Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = data;
 309
 
 310	sb->s_blocksize = PAGE_SIZE;
 311	sb->s_blocksize_bits = PAGE_SHIFT;
 312	sb->s_magic = MQUEUE_MAGIC;
 313	sb->s_op = &mqueue_super_ops;
 314
 315	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 316	if (IS_ERR(inode))
 317		return PTR_ERR(inode);
 318
 319	sb->s_root = d_make_root(inode);
 320	if (!sb->s_root)
 321		return -ENOMEM;
 322	return 0;
 323}
 324
 325static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name,
 327			 void *data)
 328{
 329	if (!(flags & MS_KERNMOUNT)) {
 330		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
 331		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
 332		 * over the ipc namespace.
 333		 */
 334		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
 335			return ERR_PTR(-EPERM);
 336
 337		data = ns;
 338	}
 339	return mount_ns(fs_type, flags, data, mqueue_fill_super);
 340}
 341
 342static void init_once(void *foo)
 343{
 344	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 345
 346	inode_init_once(&p->vfs_inode);
 347}
 348
 349static struct inode *mqueue_alloc_inode(struct super_block *sb)
 350{
 351	struct mqueue_inode_info *ei;
 352
 353	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 354	if (!ei)
 355		return NULL;
 356	return &ei->vfs_inode;
 357}
 358
 359static void mqueue_i_callback(struct rcu_head *head)
 360{
 361	struct inode *inode = container_of(head, struct inode, i_rcu);
 362	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 363}
 364
 365static void mqueue_destroy_inode(struct inode *inode)
 366{
 367	call_rcu(&inode->i_rcu, mqueue_i_callback);
 368}
 369
 370static void mqueue_evict_inode(struct inode *inode)
 371{
 372	struct mqueue_inode_info *info;
 373	struct user_struct *user;
 374	unsigned long mq_bytes, mq_treesize;
 375	struct ipc_namespace *ipc_ns;
 376	struct msg_msg *msg;
 377
 378	clear_inode(inode);
 379
 380	if (S_ISDIR(inode->i_mode))
 381		return;
 382
 383	ipc_ns = get_ns_from_inode(inode);
 384	info = MQUEUE_I(inode);
 385	spin_lock(&info->lock);
 386	while ((msg = msg_get(info)) != NULL)
 387		free_msg(msg);
 388	kfree(info->node_cache);
 389	spin_unlock(&info->lock);
 390
 391	/* Total amount of bytes accounted for the mqueue */
 392	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 393		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 394		sizeof(struct posix_msg_tree_node);
 395
 396	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 397				  info->attr.mq_msgsize);
 398
 399	user = info->user;
 400	if (user) {
 401		spin_lock(&mq_lock);
 402		user->mq_bytes -= mq_bytes;
 403		/*
 404		 * get_ns_from_inode() ensures that the
 405		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 406		 * to which we now hold a reference, or it is NULL.
 407		 * We can't put it here under mq_lock, though.
 408		 */
 409		if (ipc_ns)
 410			ipc_ns->mq_queues_count--;
 411		spin_unlock(&mq_lock);
 412		free_uid(user);
 413	}
 414	if (ipc_ns)
 415		put_ipc_ns(ipc_ns);
 416}
 417
 418static int mqueue_create(struct inode *dir, struct dentry *dentry,
 419				umode_t mode, bool excl)
 420{
 421	struct inode *inode;
 422	struct mq_attr *attr = dentry->d_fsdata;
 423	int error;
 424	struct ipc_namespace *ipc_ns;
 425
 426	spin_lock(&mq_lock);
 427	ipc_ns = __get_ns_from_inode(dir);
 428	if (!ipc_ns) {
 429		error = -EACCES;
 430		goto out_unlock;
 431	}
 432
 433	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 434	    !capable(CAP_SYS_RESOURCE)) {
 435		error = -ENOSPC;
 436		goto out_unlock;
 437	}
 438	ipc_ns->mq_queues_count++;
 439	spin_unlock(&mq_lock);
 440
 441	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 442	if (IS_ERR(inode)) {
 443		error = PTR_ERR(inode);
 444		spin_lock(&mq_lock);
 445		ipc_ns->mq_queues_count--;
 446		goto out_unlock;
 447	}
 448
 449	put_ipc_ns(ipc_ns);
 450	dir->i_size += DIRENT_SIZE;
 451	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 452
 453	d_instantiate(dentry, inode);
 454	dget(dentry);
 455	return 0;
 456out_unlock:
 457	spin_unlock(&mq_lock);
 458	if (ipc_ns)
 459		put_ipc_ns(ipc_ns);
 460	return error;
 461}
 462
 463static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 464{
 465	struct inode *inode = d_inode(dentry);
 466
 467	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 468	dir->i_size -= DIRENT_SIZE;
 469	drop_nlink(inode);
 470	dput(dentry);
 471	return 0;
 472}
 473
 474/*
 475*	This is routine for system read from queue file.
 476*	To avoid mess with doing here some sort of mq_receive we allow
 477*	to read only queue size & notification info (the only values
 478*	that are interesting from user point of view and aren't accessible
 479*	through std routines)
 480*/
 481static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 482				size_t count, loff_t *off)
 483{
 484	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 485	char buffer[FILENT_SIZE];
 486	ssize_t ret;
 487
 488	spin_lock(&info->lock);
 489	snprintf(buffer, sizeof(buffer),
 490			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 491			info->qsize,
 492			info->notify_owner ? info->notify.sigev_notify : 0,
 493			(info->notify_owner &&
 494			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 495				info->notify.sigev_signo : 0,
 496			pid_vnr(info->notify_owner));
 497	spin_unlock(&info->lock);
 498	buffer[sizeof(buffer)-1] = '\0';
 499
 500	ret = simple_read_from_buffer(u_data, count, off, buffer,
 501				strlen(buffer));
 502	if (ret <= 0)
 503		return ret;
 504
 505	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
 506	return ret;
 507}
 508
 509static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 510{
 511	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 512
 513	spin_lock(&info->lock);
 514	if (task_tgid(current) == info->notify_owner)
 515		remove_notification(info);
 516
 517	spin_unlock(&info->lock);
 518	return 0;
 519}
 520
 521static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 522{
 523	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 524	int retval = 0;
 525
 526	poll_wait(filp, &info->wait_q, poll_tab);
 527
 528	spin_lock(&info->lock);
 529	if (info->attr.mq_curmsgs)
 530		retval = POLLIN | POLLRDNORM;
 531
 532	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 533		retval |= POLLOUT | POLLWRNORM;
 534	spin_unlock(&info->lock);
 535
 536	return retval;
 537}
 538
 539/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 540static void wq_add(struct mqueue_inode_info *info, int sr,
 541			struct ext_wait_queue *ewp)
 542{
 543	struct ext_wait_queue *walk;
 544
 545	ewp->task = current;
 546
 547	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 548		if (walk->task->static_prio <= current->static_prio) {
 549			list_add_tail(&ewp->list, &walk->list);
 550			return;
 551		}
 552	}
 553	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 554}
 555
 556/*
 557 * Puts current task to sleep. Caller must hold queue lock. After return
 558 * lock isn't held.
