Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 
 25#include <linux/export.h>
 26#include <linux/sched.h>
 
 
 
 27#include <linux/kernel.h>
 
 
 28#include <linux/mm.h>
 29#include <linux/stddef.h>
 
 30#include <linux/unistd.h>
 31#include <linux/user.h>
 32#include <linux/delay.h>
 33#include <linux/reboot.h>
 34#include <linux/interrupt.h>
 35#include <linux/kallsyms.h>
 36#include <linux/init.h>
 37#include <linux/cpu.h>
 38#include <linux/elfcore.h>
 39#include <linux/pm.h>
 40#include <linux/tick.h>
 41#include <linux/utsname.h>
 42#include <linux/uaccess.h>
 43#include <linux/random.h>
 44#include <linux/hw_breakpoint.h>
 45#include <linux/personality.h>
 46#include <linux/notifier.h>
 47#include <trace/events/power.h>
 
 
 
 48
 49#include <asm/alternative.h>
 
 50#include <asm/compat.h>
 
 51#include <asm/cacheflush.h>
 
 52#include <asm/fpsimd.h>
 53#include <asm/mmu_context.h>
 54#include <asm/processor.h>
 
 55#include <asm/stacktrace.h>
 56
 57#ifdef CONFIG_CC_STACKPROTECTOR
 58#include <linux/stackprotector.h>
 59unsigned long __stack_chk_guard __read_mostly;
 60EXPORT_SYMBOL(__stack_chk_guard);
 61#endif
 62
 63/*
 64 * Function pointers to optional machine specific functions
 65 */
 66void (*pm_power_off)(void);
 67EXPORT_SYMBOL_GPL(pm_power_off);
 68
 69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71/*
 72 * This is our default idle handler.
 73 */
 74void arch_cpu_idle(void)
 75{
 76	/*
 77	 * This should do all the clock switching and wait for interrupt
 78	 * tricks
 79	 */
 80	trace_cpu_idle_rcuidle(1, smp_processor_id());
 81	cpu_do_idle();
 82	local_irq_enable();
 83	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 84}
 85
 86#ifdef CONFIG_HOTPLUG_CPU
 87void arch_cpu_idle_dead(void)
 88{
 89       cpu_die();
 90}
 91#endif
 92
 93/*
 94 * Called by kexec, immediately prior to machine_kexec().
 95 *
 96 * This must completely disable all secondary CPUs; simply causing those CPUs
 97 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 98 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 99 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
100 * functionality embodied in disable_nonboot_cpus() to achieve this.
101 */
102void machine_shutdown(void)
103{
104	disable_nonboot_cpus();
105}
106
107/*
108 * Halting simply requires that the secondary CPUs stop performing any
109 * activity (executing tasks, handling interrupts). smp_send_stop()
110 * achieves this.
111 */
112void machine_halt(void)
113{
114	local_irq_disable();
115	smp_send_stop();
116	while (1);
117}
118
119/*
120 * Power-off simply requires that the secondary CPUs stop performing any
121 * activity (executing tasks, handling interrupts). smp_send_stop()
122 * achieves this. When the system power is turned off, it will take all CPUs
123 * with it.
124 */
125void machine_power_off(void)
126{
127	local_irq_disable();
128	smp_send_stop();
129	if (pm_power_off)
130		pm_power_off();
131}
132
133/*
134 * Restart requires that the secondary CPUs stop performing any activity
135 * while the primary CPU resets the system. Systems with multiple CPUs must
136 * provide a HW restart implementation, to ensure that all CPUs reset at once.
137 * This is required so that any code running after reset on the primary CPU
138 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
139 * executing pre-reset code, and using RAM that the primary CPU's code wishes
140 * to use. Implementing such co-ordination would be essentially impossible.
141 */
142void machine_restart(char *cmd)
143{
144	/* Disable interrupts first */
145	local_irq_disable();
146	smp_send_stop();
147
148	/*
149	 * UpdateCapsule() depends on the system being reset via
150	 * ResetSystem().
151	 */
152	if (efi_enabled(EFI_RUNTIME_SERVICES))
153		efi_reboot(reboot_mode, NULL);
154
155	/* Now call the architecture specific reboot code. */
156	if (arm_pm_restart)
157		arm_pm_restart(reboot_mode, cmd);
158	else
159		do_kernel_restart(cmd);
160
161	/*
162	 * Whoops - the architecture was unable to reboot.
163	 */
164	printk("Reboot failed -- System halted\n");
165	while (1);
166}
167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168void __show_regs(struct pt_regs *regs)
169{
170	int i, top_reg;
171	u64 lr, sp;
172
173	if (compat_user_mode(regs)) {
174		lr = regs->compat_lr;
175		sp = regs->compat_sp;
176		top_reg = 12;
177	} else {
178		lr = regs->regs[30];
179		sp = regs->sp;
180		top_reg = 29;
181	}
182
183	show_regs_print_info(KERN_DEFAULT);
184	print_symbol("PC is at %s\n", instruction_pointer(regs));
185	print_symbol("LR is at %s\n", lr);
186	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
187	       regs->pc, lr, regs->pstate);
 
