Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
 
 
 
 
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
 
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
 
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
 
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
 
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 
 
 
 
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = data;
 309
 
 310	sb->s_blocksize = PAGE_SIZE;
 311	sb->s_blocksize_bits = PAGE_SHIFT;
 312	sb->s_magic = MQUEUE_MAGIC;
 313	sb->s_op = &mqueue_super_ops;
 314
 315	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 316	if (IS_ERR(inode))
 317		return PTR_ERR(inode);
 318
 319	sb->s_root = d_make_root(inode);
 320	if (!sb->s_root)
 321		return -ENOMEM;
 322	return 0;
 323}
 324
 325static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name,
 327			 void *data)
 328{
 329	if (!(flags & MS_KERNMOUNT)) {
 330		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
 331		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
 332		 * over the ipc namespace.
 333		 */
 334		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
 335			return ERR_PTR(-EPERM);
 336
 337		data = ns;
 338	}
 339	return mount_ns(fs_type, flags, data, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void init_once(void *foo)
 343{
 344	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 345
 346	inode_init_once(&p->vfs_inode);
 347}
 348
 349static struct inode *mqueue_alloc_inode(struct super_block *sb)
 350{
 351	struct mqueue_inode_info *ei;
 352
 353	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 354	if (!ei)
 355		return NULL;
 356	return &ei->vfs_inode;
 357}
 358
 359static void mqueue_i_callback(struct rcu_head *head)
 360{
 361	struct inode *inode = container_of(head, struct inode, i_rcu);
 362	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 363}
 364
 365static void mqueue_destroy_inode(struct inode *inode)
 366{
 367	call_rcu(&inode->i_rcu, mqueue_i_callback);
 368}
 369
 370static void mqueue_evict_inode(struct inode *inode)
 371{
 372	struct mqueue_inode_info *info;
 373	struct user_struct *user;
 374	unsigned long mq_bytes, mq_treesize;
 375	struct ipc_namespace *ipc_ns;
 376	struct msg_msg *msg;
 
 377
 378	clear_inode(inode);
 379
 380	if (S_ISDIR(inode->i_mode))
 381		return;
 382
 383	ipc_ns = get_ns_from_inode(inode);
 384	info = MQUEUE_I(inode);
 385	spin_lock(&info->lock);
 386	while ((msg = msg_get(info)) != NULL)
 387		free_msg(msg);
 388	kfree(info->node_cache);
 389	spin_unlock(&info->lock);
 390
 391	/* Total amount of bytes accounted for the mqueue */
 392	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 393		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 394		sizeof(struct posix_msg_tree_node);
 
 
 
 
 
 
 
 
 395
 396	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 397				  info->attr.mq_msgsize);
 398
 399	user = info->user;
 400	if (user) {
 401		spin_lock(&mq_lock);
 402		user->mq_bytes -= mq_bytes;
 403		/*
 404		 * get_ns_from_inode() ensures that the
 405		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 406		 * to which we now hold a reference, or it is NULL.
 407		 * We can't put it here under mq_lock, though.
 408		 */
 409		if (ipc_ns)
 410			ipc_ns->mq_queues_count--;
 411		spin_unlock(&mq_lock);
 412		free_uid(user);
 
 413	}
 414	if (ipc_ns)
 415		put_ipc_ns(ipc_ns);
 416}
 417
 418static int mqueue_create(struct inode *dir, struct dentry *dentry,
 419				umode_t mode, bool excl)
 420{
 
 421	struct inode *inode;
 422	struct mq_attr *attr = dentry->d_fsdata;
 423	int error;
 424	struct ipc_namespace *ipc_ns;
 425
 426	spin_lock(&mq_lock);
 427	ipc_ns = __get_ns_from_inode(dir);
 428	if (!ipc_ns) {
 429		error = -EACCES;
 430		goto out_unlock;
 431	}
 432
 433	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 434	    !capable(CAP_SYS_RESOURCE)) {
 435		error = -ENOSPC;
 436		goto out_unlock;
 437	}
 438	ipc_ns->mq_queues_count++;
 439	spin_unlock(&mq_lock);
 440
 441	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 442	if (IS_ERR(inode)) {
 443		error = PTR_ERR(inode);
 444		spin_lock(&mq_lock);
 445		ipc_ns->mq_queues_count--;
 446		goto out_unlock;
 447	}
 448
 449	put_ipc_ns(ipc_ns);
 450	dir->i_size += DIRENT_SIZE;
 451	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 452
 453	d_instantiate(dentry, inode);
 454	dget(dentry);
 455	return 0;
 456out_unlock:
 457	spin_unlock(&mq_lock);
 458	if (ipc_ns)
 459		put_ipc_ns(ipc_ns);
 460	return error;
 461}
 462
 
 
 
 
 
 
 463static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 464{
 465	struct inode *inode = d_inode(dentry);
 466
 467	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 468	dir->i_size -= DIRENT_SIZE;
 469	drop_nlink(inode);
 470	dput(dentry);
 471	return 0;
 472}
 473
 474/*
 475*	This is routine for system read from queue file.
 476*	To avoid mess with doing here some sort of mq_receive we allow
 477*	to read only queue size & notification info (the only values
 478*	that are interesting from user point of view and aren't accessible
 479*	through std routines)
 480*/
 481static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 482				size_t count, loff_t *off)
 483{
 484	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 485	char buffer[FILENT_SIZE];
 486	ssize_t ret;
 487
 488	spin_lock(&info->lock);
 489	snprintf(buffer, sizeof(buffer),
 490			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 491			info->qsize,
 492			info->notify_owner ? info->notify.sigev_notify : 0,
 493			(info->notify_owner &&
 494			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 495				info->notify.sigev_signo : 0,
 496			pid_vnr(info->notify_owner));
 497	spin_unlock(&info->lock);
 498	buffer[sizeof(buffer)-1] = '\0';
 499
 500	ret = simple_read_from_buffer(u_data, count, off, buffer,
 501				strlen(buffer));
 502	if (ret <= 0)
 503		return ret;
 504
 505	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
 506	return ret;
 507}
 508
 509static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 510{
 511	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 512
 513	spin_lock(&info->lock);
 514	if (task_tgid(current) == info->notify_owner)
 515		remove_notification(info);
 516
 517	spin_unlock(&info->lock);
 518	return 0;
 519}
 520
 521static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 522{
 523	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 524	int retval = 0;
 525
 526	poll_wait(filp, &info->wait_q, poll_tab);
 527
 528	spin_lock(&info->lock);
 529	if (info->attr.mq_curmsgs)
 530		retval = POLLIN | POLLRDNORM;
 531
 532	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 533		retval |= POLLOUT | POLLWRNORM;
 534	spin_unlock(&info->lock);
 535
 536	return retval;
 537}
 538
 539/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 540static void wq_add(struct mqueue_inode_info *info, int sr,
 541			struct ext_wait_queue *ewp)
 542{
 543	struct ext_wait_queue *walk;
 544
 545	ewp->task = current;
 546
 547	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 548		if (walk->task->static_prio <= current->static_prio) {
 549			list_add_tail(&ewp->list, &walk->list);
 550			return;
 551		}
 552	}
 553	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 554}
 555
 556/*
 557 * Puts current task to sleep. Caller must hold queue lock. After return
 558 * lock isn't held.
 559 * sr: SEND or RECV
 560 */
 561static int wq_sleep(struct mqueue_inode_info *info, int sr,
 562		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 563{
 564	int retval;
 565	signed long time;
 566
 567	wq_add(info, sr, ewp);
 568
 569	for (;;) {
 
 570		__set_current_state(TASK_INTERRUPTIBLE);
 571
 572		spin_unlock(&info->lock);
 573		time = schedule_hrtimeout_range_clock(timeout, 0,
 574			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 575
 576		if (ewp->state == STATE_READY) {
 
 
 577			retval = 0;
 578			goto out;
 579		}
 580		spin_lock(&info->lock);
 581		if (ewp->state == STATE_READY) {
 
 
 582			retval = 0;
 583			goto out_unlock;
 584		}
 585		if (signal_pending(current)) {
 586			retval = -ERESTARTSYS;
 587			break;
 588		}
 589		if (time == 0) {
 590			retval = -ETIMEDOUT;
 591			break;
 592		}
 593	}
 594	list_del(&ewp->list);
 595out_unlock:
 596	spin_unlock(&info->lock);
 597out:
 598	return retval;
 599}
 600
 601/*
 602 * Returns waiting task that should be serviced first or NULL if none exists
 603 */
 604static struct ext_wait_queue *wq_get_first_waiter(
 605		struct mqueue_inode_info *info, int sr)
 606{
 607	struct list_head *ptr;
 608
 609	ptr = info->e_wait_q[sr].list.prev;
 610	if (ptr == &info->e_wait_q[sr].list)
 611		return NULL;
 612	return list_entry(ptr, struct ext_wait_queue, list);
 613}
 614
 615
 616static inline void set_cookie(struct sk_buff *skb, char code)
 617{
 618	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 619}
 620
 621/*
 622 * The next function is only to split too long sys_mq_timedsend
 623 */
 624static void __do_notify(struct mqueue_inode_info *info)
 625{
 626	/* notification
 627	 * invoked when there is registered process and there isn't process
 628	 * waiting synchronously for message AND state of queue changed from
 629	 * empty to not empty. Here we are sure that no one is waiting
 630	 * synchronously. */
 631	if (info->notify_owner &&
 632	    info->attr.mq_curmsgs == 1) {
 633		struct siginfo sig_i;
 634		switch (info->notify.sigev_notify) {
 635		case SIGEV_NONE:
 636			break;
 637		case SIGEV_SIGNAL:
 638			/* sends signal */
 
 
 
 
 
 639
 
 640			sig_i.si_signo = info->notify.sigev_signo;
 641			sig_i.si_errno = 0;
 642			sig_i.si_code = SI_MESGQ;
 643			sig_i.si_value = info->notify.sigev_value;
 644			/* map current pid/uid into info->owner's namespaces */
 645			rcu_read_lock();
 
 646			sig_i.si_pid = task_tgid_nr_ns(current,
 647						ns_of_pid(info->notify_owner));
 648			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649			rcu_read_unlock();
 650
 651			kill_pid_info(info->notify.sigev_signo,
 652				      &sig_i, info->notify_owner);
 653			break;
 
