Loading...
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/swap.h>
10#include <linux/interrupt.h>
11#include <linux/pagemap.h>
12#include <linux/compiler.h>
13#include <linux/export.h>
14#include <linux/pagevec.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/sysctl.h>
18#include <linux/cpu.h>
19#include <linux/memory.h>
20#include <linux/memremap.h>
21#include <linux/memory_hotplug.h>
22#include <linux/highmem.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/bootmem.h>
36#include <linux/compaction.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42/*
43 * online_page_callback contains pointer to current page onlining function.
44 * Initially it is generic_online_page(). If it is required it could be
45 * changed by calling set_online_page_callback() for callback registration
46 * and restore_online_page_callback() for generic callback restore.
47 */
48
49static void generic_online_page(struct page *page);
50
51static online_page_callback_t online_page_callback = generic_online_page;
52static DEFINE_MUTEX(online_page_callback_lock);
53
54/* The same as the cpu_hotplug lock, but for memory hotplug. */
55static struct {
56 struct task_struct *active_writer;
57 struct mutex lock; /* Synchronizes accesses to refcount, */
58 /*
59 * Also blocks the new readers during
60 * an ongoing mem hotplug operation.
61 */
62 int refcount;
63
64#ifdef CONFIG_DEBUG_LOCK_ALLOC
65 struct lockdep_map dep_map;
66#endif
67} mem_hotplug = {
68 .active_writer = NULL,
69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 .refcount = 0,
71#ifdef CONFIG_DEBUG_LOCK_ALLOC
72 .dep_map = {.name = "mem_hotplug.lock" },
73#endif
74};
75
76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
79#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
80
81bool memhp_auto_online;
82EXPORT_SYMBOL_GPL(memhp_auto_online);
83
84void get_online_mems(void)
85{
86 might_sleep();
87 if (mem_hotplug.active_writer == current)
88 return;
89 memhp_lock_acquire_read();
90 mutex_lock(&mem_hotplug.lock);
91 mem_hotplug.refcount++;
92 mutex_unlock(&mem_hotplug.lock);
93
94}
95
96void put_online_mems(void)
97{
98 if (mem_hotplug.active_writer == current)
99 return;
100 mutex_lock(&mem_hotplug.lock);
101
102 if (WARN_ON(!mem_hotplug.refcount))
103 mem_hotplug.refcount++; /* try to fix things up */
104
105 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
106 wake_up_process(mem_hotplug.active_writer);
107 mutex_unlock(&mem_hotplug.lock);
108 memhp_lock_release();
109
110}
111
112void mem_hotplug_begin(void)
113{
114 mem_hotplug.active_writer = current;
115
116 memhp_lock_acquire();
117 for (;;) {
118 mutex_lock(&mem_hotplug.lock);
119 if (likely(!mem_hotplug.refcount))
120 break;
121 __set_current_state(TASK_UNINTERRUPTIBLE);
122 mutex_unlock(&mem_hotplug.lock);
123 schedule();
124 }
125}
126
127void mem_hotplug_done(void)
128{
129 mem_hotplug.active_writer = NULL;
130 mutex_unlock(&mem_hotplug.lock);
131 memhp_lock_release();
132}
133
134/* add this memory to iomem resource */
135static struct resource *register_memory_resource(u64 start, u64 size)
136{
137 struct resource *res;
138 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
139 if (!res)
140 return ERR_PTR(-ENOMEM);
141
142 res->name = "System RAM";
143 res->start = start;
144 res->end = start + size - 1;
145 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
146 if (request_resource(&iomem_resource, res) < 0) {
147 pr_debug("System RAM resource %pR cannot be added\n", res);
148 kfree(res);
149 return ERR_PTR(-EEXIST);
150 }
151 return res;
152}
153
154static void release_memory_resource(struct resource *res)
155{
156 if (!res)
157 return;
158 release_resource(res);
159 kfree(res);
160 return;
161}
162
163#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
164void get_page_bootmem(unsigned long info, struct page *page,
165 unsigned long type)
166{
167 page->lru.next = (struct list_head *) type;
168 SetPagePrivate(page);
169 set_page_private(page, info);
170 page_ref_inc(page);
171}
172
173void put_page_bootmem(struct page *page)
174{
175 unsigned long type;
176
177 type = (unsigned long) page->lru.next;
178 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
179 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
180
181 if (page_ref_dec_return(page) == 1) {
182 ClearPagePrivate(page);
183 set_page_private(page, 0);
184 INIT_LIST_HEAD(&page->lru);
185 free_reserved_page(page);
186 }
187}
188
189#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
190#ifndef CONFIG_SPARSEMEM_VMEMMAP
191static void register_page_bootmem_info_section(unsigned long start_pfn)
192{
193 unsigned long *usemap, mapsize, section_nr, i;
194 struct mem_section *ms;
195 struct page *page, *memmap;
196
197 section_nr = pfn_to_section_nr(start_pfn);
198 ms = __nr_to_section(section_nr);
199
200 /* Get section's memmap address */
201 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
202
203 /*
204 * Get page for the memmap's phys address
205 * XXX: need more consideration for sparse_vmemmap...
206 */
207 page = virt_to_page(memmap);
208 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
209 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
210
211 /* remember memmap's page */
212 for (i = 0; i < mapsize; i++, page++)
213 get_page_bootmem(section_nr, page, SECTION_INFO);
214
215 usemap = __nr_to_section(section_nr)->pageblock_flags;
216 page = virt_to_page(usemap);
217
218 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222
223}
224#else /* CONFIG_SPARSEMEM_VMEMMAP */
225static void register_page_bootmem_info_section(unsigned long start_pfn)
226{
227 unsigned long *usemap, mapsize, section_nr, i;
228 struct mem_section *ms;
229 struct page *page, *memmap;
230
231 if (!pfn_valid(start_pfn))
232 return;
233
234 section_nr = pfn_to_section_nr(start_pfn);
235 ms = __nr_to_section(section_nr);
236
237 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
238
239 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
240
241 usemap = __nr_to_section(section_nr)->pageblock_flags;
242 page = virt_to_page(usemap);
243
244 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
245
246 for (i = 0; i < mapsize; i++, page++)
247 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
248}
249#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
250
251void register_page_bootmem_info_node(struct pglist_data *pgdat)
252{
253 unsigned long i, pfn, end_pfn, nr_pages;
254 int node = pgdat->node_id;
255 struct page *page;
256 struct zone *zone;
257
258 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
259 page = virt_to_page(pgdat);
260
261 for (i = 0; i < nr_pages; i++, page++)
262 get_page_bootmem(node, page, NODE_INFO);
263
264 zone = &pgdat->node_zones[0];
265 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
266 if (zone_is_initialized(zone)) {
267 nr_pages = zone->wait_table_hash_nr_entries
268 * sizeof(wait_queue_head_t);
269 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
270 page = virt_to_page(zone->wait_table);
271
272 for (i = 0; i < nr_pages; i++, page++)
273 get_page_bootmem(node, page, NODE_INFO);
274 }
275 }
276
277 pfn = pgdat->node_start_pfn;
278 end_pfn = pgdat_end_pfn(pgdat);
279
280 /* register section info */
281 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
282 /*
283 * Some platforms can assign the same pfn to multiple nodes - on
284 * node0 as well as nodeN. To avoid registering a pfn against
285 * multiple nodes we check that this pfn does not already
286 * reside in some other nodes.
287 */
288 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
289 register_page_bootmem_info_section(pfn);
290 }
291}
292#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
293
294static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
295 unsigned long end_pfn)
296{
297 unsigned long old_zone_end_pfn;
298
299 zone_span_writelock(zone);
300
301 old_zone_end_pfn = zone_end_pfn(zone);
302 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
303 zone->zone_start_pfn = start_pfn;
304
305 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
306 zone->zone_start_pfn;
307
308 zone_span_writeunlock(zone);
309}
310
311static void resize_zone(struct zone *zone, unsigned long start_pfn,
312 unsigned long end_pfn)
313{
314 zone_span_writelock(zone);
315
316 if (end_pfn - start_pfn) {
317 zone->zone_start_pfn = start_pfn;
318 zone->spanned_pages = end_pfn - start_pfn;
319 } else {
320 /*
321 * make it consist as free_area_init_core(),
322 * if spanned_pages = 0, then keep start_pfn = 0
323 */
324 zone->zone_start_pfn = 0;
325 zone->spanned_pages = 0;
326 }
327
328 zone_span_writeunlock(zone);
329}
330
331static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
332 unsigned long end_pfn)
333{
334 enum zone_type zid = zone_idx(zone);
335 int nid = zone->zone_pgdat->node_id;
336 unsigned long pfn;
337
338 for (pfn = start_pfn; pfn < end_pfn; pfn++)
339 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
340}
341
342/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
343 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
344static int __ref ensure_zone_is_initialized(struct zone *zone,
345 unsigned long start_pfn, unsigned long num_pages)
346{
347 if (!zone_is_initialized(zone))
348 return init_currently_empty_zone(zone, start_pfn, num_pages);
349
350 return 0;
351}
352
353static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
354 unsigned long start_pfn, unsigned long end_pfn)
355{
356 int ret;
357 unsigned long flags;
358 unsigned long z1_start_pfn;
359
360 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
361 if (ret)
362 return ret;
363
364 pgdat_resize_lock(z1->zone_pgdat, &flags);
365
366 /* can't move pfns which are higher than @z2 */
367 if (end_pfn > zone_end_pfn(z2))
368 goto out_fail;
369 /* the move out part must be at the left most of @z2 */
370 if (start_pfn > z2->zone_start_pfn)
371 goto out_fail;
372 /* must included/overlap */
373 if (end_pfn <= z2->zone_start_pfn)
374 goto out_fail;
375
376 /* use start_pfn for z1's start_pfn if z1 is empty */
377 if (!zone_is_empty(z1))
378 z1_start_pfn = z1->zone_start_pfn;
379 else
380 z1_start_pfn = start_pfn;
381
382 resize_zone(z1, z1_start_pfn, end_pfn);
383 resize_zone(z2, end_pfn, zone_end_pfn(z2));
384
385 pgdat_resize_unlock(z1->zone_pgdat, &flags);
386
387 fix_zone_id(z1, start_pfn, end_pfn);
388
389 return 0;
390out_fail:
391 pgdat_resize_unlock(z1->zone_pgdat, &flags);
392 return -1;
393}
394
395static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
396 unsigned long start_pfn, unsigned long end_pfn)
397{
398 int ret;
399 unsigned long flags;
400 unsigned long z2_end_pfn;
401
402 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
403 if (ret)
404 return ret;
405
406 pgdat_resize_lock(z1->zone_pgdat, &flags);
407
408 /* can't move pfns which are lower than @z1 */
409 if (z1->zone_start_pfn > start_pfn)
410 goto out_fail;
411 /* the move out part mast at the right most of @z1 */
412 if (zone_end_pfn(z1) > end_pfn)
413 goto out_fail;
414 /* must included/overlap */
415 if (start_pfn >= zone_end_pfn(z1))
416 goto out_fail;
417
418 /* use end_pfn for z2's end_pfn if z2 is empty */
419 if (!zone_is_empty(z2))
420 z2_end_pfn = zone_end_pfn(z2);
421 else
422 z2_end_pfn = end_pfn;
423
424 resize_zone(z1, z1->zone_start_pfn, start_pfn);
425 resize_zone(z2, start_pfn, z2_end_pfn);
426
427 pgdat_resize_unlock(z1->zone_pgdat, &flags);
428
429 fix_zone_id(z2, start_pfn, end_pfn);
430
431 return 0;
432out_fail:
433 pgdat_resize_unlock(z1->zone_pgdat, &flags);
434 return -1;
435}
436
437static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
438 unsigned long end_pfn)
439{
440 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
441
442 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
443 pgdat->node_start_pfn = start_pfn;
444
445 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
446 pgdat->node_start_pfn;
447}
448
449static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
450{
451 struct pglist_data *pgdat = zone->zone_pgdat;
452 int nr_pages = PAGES_PER_SECTION;
453 int nid = pgdat->node_id;
454 int zone_type;
455 unsigned long flags, pfn;
456 int ret;
457
458 zone_type = zone - pgdat->node_zones;
459 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
460 if (ret)
461 return ret;
462
463 pgdat_resize_lock(zone->zone_pgdat, &flags);
464 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
465 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
466 phys_start_pfn + nr_pages);
467 pgdat_resize_unlock(zone->zone_pgdat, &flags);
468 memmap_init_zone(nr_pages, nid, zone_type,
469 phys_start_pfn, MEMMAP_HOTPLUG);
470
471 /* online_page_range is called later and expects pages reserved */
472 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
473 if (!pfn_valid(pfn))
474 continue;
475
476 SetPageReserved(pfn_to_page(pfn));
477 }
478 return 0;
479}
480
481static int __meminit __add_section(int nid, struct zone *zone,
482 unsigned long phys_start_pfn)
483{
484 int ret;
485
486 if (pfn_valid(phys_start_pfn))
487 return -EEXIST;
488
489 ret = sparse_add_one_section(zone, phys_start_pfn);
490
491 if (ret < 0)
492 return ret;
493
494 ret = __add_zone(zone, phys_start_pfn);
495
496 if (ret < 0)
497 return ret;
498
499 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
500}
501
502/*
503 * Reasonably generic function for adding memory. It is
504 * expected that archs that support memory hotplug will
505 * call this function after deciding the zone to which to
506 * add the new pages.
507 */
508int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
509 unsigned long nr_pages)
510{
511 unsigned long i;
512 int err = 0;
513 int start_sec, end_sec;
514 struct vmem_altmap *altmap;
515
516 clear_zone_contiguous(zone);
517
518 /* during initialize mem_map, align hot-added range to section */
519 start_sec = pfn_to_section_nr(phys_start_pfn);
520 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
521
522 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
523 if (altmap) {
524 /*
525 * Validate altmap is within bounds of the total request
526 */
527 if (altmap->base_pfn != phys_start_pfn
528 || vmem_altmap_offset(altmap) > nr_pages) {
529 pr_warn_once("memory add fail, invalid altmap\n");
530 err = -EINVAL;
531 goto out;
532 }
533 altmap->alloc = 0;
534 }
535
536 for (i = start_sec; i <= end_sec; i++) {
537 err = __add_section(nid, zone, section_nr_to_pfn(i));
538
539 /*
540 * EEXIST is finally dealt with by ioresource collision
541 * check. see add_memory() => register_memory_resource()
542 * Warning will be printed if there is collision.
