Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * sl28cpld PWM driver
  4 *
  5 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
  6 *
  7 * There is no public datasheet available for this PWM core. But it is easy
  8 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
  9 * supports four distinct frequencies by selecting when to reset the counter.
 10 * With the prescaler setting you can select which bit of the counter is used
 11 * to reset it. This implies that the higher the frequency the less remaining
 12 * bits are available for the actual counter.
 13 *
 14 * Let cnt[7:0] be the counter, clocked at 32kHz:
 15 * +-----------+--------+--------------+-----------+---------------+
 16 * | prescaler |  reset | counter bits | frequency | period length |
 17 * +-----------+--------+--------------+-----------+---------------+
 18 * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
 19 * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
 20 * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
 21 * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
 22 * +-----------+--------+--------------+-----------+---------------+
 23 *
 24 * Limitations:
 25 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
 26 * - The hardware cannot atomically set the prescaler and the counter value,
 27 *   which might lead to glitches and inconsistent states if a write fails.
 28 * - The counter is not reset if you switch the prescaler which leads
 29 *   to glitches, too.
 30 * - The duty cycle will switch immediately and not after a complete cycle.
 31 * - Depending on the actual implementation, disabling the PWM might have
 32 *   side effects. For example, if the output pin is shared with a GPIO pin
 33 *   it will automatically switch back to GPIO mode.
 34 */
 35
 36#include <linux/bitfield.h>
 37#include <linux/kernel.h>
 38#include <linux/mod_devicetable.h>
 39#include <linux/module.h>
 40#include <linux/platform_device.h>
 41#include <linux/pwm.h>
 42#include <linux/regmap.h>
 43
 44/*
 45 * PWM timer block registers.
 46 */
 47#define SL28CPLD_PWM_CTRL			0x00
 48#define   SL28CPLD_PWM_CTRL_ENABLE		BIT(7)
 49#define   SL28CPLD_PWM_CTRL_PRESCALER_MASK	GENMASK(1, 0)
 50#define SL28CPLD_PWM_CYCLE			0x01
 51#define   SL28CPLD_PWM_CYCLE_MAX		GENMASK(6, 0)
 52
 53#define SL28CPLD_PWM_CLK			32000 /* 32 kHz */
 54#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)	(1 << (7 - (prescaler)))
 55#define SL28CPLD_PWM_PERIOD(prescaler) \
 56	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
 57
 58/*
 59 * We calculate the duty cycle like this:
 60 *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
 61 *
 62 * With
 63 *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 64 *   max_duty_cycle = 1 << (7 - prescaler)
 65 * this then simplifies to:
 66 *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 67 *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
 68 *
 69 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
 70 * precision by doing the divison first.
 71 */
 72#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
 73	(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
 74#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
 75	(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
 76
 77#define sl28cpld_pwm_read(priv, reg, val) \
 78	regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
 79#define sl28cpld_pwm_write(priv, reg, val) \
 80	regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
 81
 82struct sl28cpld_pwm {
 83	struct pwm_chip pwm_chip;
 84	struct regmap *regmap;
 85	u32 offset;
 86};
 87#define sl28cpld_pwm_from_chip(_chip) \
 88	container_of(_chip, struct sl28cpld_pwm, pwm_chip)
 89
 90static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
 91				   struct pwm_device *pwm,
 92				   struct pwm_state *state)
 93{
 94	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
 95	unsigned int reg;
 96	int prescaler;
 97
 98	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
 99
100	state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
101
102	prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
103	state->period = SL28CPLD_PWM_PERIOD(prescaler);
104
105	sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
106	state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
107	state->polarity = PWM_POLARITY_NORMAL;
108
109	/*
110	 * Sanitize values for the PWM core. Depending on the prescaler it
111	 * might happen that we calculate a duty_cycle greater than the actual
112	 * period. This might happen if someone (e.g. the bootloader) sets an
113	 * invalid combination of values. The behavior of the hardware is
114	 * undefined in this case. But we need to report sane values back to
115	 * the PWM core.