 559 * sr: SEND or RECV
 560 */
 561static int wq_sleep(struct mqueue_inode_info *info, int sr,
 562		    ktime_t *timeout, struct ext_wait_queue *ewp)
 563{
 564	int retval;
 565	signed long time;
 566
 567	wq_add(info, sr, ewp);
 568
 569	for (;;) {
 570		__set_current_state(TASK_INTERRUPTIBLE);
 571
 572		spin_unlock(&info->lock);
 573		time = schedule_hrtimeout_range_clock(timeout, 0,
 574			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 575
 576		if (ewp->state == STATE_READY) {
 577			retval = 0;
 578			goto out;
 579		}
 580		spin_lock(&info->lock);
 581		if (ewp->state == STATE_READY) {
 582			retval = 0;
 583			goto out_unlock;
 584		}
 585		if (signal_pending(current)) {
 586			retval = -ERESTARTSYS;
 587			break;
 588		}
 589		if (time == 0) {
 590			retval = -ETIMEDOUT;
 591			break;
 592		}
 593	}
 594	list_del(&ewp->list);
 595out_unlock:
 596	spin_unlock(&info->lock);
 597out:
 598	return retval;
 599}
 600
 601/*
 602 * Returns waiting task that should be serviced first or NULL if none exists
 603 */
 604static struct ext_wait_queue *wq_get_first_waiter(
 605		struct mqueue_inode_info *info, int sr)
 606{
 607	struct list_head *ptr;
 608
 609	ptr = info->e_wait_q[sr].list.prev;
 610	if (ptr == &info->e_wait_q[sr].list)
 611		return NULL;
 612	return list_entry(ptr, struct ext_wait_queue, list);
 613}
 614
 615
 616static inline void set_cookie(struct sk_buff *skb, char code)
 617{
 618	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 619}
 620
 621/*
 622 * The next function is only to split too long sys_mq_timedsend
 623 */
 624static void __do_notify(struct mqueue_inode_info *info)
 625{
 626	/* notification
 627	 * invoked when there is registered process and there isn't process
 628	 * waiting synchronously for message AND state of queue changed from
 629	 * empty to not empty. Here we are sure that no one is waiting
 630	 * synchronously. */
 631	if (info->notify_owner &&
 632	    info->attr.mq_curmsgs == 1) {
 633		struct siginfo sig_i;
 634		switch (info->notify.sigev_notify) {
 635		case SIGEV_NONE:
 636			break;
 637		case SIGEV_SIGNAL:
 638			/* sends signal */
 639
 640			sig_i.si_signo = info->notify.sigev_signo;
 641			sig_i.si_errno = 0;
 642			sig_i.si_code = SI_MESGQ;
 643			sig_i.si_value = info->notify.sigev_value;
 644			/* map current pid/uid into info->owner's namespaces */
 645			rcu_read_lock();
 646			sig_i.si_pid = task_tgid_nr_ns(current,
 647						ns_of_pid(info->notify_owner));
 648			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 649			rcu_read_unlock();
 650
 651			kill_pid_info(info->notify.sigev_signo,
 652				      &sig_i, info->notify_owner);
 653			break;
 654		case SIGEV_THREAD:
 655			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 656			netlink_sendskb(info->notify_sock, info->notify_cookie);
 657			break;
 658		}
 659		/* after notification unregisters process */
 660		put_pid(info->notify_owner);
 661		put_user_ns(info->notify_user_ns);
 662		info->notify_owner = NULL;
 663		info->notify_user_ns = NULL;
 664	}
 665	wake_up(&info->wait_q);
 666}
 667
 668static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 669			   ktime_t *expires, struct timespec *ts)
 670{
 671	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 672		return -EFAULT;
 673	if (!timespec_valid(ts))
 674		return -EINVAL;
 675
 676	*expires = timespec_to_ktime(*ts);
 677	return 0;
 678}
 679
 680static void remove_notification(struct mqueue_inode_info *info)
 681{
 682	if (info->notify_owner != NULL &&
 683	    info->notify.sigev_notify == SIGEV_THREAD) {
 684		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 685		netlink_sendskb(info->notify_sock, info->notify_cookie);
 686	}
 687	put_pid(info->notify_owner);
 688	put_user_ns(info->notify_user_ns);
 689	info->notify_owner = NULL;
 690	info->notify_user_ns = NULL;
 691}
 692
 693static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 694{
 695	int mq_treesize;
 696	unsigned long total_size;
 697
 698	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 699		return -EINVAL;
 700	if (capable(CAP_SYS_RESOURCE)) {
 701		if (attr->mq_maxmsg > HARD_MSGMAX ||
 702		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 703			return -EINVAL;
 704	} else {
 705		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 706				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 707			return -EINVAL;
 708	}
 709	/* check for overflow */
 710	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 711		return -EOVERFLOW;
 712	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 713		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 714		sizeof(struct posix_msg_tree_node);
 715	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 716	if (total_size + mq_treesize < total_size)
 717		return -EOVERFLOW;
 718	return 0;
 719}
 720
 721/*
 722 * Invoked when creating a new queue via sys_mq_open
 723 */
 724static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 725			struct path *path, int oflag, umode_t mode,
 726			struct mq_attr *attr)
 727{
 728	const struct cred *cred = current_cred();
 729	int ret;
 730
 731	if (attr) {
 732		ret = mq_attr_ok(ipc_ns, attr);
 733		if (ret)
 734			return ERR_PTR(ret);
 735		/* store for use during create */
 736		path->dentry->d_fsdata = attr;
 737	} else {
 738		struct mq_attr def_attr;
 739
 740		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 741					 ipc_ns->mq_msg_default);
 742		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 743					  ipc_ns->mq_msgsize_default);
 744		ret = mq_attr_ok(ipc_ns, &def_attr);
 745		if (ret)
 746			return ERR_PTR(ret);
 747	}
 748
 749	mode &= ~current_umask();
 750	ret = vfs_create(dir, path->dentry, mode, true);
 751	path->dentry->d_fsdata = NULL;
 752	if (ret)
 753		return ERR_PTR(ret);
 754	return dentry_open(path, oflag, cred);
 755}
 756
 757/* Opens existing queue */
 758static struct file *do_open(struct path *path, int oflag)
 759{
 760	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 761						  MAY_READ | MAY_WRITE };
 762	int acc;
 763	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 764		return ERR_PTR(-EINVAL);
 765	acc = oflag2acc[oflag & O_ACCMODE];
 766	if (inode_permission(d_inode(path->dentry), acc))
 767		return ERR_PTR(-EACCES);
 768	return dentry_open(path, oflag, current_cred());
 769}
 770
 771SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 772		struct mq_attr __user *, u_attr)
 773{
 774	struct path path;
 775	struct file *filp;
 776	struct filename *name;
 777	struct mq_attr attr;
 778	int fd, error;
 779	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 780	struct vfsmount *mnt = ipc_ns->mq_mnt;
 781	struct dentry *root = mnt->mnt_root;
 782	int ro;
 783
 784	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 785		return -EFAULT;
 786
 787	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 788
 789	if (IS_ERR(name = getname(u_name)))
 790		return PTR_ERR(name);
 791
 792	fd = get_unused_fd_flags(O_CLOEXEC);
 793	if (fd < 0)
 794		goto out_putname;
 795
 796	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 797	error = 0;
 798	inode_lock(d_inode(root));
 799	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 800	if (IS_ERR(path.dentry)) {
 801		error = PTR_ERR(path.dentry);
 802		goto out_putfd;
 803	}
 804	path.mnt = mntget(mnt);
 805
 806	if (oflag & O_CREAT) {
 807		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 808			audit_inode(name, path.dentry, 0);
 809			if (oflag & O_EXCL) {
 810				error = -EEXIST;
 811				goto out;
 812			}
 813			filp = do_open(&path, oflag);
 814		} else {
 815			if (ro) {
 816				error = ro;
 817				goto out;
 818			}
 819			audit_inode_parent_hidden(name, root);
 820			filp = do_create(ipc_ns, d_inode(root),
 821						&path, oflag, mode,
 822						u_attr ? &attr : NULL);
 823		}
 824	} else {
 825		if (d_really_is_negative(path.dentry)) {
 826			error = -ENOENT;
 827			goto out;
 828		}
 829		audit_inode(name, path.dentry, 0);
 830		filp = do_open(&path, oflag);
 831	}
 832
 833	if (!IS_ERR(filp))
 834		fd_install(fd, filp);
 835	else
 836		error = PTR_ERR(filp);
 837out:
 838	path_put(&path);
 839out_putfd:
 840	if (error) {
 841		put_unused_fd(fd);
 842		fd = error;
 843	}
 844	inode_unlock(d_inode(root));
 845	if (!ro)
 846		mnt_drop_write(mnt);
 847out_putname:
 848	putname(name);
 849	return fd;
 850}
 851
 852SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 853{
 854	int err;
 855	struct filename *name;
 856	struct dentry *dentry;
 857	struct inode *inode = NULL;
 858	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 859	struct vfsmount *mnt = ipc_ns->mq_mnt;
 860
 861	name = getname(u_name);
 862	if (IS_ERR(name))
 863		return PTR_ERR(name);
 864
 865	audit_inode_parent_hidden(name, mnt->mnt_root);
 866	err = mnt_want_write(mnt);
 867	if (err)
 868		goto out_name;
 869	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 870	dentry = lookup_one_len(name->name, mnt->mnt_root,
 871				strlen(name->name));
 872	if (IS_ERR(dentry)) {
 873		err = PTR_ERR(dentry);
 874		goto out_unlock;
 875	}
 876
 877	inode = d_inode(dentry);
 878	if (!inode) {
 879		err = -ENOENT;
 880	} else {
 881		ihold(inode);
 882		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 883	}
 884	dput(dentry);
 885
 886out_unlock:
 887	inode_unlock(d_inode(mnt->mnt_root));
 888	if (inode)
 889		iput(inode);
 890	mnt_drop_write(mnt);
 891out_name:
 892	putname(name);
 893
 894	return err;
 895}
 896
 897/* Pipelined send and receive functions.