 
 
 
 
 
188	printk("sp : %016llx\n", sp);
189	for (i = top_reg; i >= 0; i--) {
 
 
 
 
 
 
190		printk("x%-2d: %016llx ", i, regs->regs[i]);
191		if (i % 2 == 0)
192			printk("\n");
 
 
 
 
 
 
193	}
194	printk("\n");
195}
196
197void show_regs(struct pt_regs * regs)
198{
199	printk("\n");
200	__show_regs(regs);
201}
202
203/*
204 * Free current thread data structures etc..
205 */
206void exit_thread(void)
207{
208}
209
210static void tls_thread_flush(void)
211{
212	asm ("msr tpidr_el0, xzr");
213
214	if (is_compat_task()) {
215		current->thread.tp_value = 0;
216
217		/*
218		 * We need to ensure ordering between the shadow state and the
219		 * hardware state, so that we don't corrupt the hardware state
220		 * with a stale shadow state during context switch.
221		 */
222		barrier();
223		asm ("msr tpidrro_el0, xzr");
224	}
225}
226
 
 
 
 
 
 
227void flush_thread(void)
228{
229	fpsimd_flush_thread();
230	tls_thread_flush();
231	flush_ptrace_hw_breakpoint(current);
 
232}
233
234void release_thread(struct task_struct *dead_task)
235{
236}
237
 
 
 
 
 
238int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
239{
240	if (current->mm)
241		fpsimd_preserve_current_state();
242	*dst = *src;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243	return 0;
244}
245
246asmlinkage void ret_from_fork(void) asm("ret_from_fork");
247
248int copy_thread(unsigned long clone_flags, unsigned long stack_start,
249		unsigned long stk_sz, struct task_struct *p)
250{
251	struct pt_regs *childregs = task_pt_regs(p);
252
253	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
254
 
 
 
 
 
 
 
 
 
 
 
255	if (likely(!(p->flags & PF_KTHREAD))) {
256		*childregs = *current_pt_regs();
257		childregs->regs[0] = 0;
258
259		/*
260		 * Read the current TLS pointer from tpidr_el0 as it may be
261		 * out-of-sync with the saved value.
262		 */
263		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
264
265		if (stack_start) {
266			if (is_compat_thread(task_thread_info(p)))
267				childregs->compat_sp = stack_start;
268			/* 16-byte aligned stack mandatory on AArch64 */
269			else if (stack_start & 15)
270				return -EINVAL;
271			else
272				childregs->sp = stack_start;
273		}
274
275		/*
276		 * If a TLS pointer was passed to clone (4th argument), use it
277		 * for the new thread.
278		 */
279		if (clone_flags & CLONE_SETTLS)
280			p->thread.tp_value = childregs->regs[3];
281	} else {
282		memset(childregs, 0, sizeof(struct pt_regs));
283		childregs->pstate = PSR_MODE_EL1h;
284		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285		    cpus_have_cap(ARM64_HAS_UAO))
286			childregs->pstate |= PSR_UAO_BIT;
 
