Loading...
1/*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <stdarg.h>
22
23#include <linux/compat.h>
24#include <linux/efi.h>
25#include <linux/export.h>
26#include <linux/sched.h>
27#include <linux/kernel.h>
28#include <linux/mm.h>
29#include <linux/stddef.h>
30#include <linux/unistd.h>
31#include <linux/user.h>
32#include <linux/delay.h>
33#include <linux/reboot.h>
34#include <linux/interrupt.h>
35#include <linux/kallsyms.h>
36#include <linux/init.h>
37#include <linux/cpu.h>
38#include <linux/elfcore.h>
39#include <linux/pm.h>
40#include <linux/tick.h>
41#include <linux/utsname.h>
42#include <linux/uaccess.h>
43#include <linux/random.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/personality.h>
46#include <linux/notifier.h>
47#include <trace/events/power.h>
48
49#include <asm/alternative.h>
50#include <asm/compat.h>
51#include <asm/cacheflush.h>
52#include <asm/fpsimd.h>
53#include <asm/mmu_context.h>
54#include <asm/processor.h>
55#include <asm/stacktrace.h>
56
57#ifdef CONFIG_CC_STACKPROTECTOR
58#include <linux/stackprotector.h>
59unsigned long __stack_chk_guard __read_mostly;
60EXPORT_SYMBOL(__stack_chk_guard);
61#endif
62
63/*
64 * Function pointers to optional machine specific functions
65 */
66void (*pm_power_off)(void);
67EXPORT_SYMBOL_GPL(pm_power_off);
68
69void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
70
71/*
72 * This is our default idle handler.
73 */
74void arch_cpu_idle(void)
75{
76 /*
77 * This should do all the clock switching and wait for interrupt
78 * tricks
79 */
80 trace_cpu_idle_rcuidle(1, smp_processor_id());
81 cpu_do_idle();
82 local_irq_enable();
83 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
84}
85
86#ifdef CONFIG_HOTPLUG_CPU
87void arch_cpu_idle_dead(void)
88{
89 cpu_die();
90}
91#endif
92
93/*
94 * Called by kexec, immediately prior to machine_kexec().
95 *
96 * This must completely disable all secondary CPUs; simply causing those CPUs
97 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
98 * kexec'd kernel to use any and all RAM as it sees fit, without having to
99 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
100 * functionality embodied in disable_nonboot_cpus() to achieve this.
101 */
102void machine_shutdown(void)
103{
104 disable_nonboot_cpus();
105}
106
107/*
108 * Halting simply requires that the secondary CPUs stop performing any
109 * activity (executing tasks, handling interrupts). smp_send_stop()
110 * achieves this.
111 */
112void machine_halt(void)
113{
114 local_irq_disable();
115 smp_send_stop();
116 while (1);
117}
118
119/*
120 * Power-off simply requires that the secondary CPUs stop performing any
121 * activity (executing tasks, handling interrupts). smp_send_stop()
122 * achieves this. When the system power is turned off, it will take all CPUs
123 * with it.
124 */
125void machine_power_off(void)
126{
127 local_irq_disable();
128 smp_send_stop();
129 if (pm_power_off)
130 pm_power_off();
131}
132
133/*
134 * Restart requires that the secondary CPUs stop performing any activity
135 * while the primary CPU resets the system. Systems with multiple CPUs must
136 * provide a HW restart implementation, to ensure that all CPUs reset at once.
137 * This is required so that any code running after reset on the primary CPU
138 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
139 * executing pre-reset code, and using RAM that the primary CPU's code wishes
140 * to use. Implementing such co-ordination would be essentially impossible.
141 */
142void machine_restart(char *cmd)
143{
144 /* Disable interrupts first */
145 local_irq_disable();
146 smp_send_stop();
147
148 /*
149 * UpdateCapsule() depends on the system being reset via
150 * ResetSystem().
