Loading...
1/*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/genhd.h>
20#include <linux/device.h>
21#include <linux/bio.h>
22#include <linux/blkdev.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/pm.h>
26#include <linux/slab.h>
27#include <linux/lzo.h>
28#include <linux/vmalloc.h>
29#include <linux/cpumask.h>
30#include <linux/atomic.h>
31#include <linux/kthread.h>
32#include <linux/crc32.h>
33#include <linux/ktime.h>
34
35#include "power.h"
36
37#define HIBERNATE_SIG "S1SUSPEND"
38
39/*
40 * The swap map is a data structure used for keeping track of each page
41 * written to a swap partition. It consists of many swap_map_page
42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43 * These structures are stored on the swap and linked together with the
44 * help of the .next_swap member.
45 *
46 * The swap map is created during suspend. The swap map pages are
47 * allocated and populated one at a time, so we only need one memory
48 * page to set up the entire structure.
49 *
50 * During resume we pick up all swap_map_page structures into a list.
51 */
52
53#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
54
55/*
56 * Number of free pages that are not high.
57 */
58static inline unsigned long low_free_pages(void)
59{
60 return nr_free_pages() - nr_free_highpages();
61}
62
63/*
64 * Number of pages required to be kept free while writing the image. Always
65 * half of all available low pages before the writing starts.
66 */
67static inline unsigned long reqd_free_pages(void)
68{
69 return low_free_pages() / 2;
70}
71
72struct swap_map_page {
73 sector_t entries[MAP_PAGE_ENTRIES];
74 sector_t next_swap;
75};
76
77struct swap_map_page_list {
78 struct swap_map_page *map;
79 struct swap_map_page_list *next;
80};
81
82/**
83 * The swap_map_handle structure is used for handling swap in
84 * a file-alike way
85 */
86
87struct swap_map_handle {
88 struct swap_map_page *cur;
89 struct swap_map_page_list *maps;
90 sector_t cur_swap;
91 sector_t first_sector;
92 unsigned int k;
93 unsigned long reqd_free_pages;
94 u32 crc32;
95};
96
97struct swsusp_header {
98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 sizeof(u32)];
100 u32 crc32;
101 sector_t image;
102 unsigned int flags; /* Flags to pass to the "boot" kernel */
103 char orig_sig[10];
104 char sig[10];
105} __packed;
106
107static struct swsusp_header *swsusp_header;
108
109/**
110 * The following functions are used for tracing the allocated
111 * swap pages, so that they can be freed in case of an error.
112 */
113
114struct swsusp_extent {
115 struct rb_node node;
116 unsigned long start;
117 unsigned long end;
118};
119
120static struct rb_root swsusp_extents = RB_ROOT;
121
122static int swsusp_extents_insert(unsigned long swap_offset)
123{
124 struct rb_node **new = &(swsusp_extents.rb_node);
125 struct rb_node *parent = NULL;
126 struct swsusp_extent *ext;
127
128 /* Figure out where to put the new node */
129 while (*new) {
130 ext = rb_entry(*new, struct swsusp_extent, node);
131 parent = *new;
132 if (swap_offset < ext->start) {
133 /* Try to merge */
134 if (swap_offset == ext->start - 1) {
135 ext->start--;
136 return 0;
137 }
138 new = &((*new)->rb_left);
139 } else if (swap_offset > ext->end) {
140 /* Try to merge */
141 if (swap_offset == ext->end + 1) {
142 ext->end++;
143 return 0;
144 }
145 new = &((*new)->rb_right);
146 } else {
147 /* It already is in the tree */
148 return -EINVAL;
149 }
150 }
151 /* Add the new node and rebalance the tree. */
152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 if (!ext)
154 return -ENOMEM;
155
156 ext->start = swap_offset;
157 ext->end = swap_offset;
158 rb_link_node(&ext->node, parent, new);
159 rb_insert_color(&ext->node, &swsusp_extents);
160 return 0;
161}
162
163/**
164 * alloc_swapdev_block - allocate a swap page and register that it has
165 * been allocated, so that it can be freed in case of an error.
166 */
167
168sector_t alloc_swapdev_block(int swap)
169{
170 unsigned long offset;
171
172 offset = swp_offset(get_swap_page_of_type(swap));
173 if (offset) {
174 if (swsusp_extents_insert(offset))
175 swap_free(swp_entry(swap, offset));
176 else
177 return swapdev_block(swap, offset);
178 }
179 return 0;
180}
181
182/**
183 * free_all_swap_pages - free swap pages allocated for saving image data.
184 * It also frees the extents used to register which swap entries had been
185 * allocated.
186 */
187
188void free_all_swap_pages(int swap)
189{
190 struct rb_node *node;
191
192 while ((node = swsusp_extents.rb_node)) {
193 struct swsusp_extent *ext;
194 unsigned long offset;
195
196 ext = container_of(node, struct swsusp_extent, node);
197 rb_erase(node, &swsusp_extents);
198 for (offset = ext->start; offset <= ext->end; offset++)
199 swap_free(swp_entry(swap, offset));
200
201 kfree(ext);
202 }
203}
204
205int swsusp_swap_in_use(void)
206{
207 return (swsusp_extents.rb_node != NULL);
208}
209
210/*
211 * General things
212 */
213
214static unsigned short root_swap = 0xffff;
215static struct block_device *hib_resume_bdev;
216
217struct hib_bio_batch {
218 atomic_t count;
219 wait_queue_head_t wait;
220 int error;
221};
222
223static void hib_init_batch(struct hib_bio_batch *hb)
224{
225 atomic_set(&hb->count, 0);
226 init_waitqueue_head(&hb->wait);
227 hb->error = 0;
228}
229
230static void hib_end_io(struct bio *bio)
231{
232 struct hib_bio_batch *hb = bio->bi_private;
233 struct page *page = bio->bi_io_vec[0].bv_page;
234
235 if (bio->bi_error) {
236 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
237 imajor(bio->bi_bdev->bd_inode),
238 iminor(bio->bi_bdev->bd_inode),
239 (unsigned long long)bio->bi_iter.bi_sector);
240 }
241
242 if (bio_data_dir(bio) == WRITE)
243 put_page(page);
244
245 if (bio->bi_error && !hb->error)
246 hb->error = bio->bi_error;
247 if (atomic_dec_and_test(&hb->count))
248 wake_up(&hb->wait);
249
250 bio_put(bio);
251}
252
253static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
254 struct hib_bio_batch *hb)
255{
256 struct page *page = virt_to_page(addr);
257 struct bio *bio;
258 int error = 0;
259
260 bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
261 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
262 bio->bi_bdev = hib_resume_bdev;
263
264 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
265 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
266 (unsigned long long)bio->bi_iter.bi_sector);
267 bio_put(bio);
268 return -EFAULT;
269 }
270
271 if (hb) {
272 bio->bi_end_io = hib_end_io;
273 bio->bi_private = hb;
274 atomic_inc(&hb->count);
275 submit_bio(rw, bio);
276 } else {
277 error = submit_bio_wait(rw, bio);
278 bio_put(bio);
279 }
280
281 return error;
282}
283
284static int hib_wait_io(struct hib_bio_batch *hb)
285{
286 wait_event(hb->wait, atomic_read(&hb->count) == 0);
287 return hb->error;
288}
289
290/*
291 * Saving part
292 */
293
294static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
295{
296 int error;
297
298 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
299 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
300 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
301 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
302 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
303 swsusp_header->image = handle->first_sector;
304 swsusp_header->flags = flags;
305 if (flags & SF_CRC32_MODE)
306 swsusp_header->crc32 = handle->crc32;
307 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
308 swsusp_header, NULL);
309 } else {
310 printk(KERN_ERR "PM: Swap header not found!\n");
311 error = -ENODEV;
312 }
313 return error;
314}
315
316/**
317 * swsusp_swap_check - check if the resume device is a swap device
318 * and get its index (if so)
319 *
320 * This is called before saving image
321 */
322static int swsusp_swap_check(void)
323{
324 int res;
325
326 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
327 &hib_resume_bdev);
328 if (res < 0)
329 return res;
330
331 root_swap = res;
332 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
333 if (res)
334 return res;
335
336 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
337 if (res < 0)
338 blkdev_put(hib_resume_bdev, FMODE_WRITE);
339
340 return res;
341}
342
343/**
344 * write_page - Write one page to given swap location.
345 * @buf: Address we're writing.
346 * @offset: Offset of the swap page we're writing to.
347 * @hb: bio completion batch
348 */
349
350static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
351{
352 void *src;
353 int ret;
354
355 if (!offset)
356 return -ENOSPC;
357
358 if (hb) {
359 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
360 __GFP_NORETRY);
361 if (src) {
362 copy_page(src, buf);
363 } else {
364 ret = hib_wait_io(hb); /* Free pages */
365 if (ret)
366 return ret;
367 src = (void *)__get_free_page(__GFP_RECLAIM |
368 __GFP_NOWARN |
369 __GFP_NORETRY);
370 if (src) {
371 copy_page(src, buf);
372 } else {
373 WARN_ON_ONCE(1);
374 hb = NULL; /* Go synchronous */
375 src = buf;
376 }
377 }
378 } else {
379 src = buf;
380 }
381 return hib_submit_io(WRITE_SYNC, offset, src, hb);
382}
383
384static void release_swap_writer(struct swap_map_handle *handle)
385{
386 if (handle->cur)
387 free_page((unsigned long)handle->cur);
388 handle->cur = NULL;
389}
390
391static int get_swap_writer(struct swap_map_handle *handle)
392{
393 int ret;
394
395 ret = swsusp_swap_check();
396 if (ret) {
397 if (ret != -ENOSPC)
398 printk(KERN_ERR "PM: Cannot find swap device, try "
399 "swapon -a.\n");
400 return ret;
401 }
402 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
403 if (!handle->cur) {
404 ret = -ENOMEM;
405 goto err_close;
406 }
407 handle->cur_swap = alloc_swapdev_block(root_swap);
408 if (!handle->cur_swap) {
409 ret = -ENOSPC;
410 goto err_rel;
411 }
412 handle->k = 0;
413 handle->reqd_free_pages = reqd_free_pages();
414 handle->first_sector = handle->cur_swap;
415 return 0;
416err_rel:
417 release_swap_writer(handle);
418err_close:
419 swsusp_close(FMODE_WRITE);
420 return ret;
421}
422
423static int swap_write_page(struct swap_map_handle *handle, void *buf,
424 struct hib_bio_batch *hb)
425{
426 int error = 0;
427 sector_t offset;
428
429 if (!handle->cur)
430 return -EINVAL;
431 offset = alloc_swapdev_block(root_swap);
432 error = write_page(buf, offset, hb);
433 if (error)
434 return error;
435 handle->cur->entries[handle->k++] = offset;
436 if (handle->k >= MAP_PAGE_ENTRIES) {
437 offset = alloc_swapdev_block(root_swap);
438 if (!offset)
439 return -ENOSPC;
440 handle->cur->next_swap = offset;
441 error = write_page(handle->cur, handle->cur_swap, hb);
442 if (error)
443 goto out;
444 clear_page(handle->cur);
445 handle->cur_swap = offset;
446 handle->k = 0;
447
448 if (hb && low_free_pages() <= handle->reqd_free_pages) {
449 error = hib_wait_io(hb);
450 if (error)
451 goto out;
452 /*
453 * Recalculate the number of required free pages, to
454 * make sure we never take more than half.
