONFIG_NUMA */
1013
1014	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1015kernel_zone:
1016	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1017}
1018
1019static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1020		unsigned long nr_pages)
1021{
1022	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1023			nr_pages);
1024	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1025	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1026	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1027
1028	/*
1029	 * We inherit the existing zone in a simple case where zones do not
1030	 * overlap in the given range
1031	 */
1032	if (in_kernel ^ in_movable)
1033		return (in_kernel) ? kernel_zone : movable_zone;
1034
1035	/*
1036	 * If the range doesn't belong to any zone or two zones overlap in the
1037	 * given range then we use movable zone only if movable_node is
1038	 * enabled because we always online to a kernel zone by default.
1039	 */
1040	return movable_node_enabled ? movable_zone : kernel_zone;
1041}
1042
1043struct zone *zone_for_pfn_range(int online_type, int nid,
1044		struct memory_group *group, unsigned long start_pfn,
1045		unsigned long nr_pages)
1046{
1047	if (online_type == MMOP_ONLINE_KERNEL)
1048		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1049
1050	if (online_type == MMOP_ONLINE_MOVABLE)
1051		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1052
1053	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1054		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1055
1056	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1057}
1058
1059/*
1060 * This function should only be called by memory_block_{online,offline},
1061 * and {online,offline}_pages.
1062 */
1063void adjust_present_page_count(struct page *page, struct memory_group *group,
1064			       long nr_pages)
1065{
1066	struct zone *zone = page_zone(page);
1067	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1068
1069	/*
1070	 * We only support onlining/offlining/adding/removing of complete
1071	 * memory blocks; therefore, either all is either early or hotplugged.
1072	 */
1073	if (early_section(__pfn_to_section(page_to_pfn(page))))
1074		zone->present_early_pages += nr_pages;
1075	zone->present_pages += nr_pages;
1076	zone->zone_pgdat->node_present_pages += nr_pages;
1077
1078	if (group && movable)
1079		group->present_movable_pages += nr_pages;
1080	else if (group && !movable)
1081		group->present_kernel_pages += nr_pages;
1082}
1083
1084int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1085			      struct zone *zone, bool mhp_off_inaccessible)
1086{
1087	unsigned long end_pfn = pfn + nr_pages;
1088	int ret, i;
1089
1090	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1091	if (ret)
1092		return ret;
1093
1094	/*
1095	 * Memory block is accessible at this stage and hence poison the struct
1096	 * pages now.  If the memory block is accessible during memory hotplug
1097	 * addition phase, then page poisining is already performed in
1098	 * sparse_add_section().
1099	 */
1100	if (mhp_off_inaccessible)
1101		page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1102
1103	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1104
1105	for (i = 0; i < nr_pages; i++) {
1106		struct page *page = pfn_to_page(pfn + i);
1107
1108		__ClearPageOffline(page);
1109		SetPageVmemmapSelfHosted(page);
1110	}
1111
1112	/*
1113	 * It might be that the vmemmap_pages fully span sections. If that is
1114	 * the case, mark those sections online here as otherwise they will be
1115	 * left offline.
1116	 */
1117	if (nr_pages >= PAGES_PER_SECTION)
1118	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1119
1120	return ret;
1121}
1122
1123void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1124{
1125	unsigned long end_pfn = pfn + nr_pages;
1126
1127	/*
1128	 * It might be that the vmemmap_pages fully span sections. If that is
1129	 * the case, mark those sections offline here as otherwise they will be
1130	 * left online.
1131	 */
1132	if (nr_pages >= PAGES_PER_SECTION)
1133		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1134
1135        /*
1136	 * The pages associated with this vmemmap have been offlined, so
1137	 * we can reset its state here.
1138	 */
1139	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1140	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1141}
1142
1143/*
1144 * Must be called with mem_hotplug_lock in write mode.
1145 */
1146int online_pages(unsigned long pfn, unsigned long nr_pages,
1147		       struct zone *zone, struct memory_group *group)
1148{
1149	unsigned long flags;
 
 
1150	int need_zonelists_rebuild = 0;
1151	const int nid = zone_to_nid(zone);
1152	int ret;
1153	struct memory_notify arg;
1154
1155	/*
1156	 * {on,off}lining is constrained to full memory sections (or more
1157	 * precisely to memory blocks from the user space POV).
1158	 * memmap_on_memory is an exception because it reserves initial part
1159	 * of the physical memory space for vmemmaps. That space is pageblock
1160	 * aligned.
1161	 */
1162	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1163			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
 
1164		return -EINVAL;
1165
 
 
 
 
 
 
 
 
 
 
1166
1167	/* associate pfn range with the zone */
1168	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1169
1170	arg.start_pfn = pfn;
1171	arg.nr_pages = nr_pages;
1172	node_states_check_changes_online(nr_pages, zone, &arg);
1173
 
 
1174	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1175	ret = notifier_to_errno(ret);
1176	if (ret)
1177		goto failed_addition;
1178
1179	/*
1180	 * Fixup the number of isolated pageblocks before marking the sections
1181	 * onlining, such that undo_isolate_page_range() works correctly.
1182	 */
1183	spin_lock_irqsave(&zone->lock, flags);
1184	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1185	spin_unlock_irqrestore(&zone->lock, flags);
1186
1187	/*
1188	 * If this zone is not populated, then it is not in zonelist.
1189	 * This means the page allocator ignores this zone.
1190	 * So, zonelist must be updated after online.
1191	 */
 