543 */
544 if (err && (err != -EEXIST))
545 break;
546 err = 0;
547 }
548 vmemmap_populate_print_last();
549out:
550 set_zone_contiguous(zone);
551 return err;
552}
553EXPORT_SYMBOL_GPL(__add_pages);
554
555#ifdef CONFIG_MEMORY_HOTREMOVE
556/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
557static int find_smallest_section_pfn(int nid, struct zone *zone,
558 unsigned long start_pfn,
559 unsigned long end_pfn)
560{
561 struct mem_section *ms;
562
563 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
564 ms = __pfn_to_section(start_pfn);
565
566 if (unlikely(!valid_section(ms)))
567 continue;
568
569 if (unlikely(pfn_to_nid(start_pfn) != nid))
570 continue;
571
572 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
573 continue;
574
575 return start_pfn;
576 }
577
578 return 0;
579}
580
581/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
582static int find_biggest_section_pfn(int nid, struct zone *zone,
583 unsigned long start_pfn,
584 unsigned long end_pfn)
585{
586 struct mem_section *ms;
587 unsigned long pfn;
588
589 /* pfn is the end pfn of a memory section. */
590 pfn = end_pfn - 1;
591 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
592 ms = __pfn_to_section(pfn);
593
594 if (unlikely(!valid_section(ms)))
595 continue;
596
597 if (unlikely(pfn_to_nid(pfn) != nid))
598 continue;
599
600 if (zone && zone != page_zone(pfn_to_page(pfn)))
601 continue;
602
603 return pfn;
604 }
605
606 return 0;
607}
608
609static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
610 unsigned long end_pfn)
611{
612 unsigned long zone_start_pfn = zone->zone_start_pfn;
613 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
614 unsigned long zone_end_pfn = z;
615 unsigned long pfn;
616 struct mem_section *ms;
617 int nid = zone_to_nid(zone);
618
619 zone_span_writelock(zone);
620 if (zone_start_pfn == start_pfn) {
621 /*
622 * If the section is smallest section in the zone, it need
623 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
624 * In this case, we find second smallest valid mem_section
625 * for shrinking zone.
626 */
627 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
628 zone_end_pfn);
629 if (pfn) {
630 zone->zone_start_pfn = pfn;
631 zone->spanned_pages = zone_end_pfn - pfn;
632 }
633 } else if (zone_end_pfn == end_pfn) {
634 /*
635 * If the section is biggest section in the zone, it need
636 * shrink zone->spanned_pages.
637 * In this case, we find second biggest valid mem_section for
638 * shrinking zone.
639 */
640 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
641 start_pfn);
642 if (pfn)
643 zone->spanned_pages = pfn - zone_start_pfn + 1;
644 }
645
646 /*
647 * The section is not biggest or smallest mem_section in the zone, it
648 * only creates a hole in the zone. So in this case, we need not
649 * change the zone. But perhaps, the zone has only hole data. Thus
650 * it check the zone has only hole or not.
651 */
652 pfn = zone_start_pfn;
653 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
654 ms = __pfn_to_section(pfn);
655
656 if (unlikely(!valid_section(ms)))
657 continue;
658
659 if (page_zone(pfn_to_page(pfn)) != zone)
660 continue;
661
662 /* If the section is current section, it continues the loop */
663 if (start_pfn == pfn)
664 continue;
665
666 /* If we find valid section, we have nothing to do */
667 zone_span_writeunlock(zone);
668 return;
669 }
670
671 /* The zone has no valid section */
672 zone->zone_start_pfn = 0;
673 zone->spanned_pages = 0;
674 zone_span_writeunlock(zone);
675}
676
677static void shrink_pgdat_span(struct pglist_data *pgdat,
678 unsigned long start_pfn, unsigned long end_pfn)
679{
680 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
681 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
682 unsigned long pgdat_end_pfn = p;
683 unsigned long pfn;
684 struct mem_section *ms;
685 int nid = pgdat->node_id;
686
687 if (pgdat_start_pfn == start_pfn) {
688 /*
689 * If the section is smallest section in the pgdat, it need
690 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
691 * In this case, we find second smallest valid mem_section
692 * for shrinking zone.
693 */
694 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
695 pgdat_end_pfn);
696 if (pfn) {
697 pgdat->node_start_pfn = pfn;
698 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
699 }
700 } else if (pgdat_end_pfn == end_pfn) {
701 /*
702 * If the section is biggest section in the pgdat, it need
703 * shrink pgdat->node_spanned_pages.
704 * In this case, we find second biggest valid mem_section for
705 * shrinking zone.
706 */
707 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
708 start_pfn);
709 if (pfn)
710 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
711 }
712
713 /*
714 * If the section is not biggest or smallest mem_section in the pgdat,
715 * it only creates a hole in the pgdat. So in this case, we need not
716 * change the pgdat.
717 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
718 * has only hole or not.
719 */
720 pfn = pgdat_start_pfn;
721 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
722 ms = __pfn_to_section(pfn);
723
724 if (unlikely(!valid_section(ms)))
725 continue;
726
727 if (pfn_to_nid(pfn) != nid)
728 continue;
729
730 /* If the section is current section, it continues the loop */
731 if (start_pfn == pfn)
732 continue;
733
734 /* If we find valid section, we have nothing to do */
735 return;
736 }
737
738 /* The pgdat has no valid section */
739 pgdat->node_start_pfn = 0;
740 pgdat->node_spanned_pages = 0;
741}
742
743static void __remove_zone(struct zone *zone, unsigned long start_pfn)
744{
745 struct pglist_data *pgdat = zone->zone_pgdat;
746 int nr_pages = PAGES_PER_SECTION;
747 int zone_type;
748 unsigned long flags;
749
750 zone_type = zone - pgdat->node_zones;
751
752 pgdat_resize_lock(zone->zone_pgdat, &flags);
753 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
754 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
755 pgdat_resize_unlock(zone->zone_pgdat, &flags);
756}
757
758static int __remove_section(struct zone *zone, struct mem_section *ms,
759 unsigned long map_offset)
760{
761 unsigned long start_pfn;
762 int scn_nr;
763 int ret = -EINVAL;
764
765 if (!valid_section(ms))
766 return ret;
767
768 ret = unregister_memory_section(ms);
769 if (ret)
770 return ret;
771
772 scn_nr = __section_nr(ms);
773 start_pfn = section_nr_to_pfn(scn_nr);
774 __remove_zone(zone, start_pfn);
775
776 sparse_remove_one_section(zone, ms, map_offset);
777 return 0;
778}
779
780/**
781 * __remove_pages() - remove sections of pages from a zone
782 * @zone: zone from which pages need to be removed
783 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
784 * @nr_pages: number of pages to remove (must be multiple of section size)
785 *
786 * Generic helper function to remove section mappings and sysfs entries
787 * for the section of the memory we are removing. Caller needs to make
788 * sure that pages are marked reserved and zones are adjust properly by
789 * calling offline_pages().
790 */
791int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
792 unsigned long nr_pages)
793{
794 unsigned long i;
795 unsigned long map_offset = 0;
796 int sections_to_remove, ret = 0;
797
798 /* In the ZONE_DEVICE case device driver owns the memory region */
799 if (is_dev_zone(zone)) {
800 struct page *page = pfn_to_page(phys_start_pfn);
801 struct vmem_altmap *altmap;
802
803 altmap = to_vmem_altmap((unsigned long) page);
804 if (altmap)
805 map_offset = vmem_altmap_offset(altmap);
806 } else {
807 resource_size_t start, size;
808
809 start = phys_start_pfn << PAGE_SHIFT;
810 size = nr_pages * PAGE_SIZE;
811
812 ret = release_mem_region_adjustable(&iomem_resource, start,
813 size);
814 if (ret) {
815 resource_size_t endres = start + size - 1;
816
817 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
818 &start, &endres, ret);
819 }
820 }
821
822 clear_zone_contiguous(zone);
823
824 /*
825 * We can only remove entire sections
826 */
827 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
828 BUG_ON(nr_pages % PAGES_PER_SECTION);
829
830 sections_to_remove = nr_pages / PAGES_PER_SECTION;
831 for (i = 0; i < sections_to_remove; i++) {
832 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
833
834 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
835 map_offset = 0;
836 if (ret)
837 break;
838 }
839
840 set_zone_contiguous(zone);
841
842 return ret;
843}
844EXPORT_SYMBOL_GPL(__remove_pages);
845#endif /* CONFIG_MEMORY_HOTREMOVE */
846
847int set_online_page_callback(online_page_callback_t callback)
848{
849 int rc = -EINVAL;
850
851 get_online_mems();
852 mutex_lock(&online_page_callback_lock);
853
854 if (online_page_callback == generic_online_page) {
855 online_page_callback = callback;
856 rc = 0;
857 }
858
859 mutex_unlock(&online_page_callback_lock);
860 put_online_mems();
861
862 return rc;
863}
864EXPORT_SYMBOL_GPL(set_online_page_callback);
865
866int restore_online_page_callback(online_page_callback_t callback)
867{
868 int rc = -EINVAL;
869
870 get_online_mems();
871 mutex_lock(&online_page_callback_lock);
872
873 if (online_page_callback == callback) {
874 online_page_callback = generic_online_page;
875 rc = 0;
876 }
877
878 mutex_unlock(&online_page_callback_lock);
879 put_online_mems();
880
881 return rc;
882}
883EXPORT_SYMBOL_GPL(restore_online_page_callback);
884
885void __online_page_set_limits(struct page *page)
886{
887}
888EXPORT_SYMBOL_GPL(__online_page_set_limits);
889
890void __online_page_increment_counters(struct page *page)
891{
892 adjust_managed_page_count(page, 1);
893}
894EXPORT_SYMBOL_GPL(__online_page_increment_counters);
895
896void __online_page_free(struct page *page)
897{
898 __free_reserved_page(page);
899}
900EXPORT_SYMBOL_GPL(__online_page_free);
901
902static void generic_online_page(struct page *page)
903{
904 __online_page_set_limits(page);
905 __online_page_increment_counters(page);
906 __online_page_free(page);
907}
908
909static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
910 void *arg)
911{
912 unsigned long i;
913 unsigned long onlined_pages = *(unsigned long *)arg;
914 struct page *page;
915 if (PageReserved(pfn_to_page(start_pfn)))
916 for (i = 0; i < nr_pages; i++) {
917 page = pfn_to_page(start_pfn + i);
918 (*online_page_callback)(page);
919 onlined_pages++;
920 }
921 *(unsigned long *)arg = onlined_pages;
922 return 0;
923}
924
925#ifdef CONFIG_MOVABLE_NODE
926/*
927 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
928 * normal memory.
929 */
930static bool can_online_high_movable(struct zone *zone)
931{
932 return true;
933}
934#else /* CONFIG_MOVABLE_NODE */
935/* ensure every online node has NORMAL memory */
936static bool can_online_high_movable(struct zone *zone)
937{
938 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
939}
940#endif /* CONFIG_MOVABLE_NODE */
941
942/* check which state of node_states will be changed when online memory */
943static void node_states_check_changes_online(unsigned long nr_pages,
944 struct zone *zone, struct memory_notify *arg)
945{
946 int nid = zone_to_nid(zone);
947 enum zone_type zone_last = ZONE_NORMAL;
948
949 /*
950 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
951 * contains nodes which have zones of 0...ZONE_NORMAL,
952 * set zone_last to ZONE_NORMAL.
953 *
954 * If we don't have HIGHMEM nor movable node,
955 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
956 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
957 */
958 if (N_MEMORY == N_NORMAL_MEMORY)
959 zone_last = ZONE_MOVABLE;
960
961 /*
962 * if the memory to be online is in a zone of 0...zone_last, and
963 * the zones of 0...zone_last don't have memory before online, we will
964 * need to set the node to node_states[N_NORMAL_MEMORY] after
965 * the memory is online.
966 */
967 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
968 arg->status_change_nid_normal = nid;
969 else
970 arg->status_change_nid_normal = -1;
971
972#ifdef CONFIG_HIGHMEM
973 /*
974 * If we have movable node, node_states[N_HIGH_MEMORY]
975 * contains nodes which have zones of 0...ZONE_HIGHMEM,
976 * set zone_last to ZONE_HIGHMEM.
977 *
978 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
979 * contains nodes which have zones of 0...ZONE_MOVABLE,
980 * set zone_last to ZONE_MOVABLE.
981 */
982 zone_last = ZONE_HIGHMEM;
983 if (N_MEMORY == N_HIGH_MEMORY)
984 zone_last = ZONE_MOVABLE;
985
986 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
987 arg->status_change_nid_high = nid;
988 else
989 arg->status_change_nid_high = -1;
990#else
991 arg->status_change_nid_high = arg->status_change_nid_normal;
992#endif
993
994 /*
995 * if the node don't have memory befor online, we will need to
996 * set the node to node_states[N_MEMORY] after the memory
997 * is online.
998 */
999 if (!node_state(nid, N_MEMORY))
1000 arg->status_change_nid = nid;
1001 else
1002 arg->status_change_nid = -1;
1003}
1004
1005static void node_states_set_node(int node, struct memory_notify *arg)
1006{
1007 if (arg->status_change_nid_normal >= 0)
1008 node_set_state(node, N_NORMAL_MEMORY);
1009
1010 if (arg->status_change_nid_high >= 0)
1011 node_set_state(node, N_HIGH_MEMORY);
1012
1013 node_set_state(node, N_MEMORY);
1014}
1015
1016
1017/* Must be protected by mem_hotplug_begin() */
1018int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1019{
1020 unsigned long flags;
1021 unsigned long onlined_pages = 0;
1022 struct zone *zone;
1023 int need_zonelists_rebuild = 0;
1024 int nid;
1025 int ret;
1026 struct memory_notify arg;
1027
1028 /*
1029 * This doesn't need a lock to do pfn_to_page().
