Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
 
 
 
 
 
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
 
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
 
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
 
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
 
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 
 
 
 
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = data;
 309
 
 310	sb->s_blocksize = PAGE_SIZE;
 311	sb->s_blocksize_bits = PAGE_SHIFT;
 312	sb->s_magic = MQUEUE_MAGIC;
 313	sb->s_op = &mqueue_super_ops;
 314
 315	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 316	if (IS_ERR(inode))
 317		return PTR_ERR(inode);
 318
 319	sb->s_root = d_make_root(inode);
 320	if (!sb->s_root)
 321		return -ENOMEM;
 322	return 0;
 323}
 324
 325static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name,
 327			 void *data)
 328{
 329	if (!(flags & MS_KERNMOUNT)) {
 330		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
 331		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
 332		 * over the ipc namespace.
 333		 */
 334		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
 335			return ERR_PTR(-EPERM);
 336
 337		data = ns;
 
 
 
 
 
 
 338	}
 339	return mount_ns(fs_type, flags, data, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void init_once(void *foo)
 343{
 344	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 345
 346	inode_init_once(&p->vfs_inode);
 347}
 348
 349static struct inode *mqueue_alloc_inode(struct super_block *sb)
 350{
 351	struct mqueue_inode_info *ei;
 352
 353	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 354	if (!ei)
 355		return NULL;
 356	return &ei->vfs_inode;
 357}
 358
 359static void mqueue_i_callback(struct rcu_head *head)
 360{
 361	struct inode *inode = container_of(head, struct inode, i_rcu);
 362	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 363}
 364
 365static void mqueue_destroy_inode(struct inode *inode)
 366{
 367	call_rcu(&inode->i_rcu, mqueue_i_callback);
 368}
 369
 370static void mqueue_evict_inode(struct inode *inode)
 371{
 372	struct mqueue_inode_info *info;
 373	struct user_struct *user;
 374	unsigned long mq_bytes, mq_treesize;
 375	struct ipc_namespace *ipc_ns;
 376	struct msg_msg *msg;
 
 377
 378	clear_inode(inode);
 379
 380	if (S_ISDIR(inode->i_mode))
 381		return;
 382
 383	ipc_ns = get_ns_from_inode(inode);
 384	info = MQUEUE_I(inode);
 385	spin_lock(&info->lock);
 386	while ((msg = msg_get(info)) != NULL)
 387		free_msg(msg);
 388	kfree(info->node_cache);
 389	spin_unlock(&info->lock);
 390
 391	/* Total amount of bytes accounted for the mqueue */
 392	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 393		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 394		sizeof(struct posix_msg_tree_node);
 
 
 
 395
 396	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 397				  info->attr.mq_msgsize);
 
 
 
 
 
 398
 399	user = info->user;
 400	if (user) {
 401		spin_lock(&mq_lock);
 402		user->mq_bytes -= mq_bytes;
 403		/*
 404		 * get_ns_from_inode() ensures that the
 405		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 406		 * to which we now hold a reference, or it is NULL.
 407		 * We can't put it here under mq_lock, though.
 408		 */
 409		if (ipc_ns)
 410			ipc_ns->mq_queues_count--;
 411		spin_unlock(&mq_lock);
 412		free_uid(user);
 
 413	}
 414	if (ipc_ns)
 415		put_ipc_ns(ipc_ns);
 416}
 417
 418static int mqueue_create(struct inode *dir, struct dentry *dentry,
 419				umode_t mode, bool excl)
 420{
 
 421	struct inode *inode;
 422	struct mq_attr *attr = dentry->d_fsdata;
 423	int error;
 424	struct ipc_namespace *ipc_ns;
 425
 426	spin_lock(&mq_lock);
 427	ipc_ns = __get_ns_from_inode(dir);
 428	if (!ipc_ns) {
 429		error = -EACCES;
 430		goto out_unlock;
 431	}
 432
 433	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 434	    !capable(CAP_SYS_RESOURCE)) {
 435		error = -ENOSPC;
 436		goto out_unlock;
 437	}
 438	ipc_ns->mq_queues_count++;
 439	spin_unlock(&mq_lock);
 440
 441	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 442	if (IS_ERR(inode)) {
 443		error = PTR_ERR(inode);
 444		spin_lock(&mq_lock);
 445		ipc_ns->mq_queues_count--;
 446		goto out_unlock;
 447	}
 448
 449	put_ipc_ns(ipc_ns);
 450	dir->i_size += DIRENT_SIZE;
 451	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 452
 453	d_instantiate(dentry, inode);
 454	dget(dentry);
 455	return 0;
 456out_unlock:
 457	spin_unlock(&mq_lock);
 458	if (ipc_ns)
 459		put_ipc_ns(ipc_ns);
 460	return error;
 461}
 462
 
 
 
 
 
 
 463static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 464{
 465	struct inode *inode = d_inode(dentry);
 466
 467	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 468	dir->i_size -= DIRENT_SIZE;
 469	drop_nlink(inode);
 470	dput(dentry);
 471	return 0;
 472}
 473
 474/*
 475*	This is routine for system read from queue file.
 476*	To avoid mess with doing here some sort of mq_receive we allow
 477*	to read only queue size & notification info (the only values
 478*	that are interesting from user point of view and aren't accessible
 479*	through std routines)
 480*/
 481static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 482				size_t count, loff_t *off)
 483{
 484	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 485	char buffer[FILENT_SIZE];
 486	ssize_t ret;
 487
 488	spin_lock(&info->lock);
 489	snprintf(buffer, sizeof(buffer),
 490			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 491			info->qsize,
 492			info->notify_owner ? info->notify.sigev_notify : 0,
 493			(info->notify_owner &&
 494			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 495				info->notify.sigev_signo : 0,
 496			pid_vnr(info->notify_owner));
 497	spin_unlock(&info->lock);
 498	buffer[sizeof(buffer)-1] = '\0';
 499
 500	ret = simple_read_from_buffer(u_data, count, off, buffer,
 501				strlen(buffer));
 502	if (ret <= 0)
 503		return ret;
 504
 505	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
 506	return ret;
 507}
 508
 509static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 510{
 511	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 512
 513	spin_lock(&info->lock);
 514	if (task_tgid(current) == info->notify_owner)
 515		remove_notification(info);
 516
 517	spin_unlock(&info->lock);
 518	return 0;
 519}
 520
 521static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 522{
 523	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 524	int retval = 0;
 525
 526	poll_wait(filp, &info->wait_q, poll_tab);
 527
 528	spin_lock(&info->lock);
 529	if (info->attr.mq_curmsgs)
 530		retval = POLLIN | POLLRDNORM;
 531
 532	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 533		retval |= POLLOUT | POLLWRNORM;
 534	spin_unlock(&info->lock);
 535
 536	return retval;
 537}
 538
 539/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 540static void wq_add(struct mqueue_inode_info *info, int sr,
 541			struct ext_wait_queue *ewp)
 542{
 543	struct ext_wait_queue *walk;
 544
 545	ewp->task = current;
 546
 547	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 548		if (walk->task->static_prio <= current->static_prio) {
 549			list_add_tail(&ewp->list, &walk->list);
 550			return;
 551		}
 552	}
 553	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 554}
 555
 556/*
 557 * Puts current task to sleep. Caller must hold queue lock. After return
 558 * lock isn't held.
 559 * sr: SEND or RECV
 560 */
 561static int wq_sleep(struct mqueue_inode_info *info, int sr,
 562		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 563{
 564	int retval;
 565	signed long time;
 566
 567	wq_add(info, sr, ewp);
 568
 569	for (;;) {
 
 570		__set_current_state(TASK_INTERRUPTIBLE);
 571
 572		spin_unlock(&info->lock);
 573		time = schedule_hrtimeout_range_clock(timeout, 0,
 574			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 575
 576		if (ewp->state == STATE_READY) {
 
 
 577			retval = 0;
 578			goto out;
 579		}
 580		spin_lock(&info->lock);
 581		if (ewp->state == STATE_READY) {
 
 
 582			retval = 0;
 583			goto out_unlock;
 584		}
 585		if (signal_pending(current)) {
 586			retval = -ERESTARTSYS;
 587			break;
 588		}
 589		if (time == 0) {
 590			retval = -ETIMEDOUT;
 591			break;
 592		}
 593	}
 594	list_del(&ewp->list);
 595out_unlock:
 596	spin_unlock(&info->lock);
 597out:
 598	return retval;
 599}
 600
 601/*
 602 * Returns waiting task that should be serviced first or NULL if none exists
 603 */
 604static struct ext_wait_queue *wq_get_first_waiter(
 605		struct mqueue_inode_info *info, int sr)
 606{
 607	struct list_head *ptr;
 608
 609	ptr = info->e_wait_q[sr].list.prev;
 610	if (ptr == &info->e_wait_q[sr].list)
 611		return NULL;
 612	return list_entry(ptr, struct ext_wait_queue, list);
 613}
 614
 615
 616static inline void set_cookie(struct sk_buff *skb, char code)
 617{
 618	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 619}
 620
 621/*
 622 * The next function is only to split too long sys_mq_timedsend
 623 */
 624static void __do_notify(struct mqueue_inode_info *info)
 625{
 626	/* notification
 627	 * invoked when there is registered process and there isn't process
 628	 * waiting synchronously for message AND state of queue changed from
 629	 * empty to not empty. Here we are sure that no one is waiting
 630	 * synchronously. */
 631	if (info->notify_owner &&
 632	    info->attr.mq_curmsgs == 1) {
 633		struct siginfo sig_i;
 634		switch (info->notify.sigev_notify) {
 635		case SIGEV_NONE:
 636			break;
 637		case SIGEV_SIGNAL:
 638			/* sends signal */
 
 
 
 
 
 639
 
 640			sig_i.si_signo = info->notify.sigev_signo;
 641			sig_i.si_errno = 0;
 642			sig_i.si_code = SI_MESGQ;
 643			sig_i.si_value = info->notify.sigev_value;
 644			/* map current pid/uid into info->owner's namespaces */
 645			rcu_read_lock();
 
 646			sig_i.si_pid = task_tgid_nr_ns(current,
 647						ns_of_pid(info->notify_owner));
 648			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649			rcu_read_unlock();
 650
 651			kill_pid_info(info->notify.sigev_signo,
 652				      &sig_i, info->notify_owner);
 653			break;
 