455 */
456 handle->reqd_free_pages = reqd_free_pages();
457 }
458 }
459 out:
460 return error;
461}
462
463static int flush_swap_writer(struct swap_map_handle *handle)
464{
465 if (handle->cur && handle->cur_swap)
466 return write_page(handle->cur, handle->cur_swap, NULL);
467 else
468 return -EINVAL;
469}
470
471static int swap_writer_finish(struct swap_map_handle *handle,
472 unsigned int flags, int error)
473{
474 if (!error) {
475 flush_swap_writer(handle);
476 printk(KERN_INFO "PM: S");
477 error = mark_swapfiles(handle, flags);
478 printk("|\n");
479 }
480
481 if (error)
482 free_all_swap_pages(root_swap);
483 release_swap_writer(handle);
484 swsusp_close(FMODE_WRITE);
485
486 return error;
487}
488
489/* We need to remember how much compressed data we need to read. */
490#define LZO_HEADER sizeof(size_t)
491
492/* Number of pages/bytes we'll compress at one time. */
493#define LZO_UNC_PAGES 32
494#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
495
496/* Number of pages/bytes we need for compressed data (worst case). */
497#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
498 LZO_HEADER, PAGE_SIZE)
499#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
500
501/* Maximum number of threads for compression/decompression. */
502#define LZO_THREADS 3
503
504/* Minimum/maximum number of pages for read buffering. */
505#define LZO_MIN_RD_PAGES 1024
506#define LZO_MAX_RD_PAGES 8192
507
508
509/**
510 * save_image - save the suspend image data
511 */
512
513static int save_image(struct swap_map_handle *handle,
514 struct snapshot_handle *snapshot,
515 unsigned int nr_to_write)
516{
517 unsigned int m;
518 int ret;
519 int nr_pages;
520 int err2;
521 struct hib_bio_batch hb;
522 ktime_t start;
523 ktime_t stop;
524
525 hib_init_batch(&hb);
526
527 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
528 nr_to_write);
529 m = nr_to_write / 10;
530 if (!m)
531 m = 1;
532 nr_pages = 0;
533 start = ktime_get();
534 while (1) {
535 ret = snapshot_read_next(snapshot);
536 if (ret <= 0)
537 break;
538 ret = swap_write_page(handle, data_of(*snapshot), &hb);
539 if (ret)
540 break;
541 if (!(nr_pages % m))
542 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
543 nr_pages / m * 10);
544 nr_pages++;
545 }
546 err2 = hib_wait_io(&hb);
547 stop = ktime_get();
548 if (!ret)
549 ret = err2;
550 if (!ret)
551 printk(KERN_INFO "PM: Image saving done.\n");
552 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
553 return ret;
554}
555
556/**
557 * Structure used for CRC32.
558 */
559struct crc_data {
560 struct task_struct *thr; /* thread */
561 atomic_t ready; /* ready to start flag */
562 atomic_t stop; /* ready to stop flag */
563 unsigned run_threads; /* nr current threads */
564 wait_queue_head_t go; /* start crc update */
565 wait_queue_head_t done; /* crc update done */
566 u32 *crc32; /* points to handle's crc32 */
567 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
568 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
569};
570
571/**
572 * CRC32 update function that runs in its own thread.
573 */
574static int crc32_threadfn(void *data)
575{
576 struct crc_data *d = data;
577 unsigned i;
578
579 while (1) {
580 wait_event(d->go, atomic_read(&d->ready) ||
581 kthread_should_stop());
582 if (kthread_should_stop()) {
583 d->thr = NULL;
584 atomic_set(&d->stop, 1);
585 wake_up(&d->done);
586 break;
587 }
588 atomic_set(&d->ready, 0);
589
590 for (i = 0; i < d->run_threads; i++)
591 *d->crc32 = crc32_le(*d->crc32,
592 d->unc[i], *d->unc_len[i]);
593 atomic_set(&d->stop, 1);
594 wake_up(&d->done);
595 }
596 return 0;
597}
598/**
599 * Structure used for LZO data compression.
600 */
601struct cmp_data {
602 struct task_struct *thr; /* thread */
603 atomic_t ready; /* ready to start flag */
604 atomic_t stop; /* ready to stop flag */
605 int ret; /* return code */
606 wait_queue_head_t go; /* start compression */
607 wait_queue_head_t done; /* compression done */
608 size_t unc_len; /* uncompressed length */
609 size_t cmp_len; /* compressed length */
610 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
611 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
612 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
613};
614
615/**
616 * Compression function that runs in its own thread.
617 */
618static int lzo_compress_threadfn(void *data)
619{
620 struct cmp_data *d = data;
621
622 while (1) {
623 wait_event(d->go, atomic_read(&d->ready) ||
624 kthread_should_stop());
625 if (kthread_should_stop()) {
626 d->thr = NULL;
627 d->ret = -1;
628 atomic_set(&d->stop, 1);
629 wake_up(&d->done);
630 break;
631 }
632 atomic_set(&d->ready, 0);
633
634 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
635 d->cmp + LZO_HEADER, &d->cmp_len,
636 d->wrk);
637 atomic_set(&d->stop, 1);
638 wake_up(&d->done);
639 }
640 return 0;
641}
642
643/**
644 * save_image_lzo - Save the suspend image data compressed with LZO.
645 * @handle: Swap map handle to use for saving the image.
646 * @snapshot: Image to read data from.
647 * @nr_to_write: Number of pages to save.
648 */
649static int save_image_lzo(struct swap_map_handle *handle,
650 struct snapshot_handle *snapshot,
651 unsigned int nr_to_write)
652{
653 unsigned int m;
654 int ret = 0;
655 int nr_pages;
656 int err2;
657 struct hib_bio_batch hb;
658 ktime_t start;
659 ktime_t stop;
660 size_t off;
661 unsigned thr, run_threads, nr_threads;
662 unsigned char *page = NULL;
663 struct cmp_data *data = NULL;
664 struct crc_data *crc = NULL;
665
666 hib_init_batch(&hb);
667
668 /*
669 * We'll limit the number of threads for compression to limit memory
670 * footprint.
671 */
672 nr_threads = num_online_cpus() - 1;
673 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
674
675 page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
676 if (!page) {
677 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
678 ret = -ENOMEM;
679 goto out_clean;
680 }
681
682 data = vmalloc(sizeof(*data) * nr_threads);
683 if (!data) {
684 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
685 ret = -ENOMEM;
686 goto out_clean;
687 }
688 for (thr = 0; thr < nr_threads; thr++)
689 memset(&data[thr], 0, offsetof(struct cmp_data, go));
690
691 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
692 if (!crc) {
693 printk(KERN_ERR "PM: Failed to allocate crc\n");
694 ret = -ENOMEM;
695 goto out_clean;
696 }
697 memset(crc, 0, offsetof(struct crc_data, go));
698
699 /*
700 * Start the compression threads.
701 */
702 for (thr = 0; thr < nr_threads; thr++) {
703 init_waitqueue_head(&data[thr].go);
704 init_waitqueue_head(&data[thr].done);
705
706 data[thr].thr = kthread_run(lzo_compress_threadfn,
707 &data[thr],
708 "image_compress/%u", thr);
709 if (IS_ERR(data[thr].thr)) {
710 data[thr].thr = NULL;
711 printk(KERN_ERR
712 "PM: Cannot start compression threads\n");
713 ret = -ENOMEM;
714 goto out_clean;
715 }
716 }
717
718 /*
719 * Start the CRC32 thread.
720 */
721 init_waitqueue_head(&crc->go);
722 init_waitqueue_head(&crc->done);
723
724 handle->crc32 = 0;
725 crc->crc32 = &handle->crc32;
726 for (thr = 0; thr < nr_threads; thr++) {
727 crc->unc[thr] = data[thr].unc;
728 crc->unc_len[thr] = &data[thr].unc_len;
729 }
730
731 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
732 if (IS_ERR(crc->thr)) {
733 crc->thr = NULL;
734 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
735 ret = -ENOMEM;
736 goto out_clean;
737 }
738
739 /*
740 * Adjust the number of required free pages after all allocations have
741 * been done. We don't want to run out of pages when writing.
742 */
743 handle->reqd_free_pages = reqd_free_pages();
744
745 printk(KERN_INFO
746 "PM: Using %u thread(s) for compression.\n"
747 "PM: Compressing and saving image data (%u pages)...\n",
748 nr_threads, nr_to_write);
749 m = nr_to_write / 10;
750 if (!m)
751 m = 1;
752 nr_pages = 0;
753 start = ktime_get();
754 for (;;) {
755 for (thr = 0; thr < nr_threads; thr++) {
756 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
757 ret = snapshot_read_next(snapshot);
758 if (ret < 0)
759 goto out_finish;
760
761 if (!ret)
762 break;
763
764 memcpy(data[thr].unc + off,
765 data_of(*snapshot), PAGE_SIZE);
766
767 if (!(nr_pages % m))
768 printk(KERN_INFO
769 "PM: Image saving progress: "
770 "%3d%%\n",
771 nr_pages / m * 10);
772 nr_pages++;
773 }
774 if (!off)
775 break;
776
777 data[thr].unc_len = off;
778
779 atomic_set(&data[thr].ready, 1);
780 wake_up(&data[thr].go);
781 }
782
783 if (!thr)
784 break;
785
786 crc->run_threads = thr;
787 atomic_set(&crc->ready, 1);
788 wake_up(&crc->go);
789
790 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
791 wait_event(data[thr].done,
792 atomic_read(&data[thr].stop));
793 atomic_set(&data[thr].stop, 0);
794
795 ret = data[thr].ret;
796
797 if (ret < 0) {
798 printk(KERN_ERR "PM: LZO compression failed\n");
799 goto out_finish;
800 }
801
802 if (unlikely(!data[thr].cmp_len ||
803 data[thr].cmp_len >
804 lzo1x_worst_compress(data[thr].unc_len))) {
805 printk(KERN_ERR
806 "PM: Invalid LZO compressed length\n");
807 ret = -1;
808 goto out_finish;
809 }
810
811 *(size_t *)data[thr].cmp = data[thr].cmp_len;
812
813 /*
814 * Given we are writing one page at a time to disk, we
815 * copy that much from the buffer, although the last
816 * bit will likely be smaller than full page. This is
817 * OK - we saved the length of the compressed data, so
818 * any garbage at the end will be discarded when we
819 * read it.
