Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 
 25#include <linux/export.h>
 26#include <linux/sched.h>
 
 
 
 27#include <linux/kernel.h>
 
 28#include <linux/mm.h>
 
 29#include <linux/stddef.h>
 
 30#include <linux/unistd.h>
 31#include <linux/user.h>
 32#include <linux/delay.h>
 33#include <linux/reboot.h>
 34#include <linux/interrupt.h>
 35#include <linux/kallsyms.h>
 36#include <linux/init.h>
 37#include <linux/cpu.h>
 38#include <linux/elfcore.h>
 39#include <linux/pm.h>
 40#include <linux/tick.h>
 41#include <linux/utsname.h>
 42#include <linux/uaccess.h>
 43#include <linux/random.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/personality.h>
 46#include <linux/notifier.h>
 47#include <trace/events/power.h>
 
 
 
 
 48
 49#include <asm/alternative.h>
 50#include <asm/compat.h>
 
 51#include <asm/cacheflush.h>
 
 52#include <asm/fpsimd.h>
 53#include <asm/mmu_context.h>
 
 54#include <asm/processor.h>
 
 55#include <asm/stacktrace.h>
 
 
 56
 57#ifdef CONFIG_CC_STACKPROTECTOR
 58#include <linux/stackprotector.h>
 59unsigned long __stack_chk_guard __read_mostly;
 60EXPORT_SYMBOL(__stack_chk_guard);
 61#endif
 62
 63/*
 64 * Function pointers to optional machine specific functions
 65 */
 66void (*pm_power_off)(void);
 67EXPORT_SYMBOL_GPL(pm_power_off);
 68
 69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 70
 71/*
 72 * This is our default idle handler.
 73 */
 74void arch_cpu_idle(void)
 75{
 76	/*
 77	 * This should do all the clock switching and wait for interrupt
 78	 * tricks
 79	 */
 80	trace_cpu_idle_rcuidle(1, smp_processor_id());
 81	cpu_do_idle();
 82	local_irq_enable();
 83	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 84}
 85
 86#ifdef CONFIG_HOTPLUG_CPU
 87void arch_cpu_idle_dead(void)
 88{
 89       cpu_die();
 90}
 91#endif
 92
 93/*
 94 * Called by kexec, immediately prior to machine_kexec().
 95 *
 96 * This must completely disable all secondary CPUs; simply causing those CPUs
 97 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 98 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 99 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
100 * functionality embodied in disable_nonboot_cpus() to achieve this.
101 */
102void machine_shutdown(void)
103{
104	disable_nonboot_cpus();
105}
106
107/*
108 * Halting simply requires that the secondary CPUs stop performing any
109 * activity (executing tasks, handling interrupts). smp_send_stop()
110 * achieves this.
111 */
112void machine_halt(void)
113{
114	local_irq_disable();
115	smp_send_stop();
116	while (1);
117}
118
119/*
120 * Power-off simply requires that the secondary CPUs stop performing any
121 * activity (executing tasks, handling interrupts). smp_send_stop()
122 * achieves this. When the system power is turned off, it will take all CPUs
123 * with it.
124 */
125void machine_power_off(void)
126{
127	local_irq_disable();
128	smp_send_stop();
129	if (pm_power_off)
130		pm_power_off();
131}
132
133/*
134 * Restart requires that the secondary CPUs stop performing any activity
135 * while the primary CPU resets the system. Systems with multiple CPUs must
136 * provide a HW restart implementation, to ensure that all CPUs reset at once.
137 * This is required so that any code running after reset on the primary CPU
138 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
139 * executing pre-reset code, and using RAM that the primary CPU's code wishes
140 * to use. Implementing such co-ordination would be essentially impossible.
141 */
142void machine_restart(char *cmd)
143{
144	/* Disable interrupts first */
145	local_irq_disable();
146	smp_send_stop();
147
148	/*
149	 * UpdateCapsule() depends on the system being reset via
150	 * ResetSystem().
151	 */
152	if (efi_enabled(EFI_RUNTIME_SERVICES))
153		efi_reboot(reboot_mode, NULL);
154
155	/* Now call the architecture specific reboot code. */
156	if (arm_pm_restart)
157		arm_pm_restart(reboot_mode, cmd);
158	else
159		do_kernel_restart(cmd);
160
161	/*
162	 * Whoops - the architecture was unable to reboot.
163	 */
164	printk("Reboot failed -- System halted\n");
165	while (1);
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168void __show_regs(struct pt_regs *regs)
169{
170	int i, top_reg;
171	u64 lr, sp;
172
173	if (compat_user_mode(regs)) {
174		lr = regs->compat_lr;
175		sp = regs->compat_sp;
176		top_reg = 12;
177	} else {
178		lr = regs->regs[30];
179		sp = regs->sp;
180		top_reg = 29;
181	}
182
183	show_regs_print_info(KERN_DEFAULT);
184	print_symbol("PC is at %s\n", instruction_pointer(regs));
185	print_symbol("LR is at %s\n", lr);
186	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
187	       regs->pc, lr, regs->pstate);
 