1192	if (!populated_zone(zone)) {
1193		need_zonelists_rebuild = 1;
1194		setup_zone_pageset(zone);
1195	}
1196
1197	online_pages_range(pfn, nr_pages);
1198	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
 
 
 
 
 
 
1199
1200	node_states_set_node(nid, &arg);
1201	if (need_zonelists_rebuild)
1202		build_all_zonelists(NULL);
1203
1204	/* Basic onlining is complete, allow allocation of onlined pages. */
1205	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
1206
1207	/*
1208	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1209	 * the tail of the freelist when undoing isolation). Shuffle the whole
1210	 * zone to make sure the just onlined pages are properly distributed
1211	 * across the whole freelist - to create an initial shuffle.
1212	 */
1213	shuffle_zone(zone);
1214
1215	/* reinitialise watermarks and update pcp limits */
1216	init_per_zone_wmark_min();
1217
1218	kswapd_run(nid);
1219	kcompactd_run(nid);
 
 
 
 
1220
1221	writeback_set_ratelimit();
1222
1223	memory_notify(MEM_ONLINE, &arg);
 
1224	return 0;
1225
1226failed_addition:
1227	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1228		 (unsigned long long) pfn << PAGE_SHIFT,
1229		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1230	memory_notify(MEM_CANCEL_ONLINE, &arg);
1231	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1232	return ret;
1233}
 
 
 
 
 
 
 
 
 
 
 
1234
1235/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1236static pg_data_t *hotadd_init_pgdat(int nid)
1237{
1238	struct pglist_data *pgdat;
 
 
 
1239
1240	/*
1241	 * NODE_DATA is preallocated (free_area_init) but its internal
1242	 * state is not allocated completely. Add missing pieces.
1243	 * Completely offline nodes stay around and they just need
1244	 * reintialization.
1245	 */
1246	pgdat = NODE_DATA(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	/* init node's zones as empty zones, we don't have any present pages.*/
1249	free_area_init_core_hotplug(pgdat);
1250
1251	/*
1252	 * The node we allocated has no zone fallback lists. For avoiding
1253	 * to access not-initialized zonelist, build here.
1254	 */
1255	build_all_zonelists(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	return pgdat;
1258}
1259
1260/*
1261 * __try_online_node - online a node if offlined
1262 * @nid: the node ID
1263 * @set_node_online: Whether we want to online the node
 
 
 
 
 
 
 
1264 * called by cpu_up() to online a node without onlined memory.
1265 *
1266 * Returns:
1267 * 1 -> a new node has been allocated
1268 * 0 -> the node is already online
1269 * -ENOMEM -> the node could not be allocated
1270 */
1271static int __try_online_node(int nid, bool set_node_online)
1272{
1273	pg_data_t *pgdat;
1274	int ret = 1;
1275
1276	if (node_online(nid))
1277		return 0;
1278
1279	pgdat = hotadd_init_pgdat(nid);
 
1280	if (!pgdat) {
1281		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1282		ret = -ENOMEM;
1283		goto out;
1284	}
 
 
 
 
 
 
 
 
 
1285
1286	if (set_node_online) {
1287		node_set_online(nid);
1288		ret = register_one_node(nid);
1289		BUG_ON(ret);
1290	}
1291out:
1292	return ret;
1293}
1294
1295/*
1296 * Users of this function always want to online/register the node
1297 */
1298int try_online_node(int nid)
1299{
1300	int ret;
1301
1302	mem_hotplug_begin();
1303	ret =  __try_online_node(nid, true);
1304	mem_hotplug_done();
1305	return ret;
1306}
1307
1308static int check_hotplug_memory_range(u64 start, u64 size)
1309{
1310	/* memory range must be block size aligned */
1311	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1312	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1313		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1314		       memory_block_size_bytes(), start, size);
 
 
 
 
1315		return -EINVAL;
1316	}
1317
1318	return 0;
1319}
1320
1321static int online_memory_block(struct memory_block *mem, void *arg)
 
 
 
 
 
1322{
1323	mem->online_type = mhp_default_online_type;
1324	return device_online(&mem->dev);
1325}
1326
1327#ifndef arch_supports_memmap_on_memory
1328static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1329{
1330	/*
1331	 * As default, we want the vmemmap to span a complete PMD such that we
1332	 * can map the vmemmap using a single PMD if supported by the
1333	 * architecture.
1334	 */
1335	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1336}
1337#endif
1338
1339bool mhp_supports_memmap_on_memory(void)
1340{
1341	unsigned long vmemmap_size = memory_block_memmap_size();
1342	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1343
1344	/*
1345	 * Besides having arch support and the feature enabled at runtime, we
1346	 * need a few more assumptions to hold true:
1347	 *
1348	 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1349	 *    to populate memory from the altmap for unrelated parts (i.e.,
1350	 *    other memory blocks)
1351	 *
1352	 * b) The vmemmap pages (and thereby the pages that will be exposed to
1353	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1354	 *    code requires applicable ranges to be page-aligned, for example, to
1355	 *    set the migratetypes properly.
1356	 *
1357	 * TODO: Although we have a check here to make sure that vmemmap pages
1358	 *       fully populate a PMD, it is not the right place to check for
1359	 *       this. A much better solution involves improving vmemmap code
1360	 *       to fallback to base pages when trying to populate vmemmap using
1361	 *       altmap as an alternative source of memory, and we do not exactly
1362	 *       populate a single PMD.
1363	 */
1364	if (!mhp_memmap_on_memory())
1365		return false;
1366
1367	/*
1368	 * Make sure the vmemmap allocation is fully contained
1369	 * so that we always allocate vmemmap memory from altmap area.
1370	 */
1371	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1372		return false;
1373
1374	/*
1375	 * start pfn should be pageblock_nr_pages aligned for correctly
1376	 * setting migrate types
1377	 */
1378	if (!pageblock_aligned(memmap_pages))
1379		return false;
1380
1381	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1382		/* No effective hotplugged memory doesn't make sense. */
1383		return false;
1384
1385	return arch_supports_memmap_on_memory(vmemmap_size);
1386}
1387EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1388
1389static void remove_memory_blocks_and_altmaps(u64 start, u64 size)
 