820 */
821 for (off = 0;
822 off < LZO_HEADER + data[thr].cmp_len;
823 off += PAGE_SIZE) {
824 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
825
826 ret = swap_write_page(handle, page, &hb);
827 if (ret)
828 goto out_finish;
829 }
830 }
831
832 wait_event(crc->done, atomic_read(&crc->stop));
833 atomic_set(&crc->stop, 0);
834 }
835
836out_finish:
837 err2 = hib_wait_io(&hb);
838 stop = ktime_get();
839 if (!ret)
840 ret = err2;
841 if (!ret)
842 printk(KERN_INFO "PM: Image saving done.\n");
843 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
844out_clean:
845 if (crc) {
846 if (crc->thr)
847 kthread_stop(crc->thr);
848 kfree(crc);
849 }
850 if (data) {
851 for (thr = 0; thr < nr_threads; thr++)
852 if (data[thr].thr)
853 kthread_stop(data[thr].thr);
854 vfree(data);
855 }
856 if (page) free_page((unsigned long)page);
857
858 return ret;
859}
860
861/**
862 * enough_swap - Make sure we have enough swap to save the image.
863 *
864 * Returns TRUE or FALSE after checking the total amount of swap
865 * space avaiable from the resume partition.
866 */
867
868static int enough_swap(unsigned int nr_pages, unsigned int flags)
869{
870 unsigned int free_swap = count_swap_pages(root_swap, 1);
871 unsigned int required;
872
873 pr_debug("PM: Free swap pages: %u\n", free_swap);
874
875 required = PAGES_FOR_IO + nr_pages;
876 return free_swap > required;
877}
878
879/**
880 * swsusp_write - Write entire image and metadata.
881 * @flags: flags to pass to the "boot" kernel in the image header
882 *
883 * It is important _NOT_ to umount filesystems at this point. We want
884 * them synced (in case something goes wrong) but we DO not want to mark
885 * filesystem clean: it is not. (And it does not matter, if we resume
886 * correctly, we'll mark system clean, anyway.)
887 */
888
889int swsusp_write(unsigned int flags)
890{
891 struct swap_map_handle handle;
892 struct snapshot_handle snapshot;
893 struct swsusp_info *header;
894 unsigned long pages;
895 int error;
896
897 pages = snapshot_get_image_size();
898 error = get_swap_writer(&handle);
899 if (error) {
900 printk(KERN_ERR "PM: Cannot get swap writer\n");
901 return error;
902 }
903 if (flags & SF_NOCOMPRESS_MODE) {
904 if (!enough_swap(pages, flags)) {
905 printk(KERN_ERR "PM: Not enough free swap\n");
906 error = -ENOSPC;
907 goto out_finish;
908 }
909 }
910 memset(&snapshot, 0, sizeof(struct snapshot_handle));
911 error = snapshot_read_next(&snapshot);
912 if (error < PAGE_SIZE) {
913 if (error >= 0)
914 error = -EFAULT;
915
916 goto out_finish;
917 }
918 header = (struct swsusp_info *)data_of(snapshot);
919 error = swap_write_page(&handle, header, NULL);
920 if (!error) {
921 error = (flags & SF_NOCOMPRESS_MODE) ?
922 save_image(&handle, &snapshot, pages - 1) :
923 save_image_lzo(&handle, &snapshot, pages - 1);
924 }
925out_finish:
926 error = swap_writer_finish(&handle, flags, error);
927 return error;
928}
929
930/**
931 * The following functions allow us to read data using a swap map
932 * in a file-alike way
933 */
934
935static void release_swap_reader(struct swap_map_handle *handle)
936{
937 struct swap_map_page_list *tmp;
938
939 while (handle->maps) {
940 if (handle->maps->map)
941 free_page((unsigned long)handle->maps->map);
942 tmp = handle->maps;
943 handle->maps = handle->maps->next;
944 kfree(tmp);
945 }
946 handle->cur = NULL;
947}
948
949static int get_swap_reader(struct swap_map_handle *handle,
950 unsigned int *flags_p)
951{
952 int error;
953 struct swap_map_page_list *tmp, *last;
954 sector_t offset;
955
956 *flags_p = swsusp_header->flags;
957
958 if (!swsusp_header->image) /* how can this happen? */
959 return -EINVAL;
960
961 handle->cur = NULL;
962 last = handle->maps = NULL;
963 offset = swsusp_header->image;
964 while (offset) {
965 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
966 if (!tmp) {
967 release_swap_reader(handle);
968 return -ENOMEM;
969 }
970 memset(tmp, 0, sizeof(*tmp));
971 if (!handle->maps)
972 handle->maps = tmp;
973 if (last)
974 last->next = tmp;
975 last = tmp;
976
977 tmp->map = (struct swap_map_page *)
978 __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
979 if (!tmp->map) {
980 release_swap_reader(handle);
981 return -ENOMEM;
982 }
983
984 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
985 if (error) {
986 release_swap_reader(handle);
987 return error;
988 }
989 offset = tmp->map->next_swap;
990 }
991 handle->k = 0;
992 handle->cur = handle->maps->map;
993 return 0;
994}
995
996static int swap_read_page(struct swap_map_handle *handle, void *buf,
997 struct hib_bio_batch *hb)
998{
999 sector_t offset;
1000 int error;
1001 struct swap_map_page_list *tmp;
1002
1003 if (!handle->cur)
1004 return -EINVAL;
1005 offset = handle->cur->entries[handle->k];
1006 if (!offset)
1007 return -EFAULT;
1008 error = hib_submit_io(READ_SYNC, offset, buf, hb);
1009 if (error)
1010 return error;
1011 if (++handle->k >= MAP_PAGE_ENTRIES) {
1012 handle->k = 0;
1013 free_page((unsigned long)handle->maps->map);
1014 tmp = handle->maps;
1015 handle->maps = handle->maps->next;
1016 kfree(tmp);
1017 if (!handle->maps)
1018 release_swap_reader(handle);
1019 else
1020 handle->cur = handle->maps->map;
1021 }
1022 return error;
1023}
1024
1025static int swap_reader_finish(struct swap_map_handle *handle)
1026{
1027 release_swap_reader(handle);
1028
1029 return 0;
1030}
1031
1032/**
1033 * load_image - load the image using the swap map handle
1034 * @handle and the snapshot handle @snapshot
1035 * (assume there are @nr_pages pages to load)
1036 */
1037
1038static int load_image(struct swap_map_handle *handle,
1039 struct snapshot_handle *snapshot,
1040 unsigned int nr_to_read)
1041{
1042 unsigned int m;
1043 int ret = 0;
1044 ktime_t start;
1045 ktime_t stop;
1046 struct hib_bio_batch hb;
1047 int err2;
1048 unsigned nr_pages;
1049
1050 hib_init_batch(&hb);
1051
1052 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1053 nr_to_read);
1054 m = nr_to_read / 10;
1055 if (!m)
1056 m = 1;
1057 nr_pages = 0;
1058 start = ktime_get();
1059 for ( ; ; ) {
1060 ret = snapshot_write_next(snapshot);
1061 if (ret <= 0)
1062 break;
1063 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1064 if (ret)
1065 break;
1066 if (snapshot->sync_read)
1067 ret = hib_wait_io(&hb);
1068 if (ret)
1069 break;
1070 if (!(nr_pages % m))
1071 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1072 nr_pages / m * 10);
1073 nr_pages++;
1074 }
1075 err2 = hib_wait_io(&hb);
1076 stop = ktime_get();
1077 if (!ret)
1078 ret = err2;
1079 if (!ret) {
1080 printk(KERN_INFO "PM: Image loading done.\n");
1081 snapshot_write_finalize(snapshot);
1082 if (!snapshot_image_loaded(snapshot))
1083 ret = -ENODATA;
1084 }
1085 swsusp_show_speed(start, stop, nr_to_read, "Read");
1086 return ret;
1087}
1088
1089/**
1090 * Structure used for LZO data decompression.
1091 */
1092struct dec_data {
1093 struct task_struct *thr; /* thread */
1094 atomic_t ready; /* ready to start flag */
1095 atomic_t stop; /* ready to stop flag */
1096 int ret; /* return code */
1097 wait_queue_head_t go; /* start decompression */
1098 wait_queue_head_t done; /* decompression done */
1099 size_t unc_len; /* uncompressed length */
1100 size_t cmp_len; /* compressed length */
1101 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1102 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1103};
1104
1105/**
1106 * Deompression function that runs in its own thread.
1107 */
1108static int lzo_decompress_threadfn(void *data)
1109{
1110 struct dec_data *d = data;
1111
1112 while (1) {
1113 wait_event(d->go, atomic_read(&d->ready) ||
1114 kthread_should_stop());
1115 if (kthread_should_stop()) {
1116 d->thr = NULL;
1117 d->ret = -1;
1118 atomic_set(&d->stop, 1);
1119 wake_up(&d->done);
1120 break;
1121 }
1122 atomic_set(&d->ready, 0);
1123
1124 d->unc_len = LZO_UNC_SIZE;
1125 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1126 d->unc, &d->unc_len);
1127 atomic_set(&d->stop, 1);
1128 wake_up(&d->done);
1129 }
1130 return 0;
1131}
1132
1133/**
1134 * load_image_lzo - Load compressed image data and decompress them with LZO.
1135 * @handle: Swap map handle to use for loading data.
1136 * @snapshot: Image to copy uncompressed data into.
1137 * @nr_to_read: Number of pages to load.
1138 */
1139static int load_image_lzo(struct swap_map_handle *handle,
1140 struct snapshot_handle *snapshot,
1141 unsigned int nr_to_read)
1142{
1143 unsigned int m;
1144 int ret = 0;
1145 int eof = 0;
1146 struct hib_bio_batch hb;
1147 ktime_t start;
1148 ktime_t stop;
1149 unsigned nr_pages;
1150 size_t off;
1151 unsigned i, thr, run_threads, nr_threads;
1152 unsigned ring = 0, pg = 0, ring_size = 0,
1153 have = 0, want, need, asked = 0;
1154 unsigned long read_pages = 0;
1155 unsigned char **page = NULL;
1156 struct dec_data *data = NULL;
1157 struct crc_data *crc = NULL;
1158
1159 hib_init_batch(&hb);
1160
1161 /*
1162 * We'll limit the number of threads for decompression to limit memory
1163 * footprint.
1164 */
1165 nr_threads = num_online_cpus() - 1;
1166 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1167
1168 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1169 if (!page) {
1170 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1171 ret = -ENOMEM;
1172 goto out_clean;
1173 }
1174
1175 data = vmalloc(sizeof(*data) * nr_threads);
1176 if (!data) {
1177 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1178 ret = -ENOMEM;
1179 goto out_clean;
1180 }
1181 for (thr = 0; thr < nr_threads; thr++)
1182 memset(&data[thr], 0, offsetof(struct dec_data, go));
1183
1184 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1185 if (!crc) {
1186 printk(KERN_ERR "PM: Failed to allocate crc\n");
1187 ret = -ENOMEM;
1188 goto out_clean;
1189 }
1190 memset(crc, 0, offsetof(struct crc_data, go));
1191
1192 /*
1193 * Start the decompression threads.
1194 */
1195 for (thr = 0; thr < nr_threads; thr++) {
1196 init_waitqueue_head(&data[thr].go);
1197 init_waitqueue_head(&data[thr].done);
1198
1199 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1200 &data[thr],
1201 "image_decompress/%u", thr);
1202 if (IS_ERR(data[thr].thr)) {
1203 data[thr].thr = NULL;
1204 printk(KERN_ERR
1205 "PM: Cannot start decompression threads\n");
1206 ret = -ENOMEM;
1207 goto out_clean;
1208 }
1209 }
1210
1211 /*
1212 * Start the CRC32 thread.
