Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 25#include <linux/export.h>
 26#include <linux/sched.h>
 27#include <linux/kernel.h>
 28#include <linux/mm.h>
 29#include <linux/stddef.h>
 30#include <linux/unistd.h>
 31#include <linux/user.h>
 32#include <linux/delay.h>
 33#include <linux/reboot.h>
 34#include <linux/interrupt.h>
 35#include <linux/kallsyms.h>
 36#include <linux/init.h>
 37#include <linux/cpu.h>
 38#include <linux/elfcore.h>
 39#include <linux/pm.h>
 40#include <linux/tick.h>
 41#include <linux/utsname.h>
 42#include <linux/uaccess.h>
 43#include <linux/random.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/personality.h>
 46#include <linux/notifier.h>
 47#include <trace/events/power.h>
 
 48
 49#include <asm/alternative.h>
 50#include <asm/compat.h>
 51#include <asm/cacheflush.h>
 
 52#include <asm/fpsimd.h>
 53#include <asm/mmu_context.h>
 54#include <asm/processor.h>
 55#include <asm/stacktrace.h>
 56
 57#ifdef CONFIG_CC_STACKPROTECTOR
 58#include <linux/stackprotector.h>
 59unsigned long __stack_chk_guard __read_mostly;
 60EXPORT_SYMBOL(__stack_chk_guard);
 61#endif
 62
 63/*
 64 * Function pointers to optional machine specific functions
 65 */
 66void (*pm_power_off)(void);
 67EXPORT_SYMBOL_GPL(pm_power_off);
 68
 69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 70
 71/*
 72 * This is our default idle handler.
 73 */
 74void arch_cpu_idle(void)
 75{
 76	/*
 77	 * This should do all the clock switching and wait for interrupt
 78	 * tricks
 79	 */
 80	trace_cpu_idle_rcuidle(1, smp_processor_id());
 81	cpu_do_idle();
 82	local_irq_enable();
 83	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 84}
 85
 86#ifdef CONFIG_HOTPLUG_CPU
 87void arch_cpu_idle_dead(void)
 88{
 89       cpu_die();
 90}
 91#endif
 92
 93/*
 94 * Called by kexec, immediately prior to machine_kexec().
 95 *
 96 * This must completely disable all secondary CPUs; simply causing those CPUs
 97 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 98 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 99 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
100 * functionality embodied in disable_nonboot_cpus() to achieve this.
101 */
102void machine_shutdown(void)
103{
104	disable_nonboot_cpus();
105}
106
107/*
108 * Halting simply requires that the secondary CPUs stop performing any
109 * activity (executing tasks, handling interrupts). smp_send_stop()
110 * achieves this.
111 */
112void machine_halt(void)
113{
114	local_irq_disable();
115	smp_send_stop();
116	while (1);
117}
118
119/*
120 * Power-off simply requires that the secondary CPUs stop performing any
121 * activity (executing tasks, handling interrupts). smp_send_stop()
122 * achieves this. When the system power is turned off, it will take all CPUs
123 * with it.
124 */
125void machine_power_off(void)
126{
127	local_irq_disable();
128	smp_send_stop();
129	if (pm_power_off)
130		pm_power_off();
131}
132
133/*
134 * Restart requires that the secondary CPUs stop performing any activity
135 * while the primary CPU resets the system. Systems with multiple CPUs must
136 * provide a HW restart implementation, to ensure that all CPUs reset at once.
137 * This is required so that any code running after reset on the primary CPU
138 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
139 * executing pre-reset code, and using RAM that the primary CPU's code wishes
140 * to use. Implementing such co-ordination would be essentially impossible.
141 */
142void machine_restart(char *cmd)
143{
144	/* Disable interrupts first */
145	local_irq_disable();
146	smp_send_stop();
147
148	/*
149	 * UpdateCapsule() depends on the system being reset via
150	 * ResetSystem().
151	 */
152	if (efi_enabled(EFI_RUNTIME_SERVICES))
153		efi_reboot(reboot_mode, NULL);
154
155	/* Now call the architecture specific reboot code. */
156	if (arm_pm_restart)
157		arm_pm_restart(reboot_mode, cmd);
158	else
159		do_kernel_restart(cmd);
160
161	/*
162	 * Whoops - the architecture was unable to reboot.
163	 */
164	printk("Reboot failed -- System halted\n");
165	while (1);
166}
167
168void __show_regs(struct pt_regs *regs)
169{
170	int i, top_reg;
171	u64 lr, sp;
172
173	if (compat_user_mode(regs)) {
174		lr = regs->compat_lr;
175		sp = regs->compat_sp;
176		top_reg = 12;
177	} else {
178		lr = regs->regs[30];
179		sp = regs->sp;
180		top_reg = 29;
181	}
182
183	show_regs_print_info(KERN_DEFAULT);
184	print_symbol("PC is at %s\n", instruction_pointer(regs));
185	print_symbol("LR is at %s\n", lr);
186	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
187	       regs->pc, lr, regs->pstate);
188	printk("sp : %016llx\n", sp);
189	for (i = top_reg; i >= 0; i--) {
 
