Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/bootmem.h>
 
  2#include <linux/compiler.h>
  3#include <linux/fs.h>
  4#include <linux/init.h>
  5#include <linux/ksm.h>
  6#include <linux/mm.h>
  7#include <linux/mmzone.h>
  8#include <linux/huge_mm.h>
  9#include <linux/proc_fs.h>
 10#include <linux/seq_file.h>
 11#include <linux/hugetlb.h>
 
 12#include <linux/memcontrol.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/page_idle.h>
 15#include <linux/kernel-page-flags.h>
 16#include <asm/uaccess.h>
 17#include "internal.h"
 18
 19#define KPMSIZE sizeof(u64)
 20#define KPMMASK (KPMSIZE - 1)
 21#define KPMBITS (KPMSIZE * BITS_PER_BYTE)
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23/* /proc/kpagecount - an array exposing page counts
 24 *
 25 * Each entry is a u64 representing the corresponding
 26 * physical page count.
 27 */
 28static ssize_t kpagecount_read(struct file *file, char __user *buf,
 29			     size_t count, loff_t *ppos)
 30{
 
 31	u64 __user *out = (u64 __user *)buf;
 32	struct page *ppage;
 33	unsigned long src = *ppos;
 34	unsigned long pfn;
 35	ssize_t ret = 0;
 36	u64 pcount;
 37
 38	pfn = src / KPMSIZE;
 39	count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
 40	if (src & KPMMASK || count & KPMMASK)
 41		return -EINVAL;
 
 
 
 42
 43	while (count > 0) {
 44		if (pfn_valid(pfn))
 45			ppage = pfn_to_page(pfn);
 46		else
 47			ppage = NULL;
 48		if (!ppage || PageSlab(ppage))
 
 
 49			pcount = 0;
 50		else
 51			pcount = page_mapcount(ppage);
 52
 53		if (put_user(pcount, out)) {
 54			ret = -EFAULT;
 55			break;
 56		}
 57
 58		pfn++;
 59		out++;
 60		count -= KPMSIZE;
 61
 62		cond_resched();
 63	}
 64
 65	*ppos += (char __user *)out - buf;
 66	if (!ret)
 67		ret = (char __user *)out - buf;
 68	return ret;
 69}
 70
 71static const struct file_operations proc_kpagecount_operations = {
 72	.llseek = mem_lseek,
 73	.read = kpagecount_read,
 
 74};
 75
 76/* /proc/kpageflags - an array exposing page flags
 77 *
 78 * Each entry is a u64 representing the corresponding
 79 * physical page flags.
 80 */
 81
 82static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
 83{
 84	return ((kflags >> kbit) & 1) << ubit;
 85}
 86
 87u64 stable_page_flags(struct page *page)
 88{
 89	u64 k;
 90	u64 u;
 91
 92	/*
 93	 * pseudo flag: KPF_NOPAGE
 94	 * it differentiates a memory hole from a page with no flags
 95	 */
 96	if (!page)
 97		return 1 << KPF_NOPAGE;
 98
 99	k = page->flags;
100	u = 0;
101
102	/*
103	 * pseudo flags for the well known (anonymous) memory mapped pages
104	 *
105	 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
106	 * simple test in page_mapped() is not enough.
107	 */
108	if (!PageSlab(page) && page_mapped(page))
109		u |= 1 << KPF_MMAP;
110	if (PageAnon(page))
111		u |= 1 << KPF_ANON;
112	if (PageKsm(page))
113		u |= 1 << KPF_KSM;
114
115	/*
116	 * compound pages: export both head/tail info
117	 * they together define a compound page's start/end pos and order
118	 */
119	if (PageHead(page))
120		u |= 1 << KPF_COMPOUND_HEAD;
121	if (PageTail(page))
122		u |= 1 << KPF_COMPOUND_TAIL;
123	if (PageHuge(page))
124		u |= 1 << KPF_HUGE;
125	/*
126	 * PageTransCompound can be true for non-huge compound pages (slab
127	 * pages or pages allocated by drivers with __GFP_COMP) because it
128	 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
129	 * to make sure a given page is a thp, not a non-huge compound page.
130	 */
131	else if (PageTransCompound(page)) {
132		struct page *head = compound_head(page);
133
134		if (PageLRU(head) || PageAnon(head))
135			u |= 1 << KPF_THP;
136		else if (is_huge_zero_page(head)) {
137			u |= 1 << KPF_ZERO_PAGE;
138			u |= 1 << KPF_THP;
139		}
140	} else if (is_zero_pfn(page_to_pfn(page)))
141		u |= 1 << KPF_ZERO_PAGE;
142
143
144	/*
145	 * Caveats on high order pages: page->_count will only be set
146	 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
147	 * SLOB won't set PG_slab at all on compound pages.
148	 */
149	if (PageBuddy(page))
150		u |= 1 << KPF_BUDDY;
151	else if (page_count(page) == 0 && is_free_buddy_page(page))
152		u |= 1 << KPF_BUDDY;
153
154	if (PageBalloon(page))
155		u |= 1 << KPF_BALLOON;
 