 654		case SIGEV_THREAD:
 655			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 656			netlink_sendskb(info->notify_sock, info->notify_cookie);
 657			break;
 658		}
 659		/* after notification unregisters process */
 660		put_pid(info->notify_owner);
 661		put_user_ns(info->notify_user_ns);
 662		info->notify_owner = NULL;
 663		info->notify_user_ns = NULL;
 664	}
 665	wake_up(&info->wait_q);
 666}
 667
 668static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 669			   ktime_t *expires, struct timespec *ts)
 670{
 671	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 672		return -EFAULT;
 673	if (!timespec_valid(ts))
 674		return -EINVAL;
 675
 676	*expires = timespec_to_ktime(*ts);
 677	return 0;
 678}
 679
 680static void remove_notification(struct mqueue_inode_info *info)
 681{
 682	if (info->notify_owner != NULL &&
 683	    info->notify.sigev_notify == SIGEV_THREAD) {
 684		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 685		netlink_sendskb(info->notify_sock, info->notify_cookie);
 686	}
 687	put_pid(info->notify_owner);
 688	put_user_ns(info->notify_user_ns);
 689	info->notify_owner = NULL;
 690	info->notify_user_ns = NULL;
 691}
 692
 693static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 694{
 695	int mq_treesize;
 696	unsigned long total_size;
 697
 698	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 699		return -EINVAL;
 700	if (capable(CAP_SYS_RESOURCE)) {
 701		if (attr->mq_maxmsg > HARD_MSGMAX ||
 702		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 703			return -EINVAL;
 704	} else {
 705		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 706				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 707			return -EINVAL;
 708	}
 709	/* check for overflow */
 710	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 711		return -EOVERFLOW;
 712	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 713		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 714		sizeof(struct posix_msg_tree_node);
 715	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 716	if (total_size + mq_treesize < total_size)
 717		return -EOVERFLOW;
 718	return 0;
 719}
 720
 721/*
 722 * Invoked when creating a new queue via sys_mq_open
 723 */
 724static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 725			struct path *path, int oflag, umode_t mode,
 726			struct mq_attr *attr)
 727{
 728	const struct cred *cred = current_cred();
 729	int ret;
 730
 731	if (attr) {
 732		ret = mq_attr_ok(ipc_ns, attr);
 733		if (ret)
 734			return ERR_PTR(ret);
 735		/* store for use during create */
 736		path->dentry->d_fsdata = attr;
 737	} else {
 738		struct mq_attr def_attr;
 739
 740		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 741					 ipc_ns->mq_msg_default);
 742		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 743					  ipc_ns->mq_msgsize_default);
 744		ret = mq_attr_ok(ipc_ns, &def_attr);
 745		if (ret)
 746			return ERR_PTR(ret);
 747	}
 748
 749	mode &= ~current_umask();
 750	ret = vfs_create(dir, path->dentry, mode, true);
 751	path->dentry->d_fsdata = NULL;
 752	if (ret)
 753		return ERR_PTR(ret);
 754	return dentry_open(path, oflag, cred);
 755}
 756
 757/* Opens existing queue */
 758static struct file *do_open(struct path *path, int oflag)
 759{
 760	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 761						  MAY_READ | MAY_WRITE };
 762	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 764		return ERR_PTR(-EINVAL);
 765	acc = oflag2acc[oflag & O_ACCMODE];
 766	if (inode_permission(d_inode(path->dentry), acc))
 767		return ERR_PTR(-EACCES);
 768	return dentry_open(path, oflag, current_cred());
 769}
 770
 771SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 772		struct mq_attr __user *, u_attr)
 773{
 774	struct path path;
 775	struct file *filp;
 776	struct filename *name;
 777	struct mq_attr attr;
 778	int fd, error;
 779	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 780	struct vfsmount *mnt = ipc_ns->mq_mnt;
 781	struct dentry *root = mnt->mnt_root;
 782	int ro;
 783
 784	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 785		return -EFAULT;
 786
 787	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 788
 789	if (IS_ERR(name = getname(u_name)))
 790		return PTR_ERR(name);
 791
 792	fd = get_unused_fd_flags(O_CLOEXEC);
 793	if (fd < 0)
 794		goto out_putname;
 795
 796	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 797	error = 0;
 798	inode_lock(d_inode(root));
 799	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 800	if (IS_ERR(path.dentry)) {
 801		error = PTR_ERR(path.dentry);
 802		goto out_putfd;
 803	}
 804	path.mnt = mntget(mnt);
 805
 806	if (oflag & O_CREAT) {
 807		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 808			audit_inode(name, path.dentry, 0);
 809			if (oflag & O_EXCL) {
 810				error = -EEXIST;
 811				goto out;
 812			}
 813			filp = do_open(&path, oflag);
 814		} else {
 815			if (ro) {
 816				error = ro;
 817				goto out;
 818			}
 819			audit_inode_parent_hidden(name, root);
 820			filp = do_create(ipc_ns, d_inode(root),
 821						&path, oflag, mode,
 822						u_attr ? &attr : NULL);
 823		}
 824	} else {
 825		if (d_really_is_negative(path.dentry)) {
 826			error = -ENOENT;
 827			goto out;
 828		}
 829		audit_inode(name, path.dentry, 0);
 830		filp = do_open(&path, oflag);
 831	}
 832
 833	if (!IS_ERR(filp))
 834		fd_install(fd, filp);
 835	else
 836		error = PTR_ERR(filp);
 837out:
 838	path_put(&path);
 839out_putfd:
 840	if (error) {
 841		put_unused_fd(fd);
 842		fd = error;
 843	}
 844	inode_unlock(d_inode(root));
 845	if (!ro)
 846		mnt_drop_write(mnt);
 847out_putname:
 848	putname(name);
 849	return fd;
 850}
 851
 
 
 
 
 
 
 
 
 
 
 852SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 853{
 854	int err;
 855	struct filename *name;
 856	struct dentry *dentry;
 857	struct inode *inode = NULL;
 858	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 859	struct vfsmount *mnt = ipc_ns->mq_mnt;
 860
 861	name = getname(u_name);
 862	if (IS_ERR(name))
 863		return PTR_ERR(name);
 864
 865	audit_inode_parent_hidden(name, mnt->mnt_root);
 866	err = mnt_want_write(mnt);
 867	if (err)
 868		goto out_name;
 869	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 870	dentry = lookup_one_len(name->name, mnt->mnt_root,
 871				strlen(name->name));
 872	if (IS_ERR(dentry)) {
 873		err = PTR_ERR(dentry);
 874		goto out_unlock;
 875	}
 876
 877	inode = d_inode(dentry);
 878	if (!inode) {
 879		err = -ENOENT;
 880	} else {
 881		ihold(inode);
 882		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 
 883	}
 884	dput(dentry);
 885
 886out_unlock:
 887	inode_unlock(d_inode(mnt->mnt_root));
 888	if (inode)
 889		iput(inode);
 890	mnt_drop_write(mnt);
 891out_name:
 892	putname(name);
 893
 894	return err;
 895}
 896
 897/* Pipelined send and receive functions.
 898 *
 899 * If a receiver finds no waiting message, then it registers itself in the
 900 * list of waiting receivers. A sender checks that list before adding the new
 901 * message into the message array. If there is a waiting receiver, then it
 902 * bypasses the message array and directly hands the message over to the
 903 * receiver. The receiver accepts the message and returns without grabbing the
 904 * queue spinlock:
 905 *
 906 * - Set pointer to message.
 907 * - Queue the receiver task for later wakeup (without the info->lock).
 908 * - Update its state to STATE_READY. Now the receiver can continue.
 909 * - Wake up the process after the lock is dropped. Should the process wake up
 910 *   before this wakeup (due to a timeout or a signal) it will either see
 911 *   STATE_READY and continue or acquire the lock to check the state again.
 912 *
 913 * The same algorithm is used for senders.
 914 */
 915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916/* pipelined_send() - send a message directly to the task waiting in
 917 * sys_mq_timedreceive() (without inserting message into a queue).
 918 */
 919static inline void pipelined_send(struct wake_q_head *wake_q,
 920				  struct mqueue_inode_info *info,
 921				  struct msg_msg *message,
 922				  struct ext_wait_queue *receiver)
 923{
 924	receiver->msg = message;
 925	list_del(&receiver->list);
 926	wake_q_add(wake_q, receiver->task);
 927	/*
 928	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 929	 * that we can ensure that updating receiver->state is the last
 930	 * write operation: As once set, the receiver can continue,
 931	 * and if we don't have the reference count from the wake_q,
 932	 * yet, at that point we can later have a use-after-free
 933	 * condition and bogus wakeup.
 934	 */
 935	receiver->state = STATE_READY;
 936}
 937
 938/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 939 * gets its message and put to the queue (we have one free place for sure). */
 940static inline void pipelined_receive(struct wake_q_head *wake_q,
 941				     struct mqueue_inode_info *info)
 942{
 943	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 944
 945	if (!sender) {
 946		/* for poll */
 947		wake_up_interruptible(&info->wait_q);
 948		return;
 949	}
 950	if (msg_insert(sender->msg, info))
 951		return;
 952
 953	list_del(&sender->list);
 954	wake_q_add(wake_q, sender->task);
 955	sender->state = STATE_READY;
 956}
 957
 958SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 959		size_t, msg_len, unsigned int, msg_prio,
 960		const struct timespec __user *, u_abs_timeout)
 961{
 962	struct fd f;
 963	struct inode *inode;
 964	struct ext_wait_queue wait;
 965	struct ext_wait_queue *receiver;
 966	struct msg_msg *msg_ptr;
 967	struct mqueue_inode_info *info;
 968	ktime_t expires, *timeout = NULL;
 969	struct timespec ts;
 970	struct posix_msg_tree_node *new_leaf = NULL;
 971	int ret = 0;
 972	WAKE_Q(wake_q);
 973
 974	if (u_abs_timeout) {
 975		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 976		if (res)
 977			return res;
 978		timeout = &expires;
 979	}
 980
 981	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 982		return -EINVAL;
 983
 984	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 985
 986	f = fdget(mqdes);
 987	if (unlikely(!f.file)) {
 988		ret = -EBADF;
 989		goto out;
 990	}
 991
 992	inode = file_inode(f.file);
 993	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 994		ret = -EBADF;
 995		goto out_fput;
 996	}
 997	info = MQUEUE_I(inode);
 998	audit_file(f.file);
 999
1000	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1001		ret = -EBADF;
1002		goto out_fput;
1003	}
1004
1005	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1006		ret = -EMSGSIZE;
1007		goto out_fput;
1008	}
1009
1010	/* First try to allocate memory, before doing anything with
1011	 * existing queues. */
1012	msg_ptr = load_msg(u_msg_ptr, msg_len);
1013	if (IS_ERR(msg_ptr)) {
1014		ret = PTR_ERR(msg_ptr);
1015		goto out_fput;
1016	}
1017	msg_ptr->m_ts = msg_len;
1018	msg_ptr->m_type = msg_prio;
1019
1020	/*
1021	 * msg_insert really wants us to have a valid, spare node struct so
1022	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1023	 * fall back to that if necessary.
1024	 */
1025	if (!info->node_cache)
1026		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1027
1028	spin_lock(&info->lock);
1029
1030	if (!info->node_cache && new_leaf) {
1031		/* Save our speculative allocation into the cache */
1032		INIT_LIST_HEAD(&new_leaf->msg_list);
1033		info->node_cache = new_leaf;
1034		new_leaf = NULL;
1035	} else {
1036		kfree(new_leaf);
1037	}
1038
1039	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1040		if (f.file->f_flags & O_NONBLOCK) {
1041			ret = -EAGAIN;
1042		} else {
1043			wait.task = current;
1044			wait.msg = (void *) msg_ptr;
1045			wait.state = STATE_NONE;
 
