Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.6
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
 
 
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
  33#include <linux/ktime.h>
  34
  35#include "power.h"
  36
  37#define HIBERNATE_SIG	"S1SUSPEND"
  38
  39/*
 
 
 
 
 
 
 
 
  40 *	The swap map is a data structure used for keeping track of each page
  41 *	written to a swap partition.  It consists of many swap_map_page
  42 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  43 *	These structures are stored on the swap and linked together with the
  44 *	help of the .next_swap member.
  45 *
  46 *	The swap map is created during suspend.  The swap map pages are
  47 *	allocated and populated one at a time, so we only need one memory
  48 *	page to set up the entire structure.
  49 *
  50 *	During resume we pick up all swap_map_page structures into a list.
  51 */
  52
  53#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  54
  55/*
  56 * Number of free pages that are not high.
  57 */
  58static inline unsigned long low_free_pages(void)
  59{
  60	return nr_free_pages() - nr_free_highpages();
  61}
  62
  63/*
  64 * Number of pages required to be kept free while writing the image. Always
  65 * half of all available low pages before the writing starts.
  66 */
  67static inline unsigned long reqd_free_pages(void)
  68{
  69	return low_free_pages() / 2;
  70}
  71
  72struct swap_map_page {
  73	sector_t entries[MAP_PAGE_ENTRIES];
  74	sector_t next_swap;
  75};
  76
  77struct swap_map_page_list {
  78	struct swap_map_page *map;
  79	struct swap_map_page_list *next;
  80};
  81
  82/**
  83 *	The swap_map_handle structure is used for handling swap in
  84 *	a file-alike way
  85 */
  86
  87struct swap_map_handle {
  88	struct swap_map_page *cur;
  89	struct swap_map_page_list *maps;
  90	sector_t cur_swap;
  91	sector_t first_sector;
  92	unsigned int k;
  93	unsigned long reqd_free_pages;
  94	u32 crc32;
  95};
  96
  97struct swsusp_header {
  98	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
  99	              sizeof(u32)];
 100	u32	crc32;
 101	sector_t image;
 102	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 103	char	orig_sig[10];
 104	char	sig[10];
 105} __packed;
 106
 107static struct swsusp_header *swsusp_header;
 108
 109/**
 110 *	The following functions are used for tracing the allocated
 111 *	swap pages, so that they can be freed in case of an error.
 112 */
 113
 114struct swsusp_extent {
 115	struct rb_node node;
 116	unsigned long start;
 117	unsigned long end;
 118};
 119
 120static struct rb_root swsusp_extents = RB_ROOT;
 121
 122static int swsusp_extents_insert(unsigned long swap_offset)
 123{
 124	struct rb_node **new = &(swsusp_extents.rb_node);
 125	struct rb_node *parent = NULL;
 126	struct swsusp_extent *ext;
 127
 128	/* Figure out where to put the new node */
 129	while (*new) {
 130		ext = rb_entry(*new, struct swsusp_extent, node);
 131		parent = *new;
 132		if (swap_offset < ext->start) {
 133			/* Try to merge */
 134			if (swap_offset == ext->start - 1) {
 135				ext->start--;
 136				return 0;
 137			}
 138			new = &((*new)->rb_left);
 139		} else if (swap_offset > ext->end) {
 140			/* Try to merge */
 141			if (swap_offset == ext->end + 1) {
 142				ext->end++;
 143				return 0;
 144			}
 145			new = &((*new)->rb_right);
 146		} else {
 147			/* It already is in the tree */
 148			return -EINVAL;
 149		}
 150	}
 151	/* Add the new node and rebalance the tree. */
 152	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 153	if (!ext)
 154		return -ENOMEM;
 155
 156	ext->start = swap_offset;
 157	ext->end = swap_offset;
 158	rb_link_node(&ext->node, parent, new);
 159	rb_insert_color(&ext->node, &swsusp_extents);
 160	return 0;
 161}
 162
 163/**
 164 *	alloc_swapdev_block - allocate a swap page and register that it has
 165 *	been allocated, so that it can be freed in case of an error.
 166 */
 167
 168sector_t alloc_swapdev_block(int swap)
 169{
 170	unsigned long offset;
 171
 172	offset = swp_offset(get_swap_page_of_type(swap));
 173	if (offset) {
 174		if (swsusp_extents_insert(offset))
 175			swap_free(swp_entry(swap, offset));
 176		else
 177			return swapdev_block(swap, offset);
 178	}
 179	return 0;
 180}
 181
 182/**
 183 *	free_all_swap_pages - free swap pages allocated for saving image data.
 184 *	It also frees the extents used to register which swap entries had been
 185 *	allocated.
 186 */
 187
 188void free_all_swap_pages(int swap)
 189{
 190	struct rb_node *node;
 191
 192	while ((node = swsusp_extents.rb_node)) {
 193		struct swsusp_extent *ext;
 194		unsigned long offset;
 195
 196		ext = container_of(node, struct swsusp_extent, node);
 197		rb_erase(node, &swsusp_extents);
 198		for (offset = ext->start; offset <= ext->end; offset++)
 199			swap_free(swp_entry(swap, offset));
 200
 201		kfree(ext);
 202	}
 203}
 204
 205int swsusp_swap_in_use(void)
 206{
 207	return (swsusp_extents.rb_node != NULL);
 208}
 209
 210/*
 211 * General things
 212 */
 213
 214static unsigned short root_swap = 0xffff;
 215static struct block_device *hib_resume_bdev;
 216
 217struct hib_bio_batch {
 218	atomic_t		count;
 219	wait_queue_head_t	wait;
 220	int			error;
 221};
 222
 223static void hib_init_batch(struct hib_bio_batch *hb)
 224{
 225	atomic_set(&hb->count, 0);
 226	init_waitqueue_head(&hb->wait);
 227	hb->error = 0;
 228}
 229
 230static void hib_end_io(struct bio *bio)
 231{
 232	struct hib_bio_batch *hb = bio->bi_private;
 233	struct page *page = bio->bi_io_vec[0].bv_page;
 234
 235	if (bio->bi_error) {
 236		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
 237				imajor(bio->bi_bdev->bd_inode),
 238				iminor(bio->bi_bdev->bd_inode),
 239				(unsigned long long)bio->bi_iter.bi_sector);
 240	}
 241
 242	if (bio_data_dir(bio) == WRITE)
 243		put_page(page);
 
 
 
 244
 245	if (bio->bi_error && !hb->error)
 246		hb->error = bio->bi_error;
 247	if (atomic_dec_and_test(&hb->count))
 248		wake_up(&hb->wait);
 249
 250	bio_put(bio);
 251}
 252
 253static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
 254		struct hib_bio_batch *hb)
 255{
 256	struct page *page = virt_to_page(addr);
 257	struct bio *bio;
 258	int error = 0;
 259
 260	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
 261	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 262	bio->bi_bdev = hib_resume_bdev;
 
 263
 264	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 265		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
 266			(unsigned long long)bio->bi_iter.bi_sector);
 267		bio_put(bio);
 268		return -EFAULT;
 269	}
 270
 271	if (hb) {
 272		bio->bi_end_io = hib_end_io;
 273		bio->bi_private = hb;
 274		atomic_inc(&hb->count);
 275		submit_bio(rw, bio);
 276	} else {
 277		error = submit_bio_wait(rw, bio);
 278		bio_put(bio);
 279	}
 280
 281	return error;
 282}
 283
 284static int hib_wait_io(struct hib_bio_batch *hb)
 285{
 286	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 287	return hb->error;
 288}
 289
 290/*
 291 * Saving part
 292 */
 293
 294static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 295{
 296	int error;
 297
 298	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
 
 299	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 300	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 301		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 302		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 303		swsusp_header->image = handle->first_sector;
 304		swsusp_header->flags = flags;
 305		if (flags & SF_CRC32_MODE)
 306			swsusp_header->crc32 = handle->crc32;
 307		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 308					swsusp_header, NULL);
 309	} else {
 310		printk(KERN_ERR "PM: Swap header not found!\n");
 311		error = -ENODEV;
 312	}
 313	return error;
 314}
 315
 316/**
 317 *	swsusp_swap_check - check if the resume device is a swap device
 318 *	and get its index (if so)
 319 *
 320 *	This is called before saving image
 321 */
 322static int swsusp_swap_check(void)
 323{
 324	int res;
 325
 326	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 327			&hib_resume_bdev);
 328	if (res < 0)
 329		return res;
 330
 331	root_swap = res;
 332	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 333	if (res)
 334		return res;
 335
 336	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 337	if (res < 0)
 338		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 339
 
 
 
 
 