 654		case SIGEV_THREAD:
 655			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 656			netlink_sendskb(info->notify_sock, info->notify_cookie);
 657			break;
 658		}
 659		/* after notification unregisters process */
 660		put_pid(info->notify_owner);
 661		put_user_ns(info->notify_user_ns);
 662		info->notify_owner = NULL;
 663		info->notify_user_ns = NULL;
 664	}
 665	wake_up(&info->wait_q);
 666}
 667
 668static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 669			   ktime_t *expires, struct timespec *ts)
 670{
 671	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 672		return -EFAULT;
 673	if (!timespec_valid(ts))
 674		return -EINVAL;
 675
 676	*expires = timespec_to_ktime(*ts);
 677	return 0;
 678}
 679
 680static void remove_notification(struct mqueue_inode_info *info)
 681{
 682	if (info->notify_owner != NULL &&
 683	    info->notify.sigev_notify == SIGEV_THREAD) {
 684		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 685		netlink_sendskb(info->notify_sock, info->notify_cookie);
 686	}
 687	put_pid(info->notify_owner);
 688	put_user_ns(info->notify_user_ns);
 689	info->notify_owner = NULL;
 690	info->notify_user_ns = NULL;
 691}
 692
 693static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 694{
 695	int mq_treesize;
 696	unsigned long total_size;
 697
 698	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 699		return -EINVAL;
 700	if (capable(CAP_SYS_RESOURCE)) {
 701		if (attr->mq_maxmsg > HARD_MSGMAX ||
 702		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 703			return -EINVAL;
 704	} else {
 705		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 706				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 707			return -EINVAL;
 708	}
 709	/* check for overflow */
 710	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 711		return -EOVERFLOW;
 712	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 713		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 714		sizeof(struct posix_msg_tree_node);
 715	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 716	if (total_size + mq_treesize < total_size)
 717		return -EOVERFLOW;
 718	return 0;
 719}
 720
 721/*
 722 * Invoked when creating a new queue via sys_mq_open
 723 */
 724static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 725			struct path *path, int oflag, umode_t mode,
 726			struct mq_attr *attr)
 727{
 728	const struct cred *cred = current_cred();
 729	int ret;
 730
 731	if (attr) {
 732		ret = mq_attr_ok(ipc_ns, attr);
 733		if (ret)
 734			return ERR_PTR(ret);
 735		/* store for use during create */
 736		path->dentry->d_fsdata = attr;
 737	} else {
 738		struct mq_attr def_attr;
 739
 740		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 741					 ipc_ns->mq_msg_default);
 742		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 743					  ipc_ns->mq_msgsize_default);
 744		ret = mq_attr_ok(ipc_ns, &def_attr);
 745		if (ret)
 746			return ERR_PTR(ret);
 747	}
 748
 749	mode &= ~current_umask();
 750	ret = vfs_create(dir, path->dentry, mode, true);
 751	path->dentry->d_fsdata = NULL;
 752	if (ret)
 753		return ERR_PTR(ret);
 754	return dentry_open(path, oflag, cred);
 755}
 756
 757/* Opens existing queue */
 758static struct file *do_open(struct path *path, int oflag)
 759{
 760	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 761						  MAY_READ | MAY_WRITE };
 762	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 764		return ERR_PTR(-EINVAL);
 765	acc = oflag2acc[oflag & O_ACCMODE];
 766	if (inode_permission(d_inode(path->dentry), acc))
 767		return ERR_PTR(-EACCES);
 768	return dentry_open(path, oflag, current_cred());
 769}
 770
 771SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 772		struct mq_attr __user *, u_attr)
 773{
 774	struct path path;
 775	struct file *filp;
 776	struct filename *name;
 777	struct mq_attr attr;
 778	int fd, error;
 779	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 780	struct vfsmount *mnt = ipc_ns->mq_mnt;
 781	struct dentry *root = mnt->mnt_root;
 782	int ro;
 783
 784	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 785		return -EFAULT;
 786
 787	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 788
 789	if (IS_ERR(name = getname(u_name)))
 790		return PTR_ERR(name);
 791
 792	fd = get_unused_fd_flags(O_CLOEXEC);
 793	if (fd < 0)
 794		goto out_putname;
 795
 796	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 797	error = 0;
 798	inode_lock(d_inode(root));
 799	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 800	if (IS_ERR(path.dentry)) {
 801		error = PTR_ERR(path.dentry);
 802		goto out_putfd;
 803	}
 804	path.mnt = mntget(mnt);
 805
 806	if (oflag & O_CREAT) {
 807		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 808			audit_inode(name, path.dentry, 0);
 809			if (oflag & O_EXCL) {
 810				error = -EEXIST;
 811				goto out;
 812			}
 813			filp = do_open(&path, oflag);
 814		} else {
 815			if (ro) {
 816				error = ro;
 817				goto out;
 818			}
 819			audit_inode_parent_hidden(name, root);
 820			filp = do_create(ipc_ns, d_inode(root),
 821						&path, oflag, mode,
 822						u_attr ? &attr : NULL);
 823		}
 824	} else {
 825		if (d_really_is_negative(path.dentry)) {
 826			error = -ENOENT;
 827			goto out;
 828		}
 829		audit_inode(name, path.dentry, 0);
 830		filp = do_open(&path, oflag);
 831	}
 832
 833	if (!IS_ERR(filp))
 834		fd_install(fd, filp);
 835	else
 836		error = PTR_ERR(filp);
 837out:
 838	path_put(&path);
 839out_putfd:
 840	if (error) {
 841		put_unused_fd(fd);
 842		fd = error;
 843	}
 844	inode_unlock(d_inode(root));
 845	if (!ro)
 846		mnt_drop_write(mnt);
 847out_putname:
 848	putname(name);
 849	return fd;
 850}
 851
 
 
 
 
 
 
 
 
 
 
 852SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 853{
 854	int err;
 855	struct filename *name;
 856	struct dentry *dentry;
 857	struct inode *inode = NULL;
 858	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 859	struct vfsmount *mnt = ipc_ns->mq_mnt;
 860
 861	name = getname(u_name);
 862	if (IS_ERR(name))
 863		return PTR_ERR(name);
 864
 865	audit_inode_parent_hidden(name, mnt->mnt_root);
 866	err = mnt_want_write(mnt);
 867	if (err)
 868		goto out_name;
 869	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 870	dentry = lookup_one_len(name->name, mnt->mnt_root,
 871				strlen(name->name));
 872	if (IS_ERR(dentry)) {
 873		err = PTR_ERR(dentry);
 874		goto out_unlock;
 875	}
 876
 877	inode = d_inode(dentry);
 878	if (!inode) {
 879		err = -ENOENT;
 880	} else {
 881		ihold(inode);
 882		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 
 883	}
 884	dput(dentry);
 885
 886out_unlock:
 887	inode_unlock(d_inode(mnt->mnt_root));
 888	if (inode)
 889		iput(inode);
 890	mnt_drop_write(mnt);
 891out_name:
 892	putname(name);
 893
 894	return err;
 895}
 896
 897/* Pipelined send and receive functions.
 898 *
 899 * If a receiver finds no waiting message, then it registers itself in the
 900 * list of waiting receivers. A sender checks that list before adding the new
 901 * message into the message array. If there is a waiting receiver, then it
 902 * bypasses the message array and directly hands the message over to the
 903 * receiver. The receiver accepts the message and returns without grabbing the
 904 * queue spinlock:
 905 *
 906 * - Set pointer to message.
 907 * - Queue the receiver task for later wakeup (without the info->lock).
 908 * - Update its state to STATE_READY. Now the receiver can continue.
 909 * - Wake up the process after the lock is dropped. Should the process wake up
 910 *   before this wakeup (due to a timeout or a signal) it will either see
 911 *   STATE_READY and continue or acquire the lock to check the state again.
 912 *
 913 * The same algorithm is used for senders.
 914 */
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916/* pipelined_send() - send a message directly to the task waiting in
 917 * sys_mq_timedreceive() (without inserting message into a queue).
 918 */
 919static inline void pipelined_send(struct wake_q_head *wake_q,
 920				  struct mqueue_inode_info *info,
 921				  struct msg_msg *message,
 922				  struct ext_wait_queue *receiver)
 923{
 924	receiver->msg = message;
 925	list_del(&receiver->list);
 926	wake_q_add(wake_q, receiver->task);
 927	/*
 928	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 929	 * that we can ensure that updating receiver->state is the last
 930	 * write operation: As once set, the receiver can continue,
 931	 * and if we don't have the reference count from the wake_q,
 932	 * yet, at that point we can later have a use-after-free
 933	 * condition and bogus wakeup.
 934	 */
 935	receiver->state = STATE_READY;
 936}
 937
 938/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 939 * gets its message and put to the queue (we have one free place for sure). */
 940static inline void pipelined_receive(struct wake_q_head *wake_q,
 941				     struct mqueue_inode_info *info)
 942{
 943	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 944
 945	if (!sender) {
 946		/* for poll */
 947		wake_up_interruptible(&info->wait_q);
 948		return;
 949	}
 950	if (msg_insert(sender->msg, info))
 951		return;
 952
 953	list_del(&sender->list);
 954	wake_q_add(wake_q, sender->task);
 955	sender->state = STATE_READY;
 956}
 957
 958SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 959		size_t, msg_len, unsigned int, msg_prio,
 960		const struct timespec __user *, u_abs_timeout)
 961{
 962	struct fd f;
 963	struct inode *inode;
 964	struct ext_wait_queue wait;
 965	struct ext_wait_queue *receiver;
 966	struct msg_msg *msg_ptr;
 967	struct mqueue_inode_info *info;
 968	ktime_t expires, *timeout = NULL;
 969	struct timespec ts;
 970	struct posix_msg_tree_node *new_leaf = NULL;
 971	int ret = 0;
 972	WAKE_Q(wake_q);
 973
 974	if (u_abs_timeout) {
 975		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 976		if (res)
 977			return res;
 978		timeout = &expires;
 979	}
 980
 981	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 982		return -EINVAL;
 983
 984	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 985
 986	f = fdget(mqdes);
 987	if (unlikely(!f.file)) {
 988		ret = -EBADF;
 989		goto out;
 990	}
 991
 992	inode = file_inode(f.file);
 993	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 994		ret = -EBADF;
 995		goto out_fput;
 996	}
 997	info = MQUEUE_I(inode);
 998	audit_file(f.file);
 999
1000	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1001		ret = -EBADF;
1002		goto out_fput;
1003	}
1004
1005	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1006		ret = -EMSGSIZE;
1007		goto out_fput;
1008	}
1009
1010	/* First try to allocate memory, before doing anything with
1011	 * existing queues. */
1012	msg_ptr = load_msg(u_msg_ptr, msg_len);
1013	if (IS_ERR(msg_ptr)) {
1014		ret = PTR_ERR(msg_ptr);
1015		goto out_fput;
1016	}
1017	msg_ptr->m_ts = msg_len;
1018	msg_ptr->m_type = msg_prio;
1019
1020	/*
1021	 * msg_insert really wants us to have a valid, spare node struct so
1022	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1023	 * fall back to that if necessary.
1024	 */
1025	if (!info->node_cache)
1026		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1027
1028	spin_lock(&info->lock);
1029
1030	if (!info->node_cache && new_leaf) {
1031		/* Save our speculative allocation into the cache */
1032		INIT_LIST_HEAD(&new_leaf->msg_list);
1033		info->node_cache = new_leaf;
1034		new_leaf = NULL;
1035	} else {
1036		kfree(new_leaf);
1037	}
1038
1039	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1040		if (f.file->f_flags & O_NONBLOCK) {
1041			ret = -EAGAIN;
1042		} else {
1043			wait.task = current;
1044			wait.msg = (void *) msg_ptr;
1045			wait.state = STATE_NONE;
 
