Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/bootmem.h>
  2#include <linux/compiler.h>
  3#include <linux/fs.h>
  4#include <linux/init.h>
  5#include <linux/ksm.h>
  6#include <linux/mm.h>
  7#include <linux/mmzone.h>
  8#include <linux/huge_mm.h>
  9#include <linux/proc_fs.h>
 10#include <linux/seq_file.h>
 11#include <linux/hugetlb.h>
 12#include <linux/memcontrol.h>
 13#include <linux/mmu_notifier.h>
 14#include <linux/page_idle.h>
 15#include <linux/kernel-page-flags.h>
 16#include <asm/uaccess.h>
 17#include "internal.h"
 18
 19#define KPMSIZE sizeof(u64)
 20#define KPMMASK (KPMSIZE - 1)
 21#define KPMBITS (KPMSIZE * BITS_PER_BYTE)
 22
 23/* /proc/kpagecount - an array exposing page counts
 24 *
 25 * Each entry is a u64 representing the corresponding
 26 * physical page count.
 27 */
 28static ssize_t kpagecount_read(struct file *file, char __user *buf,
 29			     size_t count, loff_t *ppos)
 30{
 31	u64 __user *out = (u64 __user *)buf;
 32	struct page *ppage;
 33	unsigned long src = *ppos;
 34	unsigned long pfn;
 35	ssize_t ret = 0;
 36	u64 pcount;
 37
 38	pfn = src / KPMSIZE;
 39	count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
 40	if (src & KPMMASK || count & KPMMASK)
 41		return -EINVAL;
 42
 43	while (count > 0) {
 44		if (pfn_valid(pfn))
 45			ppage = pfn_to_page(pfn);
 46		else
 47			ppage = NULL;
 48		if (!ppage || PageSlab(ppage))
 49			pcount = 0;
 50		else
 51			pcount = page_mapcount(ppage);
 52
 53		if (put_user(pcount, out)) {
 54			ret = -EFAULT;
 55			break;
 56		}
 57
 58		pfn++;
 59		out++;
 60		count -= KPMSIZE;
 61
 62		cond_resched();
 63	}
 64
 65	*ppos += (char __user *)out - buf;
 66	if (!ret)
 67		ret = (char __user *)out - buf;
 68	return ret;
 69}
 70
 71static const struct file_operations proc_kpagecount_operations = {
 72	.llseek = mem_lseek,
 73	.read = kpagecount_read,
 74};
 75
 76/* /proc/kpageflags - an array exposing page flags
 77 *
 78 * Each entry is a u64 representing the corresponding
 79 * physical page flags.
 80 */
 81
 82static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
 83{
 84	return ((kflags >> kbit) & 1) << ubit;
 85}
 86
 87u64 stable_page_flags(struct page *page)
 88{
 89	u64 k;
 90	u64 u;
 91
 92	/*
 93	 * pseudo flag: KPF_NOPAGE
 94	 * it differentiates a memory hole from a page with no flags
 95	 */
 96	if (!page)
 97		return 1 << KPF_NOPAGE;
 98
 99	k = page->flags;
100	u = 0;
101
102	/*
103	 * pseudo flags for the well known (anonymous) memory mapped pages
104	 *
105	 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
106	 * simple test in page_mapped() is not enough.
107	 */
108	if (!PageSlab(page) && page_mapped(page))
109		u |= 1 << KPF_MMAP;
110	if (PageAnon(page))
111		u |= 1 << KPF_ANON;
112	if (PageKsm(page))
113		u |= 1 << KPF_KSM;
114
115	/*
116	 * compound pages: export both head/tail info
117	 * they together define a compound page's start/end pos and order
118	 */
119	if (PageHead(page))
120		u |= 1 << KPF_COMPOUND_HEAD;
121	if (PageTail(page))
122		u |= 1 << KPF_COMPOUND_TAIL;
123	if (PageHuge(page))
124		u |= 1 << KPF_HUGE;
125	/*
126	 * PageTransCompound can be true for non-huge compound pages (slab
127	 * pages or pages allocated by drivers with __GFP_COMP) because it
128	 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
129	 * to make sure a given page is a thp, not a non-huge compound page.
130	 */
131	else if (PageTransCompound(page)) {
132		struct page *head = compound_head(page);
133
134		if (PageLRU(head) || PageAnon(head))
135			u |= 1 << KPF_THP;
136		else if (is_huge_zero_page(head)) {
137			u |= 1 << KPF_ZERO_PAGE;
138			u |= 1 << KPF_THP;
139		}
140	} else if (is_zero_pfn(page_to_pfn(page)))
141		u |= 1 << KPF_ZERO_PAGE;
142
143
144	/*
145	 * Caveats on high order pages: page->_count will only be set
146	 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
147	 * SLOB won't set PG_slab at all on compound pages.
148	 */
149	if (PageBuddy(page))
150		u |= 1 << KPF_BUDDY;
151	else if (page_count(page) == 0 && is_free_buddy_page(page))
152		u |= 1 << KPF_BUDDY;
153
154	if (PageBalloon(page))
155		u |= 1 << KPF_BALLOON;
156