 
 340	return res;
 341}
 342
 343/**
 344 *	write_page - Write one page to given swap location.
 345 *	@buf:		Address we're writing.
 346 *	@offset:	Offset of the swap page we're writing to.
 347 *	@hb:		bio completion batch
 348 */
 349
 350static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 351{
 352	void *src;
 353	int ret;
 354
 355	if (!offset)
 356		return -ENOSPC;
 357
 358	if (hb) {
 359		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
 360		                              __GFP_NORETRY);
 361		if (src) {
 362			copy_page(src, buf);
 363		} else {
 364			ret = hib_wait_io(hb); /* Free pages */
 365			if (ret)
 366				return ret;
 367			src = (void *)__get_free_page(__GFP_RECLAIM |
 368			                              __GFP_NOWARN |
 369			                              __GFP_NORETRY);
 370			if (src) {
 371				copy_page(src, buf);
 372			} else {
 373				WARN_ON_ONCE(1);
 374				hb = NULL;	/* Go synchronous */
 375				src = buf;
 376			}
 377		}
 378	} else {
 379		src = buf;
 380	}
 381	return hib_submit_io(WRITE_SYNC, offset, src, hb);
 382}
 383
 384static void release_swap_writer(struct swap_map_handle *handle)
 385{
 386	if (handle->cur)
 387		free_page((unsigned long)handle->cur);
 388	handle->cur = NULL;
 389}
 390
 391static int get_swap_writer(struct swap_map_handle *handle)
 392{
 393	int ret;
 394
 395	ret = swsusp_swap_check();
 396	if (ret) {
 397		if (ret != -ENOSPC)
 398			printk(KERN_ERR "PM: Cannot find swap device, try "
 399					"swapon -a.\n");
 400		return ret;
 401	}
 402	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 403	if (!handle->cur) {
 404		ret = -ENOMEM;
 405		goto err_close;
 406	}
 407	handle->cur_swap = alloc_swapdev_block(root_swap);
 408	if (!handle->cur_swap) {
 409		ret = -ENOSPC;
 410		goto err_rel;
 411	}
 412	handle->k = 0;
 413	handle->reqd_free_pages = reqd_free_pages();
 414	handle->first_sector = handle->cur_swap;
 415	return 0;
 416err_rel:
 417	release_swap_writer(handle);
 418err_close:
 419	swsusp_close(FMODE_WRITE);
 420	return ret;
 421}
 422
 423static int swap_write_page(struct swap_map_handle *handle, void *buf,
 424		struct hib_bio_batch *hb)
 425{
 426	int error = 0;
 427	sector_t offset;
 428
 429	if (!handle->cur)
 430		return -EINVAL;
 431	offset = alloc_swapdev_block(root_swap);
 432	error = write_page(buf, offset, hb);
 433	if (error)
 434		return error;
 435	handle->cur->entries[handle->k++] = offset;
 436	if (handle->k >= MAP_PAGE_ENTRIES) {
 437		offset = alloc_swapdev_block(root_swap);
 438		if (!offset)
 439			return -ENOSPC;
 440		handle->cur->next_swap = offset;
 441		error = write_page(handle->cur, handle->cur_swap, hb);
 442		if (error)
 443			goto out;
 444		clear_page(handle->cur);
 445		handle->cur_swap = offset;
 446		handle->k = 0;
 447
 448		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 449			error = hib_wait_io(hb);
 450			if (error)
 451				goto out;
 452			/*
 453			 * Recalculate the number of required free pages, to
 454			 * make sure we never take more than half.
 455			 */
 456			handle->reqd_free_pages = reqd_free_pages();
 457		}
 458	}
 459 out:
 460	return error;
 461}
 462
 463static int flush_swap_writer(struct swap_map_handle *handle)
 464{
 465	if (handle->cur && handle->cur_swap)
 466		return write_page(handle->cur, handle->cur_swap, NULL);
 467	else
 468		return -EINVAL;
 469}
 470
 471static int swap_writer_finish(struct swap_map_handle *handle,
 472		unsigned int flags, int error)
 473{
 474	if (!error) {
 475		flush_swap_writer(handle);
 476		printk(KERN_INFO "PM: S");
 477		error = mark_swapfiles(handle, flags);
 478		printk("|\n");
 479	}
 480
 481	if (error)
 482		free_all_swap_pages(root_swap);
 483	release_swap_writer(handle);
 484	swsusp_close(FMODE_WRITE);
 485
 486	return error;
 487}
 488
 489/* We need to remember how much compressed data we need to read. */
 490#define LZO_HEADER	sizeof(size_t)
 491
 492/* Number of pages/bytes we'll compress at one time. */
 493#define LZO_UNC_PAGES	32
 494#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 495
 496/* Number of pages/bytes we need for compressed data (worst case). */
 497#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 498			             LZO_HEADER, PAGE_SIZE)
 499#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 500
 501/* Maximum number of threads for compression/decompression. */
 502#define LZO_THREADS	3
 503
 504/* Minimum/maximum number of pages for read buffering. */
 505#define LZO_MIN_RD_PAGES	1024
 506#define LZO_MAX_RD_PAGES	8192
 507
 508
 509/**
 510 *	save_image - save the suspend image data
 511 */
 512
 513static int save_image(struct swap_map_handle *handle,
 514                      struct snapshot_handle *snapshot,
 515                      unsigned int nr_to_write)
 516{
 517	unsigned int m;
 518	int ret;
 519	int nr_pages;
 520	int err2;
 521	struct hib_bio_batch hb;
 522	ktime_t start;
 523	ktime_t stop;
 524
 525	hib_init_batch(&hb);
 526
 527	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
 528		nr_to_write);
 529	m = nr_to_write / 10;
 530	if (!m)
 531		m = 1;
 532	nr_pages = 0;
 533	start = ktime_get();
 534	while (1) {
 535		ret = snapshot_read_next(snapshot);
 536		if (ret <= 0)
 537			break;
 538		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 539		if (ret)
 540			break;
 541		if (!(nr_pages % m))
 542			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
 543			       nr_pages / m * 10);
 544		nr_pages++;
 545	}
 546	err2 = hib_wait_io(&hb);
 547	stop = ktime_get();
 548	if (!ret)
 549		ret = err2;
 550	if (!ret)
 551		printk(KERN_INFO "PM: Image saving done.\n");
 552	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 553	return ret;
 554}
 555
 556/**
 557 * Structure used for CRC32.
 558 */
 559struct crc_data {
 560	struct task_struct *thr;                  /* thread */
 561	atomic_t ready;                           /* ready to start flag */
 562	atomic_t stop;                            /* ready to stop flag */
 563	unsigned run_threads;                     /* nr current threads */
 564	wait_queue_head_t go;                     /* start crc update */
 565	wait_queue_head_t done;                   /* crc update done */
 566	u32 *crc32;                               /* points to handle's crc32 */
 567	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 568	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 569};
 570
 571/**
 572 * CRC32 update function that runs in its own thread.
 573 */
 574static int crc32_threadfn(void *data)
 575{
 576	struct crc_data *d = data;
 577	unsigned i;
 578
 579	while (1) {
 580		wait_event(d->go, atomic_read(&d->ready) ||
 581		                  kthread_should_stop());
 582		if (kthread_should_stop()) {
 583			d->thr = NULL;
 584			atomic_set(&d->stop, 1);
 585			wake_up(&d->done);
 586			break;
 587		}
 588		atomic_set(&d->ready, 0);
 589
 590		for (i = 0; i < d->run_threads; i++)
 591			*d->crc32 = crc32_le(*d->crc32,
 592			                     d->unc[i], *d->unc_len[i]);
 593		atomic_set(&d->stop, 1);
 594		wake_up(&d->done);
 595	}
 596	return 0;
 597}
 598/**
 599 * Structure used for LZO data compression.
 600 */
 601struct cmp_data {
 602	struct task_struct *thr;                  /* thread */
 603	atomic_t ready;                           /* ready to start flag */
 604	atomic_t stop;                            /* ready to stop flag */
 605	int ret;                                  /* return code */
 606	wait_queue_head_t go;                     /* start compression */
 607	wait_queue_head_t done;                   /* compression done */
 608	size_t unc_len;                           /* uncompressed length */
 609	size_t cmp_len;                           /* compressed length */
 610	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 611	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 612	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 613};
 614
 615/**
 616 * Compression function that runs in its own thread.
 617 */
 618static int lzo_compress_threadfn(void *data)
 619{
 620	struct cmp_data *d = data;
 621
 622	while (1) {
 623		wait_event(d->go, atomic_read(&d->ready) ||
 624		                  kthread_should_stop());
 625		if (kthread_should_stop()) {
 626			d->thr = NULL;
 627			d->ret = -1;
 628			atomic_set(&d->stop, 1);
 629			wake_up(&d->done);
 630			break;
 631		}
 632		atomic_set(&d->ready, 0);
 633
 634		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 635		                          d->cmp + LZO_HEADER, &d->cmp_len,
 636		                          d->wrk);
 637		atomic_set(&d->stop, 1);
 638		wake_up(&d->done);
 639	}
 640	return 0;
 641}
 642
 643/**
 644 * save_image_lzo - Save the suspend image data compressed with LZO.
 645 * @handle: Swap map handle to use for saving the image.
 646 * @snapshot: Image to read data from.
 647 * @nr_to_write: Number of pages to save.
 648 */
 649static int save_image_lzo(struct swap_map_handle *handle,
 650                          struct snapshot_handle *snapshot,
 651                          unsigned int nr_to_write)
 652{
 653	unsigned int m;
 654	int ret = 0;
 655	int nr_pages;
 656	int err2;
 657	struct hib_bio_batch hb;
 658	ktime_t start;
 659	ktime_t stop;
 660	size_t off;
 661	unsigned thr, run_threads, nr_threads;
 662	unsigned char *page = NULL;
 663	struct cmp_data *data = NULL;
 664	struct crc_data *crc = NULL;
 665
 666	hib_init_batch(&hb);
 667
 668	/*
 669	 * We'll limit the number of threads for compression to limit memory
 670	 * footprint.
 671	 */
 672	nr_threads = num_online_cpus() - 1;
 673	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 674
 675	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 676	if (!page) {
 677		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
 678		ret = -ENOMEM;
 679		goto out_clean;
 680	}
 681
 682	data = vmalloc(sizeof(*data) * nr_threads);
 683	if (!data) {
 684		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
 685		ret = -ENOMEM;
 686		goto out_clean;
 687	}
 688	for (thr = 0; thr < nr_threads; thr++)
 689		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 690
 691	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 692	if (!crc) {
 693		printk(KERN_ERR "PM: Failed to allocate crc\n");
 694		ret = -ENOMEM;
 695		goto out_clean;
 696	}
 697	memset(crc, 0, offsetof(struct crc_data, go));
 698
 699	/*
 700	 * Start the compression threads.
 701	 */
 702	for (thr = 0; thr < nr_threads; thr++) {
 703		init_waitqueue_head(&data[thr].go);
 704		init_waitqueue_head(&data[thr].done);
 705
 706		data[thr].thr = kthread_run(lzo_compress_threadfn,
 707		                            &data[thr],
 708		                            "image_compress/%u", thr);
 709		if (IS_ERR(data[thr].thr)) {
 710			data[thr].thr = NULL;
 711			printk(KERN_ERR
 712			       "PM: Cannot start compression threads\n");
 713			ret = -ENOMEM;
 714			goto out_clean;
 715		}
 716	}
 717
 718	/*
 719	 * Start the CRC32 thread.
 720	 */
 721	init_waitqueue_head(&crc->go);
 722	init_waitqueue_head(&crc->done);
 723
 724	handle->crc32 = 0;
 725	crc->crc32 = &handle->crc32;
 726	for (thr = 0; thr < nr_threads; thr++) {
 727		crc->unc[thr] = data[thr].unc;
 728		crc->unc_len[thr] = &data[thr].unc_len;
 729	}
 730
 731	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 732	if (IS_ERR(crc->thr)) {
 733		crc->thr = NULL;
 734		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
 735		ret = -ENOMEM;
 736		goto out_clean;
 737	}
 738
 739	/*
 740	 * Adjust the number of required free pages after all allocations have
 741	 * been done. We don't want to run out of pages when writing.
 742	 */
 743	handle->reqd_free_pages = reqd_free_pages();
 744
 745	printk(KERN_INFO
 746		"PM: Using %u thread(s) for compression.\n"
 747		"PM: Compressing and saving image data (%u pages)...\n",
 748		nr_threads, nr_to_write);
 749	m = nr_to_write / 10;
 750	if (!m)
 751		m = 1;
 752	nr_pages = 0;
 753	start = ktime_get();
 754	for (;;) {
 755		for (thr = 0; thr < nr_threads; thr++) {
 756			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 757				ret = snapshot_read_next(snapshot);
 758				if (ret < 0)
 759					goto out_finish;
 760
 761				if (!ret)
 762					break;
 763
 764				memcpy(data[thr].unc + off,
 765				       data_of(*snapshot), PAGE_SIZE);
 766
 767				if (!(nr_pages % m))
 768					printk(KERN_INFO
 769					       "PM: Image saving progress: "
 770					       "%3d%%\n",
 771				               nr_pages / m * 10);
 772				nr_pages++;
 773			}
 774			if (!off)
 775				break;
 776
 777			data[thr].unc_len = off;
 778
 779			atomic_set(&data[thr].ready, 1);
 780			wake_up(&data[thr].go);
 781		}
 782
 783		if (!thr)
 784			break;
 785
 786		crc->run_threads = thr;
 787		atomic_set(&crc->ready, 1);
 788		wake_up(&crc->go);
 789
 790		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 791			wait_event(data[thr].done,
 792			           atomic_read(&data[thr].stop));
 793			atomic_set(&data[thr].stop, 0);
 794
 795			ret = data[thr].ret;
 796
 797			if (ret < 0) {
 798				printk(KERN_ERR "PM: LZO compression failed\n");
 799				goto out_finish;
 800			}
 801
 802			if (unlikely(!data[thr].cmp_len ||
 803			             data[thr].cmp_len >
 804			             lzo1x_worst_compress(data[thr].unc_len))) {
 805				printk(KERN_ERR
 806				       "PM: Invalid LZO compressed length\n");
 807				ret = -1;
 808				goto out_finish;
 809			}
 810
 811			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 812
 813			/*
 814			 * Given we are writing one page at a time to disk, we
 815			 * copy that much from the buffer, although the last
 816			 * bit will likely be smaller than full page. This is
 817			 * OK - we saved the length of the compressed data, so
 818			 * any garbage at the end will be discarded when we
 819			 * read it.
 820			 */
 821			for (off = 0;
 822			     off < LZO_HEADER + data[thr].cmp_len;
 823			     off += PAGE_SIZE) {
 824				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 825
 826				ret = swap_write_page(handle, page, &hb);
 827				if (ret)
 828					goto out_finish;
 829			}
 830		}
 831
 832		wait_event(crc->done, atomic_read(&crc->stop));
 833		atomic_set(&crc->stop, 0);
 834	}
 835
 836out_finish:
 837	err2 = hib_wait_io(&hb);
 838	stop = ktime_get();
 839	if (!ret)
 840		ret = err2;
 841	if (!ret)
 842		printk(KERN_INFO "PM: Image saving done.\n");
 843	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 844out_clean:
 845	if (crc) {
 846		if (crc->thr)
 847			kthread_stop(crc->thr);
 848		kfree(crc);
 849	}
 850	if (data) {
 851		for (thr = 0; thr < nr_threads; thr++)
 852			if (data[thr].thr)
 853				kthread_stop(data[thr].thr);
 854		vfree(data);
 855	}
 856	if (page) free_page((unsigned long)page);
 857
 858	return ret;
 859}
 860
 861/**
 862 *	enough_swap - Make sure we have enough swap to save the image.
 863 *
 864 *	Returns TRUE or FALSE after checking the total amount of swap
 865 *	space avaiable from the resume partition.
 866 */
 867
 868static int enough_swap(unsigned int nr_pages, unsigned int flags)
 869{
 870	unsigned int free_swap = count_swap_pages(root_swap, 1);
 871	unsigned int required;
 872
 873	pr_debug("PM: Free swap pages: %u\n", free_swap);
 874
 875	required = PAGES_FOR_IO + nr_pages;
 876	return free_swap > required;
 877}
 878
 879/**
 880 *	swsusp_write - Write entire image and metadata.
 881 *	@flags: flags to pass to the "boot" kernel in the image header
 882 *
 883 *	It is important _NOT_ to umount filesystems at this point. We want
 884 *	them synced (in case something goes wrong) but we DO not want to mark
 885 *	filesystem clean: it is not. (And it does not matter, if we resume
 886 *	correctly, we'll mark system clean, anyway.)
 887 */
 888
 889int swsusp_write(unsigned int flags)
 890{
 891	struct swap_map_handle handle;
 892	struct snapshot_handle snapshot;
 893	struct swsusp_info *header;
 894	unsigned long pages;
 895	int error;
 896
 897	pages = snapshot_get_image_size();
 898	error = get_swap_writer(&handle);
 899	if (error) {
 900		printk(KERN_ERR "PM: Cannot get swap writer\n");
 901		return error;
 902	}
 903	if (flags & SF_NOCOMPRESS_MODE) {
 904		if (!enough_swap(pages, flags)) {
 905			printk(KERN_ERR "PM: Not enough free swap\n");
 906			error = -ENOSPC;
 907			goto out_finish;
 908		}
 909	}
 910	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 911	error = snapshot_read_next(&snapshot);
 912	if (error < PAGE_SIZE) {
 913		if (error >= 0)
 914			error = -EFAULT;
 915
 916		goto out_finish;
 917	}
 918	header = (struct swsusp_info *)data_of(snapshot);
 919	error = swap_write_page(&handle, header, NULL);
 920	if (!error) {
 921		error = (flags & SF_NOCOMPRESS_MODE) ?
 922			save_image(&handle, &snapshot, pages - 1) :
 923			save_image_lzo(&handle, &snapshot, pages - 1);
 924	}
 925out_finish:
 926	error = swap_writer_finish(&handle, flags, error);
 927	return error;
 928}
 929
 930/**
 931 *	The following functions allow us to read data using a swap map
 932 *	in a file-alike way
 933 */
 934
 935static void release_swap_reader(struct swap_map_handle *handle)
 936{
 937	struct swap_map_page_list *tmp;
 938
 939	while (handle->maps) {
 940		if (handle->maps->map)
 941			free_page((unsigned long)handle->maps->map);
 942		tmp = handle->maps;
 943		handle->maps = handle->maps->next;
 944		kfree(tmp);
 945	}
 946	handle->cur = NULL;
 947}
 948
 949static int get_swap_reader(struct swap_map_handle *handle,
 950		unsigned int *flags_p)
 951{
 952	int error;
 953	struct swap_map_page_list *tmp, *last;
 954	sector_t offset;
 955
 956	*flags_p = swsusp_header->flags;
 957
 958	if (!swsusp_header->image) /* how can this happen? */
 959		return -EINVAL;
 960
 961	handle->cur = NULL;
 962	last = handle->maps = NULL;
 963	offset = swsusp_header->image;
 964	while (offset) {
 965		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 966		if (!tmp) {
 967			release_swap_reader(handle);
 968			return -ENOMEM;
 969		}
 970		memset(tmp, 0, sizeof(*tmp));
 971		if (!handle->maps)
 972			handle->maps = tmp;
 973		if (last)
 974			last->next = tmp;
 975		last = tmp;
 976
 977		tmp->map = (struct swap_map_page *)
 978			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 979		if (!tmp->map) {
 980			release_swap_reader(handle);
 981			return -ENOMEM;
 982		}
 983
 984		error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
 985		if (error) {
 986			release_swap_reader(handle);
 987			return error;
 988		}
 989		offset = tmp->map->next_swap;
 990	}
 991	handle->k = 0;
 992	handle->cur = handle->maps->map;
 993	return 0;
 994}
 995
 996static int swap_read_page(struct swap_map_handle *handle, void *buf,
 997		struct hib_bio_batch *hb)
 998{
 999	sector_t offset;
1000	int error;
1001	struct swap_map_page_list *tmp;
1002
1003	if (!handle->cur)
1004		return -EINVAL;
1005	offset = handle->cur->entries[handle->k];
1006	if (!offset)
1007		return -EFAULT;
1008	error = hib_submit_io(READ_SYNC, offset, buf, hb);
1009	if (error)
1010		return error;
1011	if (++handle->k >= MAP_PAGE_ENTRIES) {
1012		handle->k = 0;
1013		free_page((unsigned long)handle->maps->map);
1014		tmp = handle->maps;
1015		handle->maps = handle->maps->next;
1016		kfree(tmp);
1017		if (!handle->maps)
1018			release_swap_reader(handle);
1019		else
1020			handle->cur = handle->maps->map;
1021	}
1022	return error;
1023}
1024
1025static int swap_reader_finish(struct swap_map_handle *handle)
1026{
1027	release_swap_reader(handle);
1028
1029	return 0;
1030}
1031
1032/**
1033 *	load_image - load the image using the swap map handle
1034 *	@handle and the snapshot handle @snapshot
1035 *	(assume there are @nr_pages pages to load)
1036 */
1037
1038static int load_image(struct swap_map_handle *handle,
1039                      struct snapshot_handle *snapshot,
1040                      unsigned int nr_to_read)
1041{
1042	unsigned int m;
1043	int ret = 0;
1044	ktime_t start;
1045	ktime_t stop;
1046	struct hib_bio_batch hb;
1047	int err2;
1048	unsigned nr_pages;
1049
1050	hib_init_batch(&hb);
1051
1052	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1053		nr_to_read);
1054	m = nr_to_read / 10;
1055	if (!m)
1056		m = 1;
1057	nr_pages = 0;
1058	start = ktime_get();
1059	for ( ; ; ) {
1060		ret = snapshot_write_next(snapshot);
1061		if (ret <= 0)
1062			break;
1063		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1064		if (ret)
1065			break;
1066		if (snapshot->sync_read)
1067			ret = hib_wait_io(&hb);
1068		if (ret)
1069			break;
1070		if (!(nr_pages % m))
1071			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1072			       nr_pages / m * 10);
1073		nr_pages++;
1074	}
1075	err2 = hib_wait_io(&hb);
1076	stop = ktime_get();
1077	if (!ret)
1078		ret = err2;
1079	if (!ret) {
1080		printk(KERN_INFO "PM: Image loading done.\n");
1081		snapshot_write_finalize(snapshot);
1082		if (!snapshot_image_loaded(snapshot))
1083			ret = -ENODATA;
1084	}
1085	swsusp_show_speed(start, stop, nr_to_read, "Read");
1086	return ret;
1087}
1088
1089/**
1090 * Structure used for LZO data decompression.
1091 */
1092struct dec_data {
1093	struct task_struct *thr;                  /* thread */
1094	atomic_t ready;                           /* ready to start flag */
1095	atomic_t stop;                            /* ready to stop flag */
1096	int ret;                                  /* return code */
1097	wait_queue_head_t go;                     /* start decompression */
1098	wait_queue_head_t done;                   /* decompression done */
1099	size_t unc_len;                           /* uncompressed length */
1100	size_t cmp_len;                           /* compressed length */
1101	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1102	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1103};
1104
1105/**
1106 * Deompression function that runs in its own thread.
1107 */
1108static int lzo_decompress_threadfn(void *data)
1109{
1110	struct dec_data *d = data;
1111
1112	while (1) {
1113		wait_event(d->go, atomic_read(&d->ready) ||
1114		                  kthread_should_stop());
1115		if (kthread_should_stop()) {
1116			d->thr = NULL;
1117			d->ret = -1;
1118			atomic_set(&d->stop, 1);
1119			wake_up(&d->done);
1120			break;
1121		}
1122		atomic_set(&d->ready, 0);
1123
1124		d->unc_len = LZO_UNC_SIZE;
1125		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1126		                               d->unc, &d->unc_len);
 