1213 */
1214 init_waitqueue_head(&crc->go);
1215 init_waitqueue_head(&crc->done);
1216
1217 handle->crc32 = 0;
1218 crc->crc32 = &handle->crc32;
1219 for (thr = 0; thr < nr_threads; thr++) {
1220 crc->unc[thr] = data[thr].unc;
1221 crc->unc_len[thr] = &data[thr].unc_len;
1222 }
1223
1224 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1225 if (IS_ERR(crc->thr)) {
1226 crc->thr = NULL;
1227 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1228 ret = -ENOMEM;
1229 goto out_clean;
1230 }
1231
1232 /*
1233 * Set the number of pages for read buffering.
1234 * This is complete guesswork, because we'll only know the real
1235 * picture once prepare_image() is called, which is much later on
1236 * during the image load phase. We'll assume the worst case and
1237 * say that none of the image pages are from high memory.
1238 */
1239 if (low_free_pages() > snapshot_get_image_size())
1240 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1241 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1242
1243 for (i = 0; i < read_pages; i++) {
1244 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1245 __GFP_RECLAIM | __GFP_HIGH :
1246 __GFP_RECLAIM | __GFP_NOWARN |
1247 __GFP_NORETRY);
1248
1249 if (!page[i]) {
1250 if (i < LZO_CMP_PAGES) {
1251 ring_size = i;
1252 printk(KERN_ERR
1253 "PM: Failed to allocate LZO pages\n");
1254 ret = -ENOMEM;
1255 goto out_clean;
1256 } else {
1257 break;
1258 }
1259 }
1260 }
1261 want = ring_size = i;
1262
1263 printk(KERN_INFO
1264 "PM: Using %u thread(s) for decompression.\n"
1265 "PM: Loading and decompressing image data (%u pages)...\n",
1266 nr_threads, nr_to_read);
1267 m = nr_to_read / 10;
1268 if (!m)
1269 m = 1;
1270 nr_pages = 0;
1271 start = ktime_get();
1272
1273 ret = snapshot_write_next(snapshot);
1274 if (ret <= 0)
1275 goto out_finish;
1276
1277 for(;;) {
1278 for (i = 0; !eof && i < want; i++) {
1279 ret = swap_read_page(handle, page[ring], &hb);
1280 if (ret) {
1281 /*
1282 * On real read error, finish. On end of data,
1283 * set EOF flag and just exit the read loop.
1284 */
1285 if (handle->cur &&
1286 handle->cur->entries[handle->k]) {
1287 goto out_finish;
1288 } else {
1289 eof = 1;
1290 break;
1291 }
1292 }
1293 if (++ring >= ring_size)
1294 ring = 0;
1295 }
1296 asked += i;
1297 want -= i;
1298
1299 /*
1300 * We are out of data, wait for some more.
1301 */
1302 if (!have) {
1303 if (!asked)
1304 break;
1305
1306 ret = hib_wait_io(&hb);
1307 if (ret)
1308 goto out_finish;
1309 have += asked;
1310 asked = 0;
1311 if (eof)
1312 eof = 2;
1313 }
1314
1315 if (crc->run_threads) {
1316 wait_event(crc->done, atomic_read(&crc->stop));
1317 atomic_set(&crc->stop, 0);
1318 crc->run_threads = 0;
1319 }
1320
1321 for (thr = 0; have && thr < nr_threads; thr++) {
1322 data[thr].cmp_len = *(size_t *)page[pg];
1323 if (unlikely(!data[thr].cmp_len ||
1324 data[thr].cmp_len >
1325 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1326 printk(KERN_ERR
1327 "PM: Invalid LZO compressed length\n");
1328 ret = -1;
1329 goto out_finish;
1330 }
1331
1332 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1333 PAGE_SIZE);
1334 if (need > have) {
1335 if (eof > 1) {
1336 ret = -1;
1337 goto out_finish;
1338 }
1339 break;
1340 }
1341
1342 for (off = 0;
1343 off < LZO_HEADER + data[thr].cmp_len;
1344 off += PAGE_SIZE) {
1345 memcpy(data[thr].cmp + off,
1346 page[pg], PAGE_SIZE);
1347 have--;
1348 want++;
1349 if (++pg >= ring_size)
1350 pg = 0;
1351 }
1352
1353 atomic_set(&data[thr].ready, 1);
1354 wake_up(&data[thr].go);
1355 }
1356
1357 /*
1358 * Wait for more data while we are decompressing.
1359 */
1360 if (have < LZO_CMP_PAGES && asked) {
1361 ret = hib_wait_io(&hb);
1362 if (ret)
1363 goto out_finish;
1364 have += asked;
1365 asked = 0;
1366 if (eof)
1367 eof = 2;
1368 }
1369
1370 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1371 wait_event(data[thr].done,
1372 atomic_read(&data[thr].stop));
1373 atomic_set(&data[thr].stop, 0);
1374
1375 ret = data[thr].ret;
1376
1377 if (ret < 0) {
1378 printk(KERN_ERR
1379 "PM: LZO decompression failed\n");
1380 goto out_finish;
1381 }
1382
1383 if (unlikely(!data[thr].unc_len ||
1384 data[thr].unc_len > LZO_UNC_SIZE ||
1385 data[thr].unc_len & (PAGE_SIZE - 1))) {
1386 printk(KERN_ERR
1387 "PM: Invalid LZO uncompressed length\n");
1388 ret = -1;
1389 goto out_finish;
1390 }
1391
1392 for (off = 0;
1393 off < data[thr].unc_len; off += PAGE_SIZE) {
1394 memcpy(data_of(*snapshot),
1395 data[thr].unc + off, PAGE_SIZE);
1396
1397 if (!(nr_pages % m))
1398 printk(KERN_INFO
1399 "PM: Image loading progress: "
1400 "%3d%%\n",
1401 nr_pages / m * 10);
1402 nr_pages++;
1403
1404 ret = snapshot_write_next(snapshot);
1405 if (ret <= 0) {
1406 crc->run_threads = thr + 1;
1407 atomic_set(&crc->ready, 1);
1408 wake_up(&crc->go);
1409 goto out_finish;
1410 }
1411 }
1412 }
1413
1414 crc->run_threads = thr;
1415 atomic_set(&crc->ready, 1);
1416 wake_up(&crc->go);
1417 }
1418
1419out_finish:
1420 if (crc->run_threads) {
1421 wait_event(crc->done, atomic_read(&crc->stop));
1422 atomic_set(&crc->stop, 0);
1423 }
1424 stop = ktime_get();
1425 if (!ret) {
1426 printk(KERN_INFO "PM: Image loading done.\n");
1427 snapshot_write_finalize(snapshot);
1428 if (!snapshot_image_loaded(snapshot))
1429 ret = -ENODATA;
1430 if (!ret) {
1431 if (swsusp_header->flags & SF_CRC32_MODE) {
1432 if(handle->crc32 != swsusp_header->crc32) {
1433 printk(KERN_ERR
1434 "PM: Invalid image CRC32!\n");
1435 ret = -ENODATA;
1436 }
1437 }
1438 }
1439 }
1440 swsusp_show_speed(start, stop, nr_to_read, "Read");
1441out_clean:
1442 for (i = 0; i < ring_size; i++)
1443 free_page((unsigned long)page[i]);
1444 if (crc) {
1445 if (crc->thr)
1446 kthread_stop(crc->thr);
1447 kfree(crc);
1448 }
1449 if (data) {
1450 for (thr = 0; thr < nr_threads; thr++)
1451 if (data[thr].thr)
1452 kthread_stop(data[thr].thr);
1453 vfree(data);
1454 }
1455 vfree(page);
1456
1457 return ret;
1458}
1459
1460/**
1461 * swsusp_read - read the hibernation image.
1462 * @flags_p: flags passed by the "frozen" kernel in the image header should
1463 * be written into this memory location
1464 */
1465
1466int swsusp_read(unsigned int *flags_p)
1467{
1468 int error;
1469 struct swap_map_handle handle;
1470 struct snapshot_handle snapshot;
1471 struct swsusp_info *header;
1472
1473 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1474 error = snapshot_write_next(&snapshot);
1475 if (error < PAGE_SIZE)
1476 return error < 0 ? error : -EFAULT;
1477 header = (struct swsusp_info *)data_of(snapshot);
1478 error = get_swap_reader(&handle, flags_p);
1479 if (error)
1480 goto end;
1481 if (!error)
1482 error = swap_read_page(&handle, header, NULL);
1483 if (!error) {
1484 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1485 load_image(&handle, &snapshot, header->pages - 1) :
1486 load_image_lzo(&handle, &snapshot, header->pages - 1);
1487 }
1488 swap_reader_finish(&handle);
1489end:
1490 if (!error)
1491 pr_debug("PM: Image successfully loaded\n");
1492 else
1493 pr_debug("PM: Error %d resuming\n", error);
1494 return error;
1495}
1496
1497/**
1498 * swsusp_check - Check for swsusp signature in the resume device
1499 */
1500
1501int swsusp_check(void)
1502{
1503 int error;
1504
1505 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1506 FMODE_READ, NULL);
1507 if (!IS_ERR(hib_resume_bdev)) {
1508 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1509 clear_page(swsusp_header);
1510 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1511 swsusp_header, NULL);
1512 if (error)
1513 goto put;
1514
1515 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1516 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1517 /* Reset swap signature now */
1518 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1519 swsusp_header, NULL);
1520 } else {
1521 error = -EINVAL;
1522 }
1523
1524put:
1525 if (error)
1526 blkdev_put(hib_resume_bdev, FMODE_READ);
1527 else
1528 pr_debug("PM: Image signature found, resuming\n");
1529 } else {
1530 error = PTR_ERR(hib_resume_bdev);
1531 }
1532
1533 if (error)
1534 pr_debug("PM: Image not found (code %d)\n", error);
1535
1536 return error;
1537}
1538
1539/**
1540 * swsusp_close - close swap device.
1541 */
1542
1543void swsusp_close(fmode_t mode)
1544{
1545 if (IS_ERR(hib_resume_bdev)) {
1546 pr_debug("PM: Image device not initialised\n");
1547 return;
1548 }
1549
1550 blkdev_put(hib_resume_bdev, mode);
1551}
1552
1553/**
1554 * swsusp_unmark - Unmark swsusp signature in the resume device
1555 */
1556
1557#ifdef CONFIG_SUSPEND
1558int swsusp_unmark(void)
1559{
1560 int error;
1561
1562 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1563 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1564 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1565 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1566 swsusp_header, NULL);
1567 } else {
1568 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1569 error = -ENODEV;
1570 }
1571
1572 /*
1573 * We just returned from suspend, we don't need the image any more.