 
 
 
 
 
 
287		p->thread.cpu_context.x19 = stack_start;
288		p->thread.cpu_context.x20 = stk_sz;
289	}
290	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291	p->thread.cpu_context.sp = (unsigned long)childregs;
292
293	ptrace_hw_copy_thread(p);
294
295	return 0;
296}
297
 
 
 
 
 
298static void tls_thread_switch(struct task_struct *next)
299{
300	unsigned long tpidr, tpidrro;
301
302	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
303	*task_user_tls(current) = tpidr;
 
 
304
305	tpidr = *task_user_tls(next);
306	tpidrro = is_compat_thread(task_thread_info(next)) ?
307		  next->thread.tp_value : 0;
308
309	asm(
310	"	msr	tpidr_el0, %0\n"
311	"	msr	tpidrro_el0, %1"
312	: : "r" (tpidr), "r" (tpidrro));
313}
314
315/* Restore the UAO state depending on next's addr_limit */
316static void uao_thread_switch(struct task_struct *next)
317{
318	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
319		if (task_thread_info(next)->addr_limit == KERNEL_DS)
320			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
321		else
322			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
323	}
324}
325
326/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327 * Thread switching.
328 */
329struct task_struct *__switch_to(struct task_struct *prev,
330				struct task_struct *next)
331{
332	struct task_struct *last;
333
334	fpsimd_thread_switch(next);
335	tls_thread_switch(next);
336	hw_breakpoint_thread_switch(next);
337	contextidr_thread_switch(next);
 
338	uao_thread_switch(next);
 
 
339
340	/*
341	 * Complete any pending TLB or cache maintenance on this CPU in case
342	 * the thread migrates to a different CPU.
 
 
343	 */
344	dsb(ish);
345
346	/* the actual thread switch */
347	last = cpu_switch_to(prev, next);
348
349	return last;
350}
351
352unsigned long get_wchan(struct task_struct *p)
353{
354	struct stackframe frame;
355	unsigned long stack_page;
356	int count = 0;
357	if (!p || p == current || p->state == TASK_RUNNING)
358		return 0;
359
360	frame.fp = thread_saved_fp(p);
361	frame.sp = thread_saved_sp(p);
362	frame.pc = thread_saved_pc(p);
363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
364	frame.graph = p->curr_ret_stack;
365#endif
366	stack_page = (unsigned long)task_stack_page(p);
367	do {
368		if (frame.sp < stack_page ||
369		    frame.sp >= stack_page + THREAD_SIZE ||
370		    unwind_frame(p, &frame))
371			return 0;
372		if (!in_sched_functions(frame.pc))
373			return frame.pc;
374	} while (count ++ < 16);
375	return 0;
 
 
 
376}
377
378unsigned long arch_align_stack(unsigned long sp)
379{
380	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381		sp -= get_random_int() & ~PAGE_MASK;
382	return sp & ~0xf;
383}
384
385static unsigned long randomize_base(unsigned long base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386{
387	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
388	return randomize_range(base, range_end, 0) ? : base;
 
 
 
 
 
 
 
 
 
 
 
 
 
389}
390
391unsigned long arch_randomize_brk(struct mm_struct *mm)
392{
393	return randomize_base(mm->brk);
 
 
 
 
 
 
394}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <stdarg.h>
 11
 12#include <linux/compat.h>
 13#include <linux/efi.h>
 14#include <linux/elf.h>
 15#include <linux/export.h>
 16#include <linux/sched.h>
 17#include <linux/sched/debug.h>
 18#include <linux/sched/task.h>
 19#include <linux/sched/task_stack.h>
 20#include <linux/kernel.h>
 21#include <linux/lockdep.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/stddef.h>
 25#include <linux/sysctl.h>
 26#include <linux/unistd.h>
 27#include <linux/user.h>
 28#include <linux/delay.h>
 29#include <linux/reboot.h>
 30#include <linux/interrupt.h>
 