 
 
 
1127		atomic_set(&d->stop, 1);
1128		wake_up(&d->done);
1129	}
1130	return 0;
1131}
1132
1133/**
1134 * load_image_lzo - Load compressed image data and decompress them with LZO.
1135 * @handle: Swap map handle to use for loading data.
1136 * @snapshot: Image to copy uncompressed data into.
1137 * @nr_to_read: Number of pages to load.
1138 */
1139static int load_image_lzo(struct swap_map_handle *handle,
1140                          struct snapshot_handle *snapshot,
1141                          unsigned int nr_to_read)
1142{
1143	unsigned int m;
1144	int ret = 0;
1145	int eof = 0;
1146	struct hib_bio_batch hb;
1147	ktime_t start;
1148	ktime_t stop;
1149	unsigned nr_pages;
1150	size_t off;
1151	unsigned i, thr, run_threads, nr_threads;
1152	unsigned ring = 0, pg = 0, ring_size = 0,
1153	         have = 0, want, need, asked = 0;
1154	unsigned long read_pages = 0;
1155	unsigned char **page = NULL;
1156	struct dec_data *data = NULL;
1157	struct crc_data *crc = NULL;
1158
1159	hib_init_batch(&hb);
1160
1161	/*
1162	 * We'll limit the number of threads for decompression to limit memory
1163	 * footprint.
1164	 */
1165	nr_threads = num_online_cpus() - 1;
1166	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1167
1168	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1169	if (!page) {
1170		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1171		ret = -ENOMEM;
1172		goto out_clean;
1173	}
1174
1175	data = vmalloc(sizeof(*data) * nr_threads);
1176	if (!data) {
1177		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1178		ret = -ENOMEM;
1179		goto out_clean;
1180	}
1181	for (thr = 0; thr < nr_threads; thr++)
1182		memset(&data[thr], 0, offsetof(struct dec_data, go));
1183
1184	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1185	if (!crc) {
1186		printk(KERN_ERR "PM: Failed to allocate crc\n");
1187		ret = -ENOMEM;
1188		goto out_clean;
1189	}
1190	memset(crc, 0, offsetof(struct crc_data, go));
1191
 