 898 *
 899 * If a receiver finds no waiting message, then it registers itself in the
 900 * list of waiting receivers. A sender checks that list before adding the new
 901 * message into the message array. If there is a waiting receiver, then it
 902 * bypasses the message array and directly hands the message over to the
 903 * receiver. The receiver accepts the message and returns without grabbing the
 904 * queue spinlock:
 905 *
 906 * - Set pointer to message.
 907 * - Queue the receiver task for later wakeup (without the info->lock).
 908 * - Update its state to STATE_READY. Now the receiver can continue.
 909 * - Wake up the process after the lock is dropped. Should the process wake up
 910 *   before this wakeup (due to a timeout or a signal) it will either see
 911 *   STATE_READY and continue or acquire the lock to check the state again.
 912 *
 913 * The same algorithm is used for senders.
 914 */
 915
 916/* pipelined_send() - send a message directly to the task waiting in
 917 * sys_mq_timedreceive() (without inserting message into a queue).
 918 */
 919static inline void pipelined_send(struct wake_q_head *wake_q,
 920				  struct mqueue_inode_info *info,
 921				  struct msg_msg *message,
 922				  struct ext_wait_queue *receiver)
 923{
 924	receiver->msg = message;
 925	list_del(&receiver->list);
 926	wake_q_add(wake_q, receiver->task);
 927	/*
 928	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 929	 * that we can ensure that updating receiver->state is the last
 930	 * write operation: As once set, the receiver can continue,
 931	 * and if we don't have the reference count from the wake_q,
 932	 * yet, at that point we can later have a use-after-free
 933	 * condition and bogus wakeup.
 934	 */
 935	receiver->state = STATE_READY;
 936}
 937
 938/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 939 * gets its message and put to the queue (we have one free place for sure). */
 940static inline void pipelined_receive(struct wake_q_head *wake_q,
 941				     struct mqueue_inode_info *info)
 942{
 943	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 944
 945	if (!sender) {
 946		/* for poll */
 947		wake_up_interruptible(&info->wait_q);
 948		return;
 949	}
 950	if (msg_insert(sender->msg, info))
 951		return;
 952
 953	list_del(&sender->list);
 954	wake_q_add(wake_q, sender->task);
 955	sender->state = STATE_READY;
 956}
 957
 958SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 959		size_t, msg_len, unsigned int, msg_prio,
 960		const struct timespec __user *, u_abs_timeout)
 961{
 962	struct fd f;
 963	struct inode *inode;
 964	struct ext_wait_queue wait;
 965	struct ext_wait_queue *receiver;
 966	struct msg_msg *msg_ptr;
 967	struct mqueue_inode_info *info;
 968	ktime_t expires, *timeout = NULL;
 969	struct timespec ts;
 970	struct posix_msg_tree_node *new_leaf = NULL;
 971	int ret = 0;
 972	WAKE_Q(wake_q);
 973
 974	if (u_abs_timeout) {
 975		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 976		if (res)
 977			return res;
 978		timeout = &expires;
 979	}
 980
 981	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 982		return -EINVAL;
 983
 984	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 985
 986	f = fdget(mqdes);
 987	if (unlikely(!f.file)) {
 988		ret = -EBADF;
 989		goto out;
 990	}
 991
 992	inode = file_inode(f.file);
 993	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 994		ret = -EBADF;
 995		goto out_fput;
 996	}
 997	info = MQUEUE_I(inode);
 998	audit_file(f.file);
 999
1000	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1001		ret = -EBADF;
1002		goto out_fput;
1003	}
1004
1005	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1006		ret = -EMSGSIZE;
1007		goto out_fput;
1008	}
1009
1010	/* First try to allocate memory, before doing anything with
1011	 * existing queues. */
1012	msg_ptr = load_msg(u_msg_ptr, msg_len);
1013	if (IS_ERR(msg_ptr)) {
1014		ret = PTR_ERR(msg_ptr);
1015		goto out_fput;
1016	}
1017	msg_ptr->m_ts = msg_len;
1018	msg_ptr->m_type = msg_prio;
1019
1020	/*
1021	 * msg_insert really wants us to have a valid, spare node struct so
1022	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1023	 * fall back to that if necessary.
1024	 */
1025	if (!info->node_cache)
1026		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1027
1028	spin_lock(&info->lock);
1029
1030	if (!info->node_cache && new_leaf) {
1031		/* Save our speculative allocation into the cache */
1032		INIT_LIST_HEAD(&new_leaf->msg_list);
1033		info->node_cache = new_leaf;
1034		new_leaf = NULL;
1035	} else {
1036		kfree(new_leaf);
1037	}
1038
1039	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1040		if (f.file->f_flags & O_NONBLOCK) {
1041			ret = -EAGAIN;
1042		} else {
1043			wait.task = current;
1044			wait.msg = (void *) msg_ptr;
1045			wait.state = STATE_NONE;
1046			ret = wq_sleep(info, SEND, timeout, &wait);
1047			/*
1048			 * wq_sleep must be called with info->lock held, and
1049			 * returns with the lock released
1050			 */
1051			goto out_free;
1052		}
1053	} else {
1054		receiver = wq_get_first_waiter(info, RECV);
1055		if (receiver) {
1056			pipelined_send(&wake_q, info, msg_ptr, receiver);
1057		} else {
1058			/* adds message to the queue */
1059			ret = msg_insert(msg_ptr, info);
1060			if (ret)
1061				goto out_unlock;
1062			__do_notify(info);
1063		}
1064		inode->i_atime = inode->i_mtime = inode->i_ctime =
1065				CURRENT_TIME;
1066	}
1067out_unlock:
1068	spin_unlock(&info->lock);
1069	wake_up_q(&wake_q);
1070out_free:
1071	if (ret)
1072		free_msg(msg_ptr);
1073out_fput:
1074	fdput(f);
1075out:
1076	return ret;
1077}
1078
1079SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1080		size_t, msg_len, unsigned int __user *, u_msg_prio,
1081		const struct timespec __user *, u_abs_timeout)
1082{
1083	ssize_t ret;
1084	struct msg_msg *msg_ptr;
1085	struct fd f;
1086	struct inode *inode;
1087	struct mqueue_inode_info *info;
1088	struct ext_wait_queue wait;
1089	ktime_t expires, *timeout = NULL;
1090	struct timespec ts;
1091	struct posix_msg_tree_node *new_leaf = NULL;
1092
1093	if (u_abs_timeout) {
1094		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1095		if (res)
1096			return res;
1097		timeout = &expires;
1098	}
1099
1100	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1101
1102	f = fdget(mqdes);
1103	if (unlikely(!f.file)) {
1104		ret = -EBADF;
1105		goto out;
1106	}
1107
1108	inode = file_inode(f.file);
1109	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110		ret = -EBADF;
1111		goto out_fput;
1112	}
1113	info = MQUEUE_I(inode);
1114	audit_file(f.file);
1115
1116	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117		ret = -EBADF;
1118		goto out_fput;
1119	}
1120
1121	/* checks if buffer is big enough */
1122	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123		ret = -EMSGSIZE;
1124		goto out_fput;
1125	}
1126
1127	/*
1128	 * msg_insert really wants us to have a valid, spare node struct so
1129	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130	 * fall back to that if necessary.
1131	 */
1132	if (!info->node_cache)
1133		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134
1135	spin_lock(&info->lock);
1136
1137	if (!info->node_cache && new_leaf) {
1138		/* Save our speculative allocation into the cache */
1139		INIT_LIST_HEAD(&new_leaf->msg_list);
1140		info->node_cache = new_leaf;
1141	} else {
1142		kfree(new_leaf);
1143	}
1144
1145	if (info->attr.mq_curmsgs == 0) {
1146		if (f.file->f_flags & O_NONBLOCK) {
1147			spin_unlock(&info->lock);
1148			ret = -EAGAIN;
1149		} else {
1150			wait.task = current;
1151			wait.state = STATE_NONE;
1152			ret = wq_sleep(info, RECV, timeout, &wait);
1153			msg_ptr = wait.msg;
1154		}
1155	} else {
1156		WAKE_Q(wake_q);
1157
1158		msg_ptr = msg_get(info);
1159
1160		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161				CURRENT_TIME;
1162
1163		/* There is now free space in queue. */
1164		pipelined_receive(&wake_q, info);
1165		spin_unlock(&info->lock);
1166		wake_up_q(&wake_q);
1167		ret = 0;
1168	}
1169	if (ret == 0) {
1170		ret = msg_ptr->m_ts;
1171
1172		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174			ret = -EFAULT;
1175		}
1176		free_msg(msg_ptr);
1177	}
1178out_fput:
1179	fdput(f);
1180out:
1181	return ret;
1182}
1183
1184/*
1185 * Notes: the case when user wants us to deregister (with NULL as pointer)
1186 * and he isn't currently owner of notification, will be silently discarded.