 
1046			ret = wq_sleep(info, SEND, timeout, &wait);
1047			/*
1048			 * wq_sleep must be called with info->lock held, and
1049			 * returns with the lock released
1050			 */
1051			goto out_free;
1052		}
1053	} else {
1054		receiver = wq_get_first_waiter(info, RECV);
1055		if (receiver) {
1056			pipelined_send(&wake_q, info, msg_ptr, receiver);
1057		} else {
1058			/* adds message to the queue */
1059			ret = msg_insert(msg_ptr, info);
1060			if (ret)
1061				goto out_unlock;
1062			__do_notify(info);
1063		}
1064		inode->i_atime = inode->i_mtime = inode->i_ctime =
1065				CURRENT_TIME;
1066	}
1067out_unlock:
1068	spin_unlock(&info->lock);
1069	wake_up_q(&wake_q);
1070out_free:
1071	if (ret)
1072		free_msg(msg_ptr);
1073out_fput:
1074	fdput(f);
1075out:
1076	return ret;
1077}
1078
1079SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1080		size_t, msg_len, unsigned int __user *, u_msg_prio,
1081		const struct timespec __user *, u_abs_timeout)
1082{
1083	ssize_t ret;
1084	struct msg_msg *msg_ptr;
1085	struct fd f;
1086	struct inode *inode;
1087	struct mqueue_inode_info *info;
1088	struct ext_wait_queue wait;
1089	ktime_t expires, *timeout = NULL;
1090	struct timespec ts;
1091	struct posix_msg_tree_node *new_leaf = NULL;
1092
1093	if (u_abs_timeout) {
1094		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1095		if (res)
1096			return res;
1097		timeout = &expires;
1098	}
1099
1100	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1101
1102	f = fdget(mqdes);
1103	if (unlikely(!f.file)) {
1104		ret = -EBADF;
1105		goto out;
1106	}
1107
1108	inode = file_inode(f.file);
1109	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110		ret = -EBADF;
1111		goto out_fput;
1112	}
1113	info = MQUEUE_I(inode);
1114	audit_file(f.file);
1115
1116	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117		ret = -EBADF;
1118		goto out_fput;
1119	}
1120
1121	/* checks if buffer is big enough */
1122	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123		ret = -EMSGSIZE;
1124		goto out_fput;
1125	}
1126
1127	/*
1128	 * msg_insert really wants us to have a valid, spare node struct so
1129	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130	 * fall back to that if necessary.
1131	 */
1132	if (!info->node_cache)
1133		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134
1135	spin_lock(&info->lock);
1136
1137	if (!info->node_cache && new_leaf) {
1138		/* Save our speculative allocation into the cache */
1139		INIT_LIST_HEAD(&new_leaf->msg_list);
1140		info->node_cache = new_leaf;
1141	} else {
1142		kfree(new_leaf);
1143	}
1144
1145	if (info->attr.mq_curmsgs == 0) {
1146		if (f.file->f_flags & O_NONBLOCK) {
1147			spin_unlock(&info->lock);
1148			ret = -EAGAIN;
1149		} else {
1150			wait.task = current;
1151			wait.state = STATE_NONE;
 
 
1152			ret = wq_sleep(info, RECV, timeout, &wait);
1153			msg_ptr = wait.msg;
1154		}
1155	} else {
1156		WAKE_Q(wake_q);
1157
1158		msg_ptr = msg_get(info);
1159
1160		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161				CURRENT_TIME;
1162
1163		/* There is now free space in queue. */
1164		pipelined_receive(&wake_q, info);
1165		spin_unlock(&info->lock);
1166		wake_up_q(&wake_q);
1167		ret = 0;
1168	}
1169	if (ret == 0) {
1170		ret = msg_ptr->m_ts;
1171
1172		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174			ret = -EFAULT;
1175		}
1176		free_msg(msg_ptr);
1177	}
1178out_fput:
1179	fdput(f);
1180out:
1181	return ret;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Notes: the case when user wants us to deregister (with NULL as pointer)
1186 * and he isn't currently owner of notification, will be silently discarded.
1187 * It isn't explicitly defined in the POSIX.
1188 */
1189SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1190		const struct sigevent __user *, u_notification)
1191{
1192	int ret;
1193	struct fd f;
1194	struct sock *sock;
1195	struct inode *inode;
1196	struct sigevent notification;
1197	struct mqueue_inode_info *info;
1198	struct sk_buff *nc;
1199
1200	if (u_notification) {
1201		if (copy_from_user(&notification, u_notification,
1202					sizeof(struct sigevent)))
1203			return -EFAULT;
1204	}
1205
1206	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1207
1208	nc = NULL;
1209	sock = NULL;
1210	if (u_notification != NULL) {
1211		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1212			     notification.sigev_notify != SIGEV_SIGNAL &&
1213			     notification.sigev_notify != SIGEV_THREAD))
1214			return -EINVAL;
1215		if (notification.sigev_notify == SIGEV_SIGNAL &&
1216			!valid_signal(notification.sigev_signo)) {
1217			return -EINVAL;
1218		}
1219		if (notification.sigev_notify == SIGEV_THREAD) {
1220			long timeo;
1221
1222			/* create the notify skb */
1223			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1224			if (!nc) {
1225				ret = -ENOMEM;
1226				goto out;
1227			}
1228			if (copy_from_user(nc->data,
1229					notification.sigev_value.sival_ptr,
1230					NOTIFY_COOKIE_LEN)) {
1231				ret = -EFAULT;
1232				goto out;
1233			}
1234
1235			/* TODO: add a header? */
1236			skb_put(nc, NOTIFY_COOKIE_LEN);
1237			/* and attach it to the socket */
1238retry:
1239			f = fdget(notification.sigev_signo);
1240			if (!f.file) {
1241				ret = -EBADF;
1242				goto out;
1243			}
1244			sock = netlink_getsockbyfilp(f.file);
1245			fdput(f);
1246			if (IS_ERR(sock)) {
1247				ret = PTR_ERR(sock);
1248				sock = NULL;
1249				goto out;
1250			}
1251
1252			timeo = MAX_SCHEDULE_TIMEOUT;
1253			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1254			if (ret == 1)
1255				goto retry;
1256			if (ret) {
1257				sock = NULL;
1258				nc = NULL;
1259				goto out;
1260			}
 
 
1261		}
1262	}
1263
1264	f = fdget(mqdes);
1265	if (!f.file) {
1266		ret = -EBADF;
1267		goto out;
1268	}
1269
1270	inode = file_inode(f.file);
1271	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272		ret = -EBADF;
1273		goto out_fput;
1274	}
1275	info = MQUEUE_I(inode);
1276
1277	ret = 0;
1278	spin_lock(&info->lock);
1279	if (u_notification == NULL) {
1280		if (info->notify_owner == task_tgid(current)) {
1281			remove_notification(info);
1282			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1283		}
1284	} else if (info->notify_owner != NULL) {
1285		ret = -EBUSY;
1286	} else {
1287		switch (notification.sigev_notify) {
1288		case SIGEV_NONE:
1289			info->notify.sigev_notify = SIGEV_NONE;
1290			break;
1291		case SIGEV_THREAD:
1292			info->notify_sock = sock;
1293			info->notify_cookie = nc;
1294			sock = NULL;
1295			nc = NULL;
1296			info->notify.sigev_notify = SIGEV_THREAD;
1297			break;
1298		case SIGEV_SIGNAL:
1299			info->notify.sigev_signo = notification.sigev_signo;
1300			info->notify.sigev_value = notification.sigev_value;
1301			info->notify.sigev_notify = SIGEV_SIGNAL;
 
1302			break;
1303		}
1304
1305		info->notify_owner = get_pid(task_tgid(current));
1306		info->notify_user_ns = get_user_ns(current_user_ns());
1307		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1308	}
1309	spin_unlock(&info->lock);
1310out_fput:
1311	fdput(f);
1312out:
1313	if (sock)
1314		netlink_detachskb(sock, nc);
1315	else if (nc)
 
1316		dev_kfree_skb(nc);
1317
1318	return ret;
1319}
1320
1321SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322		const struct mq_attr __user *, u_mqstat,
1323		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1324{
1325	int ret;
1326	struct mq_attr mqstat, omqstat;
1327	struct fd f;
1328	struct inode *inode;
1329	struct mqueue_inode_info *info;
1330
1331	if (u_mqstat != NULL) {
1332		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333			return -EFAULT;
1334		if (mqstat.mq_flags & (~O_NONBLOCK))
1335			return -EINVAL;
1336	}
1337
1338	f = fdget(mqdes);
1339	if (!f.file) {
1340		ret = -EBADF;
1341		goto out;
1342	}
1343
1344	inode = file_inode(f.file);
1345	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346		ret = -EBADF;
1347		goto out_fput;
1348	}
 
 
1349	info = MQUEUE_I(inode);
1350
1351	spin_lock(&info->lock);
1352
1353	omqstat = info->attr;
1354	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355	if (u_mqstat) {
1356		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1357		spin_lock(&f.file->f_lock);
1358		if (mqstat.mq_flags & O_NONBLOCK)
1359			f.file->f_flags |= O_NONBLOCK;
1360		else
1361			f.file->f_flags &= ~O_NONBLOCK;
1362		spin_unlock(&f.file->f_lock);
1363
1364		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1365	}
1366
1367	spin_unlock(&info->lock);
 
 
 
1368
1369	ret = 0;
1370	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371						sizeof(struct mq_attr)))
1372		ret = -EFAULT;
 
 
 
1373
1374out_fput:
1375	fdput(f);
1376out:
1377	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380static const struct inode_operations mqueue_dir_inode_operations = {
1381	.lookup = simple_lookup,
1382	.create = mqueue_create,
1383	.unlink = mqueue_unlink,
1384};
1385
1386static const struct file_operations mqueue_file_operations = {
1387	.flush = mqueue_flush_file,
1388	.poll = mqueue_poll_file,
1389	.read = mqueue_read_file,
1390	.llseek = default_llseek,
1391};
1392
1393static const struct super_operations mqueue_super_ops = {
1394	.alloc_inode = mqueue_alloc_inode,
1395	.destroy_inode = mqueue_destroy_inode,
1396	.evict_inode = mqueue_evict_inode,
1397	.statfs = simple_statfs,
1398};
1399
 
 
 
 
 
1400static struct file_system_type mqueue_fs_type = {
1401	.name = "mqueue",
1402	.mount = mqueue_mount,
1403	.kill_sb = kill_litter_super,
1404	.fs_flags = FS_USERNS_MOUNT,
1405};
1406
1407int mq_init_ns(struct ipc_namespace *ns)
1408{
 