1574 */
1575 free_all_swap_pages(root_swap);
1576
1577 return error;
1578}
1579#endif
1580
1581static int swsusp_header_init(void)
1582{
1583 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1584 if (!swsusp_header)
1585 panic("Could not allocate memory for swsusp_header\n");
1586 return 0;
1587}
1588
1589core_initcall(swsusp_header_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13#define pr_fmt(fmt) "PM: " fmt
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/device.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/pm.h>
25#include <linux/slab.h>
26#include <linux/lzo.h>
27#include <linux/vmalloc.h>
28#include <linux/cpumask.h>
29#include <linux/atomic.h>
30#include <linux/kthread.h>
31#include <linux/crc32.h>
32#include <linux/ktime.h>
33
34#include "power.h"
35
36#define HIBERNATE_SIG "S1SUSPEND"
37
38u32 swsusp_hardware_signature;
39
40/*
41 * When reading an {un,}compressed image, we may restore pages in place,
42 * in which case some architectures need these pages cleaning before they
43 * can be executed. We don't know which pages these may be, so clean the lot.
44 */
45static bool clean_pages_on_read;
46static bool clean_pages_on_decompress;
47
48/*
49 * The swap map is a data structure used for keeping track of each page
50 * written to a swap partition. It consists of many swap_map_page
51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52 * These structures are stored on the swap and linked together with the
53 * help of the .next_swap member.
54 *
55 * The swap map is created during suspend. The swap map pages are
56 * allocated and populated one at a time, so we only need one memory
57 * page to set up the entire structure.
58 *
59 * During resume we pick up all swap_map_page structures into a list.
60 */
61
62#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
63
64/*
65 * Number of free pages that are not high.
66 */
67static inline unsigned long low_free_pages(void)
68{
69 return nr_free_pages() - nr_free_highpages();
70}
71
72/*
73 * Number of pages required to be kept free while writing the image. Always
74 * half of all available low pages before the writing starts.
75 */
76static inline unsigned long reqd_free_pages(void)
77{
78 return low_free_pages() / 2;
79}
80
81struct swap_map_page {
82 sector_t entries[MAP_PAGE_ENTRIES];
83 sector_t next_swap;
84};
85
86struct swap_map_page_list {
87 struct swap_map_page *map;
88 struct swap_map_page_list *next;
89};
90
91/*
92 * The swap_map_handle structure is used for handling swap in
93 * a file-alike way
94 */
95
96struct swap_map_handle {
97 struct swap_map_page *cur;
98 struct swap_map_page_list *maps;
99 sector_t cur_swap;
100 sector_t first_sector;
101 unsigned int k;
102 unsigned long reqd_free_pages;
103 u32 crc32;
104};
105
106struct swsusp_header {
107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 sizeof(u32) - sizeof(u32)];
109 u32 hw_sig;
110 u32 crc32;
111 sector_t image;
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
113 char orig_sig[10];
114 char sig[10];
115} __packed;
116
117static struct swsusp_header *swsusp_header;
118
119/*
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
122 */
123
124struct swsusp_extent {
125 struct rb_node node;
126 unsigned long start;
127 unsigned long end;
128};
129
130static struct rb_root swsusp_extents = RB_ROOT;
131
132static int swsusp_extents_insert(unsigned long swap_offset)
133{
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
137
138 /* Figure out where to put the new node */
139 while (*new) {
140 ext = rb_entry(*new, struct swsusp_extent, node);
141 parent = *new;
142 if (swap_offset < ext->start) {
143 /* Try to merge */
144 if (swap_offset == ext->start - 1) {
145 ext->start--;
146 return 0;
147 }
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
150 /* Try to merge */
151 if (swap_offset == ext->end + 1) {
152 ext->end++;
153 return 0;
154 }
155 new = &((*new)->rb_right);
156 } else {
157 /* It already is in the tree */
158 return -EINVAL;
159 }
160 }
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 if (!ext)
164 return -ENOMEM;
165
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
170 return 0;
171}
172
173/*
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
176 */
177
178sector_t alloc_swapdev_block(int swap)
179{
180 unsigned long offset;
181
182 offset = swp_offset(get_swap_page_of_type(swap));
183 if (offset) {
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
186 else
187 return swapdev_block(swap, offset);
188 }
189 return 0;
190}
191
192/*
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
195 * allocated.
196 */
197
198void free_all_swap_pages(int swap)
199{
200 struct rb_node *node;
201
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
205
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
210
211 kfree(ext);
212 }
213}
214
215int swsusp_swap_in_use(void)
216{
217 return (swsusp_extents.rb_node != NULL);
218}
219
220/*
221 * General things
222 */
223
224static unsigned short root_swap = 0xffff;
225static struct bdev_handle *hib_resume_bdev_handle;
226
227struct hib_bio_batch {
228 atomic_t count;
229 wait_queue_head_t wait;
230 blk_status_t error;
231 struct blk_plug plug;
232};
233
234static void hib_init_batch(struct hib_bio_batch *hb)
235{
236 atomic_set(&hb->count, 0);
237 init_waitqueue_head(&hb->wait);
238 hb->error = BLK_STS_OK;
239 blk_start_plug(&hb->plug);
240}
241
242static void hib_finish_batch(struct hib_bio_batch *hb)
243{
244 blk_finish_plug(&hb->plug);
245}
246
247static void hib_end_io(struct bio *bio)
248{
249 struct hib_bio_batch *hb = bio->bi_private;
250 struct page *page = bio_first_page_all(bio);
251
252 if (bio->bi_status) {
253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255 (unsigned long long)bio->bi_iter.bi_sector);
256 }
257
258 if (bio_data_dir(bio) == WRITE)
259 put_page(page);
260 else if (clean_pages_on_read)
261 flush_icache_range((unsigned long)page_address(page),
262 (unsigned long)page_address(page) + PAGE_SIZE);
263
264 if (bio->bi_status && !hb->error)
265 hb->error = bio->bi_status;
266 if (atomic_dec_and_test(&hb->count))
267 wake_up(&hb->wait);
268
269 bio_put(bio);
270}
271
272static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
273 struct hib_bio_batch *hb)
274{
275 struct page *page = virt_to_page(addr);
276 struct bio *bio;
277 int error = 0;
278
279 bio = bio_alloc(hib_resume_bdev_handle->bdev, 1, opf,
280 GFP_NOIO | __GFP_HIGH);
281 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282
283 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
284 pr_err("Adding page to bio failed at %llu\n",
285 (unsigned long long)bio->bi_iter.bi_sector);
286 bio_put(bio);
287 return -EFAULT;
288 }
289
290 if (hb) {
291 bio->bi_end_io = hib_end_io;
292 bio->bi_private = hb;
293 atomic_inc(&hb->count);
294 submit_bio(bio);
295 } else {
296 error = submit_bio_wait(bio);
297 bio_put(bio);
298 }
299
300 return error;
301}
302
303static int hib_wait_io(struct hib_bio_batch *hb)
304{
305 /*
306 * We are relying on the behavior of blk_plug that a thread with
307 * a plug will flush the plug list before sleeping.
308 */
309 wait_event(hb->wait, atomic_read(&hb->count) == 0);
310 return blk_status_to_errno(hb->error);
311}
312
313/*
314 * Saving part
315 */
316static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317{
318 int error;
319
320 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
321 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
322 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
323 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
324 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
325 swsusp_header->image = handle->first_sector;
326 if (swsusp_hardware_signature) {
327 swsusp_header->hw_sig = swsusp_hardware_signature;
328 flags |= SF_HW_SIG;
329 }
330 swsusp_header->flags = flags;
331 if (flags & SF_CRC32_MODE)
332 swsusp_header->crc32 = handle->crc32;
333 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
334 swsusp_resume_block, swsusp_header, NULL);
335 } else {
336 pr_err("Swap header not found!\n");
337 error = -ENODEV;
338 }
339 return error;
340}
341
342/**
343 * swsusp_swap_check - check if the resume device is a swap device
344 * and get its index (if so)
345 *
346 * This is called before saving image
347 */
348static int swsusp_swap_check(void)
349{
350 int res;
351
352 if (swsusp_resume_device)
353 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
354 else
355 res = find_first_swap(&swsusp_resume_device);
356 if (res < 0)
357 return res;
358 root_swap = res;
359
360 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
361 BLK_OPEN_WRITE, NULL, NULL);
362 if (IS_ERR(hib_resume_bdev_handle))
363 return PTR_ERR(hib_resume_bdev_handle);
364
365 res = set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
366 if (res < 0)
367 bdev_release(hib_resume_bdev_handle);
368
369 return res;
370}
371
372/**
373 * write_page - Write one page to given swap location.
374 * @buf: Address we're writing.
375 * @offset: Offset of the swap page we're writing to.
376 * @hb: bio completion batch
377 */
378
379static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
380{
381 void *src;
382 int ret;
383
384 if (!offset)
385 return -ENOSPC;
386
387 if (hb) {
388 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
389 __GFP_NORETRY);
390 if (src) {
391 copy_page(src, buf);
392 } else {
393 ret = hib_wait_io(hb); /* Free pages */
394 if (ret)
395 return ret;
396 src = (void *)__get_free_page(GFP_NOIO |
397 __GFP_NOWARN |
398 __GFP_NORETRY);
399 if (src) {
400 copy_page(src, buf);
401 } else {
402 WARN_ON_ONCE(1);
403 hb = NULL; /* Go synchronous */
404 src = buf;
405 }
406 }
407 } else {
408 src = buf;
409 }
410 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
411}
412
413static void release_swap_writer(struct swap_map_handle *handle)
414{
415 if (handle->cur)
416 free_page((unsigned long)handle->cur);
417 handle->cur = NULL;
418}
419
420static int get_swap_writer(struct swap_map_handle *handle)
421{
422 int ret;
423
424 ret = swsusp_swap_check();
425 if (ret) {
426 if (ret != -ENOSPC)
427 pr_err("Cannot find swap device, try swapon -a\n");
428 return ret;
429 }
430 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
431 if (!handle->cur) {
432 ret = -ENOMEM;
433 goto err_close;
434 }
435 handle->cur_swap = alloc_swapdev_block(root_swap);
436 if (!handle->cur_swap) {
437 ret = -ENOSPC;
438 goto err_rel;
439 }
440 handle->k = 0;
441 handle->reqd_free_pages = reqd_free_pages();
442 handle->first_sector = handle->cur_swap;
443 return 0;
444err_rel:
445 release_swap_writer(handle);
446err_close:
447 swsusp_close();
448 return ret;
449}
450
451static int swap_write_page(struct swap_map_handle *handle, void *buf,
452 struct hib_bio_batch *hb)
453{
454 int error;
455 sector_t offset;
456
457 if (!handle->cur)
458 return -EINVAL;
459 offset = alloc_swapdev_block(root_swap);
460 error = write_page(buf, offset, hb);
461 if (error)
462 return error;
463 handle->cur->entries[handle->k++] = offset;
464 if (handle->k >= MAP_PAGE_ENTRIES) {
465 offset = alloc_swapdev_block(root_swap);
466 if (!offset)
467 return -ENOSPC;
468 handle->cur->next_swap = offset;
469 error = write_page(handle->cur, handle->cur_swap, hb);
470 if (error)
471 goto out;
472 clear_page(handle->cur);
473 handle->cur_swap = offset;
474 handle->k = 0;
475
476 if (hb && low_free_pages() <= handle->reqd_free_pages) {
477 error = hib_wait_io(hb);
478 if (error)
479 goto out;
480 /*
481 * Recalculate the number of required free pages, to
482 * make sure we never take more than half.