1187 * It isn't explicitly defined in the POSIX.
1188 */
1189SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1190		const struct sigevent __user *, u_notification)
1191{
1192	int ret;
1193	struct fd f;
1194	struct sock *sock;
1195	struct inode *inode;
1196	struct sigevent notification;
1197	struct mqueue_inode_info *info;
1198	struct sk_buff *nc;
1199
1200	if (u_notification) {
1201		if (copy_from_user(&notification, u_notification,
1202					sizeof(struct sigevent)))
1203			return -EFAULT;
1204	}
1205
1206	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1207
1208	nc = NULL;
1209	sock = NULL;
1210	if (u_notification != NULL) {
1211		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1212			     notification.sigev_notify != SIGEV_SIGNAL &&
1213			     notification.sigev_notify != SIGEV_THREAD))
1214			return -EINVAL;
1215		if (notification.sigev_notify == SIGEV_SIGNAL &&
1216			!valid_signal(notification.sigev_signo)) {
1217			return -EINVAL;
1218		}
1219		if (notification.sigev_notify == SIGEV_THREAD) {
1220			long timeo;
1221
1222			/* create the notify skb */
1223			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1224			if (!nc) {
1225				ret = -ENOMEM;
1226				goto out;
1227			}
1228			if (copy_from_user(nc->data,
1229					notification.sigev_value.sival_ptr,
1230					NOTIFY_COOKIE_LEN)) {
1231				ret = -EFAULT;
1232				goto out;
1233			}
1234
1235			/* TODO: add a header? */
1236			skb_put(nc, NOTIFY_COOKIE_LEN);
1237			/* and attach it to the socket */
1238retry:
1239			f = fdget(notification.sigev_signo);
1240			if (!f.file) {
1241				ret = -EBADF;
1242				goto out;
1243			}
1244			sock = netlink_getsockbyfilp(f.file);
1245			fdput(f);
1246			if (IS_ERR(sock)) {
1247				ret = PTR_ERR(sock);
1248				sock = NULL;
1249				goto out;
1250			}
1251
1252			timeo = MAX_SCHEDULE_TIMEOUT;
1253			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1254			if (ret == 1)
1255				goto retry;
1256			if (ret) {
1257				sock = NULL;
1258				nc = NULL;
1259				goto out;
1260			}
1261		}
1262	}
1263
1264	f = fdget(mqdes);
1265	if (!f.file) {
1266		ret = -EBADF;
1267		goto out;
1268	}
1269
1270	inode = file_inode(f.file);
1271	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272		ret = -EBADF;
1273		goto out_fput;
1274	}
1275	info = MQUEUE_I(inode);
1276
1277	ret = 0;
1278	spin_lock(&info->lock);
1279	if (u_notification == NULL) {
1280		if (info->notify_owner == task_tgid(current)) {
1281			remove_notification(info);
1282			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1283		}
1284	} else if (info->notify_owner != NULL) {
1285		ret = -EBUSY;
1286	} else {
1287		switch (notification.sigev_notify) {
1288		case SIGEV_NONE:
1289			info->notify.sigev_notify = SIGEV_NONE;
1290			break;
1291		case SIGEV_THREAD:
1292			info->notify_sock = sock;
1293			info->notify_cookie = nc;
1294			sock = NULL;
1295			nc = NULL;
1296			info->notify.sigev_notify = SIGEV_THREAD;
1297			break;
1298		case SIGEV_SIGNAL:
1299			info->notify.sigev_signo = notification.sigev_signo;
1300			info->notify.sigev_value = notification.sigev_value;
1301			info->notify.sigev_notify = SIGEV_SIGNAL;
1302			break;
1303		}
1304
1305		info->notify_owner = get_pid(task_tgid(current));
1306		info->notify_user_ns = get_user_ns(current_user_ns());
1307		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1308	}
1309	spin_unlock(&info->lock);
1310out_fput:
1311	fdput(f);
1312out:
1313	if (sock)
1314		netlink_detachskb(sock, nc);
1315	else if (nc)
1316		dev_kfree_skb(nc);
1317
1318	return ret;
1319}
1320
1321SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322		const struct mq_attr __user *, u_mqstat,
1323		struct mq_attr __user *, u_omqstat)
1324{
1325	int ret;
1326	struct mq_attr mqstat, omqstat;
1327	struct fd f;
1328	struct inode *inode;
1329	struct mqueue_inode_info *info;
1330
1331	if (u_mqstat != NULL) {
1332		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333			return -EFAULT;
1334		if (mqstat.mq_flags & (~O_NONBLOCK))
1335			return -EINVAL;
1336	}
1337
1338	f = fdget(mqdes);
1339	if (!f.file) {
1340		ret = -EBADF;
1341		goto out;
1342	}
1343
1344	inode = file_inode(f.file);
1345	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346		ret = -EBADF;
1347		goto out_fput;
1348	}
1349	info = MQUEUE_I(inode);
1350
1351	spin_lock(&info->lock);
1352
1353	omqstat = info->attr;
1354	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355	if (u_mqstat) {
1356		audit_mq_getsetattr(mqdes, &mqstat);
1357		spin_lock(&f.file->f_lock);
1358		if (mqstat.mq_flags & O_NONBLOCK)
1359			f.file->f_flags |= O_NONBLOCK;
1360		else
1361			f.file->f_flags &= ~O_NONBLOCK;
1362		spin_unlock(&f.file->f_lock);
1363
1364		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1365	}
1366
1367	spin_unlock(&info->lock);
1368
1369	ret = 0;
1370	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371						sizeof(struct mq_attr)))
1372		ret = -EFAULT;
1373
1374out_fput:
1375	fdput(f);
1376out:
1377	return ret;
1378}
1379
1380static const struct inode_operations mqueue_dir_inode_operations = {
1381	.lookup = simple_lookup,
1382	.create = mqueue_create,
1383	.unlink = mqueue_unlink,
1384};
1385
1386static const struct file_operations mqueue_file_operations = {
1387	.flush = mqueue_flush_file,
1388	.poll = mqueue_poll_file,
1389	.read = mqueue_read_file,
1390	.llseek = default_llseek,
1391};
1392
1393static const struct super_operations mqueue_super_ops = {
1394	.alloc_inode = mqueue_alloc_inode,
1395	.destroy_inode = mqueue_destroy_inode,
1396	.evict_inode = mqueue_evict_inode,
1397	.statfs = simple_statfs,
1398};
1399
1400static struct file_system_type mqueue_fs_type = {
1401	.name = "mqueue",
1402	.mount = mqueue_mount,
1403	.kill_sb = kill_litter_super,
1404	.fs_flags = FS_USERNS_MOUNT,
1405};
1406
1407int mq_init_ns(struct ipc_namespace *ns)
1408{
1409	ns->mq_queues_count  = 0;
1410	ns->mq_queues_max    = DFLT_QUEUESMAX;
1411	ns->mq_msg_max       = DFLT_MSGMAX;
1412	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1413	ns->mq_msg_default   = DFLT_MSG;
1414	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1415
1416	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417	if (IS_ERR(ns->mq_mnt)) {
1418		int err = PTR_ERR(ns->mq_mnt);
1419		ns->mq_mnt = NULL;
1420		return err;
1421	}
1422	return 0;
1423}
1424
1425void mq_clear_sbinfo(struct ipc_namespace *ns)
1426{
1427	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1428}
1429
1430void mq_put_mnt(struct ipc_namespace *ns)
1431{
1432	kern_unmount(ns->mq_mnt);
1433}
1434
1435static int __init init_mqueue_fs(void)
1436{
1437	int error;
1438
1439	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440				sizeof(struct mqueue_inode_info), 0,
1441				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1442	if (mqueue_inode_cachep == NULL)
1443		return -ENOMEM;
1444
1445	/* ignore failures - they are not fatal */
1446	mq_sysctl_table = mq_register_sysctl_table();
1447
1448	error = register_filesystem(&mqueue_fs_type);
1449	if (error)
1450		goto out_sysctl;
1451
1452	spin_lock_init(&mq_lock);
1453
1454	error = mq_init_ns(&init_ipc_ns);
1455	if (error)
1456		goto out_filesystem;
1457
1458	return 0;
1459
1460out_filesystem:
1461	unregister_filesystem(&mqueue_fs_type);
1462out_sysctl:
1463	if (mq_sysctl_table)
1464		unregister_sysctl_table(mq_sysctl_table);
1465	kmem_cache_destroy(mqueue_inode_cachep);
1466	return error;
1467}
1468
1469device_initcall(init_mqueue_fs);
v4.10.11
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = sb->s_fs_info;
 309
 310	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 311	sb->s_blocksize = PAGE_SIZE;
 312	sb->s_blocksize_bits = PAGE_SHIFT;
 313	sb->s_magic = MQUEUE_MAGIC;
 314	sb->s_op = &mqueue_super_ops;
 315
 316	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 317	if (IS_ERR(inode))
 318		return PTR_ERR(inode);
 319
 320	sb->s_root = d_make_root(inode);
 321	if (!sb->s_root)
 322		return -ENOMEM;
 323	return 0;
 324}
 325
 326static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 327			 int flags, const char *dev_name,
 328			 void *data)
 329{
 330	struct ipc_namespace *ns;
 331	if (flags & MS_KERNMOUNT) {
 332		ns = data;
 333		data = NULL;
 334	} else {
 335		ns = current->nsproxy->ipc_ns;
 
 
 
 336	}
 337	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 338}
 339
 340static void init_once(void *foo)
 341{
 342	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 343
 344	inode_init_once(&p->vfs_inode);
 345}
 346
 347static struct inode *mqueue_alloc_inode(struct super_block *sb)
 348{
 349	struct mqueue_inode_info *ei;
 350
 351	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 352	if (!ei)
 353		return NULL;
 354	return &ei->vfs_inode;
 355}
 356
 357static void mqueue_i_callback(struct rcu_head *head)
 358{
 359	struct inode *inode = container_of(head, struct inode, i_rcu);
 360	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 361}
 362
 363static void mqueue_destroy_inode(struct inode *inode)
 364{
 365	call_rcu(&inode->i_rcu, mqueue_i_callback);
 366}
 367
 368static void mqueue_evict_inode(struct inode *inode)
 369{
 370	struct mqueue_inode_info *info;
 371	struct user_struct *user;
 372	unsigned long mq_bytes, mq_treesize;
 373	struct ipc_namespace *ipc_ns;
 374	struct msg_msg *msg;
 375
 376	clear_inode(inode);
 377
 378	if (S_ISDIR(inode->i_mode))
 379		return;
 380
 381	ipc_ns = get_ns_from_inode(inode);
 382	info = MQUEUE_I(inode);
 383	spin_lock(&info->lock);
 384	while ((msg = msg_get(info)) != NULL)
 385		free_msg(msg);
 386	kfree(info->node_cache);
 387	spin_unlock(&info->lock);
 388
 389	/* Total amount of bytes accounted for the mqueue */
 390	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 391		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 392		sizeof(struct posix_msg_tree_node);
 393
 394	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 395				  info->attr.mq_msgsize);
 396
 397	user = info->user;
 398	if (user) {
 399		spin_lock(&mq_lock);
 400		user->mq_bytes -= mq_bytes;
 401		/*
 402		 * get_ns_from_inode() ensures that the
 403		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 404		 * to which we now hold a reference, or it is NULL.
 405		 * We can't put it here under mq_lock, though.
 406		 */
 407		if (ipc_ns)
 408			ipc_ns->mq_queues_count--;
 409		spin_unlock(&mq_lock);
 410		free_uid(user);
 411	}
 412	if (ipc_ns)
 413		put_ipc_ns(ipc_ns);
 414}
 415
 416static int mqueue_create(struct inode *dir, struct dentry *dentry,
 417				umode_t mode, bool excl)
 418{
 419	struct inode *inode;
 420	struct mq_attr *attr = dentry->d_fsdata;
 421	int error;
 422	struct ipc_namespace *ipc_ns;
 423
 424	spin_lock(&mq_lock);
 425	ipc_ns = __get_ns_from_inode(dir);
 426	if (!ipc_ns) {
 427		error = -EACCES;
 428		goto out_unlock;
 429	}
 430
 431	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 432	    !capable(CAP_SYS_RESOURCE)) {
 433		error = -ENOSPC;
 434		goto out_unlock;
 435	}
 436	ipc_ns->mq_queues_count++;
 437	spin_unlock(&mq_lock);
 438
 439	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 440	if (IS_ERR(inode)) {
 441		error = PTR_ERR(inode);
 442		spin_lock(&mq_lock);
 443		ipc_ns->mq_queues_count--;
 444		goto out_unlock;
 445	}
 446
 447	put_ipc_ns(ipc_ns);
 448	dir->i_size += DIRENT_SIZE;
 449	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 450
 451	d_instantiate(dentry, inode);
 452	dget(dentry);
 453	return 0;
 454out_unlock:
 455	spin_unlock(&mq_lock);
 456	if (ipc_ns)
 457		put_ipc_ns(ipc_ns);
 458	return error;
 459}
 460
 461static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 462{
 463	struct inode *inode = d_inode(dentry);
 464
 465	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 466	dir->i_size -= DIRENT_SIZE;
 467	drop_nlink(inode);
 468	dput(dentry);
 469	return 0;
 470}
 471
 472/*
 473*	This is routine for system read from queue file.
 474*	To avoid mess with doing here some sort of mq_receive we allow
 475*	to read only queue size & notification info (the only values
 476*	that are interesting from user point of view and aren't accessible
 477*	through std routines)
 478*/
 479static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 480				size_t count, loff_t *off)
 481{
 482	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 483	char buffer[FILENT_SIZE];
 484	ssize_t ret;
 485
 486	spin_lock(&info->lock);
 487	snprintf(buffer, sizeof(buffer),
 488			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 489			info->qsize,
 490			info->notify_owner ? info->notify.sigev_notify : 0,
 491			(info->notify_owner &&
 492			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 493				info->notify.sigev_signo : 0,
 494			pid_vnr(info->notify_owner));
 495	spin_unlock(&info->lock);
 496	buffer[sizeof(buffer)-1] = '\0';
 497
 498	ret = simple_read_from_buffer(u_data, count, off, buffer,
 499				strlen(buffer));
 500	if (ret <= 0)
 501		return ret;
 502
 503	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 504	return ret;
 505}
 506
 507static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 508{
 509	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 510
 511	spin_lock(&info->lock);
 512	if (task_tgid(current) == info->notify_owner)
 513		remove_notification(info);
 514
 515	spin_unlock(&info->lock);
 516	return 0;
 517}
 518
 519static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 520{
 521	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 522	int retval = 0;
 523
 524	poll_wait(filp, &info->wait_q, poll_tab);
 525
 526	spin_lock(&info->lock);
 527	if (info->attr.mq_curmsgs)
 528		retval = POLLIN | POLLRDNORM;
 529
 530	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 531		retval |= POLLOUT | POLLWRNORM;
 532	spin_unlock(&info->lock);
 533
 534	return retval;
 535}
 536
 537/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 538static void wq_add(struct mqueue_inode_info *info, int sr,
 539			struct ext_wait_queue *ewp)
 540{
 541	struct ext_wait_queue *walk;
 542
 543	ewp->task = current;
 544
 545	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 546		if (walk->task->static_prio <= current->static_prio) {
 547			list_add_tail(&ewp->list, &walk->list);
 548			return;
 549		}
 550	}
 551	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 552}
 553
 554/*
 555 * Puts current task to sleep. Caller must hold queue lock. After return
 556 * lock isn't held.
