Linux Audio

Check our new training course

Loading...
v4.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61	[HPD_CRT] = SDE_CRT_HOTPLUG,
  62	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121	POSTING_READ(GEN8_##type##_IMR(which)); \
 122	I915_WRITE(GEN8_##type##_IER(which), 0); \
 123	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124	POSTING_READ(GEN8_##type##_IIR(which)); \
 125	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126	POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN5_IRQ_RESET(type) do { \
 130	I915_WRITE(type##IMR, 0xffffffff); \
 131	POSTING_READ(type##IMR); \
 132	I915_WRITE(type##IER, 0); \
 133	I915_WRITE(type##IIR, 0xffffffff); \
 134	POSTING_READ(type##IIR); \
 135	I915_WRITE(type##IIR, 0xffffffff); \
 136	POSTING_READ(type##IIR); \
 137} while (0)
 138
 139/*
 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 141 */
 142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 143				    i915_reg_t reg)
 144{
 145	u32 val = I915_READ(reg);
 
 
 
 
 146
 147	if (val == 0)
 148		return;
 
 
 
 
 
 149
 150	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 151	     i915_mmio_reg_offset(reg), val);
 152	I915_WRITE(reg, 0xffffffff);
 153	POSTING_READ(reg);
 154	I915_WRITE(reg, 0xffffffff);
 155	POSTING_READ(reg);
 156}
 157
 158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 159	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 160	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 161	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 162	POSTING_READ(GEN8_##type##_IMR(which)); \
 163} while (0)
 164
 165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
 166	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
 167	I915_WRITE(type##IER, (ier_val)); \
 168	I915_WRITE(type##IMR, (imr_val)); \
 169	POSTING_READ(type##IMR); \
 170} while (0)
 171
 172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 
 
 
 
 
 
 
 173
 174/* For display hotplug interrupt */
 175static inline void
 176i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 177				     uint32_t mask,
 178				     uint32_t bits)
 179{
 180	uint32_t val;
 
 
 
 181
 182	assert_spin_locked(&dev_priv->irq_lock);
 183	WARN_ON(bits & ~mask);
 
 184
 185	val = I915_READ(PORT_HOTPLUG_EN);
 186	val &= ~mask;
 187	val |= bits;
 188	I915_WRITE(PORT_HOTPLUG_EN, val);
 
 
 
 
 
 
 
 
 189}
 190
 191/**
 192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 193 * @dev_priv: driver private
 194 * @mask: bits to update
 195 * @bits: bits to enable
 196 * NOTE: the HPD enable bits are modified both inside and outside
 197 * of an interrupt context. To avoid that read-modify-write cycles
 198 * interfer, these bits are protected by a spinlock. Since this
 199 * function is usually not called from a context where the lock is
 200 * held already, this function acquires the lock itself. A non-locking
 201 * version is also available.
 202 */
 203void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 204				   uint32_t mask,
 205				   uint32_t bits)
 206{
 207	spin_lock_irq(&dev_priv->irq_lock);
 208	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 209	spin_unlock_irq(&dev_priv->irq_lock);
 210}
 211
 212/**
 213 * ilk_update_display_irq - update DEIMR
 214 * @dev_priv: driver private
 215 * @interrupt_mask: mask of interrupt bits to update
 216 * @enabled_irq_mask: mask of interrupt bits to enable
 217 */
 218void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 219			    uint32_t interrupt_mask,
 220			    uint32_t enabled_irq_mask)
 221{
 222	uint32_t new_val;
 
 223
 224	assert_spin_locked(&dev_priv->irq_lock);
 225
 226	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 
 
 
 
 
 227
 228	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 229		return;
 
 
 230
 231	new_val = dev_priv->irq_mask;
 232	new_val &= ~interrupt_mask;
 233	new_val |= (~enabled_irq_mask & interrupt_mask);
 234
 235	if (new_val != dev_priv->irq_mask) {
 236		dev_priv->irq_mask = new_val;
 237		I915_WRITE(DEIMR, dev_priv->irq_mask);
 238		POSTING_READ(DEIMR);
 239	}
 240}
 241
 242/**
 243 * ilk_update_gt_irq - update GTIMR
 244 * @dev_priv: driver private
 245 * @interrupt_mask: mask of interrupt bits to update
 246 * @enabled_irq_mask: mask of interrupt bits to enable
 247 */
 248static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 249			      uint32_t interrupt_mask,
 250			      uint32_t enabled_irq_mask)
 251{
 252	assert_spin_locked(&dev_priv->irq_lock);
 253
 254	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 255
 256	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 257		return;
 258
 259	dev_priv->gt_irq_mask &= ~interrupt_mask;
 260	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 261	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 262	POSTING_READ(GTIMR);
 
 
 
 263}
 264
 265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 266{
 267	ilk_update_gt_irq(dev_priv, mask, mask);
 
 
 
 
 
 
 
 
 
 
 
 268}
 269
 270void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 
 
 
 271{
 272	ilk_update_gt_irq(dev_priv, mask, 0);
 
 
 
 
 273}
 274
 275static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 
 276{
 277	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 
 
 
 
 278}
 279
 280static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 
 
 
 
 281{
 282	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 
 
 
 283}
 284
 285static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286{
 287	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 
 
 288}
 289
 290/**
 291 * snb_update_pm_irq - update GEN6_PMIMR
 292 * @dev_priv: driver private
 293 * @interrupt_mask: mask of interrupt bits to update
 294 * @enabled_irq_mask: mask of interrupt bits to enable
 295 */
 296static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 297			      uint32_t interrupt_mask,
 298			      uint32_t enabled_irq_mask)
 299{
 300	uint32_t new_val;
 301
 302	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 
 303
 304	assert_spin_locked(&dev_priv->irq_lock);
 305
 306	new_val = dev_priv->pm_irq_mask;
 307	new_val &= ~interrupt_mask;
 308	new_val |= (~enabled_irq_mask & interrupt_mask);
 309
 310	if (new_val != dev_priv->pm_irq_mask) {
 311		dev_priv->pm_irq_mask = new_val;
 312		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
 313		POSTING_READ(gen6_pm_imr(dev_priv));
 