 
 
 
 
 
188	printk("sp : %016llx\n", sp);
189	for (i = top_reg; i >= 0; i--) {
190		printk("x%-2d: %016llx ", i, regs->regs[i]);
191		if (i % 2 == 0)
192			printk("\n");
 
 
 
 
 
 
 
 
 
193	}
194	printk("\n");
195}
196
197void show_regs(struct pt_regs * regs)
198{
199	printk("\n");
200	__show_regs(regs);
201}
202
203/*
204 * Free current thread data structures etc..
205 */
206void exit_thread(void)
207{
208}
209
210static void tls_thread_flush(void)
211{
212	asm ("msr tpidr_el0, xzr");
 
 
213
214	if (is_compat_task()) {
215		current->thread.tp_value = 0;
216
217		/*
218		 * We need to ensure ordering between the shadow state and the
219		 * hardware state, so that we don't corrupt the hardware state
220		 * with a stale shadow state during context switch.
221		 */
222		barrier();
223		asm ("msr tpidrro_el0, xzr");
224	}
225}
226
 
 
 
 
 
 
227void flush_thread(void)
228{
229	fpsimd_flush_thread();
230	tls_thread_flush();
231	flush_ptrace_hw_breakpoint(current);
 
232}
233
234void release_thread(struct task_struct *dead_task)
235{
 
236}
237
238int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
239{
240	if (current->mm)
241		fpsimd_preserve_current_state();
242	*dst = *src;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243	return 0;
244}
245
246asmlinkage void ret_from_fork(void) asm("ret_from_fork");
247
248int copy_thread(unsigned long clone_flags, unsigned long stack_start,
249		unsigned long stk_sz, struct task_struct *p)
250{
 
 
 
251	struct pt_regs *childregs = task_pt_regs(p);
252
253	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
254
255	if (likely(!(p->flags & PF_KTHREAD))) {
 
 
 
 
 
 
 
 
 
 
 
256		*childregs = *current_pt_regs();
257		childregs->regs[0] = 0;
258
259		/*
260		 * Read the current TLS pointer from tpidr_el0 as it may be
261		 * out-of-sync with the saved value.
262		 */
263		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
 
 
264
265		if (stack_start) {
266			if (is_compat_thread(task_thread_info(p)))
267				childregs->compat_sp = stack_start;
268			/* 16-byte aligned stack mandatory on AArch64 */
269			else if (stack_start & 15)
270				return -EINVAL;
271			else
272				childregs->sp = stack_start;
273		}
274
275		/*
276		 * If a TLS pointer was passed to clone (4th argument), use it
277		 * for the new thread.
278		 */
279		if (clone_flags & CLONE_SETTLS)
280			p->thread.tp_value = childregs->regs[3];
 
 
281	} else {
 
 
 
 
 
 
 
282		memset(childregs, 0, sizeof(struct pt_regs));
283		childregs->pstate = PSR_MODE_EL1h;
284		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285		    cpus_have_cap(ARM64_HAS_UAO))
286			childregs->pstate |= PSR_UAO_BIT;
287		p->thread.cpu_context.x19 = stack_start;
288		p->thread.cpu_context.x20 = stk_sz;
289	}
290	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291	p->thread.cpu_context.sp = (unsigned long)childregs;
 
 
 
 
 