 557 * sr: SEND or RECV
 558 */
 559static int wq_sleep(struct mqueue_inode_info *info, int sr,
 560		    ktime_t *timeout, struct ext_wait_queue *ewp)
 561{
 562	int retval;
 563	signed long time;
 564
 565	wq_add(info, sr, ewp);
 566
 567	for (;;) {
 568		__set_current_state(TASK_INTERRUPTIBLE);
 569
 570		spin_unlock(&info->lock);
 571		time = schedule_hrtimeout_range_clock(timeout, 0,
 572			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 573
 574		if (ewp->state == STATE_READY) {
 575			retval = 0;
 576			goto out;
 577		}
 578		spin_lock(&info->lock);
 579		if (ewp->state == STATE_READY) {
 580			retval = 0;
 581			goto out_unlock;
 582		}
 583		if (signal_pending(current)) {
 584			retval = -ERESTARTSYS;
 585			break;
 586		}
 587		if (time == 0) {
 588			retval = -ETIMEDOUT;
 589			break;
 590		}
 591	}
 592	list_del(&ewp->list);
 593out_unlock:
 594	spin_unlock(&info->lock);
 595out:
 596	return retval;
 597}
 598
 599/*
 600 * Returns waiting task that should be serviced first or NULL if none exists
 601 */
 602static struct ext_wait_queue *wq_get_first_waiter(
 603		struct mqueue_inode_info *info, int sr)
 604{
 605	struct list_head *ptr;
 606
 607	ptr = info->e_wait_q[sr].list.prev;
 608	if (ptr == &info->e_wait_q[sr].list)
 609		return NULL;
 610	return list_entry(ptr, struct ext_wait_queue, list);
 611}
 612
 613
 614static inline void set_cookie(struct sk_buff *skb, char code)
 615{
 616	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 617}
 618
 619/*
 620 * The next function is only to split too long sys_mq_timedsend
 621 */
 622static void __do_notify(struct mqueue_inode_info *info)
 623{
 624	/* notification
 625	 * invoked when there is registered process and there isn't process
 626	 * waiting synchronously for message AND state of queue changed from
 627	 * empty to not empty. Here we are sure that no one is waiting
 628	 * synchronously. */
 629	if (info->notify_owner &&
 630	    info->attr.mq_curmsgs == 1) {
 631		struct siginfo sig_i;
 632		switch (info->notify.sigev_notify) {
 633		case SIGEV_NONE:
 634			break;
 635		case SIGEV_SIGNAL:
 636			/* sends signal */
 637
 638			sig_i.si_signo = info->notify.sigev_signo;
 639			sig_i.si_errno = 0;
 640			sig_i.si_code = SI_MESGQ;
 641			sig_i.si_value = info->notify.sigev_value;
 642			/* map current pid/uid into info->owner's namespaces */
 643			rcu_read_lock();
 644			sig_i.si_pid = task_tgid_nr_ns(current,
 645						ns_of_pid(info->notify_owner));
 646			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 647			rcu_read_unlock();
 648
 649			kill_pid_info(info->notify.sigev_signo,
 650				      &sig_i, info->notify_owner);
 651			break;
 652		case SIGEV_THREAD:
 653			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 654			netlink_sendskb(info->notify_sock, info->notify_cookie);
 655			break;
 656		}
 657		/* after notification unregisters process */
 658		put_pid(info->notify_owner);
 659		put_user_ns(info->notify_user_ns);
 660		info->notify_owner = NULL;
 661		info->notify_user_ns = NULL;
 662	}
 663	wake_up(&info->wait_q);
 664}
 665
 666static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 667			   ktime_t *expires, struct timespec *ts)
 668{
 669	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 670		return -EFAULT;
 671	if (!timespec_valid(ts))
 672		return -EINVAL;
 673
 674	*expires = timespec_to_ktime(*ts);
 675	return 0;
 676}
 677
 678static void remove_notification(struct mqueue_inode_info *info)
 679{
 680	if (info->notify_owner != NULL &&
 681	    info->notify.sigev_notify == SIGEV_THREAD) {
 682		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 683		netlink_sendskb(info->notify_sock, info->notify_cookie);
 684	}
 685	put_pid(info->notify_owner);
 686	put_user_ns(info->notify_user_ns);
 687	info->notify_owner = NULL;
 688	info->notify_user_ns = NULL;
 689}
 690
 691static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 692{
 693	int mq_treesize;
 694	unsigned long total_size;
 695
 696	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 697		return -EINVAL;
 698	if (capable(CAP_SYS_RESOURCE)) {
 699		if (attr->mq_maxmsg > HARD_MSGMAX ||
 700		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 701			return -EINVAL;
 702	} else {
 703		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 704				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 705			return -EINVAL;
 706	}
 707	/* check for overflow */
 708	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 709		return -EOVERFLOW;
 710	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 711		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 712		sizeof(struct posix_msg_tree_node);
 713	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 714	if (total_size + mq_treesize < total_size)
 715		return -EOVERFLOW;
 716	return 0;
 717}
 718
 719/*
 720 * Invoked when creating a new queue via sys_mq_open
 721 */
 722static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 723			struct path *path, int oflag, umode_t mode,
 724			struct mq_attr *attr)
 725{
 726	const struct cred *cred = current_cred();
 727	int ret;
 728
 729	if (attr) {
 730		ret = mq_attr_ok(ipc_ns, attr);
 731		if (ret)
 732			return ERR_PTR(ret);
 733		/* store for use during create */
 734		path->dentry->d_fsdata = attr;
 735	} else {
 736		struct mq_attr def_attr;
 737
 738		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 739					 ipc_ns->mq_msg_default);
 740		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 741					  ipc_ns->mq_msgsize_default);
 742		ret = mq_attr_ok(ipc_ns, &def_attr);
 743		if (ret)
 744			return ERR_PTR(ret);
 745	}
 746
 747	mode &= ~current_umask();
 748	ret = vfs_create(dir, path->dentry, mode, true);
 749	path->dentry->d_fsdata = NULL;
 750	if (ret)
 751		return ERR_PTR(ret);
 752	return dentry_open(path, oflag, cred);
 753}
 754
 755/* Opens existing queue */
 756static struct file *do_open(struct path *path, int oflag)
 757{
 758	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 759						  MAY_READ | MAY_WRITE };
 760	int acc;
 761	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 762		return ERR_PTR(-EINVAL);
 763	acc = oflag2acc[oflag & O_ACCMODE];
 764	if (inode_permission(d_inode(path->dentry), acc))
 765		return ERR_PTR(-EACCES);
 766	return dentry_open(path, oflag, current_cred());
 767}
 768
 769SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 770		struct mq_attr __user *, u_attr)
 771{
 772	struct path path;
 773	struct file *filp;
 774	struct filename *name;
 775	struct mq_attr attr;
 776	int fd, error;
 777	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 778	struct vfsmount *mnt = ipc_ns->mq_mnt;
 779	struct dentry *root = mnt->mnt_root;
 780	int ro;
 781
 782	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 783		return -EFAULT;
 784
 785	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 786
 787	if (IS_ERR(name = getname(u_name)))
 788		return PTR_ERR(name);
 789
 790	fd = get_unused_fd_flags(O_CLOEXEC);
 791	if (fd < 0)
 792		goto out_putname;
 793
 794	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 795	error = 0;
 796	inode_lock(d_inode(root));
 797	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 798	if (IS_ERR(path.dentry)) {
 799		error = PTR_ERR(path.dentry);
 800		goto out_putfd;
 801	}
 802	path.mnt = mntget(mnt);
 803
 804	if (oflag & O_CREAT) {
 805		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 806			audit_inode(name, path.dentry, 0);
 807			if (oflag & O_EXCL) {
 808				error = -EEXIST;
 809				goto out;
 810			}
 811			filp = do_open(&path, oflag);
 812		} else {
 813			if (ro) {
 814				error = ro;
 815				goto out;
 816			}
 817			audit_inode_parent_hidden(name, root);
 818			filp = do_create(ipc_ns, d_inode(root),
 819						&path, oflag, mode,
 820						u_attr ? &attr : NULL);
 821		}
 822	} else {
 823		if (d_really_is_negative(path.dentry)) {
 824			error = -ENOENT;
 825			goto out;
 826		}
 827		audit_inode(name, path.dentry, 0);
 828		filp = do_open(&path, oflag);
 829	}
 830
 831	if (!IS_ERR(filp))
 832		fd_install(fd, filp);
 833	else
 834		error = PTR_ERR(filp);
 835out:
 836	path_put(&path);
 837out_putfd:
 838	if (error) {
 839		put_unused_fd(fd);
 840		fd = error;
 841	}
 842	inode_unlock(d_inode(root));
 843	if (!ro)
 844		mnt_drop_write(mnt);
 845out_putname:
 846	putname(name);
 847	return fd;
 848}
 849
 850SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 851{
 852	int err;
 853	struct filename *name;
 854	struct dentry *dentry;
 855	struct inode *inode = NULL;
 856	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 857	struct vfsmount *mnt = ipc_ns->mq_mnt;
 858
 859	name = getname(u_name);
 860	if (IS_ERR(name))
 861		return PTR_ERR(name);
 862
 863	audit_inode_parent_hidden(name, mnt->mnt_root);
 864	err = mnt_want_write(mnt);
 865	if (err)
 866		goto out_name;
 867	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 868	dentry = lookup_one_len(name->name, mnt->mnt_root,
 869				strlen(name->name));
 870	if (IS_ERR(dentry)) {
 871		err = PTR_ERR(dentry);
 872		goto out_unlock;
 873	}
 874
 875	inode = d_inode(dentry);
 876	if (!inode) {
 877		err = -ENOENT;
 878	} else {
 879		ihold(inode);
 880		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 881	}
 882	dput(dentry);
 883
 884out_unlock:
 885	inode_unlock(d_inode(mnt->mnt_root));
 886	if (inode)
 887		iput(inode);
 888	mnt_drop_write(mnt);
 889out_name:
 890	putname(name);
 891
 892	return err;
 893}
 894
 895/* Pipelined send and receive functions.
 896 *
 897 * If a receiver finds no waiting message, then it registers itself in the
 898 * list of waiting receivers. A sender checks that list before adding the new
 899 * message into the message array. If there is a waiting receiver, then it
 900 * bypasses the message array and directly hands the message over to the
 901 * receiver. The receiver accepts the message and returns without grabbing the
 902 * queue spinlock:
 903 *
 904 * - Set pointer to message.