1030 * The section can't be removed here because of the
1031 * memory_block->state_mutex.
1032 */
1033 zone = page_zone(pfn_to_page(pfn));
1034
1035 if ((zone_idx(zone) > ZONE_NORMAL ||
1036 online_type == MMOP_ONLINE_MOVABLE) &&
1037 !can_online_high_movable(zone))
1038 return -EINVAL;
1039
1040 if (online_type == MMOP_ONLINE_KERNEL &&
1041 zone_idx(zone) == ZONE_MOVABLE) {
1042 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043 return -EINVAL;
1044 }
1045 if (online_type == MMOP_ONLINE_MOVABLE &&
1046 zone_idx(zone) == ZONE_MOVABLE - 1) {
1047 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048 return -EINVAL;
1049 }
1050
1051 /* Previous code may changed the zone of the pfn range */
1052 zone = page_zone(pfn_to_page(pfn));
1053
1054 arg.start_pfn = pfn;
1055 arg.nr_pages = nr_pages;
1056 node_states_check_changes_online(nr_pages, zone, &arg);
1057
1058 nid = zone_to_nid(zone);
1059
1060 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061 ret = notifier_to_errno(ret);
1062 if (ret)
1063 goto failed_addition;
1064
1065 /*
1066 * If this zone is not populated, then it is not in zonelist.
1067 * This means the page allocator ignores this zone.
1068 * So, zonelist must be updated after online.
1069 */
1070 mutex_lock(&zonelists_mutex);
1071 if (!populated_zone(zone)) {
1072 need_zonelists_rebuild = 1;
1073 build_all_zonelists(NULL, zone);
1074 }
1075
1076 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077 online_pages_range);
1078 if (ret) {
1079 if (need_zonelists_rebuild)
1080 zone_pcp_reset(zone);
1081 mutex_unlock(&zonelists_mutex);
1082 goto failed_addition;
1083 }
1084
1085 zone->present_pages += onlined_pages;
1086
1087 pgdat_resize_lock(zone->zone_pgdat, &flags);
1088 zone->zone_pgdat->node_present_pages += onlined_pages;
1089 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090
1091 if (onlined_pages) {
1092 node_states_set_node(nid, &arg);
1093 if (need_zonelists_rebuild)
1094 build_all_zonelists(NULL, NULL);
1095 else
1096 zone_pcp_update(zone);
1097 }
1098
1099 mutex_unlock(&zonelists_mutex);
1100
1101 init_per_zone_wmark_min();
1102
1103 if (onlined_pages) {
1104 kswapd_run(nid);
1105 kcompactd_run(nid);
1106 }
1107
1108 vm_total_pages = nr_free_pagecache_pages();
1109
1110 writeback_set_ratelimit();
1111
1112 if (onlined_pages)
1113 memory_notify(MEM_ONLINE, &arg);
1114 return 0;
1115
1116failed_addition:
1117 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118 (unsigned long long) pfn << PAGE_SHIFT,
1119 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120 memory_notify(MEM_CANCEL_ONLINE, &arg);
1121 return ret;
1122}
1123#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124
1125static void reset_node_present_pages(pg_data_t *pgdat)
1126{
1127 struct zone *z;
1128
1129 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130 z->present_pages = 0;
1131
1132 pgdat->node_present_pages = 0;
1133}
1134
1135/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137{
1138 struct pglist_data *pgdat;
1139 unsigned long zones_size[MAX_NR_ZONES] = {0};
1140 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141 unsigned long start_pfn = PFN_DOWN(start);
1142
1143 pgdat = NODE_DATA(nid);
1144 if (!pgdat) {
1145 pgdat = arch_alloc_nodedata(nid);
1146 if (!pgdat)
1147 return NULL;
1148
1149 arch_refresh_nodedata(nid, pgdat);
1150 } else {
1151 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1152 pgdat->nr_zones = 0;
1153 pgdat->classzone_idx = 0;
1154 }
1155
1156 /* we can use NODE_DATA(nid) from here */
1157
1158 /* init node's zones as empty zones, we don't have any present pages.*/
1159 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160
1161 /*
1162 * The node we allocated has no zone fallback lists. For avoiding
1163 * to access not-initialized zonelist, build here.
1164 */
1165 mutex_lock(&zonelists_mutex);
1166 build_all_zonelists(pgdat, NULL);
1167 mutex_unlock(&zonelists_mutex);
1168
1169 /*
1170 * zone->managed_pages is set to an approximate value in
1171 * free_area_init_core(), which will cause
1172 * /sys/device/system/node/nodeX/meminfo has wrong data.
1173 * So reset it to 0 before any memory is onlined.
1174 */
1175 reset_node_managed_pages(pgdat);
1176
1177 /*
1178 * When memory is hot-added, all the memory is in offline state. So
1179 * clear all zones' present_pages because they will be updated in
1180 * online_pages() and offline_pages().
1181 */
1182 reset_node_present_pages(pgdat);
1183
1184 return pgdat;
1185}
1186
1187static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188{
1189 arch_refresh_nodedata(nid, NULL);
1190 arch_free_nodedata(pgdat);
1191 return;
1192}
1193
1194
1195/**
1196 * try_online_node - online a node if offlined
1197 *
1198 * called by cpu_up() to online a node without onlined memory.
1199 */
1200int try_online_node(int nid)
1201{
1202 pg_data_t *pgdat;
1203 int ret;
1204
1205 if (node_online(nid))
1206 return 0;
1207
1208 mem_hotplug_begin();
1209 pgdat = hotadd_new_pgdat(nid, 0);
1210 if (!pgdat) {
1211 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212 ret = -ENOMEM;
1213 goto out;
1214 }
1215 node_set_online(nid);
1216 ret = register_one_node(nid);
1217 BUG_ON(ret);
1218
1219 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220 mutex_lock(&zonelists_mutex);
1221 build_all_zonelists(NULL, NULL);
1222 mutex_unlock(&zonelists_mutex);
1223 }
1224
1225out:
1226 mem_hotplug_done();
1227 return ret;
1228}
1229
1230static int check_hotplug_memory_range(u64 start, u64 size)
1231{
1232 u64 start_pfn = PFN_DOWN(start);
1233 u64 nr_pages = size >> PAGE_SHIFT;
1234
1235 /* Memory range must be aligned with section */
1236 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239 (unsigned long long)start,
1240 (unsigned long long)size);
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245}
1246
1247/*
1248 * If movable zone has already been setup, newly added memory should be check.
1249 * If its address is higher than movable zone, it should be added as movable.
1250 * Without this check, movable zone may overlap with other zone.
1251 */
1252static int should_add_memory_movable(int nid, u64 start, u64 size)
1253{
1254 unsigned long start_pfn = start >> PAGE_SHIFT;
1255 pg_data_t *pgdat = NODE_DATA(nid);
1256 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257
1258 if (zone_is_empty(movable_zone))
1259 return 0;
1260
1261 if (movable_zone->zone_start_pfn <= start_pfn)
1262 return 1;
1263
1264 return 0;
1265}
1266
1267int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268 bool for_device)
1269{
1270#ifdef CONFIG_ZONE_DEVICE
1271 if (for_device)
1272 return ZONE_DEVICE;
1273#endif
1274 if (should_add_memory_movable(nid, start, size))
1275 return ZONE_MOVABLE;
1276
1277 return zone_default;
1278}
1279
1280static int online_memory_block(struct memory_block *mem, void *arg)
1281{
1282 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1283}
1284
1285/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286int __ref add_memory_resource(int nid, struct resource *res, bool online)
1287{
1288 u64 start, size;
1289 pg_data_t *pgdat = NULL;
1290 bool new_pgdat;
1291 bool new_node;
1292 int ret;
1293
1294 start = res->start;
1295 size = resource_size(res);
1296
1297 ret = check_hotplug_memory_range(start, size);
1298 if (ret)
1299 return ret;
1300
1301 { /* Stupid hack to suppress address-never-null warning */
1302 void *p = NODE_DATA(nid);
1303 new_pgdat = !p;
1304 }
1305
1306 mem_hotplug_begin();
1307
1308 /*
1309 * Add new range to memblock so that when hotadd_new_pgdat() is called
1310 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311 * this new range and calculate total pages correctly. The range will
1312 * be removed at hot-remove time.
1313 */
1314 memblock_add_node(start, size, nid);
1315
1316 new_node = !node_online(nid);
1317 if (new_node) {
1318 pgdat = hotadd_new_pgdat(nid, start);
1319 ret = -ENOMEM;
1320 if (!pgdat)
1321 goto error;
1322 }
1323
1324 /* call arch's memory hotadd */
1325 ret = arch_add_memory(nid, start, size, false);
1326
1327 if (ret < 0)
1328 goto error;
1329
1330 /* we online node here. we can't roll back from here. */
1331 node_set_online(nid);
1332
1333 if (new_node) {
1334 ret = register_one_node(nid);
1335 /*
1336 * If sysfs file of new node can't create, cpu on the node
1337 * can't be hot-added. There is no rollback way now.
1338 * So, check by BUG_ON() to catch it reluctantly..
1339 */
1340 BUG_ON(ret);
1341 }
1342
1343 /* create new memmap entry */
1344 firmware_map_add_hotplug(start, start + size, "System RAM");
1345
1346 /* online pages if requested */
1347 if (online)
1348 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349 NULL, online_memory_block);
1350
1351 goto out;
1352
1353error:
1354 /* rollback pgdat allocation and others */
1355 if (new_pgdat)
1356 rollback_node_hotadd(nid, pgdat);
1357 memblock_remove(start, size);
1358
1359out:
1360 mem_hotplug_done();
1361 return ret;
1362}
1363EXPORT_SYMBOL_GPL(add_memory_resource);
1364
1365int __ref add_memory(int nid, u64 start, u64 size)
1366{
1367 struct resource *res;
1368 int ret;
1369
1370 res = register_memory_resource(start, size);
1371 if (IS_ERR(res))
1372 return PTR_ERR(res);
1373
1374 ret = add_memory_resource(nid, res, memhp_auto_online);
1375 if (ret < 0)
1376 release_memory_resource(res);
1377 return ret;
1378}
1379EXPORT_SYMBOL_GPL(add_memory);
1380
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382/*
1383 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384 * set and the size of the free page is given by page_order(). Using this,
1385 * the function determines if the pageblock contains only free pages.
1386 * Due to buddy contraints, a free page at least the size of a pageblock will
1387 * be located at the start of the pageblock
1388 */
1389static inline int pageblock_free(struct page *page)
1390{
1391 return PageBuddy(page) && page_order(page) >= pageblock_order;
1392}
1393
1394/* Return the start of the next active pageblock after a given page */
1395static struct page *next_active_pageblock(struct page *page)
1396{
1397 /* Ensure the starting page is pageblock-aligned */
1398 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399
1400 /* If the entire pageblock is free, move to the end of free page */
1401 if (pageblock_free(page)) {
1402 int order;
1403 /* be careful. we don't have locks, page_order can be changed.*/
1404 order = page_order(page);
1405 if ((order < MAX_ORDER) && (order >= pageblock_order))
1406 return page + (1 << order);
1407 }
1408
1409 return page + pageblock_nr_pages;
1410}
1411
1412/* Checks if this range of memory is likely to be hot-removable. */
1413int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1414{
1415 struct page *page = pfn_to_page(start_pfn);
1416 struct page *end_page = page + nr_pages;
1417
1418 /* Check the starting page of each pageblock within the range */
1419 for (; page < end_page; page = next_active_pageblock(page)) {
1420 if (!is_pageblock_removable_nolock(page))
1421 return 0;
1422 cond_resched();
1423 }
1424
1425 /* All pageblocks in the memory block are likely to be hot-removable */
1426 return 1;
1427}
1428
1429/*
1430 * Confirm all pages in a range [start, end) is belongs to the same zone.
1431 */
1432int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433{
1434 unsigned long pfn, sec_end_pfn;
1435 struct zone *zone = NULL;
1436 struct page *page;
1437 int i;
1438 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439 pfn < end_pfn;
1440 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441 /* Make sure the memory section is present first */
1442 if (!present_section_nr(pfn_to_section_nr(pfn)))
1443 continue;
1444 for (; pfn < sec_end_pfn && pfn < end_pfn;
1445 pfn += MAX_ORDER_NR_PAGES) {
1446 i = 0;
1447 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448 while ((i < MAX_ORDER_NR_PAGES) &&
1449 !pfn_valid_within(pfn + i))
1450 i++;
1451 if (i == MAX_ORDER_NR_PAGES)
1452 continue;
1453 page = pfn_to_page(pfn + i);
1454 if (zone && page_zone(page) != zone)
1455 return 0;
1456 zone = page_zone(page);
1457 }
1458 }
1459 return 1;
1460}
1461
1462/*
1463 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464 * and hugepages). We scan pfn because it's much easier than scanning over
1465 * linked list. This function returns the pfn of the first found movable
1466 * page if it's found, otherwise 0.