 314	}
 315}
 316
 317void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 318{
 319	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 320		return;
 321
 322	snb_update_pm_irq(dev_priv, mask, mask);
 323}
 324
 325static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
 326				  uint32_t mask)
 327{
 328	snb_update_pm_irq(dev_priv, mask, 0);
 329}
 330
 331void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 332{
 333	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 334		return;
 335
 336	__gen6_disable_pm_irq(dev_priv, mask);
 337}
 338
 339void gen6_reset_rps_interrupts(struct drm_device *dev)
 340{
 341	struct drm_i915_private *dev_priv = dev->dev_private;
 342	i915_reg_t reg = gen6_pm_iir(dev_priv);
 343
 344	spin_lock_irq(&dev_priv->irq_lock);
 345	I915_WRITE(reg, dev_priv->pm_rps_events);
 346	I915_WRITE(reg, dev_priv->pm_rps_events);
 347	POSTING_READ(reg);
 348	dev_priv->rps.pm_iir = 0;
 349	spin_unlock_irq(&dev_priv->irq_lock);
 350}
 351
 352void gen6_enable_rps_interrupts(struct drm_device *dev)
 353{
 354	struct drm_i915_private *dev_priv = dev->dev_private;
 355
 356	spin_lock_irq(&dev_priv->irq_lock);
 357
 358	WARN_ON(dev_priv->rps.pm_iir);
 359	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 360	dev_priv->rps.interrupts_enabled = true;
 361	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
 362				dev_priv->pm_rps_events);
 363	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 364
 365	spin_unlock_irq(&dev_priv->irq_lock);
 366}
 367
 368u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
 369{
 370	/*
 371	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
 372	 * if GEN6_PM_UP_EI_EXPIRED is masked.
 373	 *
 374	 * TODO: verify if this can be reproduced on VLV,CHV.
 375	 */
 376	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
 377		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
 378
 379	if (INTEL_INFO(dev_priv)->gen >= 8)
 380		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
 381
 382	return mask;
 383}
 384
 385void gen6_disable_rps_interrupts(struct drm_device *dev)
 386{
 387	struct drm_i915_private *dev_priv = dev->dev_private;
 388
 389	spin_lock_irq(&dev_priv->irq_lock);
 390	dev_priv->rps.interrupts_enabled = false;
 391	spin_unlock_irq(&dev_priv->irq_lock);
 392
 393	cancel_work_sync(&dev_priv->rps.work);
 394
 395	spin_lock_irq(&dev_priv->irq_lock);
 396
 397	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 398
 399	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 400	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
 401				~dev_priv->pm_rps_events);
 402
 403	spin_unlock_irq(&dev_priv->irq_lock);
 404
 405	synchronize_irq(dev->irq);
 406}
 407
 408/**
 409 * bdw_update_port_irq - update DE port interrupt
 410 * @dev_priv: driver private
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 415				uint32_t interrupt_mask,
 416				uint32_t enabled_irq_mask)
 417{
 418	uint32_t new_val;
 419	uint32_t old_val;
 420
 421	assert_spin_locked(&dev_priv->irq_lock);
 422
 423	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 424
 425	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	old_val = I915_READ(GEN8_DE_PORT_IMR);
 429
 430	new_val = old_val;
 431	new_val &= ~interrupt_mask;
 432	new_val |= (~enabled_irq_mask & interrupt_mask);
 433
 434	if (new_val != old_val) {
 435		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 436		POSTING_READ(GEN8_DE_PORT_IMR);
 437	}
 438}
 439
 440/**
 441 * bdw_update_pipe_irq - update DE pipe interrupt
 442 * @dev_priv: driver private
 443 * @pipe: pipe whose interrupt to update
 444 * @interrupt_mask: mask of interrupt bits to update
 445 * @enabled_irq_mask: mask of interrupt bits to enable
 446 */
 447void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 448			 enum pipe pipe,
 449			 uint32_t interrupt_mask,
 450			 uint32_t enabled_irq_mask)
 451{
 452	uint32_t new_val;
 453
 454	assert_spin_locked(&dev_priv->irq_lock);
 455
 456	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 457
 458	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 459		return;
 460
 461	new_val = dev_priv->de_irq_mask[pipe];
 462	new_val &= ~interrupt_mask;
 463	new_val |= (~enabled_irq_mask & interrupt_mask);
 464
 465	if (new_val != dev_priv->de_irq_mask[pipe]) {
 466		dev_priv->de_irq_mask[pipe] = new_val;
 467		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 468		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 469	}
 470}
 471
 
 
 
 
 
 
 
 
 
 
 
 
 472/**
 473 * ibx_display_interrupt_update - update SDEIMR
 474 * @dev_priv: driver private
 475 * @interrupt_mask: mask of interrupt bits to update
 476 * @enabled_irq_mask: mask of interrupt bits to enable
 477 */
 478void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 479				  uint32_t interrupt_mask,
 480				  uint32_t enabled_irq_mask)
 481{
 482	uint32_t sdeimr = I915_READ(SDEIMR);
 483	sdeimr &= ~interrupt_mask;
 484	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 485
 486	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 487
 488	assert_spin_locked(&dev_priv->irq_lock);
 489
 490	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491		return;
 492
 493	I915_WRITE(SDEIMR, sdeimr);
 494	POSTING_READ(SDEIMR);
 495}
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499		       u32 enable_mask, u32 status_mask)
 500{
 501	i915_reg_t reg = PIPESTAT(pipe);
 502	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504	assert_spin_locked(&dev_priv->irq_lock);
 505	WARN_ON(!intel_irqs_enabled(dev_priv));
 506
 507	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 508		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 509		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 510		      pipe_name(pipe), enable_mask, status_mask))
 511		return;
 512
 513	if ((pipestat & enable_mask) == enable_mask)
 514		return;
 515
 516	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 517
 518	/* Enable the interrupt, clear any pending status */
 519	pipestat |= enable_mask | status_mask;
 520	I915_WRITE(reg, pipestat);
 521	POSTING_READ(reg);
 522}
 523
 524static void
 525__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 526		        u32 enable_mask, u32 status_mask)
 527{
 528	i915_reg_t reg = PIPESTAT(pipe);
 529	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 530
 531	assert_spin_locked(&dev_priv->irq_lock);
 532	WARN_ON(!intel_irqs_enabled(dev_priv));
 533
 534	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 535		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 536		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 537		      pipe_name(pipe), enable_mask, status_mask))
 538		return;
 539
 540	if ((pipestat & enable_mask) == 0)
 541		return;
 542
 543	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 544
 545	pipestat &= ~enable_mask;
 546	I915_WRITE(reg, pipestat);
 547	POSTING_READ(reg);
 548}
 549
 550static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 
 551{
 