 31#include <linux/init.h>
 32#include <linux/cpu.h>
 33#include <linux/elfcore.h>
 34#include <linux/pm.h>
 35#include <linux/tick.h>
 36#include <linux/utsname.h>
 37#include <linux/uaccess.h>
 38#include <linux/random.h>
 39#include <linux/hw_breakpoint.h>
 40#include <linux/personality.h>
 41#include <linux/notifier.h>
 42#include <trace/events/power.h>
 43#include <linux/percpu.h>
 44#include <linux/thread_info.h>
 45#include <linux/prctl.h>
 46
 47#include <asm/alternative.h>
 48#include <asm/arch_gicv3.h>
 49#include <asm/compat.h>
 50#include <asm/cpufeature.h>
 51#include <asm/cacheflush.h>
 52#include <asm/exec.h>
 53#include <asm/fpsimd.h>
 54#include <asm/mmu_context.h>
 55#include <asm/processor.h>
 56#include <asm/pointer_auth.h>
 57#include <asm/stacktrace.h>
 58
 59#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 60#include <linux/stackprotector.h>
 61unsigned long __stack_chk_guard __read_mostly;
 62EXPORT_SYMBOL(__stack_chk_guard);
 63#endif
 64
 65/*
 66 * Function pointers to optional machine specific functions
 67 */
 68void (*pm_power_off)(void);
 69EXPORT_SYMBOL_GPL(pm_power_off);
 70
 71void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 72
 73static void __cpu_do_idle(void)
 74{
 75	dsb(sy);
 76	wfi();
 77}
 78
 79static void __cpu_do_idle_irqprio(void)
 80{
 81	unsigned long pmr;
 82	unsigned long daif_bits;
 83
 84	daif_bits = read_sysreg(daif);
 85	write_sysreg(daif_bits | PSR_I_BIT, daif);
 86
 87	/*
 88	 * Unmask PMR before going idle to make sure interrupts can
 89	 * be raised.
 90	 */
 91	pmr = gic_read_pmr();
 92	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
 93
 94	__cpu_do_idle();
 95
 96	gic_write_pmr(pmr);
 97	write_sysreg(daif_bits, daif);
 98}
 99
100/*
101 *	cpu_do_idle()
102 *
103 *	Idle the processor (wait for interrupt).
104 *
105 *	If the CPU supports priority masking we must do additional work to
106 *	ensure that interrupts are not masked at the PMR (because the core will
107 *	not wake up if we block the wake up signal in the interrupt controller).
108 */
109void cpu_do_idle(void)
110{
111	if (system_uses_irq_prio_masking())
112		__cpu_do_idle_irqprio();
113	else
114		__cpu_do_idle();
115}
116
117/*
118 * This is our default idle handler.
119 */
120void arch_cpu_idle(void)
121{
122	/*
123	 * This should do all the clock switching and wait for interrupt
124	 * tricks
125	 */
 
126	cpu_do_idle();
127	local_irq_enable();
 