 
1409	ns->mq_queues_count  = 0;
1410	ns->mq_queues_max    = DFLT_QUEUESMAX;
1411	ns->mq_msg_max       = DFLT_MSGMAX;
1412	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1413	ns->mq_msg_default   = DFLT_MSG;
1414	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1415
1416	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417	if (IS_ERR(ns->mq_mnt)) {
1418		int err = PTR_ERR(ns->mq_mnt);
1419		ns->mq_mnt = NULL;
1420		return err;
1421	}
1422	return 0;
1423}
1424
1425void mq_clear_sbinfo(struct ipc_namespace *ns)
1426{
1427	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1428}
1429
1430void mq_put_mnt(struct ipc_namespace *ns)
1431{
1432	kern_unmount(ns->mq_mnt);
1433}
1434
1435static int __init init_mqueue_fs(void)
1436{
1437	int error;
1438
1439	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440				sizeof(struct mqueue_inode_info), 0,
1441				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1442	if (mqueue_inode_cachep == NULL)
1443		return -ENOMEM;
1444
1445	/* ignore failures - they are not fatal */
1446	mq_sysctl_table = mq_register_sysctl_table();
1447
1448	error = register_filesystem(&mqueue_fs_type);
1449	if (error)
1450		goto out_sysctl;
1451
1452	spin_lock_init(&mq_lock);
1453
1454	error = mq_init_ns(&init_ipc_ns);
1455	if (error)
1456		goto out_filesystem;
1457
1458	return 0;
1459
1460out_filesystem:
1461	unregister_filesystem(&mqueue_fs_type);
1462out_sysctl:
1463	if (mq_sysctl_table)
1464		unregister_sysctl_table(mq_sysctl_table);
1465	kmem_cache_destroy(mqueue_inode_cachep);
1466	return error;
1467}
1468
1469device_initcall(init_mqueue_fs);
v5.14.15
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC	0x19800202
  51#define DIRENT_SIZE	20
  52#define FILENT_SIZE	80
  53
  54#define SEND		0
  55#define RECV		1
  56
  57#define STATE_NONE	0
  58#define STATE_READY	1
  59
  60struct posix_msg_tree_node {
  61	struct rb_node		rb_node;
  62	struct list_head	msg_list;
  63	int			priority;
  64};
  65
  66/*
  67 * Locking:
  68 *
  69 * Accesses to a message queue are synchronized by acquiring info->lock.
  70 *
  71 * There are two notable exceptions:
  72 * - The actual wakeup of a sleeping task is performed using the wake_q
  73 *   framework. info->lock is already released when wake_up_q is called.
  74 * - The exit codepaths after sleeping check ext_wait_queue->state without
  75 *   any locks. If it is STATE_READY, then the syscall is completed without
  76 *   acquiring info->lock.
  77 *
  78 * MQ_BARRIER:
  79 * To achieve proper release/acquire memory barrier pairing, the state is set to
  80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
  81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
  82 *
  83 * This prevents the following races:
  84 *
  85 * 1) With the simple wake_q_add(), the task could be gone already before
  86 *    the increase of the reference happens
  87 * Thread A
  88 *				Thread B
  89 * WRITE_ONCE(wait.state, STATE_NONE);
  90 * schedule_hrtimeout()
  91 *				wake_q_add(A)
  92 *				if (cmpxchg()) // success
  93 *				   ->state = STATE_READY (reordered)
  94 * <timeout returns>
  95 * if (wait.state == STATE_READY) return;
  96 * sysret to user space
  97 * sys_exit()
  98 *				get_task_struct() // UaF
  99 *
 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
 101 * the smp_store_release() that does ->state = STATE_READY.
 102 *
 103 * 2) Without proper _release/_acquire barriers, the woken up task
 104 *    could read stale data
 105 *
 106 * Thread A
 107 *				Thread B
 108 * do_mq_timedreceive
 109 * WRITE_ONCE(wait.state, STATE_NONE);
 110 * schedule_hrtimeout()
 111 *				state = STATE_READY;
 112 * <timeout returns>
 113 * if (wait.state == STATE_READY) return;
 114 * msg_ptr = wait.msg;		// Access to stale data!
 115 *				receiver->msg = message; (reordered)
 116 *
 117 * Solution: use _release and _acquire barriers.
 118 *
 119 * 3) There is intentionally no barrier when setting current->state
 120 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
 121 *    release memory barrier, and the wakeup is triggered when holding
 122 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
 123 *    acquire memory barrier.
 124 */
 125
 126struct ext_wait_queue {		/* queue of sleeping tasks */
 127	struct task_struct *task;
 128	struct list_head list;
 129	struct msg_msg *msg;	/* ptr of loaded message */
 130	int state;		/* one of STATE_* values */
 131};
 132
 133struct mqueue_inode_info {
 134	spinlock_t lock;
 135	struct inode vfs_inode;
 136	wait_queue_head_t wait_q;
 137
 138	struct rb_root msg_tree;
 139	struct rb_node *msg_tree_rightmost;
 140	struct posix_msg_tree_node *node_cache;
 141	struct mq_attr attr;
 142
 143	struct sigevent notify;
 144	struct pid *notify_owner;
 145	u32 notify_self_exec_id;
 146	struct user_namespace *notify_user_ns;
 147	struct ucounts *ucounts;	/* user who created, for accounting */
 148	struct sock *notify_sock;
 149	struct sk_buff *notify_cookie;
 150
 151	/* for tasks waiting for free space and messages, respectively */
 152	struct ext_wait_queue e_wait_q[2];
 153
 154	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
 155};
 156
 157static struct file_system_type mqueue_fs_type;
 158static const struct inode_operations mqueue_dir_inode_operations;
 159static const struct file_operations mqueue_file_operations;
 160static const struct super_operations mqueue_super_ops;
 161static const struct fs_context_operations mqueue_fs_context_ops;
 162static void remove_notification(struct mqueue_inode_info *info);
 163
 164static struct kmem_cache *mqueue_inode_cachep;
 165
 166static struct ctl_table_header *mq_sysctl_table;
 167
 168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 169{
 170	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 171}
 172
 173/*
 174 * This routine should be called with the mq_lock held.
 175 */
 176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 177{
 178	return get_ipc_ns(inode->i_sb->s_fs_info);
 179}
 180
 181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 182{
 183	struct ipc_namespace *ns;
 184
 185	spin_lock(&mq_lock);
 186	ns = __get_ns_from_inode(inode);
 187	spin_unlock(&mq_lock);
 188	return ns;
 189}
 190
 191/* Auxiliary functions to manipulate messages' list */
 192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 193{
 194	struct rb_node **p, *parent = NULL;
 195	struct posix_msg_tree_node *leaf;
 196	bool rightmost = true;
 197
 198	p = &info->msg_tree.rb_node;
 199	while (*p) {
 200		parent = *p;
 201		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 202
 203		if (likely(leaf->priority == msg->m_type))
 204			goto insert_msg;
 205		else if (msg->m_type < leaf->priority) {
 206			p = &(*p)->rb_left;
 207			rightmost = false;
 208		} else
 209			p = &(*p)->rb_right;
 210	}
 211	if (info->node_cache) {
 212		leaf = info->node_cache;
 213		info->node_cache = NULL;
 214	} else {
 215		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 216		if (!leaf)
 217			return -ENOMEM;
 218		INIT_LIST_HEAD(&leaf->msg_list);
 219	}
 220	leaf->priority = msg->m_type;
 221
 222	if (rightmost)
 223		info->msg_tree_rightmost = &leaf->rb_node;
 224
 225	rb_link_node(&leaf->rb_node, parent, p);
 226	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 227insert_msg:
 228	info->attr.mq_curmsgs++;
 229	info->qsize += msg->m_ts;
 230	list_add_tail(&msg->m_list, &leaf->msg_list);
 231	return 0;
 232}
 233
 234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 235				  struct mqueue_inode_info *info)
 236{
 237	struct rb_node *node = &leaf->rb_node;
 238
 239	if (info->msg_tree_rightmost == node)
 240		info->msg_tree_rightmost = rb_prev(node);
 241
 242	rb_erase(node, &info->msg_tree);
 243	if (info->node_cache)
 244		kfree(leaf);
 245	else
 246		info->node_cache = leaf;
 247}
 248
 249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 250{
 251	struct rb_node *parent = NULL;
 252	struct posix_msg_tree_node *leaf;
 253	struct msg_msg *msg;
 254
 255try_again:
 256	/*
 257	 * During insert, low priorities go to the left and high to the
 258	 * right.  On receive, we want the highest priorities first, so
 259	 * walk all the way to the right.
 260	 */
 261	parent = info->msg_tree_rightmost;
 
 
 
 
 262	if (!parent) {
 263		if (info->attr.mq_curmsgs) {
 264			pr_warn_once("Inconsistency in POSIX message queue, "
 265				     "no tree element, but supposedly messages "
 266				     "should exist!\n");
 267			info->attr.mq_curmsgs = 0;
 268		}
 269		return NULL;
 270	}
 271	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 272	if (unlikely(list_empty(&leaf->msg_list))) {
 273		pr_warn_once("Inconsistency in POSIX message queue, "
 274			     "empty leaf node but we haven't implemented "
 275			     "lazy leaf delete!\n");
 276		msg_tree_erase(leaf, info);
 
 
 
 
 
 277		goto try_again;
 278	} else {
 279		msg = list_first_entry(&leaf->msg_list,
 280				       struct msg_msg, m_list);
 281		list_del(&msg->m_list);
 282		if (list_empty(&leaf->msg_list)) {
 283			msg_tree_erase(leaf, info);
 
 
 
 
 
 284		}
 285	}
 286	info->attr.mq_curmsgs--;
 287	info->qsize -= msg->m_ts;
 288	return msg;
 289}
 290
 291static struct inode *mqueue_get_inode(struct super_block *sb,
 292		struct ipc_namespace *ipc_ns, umode_t mode,
 293		struct mq_attr *attr)
 294{
 