 
1192	/*
1193	 * Start the decompression threads.
1194	 */
1195	for (thr = 0; thr < nr_threads; thr++) {
1196		init_waitqueue_head(&data[thr].go);
1197		init_waitqueue_head(&data[thr].done);
1198
1199		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1200		                            &data[thr],
1201		                            "image_decompress/%u", thr);
1202		if (IS_ERR(data[thr].thr)) {
1203			data[thr].thr = NULL;
1204			printk(KERN_ERR
1205			       "PM: Cannot start decompression threads\n");
1206			ret = -ENOMEM;
1207			goto out_clean;
1208		}
1209	}
1210
1211	/*
1212	 * Start the CRC32 thread.
1213	 */
1214	init_waitqueue_head(&crc->go);
1215	init_waitqueue_head(&crc->done);
1216
1217	handle->crc32 = 0;
1218	crc->crc32 = &handle->crc32;
1219	for (thr = 0; thr < nr_threads; thr++) {
1220		crc->unc[thr] = data[thr].unc;
1221		crc->unc_len[thr] = &data[thr].unc_len;
1222	}
1223
1224	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1225	if (IS_ERR(crc->thr)) {
1226		crc->thr = NULL;
1227		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1228		ret = -ENOMEM;
1229		goto out_clean;
1230	}
1231
1232	/*
1233	 * Set the number of pages for read buffering.
1234	 * This is complete guesswork, because we'll only know the real
1235	 * picture once prepare_image() is called, which is much later on
1236	 * during the image load phase. We'll assume the worst case and
1237	 * say that none of the image pages are from high memory.
1238	 */
1239	if (low_free_pages() > snapshot_get_image_size())
1240		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1241	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1242
1243	for (i = 0; i < read_pages; i++) {
1244		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1245						  __GFP_RECLAIM | __GFP_HIGH :
1246						  __GFP_RECLAIM | __GFP_NOWARN |
1247						  __GFP_NORETRY);
1248
1249		if (!page[i]) {
1250			if (i < LZO_CMP_PAGES) {
1251				ring_size = i;
1252				printk(KERN_ERR
1253				       "PM: Failed to allocate LZO pages\n");
1254				ret = -ENOMEM;
1255				goto out_clean;
1256			} else {
1257				break;
1258			}
1259		}
1260	}
1261	want = ring_size = i;
1262
1263	printk(KERN_INFO
1264		"PM: Using %u thread(s) for decompression.\n"
1265		"PM: Loading and decompressing image data (%u pages)...\n",
1266		nr_threads, nr_to_read);
1267	m = nr_to_read / 10;
1268	if (!m)
1269		m = 1;
1270	nr_pages = 0;
1271	start = ktime_get();
1272
1273	ret = snapshot_write_next(snapshot);
1274	if (ret <= 0)
1275		goto out_finish;
1276
1277	for(;;) {
1278		for (i = 0; !eof && i < want; i++) {
1279			ret = swap_read_page(handle, page[ring], &hb);
1280			if (ret) {
1281				/*
1282				 * On real read error, finish. On end of data,
1283				 * set EOF flag and just exit the read loop.
1284				 */
1285				if (handle->cur &&
1286				    handle->cur->entries[handle->k]) {
1287					goto out_finish;
1288				} else {
1289					eof = 1;
1290					break;
1291				}
1292			}
1293			if (++ring >= ring_size)
1294				ring = 0;
1295		}
1296		asked += i;
1297		want -= i;
1298
1299		/*
1300		 * We are out of data, wait for some more.
1301		 */
1302		if (!have) {
1303			if (!asked)
1304				break;
1305
1306			ret = hib_wait_io(&hb);
1307			if (ret)
1308				goto out_finish;
1309			have += asked;
1310			asked = 0;
1311			if (eof)
1312				eof = 2;
1313		}
1314
1315		if (crc->run_threads) {
1316			wait_event(crc->done, atomic_read(&crc->stop));
1317			atomic_set(&crc->stop, 0);
1318			crc->run_threads = 0;
1319		}
1320
1321		for (thr = 0; have && thr < nr_threads; thr++) {
1322			data[thr].cmp_len = *(size_t *)page[pg];
1323			if (unlikely(!data[thr].cmp_len ||
1324			             data[thr].cmp_len >
1325			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1326				printk(KERN_ERR
1327				       "PM: Invalid LZO compressed length\n");
1328				ret = -1;
1329				goto out_finish;
1330			}
1331
1332			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1333			                    PAGE_SIZE);
1334			if (need > have) {
1335				if (eof > 1) {
1336					ret = -1;
1337					goto out_finish;
1338				}
1339				break;
1340			}
1341
1342			for (off = 0;
1343			     off < LZO_HEADER + data[thr].cmp_len;
1344			     off += PAGE_SIZE) {
1345				memcpy(data[thr].cmp + off,
1346				       page[pg], PAGE_SIZE);
1347				have--;
1348				want++;
1349				if (++pg >= ring_size)
1350					pg = 0;
1351			}
1352
1353			atomic_set(&data[thr].ready, 1);
1354			wake_up(&data[thr].go);
1355		}
1356
1357		/*
1358		 * Wait for more data while we are decompressing.
1359		 */
1360		if (have < LZO_CMP_PAGES && asked) {
1361			ret = hib_wait_io(&hb);
1362			if (ret)
1363				goto out_finish;
1364			have += asked;
1365			asked = 0;
1366			if (eof)
1367				eof = 2;
1368		}
1369
1370		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1371			wait_event(data[thr].done,
1372			           atomic_read(&data[thr].stop));
1373			atomic_set(&data[thr].stop, 0);
1374
1375			ret = data[thr].ret;
1376
1377			if (ret < 0) {
1378				printk(KERN_ERR
1379				       "PM: LZO decompression failed\n");
1380				goto out_finish;
1381			}
1382
1383			if (unlikely(!data[thr].unc_len ||
1384			             data[thr].unc_len > LZO_UNC_SIZE ||
1385			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1386				printk(KERN_ERR
1387				       "PM: Invalid LZO uncompressed length\n");
1388				ret = -1;
1389				goto out_finish;
1390			}
1391
1392			for (off = 0;
1393			     off < data[thr].unc_len; off += PAGE_SIZE) {
1394				memcpy(data_of(*snapshot),
1395				       data[thr].unc + off, PAGE_SIZE);
1396
1397				if (!(nr_pages % m))
1398					printk(KERN_INFO
1399					       "PM: Image loading progress: "
1400					       "%3d%%\n",
1401					       nr_pages / m * 10);
1402				nr_pages++;
1403
1404				ret = snapshot_write_next(snapshot);
1405				if (ret <= 0) {
1406					crc->run_threads = thr + 1;
1407					atomic_set(&crc->ready, 1);
1408					wake_up(&crc->go);
1409					goto out_finish;
1410				}
1411			}
1412		}
1413
1414		crc->run_threads = thr;
1415		atomic_set(&crc->ready, 1);
1416		wake_up(&crc->go);
1417	}
1418
1419out_finish:
1420	if (crc->run_threads) {
1421		wait_event(crc->done, atomic_read(&crc->stop));
1422		atomic_set(&crc->stop, 0);
1423	}
1424	stop = ktime_get();
1425	if (!ret) {
1426		printk(KERN_INFO "PM: Image loading done.\n");
1427		snapshot_write_finalize(snapshot);
1428		if (!snapshot_image_loaded(snapshot))
1429			ret = -ENODATA;
1430		if (!ret) {
1431			if (swsusp_header->flags & SF_CRC32_MODE) {
1432				if(handle->crc32 != swsusp_header->crc32) {
1433					printk(KERN_ERR
1434					       "PM: Invalid image CRC32!\n");
1435					ret = -ENODATA;
1436				}
1437			}
1438		}
1439	}
1440	swsusp_show_speed(start, stop, nr_to_read, "Read");
1441out_clean:
1442	for (i = 0; i < ring_size; i++)
1443		free_page((unsigned long)page[i]);
1444	if (crc) {
1445		if (crc->thr)
1446			kthread_stop(crc->thr);
1447		kfree(crc);
1448	}
1449	if (data) {
1450		for (thr = 0; thr < nr_threads; thr++)
1451			if (data[thr].thr)
1452				kthread_stop(data[thr].thr);
1453		vfree(data);
1454	}
1455	vfree(page);
1456
1457	return ret;
1458}
1459
1460/**
1461 *	swsusp_read - read the hibernation image.
1462 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1463 *		  be written into this memory location
1464 */
1465
1466int swsusp_read(unsigned int *flags_p)
1467{
1468	int error;
1469	struct swap_map_handle handle;
1470	struct snapshot_handle snapshot;
1471	struct swsusp_info *header;
1472
1473	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1474	error = snapshot_write_next(&snapshot);
1475	if (error < PAGE_SIZE)
1476		return error < 0 ? error : -EFAULT;
1477	header = (struct swsusp_info *)data_of(snapshot);
1478	error = get_swap_reader(&handle, flags_p);
1479	if (error)
1480		goto end;
1481	if (!error)
1482		error = swap_read_page(&handle, header, NULL);
1483	if (!error) {
1484		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1485			load_image(&handle, &snapshot, header->pages - 1) :
1486			load_image_lzo(&handle, &snapshot, header->pages - 1);
1487	}
1488	swap_reader_finish(&handle);
1489end:
1490	if (!error)
1491		pr_debug("PM: Image successfully loaded\n");
1492	else
1493		pr_debug("PM: Error %d resuming\n", error);
1494	return error;
1495}
1496
1497/**
1498 *      swsusp_check - Check for swsusp signature in the resume device
1499 */
1500
1501int swsusp_check(void)
1502{
1503	int error;
1504
1505	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1506					    FMODE_READ, NULL);
1507	if (!IS_ERR(hib_resume_bdev)) {
1508		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1509		clear_page(swsusp_header);
1510		error = hib_submit_io(READ_SYNC, swsusp_resume_block,
 
1511					swsusp_header, NULL);
1512		if (error)
1513			goto put;
1514
1515		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1516			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1517			/* Reset swap signature now */
1518			error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 
1519						swsusp_header, NULL);
1520		} else {
1521			error = -EINVAL;
1522		}
1523
1524put:
1525		if (error)
1526			blkdev_put(hib_resume_bdev, FMODE_READ);
1527		else
1528			pr_debug("PM: Image signature found, resuming\n");
1529	} else {
1530		error = PTR_ERR(hib_resume_bdev);
1531	}
1532
1533	if (error)
1534		pr_debug("PM: Image not found (code %d)\n", error);
1535
1536	return error;
1537}
1538
1539/**
1540 *	swsusp_close - close swap device.
1541 */
1542
1543void swsusp_close(fmode_t mode)
1544{
1545	if (IS_ERR(hib_resume_bdev)) {
1546		pr_debug("PM: Image device not initialised\n");
1547		return;
1548	}
1549
1550	blkdev_put(hib_resume_bdev, mode);
1551}
1552
1553/**
1554 *      swsusp_unmark - Unmark swsusp signature in the resume device
1555 */
1556
1557#ifdef CONFIG_SUSPEND
1558int swsusp_unmark(void)
1559{
1560	int error;
1561
1562	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
 