128}
129
130#ifdef CONFIG_HOTPLUG_CPU
131void arch_cpu_idle_dead(void)
132{
133       cpu_die();
134}
135#endif
136
137/*
138 * Called by kexec, immediately prior to machine_kexec().
139 *
140 * This must completely disable all secondary CPUs; simply causing those CPUs
141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142 * kexec'd kernel to use any and all RAM as it sees fit, without having to
143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
145 */
146void machine_shutdown(void)
147{
148	smp_shutdown_nonboot_cpus(reboot_cpu);
149}
150
151/*
152 * Halting simply requires that the secondary CPUs stop performing any
153 * activity (executing tasks, handling interrupts). smp_send_stop()
154 * achieves this.
155 */
156void machine_halt(void)
157{
158	local_irq_disable();
159	smp_send_stop();
160	while (1);
161}
162
163/*
164 * Power-off simply requires that the secondary CPUs stop performing any
165 * activity (executing tasks, handling interrupts). smp_send_stop()
166 * achieves this. When the system power is turned off, it will take all CPUs
167 * with it.
168 */
169void machine_power_off(void)
170{
171	local_irq_disable();
172	smp_send_stop();
173	if (pm_power_off)
174		pm_power_off();
175}
176
177/*
178 * Restart requires that the secondary CPUs stop performing any activity
179 * while the primary CPU resets the system. Systems with multiple CPUs must
180 * provide a HW restart implementation, to ensure that all CPUs reset at once.
181 * This is required so that any code running after reset on the primary CPU
182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183 * executing pre-reset code, and using RAM that the primary CPU's code wishes
184 * to use. Implementing such co-ordination would be essentially impossible.
185 */
186void machine_restart(char *cmd)
187{
188	/* Disable interrupts first */
189	local_irq_disable();
190	smp_send_stop();
191
192	/*
193	 * UpdateCapsule() depends on the system being reset via
194	 * ResetSystem().
195	 */
196	if (efi_enabled(EFI_RUNTIME_SERVICES))
197		efi_reboot(reboot_mode, NULL);
198
199	/* Now call the architecture specific reboot code. */
200	if (arm_pm_restart)
201		arm_pm_restart(reboot_mode, cmd);
202	else
203		do_kernel_restart(cmd);
204
205	/*
206	 * Whoops - the architecture was unable to reboot.
207	 */
208	printk("Reboot failed -- System halted\n");
209	while (1);
210}
211
212#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
213static const char *const btypes[] = {
214	bstr(NONE, "--"),
215	bstr(  JC, "jc"),
216	bstr(   C, "-c"),
217	bstr(  J , "j-")
218};
219#undef bstr
220
221static void print_pstate(struct pt_regs *regs)
222{
223	u64 pstate = regs->pstate;
224
225	if (compat_user_mode(regs)) {
226		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
227			pstate,
228			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
229			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
230			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
231			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
232			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
233			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
234			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
235			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
236			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
237			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
238	} else {
239		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
240					       PSR_BTYPE_SHIFT];
241
242		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
243			pstate,
244			pstate & PSR_N_BIT ? 'N' : 'n',
245			pstate & PSR_Z_BIT ? 'Z' : 'z',
246			pstate & PSR_C_BIT ? 'C' : 'c',
247			pstate & PSR_V_BIT ? 'V' : 'v',
248			pstate & PSR_D_BIT ? 'D' : 'd',
249			pstate & PSR_A_BIT ? 'A' : 'a',
250			pstate & PSR_I_BIT ? 'I' : 'i',
251			pstate & PSR_F_BIT ? 'F' : 'f',
252			pstate & PSR_PAN_BIT ? '+' : '-',
253			pstate & PSR_UAO_BIT ? '+' : '-',
254			btype_str);
255	}
256}
257
258void __show_regs(struct pt_regs *regs)
259{
260	int i, top_reg;
261	u64 lr, sp;
262
263	if (compat_user_mode(regs)) {
264		lr = regs->compat_lr;
265		sp = regs->compat_sp;
266		top_reg = 12;
267	} else {
268		lr = regs->regs[30];
269		sp = regs->sp;
270		top_reg = 29;
271	}
272
273	show_regs_print_info(KERN_DEFAULT);
274	print_pstate(regs);
275
276	if (!user_mode(regs)) {
277		printk("pc : %pS\n", (void *)regs->pc);
278		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
279	} else {
280		printk("pc : %016llx\n", regs->pc);
281		printk("lr : %016llx\n", lr);
282	}
283
284	printk("sp : %016llx\n", sp);
285
286	if (system_uses_irq_prio_masking())
287		printk("pmr_save: %08llx\n", regs->pmr_save);
288
289	i = top_reg;
290
291	while (i >= 0) {
292		printk("x%-2d: %016llx ", i, regs->regs[i]);
293		i--;
294
295		if (i % 2 == 0) {
296			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
297			i--;
298		}
299
300		pr_cont("\n");
301	}
 
302}
303
304void show_regs(struct pt_regs * regs)
305{
 
306	__show_regs(regs);
307	dump_backtrace(regs, NULL, KERN_DEFAULT);
 