1390{
1391	unsigned long memblock_size = memory_block_size_bytes();
1392	u64 cur_start;
1393
1394	/*
1395	 * For memmap_on_memory, the altmaps were added on a per-memblock
1396	 * basis; we have to process each individual memory block.
1397	 */
1398	for (cur_start = start; cur_start < start + size;
1399	     cur_start += memblock_size) {
1400		struct vmem_altmap *altmap = NULL;
1401		struct memory_block *mem;
1402
1403		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1404		if (WARN_ON_ONCE(!mem))
1405			continue;
1406
1407		altmap = mem->altmap;
1408		mem->altmap = NULL;
1409
1410		remove_memory_block_devices(cur_start, memblock_size);
1411
1412		arch_remove_memory(cur_start, memblock_size, altmap);
1413
1414		/* Verify that all vmemmap pages have actually been freed. */
1415		WARN(altmap->alloc, "Altmap not fully unmapped");
1416		kfree(altmap);
1417	}
1418}
1419
1420static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1421					    u64 start, u64 size, mhp_t mhp_flags)
1422{
1423	unsigned long memblock_size = memory_block_size_bytes();
1424	u64 cur_start;
1425	int ret;
1426
1427	for (cur_start = start; cur_start < start + size;
1428	     cur_start += memblock_size) {
1429		struct mhp_params params = { .pgprot =
1430						     pgprot_mhp(PAGE_KERNEL) };
1431		struct vmem_altmap mhp_altmap = {
1432			.base_pfn = PHYS_PFN(cur_start),
1433			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1434		};
1435
1436		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1437		if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1438			mhp_altmap.inaccessible = true;
1439		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1440					GFP_KERNEL);
1441		if (!params.altmap) {
1442			ret = -ENOMEM;
1443			goto out;
1444		}
1445
1446		/* call arch's memory hotadd */
1447		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1448		if (ret < 0) {
1449			kfree(params.altmap);
1450			goto out;
1451		}
1452
1453		/* create memory block devices after memory was added */
1454		ret = create_memory_block_devices(cur_start, memblock_size,
1455						  params.altmap, group);
1456		if (ret) {
1457			arch_remove_memory(cur_start, memblock_size, NULL);
1458			kfree(params.altmap);
1459			goto out;
1460		}
1461	}
1462
1463	return 0;
1464out:
1465	if (ret && cur_start != start)
1466		remove_memory_blocks_and_altmaps(start, cur_start - start);
1467	return ret;
1468}
1469
1470/*
1471 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1472 * and online/offline operations (triggered e.g. by sysfs).
1473 *
1474 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1475 */
1476int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1477{
1478	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1479	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1480	struct memory_group *group = NULL;
1481	u64 start, size;
1482	bool new_node = false;
 
 
1483	int ret;
1484
1485	start = res->start;
1486	size = resource_size(res);
1487
1488	ret = check_hotplug_memory_range(start, size);
1489	if (ret)
1490		return ret;
1491
1492	if (mhp_flags & MHP_NID_IS_MGID) {
1493		group = memory_group_find_by_id(nid);
1494		if (!group)
1495			return -EINVAL;
1496		nid = group->nid;
1497	}
1498
1499	if (!node_possible(nid)) {
1500		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1501		return -EINVAL;
1502	}
1503
1504	mem_hotplug_begin();
 
 
 
 
 
 
1505
1506	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1507		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1508			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1509		ret = memblock_add_node(start, size, nid, memblock_flags);
1510		if (ret)
1511			goto error_mem_hotplug_end;
1512	}
1513
1514	ret = __try_online_node(nid, false);
 
 
1515	if (ret < 0)
1516		goto error;
1517	new_node = ret;
1518
1519	/*
1520	 * Self hosted memmap array
1521	 */
1522	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1523	    mhp_supports_memmap_on_memory()) {
1524		ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1525		if (ret)
1526			goto error;
1527	} else {
1528		ret = arch_add_memory(nid, start, size, &params);
1529		if (ret < 0)
1530			goto error;
1531
1532		/* create memory block devices after memory was added */
1533		ret = create_memory_block_devices(start, size, NULL, group);
1534		if (ret) {
1535			arch_remove_memory(start, size, params.altmap);
1536			goto error;
1537		}
1538	}
1539
1540	if (new_node) {
1541		/* If sysfs file of new node can't be created, cpu on the node
 