1563	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1564		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1565		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 
1566					swsusp_header, NULL);
1567	} else {
1568		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1569		error = -ENODEV;
1570	}
1571
1572	/*
1573	 * We just returned from suspend, we don't need the image any more.
1574	 */
1575	free_all_swap_pages(root_swap);
1576
1577	return error;
1578}
1579#endif
1580
1581static int swsusp_header_init(void)
1582{
1583	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1584	if (!swsusp_header)
1585		panic("Could not allocate memory for swsusp_header\n");
1586	return 0;
1587}
1588
1589core_initcall(swsusp_header_init);
v4.17
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
  15#define pr_fmt(fmt) "PM: " fmt
  16
  17#include <linux/module.h>
  18#include <linux/file.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/genhd.h>
  22#include <linux/device.h>
  23#include <linux/bio.h>
  24#include <linux/blkdev.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
  27#include <linux/pm.h>
  28#include <linux/slab.h>
  29#include <linux/lzo.h>
  30#include <linux/vmalloc.h>
  31#include <linux/cpumask.h>
  32#include <linux/atomic.h>
  33#include <linux/kthread.h>
  34#include <linux/crc32.h>
  35#include <linux/ktime.h>
  36
  37#include "power.h"
  38
  39#define HIBERNATE_SIG	"S1SUSPEND"
  40
  41/*
  42 * When reading an {un,}compressed image, we may restore pages in place,
  43 * in which case some architectures need these pages cleaning before they
  44 * can be executed. We don't know which pages these may be, so clean the lot.
  45 */
  46static bool clean_pages_on_read;
  47static bool clean_pages_on_decompress;
  48
  49/*
  50 *	The swap map is a data structure used for keeping track of each page
  51 *	written to a swap partition.  It consists of many swap_map_page
  52 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  53 *	These structures are stored on the swap and linked together with the
  54 *	help of the .next_swap member.
  55 *
  56 *	The swap map is created during suspend.  The swap map pages are
  57 *	allocated and populated one at a time, so we only need one memory
  58 *	page to set up the entire structure.
  59 *
  60 *	During resume we pick up all swap_map_page structures into a list.
  61 */
  62
  63#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  64
  65/*
  66 * Number of free pages that are not high.
  67 */
  68static inline unsigned long low_free_pages(void)
  69{
  70	return nr_free_pages() - nr_free_highpages();
  71}
  72
  73/*
  74 * Number of pages required to be kept free while writing the image. Always
  75 * half of all available low pages before the writing starts.
  76 */
  77static inline unsigned long reqd_free_pages(void)
  78{
  79	return low_free_pages() / 2;
  80}
  81
  82struct swap_map_page {
  83	sector_t entries[MAP_PAGE_ENTRIES];
  84	sector_t next_swap;
  85};
  86
  87struct swap_map_page_list {
  88	struct swap_map_page *map;
  89	struct swap_map_page_list *next;
  90};
  91
  92/**
  93 *	The swap_map_handle structure is used for handling swap in
  94 *	a file-alike way
  95 */
  96
  97struct swap_map_handle {
  98	struct swap_map_page *cur;
  99	struct swap_map_page_list *maps;
 100	sector_t cur_swap;
 101	sector_t first_sector;
 102	unsigned int k;
 103	unsigned long reqd_free_pages;
 104	u32 crc32;
 105};
 106
 107struct swsusp_header {
 108	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 109	              sizeof(u32)];
 110	u32	crc32;
 111	sector_t image;
 112	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 113	char	orig_sig[10];
 114	char	sig[10];
 115} __packed;
 116
 117static struct swsusp_header *swsusp_header;
 118
 119/**
 120 *	The following functions are used for tracing the allocated
 121 *	swap pages, so that they can be freed in case of an error.
 122 */
 123
 124struct swsusp_extent {
 125	struct rb_node node;
 126	unsigned long start;
 127	unsigned long end;
 128};
 129
 130static struct rb_root swsusp_extents = RB_ROOT;
 131
 132static int swsusp_extents_insert(unsigned long swap_offset)
 133{
 134	struct rb_node **new = &(swsusp_extents.rb_node);
 135	struct rb_node *parent = NULL;
 136	struct swsusp_extent *ext;
 137
 138	/* Figure out where to put the new node */
 139	while (*new) {
 140		ext = rb_entry(*new, struct swsusp_extent, node);
 141		parent = *new;
 142		if (swap_offset < ext->start) {
 143			/* Try to merge */
 144			if (swap_offset == ext->start - 1) {
 145				ext->start--;
 146				return 0;
 147			}
 148			new = &((*new)->rb_left);
 149		} else if (swap_offset > ext->end) {
 150			/* Try to merge */
 151			if (swap_offset == ext->end + 1) {
 152				ext->end++;
 153				return 0;
 154			}
 155			new = &((*new)->rb_right);
 156		} else {
 157			/* It already is in the tree */
 158			return -EINVAL;
 159		}
 160	}
 161	/* Add the new node and rebalance the tree. */
 162	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 163	if (!ext)
 164		return -ENOMEM;
 165
 166	ext->start = swap_offset;
 167	ext->end = swap_offset;
 168	rb_link_node(&ext->node, parent, new);
 169	rb_insert_color(&ext->node, &swsusp_extents);
 170	return 0;
 171}
 172
 173/**
 174 *	alloc_swapdev_block - allocate a swap page and register that it has
 175 *	been allocated, so that it can be freed in case of an error.
 176 */
 177
 178sector_t alloc_swapdev_block(int swap)
 179{
 180	unsigned long offset;
 181
 182	offset = swp_offset(get_swap_page_of_type(swap));
 183	if (offset) {
 184		if (swsusp_extents_insert(offset))
 185			swap_free(swp_entry(swap, offset));
 186		else
 187			return swapdev_block(swap, offset);
 188	}
 189	return 0;
 190}
 191
 192/**
 193 *	free_all_swap_pages - free swap pages allocated for saving image data.
 194 *	It also frees the extents used to register which swap entries had been
 195 *	allocated.
 196 */
 197
 198void free_all_swap_pages(int swap)
 199{
 200	struct rb_node *node;
 201
 202	while ((node = swsusp_extents.rb_node)) {
 203		struct swsusp_extent *ext;
 204		unsigned long offset;
 205
 206		ext = rb_entry(node, struct swsusp_extent, node);
 207		rb_erase(node, &swsusp_extents);
 208		for (offset = ext->start; offset <= ext->end; offset++)
 209			swap_free(swp_entry(swap, offset));
 210
 211		kfree(ext);
 212	}
 213}
 214
 215int swsusp_swap_in_use(void)
 216{
 217	return (swsusp_extents.rb_node != NULL);
 218}
 219
 220/*
 221 * General things
 222 */
 223
 224static unsigned short root_swap = 0xffff;
 225static struct block_device *hib_resume_bdev;
 226
 227struct hib_bio_batch {
 228	atomic_t		count;
 229	wait_queue_head_t	wait;
 230	blk_status_t		error;
 231};
 232
 233static void hib_init_batch(struct hib_bio_batch *hb)
 234{
 235	atomic_set(&hb->count, 0);
 236	init_waitqueue_head(&hb->wait);
 237	hb->error = BLK_STS_OK;
 238}
 239
 240static void hib_end_io(struct bio *bio)
 241{
 242	struct hib_bio_batch *hb = bio->bi_private;
 243	struct page *page = bio_first_page_all(bio);
 244
 245	if (bio->bi_status) {
 246		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 247			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 248			 (unsigned long long)bio->bi_iter.bi_sector);
 
 249	}
 250
 251	if (bio_data_dir(bio) == WRITE)
 252		put_page(page);
 253	else if (clean_pages_on_read)
 254		flush_icache_range((unsigned long)page_address(page),
 255				   (unsigned long)page_address(page) + PAGE_SIZE);
 256
 257	if (bio->bi_status && !hb->error)
 258		hb->error = bio->bi_status;
 259	if (atomic_dec_and_test(&hb->count))
 260		wake_up(&hb->wait);
 261
 262	bio_put(bio);
 263}
 264
 265static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
 266		struct hib_bio_batch *hb)
 267{
 268	struct page *page = virt_to_page(addr);
 269	struct bio *bio;
 270	int error = 0;
 271
 272	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
 273	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 274	bio_set_dev(bio, hib_resume_bdev);
 275	bio_set_op_attrs(bio, op, op_flags);
 276
 277	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 278		pr_err("Adding page to bio failed at %llu\n",
 279		       (unsigned long long)bio->bi_iter.bi_sector);
 280		bio_put(bio);
 281		return -EFAULT;
 282	}
 283
 284	if (hb) {
 285		bio->bi_end_io = hib_end_io;
 286		bio->bi_private = hb;
 287		atomic_inc(&hb->count);
 288		submit_bio(bio);
 289	} else {
 290		error = submit_bio_wait(bio);
 291		bio_put(bio);
 292	}
 293
 294	return error;
 295}
 296
 297static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
 298{
 299	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 300	return blk_status_to_errno(hb->error);
 301}
 302
 303/*
 304 * Saving part
 305 */
 306
 307static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 308{
 309	int error;
 310
 311	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
 312		      swsusp_header, NULL);
 313	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 314	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 315		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 316		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 317		swsusp_header->image = handle->first_sector;
 318		swsusp_header->flags = flags;
 319		if (flags & SF_CRC32_MODE)
 320			swsusp_header->crc32 = handle->crc32;
 321		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
 322				      swsusp_resume_block, swsusp_header, NULL);
 323	} else {
 324		pr_err("Swap header not found!\n");
 325		error = -ENODEV;
 326	}
 327	return error;
 328}
 329
 330/**
 331 *	swsusp_swap_check - check if the resume device is a swap device
 332 *	and get its index (if so)
 333 *
 334 *	This is called before saving image
 335 */
 336static int swsusp_swap_check(void)
 337{
 338	int res;
 339
 340	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 341			&hib_resume_bdev);
 342	if (res < 0)
 343		return res;
 344
 345	root_swap = res;
 346	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 347	if (res)
 348		return res;
 349
 350	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 351	if (res < 0)
 352		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 353
 354	/*
 355	 * Update the resume device to the one actually used,
 356	 * so the test_resume mode can use it in case it is
 357	 * invoked from hibernate() to test the snapshot.
 358	 */
 359	swsusp_resume_device = hib_resume_bdev->bd_dev;
 360	return res;
 361}
 362
 363/**
 364 *	write_page - Write one page to given swap location.
 365 *	@buf:		Address we're writing.
 366 *	@offset:	Offset of the swap page we're writing to.
 367 *	@hb:		bio completion batch
 368 */
 369
 370static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 371{
 372	void *src;
 373	int ret;
 374
 375	if (!offset)
 376		return -ENOSPC;
 377
 378	if (hb) {
 379		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
 380		                              __GFP_NORETRY);
 381		if (src) {
 382			copy_page(src, buf);
 383		} else {
 384			ret = hib_wait_io(hb); /* Free pages */
 385			if (ret)
 386				return ret;
 387			src = (void *)__get_free_page(__GFP_RECLAIM |
 388			                              __GFP_NOWARN |
 389			                              __GFP_NORETRY);
 390			if (src) {
 391				copy_page(src, buf);
 392			} else {
 393				WARN_ON_ONCE(1);
 394				hb = NULL;	/* Go synchronous */
 395				src = buf;
 396			}
 397		}
 398	} else {
 399		src = buf;
 400	}
 401	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
 402}
 403
 404static void release_swap_writer(struct swap_map_handle *handle)
 405{
 406	if (handle->cur)
 407		free_page((unsigned long)handle->cur);
 408	handle->cur = NULL;
 409}
 410
 411static int get_swap_writer(struct swap_map_handle *handle)
 412{
 413	int ret;
 414
 415	ret = swsusp_swap_check();
 416	if (ret) {
 417		if (ret != -ENOSPC)
 418			pr_err("Cannot find swap device, try swapon -a\n");
 