 
 
190		printk("x%-2d: %016llx ", i, regs->regs[i]);
191		if (i % 2 == 0)
192			printk("\n");
 
 
 
 
 
 
193	}
194	printk("\n");
195}
196
197void show_regs(struct pt_regs * regs)
198{
199	printk("\n");
200	__show_regs(regs);
201}
202
203/*
204 * Free current thread data structures etc..
205 */
206void exit_thread(void)
207{
208}
209
210static void tls_thread_flush(void)
211{
212	asm ("msr tpidr_el0, xzr");
213
214	if (is_compat_task()) {
215		current->thread.tp_value = 0;
216
217		/*
218		 * We need to ensure ordering between the shadow state and the
219		 * hardware state, so that we don't corrupt the hardware state
220		 * with a stale shadow state during context switch.
221		 */
222		barrier();
223		asm ("msr tpidrro_el0, xzr");
224	}
225}
226
227void flush_thread(void)
228{
229	fpsimd_flush_thread();
230	tls_thread_flush();
231	flush_ptrace_hw_breakpoint(current);
232}
233
234void release_thread(struct task_struct *dead_task)
235{
236}
237
238int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
239{
240	if (current->mm)
241		fpsimd_preserve_current_state();
242	*dst = *src;
243	return 0;
244}
245
246asmlinkage void ret_from_fork(void) asm("ret_from_fork");
247
248int copy_thread(unsigned long clone_flags, unsigned long stack_start,
249		unsigned long stk_sz, struct task_struct *p)
250{
251	struct pt_regs *childregs = task_pt_regs(p);
252
253	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
254
255	if (likely(!(p->flags & PF_KTHREAD))) {
256		*childregs = *current_pt_regs();
257		childregs->regs[0] = 0;
258
259		/*
260		 * Read the current TLS pointer from tpidr_el0 as it may be
261		 * out-of-sync with the saved value.
262		 */
263		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
264
265		if (stack_start) {
266			if (is_compat_thread(task_thread_info(p)))
267				childregs->compat_sp = stack_start;
268			/* 16-byte aligned stack mandatory on AArch64 */
269			else if (stack_start & 15)
270				return -EINVAL;
271			else
272				childregs->sp = stack_start;
273		}
274
275		/*
276		 * If a TLS pointer was passed to clone (4th argument), use it
277		 * for the new thread.
278		 */
279		if (clone_flags & CLONE_SETTLS)
280			p->thread.tp_value = childregs->regs[3];
281	} else {
282		memset(childregs, 0, sizeof(struct pt_regs));
283		childregs->pstate = PSR_MODE_EL1h;
284		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285		    cpus_have_cap(ARM64_HAS_UAO))
286			childregs->pstate |= PSR_UAO_BIT;
287		p->thread.cpu_context.x19 = stack_start;
288		p->thread.cpu_context.x20 = stk_sz;
289	}
290	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291	p->thread.cpu_context.sp = (unsigned long)childregs;
292
293	ptrace_hw_copy_thread(p);
294
295	return 0;
296}
297
298static void tls_thread_switch(struct task_struct *next)
299{
300	unsigned long tpidr, tpidrro;
301
302	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
303	*task_user_tls(current) = tpidr;
304
305	tpidr = *task_user_tls(next);
306	tpidrro = is_compat_thread(task_thread_info(next)) ?
307		  next->thread.tp_value : 0;
308
309	asm(
310	"	msr	tpidr_el0, %0\n"
311	"	msr	tpidrro_el0, %1"
312	: : "r" (tpidr), "r" (tpidrro));
313}
314
315/* Restore the UAO state depending on next's addr_limit */
316static void uao_thread_switch(struct task_struct *next)
317{
318	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
319		if (task_thread_info(next)->addr_limit == KERNEL_DS)
320			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
321		else
322			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
323	}
324}
325
326/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327 * Thread switching.
328 */
329struct task_struct *__switch_to(struct task_struct *prev,
330				struct task_struct *next)
331{
332	struct task_struct *last;
333
334	fpsimd_thread_switch(next);
335	tls_thread_switch(next);
336	hw_breakpoint_thread_switch(next);
337	contextidr_thread_switch(next);
 