151 */
152 if (efi_enabled(EFI_RUNTIME_SERVICES))
153 efi_reboot(reboot_mode, NULL);
154
155 /* Now call the architecture specific reboot code. */
156 if (arm_pm_restart)
157 arm_pm_restart(reboot_mode, cmd);
158 else
159 do_kernel_restart(cmd);
160
161 /*
162 * Whoops - the architecture was unable to reboot.
163 */
164 printk("Reboot failed -- System halted\n");
165 while (1);
166}
167
168void __show_regs(struct pt_regs *regs)
169{
170 int i, top_reg;
171 u64 lr, sp;
172
173 if (compat_user_mode(regs)) {
174 lr = regs->compat_lr;
175 sp = regs->compat_sp;
176 top_reg = 12;
177 } else {
178 lr = regs->regs[30];
179 sp = regs->sp;
180 top_reg = 29;
181 }
182
183 show_regs_print_info(KERN_DEFAULT);
184 print_symbol("PC is at %s\n", instruction_pointer(regs));
185 print_symbol("LR is at %s\n", lr);
186 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
187 regs->pc, lr, regs->pstate);
188 printk("sp : %016llx\n", sp);
189 for (i = top_reg; i >= 0; i--) {
190 printk("x%-2d: %016llx ", i, regs->regs[i]);
191 if (i % 2 == 0)
192 printk("\n");
193 }
194 printk("\n");
195}
196
197void show_regs(struct pt_regs * regs)
198{
199 printk("\n");
200 __show_regs(regs);
201}
202
203/*
204 * Free current thread data structures etc..
205 */
206void exit_thread(void)
207{
208}
209
210static void tls_thread_flush(void)
211{
212 asm ("msr tpidr_el0, xzr");
213
214 if (is_compat_task()) {
215 current->thread.tp_value = 0;
216
217 /*
218 * We need to ensure ordering between the shadow state and the
219 * hardware state, so that we don't corrupt the hardware state
220 * with a stale shadow state during context switch.
221 */
222 barrier();
223 asm ("msr tpidrro_el0, xzr");
224 }
225}
226
227void flush_thread(void)
228{
229 fpsimd_flush_thread();
230 tls_thread_flush();
231 flush_ptrace_hw_breakpoint(current);
232}
233
234void release_thread(struct task_struct *dead_task)
235{
236}
237
238int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
239{
240 if (current->mm)
241 fpsimd_preserve_current_state();
242 *dst = *src;
243 return 0;
244}
245
246asmlinkage void ret_from_fork(void) asm("ret_from_fork");
247
248int copy_thread(unsigned long clone_flags, unsigned long stack_start,
249 unsigned long stk_sz, struct task_struct *p)
250{
251 struct pt_regs *childregs = task_pt_regs(p);
252
253 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
254
255 if (likely(!(p->flags & PF_KTHREAD))) {
256 *childregs = *current_pt_regs();
257 childregs->regs[0] = 0;
258
259 /*
260 * Read the current TLS pointer from tpidr_el0 as it may be
261 * out-of-sync with the saved value.
262 */
263 asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
264
265 if (stack_start) {
266 if (is_compat_thread(task_thread_info(p)))
267 childregs->compat_sp = stack_start;
268 /* 16-byte aligned stack mandatory on AArch64 */
269 else if (stack_start & 15)
270 return -EINVAL;
271 else
272 childregs->sp = stack_start;
273 }
274
275 /*
276 * If a TLS pointer was passed to clone (4th argument), use it
277 * for the new thread.