 
156
157	if (page_is_idle(page))
158		u |= 1 << KPF_IDLE;
159
160	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);
161
162	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);
163	if (PageTail(page) && PageSlab(compound_head(page)))
164		u |= 1 << KPF_SLAB;
165
166	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
167	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
168	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
169	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);
170
171	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
172	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
173	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
174	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);
175
176	u |= kpf_copy_bit(k, KPF_SWAPCACHE,	PG_swapcache);
 
177	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);
178
179	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
180	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);
181
182#ifdef CONFIG_MEMORY_FAILURE
183	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
184#endif
185
186#ifdef CONFIG_ARCH_USES_PG_UNCACHED
187	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
188#endif
189
190	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
191	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
192	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
193	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
194	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
195	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);
 
 
 
 
196
197	return u;
198};
199
200static ssize_t kpageflags_read(struct file *file, char __user *buf,
201			     size_t count, loff_t *ppos)
202{
 
203	u64 __user *out = (u64 __user *)buf;
204	struct page *ppage;
205	unsigned long src = *ppos;
206	unsigned long pfn;
207	ssize_t ret = 0;
208
209	pfn = src / KPMSIZE;
210	count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
211	if (src & KPMMASK || count & KPMMASK)
212		return -EINVAL;
 
 
 
213
214	while (count > 0) {
215		if (pfn_valid(pfn))
216			ppage = pfn_to_page(pfn);
217		else
218			ppage = NULL;
 
219
220		if (put_user(stable_page_flags(ppage), out)) {
221			ret = -EFAULT;
222			break;
223		}
224
225		pfn++;
226		out++;
227		count -= KPMSIZE;
228
229		cond_resched();
230	}
231
232	*ppos += (char __user *)out - buf;
233	if (!ret)
234		ret = (char __user *)out - buf;
235	return ret;
236}
237
238static const struct file_operations proc_kpageflags_operations = {
239	.llseek = mem_lseek,
240	.read = kpageflags_read,
 
241};
242
243#ifdef CONFIG_MEMCG
244static ssize_t kpagecgroup_read(struct file *file, char __user *buf,
245				size_t count, loff_t *ppos)
246{
 
247	u64 __user *out = (u64 __user *)buf;
248	struct page *ppage;
249	unsigned long src = *ppos;
250	unsigned long pfn;
251	ssize_t ret = 0;
252	u64 ino;
253
254	pfn = src / KPMSIZE;
255	count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
256	if (src & KPMMASK || count & KPMMASK)
257		return -EINVAL;
 
 
 
258
259	while (count > 0) {
260		if (pfn_valid(pfn))
261			ppage = pfn_to_page(pfn);
262		else
263			ppage = NULL;
 