 
1542		 * can't be hot-added. There is no rollback way now.
1543		 * So, check by BUG_ON() to catch it reluctantly..
1544		 * We online node here. We can't roll back from here.
1545		 */
1546		node_set_online(nid);
1547		ret = __register_one_node(nid);
1548		BUG_ON(ret);
1549	}
1550
1551	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1552					  PFN_UP(start + size - 1),
1553					  MEMINIT_HOTPLUG);
1554
1555	/* create new memmap entry */
1556	if (!strcmp(res->name, "System RAM"))
1557		firmware_map_add_hotplug(start, start + size, "System RAM");
1558
1559	/* device_online() will take the lock when calling online_pages() */
1560	mem_hotplug_done();
1561
1562	/*
1563	 * In case we're allowed to merge the resource, flag it and trigger
1564	 * merging now that adding succeeded.
1565	 */
1566	if (mhp_flags & MHP_MERGE_RESOURCE)
1567		merge_system_ram_resource(res);
1568
1569	/* online pages if requested */
1570	if (mhp_default_online_type != MMOP_OFFLINE)
1571		walk_memory_blocks(start, size, NULL, online_memory_block);
1572
1573	return ret;
1574error:
1575	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1576		memblock_remove(start, size);
1577error_mem_hotplug_end:
 
 
 
1578	mem_hotplug_done();
1579	return ret;
1580}
 
1581
1582/* requires device_hotplug_lock, see add_memory_resource() */
1583int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1584{
1585	struct resource *res;
1586	int ret;
1587
1588	res = register_memory_resource(start, size, "System RAM");
1589	if (IS_ERR(res))
1590		return PTR_ERR(res);
1591
1592	ret = add_memory_resource(nid, res, mhp_flags);
1593	if (ret < 0)
1594		release_memory_resource(res);
1595	return ret;
1596}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597
1598int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
 
1599{
1600	int rc;
 
1601
1602	lock_device_hotplug();
1603	rc = __add_memory(nid, start, size, mhp_flags);
1604	unlock_device_hotplug();
 
 
 
 
 
1605
1606	return rc;
1607}
1608EXPORT_SYMBOL_GPL(add_memory);
1609
1610/*
1611 * Add special, driver-managed memory to the system as system RAM. Such
1612 * memory is not exposed via the raw firmware-provided memmap as system
1613 * RAM, instead, it is detected and added by a driver - during cold boot,
1614 * after a reboot, and after kexec.
1615 *
1616 * Reasons why this memory should not be used for the initial memmap of a
1617 * kexec kernel or for placing kexec images:
1618 * - The booting kernel is in charge of determining how this memory will be
1619 *   used (e.g., use persistent memory as system RAM)
1620 * - Coordination with a hypervisor is required before this memory
1621 *   can be used (e.g., inaccessible parts).
1622 *
1623 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1624 * memory map") are created. Also, the created memory resource is flagged
1625 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1626 * this memory as well (esp., not place kexec images onto it).
1627 *
1628 * The resource_name (visible via /proc/iomem) has to have the format
1629 * "System RAM ($DRIVER)".
1630 */
1631int add_memory_driver_managed(int nid, u64 start, u64 size,
1632			      const char *resource_name, mhp_t mhp_flags)
1633{
1634	struct resource *res;
1635	int rc;
1636
1637	if (!resource_name ||
1638	    strstr(resource_name, "System RAM (") != resource_name ||
1639	    resource_name[strlen(resource_name) - 1] != ')')
1640		return -EINVAL;
1641
1642	lock_device_hotplug();
1643
1644	res = register_memory_resource(start, size, resource_name);
1645	if (IS_ERR(res)) {
1646		rc = PTR_ERR(res);
1647		goto out_unlock;
1648	}
1649
1650	rc = add_memory_resource(nid, res, mhp_flags);
1651	if (rc < 0)
1652		release_memory_resource(res);
1653
1654out_unlock:
1655	unlock_device_hotplug();
1656	return rc;
1657}
1658EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1659
1660/*
1661 * Platforms should define arch_get_mappable_range() that provides
1662 * maximum possible addressable physical memory range for which the
1663 * linear mapping could be created. The platform returned address
1664 * range must adhere to these following semantics.
1665 *
1666 * - range.start <= range.end
1667 * - Range includes both end points [range.start..range.end]
1668 *
1669 * There is also a fallback definition provided here, allowing the
1670 * entire possible physical address range in case any platform does
1671 * not define arch_get_mappable_range().
1672 */
1673struct range __weak arch_get_mappable_range(void)
1674{
1675	struct range mhp_range = {
1676		.start = 0UL,
1677		.end = -1ULL,
1678	};
1679	return mhp_range;
1680}
1681
1682struct range mhp_get_pluggable_range(bool need_mapping)
1683{
1684	const u64 max_phys = DIRECT_MAP_PHYSMEM_END;
1685	struct range mhp_range;
1686
1687	if (need_mapping) {
1688		mhp_range = arch_get_mappable_range();
1689		if (mhp_range.start > max_phys) {
1690			mhp_range.start = 0;
1691			mhp_range.end = 0;
 
 
 
 
 