1467 */
1468static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1469{
1470 unsigned long pfn;
1471 struct page *page;
1472 for (pfn = start; pfn < end; pfn++) {
1473 if (pfn_valid(pfn)) {
1474 page = pfn_to_page(pfn);
1475 if (PageLRU(page))
1476 return pfn;
1477 if (PageHuge(page)) {
1478 if (page_huge_active(page))
1479 return pfn;
1480 else
1481 pfn = round_up(pfn + 1,
1482 1 << compound_order(page)) - 1;
1483 }
1484 }
1485 }
1486 return 0;
1487}
1488
1489#define NR_OFFLINE_AT_ONCE_PAGES (256)
1490static int
1491do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492{
1493 unsigned long pfn;
1494 struct page *page;
1495 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496 int not_managed = 0;
1497 int ret = 0;
1498 LIST_HEAD(source);
1499
1500 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501 if (!pfn_valid(pfn))
1502 continue;
1503 page = pfn_to_page(pfn);
1504
1505 if (PageHuge(page)) {
1506 struct page *head = compound_head(page);
1507 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508 if (compound_order(head) > PFN_SECTION_SHIFT) {
1509 ret = -EBUSY;
1510 break;
1511 }
1512 if (isolate_huge_page(page, &source))
1513 move_pages -= 1 << compound_order(head);
1514 continue;
1515 }
1516
1517 if (!get_page_unless_zero(page))
1518 continue;
1519 /*
1520 * We can skip free pages. And we can only deal with pages on
1521 * LRU.
1522 */
1523 ret = isolate_lru_page(page);
1524 if (!ret) { /* Success */
1525 put_page(page);
1526 list_add_tail(&page->lru, &source);
1527 move_pages--;
1528 inc_zone_page_state(page, NR_ISOLATED_ANON +
1529 page_is_file_cache(page));
1530
1531 } else {
1532#ifdef CONFIG_DEBUG_VM
1533 pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534 dump_page(page, "failed to remove from LRU");
1535#endif
1536 put_page(page);
1537 /* Because we don't have big zone->lock. we should
1538 check this again here. */
1539 if (page_count(page)) {
1540 not_managed++;
1541 ret = -EBUSY;
1542 break;
1543 }
1544 }
1545 }
1546 if (!list_empty(&source)) {
1547 if (not_managed) {
1548 putback_movable_pages(&source);
1549 goto out;
1550 }
1551
1552 /*
1553 * alloc_migrate_target should be improooooved!!
1554 * migrate_pages returns # of failed pages.
1555 */
1556 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558 if (ret)
1559 putback_movable_pages(&source);
1560 }
1561out:
1562 return ret;
1563}
1564
1565/*
1566 * remove from free_area[] and mark all as Reserved.
1567 */
1568static int
1569offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570 void *data)
1571{
1572 __offline_isolated_pages(start, start + nr_pages);
1573 return 0;
1574}
1575
1576static void
1577offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578{
1579 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580 offline_isolated_pages_cb);
1581}
1582
1583/*
1584 * Check all pages in range, recoreded as memory resource, are isolated.
1585 */
1586static int
1587check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588 void *data)
1589{
1590 int ret;
1591 long offlined = *(long *)data;
1592 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593 offlined = nr_pages;
1594 if (!ret)
1595 *(long *)data += offlined;
1596 return ret;
1597}
1598
1599static long
1600check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602 long offlined = 0;
1603 int ret;
1604
1605 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606 check_pages_isolated_cb);
1607 if (ret < 0)
1608 offlined = (long)ret;
1609 return offlined;
1610}
1611
1612#ifdef CONFIG_MOVABLE_NODE
1613/*
1614 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615 * normal memory.
1616 */
1617static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618{
1619 return true;
1620}
1621#else /* CONFIG_MOVABLE_NODE */
1622/* ensure the node has NORMAL memory if it is still online */
1623static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624{
1625 struct pglist_data *pgdat = zone->zone_pgdat;
1626 unsigned long present_pages = 0;
1627 enum zone_type zt;
1628
1629 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630 present_pages += pgdat->node_zones[zt].present_pages;
1631
1632 if (present_pages > nr_pages)
1633 return true;
1634
1635 present_pages = 0;
1636 for (; zt <= ZONE_MOVABLE; zt++)
1637 present_pages += pgdat->node_zones[zt].present_pages;
1638
1639 /*
1640 * we can't offline the last normal memory until all
1641 * higher memory is offlined.
1642 */
1643 return present_pages == 0;
1644}
1645#endif /* CONFIG_MOVABLE_NODE */
1646
1647static int __init cmdline_parse_movable_node(char *p)
1648{
1649#ifdef CONFIG_MOVABLE_NODE
1650 /*
1651 * Memory used by the kernel cannot be hot-removed because Linux
1652 * cannot migrate the kernel pages. When memory hotplug is
1653 * enabled, we should prevent memblock from allocating memory
1654 * for the kernel.
1655 *
1656 * ACPI SRAT records all hotpluggable memory ranges. But before
1657 * SRAT is parsed, we don't know about it.
1658 *
1659 * The kernel image is loaded into memory at very early time. We
1660 * cannot prevent this anyway. So on NUMA system, we set any
1661 * node the kernel resides in as un-hotpluggable.
1662 *
1663 * Since on modern servers, one node could have double-digit
1664 * gigabytes memory, we can assume the memory around the kernel
1665 * image is also un-hotpluggable. So before SRAT is parsed, just
1666 * allocate memory near the kernel image to try the best to keep
1667 * the kernel away from hotpluggable memory.
1668 */
1669 memblock_set_bottom_up(true);
1670 movable_node_enabled = true;
1671#else
1672 pr_warn("movable_node option not supported\n");
1673#endif
1674 return 0;
1675}
1676early_param("movable_node", cmdline_parse_movable_node);
1677
1678/* check which state of node_states will be changed when offline memory */
1679static void node_states_check_changes_offline(unsigned long nr_pages,
1680 struct zone *zone, struct memory_notify *arg)
1681{
1682 struct pglist_data *pgdat = zone->zone_pgdat;
1683 unsigned long present_pages = 0;
1684 enum zone_type zt, zone_last = ZONE_NORMAL;
1685
1686 /*
1687 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688 * contains nodes which have zones of 0...ZONE_NORMAL,
1689 * set zone_last to ZONE_NORMAL.
1690 *
1691 * If we don't have HIGHMEM nor movable node,
1692 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694 */
1695 if (N_MEMORY == N_NORMAL_MEMORY)
1696 zone_last = ZONE_MOVABLE;
1697
1698 /*
1699 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700 * If the memory to be offline is in a zone of 0...zone_last,
1701 * and it is the last present memory, 0...zone_last will
1702 * become empty after offline , thus we can determind we will
1703 * need to clear the node from node_states[N_NORMAL_MEMORY].
1704 */
1705 for (zt = 0; zt <= zone_last; zt++)
1706 present_pages += pgdat->node_zones[zt].present_pages;
1707 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708 arg->status_change_nid_normal = zone_to_nid(zone);
1709 else
1710 arg->status_change_nid_normal = -1;
1711
1712#ifdef CONFIG_HIGHMEM
1713 /*
1714 * If we have movable node, node_states[N_HIGH_MEMORY]
1715 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716 * set zone_last to ZONE_HIGHMEM.
1717 *
1718 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719 * contains nodes which have zones of 0...ZONE_MOVABLE,
1720 * set zone_last to ZONE_MOVABLE.
1721 */
1722 zone_last = ZONE_HIGHMEM;
1723 if (N_MEMORY == N_HIGH_MEMORY)
1724 zone_last = ZONE_MOVABLE;
1725
1726 for (; zt <= zone_last; zt++)
1727 present_pages += pgdat->node_zones[zt].present_pages;
1728 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729 arg->status_change_nid_high = zone_to_nid(zone);
1730 else
1731 arg->status_change_nid_high = -1;
1732#else
1733 arg->status_change_nid_high = arg->status_change_nid_normal;
1734#endif
1735
1736 /*
1737 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1738 */
1739 zone_last = ZONE_MOVABLE;
1740
1741 /*
1742 * check whether node_states[N_HIGH_MEMORY] will be changed
1743 * If we try to offline the last present @nr_pages from the node,
1744 * we can determind we will need to clear the node from
1745 * node_states[N_HIGH_MEMORY].
1746 */
1747 for (; zt <= zone_last; zt++)
1748 present_pages += pgdat->node_zones[zt].present_pages;
1749 if (nr_pages >= present_pages)
1750 arg->status_change_nid = zone_to_nid(zone);
1751 else
1752 arg->status_change_nid = -1;
1753}
1754
1755static void node_states_clear_node(int node, struct memory_notify *arg)
1756{
1757 if (arg->status_change_nid_normal >= 0)
1758 node_clear_state(node, N_NORMAL_MEMORY);
1759
1760 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761 (arg->status_change_nid_high >= 0))
1762 node_clear_state(node, N_HIGH_MEMORY);
1763
1764 if ((N_MEMORY != N_HIGH_MEMORY) &&
1765 (arg->status_change_nid >= 0))
1766 node_clear_state(node, N_MEMORY);
1767}
1768
1769static int __ref __offline_pages(unsigned long start_pfn,
1770 unsigned long end_pfn, unsigned long timeout)
1771{
1772 unsigned long pfn, nr_pages, expire;
1773 long offlined_pages;
1774 int ret, drain, retry_max, node;
1775 unsigned long flags;
1776 struct zone *zone;
1777 struct memory_notify arg;
1778
1779 /* at least, alignment against pageblock is necessary */
1780 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781 return -EINVAL;
1782 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783 return -EINVAL;
1784 /* This makes hotplug much easier...and readable.
1785 we assume this for now. .*/
1786 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1787 return -EINVAL;
1788
1789 zone = page_zone(pfn_to_page(start_pfn));
1790 node = zone_to_nid(zone);
1791 nr_pages = end_pfn - start_pfn;
1792
1793 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794 return -EINVAL;
1795
1796 /* set above range as isolated */
1797 ret = start_isolate_page_range(start_pfn, end_pfn,
1798 MIGRATE_MOVABLE, true);
1799 if (ret)
1800 return ret;
1801
1802 arg.start_pfn = start_pfn;
1803 arg.nr_pages = nr_pages;
1804 node_states_check_changes_offline(nr_pages, zone, &arg);
1805
1806 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807 ret = notifier_to_errno(ret);
1808 if (ret)
1809 goto failed_removal;
1810
1811 pfn = start_pfn;
1812 expire = jiffies + timeout;
1813 drain = 0;
1814 retry_max = 5;
1815repeat:
1816 /* start memory hot removal */
1817 ret = -EAGAIN;
1818 if (time_after(jiffies, expire))
1819 goto failed_removal;
1820 ret = -EINTR;
1821 if (signal_pending(current))
1822 goto failed_removal;
1823 ret = 0;
1824 if (drain) {
1825 lru_add_drain_all();
1826 cond_resched();
1827 drain_all_pages(zone);
1828 }
1829
1830 pfn = scan_movable_pages(start_pfn, end_pfn);
1831 if (pfn) { /* We have movable pages */
1832 ret = do_migrate_range(pfn, end_pfn);
1833 if (!ret) {
1834 drain = 1;
1835 goto repeat;
1836 } else {
1837 if (ret < 0)
1838 if (--retry_max == 0)
1839 goto failed_removal;
1840 yield();
1841 drain = 1;
1842 goto repeat;
1843 }
1844 }
1845 /* drain all zone's lru pagevec, this is asynchronous... */
1846 lru_add_drain_all();
1847 yield();
1848 /* drain pcp pages, this is synchronous. */
1849 drain_all_pages(zone);
1850 /*
1851 * dissolve free hugepages in the memory block before doing offlining
1852 * actually in order to make hugetlbfs's object counting consistent.
1853 */
1854 dissolve_free_huge_pages(start_pfn, end_pfn);
1855 /* check again */
1856 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857 if (offlined_pages < 0) {
1858 ret = -EBUSY;
1859 goto failed_removal;
1860 }
1861 pr_info("Offlined Pages %ld\n", offlined_pages);
1862 /* Ok, all of our target is isolated.
1863 We cannot do rollback at this point. */
1864 offline_isolated_pages(start_pfn, end_pfn);
1865 /* reset pagetype flags and makes migrate type to be MOVABLE */
1866 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867 /* removal success */
1868 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869 zone->present_pages -= offlined_pages;
1870
1871 pgdat_resize_lock(zone->zone_pgdat, &flags);
1872 zone->zone_pgdat->node_present_pages -= offlined_pages;
1873 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1874
1875 init_per_zone_wmark_min();
1876
1877 if (!populated_zone(zone)) {
1878 zone_pcp_reset(zone);
1879 mutex_lock(&zonelists_mutex);
1880 build_all_zonelists(NULL, NULL);
1881 mutex_unlock(&zonelists_mutex);
1882 } else
1883 zone_pcp_update(zone);
1884
1885 node_states_clear_node(node, &arg);
1886 if (arg.status_change_nid >= 0) {
1887 kswapd_stop(node);
1888 kcompactd_stop(node);
1889 }
1890
1891 vm_total_pages = nr_free_pagecache_pages();
1892 writeback_set_ratelimit();
1893
1894 memory_notify(MEM_OFFLINE, &arg);
1895 return 0;
1896
1897failed_removal:
1898 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899 (unsigned long long) start_pfn << PAGE_SHIFT,
1900 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902 /* pushback to free area */
1903 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1904 return ret;
1905}
1906
1907/* Must be protected by mem_hotplug_begin() */
1908int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909{
1910 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911}
1912#endif /* CONFIG_MEMORY_HOTREMOVE */
1913
1914/**
1915 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916 * @start_pfn: start pfn of the memory range
1917 * @end_pfn: end pfn of the memory range
1918 * @arg: argument passed to func
1919 * @func: callback for each memory section walked
1920 *
1921 * This function walks through all present mem sections in range
1922 * [start_pfn, end_pfn) and call func on each mem section.
1923 *
1924 * Returns the return value of func.