292
293	ptrace_hw_copy_thread(p);
294
295	return 0;
296}
297
 
 
 
 
 
 
 
298static void tls_thread_switch(struct task_struct *next)
299{
300	unsigned long tpidr, tpidrro;
 
 
 
 
 
 
 
 
 
 
301
302	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
303	*task_user_tls(current) = tpidr;
 
 
 
 
 
 
 
 
 
 
304
305	tpidr = *task_user_tls(next);
306	tpidrro = is_compat_thread(task_thread_info(next)) ?
307		  next->thread.tp_value : 0;
 
 
 
308
309	asm(
310	"	msr	tpidr_el0, %0\n"
311	"	msr	tpidrro_el0, %1"
312	: : "r" (tpidr), "r" (tpidrro));
313}
314
315/* Restore the UAO state depending on next's addr_limit */
316static void uao_thread_switch(struct task_struct *next)
 
 
 
 
 
 
 
 
317{
318	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
319		if (task_thread_info(next)->addr_limit == KERNEL_DS)
320			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
321		else
322			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
323	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324}
325
326/*
327 * Thread switching.
328 */
 
329struct task_struct *__switch_to(struct task_struct *prev,
330				struct task_struct *next)
331{
332	struct task_struct *last;
333
334	fpsimd_thread_switch(next);
335	tls_thread_switch(next);
336	hw_breakpoint_thread_switch(next);
337	contextidr_thread_switch(next);
338	uao_thread_switch(next);
 
 
 
339
340	/*
341	 * Complete any pending TLB or cache maintenance on this CPU in case
342	 * the thread migrates to a different CPU.
 
 
343	 */
344	dsb(ish);
345
 
 
 
 
 
 
 
 
 
 
346	/* the actual thread switch */
347	last = cpu_switch_to(prev, next);
348
349	return last;
350}
351
352unsigned long get_wchan(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353{
354	struct stackframe frame;
355	unsigned long stack_page;
356	int count = 0;
357	if (!p || p == current || p->state == TASK_RUNNING)
 
 
358		return 0;
359
360	frame.fp = thread_saved_fp(p);
361	frame.sp = thread_saved_sp(p);
362	frame.pc = thread_saved_pc(p);
363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
364	frame.graph = p->curr_ret_stack;
365#endif
366	stack_page = (unsigned long)task_stack_page(p);
367	do {
368		if (frame.sp < stack_page ||
369		    frame.sp >= stack_page + THREAD_SIZE ||
370		    unwind_frame(p, &frame))
371			return 0;
372		if (!in_sched_functions(frame.pc))
373			return frame.pc;
374	} while (count ++ < 16);
375	return 0;
376}
377
378unsigned long arch_align_stack(unsigned long sp)
379{
380	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381		sp -= get_random_int() & ~PAGE_MASK;
382	return sp & ~0xf;
383}
384
385static unsigned long randomize_base(unsigned long base)
 
386{
387	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
388	return randomize_range(base, range_end, 0) ? : base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389}
 
390
391unsigned long arch_randomize_brk(struct mm_struct *mm)
 
 
 
392{
393	return randomize_base(mm->brk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
 
 
 
  9#include <linux/compat.h>
 10#include <linux/efi.h>
 11#include <linux/elf.h>
 12#include <linux/export.h>
 13#include <linux/sched.h>
 14#include <linux/sched/debug.h>
 15#include <linux/sched/task.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/kernel.h>
 18#include <linux/mman.h>
 19#include <linux/mm.h>
 20#include <linux/nospec.h>
 21#include <linux/stddef.h>
 22#include <linux/sysctl.h>
 23#include <linux/unistd.h>
 24#include <linux/user.h>
 25#include <linux/delay.h>
 26#include <linux/reboot.h>
 27#include <linux/interrupt.h>
 