116	 */
117	state->duty_cycle = min(state->duty_cycle, state->period);
118}
119
120static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
121			      const struct pwm_state *state)
122{
123	struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
124	unsigned int cycle, prescaler;
125	bool write_duty_cycle_first;
126	int ret;
127	u8 ctrl;
128
129	/* Polarity inversion is not supported */
130	if (state->polarity != PWM_POLARITY_NORMAL)
131		return -EINVAL;
132
133	/*
134	 * Calculate the prescaler. Pick the biggest period that isn't
135	 * bigger than the requested period.
136	 */
137	prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
138	prescaler = order_base_2(prescaler);
139
140	if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
141		return -ERANGE;
142
143	ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
144	if (state->enabled)
145		ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
146
147	cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
148	cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
149
150	/*
151	 * Work around the hardware limitation. See also above. Trap 100% duty
152	 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
153	 * care about the frequency because its "all-one" in either case.
154	 *
155	 * We don't need to check the actual prescaler setting, because only
156	 * if the prescaler is 0 we can have this particular value.
157	 */
158	if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
159		ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
160		ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
161		cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
162	}
163
164	/*
165	 * To avoid glitches when we switch the prescaler, we have to make sure
166	 * we have a valid duty cycle for the new mode.
167	 *
168	 * Take the current prescaler (or the current period length) into
169	 * account to decide whether we have to write the duty cycle or the new
170	 * prescaler first. If the period length is decreasing we have to
171	 * write the duty cycle first.
172	 */
173	write_duty_cycle_first = pwm->state.period > state->period;
174
175	if (write_duty_cycle_first) {
176		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
177		if (ret)
178			return ret;
179	}
180
181	ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
182	if (ret)
183		return ret;
184
185	if (!write_duty_cycle_first) {
186		ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
187		if (ret)
188			return ret;
189	}
190
191	return 0;
192}
193
194static const struct pwm_ops sl28cpld_pwm_ops = {
195	.apply = sl28cpld_pwm_apply,
196	.get_state = sl28cpld_pwm_get_state,
197	.owner = THIS_MODULE,
198};
199
200static int sl28cpld_pwm_probe(struct platform_device *pdev)
201{
202	struct sl28cpld_pwm *priv;
203	struct pwm_chip *chip;
204	int ret;
205
206	if (!pdev->dev.parent) {
207		dev_err(&pdev->dev, "no parent device\n");
208		return -ENODEV;
209	}
210
211	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
212	if (!priv)
213		return -ENOMEM;
214
215	priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
216	if (!priv->regmap) {
217		dev_err(&pdev->dev, "could not get parent regmap\n");
218		return -ENODEV;
219	}
220
221	ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
222	if (ret) {
223		dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
224			ERR_PTR(ret));
225		return -EINVAL;
226	}
227
228	/* Initialize the pwm_chip structure */
229	chip = &priv->pwm_chip;
230	chip->dev = &pdev->dev;
231	chip->ops = &sl28cpld_pwm_ops;
232	chip->npwm = 1;
233
234	platform_set_drvdata(pdev, priv);
235
236	ret = pwmchip_add(&priv->pwm_chip);
237	if (ret) {
238		dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
239			ERR_PTR(ret));
240		return ret;
241	}
242
243	return 0;
244}
245
246static int sl28cpld_pwm_remove(struct platform_device *pdev)
247{
248	struct sl28cpld_pwm *priv = platform_get_drvdata(pdev);
249
250	return pwmchip_remove(&priv->pwm_chip);
251}
252
253static const struct of_device_id sl28cpld_pwm_of_match[] = {
254	{ .compatible = "kontron,sl28cpld-pwm" },
255	{}
256};
257MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
258
259static struct platform_driver sl28cpld_pwm_driver = {
260	.probe = sl28cpld_pwm_probe,
261	.remove	= sl28cpld_pwm_remove,
262	.driver = {
263		.name = "sl28cpld-pwm",
264		.of_match_table = sl28cpld_pwm_of_match,
265	},
266};
267module_platform_driver(sl28cpld_pwm_driver);
268
269MODULE_DESCRIPTION("sl28cpld PWM Driver");
270MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
271MODULE_LICENSE("GPL");