264
265		if (ppage)
266			ino = page_cgroup_ino(ppage);
267		else
268			ino = 0;
269
270		if (put_user(ino, out)) {
271			ret = -EFAULT;
272			break;
273		}
274
275		pfn++;
276		out++;
277		count -= KPMSIZE;
278
279		cond_resched();
280	}
281
282	*ppos += (char __user *)out - buf;
283	if (!ret)
284		ret = (char __user *)out - buf;
285	return ret;
286}
287
288static const struct file_operations proc_kpagecgroup_operations = {
289	.llseek = mem_lseek,
290	.read = kpagecgroup_read,
 
291};
292#endif /* CONFIG_MEMCG */
293
294static int __init proc_page_init(void)
295{
296	proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
297	proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
298#ifdef CONFIG_MEMCG
299	proc_create("kpagecgroup", S_IRUSR, NULL, &proc_kpagecgroup_operations);
300#endif
301	return 0;
302}
303fs_initcall(proc_page_init);
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/memblock.h>
  3#include <linux/compiler.h>
  4#include <linux/fs.h>
  5#include <linux/init.h>
  6#include <linux/ksm.h>
  7#include <linux/mm.h>
  8#include <linux/mmzone.h>
  9#include <linux/huge_mm.h>
 10#include <linux/proc_fs.h>
 11#include <linux/seq_file.h>
 12#include <linux/hugetlb.h>
 13#include <linux/memremap.h>
 14#include <linux/memcontrol.h>
 15#include <linux/mmu_notifier.h>
 16#include <linux/page_idle.h>
 17#include <linux/kernel-page-flags.h>
 18#include <linux/uaccess.h>
 19#include "internal.h"
 20
 21#define KPMSIZE sizeof(u64)
 22#define KPMMASK (KPMSIZE - 1)
 23#define KPMBITS (KPMSIZE * BITS_PER_BYTE)
 24
 25static inline unsigned long get_max_dump_pfn(void)
 26{
 27#ifdef CONFIG_SPARSEMEM
 28	/*
 29	 * The memmap of early sections is completely populated and marked
 30	 * online even if max_pfn does not fall on a section boundary -
 31	 * pfn_to_online_page() will succeed on all pages. Allow inspecting
 32	 * these memmaps.
 33	 */
 34	return round_up(max_pfn, PAGES_PER_SECTION);
 35#else
 36	return max_pfn;
 37#endif
 38}
 39
 40/* /proc/kpagecount - an array exposing page counts
 41 *
 42 * Each entry is a u64 representing the corresponding
 43 * physical page count.
 44 */
 45static ssize_t kpagecount_read(struct file *file, char __user *buf,
 46			     size_t count, loff_t *ppos)
 47{
 48	const unsigned long max_dump_pfn = get_max_dump_pfn();
 49	u64 __user *out = (u64 __user *)buf;
 50	struct page *ppage;
 51	unsigned long src = *ppos;
 52	unsigned long pfn;
 53	ssize_t ret = 0;
 54	u64 pcount;
 55
 56	pfn = src / KPMSIZE;
 