 28#include <linux/init.h>
 29#include <linux/cpu.h>
 30#include <linux/elfcore.h>
 31#include <linux/pm.h>
 32#include <linux/tick.h>
 33#include <linux/utsname.h>
 34#include <linux/uaccess.h>
 35#include <linux/random.h>
 36#include <linux/hw_breakpoint.h>
 37#include <linux/personality.h>
 38#include <linux/notifier.h>
 39#include <trace/events/power.h>
 40#include <linux/percpu.h>
 41#include <linux/thread_info.h>
 42#include <linux/prctl.h>
 43#include <linux/stacktrace.h>
 44
 45#include <asm/alternative.h>
 46#include <asm/compat.h>
 47#include <asm/cpufeature.h>
 48#include <asm/cacheflush.h>
 49#include <asm/exec.h>
 50#include <asm/fpsimd.h>
 51#include <asm/mmu_context.h>
 52#include <asm/mte.h>
 53#include <asm/processor.h>
 54#include <asm/pointer_auth.h>
 55#include <asm/stacktrace.h>
 56#include <asm/switch_to.h>
 57#include <asm/system_misc.h>
 58
 59#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 60#include <linux/stackprotector.h>
 61unsigned long __stack_chk_guard __ro_after_init;
 62EXPORT_SYMBOL(__stack_chk_guard);
 63#endif
 64
 65/*
 66 * Function pointers to optional machine specific functions
 67 */
 68void (*pm_power_off)(void);
 69EXPORT_SYMBOL_GPL(pm_power_off);
 70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71#ifdef CONFIG_HOTPLUG_CPU
 72void __noreturn arch_cpu_idle_dead(void)
 73{
 74       cpu_die();
 75}
 76#endif
 77
 78/*
 79 * Called by kexec, immediately prior to machine_kexec().
 80 *
 81 * This must completely disable all secondary CPUs; simply causing those CPUs
 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 86 */
 87void machine_shutdown(void)
 88{
 89	smp_shutdown_nonboot_cpus(reboot_cpu);
 90}
 91
 92/*
 93 * Halting simply requires that the secondary CPUs stop performing any
 94 * activity (executing tasks, handling interrupts). smp_send_stop()
 95 * achieves this.
 96 */
 97void machine_halt(void)
 98{
 99	local_irq_disable();
100	smp_send_stop();
101	while (1);
102}
103
104/*
105 * Power-off simply requires that the secondary CPUs stop performing any
106 * activity (executing tasks, handling interrupts). smp_send_stop()
107 * achieves this. When the system power is turned off, it will take all CPUs
108 * with it.
109 */
110void machine_power_off(void)
111{
112	local_irq_disable();
113	smp_send_stop();
114	do_kernel_power_off();
 
115}
116
117/*
118 * Restart requires that the secondary CPUs stop performing any activity
119 * while the primary CPU resets the system. Systems with multiple CPUs must
120 * provide a HW restart implementation, to ensure that all CPUs reset at once.
121 * This is required so that any code running after reset on the primary CPU
122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123 * executing pre-reset code, and using RAM that the primary CPU's code wishes
124 * to use. Implementing such co-ordination would be essentially impossible.
125 */
126void machine_restart(char *cmd)
127{
128	/* Disable interrupts first */
129	local_irq_disable();
130	smp_send_stop();
131
132	/*
133	 * UpdateCapsule() depends on the system being reset via
134	 * ResetSystem().
135	 */
136	if (efi_enabled(EFI_RUNTIME_SERVICES))
137		efi_reboot(reboot_mode, NULL);
138
139	/* Now call the architecture specific reboot code. */
140	do_kernel_restart(cmd);
 
 
 