 
1046			ret = wq_sleep(info, SEND, timeout, &wait);
1047			/*
1048			 * wq_sleep must be called with info->lock held, and
1049			 * returns with the lock released
1050			 */
1051			goto out_free;
1052		}
1053	} else {
1054		receiver = wq_get_first_waiter(info, RECV);
1055		if (receiver) {
1056			pipelined_send(&wake_q, info, msg_ptr, receiver);
1057		} else {
1058			/* adds message to the queue */
1059			ret = msg_insert(msg_ptr, info);
1060			if (ret)
1061				goto out_unlock;
1062			__do_notify(info);
1063		}
1064		inode->i_atime = inode->i_mtime = inode->i_ctime =
1065				CURRENT_TIME;
1066	}
1067out_unlock:
1068	spin_unlock(&info->lock);
1069	wake_up_q(&wake_q);
1070out_free:
1071	if (ret)
1072		free_msg(msg_ptr);
1073out_fput:
1074	fdput(f);
1075out:
1076	return ret;
1077}
1078
1079SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1080		size_t, msg_len, unsigned int __user *, u_msg_prio,
1081		const struct timespec __user *, u_abs_timeout)
1082{
1083	ssize_t ret;
1084	struct msg_msg *msg_ptr;
1085	struct fd f;
1086	struct inode *inode;
1087	struct mqueue_inode_info *info;
1088	struct ext_wait_queue wait;
1089	ktime_t expires, *timeout = NULL;
1090	struct timespec ts;
1091	struct posix_msg_tree_node *new_leaf = NULL;
1092
1093	if (u_abs_timeout) {
1094		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1095		if (res)
1096			return res;
1097		timeout = &expires;
1098	}
1099
1100	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1101
1102	f = fdget(mqdes);
1103	if (unlikely(!f.file)) {
1104		ret = -EBADF;
1105		goto out;
1106	}
1107
1108	inode = file_inode(f.file);
1109	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110		ret = -EBADF;
1111		goto out_fput;
1112	}
1113	info = MQUEUE_I(inode);
1114	audit_file(f.file);
1115
1116	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117		ret = -EBADF;
1118		goto out_fput;
1119	}
1120
1121	/* checks if buffer is big enough */
1122	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123		ret = -EMSGSIZE;
1124		goto out_fput;
1125	}
1126
1127	/*
1128	 * msg_insert really wants us to have a valid, spare node struct so
1129	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130	 * fall back to that if necessary.
1131	 */
1132	if (!info->node_cache)
1133		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134
1135	spin_lock(&info->lock);
1136
1137	if (!info->node_cache && new_leaf) {
1138		/* Save our speculative allocation into the cache */
1139		INIT_LIST_HEAD(&new_leaf->msg_list);
1140		info->node_cache = new_leaf;
1141	} else {
1142		kfree(new_leaf);
1143	}
1144
1145	if (info->attr.mq_curmsgs == 0) {
1146		if (f.file->f_flags & O_NONBLOCK) {
1147			spin_unlock(&info->lock);
1148			ret = -EAGAIN;
1149		} else {
1150			wait.task = current;
1151			wait.state = STATE_NONE;
 
 
1152			ret = wq_sleep(info, RECV, timeout, &wait);
1153			msg_ptr = wait.msg;
1154		}
1155	} else {
1156		WAKE_Q(wake_q);
1157
1158		msg_ptr = msg_get(info);
1159
1160		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161				CURRENT_TIME;
1162
1163		/* There is now free space in queue. */
1164		pipelined_receive(&wake_q, info);
1165		spin_unlock(&info->lock);
1166		wake_up_q(&wake_q);
1167		ret = 0;
1168	}
1169	if (ret == 0) {
1170		ret = msg_ptr->m_ts;
1171
1172		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174			ret = -EFAULT;
1175		}
1176		free_msg(msg_ptr);
1177	}
1178out_fput:
1179	fdput(f);
1180out:
1181	return ret;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Notes: the case when user wants us to deregister (with NULL as pointer)
1186 * and he isn't currently owner of notification, will be silently discarded.
1187 * It isn't explicitly defined in the POSIX.
1188 */
1189SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1190		const struct sigevent __user *, u_notification)
1191{
1192	int ret;
1193	struct fd f;
1194	struct sock *sock;
1195	struct inode *inode;
1196	struct sigevent notification;
1197	struct mqueue_inode_info *info;
1198	struct sk_buff *nc;
1199
1200	if (u_notification) {
1201		if (copy_from_user(&notification, u_notification,
1202					sizeof(struct sigevent)))
1203			return -EFAULT;
1204	}
1205
1206	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1207
1208	nc = NULL;
1209	sock = NULL;
1210	if (u_notification != NULL) {
1211		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1212			     notification.sigev_notify != SIGEV_SIGNAL &&
1213			     notification.sigev_notify != SIGEV_THREAD))
1214			return -EINVAL;
1215		if (notification.sigev_notify == SIGEV_SIGNAL &&
1216			!valid_signal(notification.sigev_signo)) {
1217			return -EINVAL;
1218		}
1219		if (notification.sigev_notify == SIGEV_THREAD) {
1220			long timeo;
1221
1222			/* create the notify skb */
1223			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1224			if (!nc) {
1225				ret = -ENOMEM;
1226				goto out;
1227			}
1228			if (copy_from_user(nc->data,
1229					notification.sigev_value.sival_ptr,
1230					NOTIFY_COOKIE_LEN)) {
1231				ret = -EFAULT;
1232				goto out;
1233			}
1234
1235			/* TODO: add a header? */
1236			skb_put(nc, NOTIFY_COOKIE_LEN);
1237			/* and attach it to the socket */
1238retry:
1239			f = fdget(notification.sigev_signo);
1240			if (!f.file) {
1241				ret = -EBADF;
1242				goto out;
1243			}
1244			sock = netlink_getsockbyfilp(f.file);
1245			fdput(f);
1246			if (IS_ERR(sock)) {
1247				ret = PTR_ERR(sock);
1248				sock = NULL;
1249				goto out;
1250			}
1251
1252			timeo = MAX_SCHEDULE_TIMEOUT;
1253			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1254			if (ret == 1)
1255				goto retry;
1256			if (ret) {
1257				sock = NULL;
1258				nc = NULL;
1259				goto out;
1260			}
 
 
1261		}
1262	}
1263
1264	f = fdget(mqdes);
1265	if (!f.file) {
1266		ret = -EBADF;
1267		goto out;
1268	}
1269
1270	inode = file_inode(f.file);
1271	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272		ret = -EBADF;
1273		goto out_fput;
1274	}
1275	info = MQUEUE_I(inode);
1276
1277	ret = 0;
1278	spin_lock(&info->lock);
1279	if (u_notification == NULL) {
1280		if (info->notify_owner == task_tgid(current)) {
1281			remove_notification(info);
1282			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1283		}
1284	} else if (info->notify_owner != NULL) {
1285		ret = -EBUSY;
1286	} else {
1287		switch (notification.sigev_notify) {
1288		case SIGEV_NONE:
1289			info->notify.sigev_notify = SIGEV_NONE;
1290			break;
1291		case SIGEV_THREAD:
1292			info->notify_sock = sock;
1293			info->notify_cookie = nc;
1294			sock = NULL;
1295			nc = NULL;
1296			info->notify.sigev_notify = SIGEV_THREAD;
1297			break;
1298		case SIGEV_SIGNAL:
1299			info->notify.sigev_signo = notification.sigev_signo;
1300			info->notify.sigev_value = notification.sigev_value;
1301			info->notify.sigev_notify = SIGEV_SIGNAL;
 
1302			break;
1303		}
1304
1305		info->notify_owner = get_pid(task_tgid(current));
1306		info->notify_user_ns = get_user_ns(current_user_ns());
1307		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1308	}
1309	spin_unlock(&info->lock);
1310out_fput:
1311	fdput(f);
1312out:
1313	if (sock)
1314		netlink_detachskb(sock, nc);
1315	else if (nc)
 
1316		dev_kfree_skb(nc);
1317
1318	return ret;
1319}
1320
1321SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322		const struct mq_attr __user *, u_mqstat,
1323		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1324{
1325	int ret;
1326	struct mq_attr mqstat, omqstat;
1327	struct fd f;
1328	struct inode *inode;
1329	struct mqueue_inode_info *info;
1330
1331	if (u_mqstat != NULL) {
1332		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333			return -EFAULT;
1334		if (mqstat.mq_flags & (~O_NONBLOCK))
1335			return -EINVAL;
1336	}
1337
1338	f = fdget(mqdes);
1339	if (!f.file) {
1340		ret = -EBADF;
1341		goto out;
1342	}
1343
1344	inode = file_inode(f.file);
1345	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346		ret = -EBADF;
1347		goto out_fput;
1348	}
 
 
1349	info = MQUEUE_I(inode);
1350
1351	spin_lock(&info->lock);
1352
1353	omqstat = info->attr;
1354	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355	if (u_mqstat) {
1356		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1357		spin_lock(&f.file->f_lock);
1358		if (mqstat.mq_flags & O_NONBLOCK)
1359			f.file->f_flags |= O_NONBLOCK;
1360		else
1361			f.file->f_flags &= ~O_NONBLOCK;
1362		spin_unlock(&f.file->f_lock);
1363
1364		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1365	}
1366
1367	spin_unlock(&info->lock);
 
 
 
1368
1369	ret = 0;
1370	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371						sizeof(struct mq_attr)))
1372		ret = -EFAULT;
 
 
 
1373
1374out_fput:
1375	fdput(f);
1376out:
1377	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380static const struct inode_operations mqueue_dir_inode_operations = {
1381	.lookup = simple_lookup,
1382	.create = mqueue_create,
1383	.unlink = mqueue_unlink,
1384};
1385
1386static const struct file_operations mqueue_file_operations = {
1387	.flush = mqueue_flush_file,
1388	.poll = mqueue_poll_file,
1389	.read = mqueue_read_file,
1390	.llseek = default_llseek,
1391};
1392
1393static const struct super_operations mqueue_super_ops = {
1394	.alloc_inode = mqueue_alloc_inode,
1395	.destroy_inode = mqueue_destroy_inode,
1396	.evict_inode = mqueue_evict_inode,
1397	.statfs = simple_statfs,
1398};
1399
 
 
 
 
 
1400static struct file_system_type mqueue_fs_type = {
1401	.name = "mqueue",
1402	.mount = mqueue_mount,
1403	.kill_sb = kill_litter_super,
1404	.fs_flags = FS_USERNS_MOUNT,
1405};
1406
1407int mq_init_ns(struct ipc_namespace *ns)
1408{
 
