Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | // SPDX-License-Identifier: GPL-2.0-only /* * sl28cpld PWM driver * * Copyright (c) 2020 Michael Walle <michael@walle.cc> * * There is no public datasheet available for this PWM core. But it is easy * enough to be briefly explained. It consists of one 8-bit counter. The PWM * supports four distinct frequencies by selecting when to reset the counter. * With the prescaler setting you can select which bit of the counter is used * to reset it. This implies that the higher the frequency the less remaining * bits are available for the actual counter. * * Let cnt[7:0] be the counter, clocked at 32kHz: * +-----------+--------+--------------+-----------+---------------+ * | prescaler | reset | counter bits | frequency | period length | * +-----------+--------+--------------+-----------+---------------+ * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | * +-----------+--------+--------------+-----------+---------------+ * * Limitations: * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. * - The hardware cannot atomically set the prescaler and the counter value, * which might lead to glitches and inconsistent states if a write fails. * - The counter is not reset if you switch the prescaler which leads * to glitches, too. * - The duty cycle will switch immediately and not after a complete cycle. * - Depending on the actual implementation, disabling the PWM might have * side effects. For example, if the output pin is shared with a GPIO pin * it will automatically switch back to GPIO mode. */ #include <linux/bitfield.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regmap.h> /* * PWM timer block registers. */ #define SL28CPLD_PWM_CTRL 0x00 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) #define SL28CPLD_PWM_CYCLE 0x01 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) #define SL28CPLD_PWM_PERIOD(prescaler) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) /* * We calculate the duty cycle like this: * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle * * With * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC * max_duty_cycle = 1 << (7 - prescaler) * this then simplifies to: * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg * * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing * precision by doing the divison first. */ #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) #define sl28cpld_pwm_read(priv, reg, val) \ regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) #define sl28cpld_pwm_write(priv, reg, val) \ regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) struct sl28cpld_pwm { struct regmap *regmap; u32 offset; }; static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static int sl28cpld_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int reg; int prescaler; sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); state->period = SL28CPLD_PWM_PERIOD(prescaler); sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); state->polarity = PWM_POLARITY_NORMAL; /* * Sanitize values for the PWM core. Depending on the prescaler it * might happen that we calculate a duty_cycle greater than the actual * period. This might happen if someone (e.g. the bootloader) sets an * invalid combination of values. The behavior of the hardware is * undefined in this case. But we need to report sane values back to * the PWM core. */ state->duty_cycle = min(state->duty_cycle, state->period); return 0; } static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int cycle, prescaler; bool write_duty_cycle_first; int ret; u8 ctrl; /* Polarity inversion is not supported */ if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; /* * Calculate the prescaler. Pick the biggest period that isn't * bigger than the requested period. */ prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); prescaler = order_base_2(prescaler); if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) return -ERANGE; ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); if (state->enabled) ctrl |= SL28CPLD_PWM_CTRL_ENABLE; cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); /* * Work around the hardware limitation. See also above. Trap 100% duty * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't * care about the frequency because its "all-one" in either case. * * We don't need to check the actual prescaler setting, because only * if the prescaler is 0 we can have this particular value. */ if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); } /* * To avoid glitches when we switch the prescaler, we have to make sure * we have a valid duty cycle for the new mode. * * Take the current prescaler (or the current period length) into * account to decide whether we have to write the duty cycle or the new * prescaler first. If the period length is decreasing we have to * write the duty cycle first. */ write_duty_cycle_first = pwm->state.period > state->period; if (write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); if (ret) return ret; if (!write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } return 0; } static const struct pwm_ops sl28cpld_pwm_ops = { .apply = sl28cpld_pwm_apply, .get_state = sl28cpld_pwm_get_state, }; static int sl28cpld_pwm_probe(struct platform_device *pdev) { struct sl28cpld_pwm *priv; struct pwm_chip *chip; int ret; if (!pdev->dev.parent) { dev_err(&pdev->dev, "no parent device\n"); return -ENODEV; } chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv)); if (IS_ERR(chip)) return PTR_ERR(chip); priv = sl28cpld_pwm_from_chip(chip); priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) { dev_err(&pdev->dev, "could not get parent regmap\n"); return -ENODEV; } ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); if (ret) { dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", ERR_PTR(ret)); return -EINVAL; } /* Initialize the pwm_chip structure */ chip->ops = &sl28cpld_pwm_ops; ret = devm_pwmchip_add(&pdev->dev, chip); if (ret) { dev_err(&pdev->dev, "failed to add PWM chip (%pe)", ERR_PTR(ret)); return ret; } return 0; } static const struct of_device_id sl28cpld_pwm_of_match[] = { { .compatible = "kontron,sl28cpld-pwm" }, {} }; MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); static struct platform_driver sl28cpld_pwm_driver = { .probe = sl28cpld_pwm_probe, .driver = { .name = "sl28cpld-pwm", .of_match_table = sl28cpld_pwm_of_match, }, }; module_platform_driver(sl28cpld_pwm_driver); MODULE_DESCRIPTION("sl28cpld PWM Driver"); MODULE_AUTHOR("Michael Walle <michael@walle.cc>"); MODULE_LICENSE("GPL"); |