 552	u32 enable_mask = status_mask << 16;
 553
 
 
 
 
 
 554	/*
 555	 * On pipe A we don't support the PSR interrupt yet,
 556	 * on pipe B and C the same bit MBZ.
 557	 */
 558	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 
 559		return 0;
 560	/*
 561	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 562	 * A the same bit is for perf counters which we don't use either.
 563	 */
 564	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 
 565		return 0;
 566
 567	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 568			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 569			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 570	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 571		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 572	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 573		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 574
 
 
 
 
 
 
 
 575	return enable_mask;
 576}
 577
 578void
 579i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 580		     u32 status_mask)
 581{
 
 582	u32 enable_mask;
 583
 584	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 585		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 586							   status_mask);
 587	else
 588		enable_mask = status_mask << 16;
 589	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 590}
 591
 592void
 593i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 594		      u32 status_mask)
 595{
 
 596	u32 enable_mask;
 597
 598	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 599		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 600							   status_mask);
 601	else
 602		enable_mask = status_mask << 16;
 603	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604}
 605
 606/**
 607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 608 * @dev: drm device
 609 */
 610static void i915_enable_asle_pipestat(struct drm_device *dev)
 611{
 612	struct drm_i915_private *dev_priv = dev->dev_private;
 613
 614	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 615		return;
 616
 617	spin_lock_irq(&dev_priv->irq_lock);
 618
 619	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 620	if (INTEL_INFO(dev)->gen >= 4)
 621		i915_enable_pipestat(dev_priv, PIPE_A,
 622				     PIPE_LEGACY_BLC_EVENT_STATUS);
 623
 624	spin_unlock_irq(&dev_priv->irq_lock);
 625}
 626
 627/*
 628 * This timing diagram depicts the video signal in and
 629 * around the vertical blanking period.
 630 *
 631 * Assumptions about the fictitious mode used in this example:
 632 *  vblank_start >= 3
 633 *  vsync_start = vblank_start + 1
 634 *  vsync_end = vblank_start + 2
 635 *  vtotal = vblank_start + 3
 636 *
 637 *           start of vblank:
 638 *           latch double buffered registers
 639 *           increment frame counter (ctg+)
 640 *           generate start of vblank interrupt (gen4+)
 641 *           |
 642 *           |          frame start:
 643 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 644 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 645 *           |          |
 646 *           |          |  start of vsync:
 647 *           |          |  generate vsync interrupt
 648 *           |          |  |
 649 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 650 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 651 * ----va---> <-----------------vb--------------------> <--------va-------------
 652 *       |          |       <----vs----->                     |
 653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 656 *       |          |                                         |
 657 *       last visible pixel                                   first visible pixel
 658 *                  |                                         increment frame counter (gen3/4)
 659 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 660 *
 661 * x  = horizontal active
 662 * _  = horizontal blanking
 663 * hs = horizontal sync
 664 * va = vertical active
 665 * vb = vertical blanking
 666 * vs = vertical sync
 667 * vbs = vblank_start (number)
 668 *
 669 * Summary:
 670 * - most events happen at the start of horizontal sync
 671 * - frame start happens at the start of horizontal blank, 1-4 lines
 672 *   (depending on PIPECONF settings) after the start of vblank
 673 * - gen3/4 pixel and frame counter are synchronized with the start
 674 *   of horizontal active on the first line of vertical active
 675 */
 676
 677static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 678{
 679	/* Gen2 doesn't have a hardware frame counter */
 680	return 0;
 681}
 682
 683/* Called from drm generic code, passed a 'crtc', which
 684 * we use as a pipe index
 685 */
 686static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 687{
 688	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 689	i915_reg_t high_frame, low_frame;
 690	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 691	struct intel_crtc *intel_crtc =
 692		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 693	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
 
 
 
 
 
 
 
 
 
 
 
 
 694
 695	htotal = mode->crtc_htotal;
 696	hsync_start = mode->crtc_hsync_start;
 697	vbl_start = mode->crtc_vblank_start;
 698	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 699		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 700
 701	/* Convert to pixel count */
 702	vbl_start *= htotal;
 703
 704	/* Start of vblank event occurs at start of hsync */
 705	vbl_start -= htotal - hsync_start;
 706
 707	high_frame = PIPEFRAME(pipe);
 708	low_frame = PIPEFRAMEPIXEL(pipe);
 709
 
 
 710	/*
 711	 * High & low register fields aren't synchronized, so make sure
 712	 * we get a low value that's stable across two reads of the high
 713	 * register.
 714	 */
 715	do {
 716		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 717		low   = I915_READ(low_frame);
 718		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 719	} while (high1 != high2);
 720
 
 
 721	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 722	pixel = low & PIPE_PIXEL_MASK;
 723	low >>= PIPE_FRAME_LOW_SHIFT;
 724
 725	/*
 726	 * The frame counter increments at beginning of active.
 727	 * Cook up a vblank counter by also checking the pixel
 728	 * counter against vblank start.
 729	 */
 730	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 731}
 732
 733static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 734{
 735	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 736
 737	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 738}
 739
 740/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 742{
 743	struct drm_device *dev = crtc->base.dev;
 744	struct drm_i915_private *dev_priv = dev->dev_private;
 745	const struct drm_display_mode *mode = &crtc->base.hwmode;
 
 746	enum pipe pipe = crtc->pipe;
 747	int position, vtotal;
 748
 
 
 
 
 
 
 
 
 