 
1409	ns->mq_queues_count  = 0;
1410	ns->mq_queues_max    = DFLT_QUEUESMAX;
1411	ns->mq_msg_max       = DFLT_MSGMAX;
1412	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1413	ns->mq_msg_default   = DFLT_MSG;
1414	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1415
1416	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417	if (IS_ERR(ns->mq_mnt)) {
1418		int err = PTR_ERR(ns->mq_mnt);
1419		ns->mq_mnt = NULL;
1420		return err;
1421	}
1422	return 0;
1423}
1424
1425void mq_clear_sbinfo(struct ipc_namespace *ns)
1426{
1427	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1428}
1429
1430void mq_put_mnt(struct ipc_namespace *ns)
1431{
1432	kern_unmount(ns->mq_mnt);
1433}
1434
1435static int __init init_mqueue_fs(void)
1436{
1437	int error;
1438
1439	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440				sizeof(struct mqueue_inode_info), 0,
1441				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1442	if (mqueue_inode_cachep == NULL)
1443		return -ENOMEM;
1444
1445	/* ignore failures - they are not fatal */
1446	mq_sysctl_table = mq_register_sysctl_table();
 
 
 
1447
1448	error = register_filesystem(&mqueue_fs_type);
1449	if (error)
1450		goto out_sysctl;
1451
1452	spin_lock_init(&mq_lock);
1453
1454	error = mq_init_ns(&init_ipc_ns);
1455	if (error)
1456		goto out_filesystem;
1457
1458	return 0;
1459
1460out_filesystem:
1461	unregister_filesystem(&mqueue_fs_type);
1462out_sysctl:
1463	if (mq_sysctl_table)
1464		unregister_sysctl_table(mq_sysctl_table);
1465	kmem_cache_destroy(mqueue_inode_cachep);
1466	return error;
1467}
1468
1469device_initcall(init_mqueue_fs);
v6.2
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48	bool			 newns;	/* Set if newly created ipc namespace */
  49};
  50
  51#define MQUEUE_MAGIC	0x19800202
  52#define DIRENT_SIZE	20
  53#define FILENT_SIZE	80
  54
  55#define SEND		0
  56#define RECV		1
  57
  58#define STATE_NONE	0
  59#define STATE_READY	1
  60
  61struct posix_msg_tree_node {
  62	struct rb_node		rb_node;
  63	struct list_head	msg_list;
  64	int			priority;
  65};
  66
  67/*
  68 * Locking:
  69 *
  70 * Accesses to a message queue are synchronized by acquiring info->lock.
  71 *
  72 * There are two notable exceptions:
  73 * - The actual wakeup of a sleeping task is performed using the wake_q
  74 *   framework. info->lock is already released when wake_up_q is called.
  75 * - The exit codepaths after sleeping check ext_wait_queue->state without
  76 *   any locks. If it is STATE_READY, then the syscall is completed without
  77 *   acquiring info->lock.
  78 *
  79 * MQ_BARRIER:
  80 * To achieve proper release/acquire memory barrier pairing, the state is set to
  81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
  82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
  83 *
  84 * This prevents the following races:
  85 *
  86 * 1) With the simple wake_q_add(), the task could be gone already before
  87 *    the increase of the reference happens
  88 * Thread A
  89 *				Thread B
  90 * WRITE_ONCE(wait.state, STATE_NONE);
  91 * schedule_hrtimeout()
  92 *				wake_q_add(A)
  93 *				if (cmpxchg()) // success
  94 *				   ->state = STATE_READY (reordered)
  95 * <timeout returns>
  96 * if (wait.state == STATE_READY) return;
  97 * sysret to user space
  98 * sys_exit()
  99 *				get_task_struct() // UaF
 100 *
 101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
 102 * the smp_store_release() that does ->state = STATE_READY.
 103 *
 104 * 2) Without proper _release/_acquire barriers, the woken up task
 105 *    could read stale data
 106 *
 107 * Thread A
 108 *				Thread B
 109 * do_mq_timedreceive
 110 * WRITE_ONCE(wait.state, STATE_NONE);
 111 * schedule_hrtimeout()
 112 *				state = STATE_READY;
 113 * <timeout returns>
 114 * if (wait.state == STATE_READY) return;
 115 * msg_ptr = wait.msg;		// Access to stale data!
 116 *				receiver->msg = message; (reordered)
 117 *
 118 * Solution: use _release and _acquire barriers.
 119 *
 120 * 3) There is intentionally no barrier when setting current->state
 121 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
 122 *    release memory barrier, and the wakeup is triggered when holding
 123 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
 124 *    acquire memory barrier.
 125 */
 126
 127struct ext_wait_queue {		/* queue of sleeping tasks */
 128	struct task_struct *task;
 129	struct list_head list;
 130	struct msg_msg *msg;	/* ptr of loaded message */
 131	int state;		/* one of STATE_* values */
 132};
 133
 134struct mqueue_inode_info {
 135	spinlock_t lock;
 136	struct inode vfs_inode;
 137	wait_queue_head_t wait_q;
 138
 139	struct rb_root msg_tree;
 140	struct rb_node *msg_tree_rightmost;
 141	struct posix_msg_tree_node *node_cache;
 142	struct mq_attr attr;
 143
 144	struct sigevent notify;
 145	struct pid *notify_owner;
 146	u32 notify_self_exec_id;
 147	struct user_namespace *notify_user_ns;
 148	struct ucounts *ucounts;	/* user who created, for accounting */
 149	struct sock *notify_sock;
 150	struct sk_buff *notify_cookie;
 151
 152	/* for tasks waiting for free space and messages, respectively */
 153	struct ext_wait_queue e_wait_q[2];
 154
 155	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
 156};
 157
 158static struct file_system_type mqueue_fs_type;
 159static const struct inode_operations mqueue_dir_inode_operations;
 160static const struct file_operations mqueue_file_operations;
 161static const struct super_operations mqueue_super_ops;
 162static const struct fs_context_operations mqueue_fs_context_ops;
 163static void remove_notification(struct mqueue_inode_info *info);
 164
 165static struct kmem_cache *mqueue_inode_cachep;
 166
 
 
 167static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 168{
 169	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 170}
 171
 172/*
 173 * This routine should be called with the mq_lock held.
 174 */
 175static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 176{
 177	return get_ipc_ns(inode->i_sb->s_fs_info);
 178}
 179
 180static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 181{
 182	struct ipc_namespace *ns;
 183
 184	spin_lock(&mq_lock);
 185	ns = __get_ns_from_inode(inode);
 186	spin_unlock(&mq_lock);
 187	return ns;
 188}
 189
 190/* Auxiliary functions to manipulate messages' list */
 191static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 192{
 193	struct rb_node **p, *parent = NULL;
 194	struct posix_msg_tree_node *leaf;
 195	bool rightmost = true;
 196
 197	p = &info->msg_tree.rb_node;
 198	while (*p) {
 199		parent = *p;
 200		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 201
 202		if (likely(leaf->priority == msg->m_type))
 203			goto insert_msg;
 204		else if (msg->m_type < leaf->priority) {
 205			p = &(*p)->rb_left;
 206			rightmost = false;
 207		} else
 208			p = &(*p)->rb_right;
 209	}
 210	if (info->node_cache) {
 211		leaf = info->node_cache;
 212		info->node_cache = NULL;
 213	} else {
 214		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 215		if (!leaf)
 216			return -ENOMEM;
 217		INIT_LIST_HEAD(&leaf->msg_list);
 218	}
 219	leaf->priority = msg->m_type;
 220
 221	if (rightmost)
 222		info->msg_tree_rightmost = &leaf->rb_node;
 223
 224	rb_link_node(&leaf->rb_node, parent, p);
 225	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 226insert_msg:
 227	info->attr.mq_curmsgs++;
 228	info->qsize += msg->m_ts;
 229	list_add_tail(&msg->m_list, &leaf->msg_list);
 230	return 0;
 231}
 232
 233static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 234				  struct mqueue_inode_info *info)
 235{
 236	struct rb_node *node = &leaf->rb_node;
 237
 238	if (info->msg_tree_rightmost == node)
 239		info->msg_tree_rightmost = rb_prev(node);
 240
 241	rb_erase(node, &info->msg_tree);
 242	if (info->node_cache)
 243		kfree(leaf);
 244	else
 245		info->node_cache = leaf;
 246}
 247
 248static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 249{
 250	struct rb_node *parent = NULL;
 251	struct posix_msg_tree_node *leaf;
 252	struct msg_msg *msg;
 253
 254try_again:
 255	/*
 256	 * During insert, low priorities go to the left and high to the
 257	 * right.  On receive, we want the highest priorities first, so
 258	 * walk all the way to the right.
 259	 */
 260	parent = info->msg_tree_rightmost;
 
 
 
 
 261	if (!parent) {
 262		if (info->attr.mq_curmsgs) {
 263			pr_warn_once("Inconsistency in POSIX message queue, "
 264				     "no tree element, but supposedly messages "
 265				     "should exist!\n");
 266			info->attr.mq_curmsgs = 0;
 267		}
 268		return NULL;
 269	}
 270	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 271	if (unlikely(list_empty(&leaf->msg_list))) {
 272		pr_warn_once("Inconsistency in POSIX message queue, "
 273			     "empty leaf node but we haven't implemented "
 274			     "lazy leaf delete!\n");
 275		msg_tree_erase(leaf, info);
 
 
 
 
 
 276		goto try_again;
 277	} else {
 278		msg = list_first_entry(&leaf->msg_list,
 279				       struct msg_msg, m_list);
 280		list_del(&msg->m_list);
 281		if (list_empty(&leaf->msg_list)) {
 282			msg_tree_erase(leaf, info);
 
 
 
 
 
 283		}
 284	}
 285	info->attr.mq_curmsgs--;
 286	info->qsize -= msg->m_ts;
 287	return msg;
 288}
 289
 290static struct inode *mqueue_get_inode(struct super_block *sb,
 291		struct ipc_namespace *ipc_ns, umode_t mode,
 292		struct mq_attr *attr)
 293{
 