 905 * - Queue the receiver task for later wakeup (without the info->lock).
 906 * - Update its state to STATE_READY. Now the receiver can continue.
 907 * - Wake up the process after the lock is dropped. Should the process wake up
 908 *   before this wakeup (due to a timeout or a signal) it will either see
 909 *   STATE_READY and continue or acquire the lock to check the state again.
 910 *
 911 * The same algorithm is used for senders.
 912 */
 913
 914/* pipelined_send() - send a message directly to the task waiting in
 915 * sys_mq_timedreceive() (without inserting message into a queue).
 916 */
 917static inline void pipelined_send(struct wake_q_head *wake_q,
 918				  struct mqueue_inode_info *info,
 919				  struct msg_msg *message,
 920				  struct ext_wait_queue *receiver)
 921{
 922	receiver->msg = message;
 923	list_del(&receiver->list);
 924	wake_q_add(wake_q, receiver->task);
 925	/*
 926	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 927	 * that we can ensure that updating receiver->state is the last
 928	 * write operation: As once set, the receiver can continue,
 929	 * and if we don't have the reference count from the wake_q,
 930	 * yet, at that point we can later have a use-after-free
 931	 * condition and bogus wakeup.
 932	 */
 933	receiver->state = STATE_READY;
 934}
 935
 936/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 937 * gets its message and put to the queue (we have one free place for sure). */
 938static inline void pipelined_receive(struct wake_q_head *wake_q,
 939				     struct mqueue_inode_info *info)
 940{
 941	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 942
 943	if (!sender) {
 944		/* for poll */
 945		wake_up_interruptible(&info->wait_q);
 946		return;
 947	}
 948	if (msg_insert(sender->msg, info))
 949		return;
 950
 951	list_del(&sender->list);
 952	wake_q_add(wake_q, sender->task);
 953	sender->state = STATE_READY;
 954}
 955
 956SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 957		size_t, msg_len, unsigned int, msg_prio,
 958		const struct timespec __user *, u_abs_timeout)
 959{
 960	struct fd f;
 961	struct inode *inode;
 962	struct ext_wait_queue wait;
 963	struct ext_wait_queue *receiver;
 964	struct msg_msg *msg_ptr;
 965	struct mqueue_inode_info *info;
 966	ktime_t expires, *timeout = NULL;
 967	struct timespec ts;
 968	struct posix_msg_tree_node *new_leaf = NULL;
 969	int ret = 0;
 970	DEFINE_WAKE_Q(wake_q);
 971
 972	if (u_abs_timeout) {
 973		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 974		if (res)
 975			return res;
 976		timeout = &expires;
 977	}
 978
 979	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 980		return -EINVAL;
 981
 982	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 983
 984	f = fdget(mqdes);
 985	if (unlikely(!f.file)) {
 986		ret = -EBADF;
 987		goto out;
 988	}
 989
 990	inode = file_inode(f.file);
 991	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 992		ret = -EBADF;
 993		goto out_fput;
 994	}
 995	info = MQUEUE_I(inode);
 996	audit_file(f.file);
 997
 998	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 999		ret = -EBADF;
1000		goto out_fput;
1001	}
1002
1003	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1004		ret = -EMSGSIZE;
1005		goto out_fput;
1006	}
1007
1008	/* First try to allocate memory, before doing anything with
1009	 * existing queues. */
1010	msg_ptr = load_msg(u_msg_ptr, msg_len);
1011	if (IS_ERR(msg_ptr)) {
1012		ret = PTR_ERR(msg_ptr);
1013		goto out_fput;
1014	}
1015	msg_ptr->m_ts = msg_len;
1016	msg_ptr->m_type = msg_prio;
1017
1018	/*
1019	 * msg_insert really wants us to have a valid, spare node struct so
1020	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1021	 * fall back to that if necessary.
1022	 */
1023	if (!info->node_cache)
1024		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1025
1026	spin_lock(&info->lock);
1027
1028	if (!info->node_cache && new_leaf) {
1029		/* Save our speculative allocation into the cache */
1030		INIT_LIST_HEAD(&new_leaf->msg_list);
1031		info->node_cache = new_leaf;
1032		new_leaf = NULL;
1033	} else {
1034		kfree(new_leaf);
1035	}
1036
1037	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1038		if (f.file->f_flags & O_NONBLOCK) {
1039			ret = -EAGAIN;
1040		} else {
1041			wait.task = current;
1042			wait.msg = (void *) msg_ptr;
1043			wait.state = STATE_NONE;
1044			ret = wq_sleep(info, SEND, timeout, &wait);
1045			/*
1046			 * wq_sleep must be called with info->lock held, and
1047			 * returns with the lock released
1048			 */
1049			goto out_free;
1050		}
1051	} else {
1052		receiver = wq_get_first_waiter(info, RECV);
1053		if (receiver) {
1054			pipelined_send(&wake_q, info, msg_ptr, receiver);
1055		} else {
1056			/* adds message to the queue */
1057			ret = msg_insert(msg_ptr, info);
1058			if (ret)
1059				goto out_unlock;
1060			__do_notify(info);
1061		}
1062		inode->i_atime = inode->i_mtime = inode->i_ctime =
1063				current_time(inode);
1064	}
1065out_unlock:
1066	spin_unlock(&info->lock);
1067	wake_up_q(&wake_q);
1068out_free:
1069	if (ret)
1070		free_msg(msg_ptr);
1071out_fput:
1072	fdput(f);
1073out:
1074	return ret;
1075}
1076
1077SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1078		size_t, msg_len, unsigned int __user *, u_msg_prio,
1079		const struct timespec __user *, u_abs_timeout)
1080{
1081	ssize_t ret;
1082	struct msg_msg *msg_ptr;
1083	struct fd f;
1084	struct inode *inode;
1085	struct mqueue_inode_info *info;
1086	struct ext_wait_queue wait;
1087	ktime_t expires, *timeout = NULL;
1088	struct timespec ts;
1089	struct posix_msg_tree_node *new_leaf = NULL;
1090
1091	if (u_abs_timeout) {
1092		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1093		if (res)
1094			return res;
1095		timeout = &expires;
1096	}
1097
1098	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1099
1100	f = fdget(mqdes);
1101	if (unlikely(!f.file)) {
1102		ret = -EBADF;
1103		goto out;
1104	}
1105
1106	inode = file_inode(f.file);
1107	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108		ret = -EBADF;
1109		goto out_fput;
1110	}
1111	info = MQUEUE_I(inode);
1112	audit_file(f.file);
1113
1114	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115		ret = -EBADF;
1116		goto out_fput;
1117	}
1118
1119	/* checks if buffer is big enough */
1120	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121		ret = -EMSGSIZE;
1122		goto out_fput;
1123	}
1124
1125	/*
1126	 * msg_insert really wants us to have a valid, spare node struct so
1127	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128	 * fall back to that if necessary.
1129	 */
1130	if (!info->node_cache)
1131		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1132
1133	spin_lock(&info->lock);
1134
1135	if (!info->node_cache && new_leaf) {
1136		/* Save our speculative allocation into the cache */
1137		INIT_LIST_HEAD(&new_leaf->msg_list);
1138		info->node_cache = new_leaf;
1139	} else {
1140		kfree(new_leaf);
1141	}
1142
1143	if (info->attr.mq_curmsgs == 0) {
1144		if (f.file->f_flags & O_NONBLOCK) {
1145			spin_unlock(&info->lock);
1146			ret = -EAGAIN;
1147		} else {
1148			wait.task = current;
1149			wait.state = STATE_NONE;
1150			ret = wq_sleep(info, RECV, timeout, &wait);
1151			msg_ptr = wait.msg;
1152		}
1153	} else {
1154		DEFINE_WAKE_Q(wake_q);
1155
1156		msg_ptr = msg_get(info);
1157
1158		inode->i_atime = inode->i_mtime = inode->i_ctime =
1159				current_time(inode);
1160
1161		/* There is now free space in queue. */
1162		pipelined_receive(&wake_q, info);
1163		spin_unlock(&info->lock);
1164		wake_up_q(&wake_q);
1165		ret = 0;
1166	}
1167	if (ret == 0) {
1168		ret = msg_ptr->m_ts;
1169
1170		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172			ret = -EFAULT;
1173		}
1174		free_msg(msg_ptr);
1175	}
1176out_fput:
1177	fdput(f);
1178out:
1179	return ret;
1180}
1181
1182/*
1183 * Notes: the case when user wants us to deregister (with NULL as pointer)
1184 * and he isn't currently owner of notification, will be silently discarded.
1185 * It isn't explicitly defined in the POSIX.