 295	struct inode *inode;
 296	int ret = -ENOMEM;
 297
 298	inode = new_inode(sb);
 299	if (!inode)
 300		goto err;
 301
 302	inode->i_ino = get_next_ino();
 303	inode->i_mode = mode;
 304	inode->i_uid = current_fsuid();
 305	inode->i_gid = current_fsgid();
 306	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 307
 308	if (S_ISREG(mode)) {
 309		struct mqueue_inode_info *info;
 310		unsigned long mq_bytes, mq_treesize;
 311
 312		inode->i_fop = &mqueue_file_operations;
 313		inode->i_size = FILENT_SIZE;
 314		/* mqueue specific info */
 315		info = MQUEUE_I(inode);
 316		spin_lock_init(&info->lock);
 317		init_waitqueue_head(&info->wait_q);
 318		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 319		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 320		info->notify_owner = NULL;
 321		info->notify_user_ns = NULL;
 322		info->qsize = 0;
 323		info->ucounts = NULL;	/* set when all is ok */
 324		info->msg_tree = RB_ROOT;
 325		info->msg_tree_rightmost = NULL;
 326		info->node_cache = NULL;
 327		memset(&info->attr, 0, sizeof(info->attr));
 328		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 329					   ipc_ns->mq_msg_default);
 330		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 331					    ipc_ns->mq_msgsize_default);
 332		if (attr) {
 333			info->attr.mq_maxmsg = attr->mq_maxmsg;
 334			info->attr.mq_msgsize = attr->mq_msgsize;
 335		}
 336		/*
 337		 * We used to allocate a static array of pointers and account
 338		 * the size of that array as well as one msg_msg struct per
 339		 * possible message into the queue size. That's no longer
 340		 * accurate as the queue is now an rbtree and will grow and
 341		 * shrink depending on usage patterns.  We can, however, still
 342		 * account one msg_msg struct per message, but the nodes are
 343		 * allocated depending on priority usage, and most programs
 344		 * only use one, or a handful, of priorities.  However, since
 345		 * this is pinned memory, we need to assume worst case, so
 346		 * that means the min(mq_maxmsg, max_priorities) * struct
 347		 * posix_msg_tree_node.
 348		 */
 349
 350		ret = -EINVAL;
 351		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 352			goto out_inode;
 353		if (capable(CAP_SYS_RESOURCE)) {
 354			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 355			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 356				goto out_inode;
 357		} else {
 358			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 359					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 360				goto out_inode;
 361		}
 362		ret = -EOVERFLOW;
 363		/* check for overflow */
 364		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 365			goto out_inode;
 366		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 367			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 368			sizeof(struct posix_msg_tree_node);
 369		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 370		if (mq_bytes + mq_treesize < mq_bytes)
 
 
 
 
 
 
 
 
 371			goto out_inode;
 372		mq_bytes += mq_treesize;
 373		info->ucounts = get_ucounts(current_ucounts());
 374		if (info->ucounts) {
 375			long msgqueue;
 376
 377			spin_lock(&mq_lock);
 378			msgqueue = inc_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 379			if (msgqueue == LONG_MAX || msgqueue > rlimit(RLIMIT_MSGQUEUE)) {
 380				dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 381				spin_unlock(&mq_lock);
 382				put_ucounts(info->ucounts);
 383				info->ucounts = NULL;
 384				/* mqueue_evict_inode() releases info->messages */
 385				ret = -EMFILE;
 386				goto out_inode;
 387			}
 388			spin_unlock(&mq_lock);
 389		}
 
 
 
 
 
 390	} else if (S_ISDIR(mode)) {
 391		inc_nlink(inode);
 392		/* Some things misbehave if size == 0 on a directory */
 393		inode->i_size = 2 * DIRENT_SIZE;
 394		inode->i_op = &mqueue_dir_inode_operations;
 395		inode->i_fop = &simple_dir_operations;
 396	}
 397
 398	return inode;
 399out_inode:
 400	iput(inode);
 401err:
 402	return ERR_PTR(ret);
 403}
 404
 405static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 406{
 407	struct inode *inode;
 408	struct ipc_namespace *ns = sb->s_fs_info;
 409
 410	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 411	sb->s_blocksize = PAGE_SIZE;
 412	sb->s_blocksize_bits = PAGE_SHIFT;
 413	sb->s_magic = MQUEUE_MAGIC;
 414	sb->s_op = &mqueue_super_ops;
 415
 416	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 417	if (IS_ERR(inode))
 418		return PTR_ERR(inode);
 419
 420	sb->s_root = d_make_root(inode);
 421	if (!sb->s_root)
 422		return -ENOMEM;
 423	return 0;
 424}
 425
 426static int mqueue_get_tree(struct fs_context *fc)
 427{
 428	struct mqueue_fs_context *ctx = fc->fs_private;
 
 
 
 
 
 
 
 
 429
 430	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 431}
 432
 433static void mqueue_fs_context_free(struct fs_context *fc)
 434{
 435	struct mqueue_fs_context *ctx = fc->fs_private;
 436
 437	put_ipc_ns(ctx->ipc_ns);
 438	kfree(ctx);
 439}
 440
 441static int mqueue_init_fs_context(struct fs_context *fc)
 442{
 443	struct mqueue_fs_context *ctx;
 444
 445	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 446	if (!ctx)
 447		return -ENOMEM;
 448
 449	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 450	put_user_ns(fc->user_ns);
 451	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 452	fc->fs_private = ctx;
 453	fc->ops = &mqueue_fs_context_ops;
 454	return 0;
 455}
 456
 457static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 458{
 459	struct mqueue_fs_context *ctx;
 460	struct fs_context *fc;
 461	struct vfsmount *mnt;
 462
 463	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 464	if (IS_ERR(fc))
 465		return ERR_CAST(fc);
 466
 467	ctx = fc->fs_private;
 468	put_ipc_ns(ctx->ipc_ns);
 469	ctx->ipc_ns = get_ipc_ns(ns);
 470	put_user_ns(fc->user_ns);
 471	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 472
 473	mnt = fc_mount(fc);
 474	put_fs_context(fc);
 475	return mnt;
 476}
 477
 478static void init_once(void *foo)
 479{
 480	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 481
 482	inode_init_once(&p->vfs_inode);
 483}
 484
 485static struct inode *mqueue_alloc_inode(struct super_block *sb)
 486{
 487	struct mqueue_inode_info *ei;
 488
 489	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 490	if (!ei)
 491		return NULL;
 492	return &ei->vfs_inode;
 493}
 494
 495static void mqueue_free_inode(struct inode *inode)
 496{
 
 497	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 498}
 499
 
 
 
 
 
 500static void mqueue_evict_inode(struct inode *inode)
 501{
 502	struct mqueue_inode_info *info;
 
 
 503	struct ipc_namespace *ipc_ns;
 504	struct msg_msg *msg, *nmsg;
 505	LIST_HEAD(tmp_msg);
 506
 507	clear_inode(inode);
 508
 509	if (S_ISDIR(inode->i_mode))
 510		return;
 511
 512	ipc_ns = get_ns_from_inode(inode);
 513	info = MQUEUE_I(inode);
 514	spin_lock(&info->lock);
 515	while ((msg = msg_get(info)) != NULL)
 516		list_add_tail(&msg->m_list, &tmp_msg);
 517	kfree(info->node_cache);
 518	spin_unlock(&info->lock);
 519
 520	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 521		list_del(&msg->m_list);
 522		free_msg(msg);
 523	}
 524
 525	if (info->ucounts) {
 526		unsigned long mq_bytes, mq_treesize;
 527
 528		/* Total amount of bytes accounted for the mqueue */
 529		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 530			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 531			sizeof(struct posix_msg_tree_node);
 532
 533		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 534					  info->attr.mq_msgsize);
 535
 
 
 536		spin_lock(&mq_lock);
 537		dec_rlimit_ucounts(info->ucounts, UCOUNT_RLIMIT_MSGQUEUE, mq_bytes);
 538		/*
 539		 * get_ns_from_inode() ensures that the
 540		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 541		 * to which we now hold a reference, or it is NULL.
 542		 * We can't put it here under mq_lock, though.
 543		 */
 544		if (ipc_ns)
 545			ipc_ns->mq_queues_count--;
 546		spin_unlock(&mq_lock);
 547		put_ucounts(info->ucounts);
 548		info->ucounts = NULL;
 549	}
 550	if (ipc_ns)
 551		put_ipc_ns(ipc_ns);
 552}
 553
 554static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 555{
 556	struct inode *dir = dentry->d_parent->d_inode;
 557	struct inode *inode;
 558	struct mq_attr *attr = arg;
 559	int error;
 560	struct ipc_namespace *ipc_ns;
 561
 562	spin_lock(&mq_lock);
 563	ipc_ns = __get_ns_from_inode(dir);
 564	if (!ipc_ns) {
 565		error = -EACCES;
 566		goto out_unlock;
 567	}
 568
 569	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 570	    !capable(CAP_SYS_RESOURCE)) {
 571		error = -ENOSPC;
 572		goto out_unlock;
 573	}
 574	ipc_ns->mq_queues_count++;
 575	spin_unlock(&mq_lock);
 576
 577	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 578	if (IS_ERR(inode)) {
 579		error = PTR_ERR(inode);
 580		spin_lock(&mq_lock);
 581		ipc_ns->mq_queues_count--;
 582		goto out_unlock;
 583	}
 584
 585	put_ipc_ns(ipc_ns);
 586	dir->i_size += DIRENT_SIZE;
 587	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 588
 589	d_instantiate(dentry, inode);
 590	dget(dentry);
 591	return 0;
 592out_unlock:
 593	spin_unlock(&mq_lock);
 594	if (ipc_ns)
 595		put_ipc_ns(ipc_ns);
 596	return error;
 597}
 598
 599static int mqueue_create(struct user_namespace *mnt_userns, struct inode *dir,
 600			 struct dentry *dentry, umode_t mode, bool excl)
 601{
 602	return mqueue_create_attr(dentry, mode, NULL);
 603}
 604
 605static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 606{
 607	struct inode *inode = d_inode(dentry);
 608
 609	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 610	dir->i_size -= DIRENT_SIZE;
 611	drop_nlink(inode);
 612	dput(dentry);
 613	return 0;
 614}
 615
 616/*
 617*	This is routine for system read from queue file.
 618*	To avoid mess with doing here some sort of mq_receive we allow
 619*	to read only queue size & notification info (the only values
 620*	that are interesting from user point of view and aren't accessible
 621*	through std routines)
 622*/
 623static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 624				size_t count, loff_t *off)
 625{
 626	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 627	char buffer[FILENT_SIZE];
 628	ssize_t ret;
 629
 630	spin_lock(&info->lock);
 631	snprintf(buffer, sizeof(buffer),
 632			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 633			info->qsize,
 634			info->notify_owner ? info->notify.sigev_notify : 0,
 635			(info->notify_owner &&
 636			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 637				info->notify.sigev_signo : 0,
 638			pid_vnr(info->notify_owner));
 639	spin_unlock(&info->lock);
 640	buffer[sizeof(buffer)-1] = '\0';
 641
 642	ret = simple_read_from_buffer(u_data, count, off, buffer,
 643				strlen(buffer));
 644	if (ret <= 0)
 645		return ret;
 646
 647	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 648	return ret;
 649}
 650
 651static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 652{
 653	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 654
 655	spin_lock(&info->lock);
 656	if (task_tgid(current) == info->notify_owner)
 657		remove_notification(info);
 658
 659	spin_unlock(&info->lock);
 660	return 0;
 661}
 662
 663static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 664{
 665	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 666	__poll_t retval = 0;
 667
 668	poll_wait(filp, &info->wait_q, poll_tab);
 669
 670	spin_lock(&info->lock);
 671	if (info->attr.mq_curmsgs)
 672		retval = EPOLLIN | EPOLLRDNORM;
 673
 674	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 675		retval |= EPOLLOUT | EPOLLWRNORM;
 676	spin_unlock(&info->lock);
 677
 678	return retval;
 679}
 680
 681/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 682static void wq_add(struct mqueue_inode_info *info, int sr,
 683			struct ext_wait_queue *ewp)
 684{
 685	struct ext_wait_queue *walk;
 686
 