 419		return ret;
 420	}
 421	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 422	if (!handle->cur) {
 423		ret = -ENOMEM;
 424		goto err_close;
 425	}
 426	handle->cur_swap = alloc_swapdev_block(root_swap);
 427	if (!handle->cur_swap) {
 428		ret = -ENOSPC;
 429		goto err_rel;
 430	}
 431	handle->k = 0;
 432	handle->reqd_free_pages = reqd_free_pages();
 433	handle->first_sector = handle->cur_swap;
 434	return 0;
 435err_rel:
 436	release_swap_writer(handle);
 437err_close:
 438	swsusp_close(FMODE_WRITE);
 439	return ret;
 440}
 441
 442static int swap_write_page(struct swap_map_handle *handle, void *buf,
 443		struct hib_bio_batch *hb)
 444{
 445	int error = 0;
 446	sector_t offset;
 447
 448	if (!handle->cur)
 449		return -EINVAL;
 450	offset = alloc_swapdev_block(root_swap);
 451	error = write_page(buf, offset, hb);
 452	if (error)
 453		return error;
 454	handle->cur->entries[handle->k++] = offset;
 455	if (handle->k >= MAP_PAGE_ENTRIES) {
 456		offset = alloc_swapdev_block(root_swap);
 457		if (!offset)
 458			return -ENOSPC;
 459		handle->cur->next_swap = offset;
 460		error = write_page(handle->cur, handle->cur_swap, hb);
 461		if (error)
 462			goto out;
 463		clear_page(handle->cur);
 464		handle->cur_swap = offset;
 465		handle->k = 0;
 466
 467		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 468			error = hib_wait_io(hb);
 469			if (error)
 470				goto out;
 471			/*
 472			 * Recalculate the number of required free pages, to
 473			 * make sure we never take more than half.
 474			 */
 475			handle->reqd_free_pages = reqd_free_pages();
 476		}
 477	}
 478 out:
 479	return error;
 480}
 481
 482static int flush_swap_writer(struct swap_map_handle *handle)
 483{
 484	if (handle->cur && handle->cur_swap)
 485		return write_page(handle->cur, handle->cur_swap, NULL);
 486	else
 487		return -EINVAL;
 488}
 489
 490static int swap_writer_finish(struct swap_map_handle *handle,
 491		unsigned int flags, int error)
 492{
 493	if (!error) {
 494		flush_swap_writer(handle);
 495		pr_info("S");
 496		error = mark_swapfiles(handle, flags);
 497		pr_cont("|\n");
 498	}
 499
 500	if (error)
 501		free_all_swap_pages(root_swap);
 502	release_swap_writer(handle);
 503	swsusp_close(FMODE_WRITE);
 504
 505	return error;
 506}
 507
 508/* We need to remember how much compressed data we need to read. */
 509#define LZO_HEADER	sizeof(size_t)
 510
 511/* Number of pages/bytes we'll compress at one time. */
 512#define LZO_UNC_PAGES	32
 513#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 514
 515/* Number of pages/bytes we need for compressed data (worst case). */
 516#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 517			             LZO_HEADER, PAGE_SIZE)
 518#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 519
 520/* Maximum number of threads for compression/decompression. */
 521#define LZO_THREADS	3
 522
 523/* Minimum/maximum number of pages for read buffering. */
 524#define LZO_MIN_RD_PAGES	1024
 525#define LZO_MAX_RD_PAGES	8192
 526
 527
 528/**
 529 *	save_image - save the suspend image data
 530 */
 531
 532static int save_image(struct swap_map_handle *handle,
 533                      struct snapshot_handle *snapshot,
 534                      unsigned int nr_to_write)
 535{
 536	unsigned int m;
 537	int ret;
 538	int nr_pages;
 539	int err2;
 540	struct hib_bio_batch hb;
 541	ktime_t start;
 542	ktime_t stop;
 543
 544	hib_init_batch(&hb);
 545
 546	pr_info("Saving image data pages (%u pages)...\n",
 547		nr_to_write);
 548	m = nr_to_write / 10;
 549	if (!m)
 550		m = 1;
 551	nr_pages = 0;
 552	start = ktime_get();
 553	while (1) {
 554		ret = snapshot_read_next(snapshot);
 555		if (ret <= 0)
 556			break;
 557		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 558		if (ret)
 559			break;
 560		if (!(nr_pages % m))
 561			pr_info("Image saving progress: %3d%%\n",
 562				nr_pages / m * 10);
 563		nr_pages++;
 564	}
 565	err2 = hib_wait_io(&hb);
 566	stop = ktime_get();
 567	if (!ret)
 568		ret = err2;
 569	if (!ret)
 570		pr_info("Image saving done\n");
 571	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 572	return ret;
 573}
 574
 575/**
 576 * Structure used for CRC32.
 577 */
 578struct crc_data {
 579	struct task_struct *thr;                  /* thread */
 580	atomic_t ready;                           /* ready to start flag */
 581	atomic_t stop;                            /* ready to stop flag */
 582	unsigned run_threads;                     /* nr current threads */
 583	wait_queue_head_t go;                     /* start crc update */
 584	wait_queue_head_t done;                   /* crc update done */
 585	u32 *crc32;                               /* points to handle's crc32 */
 586	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 587	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 588};
 589
 590/**
 591 * CRC32 update function that runs in its own thread.
 592 */
 593static int crc32_threadfn(void *data)
 594{
 595	struct crc_data *d = data;
 596	unsigned i;
 597
 598	while (1) {
 599		wait_event(d->go, atomic_read(&d->ready) ||
 600		                  kthread_should_stop());
 601		if (kthread_should_stop()) {
 602			d->thr = NULL;
 603			atomic_set(&d->stop, 1);
 604			wake_up(&d->done);
 605			break;
 606		}
 607		atomic_set(&d->ready, 0);
 608
 609		for (i = 0; i < d->run_threads; i++)
 610			*d->crc32 = crc32_le(*d->crc32,
 611			                     d->unc[i], *d->unc_len[i]);
 612		atomic_set(&d->stop, 1);
 613		wake_up(&d->done);
 614	}
 615	return 0;
 616}
 617/**
 618 * Structure used for LZO data compression.
 619 */
 620struct cmp_data {
 621	struct task_struct *thr;                  /* thread */
 622	atomic_t ready;                           /* ready to start flag */
 623	atomic_t stop;                            /* ready to stop flag */
 624	int ret;                                  /* return code */
 625	wait_queue_head_t go;                     /* start compression */
 626	wait_queue_head_t done;                   /* compression done */
 627	size_t unc_len;                           /* uncompressed length */
 628	size_t cmp_len;                           /* compressed length */
 629	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 630	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 631	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 632};
 633
 634/**
 635 * Compression function that runs in its own thread.
 636 */
 637static int lzo_compress_threadfn(void *data)
 638{
 639	struct cmp_data *d = data;
 640
 641	while (1) {
 642		wait_event(d->go, atomic_read(&d->ready) ||
 643		                  kthread_should_stop());
 644		if (kthread_should_stop()) {
 645			d->thr = NULL;
 646			d->ret = -1;
 647			atomic_set(&d->stop, 1);
 648			wake_up(&d->done);
 649			break;
 650		}
 651		atomic_set(&d->ready, 0);
 652
 653		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 654		                          d->cmp + LZO_HEADER, &d->cmp_len,
 655		                          d->wrk);
 656		atomic_set(&d->stop, 1);
 657		wake_up(&d->done);
 658	}
 659	return 0;
 660}
 661
 662/**
 663 * save_image_lzo - Save the suspend image data compressed with LZO.
 664 * @handle: Swap map handle to use for saving the image.
 665 * @snapshot: Image to read data from.
 666 * @nr_to_write: Number of pages to save.
 667 */
 668static int save_image_lzo(struct swap_map_handle *handle,
 669                          struct snapshot_handle *snapshot,
 670                          unsigned int nr_to_write)
 671{
 672	unsigned int m;
 673	int ret = 0;
 674	int nr_pages;
 675	int err2;
 676	struct hib_bio_batch hb;
 677	ktime_t start;
 678	ktime_t stop;
 679	size_t off;
 680	unsigned thr, run_threads, nr_threads;
 681	unsigned char *page = NULL;
 682	struct cmp_data *data = NULL;
 683	struct crc_data *crc = NULL;
 684
 685	hib_init_batch(&hb);
 686
 687	/*
 688	 * We'll limit the number of threads for compression to limit memory
 689	 * footprint.
 690	 */
 691	nr_threads = num_online_cpus() - 1;
 692	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 693
 694	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 695	if (!page) {
 696		pr_err("Failed to allocate LZO page\n");
 697		ret = -ENOMEM;
 698		goto out_clean;
 699	}
 700
 701	data = vmalloc(sizeof(*data) * nr_threads);
 702	if (!data) {
 703		pr_err("Failed to allocate LZO data\n");
 704		ret = -ENOMEM;
 705		goto out_clean;
 706	}
 707	for (thr = 0; thr < nr_threads; thr++)
 708		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 709
 710	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 711	if (!crc) {
 712		pr_err("Failed to allocate crc\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 715	}
 716	memset(crc, 0, offsetof(struct crc_data, go));
 717
 718	/*
 719	 * Start the compression threads.
 720	 */
 721	for (thr = 0; thr < nr_threads; thr++) {
 722		init_waitqueue_head(&data[thr].go);
 723		init_waitqueue_head(&data[thr].done);
 724
 725		data[thr].thr = kthread_run(lzo_compress_threadfn,
 726		                            &data[thr],
 727		                            "image_compress/%u", thr);
 728		if (IS_ERR(data[thr].thr)) {
 729			data[thr].thr = NULL;
 730			pr_err("Cannot start compression threads\n");
 
 731			ret = -ENOMEM;
 732			goto out_clean;
 733		}
 734	}
 735
 736	/*
 737	 * Start the CRC32 thread.
 738	 */
 739	init_waitqueue_head(&crc->go);
 740	init_waitqueue_head(&crc->done);
 741
 742	handle->crc32 = 0;
 743	crc->crc32 = &handle->crc32;
 744	for (thr = 0; thr < nr_threads; thr++) {
 745		crc->unc[thr] = data[thr].unc;
 746		crc->unc_len[thr] = &data[thr].unc_len;
 747	}
 748
 749	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 750	if (IS_ERR(crc->thr)) {
 751		crc->thr = NULL;
 752		pr_err("Cannot start CRC32 thread\n");
 753		ret = -ENOMEM;
 754		goto out_clean;
 755	}
 756
 757	/*
 758	 * Adjust the number of required free pages after all allocations have
 759	 * been done. We don't want to run out of pages when writing.
 760	 */
 761	handle->reqd_free_pages = reqd_free_pages();
 762
 763	pr_info("Using %u thread(s) for compression\n", nr_threads);
 764	pr_info("Compressing and saving image data (%u pages)...\n",
 765		nr_to_write);
 
 766	m = nr_to_write / 10;
 767	if (!m)
 768		m = 1;
 769	nr_pages = 0;
 770	start = ktime_get();
 771	for (;;) {
 772		for (thr = 0; thr < nr_threads; thr++) {
 773			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 774				ret = snapshot_read_next(snapshot);
 775				if (ret < 0)
 776					goto out_finish;
 777
 778				if (!ret)
 779					break;
 780
 781				memcpy(data[thr].unc + off,
 782				       data_of(*snapshot), PAGE_SIZE);
 783
 784				if (!(nr_pages % m))
 785					pr_info("Image saving progress: %3d%%\n",
 786						nr_pages / m * 10);
 
 
 787				nr_pages++;
 788			}
 789			if (!off)
 790				break;
 791
 792			data[thr].unc_len = off;
 793
 794			atomic_set(&data[thr].ready, 1);
 795			wake_up(&data[thr].go);
 796		}
 797
 798		if (!thr)
 799			break;
 800
 801		crc->run_threads = thr;
 802		atomic_set(&crc->ready, 1);
 803		wake_up(&crc->go);
 804
 805		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 806			wait_event(data[thr].done,
 807			           atomic_read(&data[thr].stop));
 808			atomic_set(&data[thr].stop, 0);
 809
 810			ret = data[thr].ret;
 811
 812			if (ret < 0) {
 813				pr_err("LZO compression failed\n");
 814				goto out_finish;
 815			}
 816
 817			if (unlikely(!data[thr].cmp_len ||
 818			             data[thr].cmp_len >
 819			             lzo1x_worst_compress(data[thr].unc_len))) {
 820				pr_err("Invalid LZO compressed length\n");
 