157	if (page_is_idle(page))
158		u |= 1 << KPF_IDLE;
159
160	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);
161
162	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);
163	if (PageTail(page) && PageSlab(compound_head(page)))
164		u |= 1 << KPF_SLAB;
165
166	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
167	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
168	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
169	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);
170
171	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
172	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
173	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
174	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);
175
176	u |= kpf_copy_bit(k, KPF_SWAPCACHE,	PG_swapcache);
177	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);
178
179	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
180	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);
181
182#ifdef CONFIG_MEMORY_FAILURE
183	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
184#endif
185
186#ifdef CONFIG_ARCH_USES_PG_UNCACHED
187	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
188#endif
189
190	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
191	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
192	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
193	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
194	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
195	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);
196
197	return u;
198};
199
200static ssize_t kpageflags_read(struct file *file, char __user *buf,
201			     size_t count, loff_t *ppos)
202{
203	u64 __user *out = (u64 __user *)buf;
204	struct page *ppage;
205	unsigned long src = *ppos;
206	unsigned long pfn;
207	ssize_t ret = 0;
208
209	pfn = src / KPMSIZE;
210	count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
211	if (src & KPMMASK || count & KPMMASK)
212		return -EINVAL;
213
214	while (count > 0) {
215		if (pfn_valid(pfn))
216			ppage = pfn_to_page(pfn);
217		else
218			ppage = NULL;
219
220		if (put_user(stable_page_flags(ppage), out)) {
221			ret = -EFAULT;
222			break;
223		}
224
225		pfn++;
226		out++;
227		count -= KPMSIZE;
228
229		cond_resched();
230	}
231
232	*ppos += (char __user *)out - buf;
233	if (!ret)
234		ret = (char __user *)out - buf;
235	return ret;
236}
237
238static const struct file_operations proc_kpageflags_operations = {
239	.llseek = mem_lseek,
240	.read = kpageflags_read,
241};
242
243#ifdef CONFIG_MEMCG
244static ssize_t kpagecgroup_read(struct file *file, char __user *buf,
245				size_t count, loff_t *ppos)
246{
247	u64 __user *out = (u64 __user *)buf;
248	struct page *ppage;
249	unsigned long src = *ppos;
250	unsigned long pfn;
251	ssize_t ret = 0;
252	u64 ino;
253
254	pfn = src / KPMSIZE;
255	count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
256	if (src & KPMMASK || count & KPMMASK)
257		return -EINVAL;
258
259	while (count > 0) {
260		if (pfn_valid(pfn))
261			ppage = pfn_to_page(pfn);
262		else
263			ppage = NULL;
264
265		if (ppage)
266			ino = page_cgroup_ino(ppage);
267		else
268			ino = 0;
269
270		if (put_user(ino, out)) {
271			ret = -EFAULT;
272			break;
273		}
274
275		pfn++;
276		out++;
277		count -= KPMSIZE;
278
279		cond_resched();
280	}
281
282	*ppos += (char __user *)out - buf;
283	if (!ret)
284		ret = (char __user *)out - buf;
285	return ret;
286}
287
288static const struct file_operations proc_kpagecgroup_operations = {
289	.llseek = mem_lseek,
290	.read = kpagecgroup_read,
291};
292#endif /* CONFIG_MEMCG */
293
294static int __init proc_page_init(void)
295{
296	proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
297	proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
298#ifdef CONFIG_MEMCG
299	proc_create("kpagecgroup", S_IRUSR, NULL, &proc_kpagecgroup_operations);
300#endif
301	return 0;
302}
303fs_initcall(proc_page_init);
v3.15
  1#include <linux/bootmem.h>
  2#include <linux/compiler.h>
  3#include <linux/fs.h>
  4#include <linux/init.h>
  5#include <linux/ksm.h>
  6#include <linux/mm.h>
  7#include <linux/mmzone.h>
 