278 */
279 if (clone_flags & CLONE_SETTLS)
280 p->thread.tp_value = childregs->regs[3];
281 } else {
282 memset(childregs, 0, sizeof(struct pt_regs));
283 childregs->pstate = PSR_MODE_EL1h;
284 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285 cpus_have_cap(ARM64_HAS_UAO))
286 childregs->pstate |= PSR_UAO_BIT;
287 p->thread.cpu_context.x19 = stack_start;
288 p->thread.cpu_context.x20 = stk_sz;
289 }
290 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291 p->thread.cpu_context.sp = (unsigned long)childregs;
292
293 ptrace_hw_copy_thread(p);
294
295 return 0;
296}
297
298static void tls_thread_switch(struct task_struct *next)
299{
300 unsigned long tpidr, tpidrro;
301
302 asm("mrs %0, tpidr_el0" : "=r" (tpidr));
303 *task_user_tls(current) = tpidr;
304
305 tpidr = *task_user_tls(next);
306 tpidrro = is_compat_thread(task_thread_info(next)) ?
307 next->thread.tp_value : 0;
308
309 asm(
310 " msr tpidr_el0, %0\n"
311 " msr tpidrro_el0, %1"
312 : : "r" (tpidr), "r" (tpidrro));
313}
314
315/* Restore the UAO state depending on next's addr_limit */
316static void uao_thread_switch(struct task_struct *next)
317{
318 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
319 if (task_thread_info(next)->addr_limit == KERNEL_DS)
320 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
321 else
322 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
323 }
324}
325
326/*
327 * Thread switching.
328 */
329struct task_struct *__switch_to(struct task_struct *prev,
330 struct task_struct *next)
331{
332 struct task_struct *last;
333
334 fpsimd_thread_switch(next);
335 tls_thread_switch(next);
336 hw_breakpoint_thread_switch(next);
337 contextidr_thread_switch(next);
338 uao_thread_switch(next);
339
340 /*
341 * Complete any pending TLB or cache maintenance on this CPU in case
342 * the thread migrates to a different CPU.
343 */
344 dsb(ish);
345
346 /* the actual thread switch */
347 last = cpu_switch_to(prev, next);
348
349 return last;
350}
351
352unsigned long get_wchan(struct task_struct *p)
353{
354 struct stackframe frame;
355 unsigned long stack_page;
356 int count = 0;
357 if (!p || p == current || p->state == TASK_RUNNING)
358 return 0;
359
360 frame.fp = thread_saved_fp(p);
361 frame.sp = thread_saved_sp(p);
362 frame.pc = thread_saved_pc(p);
363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
364 frame.graph = p->curr_ret_stack;
365#endif
366 stack_page = (unsigned long)task_stack_page(p);
367 do {
368 if (frame.sp < stack_page ||
369 frame.sp >= stack_page + THREAD_SIZE ||
370 unwind_frame(p, &frame))
371 return 0;
372 if (!in_sched_functions(frame.pc))
373 return frame.pc;
374 } while (count ++ < 16);
375 return 0;
376}
377
378unsigned long arch_align_stack(unsigned long sp)
379{
380 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
381 sp -= get_random_int() & ~PAGE_MASK;
382 return sp & ~0xf;
383}
384
385static unsigned long randomize_base(unsigned long base)
386{
387 unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
388 return randomize_range(base, range_end, 0) ? : base;
389}
390
391unsigned long arch_randomize_brk(struct mm_struct *mm)
392{
393 return randomize_base(mm->brk);
394}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <stdarg.h>
11
12#include <linux/compat.h>
13#include <linux/efi.h>
14#include <linux/elf.h>
15#include <linux/export.h>
16#include <linux/sched.h>
17#include <linux/sched/debug.h>
18#include <linux/sched/task.h>
19#include <linux/sched/task_stack.h>
20#include <linux/kernel.h>
21#include <linux/lockdep.h>
22#include <linux/mman.h>
23#include <linux/mm.h>
24#include <linux/stddef.h>
25#include <linux/sysctl.h>
26#include <linux/unistd.h>
27#include <linux/user.h>
28#include <linux/delay.h>
29#include <linux/reboot.h>
30#include <linux/interrupt.h>
31#include <linux/init.h>