 821				ret = -1;
 822				goto out_finish;
 823			}
 824
 825			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 826
 827			/*
 828			 * Given we are writing one page at a time to disk, we
 829			 * copy that much from the buffer, although the last
 830			 * bit will likely be smaller than full page. This is
 831			 * OK - we saved the length of the compressed data, so
 832			 * any garbage at the end will be discarded when we
 833			 * read it.
 834			 */
 835			for (off = 0;
 836			     off < LZO_HEADER + data[thr].cmp_len;
 837			     off += PAGE_SIZE) {
 838				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 839
 840				ret = swap_write_page(handle, page, &hb);
 841				if (ret)
 842					goto out_finish;
 843			}
 844		}
 845
 846		wait_event(crc->done, atomic_read(&crc->stop));
 847		atomic_set(&crc->stop, 0);
 848	}
 849
 850out_finish:
 851	err2 = hib_wait_io(&hb);
 852	stop = ktime_get();
 853	if (!ret)
 854		ret = err2;
 855	if (!ret)
 856		pr_info("Image saving done\n");
 857	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 858out_clean:
 859	if (crc) {
 860		if (crc->thr)
 861			kthread_stop(crc->thr);
 862		kfree(crc);
 863	}
 864	if (data) {
 865		for (thr = 0; thr < nr_threads; thr++)
 866			if (data[thr].thr)
 867				kthread_stop(data[thr].thr);
 868		vfree(data);
 869	}
 870	if (page) free_page((unsigned long)page);
 871
 872	return ret;
 873}
 874
 875/**
 876 *	enough_swap - Make sure we have enough swap to save the image.
 877 *
 878 *	Returns TRUE or FALSE after checking the total amount of swap
 879 *	space avaiable from the resume partition.
 880 */
 881
 882static int enough_swap(unsigned int nr_pages)
 883{
 884	unsigned int free_swap = count_swap_pages(root_swap, 1);
 885	unsigned int required;
 886
 887	pr_debug("Free swap pages: %u\n", free_swap);
 888
 889	required = PAGES_FOR_IO + nr_pages;
 890	return free_swap > required;
 891}
 892
 893/**
 894 *	swsusp_write - Write entire image and metadata.
 895 *	@flags: flags to pass to the "boot" kernel in the image header
 896 *
 897 *	It is important _NOT_ to umount filesystems at this point. We want
 898 *	them synced (in case something goes wrong) but we DO not want to mark
 899 *	filesystem clean: it is not. (And it does not matter, if we resume
 900 *	correctly, we'll mark system clean, anyway.)
 901 */
 902
 903int swsusp_write(unsigned int flags)
 904{
 905	struct swap_map_handle handle;
 906	struct snapshot_handle snapshot;
 907	struct swsusp_info *header;
 908	unsigned long pages;
 909	int error;
 910
 911	pages = snapshot_get_image_size();
 912	error = get_swap_writer(&handle);
 913	if (error) {
 914		pr_err("Cannot get swap writer\n");
 915		return error;
 916	}
 917	if (flags & SF_NOCOMPRESS_MODE) {
 918		if (!enough_swap(pages)) {
 919			pr_err("Not enough free swap\n");
 920			error = -ENOSPC;
 921			goto out_finish;
 922		}
 923	}
 924	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 925	error = snapshot_read_next(&snapshot);
 926	if (error < PAGE_SIZE) {
 927		if (error >= 0)
 928			error = -EFAULT;
 929
 930		goto out_finish;
 931	}
 932	header = (struct swsusp_info *)data_of(snapshot);
 933	error = swap_write_page(&handle, header, NULL);
 934	if (!error) {
 935		error = (flags & SF_NOCOMPRESS_MODE) ?
 936			save_image(&handle, &snapshot, pages - 1) :
 937			save_image_lzo(&handle, &snapshot, pages - 1);
 938	}
 939out_finish:
 940	error = swap_writer_finish(&handle, flags, error);
 941	return error;
 942}
 943
 944/**
 945 *	The following functions allow us to read data using a swap map
 946 *	in a file-alike way
 947 */
 948
 949static void release_swap_reader(struct swap_map_handle *handle)
 950{
 951	struct swap_map_page_list *tmp;
 952
 953	while (handle->maps) {
 954		if (handle->maps->map)
 955			free_page((unsigned long)handle->maps->map);
 956		tmp = handle->maps;
 957		handle->maps = handle->maps->next;
 958		kfree(tmp);
 959	}
 960	handle->cur = NULL;
 961}
 962
 963static int get_swap_reader(struct swap_map_handle *handle,
 964		unsigned int *flags_p)
 965{
 966	int error;
 967	struct swap_map_page_list *tmp, *last;
 968	sector_t offset;
 969
 970	*flags_p = swsusp_header->flags;
 971
 972	if (!swsusp_header->image) /* how can this happen? */
 973		return -EINVAL;
 974
 975	handle->cur = NULL;
 976	last = handle->maps = NULL;
 977	offset = swsusp_header->image;
 978	while (offset) {
 979		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 980		if (!tmp) {
 981			release_swap_reader(handle);
 982			return -ENOMEM;
 983		}
 984		memset(tmp, 0, sizeof(*tmp));
 985		if (!handle->maps)
 986			handle->maps = tmp;
 987		if (last)
 988			last->next = tmp;
 989		last = tmp;
 990
 991		tmp->map = (struct swap_map_page *)
 992			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 993		if (!tmp->map) {
 994			release_swap_reader(handle);
 995			return -ENOMEM;
 996		}
 997
 998		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
 999		if (error) {
1000			release_swap_reader(handle);
1001			return error;
1002		}
1003		offset = tmp->map->next_swap;
1004	}
1005	handle->k = 0;
1006	handle->cur = handle->maps->map;
1007	return 0;
1008}
1009
1010static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011		struct hib_bio_batch *hb)
1012{
1013	sector_t offset;
1014	int error;
1015	struct swap_map_page_list *tmp;
1016
1017	if (!handle->cur)
1018		return -EINVAL;
1019	offset = handle->cur->entries[handle->k];
1020	if (!offset)
1021		return -EFAULT;
1022	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1023	if (error)
1024		return error;
1025	if (++handle->k >= MAP_PAGE_ENTRIES) {
1026		handle->k = 0;
1027		free_page((unsigned long)handle->maps->map);
1028		tmp = handle->maps;
1029		handle->maps = handle->maps->next;
1030		kfree(tmp);
1031		if (!handle->maps)
1032			release_swap_reader(handle);
1033		else
1034			handle->cur = handle->maps->map;
1035	}
1036	return error;
1037}
1038
1039static int swap_reader_finish(struct swap_map_handle *handle)
1040{
1041	release_swap_reader(handle);
1042
1043	return 0;
1044}
1045
1046/**
1047 *	load_image - load the image using the swap map handle
1048 *	@handle and the snapshot handle @snapshot
1049 *	(assume there are @nr_pages pages to load)
1050 */
1051
1052static int load_image(struct swap_map_handle *handle,
1053                      struct snapshot_handle *snapshot,
1054                      unsigned int nr_to_read)
1055{
1056	unsigned int m;
1057	int ret = 0;
1058	ktime_t start;
1059	ktime_t stop;
1060	struct hib_bio_batch hb;
1061	int err2;
1062	unsigned nr_pages;
1063
1064	hib_init_batch(&hb);
1065
1066	clean_pages_on_read = true;
1067	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068	m = nr_to_read / 10;
1069	if (!m)
1070		m = 1;
1071	nr_pages = 0;
1072	start = ktime_get();
1073	for ( ; ; ) {
1074		ret = snapshot_write_next(snapshot);
1075		if (ret <= 0)
1076			break;
1077		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1078		if (ret)
1079			break;
1080		if (snapshot->sync_read)
1081			ret = hib_wait_io(&hb);
1082		if (ret)
1083			break;
1084		if (!(nr_pages % m))
1085			pr_info("Image loading progress: %3d%%\n",
1086				nr_pages / m * 10);
1087		nr_pages++;
1088	}
1089	err2 = hib_wait_io(&hb);
1090	stop = ktime_get();
1091	if (!ret)
1092		ret = err2;
1093	if (!ret) {
1094		pr_info("Image loading done\n");
1095		snapshot_write_finalize(snapshot);
1096		if (!snapshot_image_loaded(snapshot))
1097			ret = -ENODATA;
1098	}
1099	swsusp_show_speed(start, stop, nr_to_read, "Read");
1100	return ret;
1101}
1102
1103/**
1104 * Structure used for LZO data decompression.
1105 */
1106struct dec_data {
1107	struct task_struct *thr;                  /* thread */
1108	atomic_t ready;                           /* ready to start flag */
1109	atomic_t stop;                            /* ready to stop flag */
1110	int ret;                                  /* return code */
1111	wait_queue_head_t go;                     /* start decompression */
1112	wait_queue_head_t done;                   /* decompression done */
1113	size_t unc_len;                           /* uncompressed length */
1114	size_t cmp_len;                           /* compressed length */
1115	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1116	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1117};
1118
1119/**
1120 * Deompression function that runs in its own thread.
1121 */
1122static int lzo_decompress_threadfn(void *data)
1123{
1124	struct dec_data *d = data;
1125
1126	while (1) {
1127		wait_event(d->go, atomic_read(&d->ready) ||
1128		                  kthread_should_stop());
1129		if (kthread_should_stop()) {
1130			d->thr = NULL;
1131			d->ret = -1;
1132			atomic_set(&d->stop, 1);
1133			wake_up(&d->done);
1134			break;
1135		}
1136		atomic_set(&d->ready, 0);
1137
1138		d->unc_len = LZO_UNC_SIZE;
1139		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140		                               d->unc, &d->unc_len);
1141		if (clean_pages_on_decompress)
1142			flush_icache_range((unsigned long)d->unc,
1143					   (unsigned long)d->unc + d->unc_len);
1144
1145		atomic_set(&d->stop, 1);
1146		wake_up(&d->done);
1147	}
1148	return 0;
1149}
1150
1151/**
1152 * load_image_lzo - Load compressed image data and decompress them with LZO.
1153 * @handle: Swap map handle to use for loading data.
1154 * @snapshot: Image to copy uncompressed data into.
1155 * @nr_to_read: Number of pages to load.
1156 */
1157static int load_image_lzo(struct swap_map_handle *handle,
1158                          struct snapshot_handle *snapshot,
1159                          unsigned int nr_to_read)
1160{
1161	unsigned int m;
1162	int ret = 0;
1163	int eof = 0;
1164	struct hib_bio_batch hb;
1165	ktime_t start;
1166	ktime_t stop;
1167	unsigned nr_pages;
1168	size_t off;
1169	unsigned i, thr, run_threads, nr_threads;
1170	unsigned ring = 0, pg = 0, ring_size = 0,
1171	         have = 0, want, need, asked = 0;
1172	unsigned long read_pages = 0;
1173	unsigned char **page = NULL;
1174	struct dec_data *data = NULL;
1175	struct crc_data *crc = NULL;
1176
1177	hib_init_batch(&hb);
1178
1179	/*
1180	 * We'll limit the number of threads for decompression to limit memory
1181	 * footprint.
1182	 */
1183	nr_threads = num_online_cpus() - 1;
1184	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1185
1186	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1187	if (!page) {
1188		pr_err("Failed to allocate LZO page\n");
1189		ret = -ENOMEM;
1190		goto out_clean;
1191	}
1192
1193	data = vmalloc(sizeof(*data) * nr_threads);
1194	if (!data) {
1195		pr_err("Failed to allocate LZO data\n");
1196		ret = -ENOMEM;
1197		goto out_clean;
1198	}
1199	for (thr = 0; thr < nr_threads; thr++)
1200		memset(&data[thr], 0, offsetof(struct dec_data, go));
1201
1202	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1203	if (!crc) {
1204		pr_err("Failed to allocate crc\n");
1205		ret = -ENOMEM;
1206		goto out_clean;
1207	}
1208	memset(crc, 0, offsetof(struct crc_data, go));
1209
1210	clean_pages_on_decompress = true;
1211
1212	/*
1213	 * Start the decompression threads.
1214	 */
1215	for (thr = 0; thr < nr_threads; thr++) {
1216		init_waitqueue_head(&data[thr].go);
1217		init_waitqueue_head(&data[thr].done);
1218
1219		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1220		                            &data[thr],
1221		                            "image_decompress/%u", thr);
1222		if (IS_ERR(data[thr].thr)) {
1223			data[thr].thr = NULL;
1224			pr_err("Cannot start decompression threads\n");
 
