Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * sl28cpld PWM driver
  4 *
  5 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
  6 *
  7 * There is no public datasheet available for this PWM core. But it is easy
  8 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
  9 * supports four distinct frequencies by selecting when to reset the counter.
 10 * With the prescaler setting you can select which bit of the counter is used
 11 * to reset it. This implies that the higher the frequency the less remaining
 12 * bits are available for the actual counter.
 13 *
 14 * Let cnt[7:0] be the counter, clocked at 32kHz:
 15 * +-----------+--------+--------------+-----------+---------------+
 16 * | prescaler |  reset | counter bits | frequency | period length |
 17 * +-----------+--------+--------------+-----------+---------------+
 18 * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
 19 * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
 20 * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
 21 * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
 22 * +-----------+--------+--------------+-----------+---------------+
 23 *
 24 * Limitations:
 25 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
 26 * - The hardware cannot atomically set the prescaler and the counter value,
 27 *   which might lead to glitches and inconsistent states if a write fails.
 28 * - The counter is not reset if you switch the prescaler which leads
 29 *   to glitches, too.
 30 * - The duty cycle will switch immediately and not after a complete cycle.
 31 * - Depending on the actual implementation, disabling the PWM might have
 32 *   side effects. For example, if the output pin is shared with a GPIO pin
 33 *   it will automatically switch back to GPIO mode.
 34 */
 35
 36#include <linux/bitfield.h>
 37#include <linux/kernel.h>
 38#include <linux/mod_devicetable.h>
 39#include <linux/module.h>
 40#include <linux/platform_device.h>
 41#include <linux/pwm.h>
 42#include <linux/regmap.h>
 43
 44/*
 45 * PWM timer block registers.
 46 */
 47#define SL28CPLD_PWM_CTRL			0x00
 48#define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
 49#define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
 50#define SL28CPLD_PWM_CYCLE			0x01
 51#define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
 52
 53#define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
 54#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
 55#define SL28CPLD_PWM_PERIOD(prescaler) \
 56	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
 57
 58/*
 59 * We calculate the duty cycle like this:
 60 *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
 61 *
 62 * With
 63 *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 64 *   max_duty_cycle = 1 << (7 - prescaler)
 65 * this then simplifies to:
 66 *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 67 *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
 68 *
 69 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
 70 * precision by doing the divison first.
 71 */
 72#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
 73	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
 74#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
 75	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
 76
 77#define sl28cpld_pwm_read(priv, reg, val) \
 78	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
 79#define sl28cpld_pwm_write(priv, reg, val) \
 80	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
 81
 82struct sl28cpld_pwm {
 83	struct pwm_chip pwm_chip;
 84	struct regmap *regmap;
 85	u32 offset;
 86};
 87#define sl28cpld_pwm_from_chip(_chip) \
 88	container_of(_chip, struct sl28cpld_pwm, pwm_chip)
 89
 90static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
 91				  struct pwm_device *pwm,
 92				  struct pwm_state *state)
 93{
 94	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
 95	unsigned int reg;
 96	int prescaler;
 97
 98	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
 99
100	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
101
102	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
103	state->period = SL28CPLD_PWM_PERIOD(prescaler);
104
105	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
106	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
107	state->polarity = PWM_POLARITY_NORMAL;
108
109	/*
110	 * Sanitize values for the PWM core. Depending on the prescaler it
111	 * might happen that we calculate a duty_cycle greater than the actual
112	 * period. This might happen if someone (e.g. the bootloader) sets an
113	 * invalid combination of values. The behavior of the hardware is
114	 * undefined in this case. But we need to report sane values back to
115	 * the PWM core.
116	 */
117	state->duty_cycle = min(state->duty_cycle, state->period);
118
119	return 0;
120}
121
122static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
123			      const struct pwm_state *state)
124{
125	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
126	unsigned int cycle, prescaler;
127	bool write_duty_cycle_first;
128	int ret;
129	u8 ctrl;
130
131	/* Polarity inversion is not supported */
132	if (state->polarity != PWM_POLARITY_NORMAL)
133		return -EINVAL;
134
135	/*
136	 * Calculate the prescaler. Pick the biggest period that isn't
137	 * bigger than the requested period.
138	 */
139	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
140	prescaler = order_base_2(prescaler);
141
142	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
143		return -ERANGE;
144
145	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
146	if (state->enabled)
147		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
148
149	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
150	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
151
152	/*
153	 * Work around the hardware limitation. See also above. Trap 100% duty
154	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
155	 * care about the frequency because its "all-one" in either case.
156	 *
157	 * We don't need to check the actual prescaler setting, because only
158	 * if the prescaler is 0 we can have this particular value.
159	 */
160	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
161		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
162		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
163		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
164	}
165
166	/*
167	 * To avoid glitches when we switch the prescaler, we have to make sure
168	 * we have a valid duty cycle for the new mode.
169	 *
170	 * Take the current prescaler (or the current period length) into
171	 * account to decide whether we have to write the duty cycle or the new
172	 * prescaler first. If the period length is decreasing we have to
173	 * write the duty cycle first.
174	 */
175	write_duty_cycle_first = pwm->state.period > state->period;
176
177	if (write_duty_cycle_first) {
178		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
179		if (ret)
180			return ret;
181	}
182
183	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
184	if (ret)
185		return ret;
186
187	if (!write_duty_cycle_first) {
188		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
189		if (ret)
190			return ret;
191	}
192
193	return 0;
194}
195
196static const struct pwm_ops sl28cpld_pwm_ops = {
197	.apply = sl28cpld_pwm_apply,
198	.get_state = sl28cpld_pwm_get_state,
199	.owner = THIS_MODULE,
200};
201
202static int sl28cpld_pwm_probe(struct platform_device *pdev)
203{
204	struct sl28cpld_pwm *priv;
205	struct pwm_chip *chip;
206	int ret;
207
208	if (!pdev->dev.parent) {
209		dev_err(&pdev->dev, "no parent device\n");
210		return -ENODEV;
211	}
212
213	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
214	if (!priv)
215		return -ENOMEM;
216
217	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
218	if (!priv->regmap) {
219		dev_err(&pdev->dev, "could not get parent regmap\n");
220		return -ENODEV;
221	}
222
223	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
224	if (ret) {
225		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
226			ERR_PTR(ret));
227		return -EINVAL;
228	}
229
230	/* Initialize the pwm_chip structure */
231	chip = &priv->pwm_chip;
232	chip->dev = &pdev->dev;
233	chip->ops = &sl28cpld_pwm_ops;
234	chip->npwm = 1;
235
236	ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip);
237	if (ret) {
238		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
239			ERR_PTR(ret));
240		return ret;
241	}
242
243	return 0;
244}
245
246static const struct of_device_id sl28cpld_pwm_of_match[] = {
247	{ .compatible = "kontron,sl28cpld-pwm" },
248	{}
249};
250MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
251
252static struct platform_driver sl28cpld_pwm_driver = {
253	.probe = sl28cpld_pwm_probe,
254	.driver = {
255		.name = "sl28cpld-pwm",
256		.of_match_table = sl28cpld_pwm_of_match,
257	},
258};
259module_platform_driver(sl28cpld_pwm_driver);
260
261MODULE_DESCRIPTION("sl28cpld PWM Driver");
262MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
263MODULE_LICENSE("GPL");