32#include <linux/cpu.h>
33#include <linux/elfcore.h>
34#include <linux/pm.h>
35#include <linux/tick.h>
36#include <linux/utsname.h>
37#include <linux/uaccess.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/personality.h>
41#include <linux/notifier.h>
42#include <trace/events/power.h>
43#include <linux/percpu.h>
44#include <linux/thread_info.h>
45#include <linux/prctl.h>
46
47#include <asm/alternative.h>
48#include <asm/arch_gicv3.h>
49#include <asm/compat.h>
50#include <asm/cpufeature.h>
51#include <asm/cacheflush.h>
52#include <asm/exec.h>
53#include <asm/fpsimd.h>
54#include <asm/mmu_context.h>
55#include <asm/processor.h>
56#include <asm/pointer_auth.h>
57#include <asm/stacktrace.h>
58
59#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60#include <linux/stackprotector.h>
61unsigned long __stack_chk_guard __read_mostly;
62EXPORT_SYMBOL(__stack_chk_guard);
63#endif
64
65/*
66 * Function pointers to optional machine specific functions
67 */
68void (*pm_power_off)(void);
69EXPORT_SYMBOL_GPL(pm_power_off);
70
71void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
72
73static void __cpu_do_idle(void)
74{
75 dsb(sy);
76 wfi();
77}
78
79static void __cpu_do_idle_irqprio(void)
80{
81 unsigned long pmr;
82 unsigned long daif_bits;
83
84 daif_bits = read_sysreg(daif);
85 write_sysreg(daif_bits | PSR_I_BIT, daif);
86
87 /*
88 * Unmask PMR before going idle to make sure interrupts can
89 * be raised.
90 */
91 pmr = gic_read_pmr();
92 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
93
94 __cpu_do_idle();
95
96 gic_write_pmr(pmr);
97 write_sysreg(daif_bits, daif);
98}
99
100/*
101 * cpu_do_idle()
102 *
103 * Idle the processor (wait for interrupt).
104 *
105 * If the CPU supports priority masking we must do additional work to
106 * ensure that interrupts are not masked at the PMR (because the core will
107 * not wake up if we block the wake up signal in the interrupt controller).
108 */
109void cpu_do_idle(void)
110{
111 if (system_uses_irq_prio_masking())
112 __cpu_do_idle_irqprio();
113 else
114 __cpu_do_idle();
115}
116
117/*
118 * This is our default idle handler.
119 */
120void arch_cpu_idle(void)
121{
122 /*
123 * This should do all the clock switching and wait for interrupt
124 * tricks
125 */
126 cpu_do_idle();
127 local_irq_enable();
128}
129
130#ifdef CONFIG_HOTPLUG_CPU
131void arch_cpu_idle_dead(void)
132{
133 cpu_die();
134}
135#endif
136
137/*
138 * Called by kexec, immediately prior to machine_kexec().
139 *
140 * This must completely disable all secondary CPUs; simply causing those CPUs
141 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
142 * kexec'd kernel to use any and all RAM as it sees fit, without having to
143 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
144 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
145 */
146void machine_shutdown(void)
147{
148 smp_shutdown_nonboot_cpus(reboot_cpu);
149}
150
151/*
152 * Halting simply requires that the secondary CPUs stop performing any
153 * activity (executing tasks, handling interrupts). smp_send_stop()
154 * achieves this.
155 */
156void machine_halt(void)
157{
158 local_irq_disable();
159 smp_send_stop();
160 while (1);
161}
162
163/*
164 * Power-off simply requires that the secondary CPUs stop performing any
165 * activity (executing tasks, handling interrupts). smp_send_stop()
166 * achieves this. When the system power is turned off, it will take all CPUs
167 * with it.
168 */
169void machine_power_off(void)
170{
171 local_irq_disable();
172 smp_send_stop();
173 if (pm_power_off)
174 pm_power_off();
175}
176
177/*
178 * Restart requires that the secondary CPUs stop performing any activity
179 * while the primary CPU resets the system. Systems with multiple CPUs must
180 * provide a HW restart implementation, to ensure that all CPUs reset at once.