1925 */
1926int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927 void *arg, int (*func)(struct memory_block *, void *))
1928{
1929 struct memory_block *mem = NULL;
1930 struct mem_section *section;
1931 unsigned long pfn, section_nr;
1932 int ret;
1933
1934 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935 section_nr = pfn_to_section_nr(pfn);
1936 if (!present_section_nr(section_nr))
1937 continue;
1938
1939 section = __nr_to_section(section_nr);
1940 /* same memblock? */
1941 if (mem)
1942 if ((section_nr >= mem->start_section_nr) &&
1943 (section_nr <= mem->end_section_nr))
1944 continue;
1945
1946 mem = find_memory_block_hinted(section, mem);
1947 if (!mem)
1948 continue;
1949
1950 ret = func(mem, arg);
1951 if (ret) {
1952 kobject_put(&mem->dev.kobj);
1953 return ret;
1954 }
1955 }
1956
1957 if (mem)
1958 kobject_put(&mem->dev.kobj);
1959
1960 return 0;
1961}
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965{
1966 int ret = !is_memblock_offlined(mem);
1967
1968 if (unlikely(ret)) {
1969 phys_addr_t beginpa, endpa;
1970
1971 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974 &beginpa, &endpa);
1975 }
1976
1977 return ret;
1978}
1979
1980static int check_cpu_on_node(pg_data_t *pgdat)
1981{
1982 int cpu;
1983
1984 for_each_present_cpu(cpu) {
1985 if (cpu_to_node(cpu) == pgdat->node_id)
1986 /*
1987 * the cpu on this node isn't removed, and we can't
1988 * offline this node.
1989 */
1990 return -EBUSY;
1991 }
1992
1993 return 0;
1994}
1995
1996static void unmap_cpu_on_node(pg_data_t *pgdat)
1997{
1998#ifdef CONFIG_ACPI_NUMA
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu)
2002 if (cpu_to_node(cpu) == pgdat->node_id)
2003 numa_clear_node(cpu);
2004#endif
2005}
2006
2007static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008{
2009 int ret;
2010
2011 ret = check_cpu_on_node(pgdat);
2012 if (ret)
2013 return ret;
2014
2015 /*
2016 * the node will be offlined when we come here, so we can clear
2017 * the cpu_to_node() now.
2018 */
2019
2020 unmap_cpu_on_node(pgdat);
2021 return 0;
2022}
2023
2024/**
2025 * try_offline_node
2026 *
2027 * Offline a node if all memory sections and cpus of the node are removed.
2028 *
2029 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030 * and online/offline operations before this call.
2031 */
2032void try_offline_node(int nid)
2033{
2034 pg_data_t *pgdat = NODE_DATA(nid);
2035 unsigned long start_pfn = pgdat->node_start_pfn;
2036 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037 unsigned long pfn;
2038 int i;
2039
2040 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041 unsigned long section_nr = pfn_to_section_nr(pfn);
2042
2043 if (!present_section_nr(section_nr))
2044 continue;
2045
2046 if (pfn_to_nid(pfn) != nid)
2047 continue;
2048
2049 /*
2050 * some memory sections of this node are not removed, and we
2051 * can't offline node now.
2052 */
2053 return;
2054 }
2055
2056 if (check_and_unmap_cpu_on_node(pgdat))
2057 return;
2058
2059 /*
2060 * all memory/cpu of this node are removed, we can offline this
2061 * node now.
2062 */
2063 node_set_offline(nid);
2064 unregister_one_node(nid);
2065
2066 /* free waittable in each zone */
2067 for (i = 0; i < MAX_NR_ZONES; i++) {
2068 struct zone *zone = pgdat->node_zones + i;
2069
2070 /*
2071 * wait_table may be allocated from boot memory,
2072 * here only free if it's allocated by vmalloc.
2073 */
2074 if (is_vmalloc_addr(zone->wait_table)) {
2075 vfree(zone->wait_table);
2076 zone->wait_table = NULL;
2077 }
2078 }
2079}
2080EXPORT_SYMBOL(try_offline_node);
2081
2082/**
2083 * remove_memory
2084 *
2085 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086 * and online/offline operations before this call, as required by
2087 * try_offline_node().
2088 */
2089void __ref remove_memory(int nid, u64 start, u64 size)
2090{
2091 int ret;
2092
2093 BUG_ON(check_hotplug_memory_range(start, size));
2094
2095 mem_hotplug_begin();
2096
2097 /*
2098 * All memory blocks must be offlined before removing memory. Check
2099 * whether all memory blocks in question are offline and trigger a BUG()
2100 * if this is not the case.
2101 */
2102 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103 check_memblock_offlined_cb);
2104 if (ret)
2105 BUG();
2106
2107 /* remove memmap entry */
2108 firmware_map_remove(start, start + size, "System RAM");
2109 memblock_free(start, size);
2110 memblock_remove(start, size);
2111
2112 arch_remove_memory(start, size);
2113
2114 try_offline_node(nid);
2115
2116 mem_hotplug_done();
2117}
2118EXPORT_SYMBOL_GPL(remove_memory);
2119#endif /* CONFIG_MEMORY_HOTREMOVE */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45/*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52static online_page_callback_t online_page_callback = generic_online_page;
53static DEFINE_MUTEX(online_page_callback_lock);
54
55DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57void get_online_mems(void)
58{
59 percpu_down_read(&mem_hotplug_lock);
60}
61
62void put_online_mems(void)
63{
64 percpu_up_read(&mem_hotplug_lock);
65}
66
67bool movable_node_enabled = false;
68
69#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70int memhp_default_online_type = MMOP_OFFLINE;
71#else
72int memhp_default_online_type = MMOP_ONLINE;
73#endif
74
75static int __init setup_memhp_default_state(char *str)
76{
77 const int online_type = memhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
81
82 return 1;
83}
84__setup("memhp_default_state=", setup_memhp_default_state);
85
86void mem_hotplug_begin(void)
87{
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90}
91
92void mem_hotplug_done(void)
93{
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96}
97
98u64 max_mem_size = U64_MAX;
99
100/* add this memory to iomem resource */
101static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
103{
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_MEM_DRIVER_MANAGED;
109
110 /*
111 * Make sure value parsed from 'mem=' only restricts memory adding
112 * while booting, so that memory hotplug won't be impacted. Please
113 * refer to document of 'mem=' in kernel-parameters.txt for more
114 * details.
115 */
116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 return ERR_PTR(-E2BIG);
118
119 /*
120 * Request ownership of the new memory range. This might be
121 * a child of an existing resource that was present but
122 * not marked as busy.
123 */
124 res = __request_region(&iomem_resource, start, size,
125 resource_name, flags);
126
127 if (!res) {
128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 start, start + size);
130 return ERR_PTR(-EEXIST);
131 }
132 return res;
133}
134
135static void release_memory_resource(struct resource *res)
136{
137 if (!res)
138 return;
139 release_resource(res);
140 kfree(res);
141}
142
143#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144void get_page_bootmem(unsigned long info, struct page *page,
145 unsigned long type)
146{
147 page->freelist = (void *)type;
148 SetPagePrivate(page);
149 set_page_private(page, info);
150 page_ref_inc(page);
151}
152
153void put_page_bootmem(struct page *page)
154{
155 unsigned long type;
156
157 type = (unsigned long) page->freelist;
158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160
161 if (page_ref_dec_return(page) == 1) {
162 page->freelist = NULL;
163 ClearPagePrivate(page);
164 set_page_private(page, 0);
165 INIT_LIST_HEAD(&page->lru);
166 free_reserved_page(page);
167 }
168}
169
170#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171#ifndef CONFIG_SPARSEMEM_VMEMMAP
172static void register_page_bootmem_info_section(unsigned long start_pfn)
173{
174 unsigned long mapsize, section_nr, i;
175 struct mem_section *ms;
176 struct page *page, *memmap;
177 struct mem_section_usage *usage;
178
179 section_nr = pfn_to_section_nr(start_pfn);
180 ms = __nr_to_section(section_nr);
181
182 /* Get section's memmap address */
183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184
185 /*
186 * Get page for the memmap's phys address
187 * XXX: need more consideration for sparse_vmemmap...
188 */
189 page = virt_to_page(memmap);
190 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192
193 /* remember memmap's page */
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, SECTION_INFO);
196
197 usage = ms->usage;
198 page = virt_to_page(usage);
199
200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201
202 for (i = 0; i < mapsize; i++, page++)
203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204
205}
206#else /* CONFIG_SPARSEMEM_VMEMMAP */
207static void register_page_bootmem_info_section(unsigned long start_pfn)
208{
209 unsigned long mapsize, section_nr, i;
210 struct mem_section *ms;
211 struct page *page, *memmap;
212 struct mem_section_usage *usage;
213
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
216
217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218
219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220
221 usage = ms->usage;
222 page = virt_to_page(usage);
223
224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225
226 for (i = 0; i < mapsize; i++, page++)
227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228}
229#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230
231void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232{
233 unsigned long i, pfn, end_pfn, nr_pages;
234 int node = pgdat->node_id;
235 struct page *page;
236
237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 page = virt_to_page(pgdat);
239
240 for (i = 0; i < nr_pages; i++, page++)
241 get_page_bootmem(node, page, NODE_INFO);
242
243 pfn = pgdat->node_start_pfn;
244 end_pfn = pgdat_end_pfn(pgdat);
245
246 /* register section info */
247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 /*
249 * Some platforms can assign the same pfn to multiple nodes - on
250 * node0 as well as nodeN. To avoid registering a pfn against
251 * multiple nodes we check that this pfn does not already
252 * reside in some other nodes.
253 */
254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 register_page_bootmem_info_section(pfn);
256 }
257}
258#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259
260static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 const char *reason)
262{
263 /*
264 * Disallow all operations smaller than a sub-section and only
265 * allow operations smaller than a section for
266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 * enforces a larger memory_block_size_bytes() granularity for
268 * memory that will be marked online, so this check should only
269 * fire for direct arch_{add,remove}_memory() users outside of
270 * add_memory_resource().
271 */
272 unsigned long min_align;
273
274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 min_align = PAGES_PER_SUBSECTION;
276 else
277 min_align = PAGES_PER_SECTION;
278 if (!IS_ALIGNED(pfn, min_align)
279 || !IS_ALIGNED(nr_pages, min_align)) {
280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 reason, pfn, pfn + nr_pages - 1);
282 return -EINVAL;
283 }
284 return 0;
285}
286
287static int check_hotplug_memory_addressable(unsigned long pfn,
288 unsigned long nr_pages)
289{
290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291
292 if (max_addr >> MAX_PHYSMEM_BITS) {
293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 WARN(1,
295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 return -E2BIG;
298 }
299
300 return 0;
301}
302
303/*
304 * Reasonably generic function for adding memory. It is
305 * expected that archs that support memory hotplug will
306 * call this function after deciding the zone to which to
307 * add the new pages.
308 */
309int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 struct mhp_params *params)
311{
312 const unsigned long end_pfn = pfn + nr_pages;
313 unsigned long cur_nr_pages;
314 int err;
315 struct vmem_altmap *altmap = params->altmap;
316
317 if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 return -EINVAL;
319
320 err = check_hotplug_memory_addressable(pfn, nr_pages);
321 if (err)
322 return err;
323
324 if (altmap) {
325 /*
326 * Validate altmap is within bounds of the total request
327 */
328 if (altmap->base_pfn != pfn
329 || vmem_altmap_offset(altmap) > nr_pages) {
330 pr_warn_once("memory add fail, invalid altmap\n");
331 return -EINVAL;
332 }
333 altmap->alloc = 0;
334 }
335
336 err = check_pfn_span(pfn, nr_pages, "add");
337 if (err)
338 return err;
339
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 if (err)
346 break;
347 cond_resched();
348 }
349 vmemmap_populate_print_last();
350 return err;
351}
352
353#ifdef CONFIG_NUMA
354int __weak memory_add_physaddr_to_nid(u64 start)
355{
356 pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
357 start);
358 return 0;
359}
360EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361#endif
362
363/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
364static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
365 unsigned long start_pfn,
366 unsigned long end_pfn)
367{
368 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
369 if (unlikely(!pfn_to_online_page(start_pfn)))
370 continue;
371
372 if (unlikely(pfn_to_nid(start_pfn) != nid))
373 continue;
374
375 if (zone != page_zone(pfn_to_page(start_pfn)))
376 continue;
377
378 return start_pfn;
379 }
380
381 return 0;
382}
383
384/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
385static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
386 unsigned long start_pfn,
387 unsigned long end_pfn)
388{
389 unsigned long pfn;
390
391 /* pfn is the end pfn of a memory section. */
392 pfn = end_pfn - 1;
393 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
394 if (unlikely(!pfn_to_online_page(pfn)))
395 continue;
396
397 if (unlikely(pfn_to_nid(pfn) != nid))
398 continue;
399
400 if (zone != page_zone(pfn_to_page(pfn)))
401 continue;
402
403 return pfn;
404 }
405
406 return 0;
407}
408
409static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
410 unsigned long end_pfn)
411{
412 unsigned long pfn;
413 int nid = zone_to_nid(zone);
414
415 zone_span_writelock(zone);
416 if (zone->zone_start_pfn == start_pfn) {
417 /*
418 * If the section is smallest section in the zone, it need
419 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
420 * In this case, we find second smallest valid mem_section
421 * for shrinking zone.
422 */
423 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
424 zone_end_pfn(zone));
425 if (pfn) {
426 zone->spanned_pages = zone_end_pfn(zone) - pfn;
427 zone->zone_start_pfn = pfn;
428 } else {
429 zone->zone_start_pfn = 0;
430 zone->spanned_pages = 0;
431 }
432 } else if (zone_end_pfn(zone) == end_pfn) {
433 /*
434 * If the section is biggest section in the zone, it need
435 * shrink zone->spanned_pages.
436 * In this case, we find second biggest valid mem_section for
437 * shrinking zone.