141
142	/*
143	 * Whoops - the architecture was unable to reboot.
144	 */
145	printk("Reboot failed -- System halted\n");
146	while (1);
147}
148
149#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150static const char *const btypes[] = {
151	bstr(NONE, "--"),
152	bstr(  JC, "jc"),
153	bstr(   C, "-c"),
154	bstr(  J , "j-")
155};
156#undef bstr
157
158static void print_pstate(struct pt_regs *regs)
159{
160	u64 pstate = regs->pstate;
161
162	if (compat_user_mode(regs)) {
163		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164			pstate,
165			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177	} else {
178		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179					       PSR_BTYPE_SHIFT];
180
181		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182			pstate,
183			pstate & PSR_N_BIT ? 'N' : 'n',
184			pstate & PSR_Z_BIT ? 'Z' : 'z',
185			pstate & PSR_C_BIT ? 'C' : 'c',
186			pstate & PSR_V_BIT ? 'V' : 'v',
187			pstate & PSR_D_BIT ? 'D' : 'd',
188			pstate & PSR_A_BIT ? 'A' : 'a',
189			pstate & PSR_I_BIT ? 'I' : 'i',
190			pstate & PSR_F_BIT ? 'F' : 'f',
191			pstate & PSR_PAN_BIT ? '+' : '-',
192			pstate & PSR_UAO_BIT ? '+' : '-',
193			pstate & PSR_TCO_BIT ? '+' : '-',
194			pstate & PSR_DIT_BIT ? '+' : '-',
195			pstate & PSR_SSBS_BIT ? '+' : '-',
196			btype_str);
197	}
198}
199
200void __show_regs(struct pt_regs *regs)
201{
202	int i, top_reg;
203	u64 lr, sp;
204
205	if (compat_user_mode(regs)) {
206		lr = regs->compat_lr;
207		sp = regs->compat_sp;
208		top_reg = 12;
209	} else {
210		lr = regs->regs[30];
211		sp = regs->sp;
212		top_reg = 29;
213	}
214
215	show_regs_print_info(KERN_DEFAULT);
216	print_pstate(regs);
217
218	if (!user_mode(regs)) {
219		printk("pc : %pS\n", (void *)regs->pc);
220		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
221	} else {
222		printk("pc : %016llx\n", regs->pc);
223		printk("lr : %016llx\n", lr);
224	}
225
226	printk("sp : %016llx\n", sp);
227
228	if (system_uses_irq_prio_masking())
229		printk("pmr_save: %08llx\n", regs->pmr_save);
230
231	i = top_reg;
232
233	while (i >= 0) {
234		printk("x%-2d: %016llx", i, regs->regs[i]);
235
236		while (i-- % 3)
237			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
238
239		pr_cont("\n");
240	}
 
241}
242
243void show_regs(struct pt_regs *regs)
244{
 
245	__show_regs(regs);
246	dump_backtrace(regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
247}
248
249static void tls_thread_flush(void)
250{
251	write_sysreg(0, tpidr_el0);
252	if (system_supports_tpidr2())
253		write_sysreg_s(0, SYS_TPIDR2_EL0);
254
255	if (is_compat_task()) {
256		current->thread.uw.tp_value = 0;
257
258		/*
259		 * We need to ensure ordering between the shadow state and the
260		 * hardware state, so that we don't corrupt the hardware state
261		 * with a stale shadow state during context switch.
262		 */
263		barrier();
264		write_sysreg(0, tpidrro_el0);
265	}
266}
267
268static void flush_tagged_addr_state(void)
269{
270	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
271		clear_thread_flag(TIF_TAGGED_ADDR);
272}
273
274void flush_thread(void)
275{
276	fpsimd_flush_thread();
277	tls_thread_flush();
278	flush_ptrace_hw_breakpoint(current);
279	flush_tagged_addr_state();
280}
281
282void arch_release_task_struct(struct task_struct *tsk)
283{
284	fpsimd_release_task(tsk);
285}
286
287int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
288{
289	if (current->mm)
290		fpsimd_preserve_current_state();
291	*dst = *src;
292
293	/* We rely on the above assignment to initialize dst's thread_flags: */
294	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
295
296	/*
297	 * Detach src's sve_state (if any) from dst so that it does not
298	 * get erroneously used or freed prematurely.  dst's copies
299	 * will be allocated on demand later on if dst uses SVE.
300	 * For consistency, also clear TIF_SVE here: this could be done
301	 * later in copy_process(), but to avoid tripping up future
302	 * maintainers it is best not to leave TIF flags and buffers in
303	 * an inconsistent state, even temporarily.
304	 */
305	dst->thread.sve_state = NULL;
306	clear_tsk_thread_flag(dst, TIF_SVE);
307
308	/*
309	 * In the unlikely event that we create a new thread with ZA
310	 * enabled we should retain the ZA and ZT state so duplicate
311	 * it here.  This may be shortly freed if we exec() or if
312	 * CLONE_SETTLS but it's simpler to do it here. To avoid
313	 * confusing the rest of the code ensure that we have a
314	 * sve_state allocated whenever sme_state is allocated.
315	 */
316	if (thread_za_enabled(&src->thread)) {
317		dst->thread.sve_state = kzalloc(sve_state_size(src),
318						GFP_KERNEL);
319		if (!dst->thread.sve_state)
320			return -ENOMEM;
321
322		dst->thread.sme_state = kmemdup(src->thread.sme_state,
323						sme_state_size(src),
324						GFP_KERNEL);
325		if (!dst->thread.sme_state) {
326			kfree(dst->thread.sve_state);
327			dst->thread.sve_state = NULL;
328			return -ENOMEM;
329		}
330	} else {
331		dst->thread.sme_state = NULL;
332		clear_tsk_thread_flag(dst, TIF_SME);
333	}
334
335	dst->thread.fp_type = FP_STATE_FPSIMD;
336
337	/* clear any pending asynchronous tag fault raised by the parent */
338	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
339
340	return 0;
341}
342
343asmlinkage void ret_from_fork(void) asm("ret_from_fork");
344
345int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
346{
347	unsigned long clone_flags = args->flags;
348	unsigned long stack_start = args->stack;
349	unsigned long tls = args->tls;
350	struct pt_regs *childregs = task_pt_regs(p);
351
352	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
353
354	/*
355	 * In case p was allocated the same task_struct pointer as some
356	 * other recently-exited task, make sure p is disassociated from
357	 * any cpu that may have run that now-exited task recently.
358	 * Otherwise we could erroneously skip reloading the FPSIMD
359	 * registers for p.
360	 */
361	fpsimd_flush_task_state(p);
362
363	ptrauth_thread_init_kernel(p);
364
365	if (likely(!args->fn)) {
366		*childregs = *current_pt_regs();
367		childregs->regs[0] = 0;
368
369		/*
370		 * Read the current TLS pointer from tpidr_el0 as it may be
371		 * out-of-sync with the saved value.
372		 */
373		*task_user_tls(p) = read_sysreg(tpidr_el0);
374		if (system_supports_tpidr2())
375			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
376
377		if (stack_start) {
378			if (is_compat_thread(task_thread_info(p)))
379				childregs->compat_sp = stack_start;
 