181 * This is required so that any code running after reset on the primary CPU
182 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
183 * executing pre-reset code, and using RAM that the primary CPU's code wishes
184 * to use. Implementing such co-ordination would be essentially impossible.
185 */
186void machine_restart(char *cmd)
187{
188 /* Disable interrupts first */
189 local_irq_disable();
190 smp_send_stop();
191
192 /*
193 * UpdateCapsule() depends on the system being reset via
194 * ResetSystem().
195 */
196 if (efi_enabled(EFI_RUNTIME_SERVICES))
197 efi_reboot(reboot_mode, NULL);
198
199 /* Now call the architecture specific reboot code. */
200 if (arm_pm_restart)
201 arm_pm_restart(reboot_mode, cmd);
202 else
203 do_kernel_restart(cmd);
204
205 /*
206 * Whoops - the architecture was unable to reboot.
207 */
208 printk("Reboot failed -- System halted\n");
209 while (1);
210}
211
212#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
213static const char *const btypes[] = {
214 bstr(NONE, "--"),
215 bstr( JC, "jc"),
216 bstr( C, "-c"),
217 bstr( J , "j-")
218};
219#undef bstr
220
221static void print_pstate(struct pt_regs *regs)
222{
223 u64 pstate = regs->pstate;
224
225 if (compat_user_mode(regs)) {
226 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
227 pstate,
228 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
229 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
230 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
231 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
232 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
233 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
234 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
235 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
236 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
237 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
238 } else {
239 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
240 PSR_BTYPE_SHIFT];
241
242 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
243 pstate,
244 pstate & PSR_N_BIT ? 'N' : 'n',
245 pstate & PSR_Z_BIT ? 'Z' : 'z',
246 pstate & PSR_C_BIT ? 'C' : 'c',
247 pstate & PSR_V_BIT ? 'V' : 'v',
248 pstate & PSR_D_BIT ? 'D' : 'd',
249 pstate & PSR_A_BIT ? 'A' : 'a',
250 pstate & PSR_I_BIT ? 'I' : 'i',
251 pstate & PSR_F_BIT ? 'F' : 'f',
252 pstate & PSR_PAN_BIT ? '+' : '-',
253 pstate & PSR_UAO_BIT ? '+' : '-',
254 btype_str);
255 }
256}
257
258void __show_regs(struct pt_regs *regs)
259{
260 int i, top_reg;
261 u64 lr, sp;
262
263 if (compat_user_mode(regs)) {
264 lr = regs->compat_lr;
265 sp = regs->compat_sp;
266 top_reg = 12;
267 } else {
268 lr = regs->regs[30];
269 sp = regs->sp;
270 top_reg = 29;
271 }
272
273 show_regs_print_info(KERN_DEFAULT);
274 print_pstate(regs);
275
276 if (!user_mode(regs)) {
277 printk("pc : %pS\n", (void *)regs->pc);
278 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
279 } else {
280 printk("pc : %016llx\n", regs->pc);
281 printk("lr : %016llx\n", lr);
282 }
283
284 printk("sp : %016llx\n", sp);
285
286 if (system_uses_irq_prio_masking())
287 printk("pmr_save: %08llx\n", regs->pmr_save);
288
289 i = top_reg;
290
291 while (i >= 0) {
292 printk("x%-2d: %016llx ", i, regs->regs[i]);
293 i--;
294
295 if (i % 2 == 0) {
296 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
297 i--;
298 }
299
300 pr_cont("\n");
301 }
302}
303
304void show_regs(struct pt_regs * regs)
305{
306 __show_regs(regs);
307 dump_backtrace(regs, NULL, KERN_DEFAULT);
308}
309
310static void tls_thread_flush(void)
311{
312 write_sysreg(0, tpidr_el0);
313
314 if (is_compat_task()) {
315 current->thread.uw.tp_value = 0;
316
317 /*
318 * We need to ensure ordering between the shadow state and the
319 * hardware state, so that we don't corrupt the hardware state
320 * with a stale shadow state during context switch.