438 */
439 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
440 start_pfn);
441 if (pfn)
442 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
443 else {
444 zone->zone_start_pfn = 0;
445 zone->spanned_pages = 0;
446 }
447 }
448 zone_span_writeunlock(zone);
449}
450
451static void update_pgdat_span(struct pglist_data *pgdat)
452{
453 unsigned long node_start_pfn = 0, node_end_pfn = 0;
454 struct zone *zone;
455
456 for (zone = pgdat->node_zones;
457 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
458 unsigned long zone_end_pfn = zone->zone_start_pfn +
459 zone->spanned_pages;
460
461 /* No need to lock the zones, they can't change. */
462 if (!zone->spanned_pages)
463 continue;
464 if (!node_end_pfn) {
465 node_start_pfn = zone->zone_start_pfn;
466 node_end_pfn = zone_end_pfn;
467 continue;
468 }
469
470 if (zone_end_pfn > node_end_pfn)
471 node_end_pfn = zone_end_pfn;
472 if (zone->zone_start_pfn < node_start_pfn)
473 node_start_pfn = zone->zone_start_pfn;
474 }
475
476 pgdat->node_start_pfn = node_start_pfn;
477 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
478}
479
480void __ref remove_pfn_range_from_zone(struct zone *zone,
481 unsigned long start_pfn,
482 unsigned long nr_pages)
483{
484 const unsigned long end_pfn = start_pfn + nr_pages;
485 struct pglist_data *pgdat = zone->zone_pgdat;
486 unsigned long pfn, cur_nr_pages, flags;
487
488 /* Poison struct pages because they are now uninitialized again. */
489 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
490 cond_resched();
491
492 /* Select all remaining pages up to the next section boundary */
493 cur_nr_pages =
494 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
495 page_init_poison(pfn_to_page(pfn),
496 sizeof(struct page) * cur_nr_pages);
497 }
498
499#ifdef CONFIG_ZONE_DEVICE
500 /*
501 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
502 * we will not try to shrink the zones - which is okay as
503 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
504 */
505 if (zone_idx(zone) == ZONE_DEVICE)
506 return;
507#endif
508
509 clear_zone_contiguous(zone);
510
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 update_pgdat_span(pgdat);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
515
516 set_zone_contiguous(zone);
517}
518
519static void __remove_section(unsigned long pfn, unsigned long nr_pages,
520 unsigned long map_offset,
521 struct vmem_altmap *altmap)
522{
523 struct mem_section *ms = __pfn_to_section(pfn);
524
525 if (WARN_ON_ONCE(!valid_section(ms)))
526 return;
527
528 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
529}
530
531/**
532 * __remove_pages() - remove sections of pages
533 * @pfn: starting pageframe (must be aligned to start of a section)
534 * @nr_pages: number of pages to remove (must be multiple of section size)
535 * @altmap: alternative device page map or %NULL if default memmap is used
536 *
537 * Generic helper function to remove section mappings and sysfs entries
538 * for the section of the memory we are removing. Caller needs to make
539 * sure that pages are marked reserved and zones are adjust properly by
540 * calling offline_pages().
541 */
542void __remove_pages(unsigned long pfn, unsigned long nr_pages,
543 struct vmem_altmap *altmap)
544{
545 const unsigned long end_pfn = pfn + nr_pages;
546 unsigned long cur_nr_pages;
547 unsigned long map_offset = 0;
548
549 map_offset = vmem_altmap_offset(altmap);
550
551 if (check_pfn_span(pfn, nr_pages, "remove"))
552 return;
553
554 for (; pfn < end_pfn; pfn += cur_nr_pages) {
555 cond_resched();
556 /* Select all remaining pages up to the next section boundary */
557 cur_nr_pages = min(end_pfn - pfn,
558 SECTION_ALIGN_UP(pfn + 1) - pfn);
559 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
560 map_offset = 0;
561 }
562}
563
564int set_online_page_callback(online_page_callback_t callback)
565{
566 int rc = -EINVAL;
567
568 get_online_mems();
569 mutex_lock(&online_page_callback_lock);
570
571 if (online_page_callback == generic_online_page) {
572 online_page_callback = callback;
573 rc = 0;
574 }
575
576 mutex_unlock(&online_page_callback_lock);
577 put_online_mems();
578
579 return rc;
580}
581EXPORT_SYMBOL_GPL(set_online_page_callback);
582
583int restore_online_page_callback(online_page_callback_t callback)
584{
585 int rc = -EINVAL;
586
587 get_online_mems();
588 mutex_lock(&online_page_callback_lock);
589
590 if (online_page_callback == callback) {
591 online_page_callback = generic_online_page;
592 rc = 0;
593 }
594
595 mutex_unlock(&online_page_callback_lock);
596 put_online_mems();
597
598 return rc;
599}
600EXPORT_SYMBOL_GPL(restore_online_page_callback);
601
602void generic_online_page(struct page *page, unsigned int order)
603{
604 /*
605 * Freeing the page with debug_pagealloc enabled will try to unmap it,
606 * so we should map it first. This is better than introducing a special
607 * case in page freeing fast path.
608 */
609 if (debug_pagealloc_enabled_static())
610 kernel_map_pages(page, 1 << order, 1);
611 __free_pages_core(page, order);
612 totalram_pages_add(1UL << order);
613#ifdef CONFIG_HIGHMEM
614 if (PageHighMem(page))
615 totalhigh_pages_add(1UL << order);
616#endif
617}
618EXPORT_SYMBOL_GPL(generic_online_page);
619
620static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
621 void *arg)
622{
623 const unsigned long end_pfn = start_pfn + nr_pages;
624 unsigned long pfn;
625 int order;
626
627 /*
628 * Online the pages. The callback might decide to keep some pages
629 * PG_reserved (to add them to the buddy later), but we still account
630 * them as being online/belonging to this zone ("present").
631 */
632 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
633 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
634 /* __free_pages_core() wants pfns to be aligned to the order */
635 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
636 order = 0;
637 (*online_page_callback)(pfn_to_page(pfn), order);
638 }
639
640 /* mark all involved sections as online */
641 online_mem_sections(start_pfn, end_pfn);
642
643 *(unsigned long *)arg += nr_pages;
644 return 0;
645}
646
647/* check which state of node_states will be changed when online memory */
648static void node_states_check_changes_online(unsigned long nr_pages,
649 struct zone *zone, struct memory_notify *arg)
650{
651 int nid = zone_to_nid(zone);
652
653 arg->status_change_nid = NUMA_NO_NODE;
654 arg->status_change_nid_normal = NUMA_NO_NODE;
655 arg->status_change_nid_high = NUMA_NO_NODE;
656
657 if (!node_state(nid, N_MEMORY))
658 arg->status_change_nid = nid;
659 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
660 arg->status_change_nid_normal = nid;
661#ifdef CONFIG_HIGHMEM
662 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
663 arg->status_change_nid_high = nid;
664#endif
665}
666
667static void node_states_set_node(int node, struct memory_notify *arg)
668{
669 if (arg->status_change_nid_normal >= 0)
670 node_set_state(node, N_NORMAL_MEMORY);
671
672 if (arg->status_change_nid_high >= 0)
673 node_set_state(node, N_HIGH_MEMORY);
674
675 if (arg->status_change_nid >= 0)
676 node_set_state(node, N_MEMORY);
677}
678
679static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
680 unsigned long nr_pages)
681{
682 unsigned long old_end_pfn = zone_end_pfn(zone);
683
684 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
685 zone->zone_start_pfn = start_pfn;
686
687 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
688}
689
690static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
691 unsigned long nr_pages)
692{
693 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
694
695 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
696 pgdat->node_start_pfn = start_pfn;
697
698 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
699
700}
701/*
702 * Associate the pfn range with the given zone, initializing the memmaps
703 * and resizing the pgdat/zone data to span the added pages. After this
704 * call, all affected pages are PG_reserved.
705 */
706void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
707 unsigned long nr_pages, struct vmem_altmap *altmap)
708{
709 struct pglist_data *pgdat = zone->zone_pgdat;
710 int nid = pgdat->node_id;
711 unsigned long flags;
712
713 clear_zone_contiguous(zone);
714
715 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
716 pgdat_resize_lock(pgdat, &flags);
717 zone_span_writelock(zone);
718 if (zone_is_empty(zone))
719 init_currently_empty_zone(zone, start_pfn, nr_pages);
720 resize_zone_range(zone, start_pfn, nr_pages);
721 zone_span_writeunlock(zone);
722 resize_pgdat_range(pgdat, start_pfn, nr_pages);
723 pgdat_resize_unlock(pgdat, &flags);
724
725 /*
726 * TODO now we have a visible range of pages which are not associated
727 * with their zone properly. Not nice but set_pfnblock_flags_mask
728 * expects the zone spans the pfn range. All the pages in the range
729 * are reserved so nobody should be touching them so we should be safe
730 */
731 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
732 MEMINIT_HOTPLUG, altmap);
733
734 set_zone_contiguous(zone);
735}
736
737/*
738 * Returns a default kernel memory zone for the given pfn range.
739 * If no kernel zone covers this pfn range it will automatically go
740 * to the ZONE_NORMAL.
741 */
742static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
743 unsigned long nr_pages)
744{
745 struct pglist_data *pgdat = NODE_DATA(nid);
746 int zid;
747
748 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
749 struct zone *zone = &pgdat->node_zones[zid];
750
751 if (zone_intersects(zone, start_pfn, nr_pages))
752 return zone;
753 }
754
755 return &pgdat->node_zones[ZONE_NORMAL];
756}
757
758static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
759 unsigned long nr_pages)
760{
761 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
762 nr_pages);
763 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
764 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
765 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
766
767 /*
768 * We inherit the existing zone in a simple case where zones do not
769 * overlap in the given range
770 */
771 if (in_kernel ^ in_movable)
772 return (in_kernel) ? kernel_zone : movable_zone;
773
774 /*
775 * If the range doesn't belong to any zone or two zones overlap in the
776 * given range then we use movable zone only if movable_node is
777 * enabled because we always online to a kernel zone by default.
778 */
779 return movable_node_enabled ? movable_zone : kernel_zone;
780}
781
782struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
783 unsigned long nr_pages)
784{
785 if (online_type == MMOP_ONLINE_KERNEL)
786 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
787
788 if (online_type == MMOP_ONLINE_MOVABLE)
789 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
790
791 return default_zone_for_pfn(nid, start_pfn, nr_pages);
792}
793
794int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
795 int online_type, int nid)
796{
797 unsigned long flags;
798 unsigned long onlined_pages = 0;
799 struct zone *zone;
800 int need_zonelists_rebuild = 0;
801 int ret;
802 struct memory_notify arg;
803
804 mem_hotplug_begin();
805
806 /* associate pfn range with the zone */
807 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
808 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
809
810 arg.start_pfn = pfn;
811 arg.nr_pages = nr_pages;
812 node_states_check_changes_online(nr_pages, zone, &arg);
813
814 ret = memory_notify(MEM_GOING_ONLINE, &arg);
815 ret = notifier_to_errno(ret);
816 if (ret)
817 goto failed_addition;
818
819 /*
820 * If this zone is not populated, then it is not in zonelist.
821 * This means the page allocator ignores this zone.
822 * So, zonelist must be updated after online.
823 */
824 if (!populated_zone(zone)) {
825 need_zonelists_rebuild = 1;
826 setup_zone_pageset(zone);
827 }
828
829 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
830 online_pages_range);
831 if (ret) {
832 /* not a single memory resource was applicable */
833 if (need_zonelists_rebuild)
834 zone_pcp_reset(zone);
835 goto failed_addition;
836 }
837
838 zone->present_pages += onlined_pages;
839
840 pgdat_resize_lock(zone->zone_pgdat, &flags);
841 zone->zone_pgdat->node_present_pages += onlined_pages;
842 pgdat_resize_unlock(zone->zone_pgdat, &flags);
843
844 /*
845 * When exposing larger, physically contiguous memory areas to the
846 * buddy, shuffling in the buddy (when freeing onlined pages, putting
847 * them either to the head or the tail of the freelist) is only helpful
848 * for maintaining the shuffle, but not for creating the initial
849 * shuffle. Shuffle the whole zone to make sure the just onlined pages
850 * are properly distributed across the whole freelist.
851 */
852 shuffle_zone(zone);
853
854 node_states_set_node(nid, &arg);
855 if (need_zonelists_rebuild)
856 build_all_zonelists(NULL);
857 zone_pcp_update(zone);
858
859 init_per_zone_wmark_min();
860
861 kswapd_run(nid);
862 kcompactd_run(nid);
863
864 writeback_set_ratelimit();
865
866 memory_notify(MEM_ONLINE, &arg);
867 mem_hotplug_done();
868 return 0;
869
870failed_addition:
871 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
872 (unsigned long long) pfn << PAGE_SHIFT,
873 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
874 memory_notify(MEM_CANCEL_ONLINE, &arg);
875 remove_pfn_range_from_zone(zone, pfn, nr_pages);
876 mem_hotplug_done();
877 return ret;
878}
879#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
880
881static void reset_node_present_pages(pg_data_t *pgdat)
882{
883 struct zone *z;
884
885 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
886 z->present_pages = 0;
887
888 pgdat->node_present_pages = 0;
889}
890
891/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
892static pg_data_t __ref *hotadd_new_pgdat(int nid)
893{
894 struct pglist_data *pgdat;
895
896 pgdat = NODE_DATA(nid);
897 if (!pgdat) {
898 pgdat = arch_alloc_nodedata(nid);
899 if (!pgdat)
900 return NULL;
901
902 pgdat->per_cpu_nodestats =
903 alloc_percpu(struct per_cpu_nodestat);
904 arch_refresh_nodedata(nid, pgdat);
905 } else {
906 int cpu;
907 /*
908 * Reset the nr_zones, order and highest_zoneidx before reuse.
909 * Note that kswapd will init kswapd_highest_zoneidx properly
910 * when it starts in the near future.
911 */
912 pgdat->nr_zones = 0;
913 pgdat->kswapd_order = 0;
914 pgdat->kswapd_highest_zoneidx = 0;
915 for_each_online_cpu(cpu) {
916 struct per_cpu_nodestat *p;
917
918 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
919 memset(p, 0, sizeof(*p));
920 }
921 }
922
923 /* we can use NODE_DATA(nid) from here */
924 pgdat->node_id = nid;
925 pgdat->node_start_pfn = 0;
926
927 /* init node's zones as empty zones, we don't have any present pages.*/
928 free_area_init_core_hotplug(nid);
929
930 /*
931 * The node we allocated has no zone fallback lists. For avoiding
932 * to access not-initialized zonelist, build here.