 
1692		}
1693		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1694	} else {
1695		mhp_range.start = 0;
1696		mhp_range.end = max_phys;
1697	}
1698	return mhp_range;
1699}
1700EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1701
1702bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1703{
1704	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1705	u64 end = start + size;
1706
1707	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1708		return true;
1709
1710	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1711		start, end, mhp_range.start, mhp_range.end);
1712	return false;
1713}
1714
1715#ifdef CONFIG_MEMORY_HOTREMOVE
1716/*
1717 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1718 * non-lru movable pages and hugepages). Will skip over most unmovable
1719 * pages (esp., pages that can be skipped when offlining), but bail out on
1720 * definitely unmovable pages.
1721 *
1722 * Returns:
1723 *	0 in case a movable page is found and movable_pfn was updated.
1724 *	-ENOENT in case no movable page was found.
1725 *	-EBUSY in case a definitely unmovable page was found.
1726 */
1727static int scan_movable_pages(unsigned long start, unsigned long end,
1728			      unsigned long *movable_pfn)
1729{
1730	unsigned long pfn;
1731
1732	for (pfn = start; pfn < end; pfn++) {
1733		struct page *page;
1734		struct folio *folio;
1735
1736		if (!pfn_valid(pfn))
1737			continue;
1738		page = pfn_to_page(pfn);
1739		if (PageLRU(page))
1740			goto found;
1741		if (__PageMovable(page))
1742			goto found;
1743
1744		/*
1745		 * PageOffline() pages that are not marked __PageMovable() and
1746		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1747		 * definitely unmovable. If their reference count would be 0,
1748		 * they could at least be skipped when offlining memory.
1749		 */
1750		if (PageOffline(page) && page_count(page))
1751			return -EBUSY;
1752
1753		if (!PageHuge(page))
1754			continue;
1755		folio = page_folio(page);
1756		/*
1757		 * This test is racy as we hold no reference or lock.  The
1758		 * hugetlb page could have been free'ed and head is no longer
1759		 * a hugetlb page before the following check.  In such unlikely
1760		 * cases false positives and negatives are possible.  Calling
1761		 * code must deal with these scenarios.
1762		 */
1763		if (folio_test_hugetlb_migratable(folio))
1764			goto found;
1765		pfn |= folio_nr_pages(folio) - 1;
1766	}
1767	return -ENOENT;
1768found:
1769	*movable_pfn = pfn;
1770	return 0;
1771}
1772
1773static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
 
 
1774{
1775	struct folio *folio;
1776	unsigned long pfn;
 
 
 
 
1777	LIST_HEAD(source);
1778	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1779				      DEFAULT_RATELIMIT_BURST);
1780
1781	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1782		struct page *page;
1783
 
1784		if (!pfn_valid(pfn))
1785			continue;
1786		page = pfn_to_page(pfn);
1787		folio = page_folio(page);
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789		/*
1790		 * No reference or lock is held on the folio, so it might
1791		 * be modified concurrently (e.g. split).  As such,
1792		 * folio_nr_pages() may read garbage.  This is fine as the outer
1793		 * loop will revisit the split folio later.
1794		 */
1795		if (folio_test_large(folio))
1796			pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1;
 
 
 
 
 
1797
1798		if (!folio_try_get(folio))
1799			continue;
1800
1801		if (unlikely(page_folio(page) != folio))
1802			goto put_folio;
1803
1804		if (folio_test_hwpoison(folio) ||
1805		    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
1806			if (WARN_ON(folio_test_lru(folio)))
1807				folio_isolate_lru(folio);
1808			if (folio_mapped(folio)) {
1809				folio_lock(folio);
1810				unmap_poisoned_folio(folio, pfn, false);
1811				folio_unlock(folio);
1812			}
1813
1814			goto put_folio;
1815		}
1816
1817		if (!isolate_folio_to_list(folio, &source)) {
1818			if (__ratelimit(&migrate_rs)) {
1819				pr_warn("failed to isolate pfn %lx\n",
1820					page_to_pfn(page));
1821				dump_page(page, "isolation failed");
1822			}
1823		}
1824put_folio:
1825		folio_put(folio);
1826	}
1827	if (!list_empty(&source)) {
1828		nodemask_t nmask = node_states[N_MEMORY];
1829		struct migration_target_control mtc = {
1830			.nmask = &nmask,
1831			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1832			.reason = MR_MEMORY_HOTPLUG,
1833		};
1834		int ret;
1835
1836		/*
1837		 * We have checked that migration range is on a single zone so
1838		 * we can use the nid of the first page to all the others.
1839		 */
1840		mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru));
1841
1842		/*
1843		 * try to allocate from a different node but reuse this node
1844		 * if there are no other online nodes to be used (e.g. we are
1845		 * offlining a part of the only existing node)
1846		 */
1847		node_clear(mtc.nid, nmask);
1848		if (nodes_empty(nmask))
1849			node_set(mtc.nid, nmask);
1850		ret = migrate_pages(&source, alloc_migration_target, NULL,
1851			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1852		if (ret) {
1853			list_for_each_entry(folio, &source, lru) {
1854				if (__ratelimit(&migrate_rs)) {
1855					pr_warn("migrating pfn %lx failed ret:%d\n",
1856						folio_pfn(folio), ret);
1857					dump_page(&folio->page,
1858						  "migration failure");
1859				}
1860			}
1861			putback_movable_pages(&source);
1862		}
1863	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865
1866static int __init cmdline_parse_movable_node(char *p)
1867{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868	movable_node_enabled = true;
 
 
 
1869	return 0;
1870}
1871early_param("movable_node", cmdline_parse_movable_node);
1872
1873/* check which state of node_states will be changed when offline memory */
1874static void node_states_check_changes_offline(unsigned long nr_pages,
1875		struct zone *zone, struct memory_notify *arg)
1876{
1877	struct pglist_data *pgdat = zone->zone_pgdat;
1878	unsigned long present_pages = 0;
1879	enum zone_type zt;
1880
1881	arg->status_change_nid = NUMA_NO_NODE;
1882	arg->status_change_nid_normal = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
1883
1884	/*
1885	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1886	 * If the memory to be offline is within the range
1887	 * [0..ZONE_NORMAL], and it is the last present memory there,
1888	 * the zones in that range will become empty after the offlining,
1889	 * thus we can determine that we need to clear the node from
1890	 * node_states[N_NORMAL_MEMORY].
1891	 */
1892	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1893		present_pages += pgdat->node_zones[zt].present_pages;
1894	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1895		arg->status_change_nid_normal = zone_to_nid(zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	/*
1898	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1899	 * does not apply as we don't support 32bit.
1900	 * Here we count the possible pages from ZONE_MOVABLE.
1901	 * If after having accounted all the pages, we see that the nr_pages
1902	 * to be offlined is over or equal to the accounted pages,
1903	 * we know that the node will become empty, and so, we can clear
1904	 * it for N_MEMORY as well.
1905	 */
1906	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1907
 