483 */
484 handle->reqd_free_pages = reqd_free_pages();
485 }
486 }
487 out:
488 return error;
489}
490
491static int flush_swap_writer(struct swap_map_handle *handle)
492{
493 if (handle->cur && handle->cur_swap)
494 return write_page(handle->cur, handle->cur_swap, NULL);
495 else
496 return -EINVAL;
497}
498
499static int swap_writer_finish(struct swap_map_handle *handle,
500 unsigned int flags, int error)
501{
502 if (!error) {
503 pr_info("S");
504 error = mark_swapfiles(handle, flags);
505 pr_cont("|\n");
506 flush_swap_writer(handle);
507 }
508
509 if (error)
510 free_all_swap_pages(root_swap);
511 release_swap_writer(handle);
512 swsusp_close();
513
514 return error;
515}
516
517/* We need to remember how much compressed data we need to read. */
518#define LZO_HEADER sizeof(size_t)
519
520/* Number of pages/bytes we'll compress at one time. */
521#define LZO_UNC_PAGES 32
522#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
523
524/* Number of pages/bytes we need for compressed data (worst case). */
525#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
526 LZO_HEADER, PAGE_SIZE)
527#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
528
529/* Maximum number of threads for compression/decompression. */
530#define LZO_THREADS 3
531
532/* Minimum/maximum number of pages for read buffering. */
533#define LZO_MIN_RD_PAGES 1024
534#define LZO_MAX_RD_PAGES 8192
535
536
537/**
538 * save_image - save the suspend image data
539 */
540
541static int save_image(struct swap_map_handle *handle,
542 struct snapshot_handle *snapshot,
543 unsigned int nr_to_write)
544{
545 unsigned int m;
546 int ret;
547 int nr_pages;
548 int err2;
549 struct hib_bio_batch hb;
550 ktime_t start;
551 ktime_t stop;
552
553 hib_init_batch(&hb);
554
555 pr_info("Saving image data pages (%u pages)...\n",
556 nr_to_write);
557 m = nr_to_write / 10;
558 if (!m)
559 m = 1;
560 nr_pages = 0;
561 start = ktime_get();
562 while (1) {
563 ret = snapshot_read_next(snapshot);
564 if (ret <= 0)
565 break;
566 ret = swap_write_page(handle, data_of(*snapshot), &hb);
567 if (ret)
568 break;
569 if (!(nr_pages % m))
570 pr_info("Image saving progress: %3d%%\n",
571 nr_pages / m * 10);
572 nr_pages++;
573 }
574 err2 = hib_wait_io(&hb);
575 hib_finish_batch(&hb);
576 stop = ktime_get();
577 if (!ret)
578 ret = err2;
579 if (!ret)
580 pr_info("Image saving done\n");
581 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
582 return ret;
583}
584
585/*
586 * Structure used for CRC32.
587 */
588struct crc_data {
589 struct task_struct *thr; /* thread */
590 atomic_t ready; /* ready to start flag */
591 atomic_t stop; /* ready to stop flag */
592 unsigned run_threads; /* nr current threads */
593 wait_queue_head_t go; /* start crc update */
594 wait_queue_head_t done; /* crc update done */
595 u32 *crc32; /* points to handle's crc32 */
596 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
597 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
598};
599
600/*
601 * CRC32 update function that runs in its own thread.
602 */
603static int crc32_threadfn(void *data)
604{
605 struct crc_data *d = data;
606 unsigned i;
607
608 while (1) {
609 wait_event(d->go, atomic_read_acquire(&d->ready) ||
610 kthread_should_stop());
611 if (kthread_should_stop()) {
612 d->thr = NULL;
613 atomic_set_release(&d->stop, 1);
614 wake_up(&d->done);
615 break;
616 }
617 atomic_set(&d->ready, 0);
618
619 for (i = 0; i < d->run_threads; i++)
620 *d->crc32 = crc32_le(*d->crc32,
621 d->unc[i], *d->unc_len[i]);
622 atomic_set_release(&d->stop, 1);
623 wake_up(&d->done);
624 }
625 return 0;
626}
627/*
628 * Structure used for LZO data compression.
629 */
630struct cmp_data {
631 struct task_struct *thr; /* thread */
632 atomic_t ready; /* ready to start flag */
633 atomic_t stop; /* ready to stop flag */
634 int ret; /* return code */
635 wait_queue_head_t go; /* start compression */
636 wait_queue_head_t done; /* compression done */
637 size_t unc_len; /* uncompressed length */
638 size_t cmp_len; /* compressed length */
639 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
640 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
641 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
642};
643
644/*
645 * Compression function that runs in its own thread.
646 */
647static int lzo_compress_threadfn(void *data)
648{
649 struct cmp_data *d = data;
650
651 while (1) {
652 wait_event(d->go, atomic_read_acquire(&d->ready) ||
653 kthread_should_stop());
654 if (kthread_should_stop()) {
655 d->thr = NULL;
656 d->ret = -1;
657 atomic_set_release(&d->stop, 1);
658 wake_up(&d->done);
659 break;
660 }
661 atomic_set(&d->ready, 0);
662
663 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
664 d->cmp + LZO_HEADER, &d->cmp_len,
665 d->wrk);
666 atomic_set_release(&d->stop, 1);
667 wake_up(&d->done);
668 }
669 return 0;
670}
671
672/**
673 * save_image_lzo - Save the suspend image data compressed with LZO.
674 * @handle: Swap map handle to use for saving the image.
675 * @snapshot: Image to read data from.
676 * @nr_to_write: Number of pages to save.
677 */
678static int save_image_lzo(struct swap_map_handle *handle,
679 struct snapshot_handle *snapshot,
680 unsigned int nr_to_write)
681{
682 unsigned int m;
683 int ret = 0;
684 int nr_pages;
685 int err2;
686 struct hib_bio_batch hb;
687 ktime_t start;
688 ktime_t stop;
689 size_t off;
690 unsigned thr, run_threads, nr_threads;
691 unsigned char *page = NULL;
692 struct cmp_data *data = NULL;
693 struct crc_data *crc = NULL;
694
695 hib_init_batch(&hb);
696
697 /*
698 * We'll limit the number of threads for compression to limit memory
699 * footprint.
700 */
701 nr_threads = num_online_cpus() - 1;
702 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
703
704 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
705 if (!page) {
706 pr_err("Failed to allocate LZO page\n");
707 ret = -ENOMEM;
708 goto out_clean;
709 }
710
711 data = vzalloc(array_size(nr_threads, sizeof(*data)));
712 if (!data) {
713 pr_err("Failed to allocate LZO data\n");
714 ret = -ENOMEM;
715 goto out_clean;
716 }
717
718 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
719 if (!crc) {
720 pr_err("Failed to allocate crc\n");
721 ret = -ENOMEM;
722 goto out_clean;
723 }
724
725 /*
726 * Start the compression threads.
727 */
728 for (thr = 0; thr < nr_threads; thr++) {
729 init_waitqueue_head(&data[thr].go);
730 init_waitqueue_head(&data[thr].done);
731
732 data[thr].thr = kthread_run(lzo_compress_threadfn,
733 &data[thr],
734 "image_compress/%u", thr);
735 if (IS_ERR(data[thr].thr)) {
736 data[thr].thr = NULL;
737 pr_err("Cannot start compression threads\n");
738 ret = -ENOMEM;
739 goto out_clean;
740 }
741 }
742
743 /*
744 * Start the CRC32 thread.
745 */
746 init_waitqueue_head(&crc->go);
747 init_waitqueue_head(&crc->done);
748
749 handle->crc32 = 0;
750 crc->crc32 = &handle->crc32;
751 for (thr = 0; thr < nr_threads; thr++) {
752 crc->unc[thr] = data[thr].unc;
753 crc->unc_len[thr] = &data[thr].unc_len;
754 }
755
756 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
757 if (IS_ERR(crc->thr)) {
758 crc->thr = NULL;
759 pr_err("Cannot start CRC32 thread\n");
760 ret = -ENOMEM;
761 goto out_clean;
762 }
763
764 /*
765 * Adjust the number of required free pages after all allocations have
766 * been done. We don't want to run out of pages when writing.
767 */
768 handle->reqd_free_pages = reqd_free_pages();
769
770 pr_info("Using %u thread(s) for compression\n", nr_threads);
771 pr_info("Compressing and saving image data (%u pages)...\n",
772 nr_to_write);
773 m = nr_to_write / 10;
774 if (!m)
775 m = 1;
776 nr_pages = 0;
777 start = ktime_get();
778 for (;;) {
779 for (thr = 0; thr < nr_threads; thr++) {
780 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
781 ret = snapshot_read_next(snapshot);
782 if (ret < 0)
783 goto out_finish;
784
785 if (!ret)
786 break;
787
788 memcpy(data[thr].unc + off,
789 data_of(*snapshot), PAGE_SIZE);
790
791 if (!(nr_pages % m))
792 pr_info("Image saving progress: %3d%%\n",
793 nr_pages / m * 10);
794 nr_pages++;
795 }
796 if (!off)
797 break;
798
799 data[thr].unc_len = off;
800
801 atomic_set_release(&data[thr].ready, 1);
802 wake_up(&data[thr].go);
803 }
804
805 if (!thr)
806 break;
807
808 crc->run_threads = thr;
809 atomic_set_release(&crc->ready, 1);
810 wake_up(&crc->go);
811
812 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
813 wait_event(data[thr].done,
814 atomic_read_acquire(&data[thr].stop));
815 atomic_set(&data[thr].stop, 0);
816
817 ret = data[thr].ret;
818
819 if (ret < 0) {
820 pr_err("LZO compression failed\n");
821 goto out_finish;
822 }
823
824 if (unlikely(!data[thr].cmp_len ||
825 data[thr].cmp_len >
826 lzo1x_worst_compress(data[thr].unc_len))) {
827 pr_err("Invalid LZO compressed length\n");
828 ret = -1;
829 goto out_finish;
830 }
831
832 *(size_t *)data[thr].cmp = data[thr].cmp_len;
833
834 /*
835 * Given we are writing one page at a time to disk, we
836 * copy that much from the buffer, although the last
837 * bit will likely be smaller than full page. This is
838 * OK - we saved the length of the compressed data, so
839 * any garbage at the end will be discarded when we
840 * read it.
841 */
842 for (off = 0;
843 off < LZO_HEADER + data[thr].cmp_len;
844 off += PAGE_SIZE) {
845 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
846
847 ret = swap_write_page(handle, page, &hb);
848 if (ret)
849 goto out_finish;
850 }
851 }
852
853 wait_event(crc->done, atomic_read_acquire(&crc->stop));
854 atomic_set(&crc->stop, 0);
855 }
856
857out_finish:
858 err2 = hib_wait_io(&hb);
859 stop = ktime_get();
860 if (!ret)
861 ret = err2;
862 if (!ret)
863 pr_info("Image saving done\n");
864 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
865out_clean:
866 hib_finish_batch(&hb);
867 if (crc) {
868 if (crc->thr)
869 kthread_stop(crc->thr);
870 kfree(crc);
871 }
872 if (data) {
873 for (thr = 0; thr < nr_threads; thr++)
874 if (data[thr].thr)
875 kthread_stop(data[thr].thr);
876 vfree(data);
877 }
878 if (page) free_page((unsigned long)page);
879
880 return ret;
881}
882
883/**
884 * enough_swap - Make sure we have enough swap to save the image.