 
 687	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 688		if (walk->task->prio <= current->prio) {
 689			list_add_tail(&ewp->list, &walk->list);
 690			return;
 691		}
 692	}
 693	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 694}
 695
 696/*
 697 * Puts current task to sleep. Caller must hold queue lock. After return
 698 * lock isn't held.
 699 * sr: SEND or RECV
 700 */
 701static int wq_sleep(struct mqueue_inode_info *info, int sr,
 702		    ktime_t *timeout, struct ext_wait_queue *ewp)
 703	__releases(&info->lock)
 704{
 705	int retval;
 706	signed long time;
 707
 708	wq_add(info, sr, ewp);
 709
 710	for (;;) {
 711		/* memory barrier not required, we hold info->lock */
 712		__set_current_state(TASK_INTERRUPTIBLE);
 713
 714		spin_unlock(&info->lock);
 715		time = schedule_hrtimeout_range_clock(timeout, 0,
 716			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 717
 718		if (READ_ONCE(ewp->state) == STATE_READY) {
 719			/* see MQ_BARRIER for purpose/pairing */
 720			smp_acquire__after_ctrl_dep();
 721			retval = 0;
 722			goto out;
 723		}
 724		spin_lock(&info->lock);
 725
 726		/* we hold info->lock, so no memory barrier required */
 727		if (READ_ONCE(ewp->state) == STATE_READY) {
 728			retval = 0;
 729			goto out_unlock;
 730		}
 731		if (signal_pending(current)) {
 732			retval = -ERESTARTSYS;
 733			break;
 734		}
 735		if (time == 0) {
 736			retval = -ETIMEDOUT;
 737			break;
 738		}
 739	}
 740	list_del(&ewp->list);
 741out_unlock:
 742	spin_unlock(&info->lock);
 743out:
 744	return retval;
 745}
 746
 747/*
 748 * Returns waiting task that should be serviced first or NULL if none exists
 749 */
 750static struct ext_wait_queue *wq_get_first_waiter(
 751		struct mqueue_inode_info *info, int sr)
 752{
 753	struct list_head *ptr;
 754
 755	ptr = info->e_wait_q[sr].list.prev;
 756	if (ptr == &info->e_wait_q[sr].list)
 757		return NULL;
 758	return list_entry(ptr, struct ext_wait_queue, list);
 759}
 760
 761
 762static inline void set_cookie(struct sk_buff *skb, char code)
 763{
 764	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 765}
 766
 767/*
 768 * The next function is only to split too long sys_mq_timedsend
 769 */
 770static void __do_notify(struct mqueue_inode_info *info)
 771{
 772	/* notification
 773	 * invoked when there is registered process and there isn't process
 774	 * waiting synchronously for message AND state of queue changed from
 775	 * empty to not empty. Here we are sure that no one is waiting
 776	 * synchronously. */
 777	if (info->notify_owner &&
 778	    info->attr.mq_curmsgs == 1) {
 
 779		switch (info->notify.sigev_notify) {
 780		case SIGEV_NONE:
 781			break;
 782		case SIGEV_SIGNAL: {
 783			struct kernel_siginfo sig_i;
 784			struct task_struct *task;
 785
 786			/* do_mq_notify() accepts sigev_signo == 0, why?? */
 787			if (!info->notify.sigev_signo)
 788				break;
 789
 790			clear_siginfo(&sig_i);
 791			sig_i.si_signo = info->notify.sigev_signo;
 792			sig_i.si_errno = 0;
 793			sig_i.si_code = SI_MESGQ;
 794			sig_i.si_value = info->notify.sigev_value;
 
 795			rcu_read_lock();
 796			/* map current pid/uid into info->owner's namespaces */
 797			sig_i.si_pid = task_tgid_nr_ns(current,
 798						ns_of_pid(info->notify_owner));
 799			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
 800						current_uid());
 801			/*
 802			 * We can't use kill_pid_info(), this signal should
 803			 * bypass check_kill_permission(). It is from kernel
 804			 * but si_fromuser() can't know this.
 805			 * We do check the self_exec_id, to avoid sending
 806			 * signals to programs that don't expect them.
 807			 */
 808			task = pid_task(info->notify_owner, PIDTYPE_TGID);
 809			if (task && task->self_exec_id ==
 810						info->notify_self_exec_id) {
 811				do_send_sig_info(info->notify.sigev_signo,
 812						&sig_i, task, PIDTYPE_TGID);
 813			}
 814			rcu_read_unlock();
 
 
 
 815			break;
 816		}
 817		case SIGEV_THREAD:
 818			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 819			netlink_sendskb(info->notify_sock, info->notify_cookie);
 820			break;
 821		}
 822		/* after notification unregisters process */
 823		put_pid(info->notify_owner);
 824		put_user_ns(info->notify_user_ns);
 825		info->notify_owner = NULL;
 826		info->notify_user_ns = NULL;
 827	}
 828	wake_up(&info->wait_q);
 829}
 830
 831static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 832			   struct timespec64 *ts)
 833{
 834	if (get_timespec64(ts, u_abs_timeout))
 835		return -EFAULT;
 836	if (!timespec64_valid(ts))
 837		return -EINVAL;
 
 
 838	return 0;
 839}
 840
 841static void remove_notification(struct mqueue_inode_info *info)
 842{
 843	if (info->notify_owner != NULL &&
 844	    info->notify.sigev_notify == SIGEV_THREAD) {
 845		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 846		netlink_sendskb(info->notify_sock, info->notify_cookie);
 847	}
 848	put_pid(info->notify_owner);
 849	put_user_ns(info->notify_user_ns);
 850	info->notify_owner = NULL;
 851	info->notify_user_ns = NULL;
 852}
 853
 854static int prepare_open(struct dentry *dentry, int oflag, int ro,
 855			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856			struct mq_attr *attr)
 857{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 859						  MAY_READ | MAY_WRITE };
 860	int acc;
 861
 862	if (d_really_is_negative(dentry)) {
 863		if (!(oflag & O_CREAT))
 864			return -ENOENT;
 865		if (ro)
 866			return ro;
 867		audit_inode_parent_hidden(name, dentry->d_parent);
 868		return vfs_mkobj(dentry, mode & ~current_umask(),
 869				  mqueue_create_attr, attr);
 870	}
 871	/* it already existed */
 872	audit_inode(name, dentry, 0);
 873	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 874		return -EEXIST;
 875	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 876		return -EINVAL;
 877	acc = oflag2acc[oflag & O_ACCMODE];
 878	return inode_permission(&init_user_ns, d_inode(dentry), acc);
 
 
 879}
 880
 881static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 882		      struct mq_attr *attr)
 883{
 884	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 885	struct dentry *root = mnt->mnt_root;
 886	struct filename *name;
 887	struct path path;
 888	int fd, error;
 
 
 
 889	int ro;
 890
 891	audit_mq_open(oflag, mode, attr);
 
 
 
 892
 893	if (IS_ERR(name = getname(u_name)))
 894		return PTR_ERR(name);
 895
 896	fd = get_unused_fd_flags(O_CLOEXEC);
 897	if (fd < 0)
 898		goto out_putname;
 899
 900	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 901	inode_lock(d_inode(root));
 902	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 903	if (IS_ERR(path.dentry)) {
 904		error = PTR_ERR(path.dentry);
 905		goto out_putfd;
 906	}
 907	path.mnt = mntget(mnt);
 908	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 909	if (!error) {
 910		struct file *file = dentry_open(&path, oflag, current_cred());
 911		if (!IS_ERR(file))
 912			fd_install(fd, file);
 913		else
 914			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915	}
 
 
 
 
 
 
 916	path_put(&path);
 917out_putfd:
 918	if (error) {
 919		put_unused_fd(fd);
 920		fd = error;
 921	}
 922	inode_unlock(d_inode(root));
 923	if (!ro)
 924		mnt_drop_write(mnt);
 925out_putname:
 926	putname(name);
 927	return fd;
 928}
 929
 930SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 931		struct mq_attr __user *, u_attr)
 932{
 933	struct mq_attr attr;
 934	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 935		return -EFAULT;
 936
 937	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 938}
 939
 940SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 941{
 942	int err;
 943	struct filename *name;
 944	struct dentry *dentry;
 945	struct inode *inode = NULL;
 946	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 947	struct vfsmount *mnt = ipc_ns->mq_mnt;
 948
 949	name = getname(u_name);
 950	if (IS_ERR(name))
 951		return PTR_ERR(name);
 952
 953	audit_inode_parent_hidden(name, mnt->mnt_root);
 954	err = mnt_want_write(mnt);
 955	if (err)
 956		goto out_name;
 957	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 958	dentry = lookup_one_len(name->name, mnt->mnt_root,
 959				strlen(name->name));
 960	if (IS_ERR(dentry)) {
 961		err = PTR_ERR(dentry);
 962		goto out_unlock;
 963	}
 964
 965	inode = d_inode(dentry);
 966	if (!inode) {
 967		err = -ENOENT;
 968	} else {
 969		ihold(inode);
 970		err = vfs_unlink(&init_user_ns, d_inode(dentry->d_parent),
 971				 dentry, NULL);
 972	}
 973	dput(dentry);
 974
 975out_unlock:
 976	inode_unlock(d_inode(mnt->mnt_root));
 977	if (inode)
 978		iput(inode);
 979	mnt_drop_write(mnt);
 980out_name:
 981	putname(name);
 982
 983	return err;
 984}
 985
 986/* Pipelined send and receive functions.
 987 *
 988 * If a receiver finds no waiting message, then it registers itself in the
 989 * list of waiting receivers. A sender checks that list before adding the new
 990 * message into the message array. If there is a waiting receiver, then it
 991 * bypasses the message array and directly hands the message over to the
 992 * receiver. The receiver accepts the message and returns without grabbing the
 993 * queue spinlock:
 994 *
 995 * - Set pointer to message.
 996 * - Queue the receiver task for later wakeup (without the info->lock).
 997 * - Update its state to STATE_READY. Now the receiver can continue.
 998 * - Wake up the process after the lock is dropped. Should the process wake up
 999 *   before this wakeup (due to a timeout or a signal) it will either see
1000 *   STATE_READY and continue or acquire the lock to check the state again.
1001 *
1002 * The same algorithm is used for senders.
1003 */
1004
1005static inline void __pipelined_op(struct wake_q_head *wake_q,
1006				  struct mqueue_inode_info *info,
1007				  struct ext_wait_queue *this)
1008{
1009	struct task_struct *task;
1010
1011	list_del(&this->list);
1012	task = get_task_struct(this->task);
1013
1014	/* see MQ_BARRIER for purpose/pairing */
1015	smp_store_release(&this->state, STATE_READY);
1016	wake_q_add_safe(wake_q, task);
1017}
1018
1019/* pipelined_send() - send a message directly to the task waiting in
1020 * sys_mq_timedreceive() (without inserting message into a queue).
1021 */
1022static inline void pipelined_send(struct wake_q_head *wake_q,
1023				  struct mqueue_inode_info *info,
1024				  struct msg_msg *message,
1025				  struct ext_wait_queue *receiver)
1026{
1027	receiver->msg = message;
1028	__pipelined_op(wake_q, info, receiver);
 