 749	vtotal = mode->crtc_vtotal;
 750	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 751		vtotal /= 2;
 752
 753	if (IS_GEN2(dev))
 754		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 755	else
 756		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 757
 758	/*
 759	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 760	 * read it just before the start of vblank.  So try it again
 761	 * so we don't accidentally end up spanning a vblank frame
 762	 * increment, causing the pipe_update_end() code to squak at us.
 763	 *
 764	 * The nature of this problem means we can't simply check the ISR
 765	 * bit and return the vblank start value; nor can we use the scanline
 766	 * debug register in the transcoder as it appears to have the same
 767	 * problem.  We may need to extend this to include other platforms,
 768	 * but so far testing only shows the problem on HSW.
 769	 */
 770	if (HAS_DDI(dev) && !position) {
 771		int i, temp;
 772
 773		for (i = 0; i < 100; i++) {
 774			udelay(1);
 775			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
 776				DSL_LINEMASK_GEN3;
 777			if (temp != position) {
 778				position = temp;
 779				break;
 780			}
 781		}
 782	}
 783
 784	/*
 785	 * See update_scanline_offset() for the details on the
 786	 * scanline_offset adjustment.
 787	 */
 788	return (position + crtc->scanline_offset) % vtotal;
 789}
 790
 791static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 792				    unsigned int flags, int *vpos, int *hpos,
 793				    ktime_t *stime, ktime_t *etime,
 794				    const struct drm_display_mode *mode)
 795{
 796	struct drm_i915_private *dev_priv = dev->dev_private;
 797	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 798	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
 
 799	int position;
 800	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 801	bool in_vbl = true;
 802	int ret = 0;
 803	unsigned long irqflags;
 804
 805	if (WARN_ON(!mode->crtc_clock)) {
 806		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 807				 "pipe %c\n", pipe_name(pipe));
 808		return 0;
 
 
 
 
 809	}
 810
 811	htotal = mode->crtc_htotal;
 812	hsync_start = mode->crtc_hsync_start;
 813	vtotal = mode->crtc_vtotal;
 814	vbl_start = mode->crtc_vblank_start;
 815	vbl_end = mode->crtc_vblank_end;
 816
 817	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 818		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 819		vbl_end /= 2;
 820		vtotal /= 2;
 821	}
 822
 823	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 824
 825	/*
 826	 * Lock uncore.lock, as we will do multiple timing critical raw
 827	 * register reads, potentially with preemption disabled, so the
 828	 * following code must not block on uncore.lock.
 829	 */
 830	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 831
 832	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 833
 834	/* Get optional system timestamp before query. */
 835	if (stime)
 836		*stime = ktime_get();
 837
 838	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 839		/* No obvious pixelcount register. Only query vertical
 840		 * scanout position from Display scan line register.
 841		 */
 842		position = __intel_get_crtc_scanline(intel_crtc);
 843	} else {
 844		/* Have access to pixelcount since start of frame.
 845		 * We can split this into vertical and horizontal
 846		 * scanout position.
 847		 */
 848		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 849
 850		/* convert to pixel counts */
 851		vbl_start *= htotal;
 852		vbl_end *= htotal;
 853		vtotal *= htotal;
 854
 855		/*
 856		 * In interlaced modes, the pixel counter counts all pixels,
 857		 * so one field will have htotal more pixels. In order to avoid
 858		 * the reported position from jumping backwards when the pixel
 859		 * counter is beyond the length of the shorter field, just
 860		 * clamp the position the length of the shorter field. This
 861		 * matches how the scanline counter based position works since
 862		 * the scanline counter doesn't count the two half lines.
 863		 */
 864		if (position >= vtotal)
 865			position = vtotal - 1;
 866
 867		/*
 868		 * Start of vblank interrupt is triggered at start of hsync,
 869		 * just prior to the first active line of vblank. However we
 870		 * consider lines to start at the leading edge of horizontal
 871		 * active. So, should we get here before we've crossed into
 872		 * the horizontal active of the first line in vblank, we would
 873		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 874		 * always add htotal-hsync_start to the current pixel position.
 875		 */
 876		position = (position + htotal - hsync_start) % vtotal;
 877	}
 878
 879	/* Get optional system timestamp after query. */
 880	if (etime)
 881		*etime = ktime_get();
 882
 883	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 884
 885	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 886
 887	in_vbl = position >= vbl_start && position < vbl_end;
 888
 889	/*
 890	 * While in vblank, position will be negative
 891	 * counting up towards 0 at vbl_end. And outside
 892	 * vblank, position will be positive counting
 893	 * up since vbl_end.
 894	 */
 895	if (position >= vbl_start)
 896		position -= vbl_end;
 897	else
 898		position += vtotal - vbl_end;
 899
 900	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 901		*vpos = position;
 902		*hpos = 0;
 903	} else {
 904		*vpos = position / htotal;
 905		*hpos = position - (*vpos * htotal);
 906	}
 907
 908	/* In vblank? */
 909	if (in_vbl)
 910		ret |= DRM_SCANOUTPOS_IN_VBLANK;
 911
 912	return ret;
 
 
 
 
 