338	uao_thread_switch(next);
339
340	/*
341	 * Complete any pending TLB or cache maintenance on this CPU in case
342	 * the thread migrates to a different CPU.
343	 */
344	dsb(ish);
345
346	/* the actual thread switch */
347	last = cpu_switch_to(prev, next);
348
349	return last;
350}
351
352unsigned long get_wchan(struct task_struct *p)
353{
354	struct stackframe frame;
355	unsigned long stack_page;
356	int count = 0;
357	if (!p || p == current || p->state == TASK_RUNNING)
358		return 0;
359
 
 
 
 
360	frame.fp = thread_saved_fp(p);
361	frame.sp = thread_saved_sp(p);
362	frame.pc = thread_saved_pc(p);
363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
364	frame.graph = p->curr_ret_stack;
365#endif
366	stack_page = (unsigned long)task_stack_page(p);
367	do {
368		if (frame.sp < stack_page ||
369		    frame.sp >= stack_page + THREAD_SIZE ||
370		    unwind_frame(p, &frame))
371			return 0;
372		if (!in_sched_functions(frame.pc))
373			return frame.pc;
 
 
374	} while (count ++ < 16);
375	return 0;
 
 
 
376}
377
378unsigned long arch_align_stack(unsigned long sp)
379{
380	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381		sp -= get_random_int() & ~PAGE_MASK;
382	return sp & ~0xf;
383}
384
385static unsigned long randomize_base(unsigned long base)
386{
387	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
388	return randomize_range(base, range_end, 0) ? : base;
389}
390
391unsigned long arch_randomize_brk(struct mm_struct *mm)
392{
393	return randomize_base(mm->brk);
 
 
 