 
 
 
 
 
308}
309
310static void tls_thread_flush(void)
311{
312	write_sysreg(0, tpidr_el0);
313
314	if (is_compat_task()) {
315		current->thread.uw.tp_value = 0;
316
317		/*
318		 * We need to ensure ordering between the shadow state and the
319		 * hardware state, so that we don't corrupt the hardware state
320		 * with a stale shadow state during context switch.
321		 */
322		barrier();
323		write_sysreg(0, tpidrro_el0);
324	}
325}
326
327static void flush_tagged_addr_state(void)
328{
329	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
330		clear_thread_flag(TIF_TAGGED_ADDR);
331}
332
333void flush_thread(void)
334{
335	fpsimd_flush_thread();
336	tls_thread_flush();
337	flush_ptrace_hw_breakpoint(current);
338	flush_tagged_addr_state();
339}
340
341void release_thread(struct task_struct *dead_task)
342{
343}
344
345void arch_release_task_struct(struct task_struct *tsk)
346{
347	fpsimd_release_task(tsk);
348}
349
350int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
351{
352	if (current->mm)
353		fpsimd_preserve_current_state();
354	*dst = *src;
355
356	/* We rely on the above assignment to initialize dst's thread_flags: */
357	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
358
359	/*
360	 * Detach src's sve_state (if any) from dst so that it does not
361	 * get erroneously used or freed prematurely.  dst's sve_state
362	 * will be allocated on demand later on if dst uses SVE.
363	 * For consistency, also clear TIF_SVE here: this could be done
364	 * later in copy_process(), but to avoid tripping up future
365	 * maintainers it is best not to leave TIF_SVE and sve_state in
366	 * an inconsistent state, even temporarily.
367	 */
368	dst->thread.sve_state = NULL;
369	clear_tsk_thread_flag(dst, TIF_SVE);
370
371	return 0;
372}
373
374asmlinkage void ret_from_fork(void) asm("ret_from_fork");
375
376int copy_thread(unsigned long clone_flags, unsigned long stack_start,
377		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
378{
379	struct pt_regs *childregs = task_pt_regs(p);
380
381	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
382
383	/*
384	 * In case p was allocated the same task_struct pointer as some
385	 * other recently-exited task, make sure p is disassociated from
386	 * any cpu that may have run that now-exited task recently.
387	 * Otherwise we could erroneously skip reloading the FPSIMD
388	 * registers for p.
389	 */
390	fpsimd_flush_task_state(p);
391
392	ptrauth_thread_init_kernel(p);
393
394	if (likely(!(p->flags & PF_KTHREAD))) {
395		*childregs = *current_pt_regs();
396		childregs->regs[0] = 0;
397
398		/*
399		 * Read the current TLS pointer from tpidr_el0 as it may be
400		 * out-of-sync with the saved value.
401		 */
402		*task_user_tls(p) = read_sysreg(tpidr_el0);
403
404		if (stack_start) {
405			if (is_compat_thread(task_thread_info(p)))
406				childregs->compat_sp = stack_start;
 
 
 
407			else
408				childregs->sp = stack_start;
409		}
410
411		/*
412		 * If a TLS pointer was passed to clone, use it for the new
413		 * thread.
414		 */
415		if (clone_flags & CLONE_SETTLS)
416			p->thread.uw.tp_value = tls;
417	} else {
418		memset(childregs, 0, sizeof(struct pt_regs));
419		childregs->pstate = PSR_MODE_EL1h;
420		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
421		    cpus_have_const_cap(ARM64_HAS_UAO))
422			childregs->pstate |= PSR_UAO_BIT;
423
424		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
425			set_ssbs_bit(childregs);
426
427		if (system_uses_irq_prio_masking())
428			childregs->pmr_save = GIC_PRIO_IRQON;
429
430		p->thread.cpu_context.x19 = stack_start;
431		p->thread.cpu_context.x20 = stk_sz;
432	}
433	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
434	p->thread.cpu_context.sp = (unsigned long)childregs;
435
436	ptrace_hw_copy_thread(p);
437
438	return 0;
439}
440
441void tls_preserve_current_state(void)
442{
443	*task_user_tls(current) = read_sysreg(tpidr_el0);
444}
445
446static void tls_thread_switch(struct task_struct *next)
447{
448	tls_preserve_current_state();
449
450	if (is_compat_thread(task_thread_info(next)))
451		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
452	else if (!arm64_kernel_unmapped_at_el0())
453		write_sysreg(0, tpidrro_el0);
454
455	write_sysreg(*task_user_tls(next), tpidr_el0);
 