 
 
 
 
 
 
 
 
 
1029}
1030
1031/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1032 * gets its message and put to the queue (we have one free place for sure). */
1033static inline void pipelined_receive(struct wake_q_head *wake_q,
1034				     struct mqueue_inode_info *info)
1035{
1036	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1037
1038	if (!sender) {
1039		/* for poll */
1040		wake_up_interruptible(&info->wait_q);
1041		return;
1042	}
1043	if (msg_insert(sender->msg, info))
1044		return;
1045
1046	__pipelined_op(wake_q, info, sender);
 
 
1047}
1048
1049static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1050		size_t msg_len, unsigned int msg_prio,
1051		struct timespec64 *ts)
1052{
1053	struct fd f;
1054	struct inode *inode;
1055	struct ext_wait_queue wait;
1056	struct ext_wait_queue *receiver;
1057	struct msg_msg *msg_ptr;
1058	struct mqueue_inode_info *info;
1059	ktime_t expires, *timeout = NULL;
 
1060	struct posix_msg_tree_node *new_leaf = NULL;
1061	int ret = 0;
1062	DEFINE_WAKE_Q(wake_q);
 
 
 
 
 
 
 
1063
1064	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1065		return -EINVAL;
1066
1067	if (ts) {
1068		expires = timespec64_to_ktime(*ts);
1069		timeout = &expires;
1070	}
1071
1072	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1073
1074	f = fdget(mqdes);
1075	if (unlikely(!f.file)) {
1076		ret = -EBADF;
1077		goto out;
1078	}
1079
1080	inode = file_inode(f.file);
1081	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1082		ret = -EBADF;
1083		goto out_fput;
1084	}
1085	info = MQUEUE_I(inode);
1086	audit_file(f.file);
1087
1088	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1089		ret = -EBADF;
1090		goto out_fput;
1091	}
1092
1093	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1094		ret = -EMSGSIZE;
1095		goto out_fput;
1096	}
1097
1098	/* First try to allocate memory, before doing anything with
1099	 * existing queues. */
1100	msg_ptr = load_msg(u_msg_ptr, msg_len);
1101	if (IS_ERR(msg_ptr)) {
1102		ret = PTR_ERR(msg_ptr);
1103		goto out_fput;
1104	}
1105	msg_ptr->m_ts = msg_len;
1106	msg_ptr->m_type = msg_prio;
1107
1108	/*
1109	 * msg_insert really wants us to have a valid, spare node struct so
1110	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1111	 * fall back to that if necessary.
1112	 */
1113	if (!info->node_cache)
1114		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1115
1116	spin_lock(&info->lock);
1117
1118	if (!info->node_cache && new_leaf) {
1119		/* Save our speculative allocation into the cache */
1120		INIT_LIST_HEAD(&new_leaf->msg_list);
1121		info->node_cache = new_leaf;
1122		new_leaf = NULL;
1123	} else {
1124		kfree(new_leaf);
1125	}
1126
1127	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1128		if (f.file->f_flags & O_NONBLOCK) {
1129			ret = -EAGAIN;
1130		} else {
1131			wait.task = current;
1132			wait.msg = (void *) msg_ptr;
1133
1134			/* memory barrier not required, we hold info->lock */
1135			WRITE_ONCE(wait.state, STATE_NONE);
1136			ret = wq_sleep(info, SEND, timeout, &wait);
1137			/*
1138			 * wq_sleep must be called with info->lock held, and
1139			 * returns with the lock released
1140			 */
1141			goto out_free;
1142		}
1143	} else {
1144		receiver = wq_get_first_waiter(info, RECV);
1145		if (receiver) {
1146			pipelined_send(&wake_q, info, msg_ptr, receiver);
1147		} else {
1148			/* adds message to the queue */
1149			ret = msg_insert(msg_ptr, info);
1150			if (ret)
1151				goto out_unlock;
1152			__do_notify(info);
1153		}
1154		inode->i_atime = inode->i_mtime = inode->i_ctime =
1155				current_time(inode);
1156	}
1157out_unlock:
1158	spin_unlock(&info->lock);
1159	wake_up_q(&wake_q);
1160out_free:
1161	if (ret)
1162		free_msg(msg_ptr);
1163out_fput:
1164	fdput(f);
1165out:
1166	return ret;
1167}
1168
1169static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1170		size_t msg_len, unsigned int __user *u_msg_prio,
1171		struct timespec64 *ts)
1172{
1173	ssize_t ret;
1174	struct msg_msg *msg_ptr;
1175	struct fd f;
1176	struct inode *inode;
1177	struct mqueue_inode_info *info;
1178	struct ext_wait_queue wait;
1179	ktime_t expires, *timeout = NULL;
 
1180	struct posix_msg_tree_node *new_leaf = NULL;
1181
1182	if (ts) {
1183		expires = timespec64_to_ktime(*ts);
 
 
1184		timeout = &expires;
1185	}
1186
1187	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1188
1189	f = fdget(mqdes);
1190	if (unlikely(!f.file)) {
1191		ret = -EBADF;
1192		goto out;
1193	}
1194
1195	inode = file_inode(f.file);
1196	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1197		ret = -EBADF;
1198		goto out_fput;
1199	}
1200	info = MQUEUE_I(inode);
1201	audit_file(f.file);
1202
1203	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1204		ret = -EBADF;
1205		goto out_fput;
1206	}
1207
1208	/* checks if buffer is big enough */
1209	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1210		ret = -EMSGSIZE;
1211		goto out_fput;
1212	}
1213
1214	/*
1215	 * msg_insert really wants us to have a valid, spare node struct so
1216	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1217	 * fall back to that if necessary.
1218	 */
1219	if (!info->node_cache)
1220		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1221
1222	spin_lock(&info->lock);
1223
1224	if (!info->node_cache && new_leaf) {
1225		/* Save our speculative allocation into the cache */
1226		INIT_LIST_HEAD(&new_leaf->msg_list);
1227		info->node_cache = new_leaf;
1228	} else {
1229		kfree(new_leaf);
1230	}
1231
1232	if (info->attr.mq_curmsgs == 0) {
1233		if (f.file->f_flags & O_NONBLOCK) {
1234			spin_unlock(&info->lock);
1235			ret = -EAGAIN;
1236		} else {
1237			wait.task = current;
1238
1239			/* memory barrier not required, we hold info->lock */
1240			WRITE_ONCE(wait.state, STATE_NONE);
1241			ret = wq_sleep(info, RECV, timeout, &wait);
1242			msg_ptr = wait.msg;
1243		}
1244	} else {
1245		DEFINE_WAKE_Q(wake_q);
1246
1247		msg_ptr = msg_get(info);
1248
1249		inode->i_atime = inode->i_mtime = inode->i_ctime =
1250				current_time(inode);
1251
1252		/* There is now free space in queue. */
1253		pipelined_receive(&wake_q, info);
1254		spin_unlock(&info->lock);
1255		wake_up_q(&wake_q);
1256		ret = 0;
1257	}
1258	if (ret == 0) {
1259		ret = msg_ptr->m_ts;
1260
1261		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1262			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1263			ret = -EFAULT;
1264		}
1265		free_msg(msg_ptr);
1266	}
1267out_fput:
1268	fdput(f);
1269out:
1270	return ret;
1271}
1272
1273SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1274		size_t, msg_len, unsigned int, msg_prio,
1275		const struct __kernel_timespec __user *, u_abs_timeout)
1276{
1277	struct timespec64 ts, *p = NULL;
1278	if (u_abs_timeout) {
1279		int res = prepare_timeout(u_abs_timeout, &ts);
1280		if (res)
1281			return res;
1282		p = &ts;
1283	}
1284	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1285}
1286
1287SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1288		size_t, msg_len, unsigned int __user *, u_msg_prio,
1289		const struct __kernel_timespec __user *, u_abs_timeout)
1290{
1291	struct timespec64 ts, *p = NULL;
1292	if (u_abs_timeout) {
1293		int res = prepare_timeout(u_abs_timeout, &ts);
1294		if (res)
1295			return res;
1296		p = &ts;
1297	}
1298	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1299}
1300
1301/*
1302 * Notes: the case when user wants us to deregister (with NULL as pointer)
1303 * and he isn't currently owner of notification, will be silently discarded.
1304 * It isn't explicitly defined in the POSIX.
1305 */
1306static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1307{
1308	int ret;
1309	struct fd f;
1310	struct sock *sock;
1311	struct inode *inode;
 
1312	struct mqueue_inode_info *info;
1313	struct sk_buff *nc;
1314
1315	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1316
1317	nc = NULL;
1318	sock = NULL;
1319	if (notification != NULL) {
1320		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1321			     notification->sigev_notify != SIGEV_SIGNAL &&
1322			     notification->sigev_notify != SIGEV_THREAD))
1323			return -EINVAL;
1324		if (notification->sigev_notify == SIGEV_SIGNAL &&
1325			!valid_signal(notification->sigev_signo)) {
1326			return -EINVAL;
1327		}
1328		if (notification->sigev_notify == SIGEV_THREAD) {
1329			long timeo;
1330
1331			/* create the notify skb */
1332			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1333			if (!nc)
1334				return -ENOMEM;
1335
 
1336			if (copy_from_user(nc->data,
1337					notification->sigev_value.sival_ptr,
1338					NOTIFY_COOKIE_LEN)) {
1339				ret = -EFAULT;
1340				goto free_skb;
1341			}
1342
1343			/* TODO: add a header? */
1344			skb_put(nc, NOTIFY_COOKIE_LEN);
1345			/* and attach it to the socket */
1346retry:
1347			f = fdget(notification->sigev_signo);
1348			if (!f.file) {
1349				ret = -EBADF;
1350				goto out;
1351			}
1352			sock = netlink_getsockbyfilp(f.file);
1353			fdput(f);
1354			if (IS_ERR(sock)) {
1355				ret = PTR_ERR(sock);
1356				goto free_skb;
 
1357			}
1358
1359			timeo = MAX_SCHEDULE_TIMEOUT;
1360			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1361			if (ret == 1) {
 
 
1362				sock = NULL;
1363				goto retry;
 