321 */
322 barrier();
323 write_sysreg(0, tpidrro_el0);
324 }
325}
326
327static void flush_tagged_addr_state(void)
328{
329 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
330 clear_thread_flag(TIF_TAGGED_ADDR);
331}
332
333void flush_thread(void)
334{
335 fpsimd_flush_thread();
336 tls_thread_flush();
337 flush_ptrace_hw_breakpoint(current);
338 flush_tagged_addr_state();
339}
340
341void release_thread(struct task_struct *dead_task)
342{
343}
344
345void arch_release_task_struct(struct task_struct *tsk)
346{
347 fpsimd_release_task(tsk);
348}
349
350int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
351{
352 if (current->mm)
353 fpsimd_preserve_current_state();
354 *dst = *src;
355
356 /* We rely on the above assignment to initialize dst's thread_flags: */
357 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
358
359 /*
360 * Detach src's sve_state (if any) from dst so that it does not
361 * get erroneously used or freed prematurely. dst's sve_state
362 * will be allocated on demand later on if dst uses SVE.
363 * For consistency, also clear TIF_SVE here: this could be done
364 * later in copy_process(), but to avoid tripping up future
365 * maintainers it is best not to leave TIF_SVE and sve_state in
366 * an inconsistent state, even temporarily.
367 */
368 dst->thread.sve_state = NULL;
369 clear_tsk_thread_flag(dst, TIF_SVE);
370
371 return 0;
372}
373
374asmlinkage void ret_from_fork(void) asm("ret_from_fork");
375
376int copy_thread(unsigned long clone_flags, unsigned long stack_start,
377 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
378{
379 struct pt_regs *childregs = task_pt_regs(p);
380
381 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
382
383 /*
384 * In case p was allocated the same task_struct pointer as some
385 * other recently-exited task, make sure p is disassociated from
386 * any cpu that may have run that now-exited task recently.
387 * Otherwise we could erroneously skip reloading the FPSIMD
388 * registers for p.
389 */
390 fpsimd_flush_task_state(p);
391
392 ptrauth_thread_init_kernel(p);
393
394 if (likely(!(p->flags & PF_KTHREAD))) {
395 *childregs = *current_pt_regs();
396 childregs->regs[0] = 0;
397
398 /*
399 * Read the current TLS pointer from tpidr_el0 as it may be
400 * out-of-sync with the saved value.
401 */
402 *task_user_tls(p) = read_sysreg(tpidr_el0);
403
404 if (stack_start) {
405 if (is_compat_thread(task_thread_info(p)))
406 childregs->compat_sp = stack_start;
407 else
408 childregs->sp = stack_start;
409 }
410
411 /*
412 * If a TLS pointer was passed to clone, use it for the new
413 * thread.
414 */
415 if (clone_flags & CLONE_SETTLS)
416 p->thread.uw.tp_value = tls;
417 } else {
418 memset(childregs, 0, sizeof(struct pt_regs));
419 childregs->pstate = PSR_MODE_EL1h;
420 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
421 cpus_have_const_cap(ARM64_HAS_UAO))
422 childregs->pstate |= PSR_UAO_BIT;
423
424 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
425 set_ssbs_bit(childregs);
426
427 if (system_uses_irq_prio_masking())
428 childregs->pmr_save = GIC_PRIO_IRQON;
429
430 p->thread.cpu_context.x19 = stack_start;
431 p->thread.cpu_context.x20 = stk_sz;
432 }
433 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
434 p->thread.cpu_context.sp = (unsigned long)childregs;
435
436 ptrace_hw_copy_thread(p);
437
438 return 0;
439}
440
441void tls_preserve_current_state(void)
442{
443 *task_user_tls(current) = read_sysreg(tpidr_el0);
444}
445
446static void tls_thread_switch(struct task_struct *next)
447{
448 tls_preserve_current_state();
449
450 if (is_compat_thread(task_thread_info(next)))
451 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
452 else if (!arm64_kernel_unmapped_at_el0())
453 write_sysreg(0, tpidrro_el0);
454
455 write_sysreg(*task_user_tls(next), tpidr_el0);
456}
457
458/* Restore the UAO state depending on next's addr_limit */
459void uao_thread_switch(struct task_struct *next)
460{
461 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
462 if (task_thread_info(next)->addr_limit == KERNEL_DS)
463 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
464 else
465 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
466 }
467}
468
469/*
470 * Force SSBS state on context-switch, since it may be lost after migrating
471 * from a CPU which treats the bit as RES0 in a heterogeneous system.