 913}
 914
 915int intel_get_crtc_scanline(struct intel_crtc *crtc)
 916{
 917	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 918	unsigned long irqflags;
 919	int position;
 920
 921	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 922	position = __intel_get_crtc_scanline(crtc);
 923	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 924
 925	return position;
 926}
 927
 928static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
 929			      int *max_error,
 930			      struct timeval *vblank_time,
 931			      unsigned flags)
 932{
 933	struct drm_crtc *crtc;
 934
 935	if (pipe >= INTEL_INFO(dev)->num_pipes) {
 936		DRM_ERROR("Invalid crtc %u\n", pipe);
 937		return -EINVAL;
 938	}
 939
 940	/* Get drm_crtc to timestamp: */
 941	crtc = intel_get_crtc_for_pipe(dev, pipe);
 942	if (crtc == NULL) {
 943		DRM_ERROR("Invalid crtc %u\n", pipe);
 944		return -EINVAL;
 945	}
 946
 947	if (!crtc->hwmode.crtc_clock) {
 948		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
 949		return -EBUSY;
 950	}
 951
 952	/* Helper routine in DRM core does all the work: */
 953	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 954						     vblank_time, flags,
 955						     &crtc->hwmode);
 956}
 957
 958static void ironlake_rps_change_irq_handler(struct drm_device *dev)
 959{
 960	struct drm_i915_private *dev_priv = dev->dev_private;
 961	u32 busy_up, busy_down, max_avg, min_avg;
 962	u8 new_delay;
 963
 964	spin_lock(&mchdev_lock);
 965
 966	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 967
 968	new_delay = dev_priv->ips.cur_delay;
 969
 970	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 971	busy_up = I915_READ(RCPREVBSYTUPAVG);
 972	busy_down = I915_READ(RCPREVBSYTDNAVG);
 973	max_avg = I915_READ(RCBMAXAVG);
 974	min_avg = I915_READ(RCBMINAVG);
 975
 976	/* Handle RCS change request from hw */
 977	if (busy_up > max_avg) {
 978		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
 979			new_delay = dev_priv->ips.cur_delay - 1;
 980		if (new_delay < dev_priv->ips.max_delay)
 981			new_delay = dev_priv->ips.max_delay;
 982	} else if (busy_down < min_avg) {
 983		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
 984			new_delay = dev_priv->ips.cur_delay + 1;
 985		if (new_delay > dev_priv->ips.min_delay)
 986			new_delay = dev_priv->ips.min_delay;
 987	}
 988
 989	if (ironlake_set_drps(dev, new_delay))
 990		dev_priv->ips.cur_delay = new_delay;
 991
 992	spin_unlock(&mchdev_lock);
 993
 994	return;
 995}
 996
 997static void notify_ring(struct intel_engine_cs *ring)
 998{
 999	if (!intel_ring_initialized(ring))
1000		return;
1001
1002	trace_i915_gem_request_notify(ring);
1003
1004	wake_up_all(&ring->irq_queue);
1005}
1006
1007static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008			struct intel_rps_ei *ei)
1009{
1010	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013}
1014
1015static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016			 const struct intel_rps_ei *old,
1017			 const struct intel_rps_ei *now,
1018			 int threshold)
1019{
1020	u64 time, c0;
1021	unsigned int mul = 100;
1022
1023	if (old->cz_clock == 0)
1024		return false;
1025
1026	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027		mul <<= 8;
1028
1029	time = now->cz_clock - old->cz_clock;
1030	time *= threshold * dev_priv->czclk_freq;
1031
1032	/* Workload can be split between render + media, e.g. SwapBuffers
1033	 * being blitted in X after being rendered in mesa. To account for
1034	 * this we need to combine both engines into our activity counter.
1035	 */
1036	c0 = now->render_c0 - old->render_c0;
1037	c0 += now->media_c0 - old->media_c0;
1038	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040	return c0 >= time;
1041}
1042
1043void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044{
1045	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047}
1048
1049static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050{
1051	struct intel_rps_ei now;
1052	u32 events = 0;
1053
1054	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055		return 0;
1056
1057	vlv_c0_read(dev_priv, &now);
1058	if (now.cz_clock == 0)
1059		return 0;
1060
1061	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062		if (!vlv_c0_above(dev_priv,
1063				  &dev_priv->rps.down_ei, &now,
1064				  dev_priv->rps.down_threshold))
1065			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066		dev_priv->rps.down_ei = now;
1067	}
1068
1069	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070		if (vlv_c0_above(dev_priv,
1071				 &dev_priv->rps.up_ei, &now,
1072				 dev_priv->rps.up_threshold))
1073			events |= GEN6_PM_RP_UP_THRESHOLD;
1074		dev_priv->rps.up_ei = now;
1075	}
1076
1077	return events;
1078}
1079
1080static bool any_waiters(struct drm_i915_private *dev_priv)
1081{
1082	struct intel_engine_cs *ring;
1083	int i;
1084
1085	for_each_ring(ring, dev_priv, i)
1086		if (ring->irq_refcount)
1087			return true;
1088
1089	return false;
1090}
1091
1092static void gen6_pm_rps_work(struct work_struct *work)
1093{
1094	struct drm_i915_private *dev_priv =
1095		container_of(work, struct drm_i915_private, rps.work);
1096	bool client_boost;
1097	int new_delay, adj, min, max;
1098	u32 pm_iir;
1099
1100	spin_lock_irq(&dev_priv->irq_lock);
1101	/* Speed up work cancelation during disabling rps interrupts. */
1102	if (!dev_priv->rps.interrupts_enabled) {
1103		spin_unlock_irq(&dev_priv->irq_lock);
1104		return;
1105	}
1106
1107	/*
1108	 * The RPS work is synced during runtime suspend, we don't require a
1109	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110	 * always hold an RPM reference while the work is running.
1111	 */
1112	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114	pm_iir = dev_priv->rps.pm_iir;
1115	dev_priv->rps.pm_iir = 0;
1116	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118	client_boost = dev_priv->rps.client_boost;
1119	dev_priv->rps.client_boost = false;
1120	spin_unlock_irq(&dev_priv->irq_lock);
1121
1122	/* Make sure we didn't queue anything we're not going to process. */
1123	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126		goto out;
1127
1128	mutex_lock(&dev_priv->rps.hw_lock);
1129
1130	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132	adj = dev_priv->rps.last_adj;
1133	new_delay = dev_priv->rps.cur_freq;
1134	min = dev_priv->rps.min_freq_softlimit;
1135	max = dev_priv->rps.max_freq_softlimit;
1136
1137	if (client_boost) {
1138		new_delay = dev_priv->rps.max_freq_softlimit;
1139		adj = 0;
1140	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141		if (adj > 0)
1142			adj *= 2;
1143		else /* CHV needs even encode values */
1144			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145		/*
1146		 * For better performance, jump directly
1147		 * to RPe if we're below it.
1148		 */
1149		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150			new_delay = dev_priv->rps.efficient_freq;
1151			adj = 0;
1152		}
1153	} else if (any_waiters(dev_priv)) {
1154		adj = 0;
1155	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157			new_delay = dev_priv->rps.efficient_freq;
1158		else
1159			new_delay = dev_priv->rps.min_freq_softlimit;
1160		adj = 0;
1161	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162		if (adj < 0)
1163			adj *= 2;
1164		else /* CHV needs even encode values */
1165			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166	} else { /* unknown event */
1167		adj = 0;
1168	}
1169
1170	dev_priv->rps.last_adj = adj;
1171
1172	/* sysfs frequency interfaces may have snuck in while servicing the
1173	 * interrupt
1174	 */
1175	new_delay += adj;
1176	new_delay = clamp_t(int, new_delay, min, max);
1177
1178	intel_set_rps(dev_priv->dev, new_delay);
1179
1180	mutex_unlock(&dev_priv->rps.hw_lock);
1181out:
1182	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183}
1184
1185
1186/**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195static void ivybridge_parity_work(struct work_struct *work)
1196{
1197	struct drm_i915_private *dev_priv =
1198		container_of(work, struct drm_i915_private, l3_parity.error_work);
 