 
 
380			else
381				childregs->sp = stack_start;
382		}
383
384		/*
385		 * If a TLS pointer was passed to clone, use it for the new
386		 * thread.  We also reset TPIDR2 if it's in use.
387		 */
388		if (clone_flags & CLONE_SETTLS) {
389			p->thread.uw.tp_value = tls;
390			p->thread.tpidr2_el0 = 0;
391		}
392	} else {
393		/*
394		 * A kthread has no context to ERET to, so ensure any buggy
395		 * ERET is treated as an illegal exception return.
396		 *
397		 * When a user task is created from a kthread, childregs will
398		 * be initialized by start_thread() or start_compat_thread().
399		 */
400		memset(childregs, 0, sizeof(struct pt_regs));
401		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
402
403		p->thread.cpu_context.x19 = (unsigned long)args->fn;
404		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
 
 
405	}
406	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
407	p->thread.cpu_context.sp = (unsigned long)childregs;
408	/*
409	 * For the benefit of the unwinder, set up childregs->stackframe
410	 * as the final frame for the new task.
411	 */
412	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
413
414	ptrace_hw_copy_thread(p);
415
416	return 0;
417}
418
419void tls_preserve_current_state(void)
420{
421	*task_user_tls(current) = read_sysreg(tpidr_el0);
422	if (system_supports_tpidr2() && !is_compat_task())
423		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
424}
425
426static void tls_thread_switch(struct task_struct *next)
427{
428	tls_preserve_current_state();
429
430	if (is_compat_thread(task_thread_info(next)))
431		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
432	else if (!arm64_kernel_unmapped_at_el0())
433		write_sysreg(0, tpidrro_el0);
434
435	write_sysreg(*task_user_tls(next), tpidr_el0);
436	if (system_supports_tpidr2())
437		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
438}
439
440/*
441 * Force SSBS state on context-switch, since it may be lost after migrating
442 * from a CPU which treats the bit as RES0 in a heterogeneous system.
443 */
444static void ssbs_thread_switch(struct task_struct *next)
445{
446	/*
447	 * Nothing to do for kernel threads, but 'regs' may be junk
448	 * (e.g. idle task) so check the flags and bail early.
449	 */
450	if (unlikely(next->flags & PF_KTHREAD))
451		return;
452
453	/*
454	 * If all CPUs implement the SSBS extension, then we just need to
455	 * context-switch the PSTATE field.
456	 */
457	if (alternative_has_cap_unlikely(ARM64_SSBS))
458		return;
459
460	spectre_v4_enable_task_mitigation(next);
 