394}
v4.10.11
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 25#include <linux/export.h>
 26#include <linux/sched.h>
 27#include <linux/kernel.h>
 28#include <linux/mm.h>
 29#include <linux/stddef.h>
 30#include <linux/unistd.h>
 31#include <linux/user.h>
 32#include <linux/delay.h>
 33#include <linux/reboot.h>
 34#include <linux/interrupt.h>
 35#include <linux/kallsyms.h>
 36#include <linux/init.h>
 37#include <linux/cpu.h>
 38#include <linux/elfcore.h>
 39#include <linux/pm.h>
 40#include <linux/tick.h>
 41#include <linux/utsname.h>
 42#include <linux/uaccess.h>
 43#include <linux/random.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/personality.h>
 46#include <linux/notifier.h>
 47#include <trace/events/power.h>
 48#include <linux/percpu.h>
 49
 50#include <asm/alternative.h>
 51#include <asm/compat.h>
 52#include <asm/cacheflush.h>
 53#include <asm/exec.h>
 54#include <asm/fpsimd.h>
 55#include <asm/mmu_context.h>
 56#include <asm/processor.h>
 57#include <asm/stacktrace.h>
 58
 59#ifdef CONFIG_CC_STACKPROTECTOR
 60#include <linux/stackprotector.h>
 61unsigned long __stack_chk_guard __read_mostly;
 62EXPORT_SYMBOL(__stack_chk_guard);
 63#endif
 64
 65/*
 66 * Function pointers to optional machine specific functions
 67 */
 68void (*pm_power_off)(void);
 69EXPORT_SYMBOL_GPL(pm_power_off);
 70
 71void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 72
 73/*
 74 * This is our default idle handler.
 75 */
 76void arch_cpu_idle(void)
 77{
 78	/*
 79	 * This should do all the clock switching and wait for interrupt
 80	 * tricks
 81	 */
 82	trace_cpu_idle_rcuidle(1, smp_processor_id());
 83	cpu_do_idle();
 84	local_irq_enable();
 85	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 86}
 87
 88#ifdef CONFIG_HOTPLUG_CPU
 89void arch_cpu_idle_dead(void)
 90{
 91       cpu_die();
 92}
 93#endif
 94
 95/*
 96 * Called by kexec, immediately prior to machine_kexec().
 97 *
 98 * This must completely disable all secondary CPUs; simply causing those CPUs
 99 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
100 * kexec'd kernel to use any and all RAM as it sees fit, without having to
101 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
102 * functionality embodied in disable_nonboot_cpus() to achieve this.
103 */
104void machine_shutdown(void)
105{
106	disable_nonboot_cpus();
107}
108
109/*
110 * Halting simply requires that the secondary CPUs stop performing any
111 * activity (executing tasks, handling interrupts). smp_send_stop()
112 * achieves this.
113 */
114void machine_halt(void)
115{
116	local_irq_disable();
117	smp_send_stop();
118	while (1);
119}
120
121/*
122 * Power-off simply requires that the secondary CPUs stop performing any
123 * activity (executing tasks, handling interrupts). smp_send_stop()
124 * achieves this. When the system power is turned off, it will take all CPUs
125 * with it.
126 */
127void machine_power_off(void)
128{
129	local_irq_disable();
130	smp_send_stop();
131	if (pm_power_off)
132		pm_power_off();
133}
134
135/*
136 * Restart requires that the secondary CPUs stop performing any activity
137 * while the primary CPU resets the system. Systems with multiple CPUs must
138 * provide a HW restart implementation, to ensure that all CPUs reset at once.
139 * This is required so that any code running after reset on the primary CPU
140 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
141 * executing pre-reset code, and using RAM that the primary CPU's code wishes
142 * to use. Implementing such co-ordination would be essentially impossible.
143 */
144void machine_restart(char *cmd)
145{
146	/* Disable interrupts first */
147	local_irq_disable();
148	smp_send_stop();
149
150	/*
151	 * UpdateCapsule() depends on the system being reset via
152	 * ResetSystem().
153	 */
154	if (efi_enabled(EFI_RUNTIME_SERVICES))
155		efi_reboot(reboot_mode, NULL);
156
157	/* Now call the architecture specific reboot code. */
158	if (arm_pm_restart)
159		arm_pm_restart(reboot_mode, cmd);
160	else
161		do_kernel_restart(cmd);
162
163	/*
164	 * Whoops - the architecture was unable to reboot.
165	 */
166	printk("Reboot failed -- System halted\n");
167	while (1);
168}
169
170void __show_regs(struct pt_regs *regs)
171{
172	int i, top_reg;
173	u64 lr, sp;
174
175	if (compat_user_mode(regs)) {
176		lr = regs->compat_lr;
177		sp = regs->compat_sp;
178		top_reg = 12;
179	} else {
180		lr = regs->regs[30];
181		sp = regs->sp;
182		top_reg = 29;
183	}
184
185	show_regs_print_info(KERN_DEFAULT);
186	print_symbol("PC is at %s\n", instruction_pointer(regs));
187	print_symbol("LR is at %s\n", lr);
188	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
189	       regs->pc, lr, regs->pstate);
190	printk("sp : %016llx\n", sp);
191
192	i = top_reg;
193
194	while (i >= 0) {
195		printk("x%-2d: %016llx ", i, regs->regs[i]);
196		i--;
197
198		if (i % 2 == 0) {
199			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
200			i--;
201		}
202
203		pr_cont("\n");
204	}
205	printk("\n");
206}
207
208void show_regs(struct pt_regs * regs)
209{
210	printk("\n");
211	__show_regs(regs);
212}
213
 
 
 
 
 
 
 
214static void tls_thread_flush(void)
215{
216	write_sysreg(0, tpidr_el0);
217
218	if (is_compat_task()) {
219		current->thread.tp_value = 0;
220
221		/*
222		 * We need to ensure ordering between the shadow state and the
223		 * hardware state, so that we don't corrupt the hardware state
224		 * with a stale shadow state during context switch.
225		 */
226		barrier();
227		write_sysreg(0, tpidrro_el0);
228	}
229}
230
231void flush_thread(void)
232{
233	fpsimd_flush_thread();
234	tls_thread_flush();
235	flush_ptrace_hw_breakpoint(current);
236}
237
238void release_thread(struct task_struct *dead_task)
239{
240}
241
242int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
243{
244	if (current->mm)
245		fpsimd_preserve_current_state();
246	*dst = *src;
247	return 0;
248}
249
250asmlinkage void ret_from_fork(void) asm("ret_from_fork");
251
252int copy_thread(unsigned long clone_flags, unsigned long stack_start,
253		unsigned long stk_sz, struct task_struct *p)
254{
255	struct pt_regs *childregs = task_pt_regs(p);
256
257	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
258
259	if (likely(!(p->flags & PF_KTHREAD))) {
260		*childregs = *current_pt_regs();
261		childregs->regs[0] = 0;
262
263		/*
264		 * Read the current TLS pointer from tpidr_el0 as it may be
265		 * out-of-sync with the saved value.
266		 */
267		*task_user_tls(p) = read_sysreg(tpidr_el0);
268
269		if (stack_start) {
270			if (is_compat_thread(task_thread_info(p)))
271				childregs->compat_sp = stack_start;
 