1199	u32 error_status, row, bank, subbank;
1200	char *parity_event[6];
1201	uint32_t misccpctl;
1202	uint8_t slice = 0;
1203
1204	/* We must turn off DOP level clock gating to access the L3 registers.
1205	 * In order to prevent a get/put style interface, acquire struct mutex
1206	 * any time we access those registers.
1207	 */
1208	mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210	/* If we've screwed up tracking, just let the interrupt fire again */
1211	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212		goto out;
1213
1214	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216	POSTING_READ(GEN7_MISCCPCTL);
1217
1218	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219		i915_reg_t reg;
1220
1221		slice--;
1222		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
 
1223			break;
1224
1225		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227		reg = GEN7_L3CDERRST1(slice);
1228
1229		error_status = I915_READ(reg);
1230		row = GEN7_PARITY_ERROR_ROW(error_status);
1231		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235		POSTING_READ(reg);
1236
1237		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242		parity_event[5] = NULL;
1243
1244		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245				   KOBJ_CHANGE, parity_event);
1246
1247		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248			  slice, row, bank, subbank);
 
1249
1250		kfree(parity_event[4]);
1251		kfree(parity_event[3]);
1252		kfree(parity_event[2]);
1253		kfree(parity_event[1]);
1254	}
1255
1256	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258out:
1259	WARN_ON(dev_priv->l3_parity.which_slice);
1260	spin_lock_irq(&dev_priv->irq_lock);
1261	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262	spin_unlock_irq(&dev_priv->irq_lock);
1263
1264	mutex_unlock(&dev_priv->dev->struct_mutex);
1265}
1266
1267static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268{
1269	struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271	if (!HAS_L3_DPF(dev))
1272		return;
1273
1274	spin_lock(&dev_priv->irq_lock);
1275	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276	spin_unlock(&dev_priv->irq_lock);
1277
1278	iir &= GT_PARITY_ERROR(dev);
1279	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280		dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283		dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286}
1287
1288static void ilk_gt_irq_handler(struct drm_device *dev,
1289			       struct drm_i915_private *dev_priv,
1290			       u32 gt_iir)
1291{
1292	if (gt_iir &
1293	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294		notify_ring(&dev_priv->ring[RCS]);
1295	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296		notify_ring(&dev_priv->ring[VCS]);
1297}
1298
1299static void snb_gt_irq_handler(struct drm_device *dev,
1300			       struct drm_i915_private *dev_priv,
1301			       u32 gt_iir)
1302{
1303
1304	if (gt_iir &
1305	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306		notify_ring(&dev_priv->ring[RCS]);
1307	if (gt_iir & GT_BSD_USER_INTERRUPT)
1308		notify_ring(&dev_priv->ring[VCS]);
1309	if (gt_iir & GT_BLT_USER_INTERRUPT)
1310		notify_ring(&dev_priv->ring[BCS]);
1311
1312	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313		      GT_BSD_CS_ERROR_INTERRUPT |
1314		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317	if (gt_iir & GT_PARITY_ERROR(dev))
1318		ivybridge_parity_error_irq_handler(dev, gt_iir);
1319}
1320
1321static __always_inline void
1322gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323{
1324	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325		notify_ring(ring);
1326	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327		intel_lrc_irq_handler(ring);
 
 
 
 
 
 
1328}
1329
1330static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331				       u32 master_ctl)
1332{
1333	irqreturn_t ret = IRQ_NONE;
1334
1335	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337		if (iir) {
1338			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339			ret = IRQ_HANDLED;
1340
1341			gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342					iir, GEN8_RCS_IRQ_SHIFT);
1343
1344			gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345					iir, GEN8_BCS_IRQ_SHIFT);
1346		} else
1347			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348	}
1349
1350	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352		if (iir) {
1353			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354			ret = IRQ_HANDLED;
1355
1356			gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357					iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359			gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360					iir, GEN8_VCS2_IRQ_SHIFT);
1361		} else
1362			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363	}
1364
1365	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367		if (iir) {
1368			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369			ret = IRQ_HANDLED;
1370
1371			gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372					iir, GEN8_VECS_IRQ_SHIFT);
1373		} else
1374			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375	}
1376
1377	if (master_ctl & GEN8_GT_PM_IRQ) {
1378		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379		if (iir & dev_priv->pm_rps_events) {
1380			I915_WRITE_FW(GEN8_GT_IIR(2),
1381				      iir & dev_priv->pm_rps_events);
1382			ret = IRQ_HANDLED;
1383			gen6_rps_irq_handler(dev_priv, iir);
1384		} else
1385			DRM_ERROR("The master control interrupt lied (PM)!\n");
1386	}
1387
1388	return ret;
1389}
1390
1391static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392{
1393	switch (port) {
1394	case PORT_A:
1395		return val & PORTA_HOTPLUG_LONG_DETECT;
1396	case PORT_B:
1397		return val & PORTB_HOTPLUG_LONG_DETECT;
1398	case PORT_C:
1399		return val & PORTC_HOTPLUG_LONG_DETECT;
 
1400	default:
1401		return false;
1402	}
1403}
1404
1405static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406{
1407	switch (port) {
1408	case PORT_E:
1409		return val & PORTE_HOTPLUG_LONG_DETECT;
1410	default:
1411		return false;
1412	}
1413}
1414
1415static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416{
1417	switch (port) {
1418	case PORT_A:
1419		return val & PORTA_HOTPLUG_LONG_DETECT;
1420	case PORT_B:
1421		return val & PORTB_HOTPLUG_LONG_DETECT;
1422	case PORT_C:
1423		return val & PORTC_HOTPLUG_LONG_DETECT;
1424	case PORT_D:
1425		return val & PORTD_HOTPLUG_LONG_DETECT;
1426	default:
1427		return false;
1428	}
1429}
1430
1431static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432{
1433	switch (port) {
1434	case PORT_A:
1435		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436	default:
1437		return false;
1438	}
1439}
1440
1441static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442{
1443	switch (port) {
1444	case PORT_B:
1445		return val & PORTB_HOTPLUG_LONG_DETECT;
1446	case PORT_C:
1447		return val & PORTC_HOTPLUG_LONG_DETECT;
1448	case PORT_D:
1449		return val & PORTD_HOTPLUG_LONG_DETECT;
1450	default:
1451		return false;
1452	}
1453}
1454
1455static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456{
1457	switch (port) {
1458	case PORT_B:
1459		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460	case PORT_C:
1461		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462	case PORT_D:
1463		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464	default:
1465		return false;
1466	}
1467}
1468
1469/*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1478			     const u32 hpd[HPD_NUM_PINS],
1479			     bool long_pulse_detect(enum port port, u32 val))
 