  8#include <linux/proc_fs.h>
  9#include <linux/seq_file.h>
 10#include <linux/hugetlb.h>
 
 
 
 11#include <linux/kernel-page-flags.h>
 12#include <asm/uaccess.h>
 13#include "internal.h"
 14
 15#define KPMSIZE sizeof(u64)
 16#define KPMMASK (KPMSIZE - 1)
 
 17
 18/* /proc/kpagecount - an array exposing page counts
 19 *
 20 * Each entry is a u64 representing the corresponding
 21 * physical page count.
 22 */
 23static ssize_t kpagecount_read(struct file *file, char __user *buf,
 24			     size_t count, loff_t *ppos)
 25{
 26	u64 __user *out = (u64 __user *)buf;
 27	struct page *ppage;
 28	unsigned long src = *ppos;
 29	unsigned long pfn;
 30	ssize_t ret = 0;
 31	u64 pcount;
 32
 33	pfn = src / KPMSIZE;
 34	count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
 35	if (src & KPMMASK || count & KPMMASK)
 36		return -EINVAL;
 37
 38	while (count > 0) {
 39		if (pfn_valid(pfn))
 40			ppage = pfn_to_page(pfn);
 41		else
 42			ppage = NULL;
 43		if (!ppage || PageSlab(ppage))
 44			pcount = 0;
 45		else
 46			pcount = page_mapcount(ppage);
 47
 48		if (put_user(pcount, out)) {
 49			ret = -EFAULT;
 50			break;
 51		}
 52
 53		pfn++;
 54		out++;
 55		count -= KPMSIZE;
 
 
 56	}
 57
 58	*ppos += (char __user *)out - buf;
 59	if (!ret)
 60		ret = (char __user *)out - buf;
 61	return ret;
 62}
 63
 64static const struct file_operations proc_kpagecount_operations = {
 65	.llseek = mem_lseek,
 66	.read = kpagecount_read,
 67};
 68
 69/* /proc/kpageflags - an array exposing page flags
 70 *
 71 * Each entry is a u64 representing the corresponding
 72 * physical page flags.
 73 */
 74
 75static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
 76{
 77	return ((kflags >> kbit) & 1) << ubit;
 78}
 79
 80u64 stable_page_flags(struct page *page)
 81{
 82	u64 k;
 83	u64 u;
 84
 85	/*
 86	 * pseudo flag: KPF_NOPAGE
 87	 * it differentiates a memory hole from a page with no flags
 88	 */
 89	if (!page)
 90		return 1 << KPF_NOPAGE;
 91
 92	k = page->flags;
 93	u = 0;
 94
 95	/*
 96	 * pseudo flags for the well known (anonymous) memory mapped pages
 97	 *
 98	 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
 99	 * simple test in page_mapped() is not enough.
100	 */
101	if (!PageSlab(page) && page_mapped(page))
102		u |= 1 << KPF_MMAP;
103	if (PageAnon(page))
104		u |= 1 << KPF_ANON;
105	if (PageKsm(page))
106		u |= 1 << KPF_KSM;
107
108	/*
109	 * compound pages: export both head/tail info
110	 * they together define a compound page's start/end pos and order
111	 */
112	if (PageHead(page))
113		u |= 1 << KPF_COMPOUND_HEAD;
114	if (PageTail(page))
115		u |= 1 << KPF_COMPOUND_TAIL;
116	if (PageHuge(page))
117		u |= 1 << KPF_HUGE;
118	/*
119	 * PageTransCompound can be true for non-huge compound pages (slab
120	 * pages or pages allocated by drivers with __GFP_COMP) because it
121	 * just checks PG_head/PG_tail, so we need to check PageLRU/PageAnon
122	 * to make sure a given page is a thp, not a non-huge compound page.
123	 */
124	else if (PageTransCompound(page) && (PageLRU(compound_head(page)) ||
125					     PageAnon(compound_head(page))))
126		u |= 1 << KPF_THP;
 