 57	if (src & KPMMASK || count & KPMMASK)
 58		return -EINVAL;
 59	if (src >= max_dump_pfn * KPMSIZE)
 60		return 0;
 61	count = min_t(unsigned long, count, (max_dump_pfn * KPMSIZE) - src);
 62
 63	while (count > 0) {
 64		/*
 65		 * TODO: ZONE_DEVICE support requires to identify
 66		 * memmaps that were actually initialized.
 67		 */
 68		ppage = pfn_to_online_page(pfn);
 69
 70		if (!ppage || PageSlab(ppage) || page_has_type(ppage))
 71			pcount = 0;
 72		else
 73			pcount = page_mapcount(ppage);
 74
 75		if (put_user(pcount, out)) {
 76			ret = -EFAULT;
 77			break;
 78		}
 79
 80		pfn++;
 81		out++;
 82		count -= KPMSIZE;
 83
 84		cond_resched();
 85	}
 86
 87	*ppos += (char __user *)out - buf;
 88	if (!ret)
 89		ret = (char __user *)out - buf;
 90	return ret;
 91}
 92
 93static const struct proc_ops kpagecount_proc_ops = {
 94	.proc_flags	= PROC_ENTRY_PERMANENT,
 95	.proc_lseek	= mem_lseek,
 96	.proc_read	= kpagecount_read,
 97};
 98
 99/* /proc/kpageflags - an array exposing page flags
100 *
101 * Each entry is a u64 representing the corresponding
102 * physical page flags.
103 */
104
105static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
106{
107	return ((kflags >> kbit) & 1) << ubit;
108}
109
110u64 stable_page_flags(struct page *page)
111{
112	u64 k;
113	u64 u;
114
115	/*
116	 * pseudo flag: KPF_NOPAGE
117	 * it differentiates a memory hole from a page with no flags
118	 */
119	if (!page)
120		return 1 << KPF_NOPAGE;
121
122	k = page->flags;
123	u = 0;
124
125	/*
126	 * pseudo flags for the well known (anonymous) memory mapped pages
127	 *
128	 * Note that page->_mapcount is overloaded in SLAB, so the
129	 * simple test in page_mapped() is not enough.
130	 */
131	if (!PageSlab(page) && page_mapped(page))
132		u |= 1 << KPF_MMAP;
133	if (PageAnon(page))
134		u |= 1 << KPF_ANON;
135	if (PageKsm(page))
136		u |= 1 << KPF_KSM;
137
138	/*
139	 * compound pages: export both head/tail info
140	 * they together define a compound page's start/end pos and order
141	 */
142	if (PageHead(page))
143		u |= 1 << KPF_COMPOUND_HEAD;
144	if (PageTail(page))
145		u |= 1 << KPF_COMPOUND_TAIL;
146	if (PageHuge(page))
147		u |= 1 << KPF_HUGE;
148	/*
149	 * PageTransCompound can be true for non-huge compound pages (slab
150	 * pages or pages allocated by drivers with __GFP_COMP) because it
151	 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
152	 * to make sure a given page is a thp, not a non-huge compound page.
153	 */
154	else if (PageTransCompound(page)) {
155		struct page *head = compound_head(page);
156
157		if (PageLRU(head) || PageAnon(head))
158			u |= 1 << KPF_THP;
159		else if (is_huge_zero_page(head)) {
160			u |= 1 << KPF_ZERO_PAGE;
161			u |= 1 << KPF_THP;
162		}
163	} else if (is_zero_pfn(page_to_pfn(page)))
164		u |= 1 << KPF_ZERO_PAGE;
165
166
167	/*
168	 * Caveats on high order pages: PG_buddy and PG_slab will only be set
169	 * on the head page.
 
170	 */
171	if (PageBuddy(page))
172		u |= 1 << KPF_BUDDY;
173	else if (page_count(page) == 0 && is_free_buddy_page(page))
174		u |= 1 << KPF_BUDDY;
175
176	if (PageOffline(page))
177		u |= 1 << KPF_OFFLINE;
178	if (PageTable(page))
179		u |= 1 << KPF_PGTABLE;
180
181	if (page_is_idle(page))
182		u |= 1 << KPF_IDLE;
183
184	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);
185
186	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);
187	if (PageTail(page) && PageSlab(page))
188		u |= 1 << KPF_SLAB;
189
190	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
191	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
192	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
193	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);
194
195	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
196	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
197	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
198	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);
199
200	if (PageSwapCache(page))
201		u |= 1 << KPF_SWAPCACHE;
202	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);
203
204	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
205	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);
206
207#ifdef CONFIG_MEMORY_FAILURE
208	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
209#endif
210
211#ifdef CONFIG_ARCH_USES_PG_UNCACHED
212	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
213#endif
214
215	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
216	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
217	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
218	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
219	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
220	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);
221#ifdef CONFIG_ARCH_USES_PG_ARCH_X
222	u |= kpf_copy_bit(k, KPF_ARCH_2,	PG_arch_2);
223	u |= kpf_copy_bit(k, KPF_ARCH_3,	PG_arch_3);
224#endif
225
226	return u;
227};
228
229static ssize_t kpageflags_read(struct file *file, char __user *buf,
230			     size_t count, loff_t *ppos)
231{
232	const unsigned long max_dump_pfn = get_max_dump_pfn();
233	u64 __user *out = (u64 __user *)buf;
234	struct page *ppage;
235	unsigned long src = *ppos;
236	unsigned long pfn;
237	ssize_t ret = 0;
238
239	pfn = src / KPMSIZE;
 