1480{
1481	enum port port;
1482	int i;
1483
1484	for_each_hpd_pin(i) {
1485		if ((hpd[i] & hotplug_trigger) == 0)
1486			continue;
1487
1488		*pin_mask |= BIT(i);
1489
1490		if (!intel_hpd_pin_to_port(i, &port))
 
1491			continue;
1492
1493		if (long_pulse_detect(port, dig_hotplug_reg))
1494			*long_mask |= BIT(i);
 
 
1495	}
1496
1497	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
 
1499
1500}
1501
1502static void gmbus_irq_handler(struct drm_device *dev)
 
1503{
1504	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
1505
1506	wake_up_all(&dev_priv->gmbus_wait_queue);
1507}
1508
1509static void dp_aux_irq_handler(struct drm_device *dev)
 
1510{
1511	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
1512
1513	wake_up_all(&dev_priv->gmbus_wait_queue);
1514}
1515
1516#if defined(CONFIG_DEBUG_FS)
1517static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518					 uint32_t crc0, uint32_t crc1,
1519					 uint32_t crc2, uint32_t crc3,
1520					 uint32_t crc4)
1521{
1522	struct drm_i915_private *dev_priv = dev->dev_private;
1523	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524	struct intel_pipe_crc_entry *entry;
1525	int head, tail;
1526
1527	spin_lock(&pipe_crc->lock);
 
1528
1529	if (!pipe_crc->entries) {
1530		spin_unlock(&pipe_crc->lock);
1531		DRM_DEBUG_KMS("spurious interrupt\n");
1532		return;
1533	}
1534
1535	head = pipe_crc->head;
1536	tail = pipe_crc->tail;
1537
1538	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539		spin_unlock(&pipe_crc->lock);
1540		DRM_ERROR("CRC buffer overflowing\n");
1541		return;
1542	}
1543
1544	entry = &pipe_crc->entries[head];
 
 
 
1545
1546	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547	entry->crc[0] = crc0;
1548	entry->crc[1] = crc1;
1549	entry->crc[2] = crc2;
1550	entry->crc[3] = crc3;
1551	entry->crc[4] = crc4;
 
 
 
 
1552
1553	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554	pipe_crc->head = head;
1555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556	spin_unlock(&pipe_crc->lock);
1557
1558	wake_up_interruptible(&pipe_crc->wq);
 
 
1559}
1560#else
1561static inline void
1562display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563			     uint32_t crc0, uint32_t crc1,
1564			     uint32_t crc2, uint32_t crc3,
1565			     uint32_t crc4) {}
 
1566#endif
1567
1568
1569static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570{
1571	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
1572
1573	display_pipe_crc_irq_handler(dev, pipe,
1574				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575				     0, 0, 0, 0);
 
 
 
 
1576}
1577
1578static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1579{
1580	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
1581
1582	display_pipe_crc_irq_handler(dev, pipe,
1583				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
 
 
 
1588}
1589
1590static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1591{
1592	struct drm_i915_private *dev_priv = dev->dev_private;
1593	uint32_t res1, res2;
1594
1595	if (INTEL_INFO(dev)->gen >= 3)
1596		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597	else
1598		res1 = 0;
1599
1600	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602	else
1603		res2 = 0;
1604
1605	display_pipe_crc_irq_handler(dev, pipe,
1606				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609				     res1, res2);
1610}
1611
1612/* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616{
1617	if (pm_iir & dev_priv->pm_rps_events) {
1618		spin_lock(&dev_priv->irq_lock);
1619		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620		if (dev_priv->rps.interrupts_enabled) {
1621			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622			queue_work(dev_priv->wq, &dev_priv->rps.work);
1623		}
1624		spin_unlock(&dev_priv->irq_lock);
1625	}
1626
1627	if (INTEL_INFO(dev_priv)->gen >= 8)
1628		return;
1629
1630	if (HAS_VEBOX(dev_priv->dev)) {
1631		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632			notify_ring(&dev_priv->ring[VECS]);
 
1633
1634		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636	}
1637}
1638
1639static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640{
1641	if (!drm_handle_vblank(dev, pipe))
1642		return false;
1643
1644	return true;
1645}
1646
1647static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648{
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	u32 pipe_stats[I915_MAX_PIPES] = { };
1651	int pipe;
1652
1653	spin_lock(&dev_priv->irq_lock);
1654
1655	if (!dev_priv->display_irqs_enabled) {
1656		spin_unlock(&dev_priv->irq_lock);
1657		return;
1658	}
1659
1660	for_each_pipe(dev_priv, pipe) {
1661		i915_reg_t reg;
1662		u32 mask, iir_bit = 0;
1663
1664		/*
1665		 * PIPESTAT bits get signalled even when the interrupt is
1666		 * disabled with the mask bits, and some of the status bits do
1667		 * not generate interrupts at all (like the underrun bit). Hence
1668		 * we need to be careful that we only handle what we want to
1669		 * handle.
1670		 */
1671
1672		/* fifo underruns are filterered in the underrun handler. */
1673		mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675		switch (pipe) {
 
1676		case PIPE_A:
1677			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678			break;
1679		case PIPE_B:
1680			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681			break;
1682		case PIPE_C:
1683			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684			break;
1685		}
1686		if (iir & iir_bit)
1687			mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689		if (!mask)
1690			continue;
1691
1692		reg = PIPESTAT(pipe);
1693		mask |= PIPESTAT_INT_ENABLE_MASK;
1694		pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696		/*
1697		 * Clear the PIPE*STAT regs before the IIR
 
 
 
 
 
 
1698		 */
1699		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700					PIPESTAT_INT_STATUS_MASK))
1701			I915_WRITE(reg, pipe_stats[pipe]);
 
1702	}
1703	spin_unlock(&dev_priv->irq_lock);
 
 
 
 
 
 
1704
1705	for_each_pipe(dev_priv, pipe) {
1706		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707		    intel_pipe_handle_vblank(dev, pipe))
1708			intel_check_page_flip(dev, pipe);
1709
1710		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711			intel_prepare_page_flip(dev, pipe);
1712			intel_finish_page_flip(dev, pipe);
1713		}
1714
1715		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716			i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723		gmbus_irq_handler(dev);
1724}
1725
1726static void i9xx_hpd_irq_handler(struct drm_device *dev)
 
1727{
1728	struct drm_i915_private *dev_priv = dev->dev_private;
1729	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730	u32 pin_mask = 0, long_mask = 0;
1731
1732	if (!hotplug_status)
1733		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734
1735	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736	/*
1737	 * Make sure hotplug status is cleared before we clear IIR, or else we
1738	 * may miss hotplug events.
 