1186 */
1187SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1188		const struct sigevent __user *, u_notification)
1189{
1190	int ret;
1191	struct fd f;
1192	struct sock *sock;
1193	struct inode *inode;
1194	struct sigevent notification;
1195	struct mqueue_inode_info *info;
1196	struct sk_buff *nc;
1197
1198	if (u_notification) {
1199		if (copy_from_user(&notification, u_notification,
1200					sizeof(struct sigevent)))
1201			return -EFAULT;
1202	}
1203
1204	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1205
1206	nc = NULL;
1207	sock = NULL;
1208	if (u_notification != NULL) {
1209		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1210			     notification.sigev_notify != SIGEV_SIGNAL &&
1211			     notification.sigev_notify != SIGEV_THREAD))
1212			return -EINVAL;
1213		if (notification.sigev_notify == SIGEV_SIGNAL &&
1214			!valid_signal(notification.sigev_signo)) {
1215			return -EINVAL;
1216		}
1217		if (notification.sigev_notify == SIGEV_THREAD) {
1218			long timeo;
1219
1220			/* create the notify skb */
1221			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1222			if (!nc) {
1223				ret = -ENOMEM;
1224				goto out;
1225			}
1226			if (copy_from_user(nc->data,
1227					notification.sigev_value.sival_ptr,
1228					NOTIFY_COOKIE_LEN)) {
1229				ret = -EFAULT;
1230				goto out;
1231			}
1232
1233			/* TODO: add a header? */
1234			skb_put(nc, NOTIFY_COOKIE_LEN);
1235			/* and attach it to the socket */
1236retry:
1237			f = fdget(notification.sigev_signo);
1238			if (!f.file) {
1239				ret = -EBADF;
1240				goto out;
1241			}
1242			sock = netlink_getsockbyfilp(f.file);
1243			fdput(f);
1244			if (IS_ERR(sock)) {
1245				ret = PTR_ERR(sock);
1246				sock = NULL;
1247				goto out;
1248			}
1249
1250			timeo = MAX_SCHEDULE_TIMEOUT;
1251			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1252			if (ret == 1)
1253				goto retry;
1254			if (ret) {
1255				sock = NULL;
1256				nc = NULL;
1257				goto out;
1258			}
1259		}
1260	}
1261
1262	f = fdget(mqdes);
1263	if (!f.file) {
1264		ret = -EBADF;
1265		goto out;
1266	}
1267
1268	inode = file_inode(f.file);
1269	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1270		ret = -EBADF;
1271		goto out_fput;
1272	}
1273	info = MQUEUE_I(inode);
1274
1275	ret = 0;
1276	spin_lock(&info->lock);
1277	if (u_notification == NULL) {
1278		if (info->notify_owner == task_tgid(current)) {
1279			remove_notification(info);
1280			inode->i_atime = inode->i_ctime = current_time(inode);
1281		}
1282	} else if (info->notify_owner != NULL) {
1283		ret = -EBUSY;
1284	} else {
1285		switch (notification.sigev_notify) {
1286		case SIGEV_NONE:
1287			info->notify.sigev_notify = SIGEV_NONE;
1288			break;
1289		case SIGEV_THREAD:
1290			info->notify_sock = sock;
1291			info->notify_cookie = nc;
1292			sock = NULL;
1293			nc = NULL;
1294			info->notify.sigev_notify = SIGEV_THREAD;
1295			break;
1296		case SIGEV_SIGNAL:
1297			info->notify.sigev_signo = notification.sigev_signo;
1298			info->notify.sigev_value = notification.sigev_value;
1299			info->notify.sigev_notify = SIGEV_SIGNAL;
1300			break;
1301		}
1302
1303		info->notify_owner = get_pid(task_tgid(current));
1304		info->notify_user_ns = get_user_ns(current_user_ns());
1305		inode->i_atime = inode->i_ctime = current_time(inode);
1306	}
1307	spin_unlock(&info->lock);
1308out_fput:
1309	fdput(f);
1310out:
1311	if (sock)
1312		netlink_detachskb(sock, nc);
1313	else if (nc)
1314		dev_kfree_skb(nc);
1315
1316	return ret;
1317}
1318
1319SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1320		const struct mq_attr __user *, u_mqstat,
1321		struct mq_attr __user *, u_omqstat)
1322{
1323	int ret;
1324	struct mq_attr mqstat, omqstat;
1325	struct fd f;
1326	struct inode *inode;
1327	struct mqueue_inode_info *info;
1328
1329	if (u_mqstat != NULL) {
1330		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1331			return -EFAULT;
1332		if (mqstat.mq_flags & (~O_NONBLOCK))
1333			return -EINVAL;
1334	}
1335
1336	f = fdget(mqdes);
1337	if (!f.file) {
1338		ret = -EBADF;
1339		goto out;
1340	}
1341
1342	inode = file_inode(f.file);
1343	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1344		ret = -EBADF;
1345		goto out_fput;
1346	}
1347	info = MQUEUE_I(inode);
1348
1349	spin_lock(&info->lock);
1350
1351	omqstat = info->attr;
1352	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1353	if (u_mqstat) {
1354		audit_mq_getsetattr(mqdes, &mqstat);
1355		spin_lock(&f.file->f_lock);
1356		if (mqstat.mq_flags & O_NONBLOCK)
1357			f.file->f_flags |= O_NONBLOCK;
1358		else
1359			f.file->f_flags &= ~O_NONBLOCK;
1360		spin_unlock(&f.file->f_lock);
1361
1362		inode->i_atime = inode->i_ctime = current_time(inode);
1363	}
1364
1365	spin_unlock(&info->lock);
1366
1367	ret = 0;
1368	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1369						sizeof(struct mq_attr)))
1370		ret = -EFAULT;
1371
1372out_fput:
1373	fdput(f);
1374out:
1375	return ret;
1376}
1377
1378static const struct inode_operations mqueue_dir_inode_operations = {
1379	.lookup = simple_lookup,
1380	.create = mqueue_create,
1381	.unlink = mqueue_unlink,
1382};
1383
1384static const struct file_operations mqueue_file_operations = {
1385	.flush = mqueue_flush_file,
1386	.poll = mqueue_poll_file,
1387	.read = mqueue_read_file,
1388	.llseek = default_llseek,
1389};
1390
1391static const struct super_operations mqueue_super_ops = {
1392	.alloc_inode = mqueue_alloc_inode,
1393	.destroy_inode = mqueue_destroy_inode,
1394	.evict_inode = mqueue_evict_inode,
1395	.statfs = simple_statfs,
1396};
1397
1398static struct file_system_type mqueue_fs_type = {
1399	.name = "mqueue",
1400	.mount = mqueue_mount,
1401	.kill_sb = kill_litter_super,
1402	.fs_flags = FS_USERNS_MOUNT,
1403};
1404
1405int mq_init_ns(struct ipc_namespace *ns)
1406{
1407	ns->mq_queues_count  = 0;
1408	ns->mq_queues_max    = DFLT_QUEUESMAX;
1409	ns->mq_msg_max       = DFLT_MSGMAX;
1410	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1411	ns->mq_msg_default   = DFLT_MSG;
1412	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1413
1414	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1415	if (IS_ERR(ns->mq_mnt)) {
1416		int err = PTR_ERR(ns->mq_mnt);
1417		ns->mq_mnt = NULL;
1418		return err;
1419	}
1420	return 0;
1421}
1422
1423void mq_clear_sbinfo(struct ipc_namespace *ns)
1424{
1425	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1426}
1427
1428void mq_put_mnt(struct ipc_namespace *ns)
1429{
1430	kern_unmount(ns->mq_mnt);
1431}
1432
1433static int __init init_mqueue_fs(void)
1434{
1435	int error;
1436
1437	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1438				sizeof(struct mqueue_inode_info), 0,
1439				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1440	if (mqueue_inode_cachep == NULL)
1441		return -ENOMEM;
1442
1443	/* ignore failures - they are not fatal */
1444	mq_sysctl_table = mq_register_sysctl_table();
1445
1446	error = register_filesystem(&mqueue_fs_type);
1447	if (error)
1448		goto out_sysctl;
1449
1450	spin_lock_init(&mq_lock);
1451
1452	error = mq_init_ns(&init_ipc_ns);
1453	if (error)
1454		goto out_filesystem;
1455
1456	return 0;
1457
1458out_filesystem:
1459	unregister_filesystem(&mqueue_fs_type);
1460out_sysctl:
1461	if (mq_sysctl_table)
1462		unregister_sysctl_table(mq_sysctl_table);
1463	kmem_cache_destroy(mqueue_inode_cachep);
1464	return error;
1465}
1466
1467device_initcall(init_mqueue_fs);