 
 
 
 
 
 
 
1908	if (nr_pages >= present_pages)
1909		arg->status_change_nid = zone_to_nid(zone);
 
 
1910}
1911
1912static void node_states_clear_node(int node, struct memory_notify *arg)
1913{
1914	if (arg->status_change_nid_normal >= 0)
1915		node_clear_state(node, N_NORMAL_MEMORY);
1916
1917	if (arg->status_change_nid >= 0)
 
 
 
 
 
1918		node_clear_state(node, N_MEMORY);
1919}
1920
1921static int count_system_ram_pages_cb(unsigned long start_pfn,
1922				     unsigned long nr_pages, void *data)
1923{
1924	unsigned long *nr_system_ram_pages = data;
1925
1926	*nr_system_ram_pages += nr_pages;
1927	return 0;
1928}
1929
1930/*
1931 * Must be called with mem_hotplug_lock in write mode.
1932 */
1933int offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1934			struct zone *zone, struct memory_group *group)
1935{
1936	const unsigned long end_pfn = start_pfn + nr_pages;
1937	unsigned long pfn, managed_pages, system_ram_pages = 0;
1938	const int node = zone_to_nid(zone);
1939	unsigned long flags;
 
1940	struct memory_notify arg;
1941	char *reason;
1942	int ret;
1943
1944	/*
1945	 * {on,off}lining is constrained to full memory sections (or more
1946	 * precisely to memory blocks from the user space POV).
1947	 * memmap_on_memory is an exception because it reserves initial part
1948	 * of the physical memory space for vmemmaps. That space is pageblock
1949	 * aligned.
1950	 */
1951	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1952			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1953		return -EINVAL;
1954
1955	/*
1956	 * Don't allow to offline memory blocks that contain holes.
1957	 * Consequently, memory blocks with holes can never get onlined
1958	 * via the hotplug path - online_pages() - as hotplugged memory has
1959	 * no holes. This way, we don't have to worry about memory holes,
1960	 * don't need pfn_valid() checks, and can avoid using
1961	 * walk_system_ram_range() later.
1962	 */
1963	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1964			      count_system_ram_pages_cb);
1965	if (system_ram_pages != nr_pages) {
1966		ret = -EINVAL;
1967		reason = "memory holes";
1968		goto failed_removal;
1969	}
1970
1971	/*
1972	 * We only support offlining of memory blocks managed by a single zone,
1973	 * checked by calling code. This is just a sanity check that we might
1974	 * want to remove in the future.
1975	 */
1976	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1977			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1978		ret = -EINVAL;
1979		reason = "multizone range";
1980		goto failed_removal;
1981	}
1982
1983	/*
1984	 * Disable pcplists so that page isolation cannot race with freeing
1985	 * in a way that pages from isolated pageblock are left on pcplists.
1986	 */
1987	zone_pcp_disable(zone);
1988	lru_cache_disable();
1989
1990	/* set above range as isolated */
1991	ret = start_isolate_page_range(start_pfn, end_pfn,
1992				       MIGRATE_MOVABLE,
1993				       MEMORY_OFFLINE | REPORT_FAILURE,
1994				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1995	if (ret) {
1996		reason = "failure to isolate range";
1997		goto failed_removal_pcplists_disabled;
1998	}
1999
2000	arg.start_pfn = start_pfn;
2001	arg.nr_pages = nr_pages;
2002	node_states_check_changes_offline(nr_pages, zone, &arg);
2003
2004	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2005	ret = notifier_to_errno(ret);
2006	if (ret) {
2007		reason = "notifier failure";
2008		goto failed_removal_isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009	}
2010
2011	do {
2012		pfn = start_pfn;
2013		do {
2014			/*
2015			 * Historically we always checked for any signal and
2016			 * can't limit it to fatal signals without eventually
2017			 * breaking user space.
2018			 */
2019			if (signal_pending(current)) {
2020				ret = -EINTR;
2021				reason = "signal backoff";
2022				goto failed_removal_isolated;
2023			}
2024
2025			cond_resched();
2026
2027			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2028			if (!ret) {
2029				/*
2030				 * TODO: fatal migration failures should bail
2031				 * out
2032				 */
2033				do_migrate_range(pfn, end_pfn);
2034			}
2035		} while (!ret);
2036
2037		if (ret != -ENOENT) {
2038			reason = "unmovable page";
2039			goto failed_removal_isolated;
2040		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041
2042		/*
2043		 * Dissolve free hugetlb folios in the memory block before doing
2044		 * offlining actually in order to make hugetlbfs's object
2045		 * counting consistent.
2046		 */
2047		ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2048		if (ret) {
2049			reason = "failure to dissolve huge pages";
2050			goto failed_removal_isolated;
2051		}
2052
2053		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2054
2055	} while (ret);
2056
2057	/* Mark all sections offline and remove free pages from the buddy. */
2058	managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2059	pr_debug("Offlined Pages %ld\n", nr_pages);
2060
2061	/*
2062	 * The memory sections are marked offline, and the pageblock flags
2063	 * effectively stale; nobody should be touching them. Fixup the number
2064	 * of isolated pageblocks, memory onlining will properly revert this.
2065	 */
2066	spin_lock_irqsave(&zone->lock, flags);
2067	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2068	spin_unlock_irqrestore(&zone->lock, flags);
2069
2070	lru_cache_enable();
2071	zone_pcp_enable(zone);
2072
2073	/* removal success */
2074	adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2075	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2076
2077	/* reinitialise watermarks and update pcp limits */
2078	init_per_zone_wmark_min();
2079
2080	/*
2081	 * Make sure to mark the node as memory-less before rebuilding the zone
2082	 * list. Otherwise this node would still appear in the fallback lists.
2083	 */
2084	node_states_clear_node(node, &arg);
2085	if (!populated_zone(zone)) {
2086		zone_pcp_reset(zone);
2087		build_all_zonelists(NULL);
2088	}
 