 
 
461}
462
463/*
464 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
465 * shadow copy so that we can restore this upon entry from userspace.
466 *
467 * This is *only* for exception entry from EL0, and is not valid until we
468 * __switch_to() a user task.
469 */
470DEFINE_PER_CPU(struct task_struct *, __entry_task);
471
472static void entry_task_switch(struct task_struct *next)
473{
474	__this_cpu_write(__entry_task, next);
475}
476
477/*
478 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
479 * Ensure access is disabled when switching to a 32bit task, ensure
480 * access is enabled when switching to a 64bit task.
481 */
482static void erratum_1418040_thread_switch(struct task_struct *next)
483{
484	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
485	    !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
486		return;
487
488	if (is_compat_thread(task_thread_info(next)))
489		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
490	else
491		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
492}
493
494static void erratum_1418040_new_exec(void)
495{
496	preempt_disable();
497	erratum_1418040_thread_switch(current);
498	preempt_enable();
499}
500
501/*
502 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
503 * this function must be called with preemption disabled and the update to
504 * sctlr_user must be made in the same preemption disabled block so that
505 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
506 */
507void update_sctlr_el1(u64 sctlr)
508{
509	/*
510	 * EnIA must not be cleared while in the kernel as this is necessary for
511	 * in-kernel PAC. It will be cleared on kernel exit if needed.
512	 */
513	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
514
515	/* ISB required for the kernel uaccess routines when setting TCF0. */
516	isb();
517}
518
519/*
520 * Thread switching.
521 */
522__notrace_funcgraph __sched
523struct task_struct *__switch_to(struct task_struct *prev,
524				struct task_struct *next)
525{
526	struct task_struct *last;
527
528	fpsimd_thread_switch(next);
529	tls_thread_switch(next);
530	hw_breakpoint_thread_switch(next);
531	contextidr_thread_switch(next);
532	entry_task_switch(next);
533	ssbs_thread_switch(next);
534	erratum_1418040_thread_switch(next);
535	ptrauth_thread_switch_user(next);
536
537	/*
538	 * Complete any pending TLB or cache maintenance on this CPU in case
539	 * the thread migrates to a different CPU.
540	 * This full barrier is also required by the membarrier system
541	 * call.
542	 */
543	dsb(ish);
544
545	/*
546	 * MTE thread switching must happen after the DSB above to ensure that
547	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
548	 * registers.
549	 */
550	mte_thread_switch(next);
551	/* avoid expensive SCTLR_EL1 accesses if no change */
552	if (prev->thread.sctlr_user != next->thread.sctlr_user)
553		update_sctlr_el1(next->thread.sctlr_user);
554
555	/* the actual thread switch */
556	last = cpu_switch_to(prev, next);
557
558	return last;
559}
560
561struct wchan_info {
562	unsigned long	pc;
563	int		count;
564};
565
566static bool get_wchan_cb(void *arg, unsigned long pc)
567{
568	struct wchan_info *wchan_info = arg;
569
570	if (!in_sched_functions(pc)) {
571		wchan_info->pc = pc;
572		return false;
573	}
574	return wchan_info->count++ < 16;
575}
576
577unsigned long __get_wchan(struct task_struct *p)
578{
579	struct wchan_info wchan_info = {
580		.pc = 0,
581		.count = 0,
582	};
583
584	if (!try_get_task_stack(p))
585		return 0;
586
587	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
588
589	put_task_stack(p);
590
591	return wchan_info.pc;
 
 
 
 
 
 
 
 
 
 
 