 
 
 
 
 
 
456}
457
458/* Restore the UAO state depending on next's addr_limit */
459void uao_thread_switch(struct task_struct *next)
460{
461	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
462		if (task_thread_info(next)->addr_limit == KERNEL_DS)
463			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
464		else
465			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
466	}
467}
468
469/*
470 * Force SSBS state on context-switch, since it may be lost after migrating
471 * from a CPU which treats the bit as RES0 in a heterogeneous system.
472 */
473static void ssbs_thread_switch(struct task_struct *next)
474{
475	struct pt_regs *regs = task_pt_regs(next);
476
477	/*
478	 * Nothing to do for kernel threads, but 'regs' may be junk
479	 * (e.g. idle task) so check the flags and bail early.
480	 */
481	if (unlikely(next->flags & PF_KTHREAD))
482		return;
483
484	/*
485	 * If all CPUs implement the SSBS extension, then we just need to
486	 * context-switch the PSTATE field.
487	 */
488	if (cpu_have_feature(cpu_feature(SSBS)))
489		return;
490
491	/* If the mitigation is enabled, then we leave SSBS clear. */
492	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
493	    test_tsk_thread_flag(next, TIF_SSBD))
494		return;
495
496	if (compat_user_mode(regs))
497		set_compat_ssbs_bit(regs);
498	else if (user_mode(regs))
499		set_ssbs_bit(regs);
500}
501
502/*
503 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
504 * shadow copy so that we can restore this upon entry from userspace.
505 *
506 * This is *only* for exception entry from EL0, and is not valid until we
507 * __switch_to() a user task.
508 */
509DEFINE_PER_CPU(struct task_struct *, __entry_task);
510
511static void entry_task_switch(struct task_struct *next)
512{
513	__this_cpu_write(__entry_task, next);
514}
515
516/*
517 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
518 * Assuming the virtual counter is enabled at the beginning of times:
519 *
520 * - disable access when switching from a 64bit task to a 32bit task
521 * - enable access when switching from a 32bit task to a 64bit task
522 */
523static void erratum_1418040_thread_switch(struct task_struct *prev,
524					  struct task_struct *next)
525{
526	bool prev32, next32;
527	u64 val;
528
529	if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
530	      cpus_have_const_cap(ARM64_WORKAROUND_1418040)))
531		return;
532
533	prev32 = is_compat_thread(task_thread_info(prev));
534	next32 = is_compat_thread(task_thread_info(next));
535
536	if (prev32 == next32)
537		return;
538
539	val = read_sysreg(cntkctl_el1);
540
541	if (!next32)
542		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
543	else
544		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
545
546	write_sysreg(val, cntkctl_el1);
547}
548
549/*
550 * Thread switching.
551 */
552__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
553				struct task_struct *next)
554{
555	struct task_struct *last;
556
557	fpsimd_thread_switch(next);
558	tls_thread_switch(next);
559	hw_breakpoint_thread_switch(next);
560	contextidr_thread_switch(next);
561	entry_task_switch(next);
562	uao_thread_switch(next);
563	ssbs_thread_switch(next);
564	erratum_1418040_thread_switch(prev, next);
565
566	/*
567	 * Complete any pending TLB or cache maintenance on this CPU in case
568	 * the thread migrates to a different CPU.
569	 * This full barrier is also required by the membarrier system
570	 * call.
571	 */
572	dsb(ish);
573
574	/* the actual thread switch */
575	last = cpu_switch_to(prev, next);
576
577	return last;
578}
579
580unsigned long get_wchan(struct task_struct *p)
581{
582	struct stackframe frame;
583	unsigned long stack_page, ret = 0;
584	int count = 0;
585	if (!p || p == current || p->state == TASK_RUNNING)
586		return 0;
587
588	stack_page = (unsigned long)try_get_task_stack(p);
589	if (!stack_page)
590		return 0;
591
592	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
593
 