472 */
473static void ssbs_thread_switch(struct task_struct *next)
474{
475 struct pt_regs *regs = task_pt_regs(next);
476
477 /*
478 * Nothing to do for kernel threads, but 'regs' may be junk
479 * (e.g. idle task) so check the flags and bail early.
480 */
481 if (unlikely(next->flags & PF_KTHREAD))
482 return;
483
484 /*
485 * If all CPUs implement the SSBS extension, then we just need to
486 * context-switch the PSTATE field.
487 */
488 if (cpu_have_feature(cpu_feature(SSBS)))
489 return;
490
491 /* If the mitigation is enabled, then we leave SSBS clear. */
492 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
493 test_tsk_thread_flag(next, TIF_SSBD))
494 return;
495
496 if (compat_user_mode(regs))
497 set_compat_ssbs_bit(regs);
498 else if (user_mode(regs))
499 set_ssbs_bit(regs);
500}
501
502/*
503 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
504 * shadow copy so that we can restore this upon entry from userspace.
505 *
506 * This is *only* for exception entry from EL0, and is not valid until we
507 * __switch_to() a user task.
508 */
509DEFINE_PER_CPU(struct task_struct *, __entry_task);
510
511static void entry_task_switch(struct task_struct *next)
512{
513 __this_cpu_write(__entry_task, next);
514}
515
516/*
517 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
518 * Assuming the virtual counter is enabled at the beginning of times:
519 *
520 * - disable access when switching from a 64bit task to a 32bit task
521 * - enable access when switching from a 32bit task to a 64bit task
522 */
523static void erratum_1418040_thread_switch(struct task_struct *prev,
524 struct task_struct *next)
525{
526 bool prev32, next32;
527 u64 val;
528
529 if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
530 cpus_have_const_cap(ARM64_WORKAROUND_1418040)))
531 return;
532
533 prev32 = is_compat_thread(task_thread_info(prev));
534 next32 = is_compat_thread(task_thread_info(next));
535
536 if (prev32 == next32)
537 return;
538
539 val = read_sysreg(cntkctl_el1);
540
541 if (!next32)
542 val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
543 else
544 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
545
546 write_sysreg(val, cntkctl_el1);
547}
548
549/*
550 * Thread switching.
551 */
552__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
553 struct task_struct *next)
554{
555 struct task_struct *last;
556
557 fpsimd_thread_switch(next);
558 tls_thread_switch(next);
559 hw_breakpoint_thread_switch(next);
560 contextidr_thread_switch(next);
561 entry_task_switch(next);
562 uao_thread_switch(next);
563 ssbs_thread_switch(next);
564 erratum_1418040_thread_switch(prev, next);
565
566 /*
567 * Complete any pending TLB or cache maintenance on this CPU in case
568 * the thread migrates to a different CPU.
569 * This full barrier is also required by the membarrier system
570 * call.