592}
593
594unsigned long arch_align_stack(unsigned long sp)
595{
596	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
597		sp -= get_random_u32_below(PAGE_SIZE);
598	return sp & ~0xf;
599}
600
601#ifdef CONFIG_COMPAT
602int compat_elf_check_arch(const struct elf32_hdr *hdr)
603{
604	if (!system_supports_32bit_el0())
605		return false;
606
607	if ((hdr)->e_machine != EM_ARM)
608		return false;
609
610	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
611		return false;
612
613	/*
614	 * Prevent execve() of a 32-bit program from a deadline task
615	 * if the restricted affinity mask would be inadmissible on an
616	 * asymmetric system.
617	 */
618	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
619	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
620}
621#endif
622
623/*
624 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
625 */
626void arch_setup_new_exec(void)
627{
628	unsigned long mmflags = 0;
629
630	if (is_compat_task()) {
631		mmflags = MMCF_AARCH32;
632
633		/*
634		 * Restrict the CPU affinity mask for a 32-bit task so that
635		 * it contains only 32-bit-capable CPUs.
636		 *
637		 * From the perspective of the task, this looks similar to
638		 * what would happen if the 64-bit-only CPUs were hot-unplugged
639		 * at the point of execve(), although we try a bit harder to
640		 * honour the cpuset hierarchy.
641		 */
642		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
643			force_compatible_cpus_allowed_ptr(current);
644	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
645		relax_compatible_cpus_allowed_ptr(current);
646	}
647
648	current->mm->context.flags = mmflags;
649	ptrauth_thread_init_user();
650	mte_thread_init_user();
651	erratum_1418040_new_exec();
652
653	if (task_spec_ssb_noexec(current)) {
654		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
655					 PR_SPEC_ENABLE);
656	}
657}
658
659#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
660/*
661 * Control the relaxed ABI allowing tagged user addresses into the kernel.
662 */
663static unsigned int tagged_addr_disabled;
664
665long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
666{
667	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
668	struct thread_info *ti = task_thread_info(task);
669
670	if (is_compat_thread(ti))
671		return -EINVAL;
672
673	if (system_supports_mte())
674		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
675			| PR_MTE_TAG_MASK;
676
677	if (arg & ~valid_mask)
678		return -EINVAL;
679
680	/*
681	 * Do not allow the enabling of the tagged address ABI if globally
682	 * disabled via sysctl abi.tagged_addr_disabled.
683	 */
684	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
685		return -EINVAL;
686
687	if (set_mte_ctrl(task, arg) != 0)
688		return -EINVAL;
689
690	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
691
692	return 0;
693}
694
695long get_tagged_addr_ctrl(struct task_struct *task)
696{
697	long ret = 0;
698	struct thread_info *ti = task_thread_info(task);
699
700	if (is_compat_thread(ti))
701		return -EINVAL;
702
703	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
704		ret = PR_TAGGED_ADDR_ENABLE;
705
706	ret |= get_mte_ctrl(task);
707
708	return ret;
709}
710
711/*
712 * Global sysctl to disable the tagged user addresses support. This control
713 * only prevents the tagged address ABI enabling via prctl() and does not
714 * disable it for tasks that already opted in to the relaxed ABI.
715 */
716
717static struct ctl_table tagged_addr_sysctl_table[] = {
718	{
719		.procname	= "tagged_addr_disabled",
720		.mode		= 0644,
721		.data		= &tagged_addr_disabled,
722		.maxlen		= sizeof(int),
723		.proc_handler	= proc_dointvec_minmax,
724		.extra1		= SYSCTL_ZERO,
725		.extra2		= SYSCTL_ONE,
726	},
727};
728
729static int __init tagged_addr_init(void)
730{
731	if (!register_sysctl("abi", tagged_addr_sysctl_table))
732		return -EINVAL;
733	return 0;
734}
735
736core_initcall(tagged_addr_init);
737#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
738
739#ifdef CONFIG_BINFMT_ELF
740int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
741			 bool has_interp, bool is_interp)
742{
743	/*
744	 * For dynamically linked executables the interpreter is
745	 * responsible for setting PROT_BTI on everything except
746	 * itself.
747	 */
748	if (is_interp != has_interp)
749		return prot;
750
751	if (!(state->flags & ARM64_ELF_BTI))
752		return prot;
753
754	if (prot & PROT_EXEC)
755		prot |= PROT_BTI;
756
757	return prot;
758}
759#endif