 294	struct inode *inode;
 295	int ret = -ENOMEM;
 296
 297	inode = new_inode(sb);
 298	if (!inode)
 299		goto err;
 300
 301	inode->i_ino = get_next_ino();
 302	inode->i_mode = mode;
 303	inode->i_uid = current_fsuid();
 304	inode->i_gid = current_fsgid();
 305	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 306
 307	if (S_ISREG(mode)) {
 308		struct mqueue_inode_info *info;
 309		unsigned long mq_bytes, mq_treesize;
 310
 311		inode->i_fop = &mqueue_file_operations;
 312		inode->i_size = FILENT_SIZE;
 313		/* mqueue specific info */
 314		info = MQUEUE_I(inode);
 315		spin_lock_init(&info->lock);
 316		init_waitqueue_head(&info->wait_q);
 317		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 318		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 319		info->notify_owner = NULL;
 320		info->notify_user_ns = NULL;
 321		info->qsize = 0;
 322		info->ucounts = NULL;	/* set when all is ok */
 323		info->msg_tree = RB_ROOT;
 324		info->msg_tree_rightmost = NULL;
 325		info->node_cache = NULL;
 326		memset(&info->attr, 0, sizeof(info->attr));
 327		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 328					   ipc_ns->mq_msg_default);
 329		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 330					    ipc_ns->mq_msgsize_default);
 331		if (attr) {
 332			info->attr.mq_maxmsg = attr->mq_maxmsg;
 333			info->attr.mq_msgsize = attr->mq_msgsize;
 334		}
 335		/*
 336		 * We used to allocate a static array of pointers and account
 337		 * the size of that array as well as one msg_msg struct per
 338		 * possible message into the queue size. That's no longer
 339		 * accurate as the queue is now an rbtree and will grow and
 340		 * shrink depending on usage patterns.  We can, however, still
 341		 * account one msg_msg struct per message, but the nodes are
 342		 * allocated depending on priority usage, and most programs
 343		 * only use one, or a handful, of priorities.  However, since
 344		 * this is pinned memory, we need to assume worst case, so
 345		 * that means the min(mq_maxmsg, max_priorities) * struct
 346		 * posix_msg_tree_node.
 347		 */
 348
 349		ret = -EINVAL;
 350		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 351			goto out_inode;
 352		if (capable(CAP_SYS_RESOURCE)) {
 353			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 354			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 355				goto out_inode;
 356		} else {
 357			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 358					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 359				goto out_inode;
 360		}
 361		ret = -EOVERFLOW;
 362		/* check for overflow */
 363		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 364			goto out_inode;
 365		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 366			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 367			sizeof(struct posix_msg_tree_node);
 368		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 369		if (mq_bytes + mq_treesize < mq_bytes)
 
 
 
 
 
 
 
 
 370			goto out_inode;
 371		mq_bytes += mq_treesize;
 372		info->ucounts = get_ucounts(current_ucounts());
 373		if (info->ucounts) {
 374			long msgqueue;
 375
 376			spin_lock(&mq_lock);
 377			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 378			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
 379				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 380				spin_unlock(&mq_lock);
 381				put_ucounts(info->ucounts);
 382				info->ucounts = NULL;
 383				/* mqueue_evict_inode() releases info->messages */
 384				ret = -EMFILE;
 385				goto out_inode;
 386			}
 387			spin_unlock(&mq_lock);
 388		}
 
 
 
 
 
 389	} else if (S_ISDIR(mode)) {
 390		inc_nlink(inode);
 391		/* Some things misbehave if size == 0 on a directory */
 392		inode->i_size = 2 * DIRENT_SIZE;
 393		inode->i_op = &mqueue_dir_inode_operations;
 394		inode->i_fop = &simple_dir_operations;
 395	}
 396
 397	return inode;
 398out_inode:
 399	iput(inode);
 400err:
 401	return ERR_PTR(ret);
 402}
 403
 404static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 405{
 406	struct inode *inode;
 407	struct ipc_namespace *ns = sb->s_fs_info;
 408
 409	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 410	sb->s_blocksize = PAGE_SIZE;
 411	sb->s_blocksize_bits = PAGE_SHIFT;
 412	sb->s_magic = MQUEUE_MAGIC;
 413	sb->s_op = &mqueue_super_ops;
 414
 415	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 416	if (IS_ERR(inode))
 417		return PTR_ERR(inode);
 418
 419	sb->s_root = d_make_root(inode);
 420	if (!sb->s_root)
 421		return -ENOMEM;
 422	return 0;
 423}
 424
 425static int mqueue_get_tree(struct fs_context *fc)
 426{
 427	struct mqueue_fs_context *ctx = fc->fs_private;
 
 
 
 
 
 
 
 
 428
 429	/*
 430	 * With a newly created ipc namespace, we don't need to do a search
 431	 * for an ipc namespace match, but we still need to set s_fs_info.
 432	 */
 433	if (ctx->newns) {
 434		fc->s_fs_info = ctx->ipc_ns;
 435		return get_tree_nodev(fc, mqueue_fill_super);
 436	}
 437	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 438}
 439
 440static void mqueue_fs_context_free(struct fs_context *fc)
 441{
 442	struct mqueue_fs_context *ctx = fc->fs_private;
 443
 444	put_ipc_ns(ctx->ipc_ns);
 445	kfree(ctx);
 446}
 447
 448static int mqueue_init_fs_context(struct fs_context *fc)
 449{
 450	struct mqueue_fs_context *ctx;
 451
 452	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 453	if (!ctx)
 454		return -ENOMEM;
 455
 456	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 457	put_user_ns(fc->user_ns);
 458	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 459	fc->fs_private = ctx;
 460	fc->ops = &mqueue_fs_context_ops;
 461	return 0;
 462}
 463
 464/*
 465 * mq_init_ns() is currently the only caller of mq_create_mount().
 466 * So the ns parameter is always a newly created ipc namespace.
 467 */
 468static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 469{
 470	struct mqueue_fs_context *ctx;
 471	struct fs_context *fc;
 472	struct vfsmount *mnt;
 473
 474	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 475	if (IS_ERR(fc))
 476		return ERR_CAST(fc);
 477
 478	ctx = fc->fs_private;
 479	ctx->newns = true;
 480	put_ipc_ns(ctx->ipc_ns);
 481	ctx->ipc_ns = get_ipc_ns(ns);
 482	put_user_ns(fc->user_ns);
 483	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 484
 485	mnt = fc_mount(fc);
 486	put_fs_context(fc);
 487	return mnt;
 488}
 489
 490static void init_once(void *foo)
 491{
 492	struct mqueue_inode_info *p = foo;
 493
 494	inode_init_once(&p->vfs_inode);
 495}
 496
 497static struct inode *mqueue_alloc_inode(struct super_block *sb)
 498{
 499	struct mqueue_inode_info *ei;
 500
 501	ei = alloc_inode_sb(sb, mqueue_inode_cachep, GFP_KERNEL);
 502	if (!ei)
 503		return NULL;
 504	return &ei->vfs_inode;
 505}
 506
 507static void mqueue_free_inode(struct inode *inode)
 508{
 
 509	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 510}
 511
 
 
 
 
 
 512static void mqueue_evict_inode(struct inode *inode)
 513{
 514	struct mqueue_inode_info *info;
 
 
 515	struct ipc_namespace *ipc_ns;
 516	struct msg_msg *msg, *nmsg;
 517	LIST_HEAD(tmp_msg);
 518
 519	clear_inode(inode);
 520
 521	if (S_ISDIR(inode->i_mode))
 522		return;
 523
 524	ipc_ns = get_ns_from_inode(inode);
 525	info = MQUEUE_I(inode);
 526	spin_lock(&info->lock);
 527	while ((msg = msg_get(info)) != NULL)
 528		list_add_tail(&msg->m_list, &tmp_msg);
 529	kfree(info->node_cache);
 530	spin_unlock(&info->lock);
 531
 532	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 533		list_del(&msg->m_list);
 534		free_msg(msg);
 535	}
 536
 537	if (info->ucounts) {
 538		unsigned long mq_bytes, mq_treesize;
 539
 540		/* Total amount of bytes accounted for the mqueue */
 541		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 542			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 543			sizeof(struct posix_msg_tree_node);
 544
 545		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 546					  info->attr.mq_msgsize);
 547
 
 
 548		spin_lock(&mq_lock);
 549		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 550		/*
 551		 * get_ns_from_inode() ensures that the
 552		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 553		 * to which we now hold a reference, or it is NULL.
 554		 * We can't put it here under mq_lock, though.
 555		 */
 556		if (ipc_ns)
 557			ipc_ns->mq_queues_count--;
 558		spin_unlock(&mq_lock);
 559		put_ucounts(info->ucounts);
 560		info->ucounts = NULL;
 561	}
 562	if (ipc_ns)
 563		put_ipc_ns(ipc_ns);
 564}
 565
 566static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 567{
 568	struct inode *dir = dentry->d_parent->d_inode;
 569	struct inode *inode;
 570	struct mq_attr *attr = arg;
 571	int error;
 572	struct ipc_namespace *ipc_ns;
 573
 574	spin_lock(&mq_lock);
 575	ipc_ns = __get_ns_from_inode(dir);
 576	if (!ipc_ns) {
 577		error = -EACCES;
 578		goto out_unlock;
 579	}
 580
 581	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 582	    !capable(CAP_SYS_RESOURCE)) {
 583		error = -ENOSPC;
 584		goto out_unlock;
 585	}
 586	ipc_ns->mq_queues_count++;
 587	spin_unlock(&mq_lock);
 588
 589	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 590	if (IS_ERR(inode)) {
 591		error = PTR_ERR(inode);
 592		spin_lock(&mq_lock);
 593		ipc_ns->mq_queues_count--;
 594		goto out_unlock;
 595	}
 596
 597	put_ipc_ns(ipc_ns);
 598	dir->i_size += DIRENT_SIZE;
 599	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 600
 601	d_instantiate(dentry, inode);
 602	dget(dentry);
 603	return 0;
 604out_unlock:
 605	spin_unlock(&mq_lock);
 606	if (ipc_ns)
 607		put_ipc_ns(ipc_ns);
 608	return error;
 609}
 610
 611static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
 612			 struct dentry *dentry, umode_t mode, bool excl)
 613{
 614	return mqueue_create_attr(dentry, mode, NULL);
 615}
 616
 617static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 618{
 619	struct inode *inode = d_inode(dentry);
 620
 621	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 622	dir->i_size -= DIRENT_SIZE;
 623	drop_nlink(inode);
 624	dput(dentry);
 625	return 0;
 626}
 627
 628/*
 629*	This is routine for system read from queue file.
 630*	To avoid mess with doing here some sort of mq_receive we allow
 631*	to read only queue size & notification info (the only values
 632*	that are interesting from user point of view and aren't accessible
 633*	through std routines)
 634*/
 635static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 636				size_t count, loff_t *off)
 637{
 638	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 639	char buffer[FILENT_SIZE];
 640	ssize_t ret;
 641
 642	spin_lock(&info->lock);
 643	snprintf(buffer, sizeof(buffer),
 644			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 645			info->qsize,
 646			info->notify_owner ? info->notify.sigev_notify : 0,
 647			(info->notify_owner &&
 648			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 649				info->notify.sigev_signo : 0,
 650			pid_vnr(info->notify_owner));
 651	spin_unlock(&info->lock);
 652	buffer[sizeof(buffer)-1] = '\0';
 653
 654	ret = simple_read_from_buffer(u_data, count, off, buffer,
 655				strlen(buffer));
 656	if (ret <= 0)
 657		return ret;
 658
 659	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 660	return ret;
 661}
 662
 663static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 664{
 665	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 666
 667	spin_lock(&info->lock);
 668	if (task_tgid(current) == info->notify_owner)
 669		remove_notification(info);
 670
 671	spin_unlock(&info->lock);
 672	return 0;
 673}
 674
 675static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 676{
 677	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 678	__poll_t retval = 0;
 679
 680	poll_wait(filp, &info->wait_q, poll_tab);
 681
 682	spin_lock(&info->lock);
 683	if (info->attr.mq_curmsgs)
 684		retval = EPOLLIN | EPOLLRDNORM;
 685
 686	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 687		retval |= EPOLLOUT | EPOLLWRNORM;
 688	spin_unlock(&info->lock);
 689
 690	return retval;
 691}
 692
 693/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 694static void wq_add(struct mqueue_inode_info *info, int sr,
 695			struct ext_wait_queue *ewp)
 696{
 697	struct ext_wait_queue *walk;
 698
 