885 *
886 * Returns TRUE or FALSE after checking the total amount of swap
887 * space available from the resume partition.
888 */
889
890static int enough_swap(unsigned int nr_pages)
891{
892 unsigned int free_swap = count_swap_pages(root_swap, 1);
893 unsigned int required;
894
895 pr_debug("Free swap pages: %u\n", free_swap);
896
897 required = PAGES_FOR_IO + nr_pages;
898 return free_swap > required;
899}
900
901/**
902 * swsusp_write - Write entire image and metadata.
903 * @flags: flags to pass to the "boot" kernel in the image header
904 *
905 * It is important _NOT_ to umount filesystems at this point. We want
906 * them synced (in case something goes wrong) but we DO not want to mark
907 * filesystem clean: it is not. (And it does not matter, if we resume
908 * correctly, we'll mark system clean, anyway.)
909 */
910
911int swsusp_write(unsigned int flags)
912{
913 struct swap_map_handle handle;
914 struct snapshot_handle snapshot;
915 struct swsusp_info *header;
916 unsigned long pages;
917 int error;
918
919 pages = snapshot_get_image_size();
920 error = get_swap_writer(&handle);
921 if (error) {
922 pr_err("Cannot get swap writer\n");
923 return error;
924 }
925 if (flags & SF_NOCOMPRESS_MODE) {
926 if (!enough_swap(pages)) {
927 pr_err("Not enough free swap\n");
928 error = -ENOSPC;
929 goto out_finish;
930 }
931 }
932 memset(&snapshot, 0, sizeof(struct snapshot_handle));
933 error = snapshot_read_next(&snapshot);
934 if (error < (int)PAGE_SIZE) {
935 if (error >= 0)
936 error = -EFAULT;
937
938 goto out_finish;
939 }
940 header = (struct swsusp_info *)data_of(snapshot);
941 error = swap_write_page(&handle, header, NULL);
942 if (!error) {
943 error = (flags & SF_NOCOMPRESS_MODE) ?
944 save_image(&handle, &snapshot, pages - 1) :
945 save_image_lzo(&handle, &snapshot, pages - 1);
946 }
947out_finish:
948 error = swap_writer_finish(&handle, flags, error);
949 return error;
950}
951
952/*
953 * The following functions allow us to read data using a swap map
954 * in a file-like way.
955 */
956
957static void release_swap_reader(struct swap_map_handle *handle)
958{
959 struct swap_map_page_list *tmp;
960
961 while (handle->maps) {
962 if (handle->maps->map)
963 free_page((unsigned long)handle->maps->map);
964 tmp = handle->maps;
965 handle->maps = handle->maps->next;
966 kfree(tmp);
967 }
968 handle->cur = NULL;
969}
970
971static int get_swap_reader(struct swap_map_handle *handle,
972 unsigned int *flags_p)
973{
974 int error;
975 struct swap_map_page_list *tmp, *last;
976 sector_t offset;
977
978 *flags_p = swsusp_header->flags;
979
980 if (!swsusp_header->image) /* how can this happen? */
981 return -EINVAL;
982
983 handle->cur = NULL;
984 last = handle->maps = NULL;
985 offset = swsusp_header->image;
986 while (offset) {
987 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
988 if (!tmp) {
989 release_swap_reader(handle);
990 return -ENOMEM;
991 }
992 if (!handle->maps)
993 handle->maps = tmp;
994 if (last)
995 last->next = tmp;
996 last = tmp;
997
998 tmp->map = (struct swap_map_page *)
999 __get_free_page(GFP_NOIO | __GFP_HIGH);
1000 if (!tmp->map) {
1001 release_swap_reader(handle);
1002 return -ENOMEM;
1003 }
1004
1005 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1006 if (error) {
1007 release_swap_reader(handle);
1008 return error;
1009 }
1010 offset = tmp->map->next_swap;
1011 }
1012 handle->k = 0;
1013 handle->cur = handle->maps->map;
1014 return 0;
1015}
1016
1017static int swap_read_page(struct swap_map_handle *handle, void *buf,
1018 struct hib_bio_batch *hb)
1019{
1020 sector_t offset;
1021 int error;
1022 struct swap_map_page_list *tmp;
1023
1024 if (!handle->cur)
1025 return -EINVAL;
1026 offset = handle->cur->entries[handle->k];
1027 if (!offset)
1028 return -EFAULT;
1029 error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1030 if (error)
1031 return error;
1032 if (++handle->k >= MAP_PAGE_ENTRIES) {
1033 handle->k = 0;
1034 free_page((unsigned long)handle->maps->map);
1035 tmp = handle->maps;
1036 handle->maps = handle->maps->next;
1037 kfree(tmp);
1038 if (!handle->maps)
1039 release_swap_reader(handle);
1040 else
1041 handle->cur = handle->maps->map;
1042 }
1043 return error;
1044}
1045
1046static int swap_reader_finish(struct swap_map_handle *handle)
1047{
1048 release_swap_reader(handle);
1049
1050 return 0;
1051}
1052
1053/**
1054 * load_image - load the image using the swap map handle
1055 * @handle and the snapshot handle @snapshot
1056 * (assume there are @nr_pages pages to load)
1057 */
1058
1059static int load_image(struct swap_map_handle *handle,
1060 struct snapshot_handle *snapshot,
1061 unsigned int nr_to_read)
1062{
1063 unsigned int m;
1064 int ret = 0;
1065 ktime_t start;
1066 ktime_t stop;
1067 struct hib_bio_batch hb;
1068 int err2;
1069 unsigned nr_pages;
1070
1071 hib_init_batch(&hb);
1072
1073 clean_pages_on_read = true;
1074 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1075 m = nr_to_read / 10;
1076 if (!m)
1077 m = 1;
1078 nr_pages = 0;
1079 start = ktime_get();
1080 for ( ; ; ) {
1081 ret = snapshot_write_next(snapshot);
1082 if (ret <= 0)
1083 break;
1084 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1085 if (ret)
1086 break;
1087 if (snapshot->sync_read)
1088 ret = hib_wait_io(&hb);
1089 if (ret)
1090 break;
1091 if (!(nr_pages % m))
1092 pr_info("Image loading progress: %3d%%\n",
1093 nr_pages / m * 10);
1094 nr_pages++;
1095 }
1096 err2 = hib_wait_io(&hb);
1097 hib_finish_batch(&hb);
1098 stop = ktime_get();
1099 if (!ret)
1100 ret = err2;
1101 if (!ret) {
1102 pr_info("Image loading done\n");
1103 snapshot_write_finalize(snapshot);
1104 if (!snapshot_image_loaded(snapshot))
1105 ret = -ENODATA;
1106 }
1107 swsusp_show_speed(start, stop, nr_to_read, "Read");
1108 return ret;
1109}
1110
1111/*
1112 * Structure used for LZO data decompression.
1113 */
1114struct dec_data {
1115 struct task_struct *thr; /* thread */
1116 atomic_t ready; /* ready to start flag */
1117 atomic_t stop; /* ready to stop flag */
1118 int ret; /* return code */
1119 wait_queue_head_t go; /* start decompression */
1120 wait_queue_head_t done; /* decompression done */
1121 size_t unc_len; /* uncompressed length */
1122 size_t cmp_len; /* compressed length */
1123 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1124 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1125};
1126
1127/*
1128 * Decompression function that runs in its own thread.
1129 */
1130static int lzo_decompress_threadfn(void *data)
1131{
1132 struct dec_data *d = data;
1133
1134 while (1) {
1135 wait_event(d->go, atomic_read_acquire(&d->ready) ||
1136 kthread_should_stop());
1137 if (kthread_should_stop()) {
1138 d->thr = NULL;
1139 d->ret = -1;
1140 atomic_set_release(&d->stop, 1);
1141 wake_up(&d->done);
1142 break;
1143 }
1144 atomic_set(&d->ready, 0);
1145
1146 d->unc_len = LZO_UNC_SIZE;
1147 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1148 d->unc, &d->unc_len);
1149 if (clean_pages_on_decompress)
1150 flush_icache_range((unsigned long)d->unc,
1151 (unsigned long)d->unc + d->unc_len);
1152
1153 atomic_set_release(&d->stop, 1);
1154 wake_up(&d->done);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * load_image_lzo - Load compressed image data and decompress them with LZO.
1161 * @handle: Swap map handle to use for loading data.
1162 * @snapshot: Image to copy uncompressed data into.
1163 * @nr_to_read: Number of pages to load.
1164 */
1165static int load_image_lzo(struct swap_map_handle *handle,
1166 struct snapshot_handle *snapshot,
1167 unsigned int nr_to_read)
1168{
1169 unsigned int m;
1170 int ret = 0;
1171 int eof = 0;
1172 struct hib_bio_batch hb;
1173 ktime_t start;
1174 ktime_t stop;
1175 unsigned nr_pages;
1176 size_t off;
1177 unsigned i, thr, run_threads, nr_threads;
1178 unsigned ring = 0, pg = 0, ring_size = 0,
1179 have = 0, want, need, asked = 0;
1180 unsigned long read_pages = 0;
1181 unsigned char **page = NULL;
1182 struct dec_data *data = NULL;
1183 struct crc_data *crc = NULL;
1184
1185 hib_init_batch(&hb);
1186
1187 /*
1188 * We'll limit the number of threads for decompression to limit memory
1189 * footprint.
1190 */
1191 nr_threads = num_online_cpus() - 1;
1192 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1193
1194 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1195 if (!page) {
1196 pr_err("Failed to allocate LZO page\n");
1197 ret = -ENOMEM;
1198 goto out_clean;
1199 }
1200
1201 data = vzalloc(array_size(nr_threads, sizeof(*data)));
1202 if (!data) {
1203 pr_err("Failed to allocate LZO data\n");
1204 ret = -ENOMEM;
1205 goto out_clean;
1206 }
1207
1208 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1209 if (!crc) {
1210 pr_err("Failed to allocate crc\n");
1211 ret = -ENOMEM;
1212 goto out_clean;
1213 }
1214
1215 clean_pages_on_decompress = true;
1216
1217 /*
1218 * Start the decompression threads.
1219 */
1220 for (thr = 0; thr < nr_threads; thr++) {
1221 init_waitqueue_head(&data[thr].go);
1222 init_waitqueue_head(&data[thr].done);
1223
1224 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225 &data[thr],
1226 "image_decompress/%u", thr);
1227 if (IS_ERR(data[thr].thr)) {
1228 data[thr].thr = NULL;
1229 pr_err("Cannot start decompression threads\n");
1230 ret = -ENOMEM;
1231 goto out_clean;
1232 }
1233 }
1234
1235 /*
1236 * Start the CRC32 thread.