571 */
572 dsb(ish);
573
574 /* the actual thread switch */
575 last = cpu_switch_to(prev, next);
576
577 return last;
578}
579
580unsigned long get_wchan(struct task_struct *p)
581{
582 struct stackframe frame;
583 unsigned long stack_page, ret = 0;
584 int count = 0;
585 if (!p || p == current || p->state == TASK_RUNNING)
586 return 0;
587
588 stack_page = (unsigned long)try_get_task_stack(p);
589 if (!stack_page)
590 return 0;
591
592 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
593
594 do {
595 if (unwind_frame(p, &frame))
596 goto out;
597 if (!in_sched_functions(frame.pc)) {
598 ret = frame.pc;
599 goto out;
600 }
601 } while (count ++ < 16);
602
603out:
604 put_task_stack(p);
605 return ret;
606}
607
608unsigned long arch_align_stack(unsigned long sp)
609{
610 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
611 sp -= get_random_int() & ~PAGE_MASK;
612 return sp & ~0xf;
613}
614
615/*
616 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
617 */
618void arch_setup_new_exec(void)
619{
620 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
621
622 ptrauth_thread_init_user(current);
623}
624
625#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
626/*
627 * Control the relaxed ABI allowing tagged user addresses into the kernel.
628 */
629static unsigned int tagged_addr_disabled;
630
631long set_tagged_addr_ctrl(unsigned long arg)
632{
633 if (is_compat_task())
634 return -EINVAL;
635 if (arg & ~PR_TAGGED_ADDR_ENABLE)
636 return -EINVAL;
637
638 /*
639 * Do not allow the enabling of the tagged address ABI if globally
640 * disabled via sysctl abi.tagged_addr_disabled.
641 */
642 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
643 return -EINVAL;
644
645 update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
646
647 return 0;
648}
649
650long get_tagged_addr_ctrl(void)
651{
652 if (is_compat_task())
653 return -EINVAL;
654
655 if (test_thread_flag(TIF_TAGGED_ADDR))
656 return PR_TAGGED_ADDR_ENABLE;
657
658 return 0;
659}
660
661/*
662 * Global sysctl to disable the tagged user addresses support. This control
663 * only prevents the tagged address ABI enabling via prctl() and does not
664 * disable it for tasks that already opted in to the relaxed ABI.
665 */
666
667static struct ctl_table tagged_addr_sysctl_table[] = {
668 {
669 .procname = "tagged_addr_disabled",
670 .mode = 0644,
671 .data = &tagged_addr_disabled,
672 .maxlen = sizeof(int),
673 .proc_handler = proc_dointvec_minmax,
674 .extra1 = SYSCTL_ZERO,
675 .extra2 = SYSCTL_ONE,
676 },
677 { }
678};
679
680static int __init tagged_addr_init(void)
681{
682 if (!register_sysctl("abi", tagged_addr_sysctl_table))
683 return -EINVAL;
684 return 0;
685}
686
687core_initcall(tagged_addr_init);
688#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
689
690asmlinkage void __sched arm64_preempt_schedule_irq(void)
691{
692 lockdep_assert_irqs_disabled();
693
694 /*
695 * Preempting a task from an IRQ means we leave copies of PSTATE
696 * on the stack. cpufeature's enable calls may modify PSTATE, but
697 * resuming one of these preempted tasks would undo those changes.
698 *
699 * Only allow a task to be preempted once cpufeatures have been
700 * enabled.
701 */
702 if (system_capabilities_finalized())
703 preempt_schedule_irq();
704}
705
706#ifdef CONFIG_BINFMT_ELF
707int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
708 bool has_interp, bool is_interp)
709{
710 /*
711 * For dynamically linked executables the interpreter is
712 * responsible for setting PROT_BTI on everything except
713 * itself.
714 */
715 if (is_interp != has_interp)
716 return prot;
717
718 if (!(state->flags & ARM64_ELF_BTI))
719 return prot;
720
721 if (prot & PROT_EXEC)
722 prot |= PROT_BTI;
723
724 return prot;
725}
726#endif