 
 699	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 700		if (walk->task->prio <= current->prio) {
 701			list_add_tail(&ewp->list, &walk->list);
 702			return;
 703		}
 704	}
 705	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 706}
 707
 708/*
 709 * Puts current task to sleep. Caller must hold queue lock. After return
 710 * lock isn't held.
 711 * sr: SEND or RECV
 712 */
 713static int wq_sleep(struct mqueue_inode_info *info, int sr,
 714		    ktime_t *timeout, struct ext_wait_queue *ewp)
 715	__releases(&info->lock)
 716{
 717	int retval;
 718	signed long time;
 719
 720	wq_add(info, sr, ewp);
 721
 722	for (;;) {
 723		/* memory barrier not required, we hold info->lock */
 724		__set_current_state(TASK_INTERRUPTIBLE);
 725
 726		spin_unlock(&info->lock);
 727		time = schedule_hrtimeout_range_clock(timeout, 0,
 728			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 729
 730		if (READ_ONCE(ewp->state) == STATE_READY) {
 731			/* see MQ_BARRIER for purpose/pairing */
 732			smp_acquire__after_ctrl_dep();
 733			retval = 0;
 734			goto out;
 735		}
 736		spin_lock(&info->lock);
 737
 738		/* we hold info->lock, so no memory barrier required */
 739		if (READ_ONCE(ewp->state) == STATE_READY) {
 740			retval = 0;
 741			goto out_unlock;
 742		}
 743		if (signal_pending(current)) {
 744			retval = -ERESTARTSYS;
 745			break;
 746		}
 747		if (time == 0) {
 748			retval = -ETIMEDOUT;
 749			break;
 750		}
 751	}
 752	list_del(&ewp->list);
 753out_unlock:
 754	spin_unlock(&info->lock);
 755out:
 756	return retval;
 757}
 758
 759/*
 760 * Returns waiting task that should be serviced first or NULL if none exists
 761 */
 762static struct ext_wait_queue *wq_get_first_waiter(
 763		struct mqueue_inode_info *info, int sr)
 764{
 765	struct list_head *ptr;
 766
 767	ptr = info->e_wait_q[sr].list.prev;
 768	if (ptr == &info->e_wait_q[sr].list)
 769		return NULL;
 770	return list_entry(ptr, struct ext_wait_queue, list);
 771}
 772
 773
 774static inline void set_cookie(struct sk_buff *skb, char code)
 775{
 776	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 777}
 778
 779/*
 780 * The next function is only to split too long sys_mq_timedsend
 781 */
 782static void __do_notify(struct mqueue_inode_info *info)
 783{
 784	/* notification
 785	 * invoked when there is registered process and there isn't process
 786	 * waiting synchronously for message AND state of queue changed from
 787	 * empty to not empty. Here we are sure that no one is waiting
 788	 * synchronously. */
 789	if (info->notify_owner &&
 790	    info->attr.mq_curmsgs == 1) {
 
 791		switch (info->notify.sigev_notify) {
 792		case SIGEV_NONE:
 793			break;
 794		case SIGEV_SIGNAL: {
 795			struct kernel_siginfo sig_i;
 796			struct task_struct *task;
 797
 798			/* do_mq_notify() accepts sigev_signo == 0, why?? */
 799			if (!info->notify.sigev_signo)
 800				break;
 801
 802			clear_siginfo(&sig_i);
 803			sig_i.si_signo = info->notify.sigev_signo;
 804			sig_i.si_errno = 0;
 805			sig_i.si_code = SI_MESGQ;
 806			sig_i.si_value = info->notify.sigev_value;
 
 807			rcu_read_lock();
 808			/* map current pid/uid into info->owner's namespaces */
 809			sig_i.si_pid = task_tgid_nr_ns(current,
 810						ns_of_pid(info->notify_owner));
 811			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
 812						current_uid());
 813			/*
 814			 * We can't use kill_pid_info(), this signal should
 815			 * bypass check_kill_permission(). It is from kernel
 816			 * but si_fromuser() can't know this.
 817			 * We do check the self_exec_id, to avoid sending
 818			 * signals to programs that don't expect them.
 819			 */
 820			task = pid_task(info->notify_owner, PIDTYPE_TGID);
 821			if (task && task->self_exec_id ==
 822						info->notify_self_exec_id) {
 823				do_send_sig_info(info->notify.sigev_signo,
 824						&sig_i, task, PIDTYPE_TGID);
 825			}
 826			rcu_read_unlock();
 
 
 
 827			break;
 828		}
 829		case SIGEV_THREAD:
 830			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 831			netlink_sendskb(info->notify_sock, info->notify_cookie);
 832			break;
 833		}
 834		/* after notification unregisters process */
 835		put_pid(info->notify_owner);
 836		put_user_ns(info->notify_user_ns);
 837		info->notify_owner = NULL;
 838		info->notify_user_ns = NULL;
 839	}
 840	wake_up(&info->wait_q);
 841}
 842
 843static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 844			   struct timespec64 *ts)
 845{
 846	if (get_timespec64(ts, u_abs_timeout))
 847		return -EFAULT;
 848	if (!timespec64_valid(ts))
 849		return -EINVAL;
 
 
 850	return 0;
 851}
 852
 853static void remove_notification(struct mqueue_inode_info *info)
 854{
 855	if (info->notify_owner != NULL &&
 856	    info->notify.sigev_notify == SIGEV_THREAD) {
 857		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 858		netlink_sendskb(info->notify_sock, info->notify_cookie);
 859	}
 860	put_pid(info->notify_owner);
 861	put_user_ns(info->notify_user_ns);
 862	info->notify_owner = NULL;
 863	info->notify_user_ns = NULL;
 864}
 865
 866static int prepare_open(struct dentry *dentry, int oflag, int ro,
 867			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868			struct mq_attr *attr)
 869{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 871						  MAY_READ | MAY_WRITE };
 872	int acc;
 873
 874	if (d_really_is_negative(dentry)) {
 875		if (!(oflag & O_CREAT))
 876			return -ENOENT;
 877		if (ro)
 878			return ro;
 879		audit_inode_parent_hidden(name, dentry->d_parent);
 880		return vfs_mkobj(dentry, mode & ~current_umask(),
 881				  mqueue_create_attr, attr);
 882	}
 883	/* it already existed */
 884	audit_inode(name, dentry, 0);
 885	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 886		return -EEXIST;
 887	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 888		return -EINVAL;
 889	acc = oflag2acc[oflag & O_ACCMODE];
 890	return inode_permission(&init_user_ns, d_inode(dentry), acc);
 
 
 891}
 892
 893static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 894		      struct mq_attr *attr)
 895{
 896	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 897	struct dentry *root = mnt->mnt_root;
 898	struct filename *name;
 899	struct path path;
 900	int fd, error;
 
 
 
 901	int ro;
 902
 903	audit_mq_open(oflag, mode, attr);
 
 
 
 904
 905	if (IS_ERR(name = getname(u_name)))
 906		return PTR_ERR(name);
 907
 908	fd = get_unused_fd_flags(O_CLOEXEC);
 909	if (fd < 0)
 910		goto out_putname;
 911
 912	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 913	inode_lock(d_inode(root));
 914	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 915	if (IS_ERR(path.dentry)) {
 916		error = PTR_ERR(path.dentry);
 917		goto out_putfd;
 918	}
 919	path.mnt = mntget(mnt);
 920	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 921	if (!error) {
 922		struct file *file = dentry_open(&path, oflag, current_cred());
 923		if (!IS_ERR(file))
 924			fd_install(fd, file);
 925		else
 926			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927	}
 
 
 
 
 
 
 928	path_put(&path);
 929out_putfd:
 930	if (error) {
 931		put_unused_fd(fd);
 932		fd = error;
 933	}
 934	inode_unlock(d_inode(root));
 935	if (!ro)
 936		mnt_drop_write(mnt);
 937out_putname:
 938	putname(name);
 939	return fd;
 940}
 941
 942SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 943		struct mq_attr __user *, u_attr)
 944{
 945	struct mq_attr attr;
 946	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 947		return -EFAULT;
 948
 949	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 950}
 951
 952SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 953{
 954	int err;
 955	struct filename *name;
 956	struct dentry *dentry;
 957	struct inode *inode = NULL;
 958	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 959	struct vfsmount *mnt = ipc_ns->mq_mnt;
 960
 961	name = getname(u_name);
 962	if (IS_ERR(name))
 963		return PTR_ERR(name);
 964
 965	audit_inode_parent_hidden(name, mnt->mnt_root);
 966	err = mnt_want_write(mnt);
 967	if (err)
 968		goto out_name;
 969	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 970	dentry = lookup_one_len(name->name, mnt->mnt_root,
 971				strlen(name->name));
 972	if (IS_ERR(dentry)) {
 973		err = PTR_ERR(dentry);
 974		goto out_unlock;
 975	}
 976
 977	inode = d_inode(dentry);
 978	if (!inode) {
 979		err = -ENOENT;
 980	} else {
 981		ihold(inode);
 982		err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
 983				 dentry, NULL);
 984	}
 985	dput(dentry);
 986
 987out_unlock:
 988	inode_unlock(d_inode(mnt->mnt_root));
 989	iput(inode);
 
 990	mnt_drop_write(mnt);
 991out_name:
 992	putname(name);
 993
 994	return err;
 995}
 996
 997/* Pipelined send and receive functions.
 998 *
 999 * If a receiver finds no waiting message, then it registers itself in the
1000 * list of waiting receivers. A sender checks that list before adding the new
1001 * message into the message array. If there is a waiting receiver, then it
1002 * bypasses the message array and directly hands the message over to the
1003 * receiver. The receiver accepts the message and returns without grabbing the
1004 * queue spinlock:
1005 *
1006 * - Set pointer to message.
1007 * - Queue the receiver task for later wakeup (without the info->lock).
1008 * - Update its state to STATE_READY. Now the receiver can continue.
1009 * - Wake up the process after the lock is dropped. Should the process wake up
1010 *   before this wakeup (due to a timeout or a signal) it will either see
1011 *   STATE_READY and continue or acquire the lock to check the state again.
1012 *
1013 * The same algorithm is used for senders.
1014 */
1015
1016static inline void __pipelined_op(struct wake_q_head *wake_q,
1017				  struct mqueue_inode_info *info,
1018				  struct ext_wait_queue *this)
1019{
1020	struct task_struct *task;
1021
1022	list_del(&this->list);
1023	task = get_task_struct(this->task);
1024
1025	/* see MQ_BARRIER for purpose/pairing */
1026	smp_store_release(&this->state, STATE_READY);
1027	wake_q_add_safe(wake_q, task);
1028}
1029
1030/* pipelined_send() - send a message directly to the task waiting in
1031 * sys_mq_timedreceive() (without inserting message into a queue).
1032 */
1033static inline void pipelined_send(struct wake_q_head *wake_q,
1034				  struct mqueue_inode_info *info,
1035				  struct msg_msg *message,
1036				  struct ext_wait_queue *receiver)
1037{
1038	receiver->msg = message;
1039	__pipelined_op(wake_q, info, receiver);
 