 
 
272			else
273				childregs->sp = stack_start;
274		}
275
276		/*
277		 * If a TLS pointer was passed to clone (4th argument), use it
278		 * for the new thread.
279		 */
280		if (clone_flags & CLONE_SETTLS)
281			p->thread.tp_value = childregs->regs[3];
282	} else {
283		memset(childregs, 0, sizeof(struct pt_regs));
284		childregs->pstate = PSR_MODE_EL1h;
285		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
286		    cpus_have_const_cap(ARM64_HAS_UAO))
287			childregs->pstate |= PSR_UAO_BIT;
288		p->thread.cpu_context.x19 = stack_start;
289		p->thread.cpu_context.x20 = stk_sz;
290	}
291	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
292	p->thread.cpu_context.sp = (unsigned long)childregs;
293
294	ptrace_hw_copy_thread(p);
295
296	return 0;
297}
298
299static void tls_thread_switch(struct task_struct *next)
300{
301	unsigned long tpidr, tpidrro;
302
303	tpidr = read_sysreg(tpidr_el0);
304	*task_user_tls(current) = tpidr;
305
306	tpidr = *task_user_tls(next);
307	tpidrro = is_compat_thread(task_thread_info(next)) ?
308		  next->thread.tp_value : 0;
309
310	write_sysreg(tpidr, tpidr_el0);
311	write_sysreg(tpidrro, tpidrro_el0);
 
 
312}
313
314/* Restore the UAO state depending on next's addr_limit */
315void uao_thread_switch(struct task_struct *next)
316{
317	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
318		if (task_thread_info(next)->addr_limit == KERNEL_DS)
319			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
320		else
321			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
322	}
323}
324
325/*
326 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
327 * shadow copy so that we can restore this upon entry from userspace.
328 *
329 * This is *only* for exception entry from EL0, and is not valid until we
330 * __switch_to() a user task.
331 */
332DEFINE_PER_CPU(struct task_struct *, __entry_task);
333
334static void entry_task_switch(struct task_struct *next)
335{
336	__this_cpu_write(__entry_task, next);
337}
338
339/*
340 * Thread switching.
341 */
342struct task_struct *__switch_to(struct task_struct *prev,
343				struct task_struct *next)
344{
345	struct task_struct *last;
346
347	fpsimd_thread_switch(next);
348	tls_thread_switch(next);
349	hw_breakpoint_thread_switch(next);
350	contextidr_thread_switch(next);
351	entry_task_switch(next);
352	uao_thread_switch(next);
353
354	/*
355	 * Complete any pending TLB or cache maintenance on this CPU in case
356	 * the thread migrates to a different CPU.
357	 */
358	dsb(ish);
359
360	/* the actual thread switch */
361	last = cpu_switch_to(prev, next);
362
363	return last;
364}
365
366unsigned long get_wchan(struct task_struct *p)
367{
368	struct stackframe frame;
369	unsigned long stack_page, ret = 0;
370	int count = 0;
371	if (!p || p == current || p->state == TASK_RUNNING)
372		return 0;
373
374	stack_page = (unsigned long)try_get_task_stack(p);
375	if (!stack_page)
376		return 0;
377
378	frame.fp = thread_saved_fp(p);
379	frame.sp = thread_saved_sp(p);
380	frame.pc = thread_saved_pc(p);
381#ifdef CONFIG_FUNCTION_GRAPH_TRACER
382	frame.graph = p->curr_ret_stack;
383#endif
 
384	do {
385		if (frame.sp < stack_page ||
386		    frame.sp >= stack_page + THREAD_SIZE ||
387		    unwind_frame(p, &frame))
388			goto out;
389		if (!in_sched_functions(frame.pc)) {
390			ret = frame.pc;
391			goto out;
392		}
393	} while (count ++ < 16);
394
395out:
396	put_task_stack(p);
397	return ret;
398}
399
400unsigned long arch_align_stack(unsigned long sp)
401{
402	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
403		sp -= get_random_int() & ~PAGE_MASK;
404	return sp & ~0xf;
405}
406
 
 
 
 
 
 
407unsigned long arch_randomize_brk(struct mm_struct *mm)
408{
409	if (is_compat_task())
410		return randomize_page(mm->brk, 0x02000000);
411	else
412		return randomize_page(mm->brk, 0x40000000);
413}