933 */
934 build_all_zonelists(pgdat);
935
936 /*
937 * When memory is hot-added, all the memory is in offline state. So
938 * clear all zones' present_pages because they will be updated in
939 * online_pages() and offline_pages().
940 */
941 reset_node_managed_pages(pgdat);
942 reset_node_present_pages(pgdat);
943
944 return pgdat;
945}
946
947static void rollback_node_hotadd(int nid)
948{
949 pg_data_t *pgdat = NODE_DATA(nid);
950
951 arch_refresh_nodedata(nid, NULL);
952 free_percpu(pgdat->per_cpu_nodestats);
953 arch_free_nodedata(pgdat);
954}
955
956
957/**
958 * try_online_node - online a node if offlined
959 * @nid: the node ID
960 * @set_node_online: Whether we want to online the node
961 * called by cpu_up() to online a node without onlined memory.
962 *
963 * Returns:
964 * 1 -> a new node has been allocated
965 * 0 -> the node is already online
966 * -ENOMEM -> the node could not be allocated
967 */
968static int __try_online_node(int nid, bool set_node_online)
969{
970 pg_data_t *pgdat;
971 int ret = 1;
972
973 if (node_online(nid))
974 return 0;
975
976 pgdat = hotadd_new_pgdat(nid);
977 if (!pgdat) {
978 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
979 ret = -ENOMEM;
980 goto out;
981 }
982
983 if (set_node_online) {
984 node_set_online(nid);
985 ret = register_one_node(nid);
986 BUG_ON(ret);
987 }
988out:
989 return ret;
990}
991
992/*
993 * Users of this function always want to online/register the node
994 */
995int try_online_node(int nid)
996{
997 int ret;
998
999 mem_hotplug_begin();
1000 ret = __try_online_node(nid, true);
1001 mem_hotplug_done();
1002 return ret;
1003}
1004
1005static int check_hotplug_memory_range(u64 start, u64 size)
1006{
1007 /* memory range must be block size aligned */
1008 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1009 !IS_ALIGNED(size, memory_block_size_bytes())) {
1010 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1011 memory_block_size_bytes(), start, size);
1012 return -EINVAL;
1013 }
1014
1015 return 0;
1016}
1017
1018static int online_memory_block(struct memory_block *mem, void *arg)
1019{
1020 mem->online_type = memhp_default_online_type;
1021 return device_online(&mem->dev);
1022}
1023
1024/*
1025 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1026 * and online/offline operations (triggered e.g. by sysfs).
1027 *
1028 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1029 */
1030int __ref add_memory_resource(int nid, struct resource *res)
1031{
1032 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1033 u64 start, size;
1034 bool new_node = false;
1035 int ret;
1036
1037 start = res->start;
1038 size = resource_size(res);
1039
1040 ret = check_hotplug_memory_range(start, size);
1041 if (ret)
1042 return ret;
1043
1044 if (!node_possible(nid)) {
1045 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1046 return -EINVAL;
1047 }
1048
1049 mem_hotplug_begin();
1050
1051 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1052 memblock_add_node(start, size, nid);
1053
1054 ret = __try_online_node(nid, false);
1055 if (ret < 0)
1056 goto error;
1057 new_node = ret;
1058
1059 /* call arch's memory hotadd */
1060 ret = arch_add_memory(nid, start, size, ¶ms);
1061 if (ret < 0)
1062 goto error;
1063
1064 /* create memory block devices after memory was added */
1065 ret = create_memory_block_devices(start, size);
1066 if (ret) {
1067 arch_remove_memory(nid, start, size, NULL);
1068 goto error;
1069 }
1070
1071 if (new_node) {
1072 /* If sysfs file of new node can't be created, cpu on the node
1073 * can't be hot-added. There is no rollback way now.
1074 * So, check by BUG_ON() to catch it reluctantly..
1075 * We online node here. We can't roll back from here.
1076 */
1077 node_set_online(nid);
1078 ret = __register_one_node(nid);
1079 BUG_ON(ret);
1080 }
1081
1082 /* link memory sections under this node.*/
1083 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1084 MEMINIT_HOTPLUG);
1085 BUG_ON(ret);
1086
1087 /* create new memmap entry */
1088 if (!strcmp(res->name, "System RAM"))
1089 firmware_map_add_hotplug(start, start + size, "System RAM");
1090
1091 /* device_online() will take the lock when calling online_pages() */
1092 mem_hotplug_done();
1093
1094 /* online pages if requested */
1095 if (memhp_default_online_type != MMOP_OFFLINE)
1096 walk_memory_blocks(start, size, NULL, online_memory_block);
1097
1098 return ret;
1099error:
1100 /* rollback pgdat allocation and others */
1101 if (new_node)
1102 rollback_node_hotadd(nid);
1103 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1104 memblock_remove(start, size);
1105 mem_hotplug_done();
1106 return ret;
1107}
1108
1109/* requires device_hotplug_lock, see add_memory_resource() */
1110int __ref __add_memory(int nid, u64 start, u64 size)
1111{
1112 struct resource *res;
1113 int ret;
1114
1115 res = register_memory_resource(start, size, "System RAM");
1116 if (IS_ERR(res))
1117 return PTR_ERR(res);
1118
1119 ret = add_memory_resource(nid, res);
1120 if (ret < 0)
1121 release_memory_resource(res);
1122 return ret;
1123}
1124
1125int add_memory(int nid, u64 start, u64 size)
1126{
1127 int rc;
1128
1129 lock_device_hotplug();
1130 rc = __add_memory(nid, start, size);
1131 unlock_device_hotplug();
1132
1133 return rc;
1134}
1135EXPORT_SYMBOL_GPL(add_memory);
1136
1137/*
1138 * Add special, driver-managed memory to the system as system RAM. Such
1139 * memory is not exposed via the raw firmware-provided memmap as system
1140 * RAM, instead, it is detected and added by a driver - during cold boot,
1141 * after a reboot, and after kexec.
1142 *
1143 * Reasons why this memory should not be used for the initial memmap of a
1144 * kexec kernel or for placing kexec images:
1145 * - The booting kernel is in charge of determining how this memory will be
1146 * used (e.g., use persistent memory as system RAM)
1147 * - Coordination with a hypervisor is required before this memory
1148 * can be used (e.g., inaccessible parts).
1149 *
1150 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1151 * memory map") are created. Also, the created memory resource is flagged
1152 * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1153 * this memory as well (esp., not place kexec images onto it).
1154 *
1155 * The resource_name (visible via /proc/iomem) has to have the format
1156 * "System RAM ($DRIVER)".
1157 */
1158int add_memory_driver_managed(int nid, u64 start, u64 size,
1159 const char *resource_name)
1160{
1161 struct resource *res;
1162 int rc;
1163
1164 if (!resource_name ||
1165 strstr(resource_name, "System RAM (") != resource_name ||
1166 resource_name[strlen(resource_name) - 1] != ')')
1167 return -EINVAL;
1168
1169 lock_device_hotplug();
1170
1171 res = register_memory_resource(start, size, resource_name);
1172 if (IS_ERR(res)) {
1173 rc = PTR_ERR(res);
1174 goto out_unlock;
1175 }
1176
1177 rc = add_memory_resource(nid, res);
1178 if (rc < 0)
1179 release_memory_resource(res);
1180
1181out_unlock:
1182 unlock_device_hotplug();
1183 return rc;
1184}
1185EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1186
1187#ifdef CONFIG_MEMORY_HOTREMOVE
1188/*
1189 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1190 * memory holes). When true, return the zone.
1191 */
1192struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1193 unsigned long end_pfn)
1194{
1195 unsigned long pfn, sec_end_pfn;
1196 struct zone *zone = NULL;
1197 struct page *page;
1198 int i;
1199 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1200 pfn < end_pfn;
1201 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1202 /* Make sure the memory section is present first */
1203 if (!present_section_nr(pfn_to_section_nr(pfn)))
1204 continue;
1205 for (; pfn < sec_end_pfn && pfn < end_pfn;
1206 pfn += MAX_ORDER_NR_PAGES) {
1207 i = 0;
1208 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1209 while ((i < MAX_ORDER_NR_PAGES) &&
1210 !pfn_valid_within(pfn + i))
1211 i++;
1212 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1213 continue;
1214 /* Check if we got outside of the zone */
1215 if (zone && !zone_spans_pfn(zone, pfn + i))
1216 return NULL;
1217 page = pfn_to_page(pfn + i);
1218 if (zone && page_zone(page) != zone)
1219 return NULL;
1220 zone = page_zone(page);
1221 }
1222 }
1223
1224 return zone;
1225}
1226
1227/*
1228 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1229 * non-lru movable pages and hugepages). Will skip over most unmovable
1230 * pages (esp., pages that can be skipped when offlining), but bail out on
1231 * definitely unmovable pages.
1232 *
1233 * Returns:
1234 * 0 in case a movable page is found and movable_pfn was updated.
1235 * -ENOENT in case no movable page was found.
1236 * -EBUSY in case a definitely unmovable page was found.
1237 */
1238static int scan_movable_pages(unsigned long start, unsigned long end,
1239 unsigned long *movable_pfn)
1240{
1241 unsigned long pfn;
1242
1243 for (pfn = start; pfn < end; pfn++) {
1244 struct page *page, *head;
1245 unsigned long skip;
1246
1247 if (!pfn_valid(pfn))
1248 continue;
1249 page = pfn_to_page(pfn);
1250 if (PageLRU(page))
1251 goto found;
1252 if (__PageMovable(page))
1253 goto found;
1254
1255 /*
1256 * PageOffline() pages that are not marked __PageMovable() and
1257 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1258 * definitely unmovable. If their reference count would be 0,
1259 * they could at least be skipped when offlining memory.
1260 */
1261 if (PageOffline(page) && page_count(page))
1262 return -EBUSY;
1263
1264 if (!PageHuge(page))
1265 continue;
1266 head = compound_head(page);
1267 if (page_huge_active(head))
1268 goto found;
1269 skip = compound_nr(head) - (page - head);
1270 pfn += skip - 1;
1271 }
1272 return -ENOENT;
1273found:
1274 *movable_pfn = pfn;
1275 return 0;
1276}
1277
1278static struct page *new_node_page(struct page *page, unsigned long private)
1279{
1280 nodemask_t nmask = node_states[N_MEMORY];
1281 struct migration_target_control mtc = {
1282 .nid = page_to_nid(page),
1283 .nmask = &nmask,
1284 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1285 };
1286
1287 /*
1288 * try to allocate from a different node but reuse this node if there
1289 * are no other online nodes to be used (e.g. we are offlining a part
1290 * of the only existing node)
1291 */
1292 node_clear(mtc.nid, nmask);
1293 if (nodes_empty(nmask))
1294 node_set(mtc.nid, nmask);
1295
1296 return alloc_migration_target(page, (unsigned long)&mtc);
1297}
1298
1299static int
1300do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1301{
1302 unsigned long pfn;
1303 struct page *page, *head;
1304 int ret = 0;
1305 LIST_HEAD(source);
1306
1307 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1308 if (!pfn_valid(pfn))
1309 continue;
1310 page = pfn_to_page(pfn);
1311 head = compound_head(page);
1312
1313 if (PageHuge(page)) {
1314 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1315 isolate_huge_page(head, &source);
1316 continue;
1317 } else if (PageTransHuge(page))
1318 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1319
1320 /*
1321 * HWPoison pages have elevated reference counts so the migration would
1322 * fail on them. It also doesn't make any sense to migrate them in the
1323 * first place. Still try to unmap such a page in case it is still mapped
1324 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1325 * the unmap as the catch all safety net).
1326 */
1327 if (PageHWPoison(page)) {
1328 if (WARN_ON(PageLRU(page)))
1329 isolate_lru_page(page);
1330 if (page_mapped(page))
1331 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1332 continue;
1333 }
1334
1335 if (!get_page_unless_zero(page))
1336 continue;
1337 /*
1338 * We can skip free pages. And we can deal with pages on
1339 * LRU and non-lru movable pages.
1340 */
1341 if (PageLRU(page))
1342 ret = isolate_lru_page(page);
1343 else
1344 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1345 if (!ret) { /* Success */
1346 list_add_tail(&page->lru, &source);
1347 if (!__PageMovable(page))
1348 inc_node_page_state(page, NR_ISOLATED_ANON +
1349 page_is_file_lru(page));
1350
1351 } else {
1352 pr_warn("failed to isolate pfn %lx\n", pfn);
1353 dump_page(page, "isolation failed");
1354 }
1355 put_page(page);
1356 }
1357 if (!list_empty(&source)) {
1358 /* Allocate a new page from the nearest neighbor node */
1359 ret = migrate_pages(&source, new_node_page, NULL, 0,
1360 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1361 if (ret) {
1362 list_for_each_entry(page, &source, lru) {
1363 pr_warn("migrating pfn %lx failed ret:%d ",
1364 page_to_pfn(page), ret);
1365 dump_page(page, "migration failure");
1366 }
1367 putback_movable_pages(&source);
1368 }
1369 }
1370
1371 return ret;
1372}
1373
1374/* Mark all sections offline and remove all free pages from the buddy. */
1375static int
1376offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1377 void *data)
1378{
1379 unsigned long *offlined_pages = (unsigned long *)data;
1380
1381 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1382 return 0;
1383}
1384
1385/*
1386 * Check all pages in range, recorded as memory resource, are isolated.
1387 */
1388static int
1389check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1390 void *data)
1391{
1392 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1393 MEMORY_OFFLINE);
1394}
1395
1396static int __init cmdline_parse_movable_node(char *p)
1397{
1398 movable_node_enabled = true;
1399 return 0;
1400}
1401early_param("movable_node", cmdline_parse_movable_node);
1402
1403/* check which state of node_states will be changed when offline memory */
1404static void node_states_check_changes_offline(unsigned long nr_pages,
1405 struct zone *zone, struct memory_notify *arg)
1406{
1407 struct pglist_data *pgdat = zone->zone_pgdat;
1408 unsigned long present_pages = 0;
1409 enum zone_type zt;
1410
1411 arg->status_change_nid = NUMA_NO_NODE;
1412 arg->status_change_nid_normal = NUMA_NO_NODE;
1413 arg->status_change_nid_high = NUMA_NO_NODE;
1414
1415 /*
1416 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1417 * If the memory to be offline is within the range
1418 * [0..ZONE_NORMAL], and it is the last present memory there,
1419 * the zones in that range will become empty after the offlining,
1420 * thus we can determine that we need to clear the node from
1421 * node_states[N_NORMAL_MEMORY].