 
 
 
 
 
 
 
 
 
1040}
1041
1042/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1043 * gets its message and put to the queue (we have one free place for sure). */
1044static inline void pipelined_receive(struct wake_q_head *wake_q,
1045				     struct mqueue_inode_info *info)
1046{
1047	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1048
1049	if (!sender) {
1050		/* for poll */
1051		wake_up_interruptible(&info->wait_q);
1052		return;
1053	}
1054	if (msg_insert(sender->msg, info))
1055		return;
1056
1057	__pipelined_op(wake_q, info, sender);
 
 
1058}
1059
1060static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1061		size_t msg_len, unsigned int msg_prio,
1062		struct timespec64 *ts)
1063{
1064	struct fd f;
1065	struct inode *inode;
1066	struct ext_wait_queue wait;
1067	struct ext_wait_queue *receiver;
1068	struct msg_msg *msg_ptr;
1069	struct mqueue_inode_info *info;
1070	ktime_t expires, *timeout = NULL;
 
1071	struct posix_msg_tree_node *new_leaf = NULL;
1072	int ret = 0;
1073	DEFINE_WAKE_Q(wake_q);
 
 
 
 
 
 
 
1074
1075	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1076		return -EINVAL;
1077
1078	if (ts) {
1079		expires = timespec64_to_ktime(*ts);
1080		timeout = &expires;
1081	}
1082
1083	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1084
1085	f = fdget(mqdes);
1086	if (unlikely(!f.file)) {
1087		ret = -EBADF;
1088		goto out;
1089	}
1090
1091	inode = file_inode(f.file);
1092	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1093		ret = -EBADF;
1094		goto out_fput;
1095	}
1096	info = MQUEUE_I(inode);
1097	audit_file(f.file);
1098
1099	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1100		ret = -EBADF;
1101		goto out_fput;
1102	}
1103
1104	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1105		ret = -EMSGSIZE;
1106		goto out_fput;
1107	}
1108
1109	/* First try to allocate memory, before doing anything with
1110	 * existing queues. */
1111	msg_ptr = load_msg(u_msg_ptr, msg_len);
1112	if (IS_ERR(msg_ptr)) {
1113		ret = PTR_ERR(msg_ptr);
1114		goto out_fput;
1115	}
1116	msg_ptr->m_ts = msg_len;
1117	msg_ptr->m_type = msg_prio;
1118
1119	/*
1120	 * msg_insert really wants us to have a valid, spare node struct so
1121	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1122	 * fall back to that if necessary.
1123	 */
1124	if (!info->node_cache)
1125		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1126
1127	spin_lock(&info->lock);
1128
1129	if (!info->node_cache && new_leaf) {
1130		/* Save our speculative allocation into the cache */
1131		INIT_LIST_HEAD(&new_leaf->msg_list);
1132		info->node_cache = new_leaf;
1133		new_leaf = NULL;
1134	} else {
1135		kfree(new_leaf);
1136	}
1137
1138	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1139		if (f.file->f_flags & O_NONBLOCK) {
1140			ret = -EAGAIN;
1141		} else {
1142			wait.task = current;
1143			wait.msg = (void *) msg_ptr;
1144
1145			/* memory barrier not required, we hold info->lock */
1146			WRITE_ONCE(wait.state, STATE_NONE);
1147			ret = wq_sleep(info, SEND, timeout, &wait);
1148			/*
1149			 * wq_sleep must be called with info->lock held, and
1150			 * returns with the lock released
1151			 */
1152			goto out_free;
1153		}
1154	} else {
1155		receiver = wq_get_first_waiter(info, RECV);
1156		if (receiver) {
1157			pipelined_send(&wake_q, info, msg_ptr, receiver);
1158		} else {
1159			/* adds message to the queue */
1160			ret = msg_insert(msg_ptr, info);
1161			if (ret)
1162				goto out_unlock;
1163			__do_notify(info);
1164		}
1165		inode->i_atime = inode->i_mtime = inode->i_ctime =
1166				current_time(inode);
1167	}
1168out_unlock:
1169	spin_unlock(&info->lock);
1170	wake_up_q(&wake_q);
1171out_free:
1172	if (ret)
1173		free_msg(msg_ptr);
1174out_fput:
1175	fdput(f);
1176out:
1177	return ret;
1178}
1179
1180static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1181		size_t msg_len, unsigned int __user *u_msg_prio,
1182		struct timespec64 *ts)
1183{
1184	ssize_t ret;
1185	struct msg_msg *msg_ptr;
1186	struct fd f;
1187	struct inode *inode;
1188	struct mqueue_inode_info *info;
1189	struct ext_wait_queue wait;
1190	ktime_t expires, *timeout = NULL;
 
1191	struct posix_msg_tree_node *new_leaf = NULL;
1192
1193	if (ts) {
1194		expires = timespec64_to_ktime(*ts);
 
 
1195		timeout = &expires;
1196	}
1197
1198	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1199
1200	f = fdget(mqdes);
1201	if (unlikely(!f.file)) {
1202		ret = -EBADF;
1203		goto out;
1204	}
1205
1206	inode = file_inode(f.file);
1207	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1208		ret = -EBADF;
1209		goto out_fput;
1210	}
1211	info = MQUEUE_I(inode);
1212	audit_file(f.file);
1213
1214	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1215		ret = -EBADF;
1216		goto out_fput;
1217	}
1218
1219	/* checks if buffer is big enough */
1220	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1221		ret = -EMSGSIZE;
1222		goto out_fput;
1223	}
1224
1225	/*
1226	 * msg_insert really wants us to have a valid, spare node struct so
1227	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1228	 * fall back to that if necessary.
1229	 */
1230	if (!info->node_cache)
1231		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1232
1233	spin_lock(&info->lock);
1234
1235	if (!info->node_cache && new_leaf) {
1236		/* Save our speculative allocation into the cache */
1237		INIT_LIST_HEAD(&new_leaf->msg_list);
1238		info->node_cache = new_leaf;
1239	} else {
1240		kfree(new_leaf);
1241	}
1242
1243	if (info->attr.mq_curmsgs == 0) {
1244		if (f.file->f_flags & O_NONBLOCK) {
1245			spin_unlock(&info->lock);
1246			ret = -EAGAIN;
1247		} else {
1248			wait.task = current;
1249
1250			/* memory barrier not required, we hold info->lock */
1251			WRITE_ONCE(wait.state, STATE_NONE);
1252			ret = wq_sleep(info, RECV, timeout, &wait);
1253			msg_ptr = wait.msg;
1254		}
1255	} else {
1256		DEFINE_WAKE_Q(wake_q);
1257
1258		msg_ptr = msg_get(info);
1259
1260		inode->i_atime = inode->i_mtime = inode->i_ctime =
1261				current_time(inode);
1262
1263		/* There is now free space in queue. */
1264		pipelined_receive(&wake_q, info);
1265		spin_unlock(&info->lock);
1266		wake_up_q(&wake_q);
1267		ret = 0;
1268	}
1269	if (ret == 0) {
1270		ret = msg_ptr->m_ts;
1271
1272		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1273			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1274			ret = -EFAULT;
1275		}
1276		free_msg(msg_ptr);
1277	}
1278out_fput:
1279	fdput(f);
1280out:
1281	return ret;
1282}
1283
1284SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1285		size_t, msg_len, unsigned int, msg_prio,
1286		const struct __kernel_timespec __user *, u_abs_timeout)
1287{
1288	struct timespec64 ts, *p = NULL;
1289	if (u_abs_timeout) {
1290		int res = prepare_timeout(u_abs_timeout, &ts);
1291		if (res)
1292			return res;
1293		p = &ts;
1294	}
1295	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1296}
1297
1298SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1299		size_t, msg_len, unsigned int __user *, u_msg_prio,
1300		const struct __kernel_timespec __user *, u_abs_timeout)
1301{
1302	struct timespec64 ts, *p = NULL;
1303	if (u_abs_timeout) {
1304		int res = prepare_timeout(u_abs_timeout, &ts);
1305		if (res)
1306			return res;
1307		p = &ts;
1308	}
1309	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1310}
1311
1312/*
1313 * Notes: the case when user wants us to deregister (with NULL as pointer)
1314 * and he isn't currently owner of notification, will be silently discarded.
1315 * It isn't explicitly defined in the POSIX.
1316 */
1317static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1318{
1319	int ret;
1320	struct fd f;
1321	struct sock *sock;
1322	struct inode *inode;
 
1323	struct mqueue_inode_info *info;
1324	struct sk_buff *nc;
1325
1326	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1327
1328	nc = NULL;
1329	sock = NULL;
1330	if (notification != NULL) {
1331		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1332			     notification->sigev_notify != SIGEV_SIGNAL &&
1333			     notification->sigev_notify != SIGEV_THREAD))
1334			return -EINVAL;
1335		if (notification->sigev_notify == SIGEV_SIGNAL &&
1336			!valid_signal(notification->sigev_signo)) {
1337			return -EINVAL;
1338		}
1339		if (notification->sigev_notify == SIGEV_THREAD) {
1340			long timeo;
1341
1342			/* create the notify skb */
1343			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1344			if (!nc)
1345				return -ENOMEM;
1346
 
1347			if (copy_from_user(nc->data,
1348					notification->sigev_value.sival_ptr,
1349					NOTIFY_COOKIE_LEN)) {
1350				ret = -EFAULT;
1351				goto free_skb;
1352			}
1353
1354			/* TODO: add a header? */
1355			skb_put(nc, NOTIFY_COOKIE_LEN);
1356			/* and attach it to the socket */
1357retry:
1358			f = fdget(notification->sigev_signo);
1359			if (!f.file) {
1360				ret = -EBADF;
1361				goto out;
1362			}
1363			sock = netlink_getsockbyfilp(f.file);
1364			fdput(f);
1365			if (IS_ERR(sock)) {
1366				ret = PTR_ERR(sock);
1367				goto free_skb;
 
1368			}
1369
1370			timeo = MAX_SCHEDULE_TIMEOUT;
1371			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1372			if (ret == 1) {
 
 
1373				sock = NULL;
1374				goto retry;
 