 
 
2089
 
2090	if (arg.status_change_nid >= 0) {
 
2091		kcompactd_stop(node);
2092		kswapd_stop(node);
2093	}
2094
 
2095	writeback_set_ratelimit();
2096
2097	memory_notify(MEM_OFFLINE, &arg);
2098	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2099	return 0;
2100
2101failed_removal_isolated:
 
 
 
 
2102	/* pushback to free area */
2103	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2104	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2105failed_removal_pcplists_disabled:
2106	lru_cache_enable();
2107	zone_pcp_enable(zone);
2108failed_removal:
2109	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2110		 (unsigned long long) start_pfn << PAGE_SHIFT,
2111		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2112		 reason);
2113	return ret;
2114}
2115
2116static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
 
2117{
2118	int *nid = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119
2120	*nid = mem->nid;
2121	if (unlikely(mem->state != MEM_OFFLINE)) {
2122		phys_addr_t beginpa, endpa;
 
 
 
2123
2124		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2125		endpa = beginpa + memory_block_size_bytes() - 1;
2126		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2127			&beginpa, &endpa);
2128
2129		return -EBUSY;
 
 
 
 
2130	}
 
 
 
 
2131	return 0;
2132}
2133
2134static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
 
2135{
2136	u64 *num_altmaps = (u64 *)arg;
2137
2138	if (mem->altmap)
2139		*num_altmaps += 1;
 
 
 
 
 
 
2140
2141	return 0;
2142}
2143
2144static int check_cpu_on_node(int nid)
2145{
2146	int cpu;
2147
2148	for_each_present_cpu(cpu) {
2149		if (cpu_to_node(cpu) == nid)
2150			/*
2151			 * the cpu on this node isn't removed, and we can't
2152			 * offline this node.
2153			 */
2154			return -EBUSY;
2155	}
2156
2157	return 0;
2158}
2159
2160static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2161{
2162	int nid = *(int *)arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2163
2164	/*
2165	 * If a memory block belongs to multiple nodes, the stored nid is not
2166	 * reliable. However, such blocks are always online (e.g., cannot get
2167	 * offlined) and, therefore, are still spanned by the node.
2168	 */
2169	return mem->nid == nid ? -EEXIST : 0;
 
 
2170}
2171
2172/**
2173 * try_offline_node
2174 * @nid: the node ID
2175 *
2176 * Offline a node if all memory sections and cpus of the node are removed.
2177 *
2178 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2179 * and online/offline operations before this call.
2180 */
2181void try_offline_node(int nid)
2182{
2183	int rc;
 
 
 
 
 
 
 
 
 
 
2184
2185	/*
2186	 * If the node still spans pages (especially ZONE_DEVICE), don't
2187	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2188	 * e.g., after the memory block was onlined.
2189	 */
2190	if (node_spanned_pages(nid))
2191		return;
2192
2193	/*
2194	 * Especially offline memory blocks might not be spanned by the
2195	 * node. They will get spanned by the node once they get onlined.
2196	 * However, they link to the node in sysfs and can get onlined later.
2197	 */
2198	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2199	if (rc)
2200		return;
 
2201
2202	if (check_cpu_on_node(nid))
2203		return;
2204
2205	/*
2206	 * all memory/cpu of this node are removed, we can offline this
2207	 * node now.
2208	 */
2209	node_set_offline(nid);
2210	unregister_one_node(nid);
2211}
2212EXPORT_SYMBOL(try_offline_node);
2213
2214static int memory_blocks_have_altmaps(u64 start, u64 size)
2215{
2216	u64 num_memblocks = size / memory_block_size_bytes();
2217	u64 num_altmaps = 0;
2218
2219	if (!mhp_memmap_on_memory())
2220		return 0;
2221
2222	walk_memory_blocks(start, size, &num_altmaps,
2223			   count_memory_range_altmaps_cb);
2224
2225	if (num_altmaps == 0)
2226		return 0;
2227
2228	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2229		return -EINVAL;
2230
2231	return 1;
2232}
2233
2234static int try_remove_memory(u64 start, u64 size)
2235{
2236	int rc, nid = NUMA_NO_NODE;
2237
2238	BUG_ON(check_hotplug_memory_range(start, size));
2239
2240	/*
2241	 * All memory blocks must be offlined before removing memory.  Check
2242	 * whether all memory blocks in question are offline and return error
2243	 * if this is not the case.
2244	 *
2245	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2246	 * we'd only try to offline the last determined one -- which is good
2247	 * enough for the cases we care about.
2248	 */
2249	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2250	if (rc)
2251		return rc;
2252
2253	/* remove memmap entry */
2254	firmware_map_remove(start, start + size, "System RAM");
2255
2256	mem_hotplug_begin();
2257
2258	rc = memory_blocks_have_altmaps(start, size);
2259	if (rc < 0) {
2260		mem_hotplug_done();
2261		return rc;
2262	} else if (!rc) {
2263		/*
2264		 * Memory block device removal under the device_hotplug_lock is
2265		 * a barrier against racing online attempts.
2266		 * No altmaps present, do the removal directly
2267		 */
2268		remove_memory_block_devices(start, size);
2269		arch_remove_memory(start, size, NULL);
2270	} else {
2271		/* all memblocks in the range have altmaps */
2272		remove_memory_blocks_and_altmaps(start, size);
2273	}
2274
2275	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2276		memblock_remove(start, size);
2277
2278	release_mem_region_adjustable(start, size);
2279
2280	if (nid != NUMA_NO_NODE)
2281		try_offline_node(nid);
2282
2283	mem_hotplug_done();
2284	return 0;
2285}
 