1237 */
1238 init_waitqueue_head(&crc->go);
1239 init_waitqueue_head(&crc->done);
1240
1241 handle->crc32 = 0;
1242 crc->crc32 = &handle->crc32;
1243 for (thr = 0; thr < nr_threads; thr++) {
1244 crc->unc[thr] = data[thr].unc;
1245 crc->unc_len[thr] = &data[thr].unc_len;
1246 }
1247
1248 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1249 if (IS_ERR(crc->thr)) {
1250 crc->thr = NULL;
1251 pr_err("Cannot start CRC32 thread\n");
1252 ret = -ENOMEM;
1253 goto out_clean;
1254 }
1255
1256 /*
1257 * Set the number of pages for read buffering.
1258 * This is complete guesswork, because we'll only know the real
1259 * picture once prepare_image() is called, which is much later on
1260 * during the image load phase. We'll assume the worst case and
1261 * say that none of the image pages are from high memory.
1262 */
1263 if (low_free_pages() > snapshot_get_image_size())
1264 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1265 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1266
1267 for (i = 0; i < read_pages; i++) {
1268 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1269 GFP_NOIO | __GFP_HIGH :
1270 GFP_NOIO | __GFP_NOWARN |
1271 __GFP_NORETRY);
1272
1273 if (!page[i]) {
1274 if (i < LZO_CMP_PAGES) {
1275 ring_size = i;
1276 pr_err("Failed to allocate LZO pages\n");
1277 ret = -ENOMEM;
1278 goto out_clean;
1279 } else {
1280 break;
1281 }
1282 }
1283 }
1284 want = ring_size = i;
1285
1286 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1287 pr_info("Loading and decompressing image data (%u pages)...\n",
1288 nr_to_read);
1289 m = nr_to_read / 10;
1290 if (!m)
1291 m = 1;
1292 nr_pages = 0;
1293 start = ktime_get();
1294
1295 ret = snapshot_write_next(snapshot);
1296 if (ret <= 0)
1297 goto out_finish;
1298
1299 for(;;) {
1300 for (i = 0; !eof && i < want; i++) {
1301 ret = swap_read_page(handle, page[ring], &hb);
1302 if (ret) {
1303 /*
1304 * On real read error, finish. On end of data,
1305 * set EOF flag and just exit the read loop.
1306 */
1307 if (handle->cur &&
1308 handle->cur->entries[handle->k]) {
1309 goto out_finish;
1310 } else {
1311 eof = 1;
1312 break;
1313 }
1314 }
1315 if (++ring >= ring_size)
1316 ring = 0;
1317 }
1318 asked += i;
1319 want -= i;
1320
1321 /*
1322 * We are out of data, wait for some more.
1323 */
1324 if (!have) {
1325 if (!asked)
1326 break;
1327
1328 ret = hib_wait_io(&hb);
1329 if (ret)
1330 goto out_finish;
1331 have += asked;
1332 asked = 0;
1333 if (eof)
1334 eof = 2;
1335 }
1336
1337 if (crc->run_threads) {
1338 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1339 atomic_set(&crc->stop, 0);
1340 crc->run_threads = 0;
1341 }
1342
1343 for (thr = 0; have && thr < nr_threads; thr++) {
1344 data[thr].cmp_len = *(size_t *)page[pg];
1345 if (unlikely(!data[thr].cmp_len ||
1346 data[thr].cmp_len >
1347 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1348 pr_err("Invalid LZO compressed length\n");
1349 ret = -1;
1350 goto out_finish;
1351 }
1352
1353 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1354 PAGE_SIZE);
1355 if (need > have) {
1356 if (eof > 1) {
1357 ret = -1;
1358 goto out_finish;
1359 }
1360 break;
1361 }
1362
1363 for (off = 0;
1364 off < LZO_HEADER + data[thr].cmp_len;
1365 off += PAGE_SIZE) {
1366 memcpy(data[thr].cmp + off,
1367 page[pg], PAGE_SIZE);
1368 have--;
1369 want++;
1370 if (++pg >= ring_size)
1371 pg = 0;
1372 }
1373
1374 atomic_set_release(&data[thr].ready, 1);
1375 wake_up(&data[thr].go);
1376 }
1377
1378 /*
1379 * Wait for more data while we are decompressing.
1380 */
1381 if (have < LZO_CMP_PAGES && asked) {
1382 ret = hib_wait_io(&hb);
1383 if (ret)
1384 goto out_finish;
1385 have += asked;
1386 asked = 0;
1387 if (eof)
1388 eof = 2;
1389 }
1390
1391 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1392 wait_event(data[thr].done,
1393 atomic_read_acquire(&data[thr].stop));
1394 atomic_set(&data[thr].stop, 0);
1395
1396 ret = data[thr].ret;
1397
1398 if (ret < 0) {
1399 pr_err("LZO decompression failed\n");
1400 goto out_finish;
1401 }
1402
1403 if (unlikely(!data[thr].unc_len ||
1404 data[thr].unc_len > LZO_UNC_SIZE ||
1405 data[thr].unc_len & (PAGE_SIZE - 1))) {
1406 pr_err("Invalid LZO uncompressed length\n");
1407 ret = -1;
1408 goto out_finish;
1409 }
1410
1411 for (off = 0;
1412 off < data[thr].unc_len; off += PAGE_SIZE) {
1413 memcpy(data_of(*snapshot),
1414 data[thr].unc + off, PAGE_SIZE);
1415
1416 if (!(nr_pages % m))
1417 pr_info("Image loading progress: %3d%%\n",
1418 nr_pages / m * 10);
1419 nr_pages++;
1420
1421 ret = snapshot_write_next(snapshot);
1422 if (ret <= 0) {
1423 crc->run_threads = thr + 1;
1424 atomic_set_release(&crc->ready, 1);
1425 wake_up(&crc->go);
1426 goto out_finish;
1427 }
1428 }
1429 }
1430
1431 crc->run_threads = thr;
1432 atomic_set_release(&crc->ready, 1);
1433 wake_up(&crc->go);
1434 }
1435
1436out_finish:
1437 if (crc->run_threads) {
1438 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1439 atomic_set(&crc->stop, 0);
1440 }
1441 stop = ktime_get();
1442 if (!ret) {
1443 pr_info("Image loading done\n");
1444 snapshot_write_finalize(snapshot);
1445 if (!snapshot_image_loaded(snapshot))
1446 ret = -ENODATA;
1447 if (!ret) {
1448 if (swsusp_header->flags & SF_CRC32_MODE) {
1449 if(handle->crc32 != swsusp_header->crc32) {
1450 pr_err("Invalid image CRC32!\n");
1451 ret = -ENODATA;
1452 }
1453 }
1454 }
1455 }
1456 swsusp_show_speed(start, stop, nr_to_read, "Read");
1457out_clean:
1458 hib_finish_batch(&hb);
1459 for (i = 0; i < ring_size; i++)
1460 free_page((unsigned long)page[i]);
1461 if (crc) {
1462 if (crc->thr)
1463 kthread_stop(crc->thr);
1464 kfree(crc);
1465 }
1466 if (data) {
1467 for (thr = 0; thr < nr_threads; thr++)
1468 if (data[thr].thr)
1469 kthread_stop(data[thr].thr);
1470 vfree(data);
1471 }
1472 vfree(page);
1473
1474 return ret;
1475}
1476
1477/**
1478 * swsusp_read - read the hibernation image.
1479 * @flags_p: flags passed by the "frozen" kernel in the image header should
1480 * be written into this memory location
1481 */
1482
1483int swsusp_read(unsigned int *flags_p)
1484{
1485 int error;
1486 struct swap_map_handle handle;
1487 struct snapshot_handle snapshot;
1488 struct swsusp_info *header;
1489
1490 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1491 error = snapshot_write_next(&snapshot);
1492 if (error < (int)PAGE_SIZE)
1493 return error < 0 ? error : -EFAULT;
1494 header = (struct swsusp_info *)data_of(snapshot);
1495 error = get_swap_reader(&handle, flags_p);
1496 if (error)
1497 goto end;
1498 if (!error)
1499 error = swap_read_page(&handle, header, NULL);
1500 if (!error) {
1501 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1502 load_image(&handle, &snapshot, header->pages - 1) :
1503 load_image_lzo(&handle, &snapshot, header->pages - 1);
1504 }
1505 swap_reader_finish(&handle);
1506end:
1507 if (!error)
1508 pr_debug("Image successfully loaded\n");
1509 else
1510 pr_debug("Error %d resuming\n", error);
1511 return error;
1512}
1513
1514static void *swsusp_holder;
1515
1516/**
1517 * swsusp_check - Open the resume device and check for the swsusp signature.
1518 * @exclusive: Open the resume device exclusively.
1519 */
1520
1521int swsusp_check(bool exclusive)
1522{
1523 void *holder = exclusive ? &swsusp_holder : NULL;
1524 int error;
1525
1526 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
1527 BLK_OPEN_READ, holder, NULL);
1528 if (!IS_ERR(hib_resume_bdev_handle)) {
1529 set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
1530 clear_page(swsusp_header);
1531 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1532 swsusp_header, NULL);
1533 if (error)
1534 goto put;
1535
1536 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1537 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1538 /* Reset swap signature now */
1539 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1540 swsusp_resume_block,
1541 swsusp_header, NULL);
1542 } else {
1543 error = -EINVAL;
1544 }
1545 if (!error && swsusp_header->flags & SF_HW_SIG &&
1546 swsusp_header->hw_sig != swsusp_hardware_signature) {
1547 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1548 swsusp_header->hw_sig, swsusp_hardware_signature);
1549 error = -EINVAL;
1550 }
1551
1552put:
1553 if (error)
1554 bdev_release(hib_resume_bdev_handle);
1555 else
1556 pr_debug("Image signature found, resuming\n");
1557 } else {
1558 error = PTR_ERR(hib_resume_bdev_handle);
1559 }
1560
1561 if (error)
1562 pr_debug("Image not found (code %d)\n", error);
1563
1564 return error;
1565}
1566
1567/**
1568 * swsusp_close - close resume device.
1569 */
1570
1571void swsusp_close(void)
1572{
1573 if (IS_ERR(hib_resume_bdev_handle)) {
1574 pr_debug("Image device not initialised\n");
1575 return;
1576 }
1577
1578 bdev_release(hib_resume_bdev_handle);
1579}
1580
1581/**
1582 * swsusp_unmark - Unmark swsusp signature in the resume device
1583 */
1584
1585#ifdef CONFIG_SUSPEND
1586int swsusp_unmark(void)
1587{
1588 int error;
1589
1590 hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1591 swsusp_header, NULL);
1592 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1593 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1594 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1595 swsusp_resume_block,
1596 swsusp_header, NULL);
1597 } else {
1598 pr_err("Cannot find swsusp signature!\n");
1599 error = -ENODEV;
1600 }
1601
1602 /*
1603 * We just returned from suspend, we don't need the image any more.
1604 */
1605 free_all_swap_pages(root_swap);
1606
1607 return error;
1608}
1609#endif
1610
1611static int __init swsusp_header_init(void)
1612{
1613 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1614 if (!swsusp_header)
1615 panic("Could not allocate memory for swsusp_header\n");
1616 return 0;
1617}
1618
1619core_initcall(swsusp_header_init);