594	do {
595		if (unwind_frame(p, &frame))
596			goto out;
597		if (!in_sched_functions(frame.pc)) {
598			ret = frame.pc;
599			goto out;
600		}
601	} while (count ++ < 16);
602
603out:
604	put_task_stack(p);
605	return ret;
606}
607
608unsigned long arch_align_stack(unsigned long sp)
609{
610	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
611		sp -= get_random_int() & ~PAGE_MASK;
612	return sp & ~0xf;
613}
614
615/*
616 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
617 */
618void arch_setup_new_exec(void)
619{
620	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
621
622	ptrauth_thread_init_user(current);
623}
624
625#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
626/*
627 * Control the relaxed ABI allowing tagged user addresses into the kernel.
628 */
629static unsigned int tagged_addr_disabled;
630
631long set_tagged_addr_ctrl(unsigned long arg)
632{
633	if (is_compat_task())
634		return -EINVAL;
635	if (arg & ~PR_TAGGED_ADDR_ENABLE)
636		return -EINVAL;
637
638	/*
639	 * Do not allow the enabling of the tagged address ABI if globally
640	 * disabled via sysctl abi.tagged_addr_disabled.
641	 */
642	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
643		return -EINVAL;
644
645	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
646
647	return 0;
648}
649
650long get_tagged_addr_ctrl(void)
651{
652	if (is_compat_task())
653		return -EINVAL;
654
655	if (test_thread_flag(TIF_TAGGED_ADDR))
656		return PR_TAGGED_ADDR_ENABLE;
657
658	return 0;
659}
660
661/*
662 * Global sysctl to disable the tagged user addresses support. This control
663 * only prevents the tagged address ABI enabling via prctl() and does not
664 * disable it for tasks that already opted in to the relaxed ABI.
665 */
666
667static struct ctl_table tagged_addr_sysctl_table[] = {
668	{
669		.procname	= "tagged_addr_disabled",
670		.mode		= 0644,
671		.data		= &tagged_addr_disabled,
672		.maxlen		= sizeof(int),
673		.proc_handler	= proc_dointvec_minmax,
674		.extra1		= SYSCTL_ZERO,
675		.extra2		= SYSCTL_ONE,
676	},
677	{ }
678};
679
680static int __init tagged_addr_init(void)
681{
682	if (!register_sysctl("abi", tagged_addr_sysctl_table))
683		return -EINVAL;
684	return 0;
685}
686
687core_initcall(tagged_addr_init);
688#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
689
690asmlinkage void __sched arm64_preempt_schedule_irq(void)
691{
692	lockdep_assert_irqs_disabled();
693
694	/*
695	 * Preempting a task from an IRQ means we leave copies of PSTATE
696	 * on the stack. cpufeature's enable calls may modify PSTATE, but
697	 * resuming one of these preempted tasks would undo those changes.
698	 *
699	 * Only allow a task to be preempted once cpufeatures have been
700	 * enabled.
701	 */
702	if (system_capabilities_finalized())
703		preempt_schedule_irq();
704}
705
706#ifdef CONFIG_BINFMT_ELF
707int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
708			 bool has_interp, bool is_interp)
709{
710	/*
711	 * For dynamically linked executables the interpreter is
712	 * responsible for setting PROT_BTI on everything except
713	 * itself.
714	 */
715	if (is_interp != has_interp)
716		return prot;
717
718	if (!(state->flags & ARM64_ELF_BTI))
719		return prot;
720
721	if (prot & PROT_EXEC)
722		prot |= PROT_BTI;
723
724	return prot;
725}
726#endif