2286
2287/**
2288 * __remove_memory - Remove memory if every memory block is offline
2289 * @start: physical address of the region to remove
2290 * @size: size of the region to remove
2291 *
2292 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2293 * and online/offline operations before this call, as required by
2294 * try_offline_node().
2295 */
2296void __remove_memory(u64 start, u64 size)
2297{
 
2298
2299	/*
2300	 * trigger BUG() if some memory is not offlined prior to calling this
2301	 * function
2302	 */
2303	if (try_remove_memory(start, size))
2304		BUG();
2305}
2306
2307/*
2308 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2309 * some memory is not offline
2310 */
2311int remove_memory(u64 start, u64 size)
2312{
2313	int rc;
2314
2315	lock_device_hotplug();
2316	rc = try_remove_memory(start, size);
2317	unlock_device_hotplug();
2318
2319	return rc;
2320}
2321EXPORT_SYMBOL_GPL(remove_memory);
2322
2323static int try_offline_memory_block(struct memory_block *mem, void *arg)
2324{
2325	uint8_t online_type = MMOP_ONLINE_KERNEL;
2326	uint8_t **online_types = arg;
2327	struct page *page;
2328	int rc;
2329
2330	/*
2331	 * Sense the online_type via the zone of the memory block. Offlining
2332	 * with multiple zones within one memory block will be rejected
2333	 * by offlining code ... so we don't care about that.
2334	 */
2335	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2336	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2337		online_type = MMOP_ONLINE_MOVABLE;
 
2338
2339	rc = device_offline(&mem->dev);
2340	/*
2341	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2342	 * so try_reonline_memory_block() can do the right thing.
2343	 */
2344	if (!rc)
2345		**online_types = online_type;
2346
2347	(*online_types)++;
2348	/* Ignore if already offline. */
2349	return rc < 0 ? rc : 0;
2350}
2351
2352static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2353{
2354	uint8_t **online_types = arg;
2355	int rc;
2356
2357	if (**online_types != MMOP_OFFLINE) {
2358		mem->online_type = **online_types;
2359		rc = device_online(&mem->dev);
2360		if (rc < 0)
2361			pr_warn("%s: Failed to re-online memory: %d",
2362				__func__, rc);
2363	}
2364
2365	/* Continue processing all remaining memory blocks. */
2366	(*online_types)++;
2367	return 0;
2368}
2369
2370/*
2371 * Try to offline and remove memory. Might take a long time to finish in case
2372 * memory is still in use. Primarily useful for memory devices that logically
2373 * unplugged all memory (so it's no longer in use) and want to offline + remove
2374 * that memory.
2375 */
2376int offline_and_remove_memory(u64 start, u64 size)
2377{
2378	const unsigned long mb_count = size / memory_block_size_bytes();
2379	uint8_t *online_types, *tmp;
2380	int rc;
2381
2382	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2383	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2384		return -EINVAL;
2385
2386	/*
2387	 * We'll remember the old online type of each memory block, so we can
2388	 * try to revert whatever we did when offlining one memory block fails
2389	 * after offlining some others succeeded.
2390	 */
2391	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2392				     GFP_KERNEL);
2393	if (!online_types)
2394		return -ENOMEM;
2395	/*
2396	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2397	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2398	 * try_reonline_memory_block().
2399	 */
2400	memset(online_types, MMOP_OFFLINE, mb_count);
2401
2402	lock_device_hotplug();
2403
2404	tmp = online_types;
2405	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2406
2407	/*
2408	 * In case we succeeded to offline all memory, remove it.
2409	 * This cannot fail as it cannot get onlined in the meantime.
2410	 */
2411	if (!rc) {
2412		rc = try_remove_memory(start, size);
2413		if (rc)
2414			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2415	}
2416
2417	/*
2418	 * Rollback what we did. While memory onlining might theoretically fail
2419	 * (nacked by a notifier), it barely ever happens.
2420	 */
2421	if (rc) {
2422		tmp = online_types;
2423		walk_memory_blocks(start, size, &tmp,
2424				   try_reonline_memory_block);
2425	}
2426	unlock_device_hotplug();
2427
2428	kfree(online_types);
2429	return rc;
2430}
2431EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2432#endif /* CONFIG_MEMORY_HOTREMOVE */