1225			ret = -ENOMEM;
1226			goto out_clean;
1227		}
1228	}
1229
1230	/*
1231	 * Start the CRC32 thread.
1232	 */
1233	init_waitqueue_head(&crc->go);
1234	init_waitqueue_head(&crc->done);
1235
1236	handle->crc32 = 0;
1237	crc->crc32 = &handle->crc32;
1238	for (thr = 0; thr < nr_threads; thr++) {
1239		crc->unc[thr] = data[thr].unc;
1240		crc->unc_len[thr] = &data[thr].unc_len;
1241	}
1242
1243	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244	if (IS_ERR(crc->thr)) {
1245		crc->thr = NULL;
1246		pr_err("Cannot start CRC32 thread\n");
1247		ret = -ENOMEM;
1248		goto out_clean;
1249	}
1250
1251	/*
1252	 * Set the number of pages for read buffering.
1253	 * This is complete guesswork, because we'll only know the real
1254	 * picture once prepare_image() is called, which is much later on
1255	 * during the image load phase. We'll assume the worst case and
1256	 * say that none of the image pages are from high memory.
1257	 */
1258	if (low_free_pages() > snapshot_get_image_size())
1259		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262	for (i = 0; i < read_pages; i++) {
1263		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264						  __GFP_RECLAIM | __GFP_HIGH :
1265						  __GFP_RECLAIM | __GFP_NOWARN |
1266						  __GFP_NORETRY);
1267
1268		if (!page[i]) {
1269			if (i < LZO_CMP_PAGES) {
1270				ring_size = i;
1271				pr_err("Failed to allocate LZO pages\n");
 
1272				ret = -ENOMEM;
1273				goto out_clean;
1274			} else {
1275				break;
1276			}
1277		}
1278	}
1279	want = ring_size = i;
1280
1281	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282	pr_info("Loading and decompressing image data (%u pages)...\n",
1283		nr_to_read);
 
1284	m = nr_to_read / 10;
1285	if (!m)
1286		m = 1;
1287	nr_pages = 0;
1288	start = ktime_get();
1289
1290	ret = snapshot_write_next(snapshot);
1291	if (ret <= 0)
1292		goto out_finish;
1293
1294	for(;;) {
1295		for (i = 0; !eof && i < want; i++) {
1296			ret = swap_read_page(handle, page[ring], &hb);
1297			if (ret) {
1298				/*
1299				 * On real read error, finish. On end of data,
1300				 * set EOF flag and just exit the read loop.
1301				 */
1302				if (handle->cur &&
1303				    handle->cur->entries[handle->k]) {
1304					goto out_finish;
1305				} else {
1306					eof = 1;
1307					break;
1308				}
1309			}
1310			if (++ring >= ring_size)
1311				ring = 0;
1312		}
1313		asked += i;
1314		want -= i;
1315
1316		/*
1317		 * We are out of data, wait for some more.
1318		 */
1319		if (!have) {
1320			if (!asked)
1321				break;
1322
1323			ret = hib_wait_io(&hb);
1324			if (ret)
1325				goto out_finish;
1326			have += asked;
1327			asked = 0;
1328			if (eof)
1329				eof = 2;
1330		}
1331
1332		if (crc->run_threads) {
1333			wait_event(crc->done, atomic_read(&crc->stop));
1334			atomic_set(&crc->stop, 0);
1335			crc->run_threads = 0;
1336		}
1337
1338		for (thr = 0; have && thr < nr_threads; thr++) {
1339			data[thr].cmp_len = *(size_t *)page[pg];
1340			if (unlikely(!data[thr].cmp_len ||
1341			             data[thr].cmp_len >
1342			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343				pr_err("Invalid LZO compressed length\n");
 
1344				ret = -1;
1345				goto out_finish;
1346			}
1347
1348			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1349			                    PAGE_SIZE);
1350			if (need > have) {
1351				if (eof > 1) {
1352					ret = -1;
1353					goto out_finish;
1354				}
1355				break;
1356			}
1357
1358			for (off = 0;
1359			     off < LZO_HEADER + data[thr].cmp_len;
1360			     off += PAGE_SIZE) {
1361				memcpy(data[thr].cmp + off,
1362				       page[pg], PAGE_SIZE);
1363				have--;
1364				want++;
1365				if (++pg >= ring_size)
1366					pg = 0;
1367			}
1368
1369			atomic_set(&data[thr].ready, 1);
1370			wake_up(&data[thr].go);
1371		}
1372
1373		/*
1374		 * Wait for more data while we are decompressing.
1375		 */
1376		if (have < LZO_CMP_PAGES && asked) {
1377			ret = hib_wait_io(&hb);
1378			if (ret)
1379				goto out_finish;
1380			have += asked;
1381			asked = 0;
1382			if (eof)
1383				eof = 2;
1384		}
1385
1386		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387			wait_event(data[thr].done,
1388			           atomic_read(&data[thr].stop));
1389			atomic_set(&data[thr].stop, 0);
1390
1391			ret = data[thr].ret;
1392
1393			if (ret < 0) {
1394				pr_err("LZO decompression failed\n");
 
1395				goto out_finish;
1396			}
1397
1398			if (unlikely(!data[thr].unc_len ||
1399			             data[thr].unc_len > LZO_UNC_SIZE ||
1400			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1401				pr_err("Invalid LZO uncompressed length\n");
 
1402				ret = -1;
1403				goto out_finish;
1404			}
1405
1406			for (off = 0;
1407			     off < data[thr].unc_len; off += PAGE_SIZE) {
1408				memcpy(data_of(*snapshot),
1409				       data[thr].unc + off, PAGE_SIZE);
1410
1411				if (!(nr_pages % m))
1412					pr_info("Image loading progress: %3d%%\n",
1413						nr_pages / m * 10);
 
 
1414				nr_pages++;
1415
1416				ret = snapshot_write_next(snapshot);
1417				if (ret <= 0) {
1418					crc->run_threads = thr + 1;
1419					atomic_set(&crc->ready, 1);
1420					wake_up(&crc->go);
1421					goto out_finish;
1422				}
1423			}
1424		}
1425
1426		crc->run_threads = thr;
1427		atomic_set(&crc->ready, 1);
1428		wake_up(&crc->go);
1429	}
1430
1431out_finish:
1432	if (crc->run_threads) {
1433		wait_event(crc->done, atomic_read(&crc->stop));
1434		atomic_set(&crc->stop, 0);
1435	}
1436	stop = ktime_get();
1437	if (!ret) {
1438		pr_info("Image loading done\n");
1439		snapshot_write_finalize(snapshot);
1440		if (!snapshot_image_loaded(snapshot))
1441			ret = -ENODATA;
1442		if (!ret) {
1443			if (swsusp_header->flags & SF_CRC32_MODE) {
1444				if(handle->crc32 != swsusp_header->crc32) {
1445					pr_err("Invalid image CRC32!\n");
 
1446					ret = -ENODATA;
1447				}
1448			}
1449		}
1450	}
1451	swsusp_show_speed(start, stop, nr_to_read, "Read");
1452out_clean:
1453	for (i = 0; i < ring_size; i++)
1454		free_page((unsigned long)page[i]);
1455	if (crc) {
1456		if (crc->thr)
1457			kthread_stop(crc->thr);
1458		kfree(crc);
1459	}
1460	if (data) {
1461		for (thr = 0; thr < nr_threads; thr++)
1462			if (data[thr].thr)
1463				kthread_stop(data[thr].thr);
1464		vfree(data);
1465	}
1466	vfree(page);
1467
1468	return ret;
1469}
1470
1471/**
1472 *	swsusp_read - read the hibernation image.
1473 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1474 *		  be written into this memory location
1475 */
1476
1477int swsusp_read(unsigned int *flags_p)
1478{
1479	int error;
1480	struct swap_map_handle handle;
1481	struct snapshot_handle snapshot;
1482	struct swsusp_info *header;
1483
1484	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485	error = snapshot_write_next(&snapshot);
1486	if (error < PAGE_SIZE)
1487		return error < 0 ? error : -EFAULT;
1488	header = (struct swsusp_info *)data_of(snapshot);
1489	error = get_swap_reader(&handle, flags_p);
1490	if (error)
1491		goto end;
1492	if (!error)
1493		error = swap_read_page(&handle, header, NULL);
1494	if (!error) {
1495		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496			load_image(&handle, &snapshot, header->pages - 1) :
1497			load_image_lzo(&handle, &snapshot, header->pages - 1);
1498	}
1499	swap_reader_finish(&handle);
1500end:
1501	if (!error)
1502		pr_debug("Image successfully loaded\n");
1503	else
1504		pr_debug("Error %d resuming\n", error);
1505	return error;
1506}
1507
1508/**
1509 *      swsusp_check - Check for swsusp signature in the resume device
1510 */
1511
1512int swsusp_check(void)
1513{
1514	int error;
1515
1516	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1517					    FMODE_READ, NULL);
1518	if (!IS_ERR(hib_resume_bdev)) {
1519		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520		clear_page(swsusp_header);
1521		error = hib_submit_io(REQ_OP_READ, 0,
1522					swsusp_resume_block,
1523					swsusp_header, NULL);
1524		if (error)
1525			goto put;
1526
1527		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529			/* Reset swap signature now */
1530			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531						swsusp_resume_block,
1532						swsusp_header, NULL);
1533		} else {
1534			error = -EINVAL;
1535		}
1536
1537put:
1538		if (error)
1539			blkdev_put(hib_resume_bdev, FMODE_READ);
1540		else
1541			pr_debug("Image signature found, resuming\n");
1542	} else {
1543		error = PTR_ERR(hib_resume_bdev);
1544	}
1545
1546	if (error)
1547		pr_debug("Image not found (code %d)\n", error);
1548
1549	return error;
1550}
1551
1552/**
1553 *	swsusp_close - close swap device.
1554 */
1555
1556void swsusp_close(fmode_t mode)
1557{
1558	if (IS_ERR(hib_resume_bdev)) {
1559		pr_debug("Image device not initialised\n");
1560		return;
1561	}
1562
1563	blkdev_put(hib_resume_bdev, mode);
1564}
1565
1566/**
1567 *      swsusp_unmark - Unmark swsusp signature in the resume device
1568 */
1569
1570#ifdef CONFIG_SUSPEND
1571int swsusp_unmark(void)
1572{
1573	int error;
1574
1575	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576		      swsusp_header, NULL);
1577	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580					swsusp_resume_block,
1581					swsusp_header, NULL);
1582	} else {
1583		pr_err("Cannot find swsusp signature!\n");
1584		error = -ENODEV;
1585	}
1586
1587	/*
1588	 * We just returned from suspend, we don't need the image any more.
1589	 */
1590	free_all_swap_pages(root_swap);
1591
1592	return error;
1593}
1594#endif
1595
1596static int swsusp_header_init(void)
1597{
1598	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1599	if (!swsusp_header)
1600		panic("Could not allocate memory for swsusp_header\n");
1601	return 0;
1602}
1603
1604core_initcall(swsusp_header_init);