 
 
 
 
 
 
 
 
127
128	/*
129	 * Caveats on high order pages: page->_count will only be set
130	 * -1 on the head page; SLUB/SLQB do the same for PG_slab;
131	 * SLOB won't set PG_slab at all on compound pages.
132	 */
133	if (PageBuddy(page))
134		u |= 1 << KPF_BUDDY;
 
 
 
 
 
 
 
 
135
136	u |= kpf_copy_bit(k, KPF_LOCKED,	PG_locked);
137
138	u |= kpf_copy_bit(k, KPF_SLAB,		PG_slab);
 
 
139
140	u |= kpf_copy_bit(k, KPF_ERROR,		PG_error);
141	u |= kpf_copy_bit(k, KPF_DIRTY,		PG_dirty);
142	u |= kpf_copy_bit(k, KPF_UPTODATE,	PG_uptodate);
143	u |= kpf_copy_bit(k, KPF_WRITEBACK,	PG_writeback);
144
145	u |= kpf_copy_bit(k, KPF_LRU,		PG_lru);
146	u |= kpf_copy_bit(k, KPF_REFERENCED,	PG_referenced);
147	u |= kpf_copy_bit(k, KPF_ACTIVE,	PG_active);
148	u |= kpf_copy_bit(k, KPF_RECLAIM,	PG_reclaim);
149
150	u |= kpf_copy_bit(k, KPF_SWAPCACHE,	PG_swapcache);
151	u |= kpf_copy_bit(k, KPF_SWAPBACKED,	PG_swapbacked);
152
153	u |= kpf_copy_bit(k, KPF_UNEVICTABLE,	PG_unevictable);
154	u |= kpf_copy_bit(k, KPF_MLOCKED,	PG_mlocked);
155
156#ifdef CONFIG_MEMORY_FAILURE
157	u |= kpf_copy_bit(k, KPF_HWPOISON,	PG_hwpoison);
158#endif
159
160#ifdef CONFIG_ARCH_USES_PG_UNCACHED
161	u |= kpf_copy_bit(k, KPF_UNCACHED,	PG_uncached);
162#endif
163
164	u |= kpf_copy_bit(k, KPF_RESERVED,	PG_reserved);
165	u |= kpf_copy_bit(k, KPF_MAPPEDTODISK,	PG_mappedtodisk);
166	u |= kpf_copy_bit(k, KPF_PRIVATE,	PG_private);
167	u |= kpf_copy_bit(k, KPF_PRIVATE_2,	PG_private_2);
168	u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE,	PG_owner_priv_1);
169	u |= kpf_copy_bit(k, KPF_ARCH,		PG_arch_1);
170
171	return u;
172};
173
174static ssize_t kpageflags_read(struct file *file, char __user *buf,
175			     size_t count, loff_t *ppos)
176{
177	u64 __user *out = (u64 __user *)buf;
178	struct page *ppage;
179	unsigned long src = *ppos;
180	unsigned long pfn;
181	ssize_t ret = 0;
182
183	pfn = src / KPMSIZE;
184	count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
185	if (src & KPMMASK || count & KPMMASK)
186		return -EINVAL;
187
188	while (count > 0) {
189		if (pfn_valid(pfn))
190			ppage = pfn_to_page(pfn);
191		else
192			ppage = NULL;
193
194		if (put_user(stable_page_flags(ppage), out)) {
195			ret = -EFAULT;
196			break;
197		}
198
199		pfn++;
200		out++;
201		count -= KPMSIZE;
 
 
202	}
203
204	*ppos += (char __user *)out - buf;
205	if (!ret)
206		ret = (char __user *)out - buf;
207	return ret;
208}
209
210static const struct file_operations proc_kpageflags_operations = {
211	.llseek = mem_lseek,
212	.read = kpageflags_read,
213};
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215static int __init proc_page_init(void)
216{
217	proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
218	proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
 
 
 
219	return 0;
220}
221fs_initcall(proc_page_init);