1375			}
1376			if (ret)
1377				return ret;
1378		}
1379	}
1380
1381	f = fdget(mqdes);
1382	if (!f.file) {
1383		ret = -EBADF;
1384		goto out;
1385	}
1386
1387	inode = file_inode(f.file);
1388	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1389		ret = -EBADF;
1390		goto out_fput;
1391	}
1392	info = MQUEUE_I(inode);
1393
1394	ret = 0;
1395	spin_lock(&info->lock);
1396	if (notification == NULL) {
1397		if (info->notify_owner == task_tgid(current)) {
1398			remove_notification(info);
1399			inode->i_atime = inode->i_ctime = current_time(inode);
1400		}
1401	} else if (info->notify_owner != NULL) {
1402		ret = -EBUSY;
1403	} else {
1404		switch (notification->sigev_notify) {
1405		case SIGEV_NONE:
1406			info->notify.sigev_notify = SIGEV_NONE;
1407			break;
1408		case SIGEV_THREAD:
1409			info->notify_sock = sock;
1410			info->notify_cookie = nc;
1411			sock = NULL;
1412			nc = NULL;
1413			info->notify.sigev_notify = SIGEV_THREAD;
1414			break;
1415		case SIGEV_SIGNAL:
1416			info->notify.sigev_signo = notification->sigev_signo;
1417			info->notify.sigev_value = notification->sigev_value;
1418			info->notify.sigev_notify = SIGEV_SIGNAL;
1419			info->notify_self_exec_id = current->self_exec_id;
1420			break;
1421		}
1422
1423		info->notify_owner = get_pid(task_tgid(current));
1424		info->notify_user_ns = get_user_ns(current_user_ns());
1425		inode->i_atime = inode->i_ctime = current_time(inode);
1426	}
1427	spin_unlock(&info->lock);
1428out_fput:
1429	fdput(f);
1430out:
1431	if (sock)
1432		netlink_detachskb(sock, nc);
1433	else
1434free_skb:
1435		dev_kfree_skb(nc);
1436
1437	return ret;
1438}
1439
1440SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1441		const struct sigevent __user *, u_notification)
1442{
1443	struct sigevent n, *p = NULL;
1444	if (u_notification) {
1445		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1446			return -EFAULT;
1447		p = &n;
1448	}
1449	return do_mq_notify(mqdes, p);
1450}
1451
1452static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1453{
 
 
1454	struct fd f;
1455	struct inode *inode;
1456	struct mqueue_inode_info *info;
1457
1458	if (new && (new->mq_flags & (~O_NONBLOCK)))
1459		return -EINVAL;
 
 
 
 
1460
1461	f = fdget(mqdes);
1462	if (!f.file)
1463		return -EBADF;
 
 
1464
 
1465	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1466		fdput(f);
1467		return -EBADF;
1468	}
1469
1470	inode = file_inode(f.file);
1471	info = MQUEUE_I(inode);
1472
1473	spin_lock(&info->lock);
1474
1475	if (old) {
1476		*old = info->attr;
1477		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1478	}
1479	if (new) {
1480		audit_mq_getsetattr(mqdes, new);
1481		spin_lock(&f.file->f_lock);
1482		if (new->mq_flags & O_NONBLOCK)
1483			f.file->f_flags |= O_NONBLOCK;
1484		else
1485			f.file->f_flags &= ~O_NONBLOCK;
1486		spin_unlock(&f.file->f_lock);
1487
1488		inode->i_atime = inode->i_ctime = current_time(inode);
1489	}
1490
1491	spin_unlock(&info->lock);
1492	fdput(f);
1493	return 0;
1494}
1495
1496SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1497		const struct mq_attr __user *, u_mqstat,
1498		struct mq_attr __user *, u_omqstat)
1499{
1500	int ret;
1501	struct mq_attr mqstat, omqstat;
1502	struct mq_attr *new = NULL, *old = NULL;
1503
1504	if (u_mqstat) {
1505		new = &mqstat;
1506		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1507			return -EFAULT;
1508	}
1509	if (u_omqstat)
1510		old = &omqstat;
1511
1512	ret = do_mq_getsetattr(mqdes, new, old);
1513	if (ret || !old)
1514		return ret;
1515
1516	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1517		return -EFAULT;
1518	return 0;
1519}
1520
1521#ifdef CONFIG_COMPAT
1522
1523struct compat_mq_attr {
1524	compat_long_t mq_flags;      /* message queue flags		     */
1525	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1526	compat_long_t mq_msgsize;    /* maximum message size		     */
1527	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1528	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1529};
1530
1531static inline int get_compat_mq_attr(struct mq_attr *attr,
1532			const struct compat_mq_attr __user *uattr)
1533{
1534	struct compat_mq_attr v;
1535
1536	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1537		return -EFAULT;
1538
1539	memset(attr, 0, sizeof(*attr));
1540	attr->mq_flags = v.mq_flags;
1541	attr->mq_maxmsg = v.mq_maxmsg;
1542	attr->mq_msgsize = v.mq_msgsize;
1543	attr->mq_curmsgs = v.mq_curmsgs;
1544	return 0;
1545}
1546
1547static inline int put_compat_mq_attr(const struct mq_attr *attr,
1548			struct compat_mq_attr __user *uattr)
1549{
1550	struct compat_mq_attr v;
1551
1552	memset(&v, 0, sizeof(v));
1553	v.mq_flags = attr->mq_flags;
1554	v.mq_maxmsg = attr->mq_maxmsg;
1555	v.mq_msgsize = attr->mq_msgsize;
1556	v.mq_curmsgs = attr->mq_curmsgs;
1557	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1558		return -EFAULT;
1559	return 0;
1560}
1561
1562COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1563		       int, oflag, compat_mode_t, mode,
1564		       struct compat_mq_attr __user *, u_attr)
1565{
1566	struct mq_attr attr, *p = NULL;
1567	if (u_attr && oflag & O_CREAT) {
1568		p = &attr;
1569		if (get_compat_mq_attr(&attr, u_attr))
1570			return -EFAULT;
1571	}
1572	return do_mq_open(u_name, oflag, mode, p);
1573}
1574
1575COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1576		       const struct compat_sigevent __user *, u_notification)
1577{
1578	struct sigevent n, *p = NULL;
1579	if (u_notification) {
1580		if (get_compat_sigevent(&n, u_notification))
1581			return -EFAULT;
1582		if (n.sigev_notify == SIGEV_THREAD)
1583			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1584		p = &n;
1585	}
1586	return do_mq_notify(mqdes, p);
1587}
1588
1589COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1590		       const struct compat_mq_attr __user *, u_mqstat,
1591		       struct compat_mq_attr __user *, u_omqstat)
1592{
1593	int ret;
1594	struct mq_attr mqstat, omqstat;
1595	struct mq_attr *new = NULL, *old = NULL;
1596
1597	if (u_mqstat) {
1598		new = &mqstat;
1599		if (get_compat_mq_attr(new, u_mqstat))
1600			return -EFAULT;
1601	}
1602	if (u_omqstat)
1603		old = &omqstat;
1604
1605	ret = do_mq_getsetattr(mqdes, new, old);
1606	if (ret || !old)
1607		return ret;
1608
1609	if (put_compat_mq_attr(old, u_omqstat))
1610		return -EFAULT;
1611	return 0;
1612}
1613#endif
1614
1615#ifdef CONFIG_COMPAT_32BIT_TIME
1616static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1617				   struct timespec64 *ts)
1618{
1619	if (get_old_timespec32(ts, p))
1620		return -EFAULT;
1621	if (!timespec64_valid(ts))
1622		return -EINVAL;
1623	return 0;
1624}
1625
1626SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1627		const char __user *, u_msg_ptr,
1628		unsigned int, msg_len, unsigned int, msg_prio,
1629		const struct old_timespec32 __user *, u_abs_timeout)
1630{
1631	struct timespec64 ts, *p = NULL;
1632	if (u_abs_timeout) {
1633		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1634		if (res)
1635			return res;
1636		p = &ts;
1637	}
1638	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1639}
1640
1641SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1642		char __user *, u_msg_ptr,
1643		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1644		const struct old_timespec32 __user *, u_abs_timeout)
1645{
1646	struct timespec64 ts, *p = NULL;
1647	if (u_abs_timeout) {
1648		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1649		if (res)
1650			return res;
1651		p = &ts;
1652	}
1653	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1654}
1655#endif
1656
1657static const struct inode_operations mqueue_dir_inode_operations = {
1658	.lookup = simple_lookup,
1659	.create = mqueue_create,
1660	.unlink = mqueue_unlink,
1661};
1662
1663static const struct file_operations mqueue_file_operations = {
1664	.flush = mqueue_flush_file,
1665	.poll = mqueue_poll_file,
1666	.read = mqueue_read_file,
1667	.llseek = default_llseek,
1668};
1669
1670static const struct super_operations mqueue_super_ops = {
1671	.alloc_inode = mqueue_alloc_inode,
1672	.free_inode = mqueue_free_inode,
1673	.evict_inode = mqueue_evict_inode,
1674	.statfs = simple_statfs,
1675};
1676
1677static const struct fs_context_operations mqueue_fs_context_ops = {
1678	.free		= mqueue_fs_context_free,
1679	.get_tree	= mqueue_get_tree,
1680};
1681
1682static struct file_system_type mqueue_fs_type = {
1683	.name			= "mqueue",
1684	.init_fs_context	= mqueue_init_fs_context,
1685	.kill_sb		= kill_litter_super,
1686	.fs_flags		= FS_USERNS_MOUNT,
1687};
1688
1689int mq_init_ns(struct ipc_namespace *ns)
1690{
1691	struct vfsmount *m;
1692
1693	ns->mq_queues_count  = 0;
1694	ns->mq_queues_max    = DFLT_QUEUESMAX;
1695	ns->mq_msg_max       = DFLT_MSGMAX;
1696	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1697	ns->mq_msg_default   = DFLT_MSG;
1698	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1699
1700	m = mq_create_mount(ns);
1701	if (IS_ERR(m))
1702		return PTR_ERR(m);
1703	ns->mq_mnt = m;
 
 
1704	return 0;
1705}
1706
1707void mq_clear_sbinfo(struct ipc_namespace *ns)
1708{
1709	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1710}
1711
1712void mq_put_mnt(struct ipc_namespace *ns)
1713{
1714	kern_unmount(ns->mq_mnt);
1715}
1716
1717static int __init init_mqueue_fs(void)
1718{
1719	int error;
1720
1721	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1722				sizeof(struct mqueue_inode_info), 0,
1723				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1724	if (mqueue_inode_cachep == NULL)
1725		return -ENOMEM;
1726
1727	if (!setup_mq_sysctls(&init_ipc_ns)) {
1728		pr_warn("sysctl registration failed\n");
1729		error = -ENOMEM;
1730		goto out_kmem;
1731	}
1732
1733	error = register_filesystem(&mqueue_fs_type);
1734	if (error)
1735		goto out_sysctl;
1736
1737	spin_lock_init(&mq_lock);
1738
1739	error = mq_init_ns(&init_ipc_ns);
1740	if (error)
1741		goto out_filesystem;
1742
1743	return 0;
1744
1745out_filesystem:
1746	unregister_filesystem(&mqueue_fs_type);
1747out_sysctl:
1748	retire_mq_sysctls(&init_ipc_ns);
1749out_kmem:
1750	kmem_cache_destroy(mqueue_inode_cachep);
1751	return error;
1752}
1753
1754device_initcall(init_mqueue_fs);