240	if (src & KPMMASK || count & KPMMASK)
241		return -EINVAL;
242	if (src >= max_dump_pfn * KPMSIZE)
243		return 0;
244	count = min_t(unsigned long, count, (max_dump_pfn * KPMSIZE) - src);
245
246	while (count > 0) {
247		/*
248		 * TODO: ZONE_DEVICE support requires to identify
249		 * memmaps that were actually initialized.
250		 */
251		ppage = pfn_to_online_page(pfn);
252
253		if (put_user(stable_page_flags(ppage), out)) {
254			ret = -EFAULT;
255			break;
256		}
257
258		pfn++;
259		out++;
260		count -= KPMSIZE;
261
262		cond_resched();
263	}
264
265	*ppos += (char __user *)out - buf;
266	if (!ret)
267		ret = (char __user *)out - buf;
268	return ret;
269}
270
271static const struct proc_ops kpageflags_proc_ops = {
272	.proc_flags	= PROC_ENTRY_PERMANENT,
273	.proc_lseek	= mem_lseek,
274	.proc_read	= kpageflags_read,
275};
276
277#ifdef CONFIG_MEMCG
278static ssize_t kpagecgroup_read(struct file *file, char __user *buf,
279				size_t count, loff_t *ppos)
280{
281	const unsigned long max_dump_pfn = get_max_dump_pfn();
282	u64 __user *out = (u64 __user *)buf;
283	struct page *ppage;
284	unsigned long src = *ppos;
285	unsigned long pfn;
286	ssize_t ret = 0;
287	u64 ino;
288
289	pfn = src / KPMSIZE;
 
290	if (src & KPMMASK || count & KPMMASK)
291		return -EINVAL;
292	if (src >= max_dump_pfn * KPMSIZE)
293		return 0;
294	count = min_t(unsigned long, count, (max_dump_pfn * KPMSIZE) - src);
295
296	while (count > 0) {
297		/*
298		 * TODO: ZONE_DEVICE support requires to identify
299		 * memmaps that were actually initialized.
300		 */
301		ppage = pfn_to_online_page(pfn);
302
303		if (ppage)
304			ino = page_cgroup_ino(ppage);
305		else
306			ino = 0;
307
308		if (put_user(ino, out)) {
309			ret = -EFAULT;
310			break;
311		}
312
313		pfn++;
314		out++;
315		count -= KPMSIZE;
316
317		cond_resched();
318	}
319
320	*ppos += (char __user *)out - buf;
321	if (!ret)
322		ret = (char __user *)out - buf;
323	return ret;
324}
325
326static const struct proc_ops kpagecgroup_proc_ops = {
327	.proc_flags	= PROC_ENTRY_PERMANENT,
328	.proc_lseek	= mem_lseek,
329	.proc_read	= kpagecgroup_read,
330};
331#endif /* CONFIG_MEMCG */
332
333static int __init proc_page_init(void)
334{
335	proc_create("kpagecount", S_IRUSR, NULL, &kpagecount_proc_ops);
336	proc_create("kpageflags", S_IRUSR, NULL, &kpageflags_proc_ops);
337#ifdef CONFIG_MEMCG
338	proc_create("kpagecgroup", S_IRUSR, NULL, &kpagecgroup_proc_ops);
339#endif
340	return 0;
341}
342fs_initcall(proc_page_init);