1422 */
1423 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1424 present_pages += pgdat->node_zones[zt].present_pages;
1425 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1426 arg->status_change_nid_normal = zone_to_nid(zone);
1427
1428#ifdef CONFIG_HIGHMEM
1429 /*
1430 * node_states[N_HIGH_MEMORY] contains nodes which
1431 * have normal memory or high memory.
1432 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1433 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1434 * we determine that the zones in that range become empty,
1435 * we need to clear the node for N_HIGH_MEMORY.
1436 */
1437 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1438 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1439 arg->status_change_nid_high = zone_to_nid(zone);
1440#endif
1441
1442 /*
1443 * We have accounted the pages from [0..ZONE_NORMAL), and
1444 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1445 * as well.
1446 * Here we count the possible pages from ZONE_MOVABLE.
1447 * If after having accounted all the pages, we see that the nr_pages
1448 * to be offlined is over or equal to the accounted pages,
1449 * we know that the node will become empty, and so, we can clear
1450 * it for N_MEMORY as well.
1451 */
1452 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1453
1454 if (nr_pages >= present_pages)
1455 arg->status_change_nid = zone_to_nid(zone);
1456}
1457
1458static void node_states_clear_node(int node, struct memory_notify *arg)
1459{
1460 if (arg->status_change_nid_normal >= 0)
1461 node_clear_state(node, N_NORMAL_MEMORY);
1462
1463 if (arg->status_change_nid_high >= 0)
1464 node_clear_state(node, N_HIGH_MEMORY);
1465
1466 if (arg->status_change_nid >= 0)
1467 node_clear_state(node, N_MEMORY);
1468}
1469
1470static int count_system_ram_pages_cb(unsigned long start_pfn,
1471 unsigned long nr_pages, void *data)
1472{
1473 unsigned long *nr_system_ram_pages = data;
1474
1475 *nr_system_ram_pages += nr_pages;
1476 return 0;
1477}
1478
1479static int __ref __offline_pages(unsigned long start_pfn,
1480 unsigned long end_pfn)
1481{
1482 unsigned long pfn, nr_pages = 0;
1483 unsigned long offlined_pages = 0;
1484 int ret, node, nr_isolate_pageblock;
1485 unsigned long flags;
1486 struct zone *zone;
1487 struct memory_notify arg;
1488 char *reason;
1489
1490 mem_hotplug_begin();
1491
1492 /*
1493 * Don't allow to offline memory blocks that contain holes.
1494 * Consequently, memory blocks with holes can never get onlined
1495 * via the hotplug path - online_pages() - as hotplugged memory has
1496 * no holes. This way, we e.g., don't have to worry about marking
1497 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1498 * avoid using walk_system_ram_range() later.
1499 */
1500 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1501 count_system_ram_pages_cb);
1502 if (nr_pages != end_pfn - start_pfn) {
1503 ret = -EINVAL;
1504 reason = "memory holes";
1505 goto failed_removal;
1506 }
1507
1508 /* This makes hotplug much easier...and readable.
1509 we assume this for now. .*/
1510 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1511 if (!zone) {
1512 ret = -EINVAL;
1513 reason = "multizone range";
1514 goto failed_removal;
1515 }
1516 node = zone_to_nid(zone);
1517
1518 /* set above range as isolated */
1519 ret = start_isolate_page_range(start_pfn, end_pfn,
1520 MIGRATE_MOVABLE,
1521 MEMORY_OFFLINE | REPORT_FAILURE);
1522 if (ret < 0) {
1523 reason = "failure to isolate range";
1524 goto failed_removal;
1525 }
1526 nr_isolate_pageblock = ret;
1527
1528 arg.start_pfn = start_pfn;
1529 arg.nr_pages = nr_pages;
1530 node_states_check_changes_offline(nr_pages, zone, &arg);
1531
1532 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1533 ret = notifier_to_errno(ret);
1534 if (ret) {
1535 reason = "notifier failure";
1536 goto failed_removal_isolated;
1537 }
1538
1539 do {
1540 pfn = start_pfn;
1541 do {
1542 if (signal_pending(current)) {
1543 ret = -EINTR;
1544 reason = "signal backoff";
1545 goto failed_removal_isolated;
1546 }
1547
1548 cond_resched();
1549 lru_add_drain_all();
1550
1551 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1552 if (!ret) {
1553 /*
1554 * TODO: fatal migration failures should bail
1555 * out
1556 */
1557 do_migrate_range(pfn, end_pfn);
1558 }
1559 } while (!ret);
1560
1561 if (ret != -ENOENT) {
1562 reason = "unmovable page";
1563 goto failed_removal_isolated;
1564 }
1565
1566 /*
1567 * Dissolve free hugepages in the memory block before doing
1568 * offlining actually in order to make hugetlbfs's object
1569 * counting consistent.
1570 */
1571 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1572 if (ret) {
1573 reason = "failure to dissolve huge pages";
1574 goto failed_removal_isolated;
1575 }
1576 /* check again */
1577 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1578 NULL, check_pages_isolated_cb);
1579 /*
1580 * per-cpu pages are drained in start_isolate_page_range, but if
1581 * there are still pages that are not free, make sure that we
1582 * drain again, because when we isolated range we might
1583 * have raced with another thread that was adding pages to pcp
1584 * list.
1585 *
1586 * Forward progress should be still guaranteed because
1587 * pages on the pcp list can only belong to MOVABLE_ZONE
1588 * because has_unmovable_pages explicitly checks for
1589 * PageBuddy on freed pages on other zones.
1590 */
1591 if (ret)
1592 drain_all_pages(zone);
1593 } while (ret);
1594
1595 /* Ok, all of our target is isolated.
1596 We cannot do rollback at this point. */
1597 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1598 &offlined_pages, offline_isolated_pages_cb);
1599 pr_info("Offlined Pages %ld\n", offlined_pages);
1600 /*
1601 * Onlining will reset pagetype flags and makes migrate type
1602 * MOVABLE, so just need to decrease the number of isolated
1603 * pageblocks zone counter here.
1604 */
1605 spin_lock_irqsave(&zone->lock, flags);
1606 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1607 spin_unlock_irqrestore(&zone->lock, flags);
1608
1609 /* removal success */
1610 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1611 zone->present_pages -= offlined_pages;
1612
1613 pgdat_resize_lock(zone->zone_pgdat, &flags);
1614 zone->zone_pgdat->node_present_pages -= offlined_pages;
1615 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1616
1617 init_per_zone_wmark_min();
1618
1619 if (!populated_zone(zone)) {
1620 zone_pcp_reset(zone);
1621 build_all_zonelists(NULL);
1622 } else
1623 zone_pcp_update(zone);
1624
1625 node_states_clear_node(node, &arg);
1626 if (arg.status_change_nid >= 0) {
1627 kswapd_stop(node);
1628 kcompactd_stop(node);
1629 }
1630
1631 writeback_set_ratelimit();
1632
1633 memory_notify(MEM_OFFLINE, &arg);
1634 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1635 mem_hotplug_done();
1636 return 0;
1637
1638failed_removal_isolated:
1639 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1640 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1641failed_removal:
1642 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1643 (unsigned long long) start_pfn << PAGE_SHIFT,
1644 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1645 reason);
1646 /* pushback to free area */
1647 mem_hotplug_done();
1648 return ret;
1649}
1650
1651int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1652{
1653 return __offline_pages(start_pfn, start_pfn + nr_pages);
1654}
1655
1656static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1657{
1658 int ret = !is_memblock_offlined(mem);
1659
1660 if (unlikely(ret)) {
1661 phys_addr_t beginpa, endpa;
1662
1663 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1664 endpa = beginpa + memory_block_size_bytes() - 1;
1665 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1666 &beginpa, &endpa);
1667
1668 return -EBUSY;
1669 }
1670 return 0;
1671}
1672
1673static int check_cpu_on_node(pg_data_t *pgdat)
1674{
1675 int cpu;
1676
1677 for_each_present_cpu(cpu) {
1678 if (cpu_to_node(cpu) == pgdat->node_id)
1679 /*
1680 * the cpu on this node isn't removed, and we can't
1681 * offline this node.
1682 */
1683 return -EBUSY;
1684 }
1685
1686 return 0;
1687}
1688
1689static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1690{
1691 int nid = *(int *)arg;
1692
1693 /*
1694 * If a memory block belongs to multiple nodes, the stored nid is not
1695 * reliable. However, such blocks are always online (e.g., cannot get
1696 * offlined) and, therefore, are still spanned by the node.
1697 */
1698 return mem->nid == nid ? -EEXIST : 0;
1699}
1700
1701/**
1702 * try_offline_node
1703 * @nid: the node ID
1704 *
1705 * Offline a node if all memory sections and cpus of the node are removed.
1706 *
1707 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1708 * and online/offline operations before this call.
1709 */
1710void try_offline_node(int nid)
1711{
1712 pg_data_t *pgdat = NODE_DATA(nid);
1713 int rc;
1714
1715 /*
1716 * If the node still spans pages (especially ZONE_DEVICE), don't
1717 * offline it. A node spans memory after move_pfn_range_to_zone(),
1718 * e.g., after the memory block was onlined.
1719 */
1720 if (pgdat->node_spanned_pages)
1721 return;
1722
1723 /*
1724 * Especially offline memory blocks might not be spanned by the
1725 * node. They will get spanned by the node once they get onlined.
1726 * However, they link to the node in sysfs and can get onlined later.
1727 */
1728 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1729 if (rc)
1730 return;
1731
1732 if (check_cpu_on_node(pgdat))
1733 return;
1734
1735 /*
1736 * all memory/cpu of this node are removed, we can offline this
1737 * node now.
1738 */
1739 node_set_offline(nid);
1740 unregister_one_node(nid);
1741}
1742EXPORT_SYMBOL(try_offline_node);
1743
1744static void __release_memory_resource(resource_size_t start,
1745 resource_size_t size)
1746{
1747 int ret;
1748
1749 /*
1750 * When removing memory in the same granularity as it was added,
1751 * this function never fails. It might only fail if resources
1752 * have to be adjusted or split. We'll ignore the error, as
1753 * removing of memory cannot fail.
1754 */
1755 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1756 if (ret) {
1757 resource_size_t endres = start + size - 1;
1758
1759 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1760 &start, &endres, ret);
1761 }
1762}
1763
1764static int __ref try_remove_memory(int nid, u64 start, u64 size)
1765{
1766 int rc = 0;
1767
1768 BUG_ON(check_hotplug_memory_range(start, size));
1769
1770 /*
1771 * All memory blocks must be offlined before removing memory. Check
1772 * whether all memory blocks in question are offline and return error
1773 * if this is not the case.
1774 */
1775 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1776 if (rc)
1777 return rc;
1778
1779 /* remove memmap entry */
1780 firmware_map_remove(start, start + size, "System RAM");
1781
1782 /*
1783 * Memory block device removal under the device_hotplug_lock is
1784 * a barrier against racing online attempts.
1785 */
1786 remove_memory_block_devices(start, size);
1787
1788 mem_hotplug_begin();
1789
1790 arch_remove_memory(nid, start, size, NULL);
1791
1792 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1793 memblock_free(start, size);
1794 memblock_remove(start, size);
1795 }
1796
1797 __release_memory_resource(start, size);
1798
1799 try_offline_node(nid);
1800
1801 mem_hotplug_done();
1802 return 0;
1803}
1804
1805/**
1806 * remove_memory
1807 * @nid: the node ID
1808 * @start: physical address of the region to remove
1809 * @size: size of the region to remove
1810 *
1811 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1812 * and online/offline operations before this call, as required by
1813 * try_offline_node().
1814 */
1815void __remove_memory(int nid, u64 start, u64 size)
1816{
1817
1818 /*
1819 * trigger BUG() if some memory is not offlined prior to calling this
1820 * function
1821 */
1822 if (try_remove_memory(nid, start, size))
1823 BUG();
1824}
1825
1826/*
1827 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1828 * some memory is not offline
1829 */
1830int remove_memory(int nid, u64 start, u64 size)
1831{
1832 int rc;
1833
1834 lock_device_hotplug();
1835 rc = try_remove_memory(nid, start, size);
1836 unlock_device_hotplug();
1837
1838 return rc;
1839}
1840EXPORT_SYMBOL_GPL(remove_memory);
1841
1842/*
1843 * Try to offline and remove a memory block. Might take a long time to
1844 * finish in case memory is still in use. Primarily useful for memory devices
1845 * that logically unplugged all memory (so it's no longer in use) and want to
1846 * offline + remove the memory block.
1847 */
1848int offline_and_remove_memory(int nid, u64 start, u64 size)
1849{
1850 struct memory_block *mem;
1851 int rc = -EINVAL;
1852
1853 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1854 size != memory_block_size_bytes())
1855 return rc;
1856
1857 lock_device_hotplug();
1858 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1859 if (mem)
1860 rc = device_offline(&mem->dev);
1861 /* Ignore if the device is already offline. */
1862 if (rc > 0)
1863 rc = 0;
1864
1865 /*
1866 * In case we succeeded to offline the memory block, remove it.
1867 * This cannot fail as it cannot get onlined in the meantime.
1868 */
1869 if (!rc) {
1870 rc = try_remove_memory(nid, start, size);
1871 WARN_ON_ONCE(rc);
1872 }
1873 unlock_device_hotplug();
1874
1875 return rc;
1876}
1877EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1878#endif /* CONFIG_MEMORY_HOTREMOVE */