1364			}
1365			if (ret)
1366				return ret;
1367		}
1368	}
1369
1370	f = fdget(mqdes);
1371	if (!f.file) {
1372		ret = -EBADF;
1373		goto out;
1374	}
1375
1376	inode = file_inode(f.file);
1377	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1378		ret = -EBADF;
1379		goto out_fput;
1380	}
1381	info = MQUEUE_I(inode);
1382
1383	ret = 0;
1384	spin_lock(&info->lock);
1385	if (notification == NULL) {
1386		if (info->notify_owner == task_tgid(current)) {
1387			remove_notification(info);
1388			inode->i_atime = inode->i_ctime = current_time(inode);
1389		}
1390	} else if (info->notify_owner != NULL) {
1391		ret = -EBUSY;
1392	} else {
1393		switch (notification->sigev_notify) {
1394		case SIGEV_NONE:
1395			info->notify.sigev_notify = SIGEV_NONE;
1396			break;
1397		case SIGEV_THREAD:
1398			info->notify_sock = sock;
1399			info->notify_cookie = nc;
1400			sock = NULL;
1401			nc = NULL;
1402			info->notify.sigev_notify = SIGEV_THREAD;
1403			break;
1404		case SIGEV_SIGNAL:
1405			info->notify.sigev_signo = notification->sigev_signo;
1406			info->notify.sigev_value = notification->sigev_value;
1407			info->notify.sigev_notify = SIGEV_SIGNAL;
1408			info->notify_self_exec_id = current->self_exec_id;
1409			break;
1410		}
1411
1412		info->notify_owner = get_pid(task_tgid(current));
1413		info->notify_user_ns = get_user_ns(current_user_ns());
1414		inode->i_atime = inode->i_ctime = current_time(inode);
1415	}
1416	spin_unlock(&info->lock);
1417out_fput:
1418	fdput(f);
1419out:
1420	if (sock)
1421		netlink_detachskb(sock, nc);
1422	else
1423free_skb:
1424		dev_kfree_skb(nc);
1425
1426	return ret;
1427}
1428
1429SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1430		const struct sigevent __user *, u_notification)
1431{
1432	struct sigevent n, *p = NULL;
1433	if (u_notification) {
1434		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1435			return -EFAULT;
1436		p = &n;
1437	}
1438	return do_mq_notify(mqdes, p);
1439}
1440
1441static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1442{
 
 
1443	struct fd f;
1444	struct inode *inode;
1445	struct mqueue_inode_info *info;
1446
1447	if (new && (new->mq_flags & (~O_NONBLOCK)))
1448		return -EINVAL;
 
 
 
 
1449
1450	f = fdget(mqdes);
1451	if (!f.file)
1452		return -EBADF;
 
 
1453
 
1454	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1455		fdput(f);
1456		return -EBADF;
1457	}
1458
1459	inode = file_inode(f.file);
1460	info = MQUEUE_I(inode);
1461
1462	spin_lock(&info->lock);
1463
1464	if (old) {
1465		*old = info->attr;
1466		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1467	}
1468	if (new) {
1469		audit_mq_getsetattr(mqdes, new);
1470		spin_lock(&f.file->f_lock);
1471		if (new->mq_flags & O_NONBLOCK)
1472			f.file->f_flags |= O_NONBLOCK;
1473		else
1474			f.file->f_flags &= ~O_NONBLOCK;
1475		spin_unlock(&f.file->f_lock);
1476
1477		inode->i_atime = inode->i_ctime = current_time(inode);
1478	}
1479
1480	spin_unlock(&info->lock);
1481	fdput(f);
1482	return 0;
1483}
1484
1485SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1486		const struct mq_attr __user *, u_mqstat,
1487		struct mq_attr __user *, u_omqstat)
1488{
1489	int ret;
1490	struct mq_attr mqstat, omqstat;
1491	struct mq_attr *new = NULL, *old = NULL;
1492
1493	if (u_mqstat) {
1494		new = &mqstat;
1495		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1496			return -EFAULT;
1497	}
1498	if (u_omqstat)
1499		old = &omqstat;
1500
1501	ret = do_mq_getsetattr(mqdes, new, old);
1502	if (ret || !old)
1503		return ret;
1504
1505	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1506		return -EFAULT;
1507	return 0;
1508}
1509
1510#ifdef CONFIG_COMPAT
1511
1512struct compat_mq_attr {
1513	compat_long_t mq_flags;      /* message queue flags		     */
1514	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1515	compat_long_t mq_msgsize;    /* maximum message size		     */
1516	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1517	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1518};
1519
1520static inline int get_compat_mq_attr(struct mq_attr *attr,
1521			const struct compat_mq_attr __user *uattr)
1522{
1523	struct compat_mq_attr v;
1524
1525	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1526		return -EFAULT;
1527
1528	memset(attr, 0, sizeof(*attr));
1529	attr->mq_flags = v.mq_flags;
1530	attr->mq_maxmsg = v.mq_maxmsg;
1531	attr->mq_msgsize = v.mq_msgsize;
1532	attr->mq_curmsgs = v.mq_curmsgs;
1533	return 0;
1534}
1535
1536static inline int put_compat_mq_attr(const struct mq_attr *attr,
1537			struct compat_mq_attr __user *uattr)
1538{
1539	struct compat_mq_attr v;
1540
1541	memset(&v, 0, sizeof(v));
1542	v.mq_flags = attr->mq_flags;
1543	v.mq_maxmsg = attr->mq_maxmsg;
1544	v.mq_msgsize = attr->mq_msgsize;
1545	v.mq_curmsgs = attr->mq_curmsgs;
1546	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1547		return -EFAULT;
1548	return 0;
1549}
1550
1551COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1552		       int, oflag, compat_mode_t, mode,
1553		       struct compat_mq_attr __user *, u_attr)
1554{
1555	struct mq_attr attr, *p = NULL;
1556	if (u_attr && oflag & O_CREAT) {
1557		p = &attr;
1558		if (get_compat_mq_attr(&attr, u_attr))
1559			return -EFAULT;
1560	}
1561	return do_mq_open(u_name, oflag, mode, p);
1562}
1563
1564COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1565		       const struct compat_sigevent __user *, u_notification)
1566{
1567	struct sigevent n, *p = NULL;
1568	if (u_notification) {
1569		if (get_compat_sigevent(&n, u_notification))
1570			return -EFAULT;
1571		if (n.sigev_notify == SIGEV_THREAD)
1572			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1573		p = &n;
1574	}
1575	return do_mq_notify(mqdes, p);
1576}
1577
1578COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1579		       const struct compat_mq_attr __user *, u_mqstat,
1580		       struct compat_mq_attr __user *, u_omqstat)
1581{
1582	int ret;
1583	struct mq_attr mqstat, omqstat;
1584	struct mq_attr *new = NULL, *old = NULL;
1585
1586	if (u_mqstat) {
1587		new = &mqstat;
1588		if (get_compat_mq_attr(new, u_mqstat))
1589			return -EFAULT;
1590	}
1591	if (u_omqstat)
1592		old = &omqstat;
1593
1594	ret = do_mq_getsetattr(mqdes, new, old);
1595	if (ret || !old)
1596		return ret;
1597
1598	if (put_compat_mq_attr(old, u_omqstat))
1599		return -EFAULT;
1600	return 0;
1601}
1602#endif
1603
1604#ifdef CONFIG_COMPAT_32BIT_TIME
1605static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1606				   struct timespec64 *ts)
1607{
1608	if (get_old_timespec32(ts, p))
1609		return -EFAULT;
1610	if (!timespec64_valid(ts))
1611		return -EINVAL;
1612	return 0;
1613}
1614
1615SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1616		const char __user *, u_msg_ptr,
1617		unsigned int, msg_len, unsigned int, msg_prio,
1618		const struct old_timespec32 __user *, u_abs_timeout)
1619{
1620	struct timespec64 ts, *p = NULL;
1621	if (u_abs_timeout) {
1622		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1623		if (res)
1624			return res;
1625		p = &ts;
1626	}
1627	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1628}
1629
1630SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1631		char __user *, u_msg_ptr,
1632		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1633		const struct old_timespec32 __user *, u_abs_timeout)
1634{
1635	struct timespec64 ts, *p = NULL;
1636	if (u_abs_timeout) {
1637		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1638		if (res)
1639			return res;
1640		p = &ts;
1641	}
1642	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1643}
1644#endif
1645
1646static const struct inode_operations mqueue_dir_inode_operations = {
1647	.lookup = simple_lookup,
1648	.create = mqueue_create,
1649	.unlink = mqueue_unlink,
1650};
1651
1652static const struct file_operations mqueue_file_operations = {
1653	.flush = mqueue_flush_file,
1654	.poll = mqueue_poll_file,
1655	.read = mqueue_read_file,
1656	.llseek = default_llseek,
1657};
1658
1659static const struct super_operations mqueue_super_ops = {
1660	.alloc_inode = mqueue_alloc_inode,
1661	.free_inode = mqueue_free_inode,
1662	.evict_inode = mqueue_evict_inode,
1663	.statfs = simple_statfs,
1664};
1665
1666static const struct fs_context_operations mqueue_fs_context_ops = {
1667	.free		= mqueue_fs_context_free,
1668	.get_tree	= mqueue_get_tree,
1669};
1670
1671static struct file_system_type mqueue_fs_type = {
1672	.name			= "mqueue",
1673	.init_fs_context	= mqueue_init_fs_context,
1674	.kill_sb		= kill_litter_super,
1675	.fs_flags		= FS_USERNS_MOUNT,
1676};
1677
1678int mq_init_ns(struct ipc_namespace *ns)
1679{
1680	struct vfsmount *m;
1681
1682	ns->mq_queues_count  = 0;
1683	ns->mq_queues_max    = DFLT_QUEUESMAX;
1684	ns->mq_msg_max       = DFLT_MSGMAX;
1685	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1686	ns->mq_msg_default   = DFLT_MSG;
1687	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1688
1689	m = mq_create_mount(ns);
1690	if (IS_ERR(m))
1691		return PTR_ERR(m);
1692	ns->mq_mnt = m;
 
 
1693	return 0;
1694}
1695
1696void mq_clear_sbinfo(struct ipc_namespace *ns)
1697{
1698	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1699}
1700
1701void mq_put_mnt(struct ipc_namespace *ns)
1702{
1703	kern_unmount(ns->mq_mnt);
1704}
1705
1706static int __init init_mqueue_fs(void)
1707{
1708	int error;
1709
1710	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1711				sizeof(struct mqueue_inode_info), 0,
1712				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1713	if (mqueue_inode_cachep == NULL)
1714		return -ENOMEM;
1715
1716	/* ignore failures - they are not fatal */
1717	mq_sysctl_table = mq_register_sysctl_table();
1718
1719	error = register_filesystem(&mqueue_fs_type);
1720	if (error)
1721		goto out_sysctl;
1722
1723	spin_lock_init(&mq_lock);
1724
1725	error = mq_init_ns(&init_ipc_ns);
1726	if (error)
1727		goto out_filesystem;
1728
1729	return 0;
1730
1731out_filesystem:
1732	unregister_filesystem(&mqueue_fs_type);
1733out_sysctl:
1734	if (mq_sysctl_table)
1735		unregister_sysctl_table(mq_sysctl_table);
1736	kmem_cache_destroy(mqueue_inode_cachep);
1737	return error;
1738}
1739
1740device_initcall(init_mqueue_fs);