 
 
 
 
1739	 */
1740	POSTING_READ(PORT_HOTPLUG_STAT);
 
1741
1742	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745		if (hotplug_trigger) {
1746			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747					   hotplug_trigger, hpd_status_g4x,
1748					   i9xx_port_hotplug_long_detect);
1749
1750			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751		}
 
1752
1753		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754			dp_aux_irq_handler(dev);
1755	} else {
1756		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758		if (hotplug_trigger) {
1759			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760					   hotplug_trigger, hpd_status_i915,
1761					   i9xx_port_hotplug_long_detect);
1762			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	}
 
 
 
 
 
1765}
1766
1767static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768{
1769	struct drm_device *dev = arg;
1770	struct drm_i915_private *dev_priv = dev->dev_private;
1771	u32 iir, gt_iir, pm_iir;
1772	irqreturn_t ret = IRQ_NONE;
1773
1774	if (!intel_irqs_enabled(dev_priv))
1775		return IRQ_NONE;
1776
1777	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778	disable_rpm_wakeref_asserts(dev_priv);
1779
1780	while (true) {
1781		/* Find, clear, then process each source of interrupt */
1782
1783		gt_iir = I915_READ(GTIIR);
1784		if (gt_iir)
1785			I915_WRITE(GTIIR, gt_iir);
1786
1787		pm_iir = I915_READ(GEN6_PMIIR);
1788		if (pm_iir)
1789			I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791		iir = I915_READ(VLV_IIR);
1792		if (iir) {
1793			/* Consume port before clearing IIR or we'll miss events */
1794			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795				i9xx_hpd_irq_handler(dev);
1796			I915_WRITE(VLV_IIR, iir);
1797		}
1798
1799		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800			goto out;
1801
1802		ret = IRQ_HANDLED;
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		if (gt_iir)
1805			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806		if (pm_iir)
1807			gen6_rps_irq_handler(dev_priv, pm_iir);
 
 
 
 
1808		/* Call regardless, as some status bits might not be
1809		 * signalled in iir */
1810		valleyview_pipestat_irq_handler(dev, iir);
1811	}
1812
1813out:
1814	enable_rpm_wakeref_asserts(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815
1816	return ret;
1817}
1818
1819static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820{
1821	struct drm_device *dev = arg;
1822	struct drm_i915_private *dev_priv = dev->dev_private;
1823	u32 master_ctl, iir;
1824	irqreturn_t ret = IRQ_NONE;
1825
1826	if (!intel_irqs_enabled(dev_priv))
1827		return IRQ_NONE;
1828
1829	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830	disable_rpm_wakeref_asserts(dev_priv);
1831
1832	do {
1833		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834		iir = I915_READ(VLV_IIR);
 
 
 
 
 
1835
1836		if (master_ctl == 0 && iir == 0)
1837			break;
1838
1839		ret = IRQ_HANDLED;
1840
1841		I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843		/* Find, clear, then process each source of interrupt */
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845		if (iir) {
1846			/* Consume port before clearing IIR or we'll miss events */
1847			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848				i9xx_hpd_irq_handler(dev);
1849			I915_WRITE(VLV_IIR, iir);
1850		}
1851
1852		gen8_gt_irq_handler(dev_priv, master_ctl);
 
1853
1854		/* Call regardless, as some status bits might not be
1855		 * signalled in iir */
1856		valleyview_pipestat_irq_handler(dev, iir);
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859		POSTING_READ(GEN8_MASTER_IRQ);
 
 
 
 
 
1860	} while (0);
1861
1862	enable_rpm_wakeref_asserts(dev_priv);
 
 
1863
1864	return ret;
1865}
1866
1867static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868				const u32 hpd[HPD_NUM_PINS])
1869{
1870	struct drm_i915_private *dev_priv = to_i915(dev);
1871	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873	/*
1874	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875	 * unless we touch the hotplug register, even if hotplug_trigger is
1876	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877	 * errors.
1878	 */
1879	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880	if (!hotplug_trigger) {
1881		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882			PORTD_HOTPLUG_STATUS_MASK |
1883			PORTC_HOTPLUG_STATUS_MASK |
1884			PORTB_HOTPLUG_STATUS_MASK;
1885		dig_hotplug_reg &= ~mask;
1886	}
1887
1888	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889	if (!hotplug_trigger)
1890		return;
1891
1892	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893			   dig_hotplug_reg, hpd,
 
1894			   pch_port_hotplug_long_detect);
1895
1896	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897}
1898
1899static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900{
1901	struct drm_i915_private *dev_priv = dev->dev_private;
1902	int pipe;
1903	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909			       SDE_AUDIO_POWER_SHIFT);
1910		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911				 port_name(port));
1912	}
1913
1914	if (pch_iir & SDE_AUX_MASK)
1915		dp_aux_irq_handler(dev);
1916
1917	if (pch_iir & SDE_GMBUS)
1918		gmbus_irq_handler(dev);
1919
1920	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926	if (pch_iir & SDE_POISON)
1927		DRM_ERROR("PCH poison interrupt\n");
1928
1929	if (pch_iir & SDE_FDI_MASK)
1930		for_each_pipe(dev_priv, pipe)
1931			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932					 pipe_name(pipe),
1933					 I915_READ(FDI_RX_IIR(pipe)));
 
1934
1935	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 
1940
1941	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946}
1947
1948static void ivb_err_int_handler(struct drm_device *dev)
1949{
1950	struct drm_i915_private *dev_priv = dev->dev_private;
1951	u32 err_int = I915_READ(GEN7_ERR_INT);
1952	enum pipe pipe;
1953
1954	if (err_int & ERR_INT_POISON)
1955		DRM_ERROR("Poison interrupt\n");
1956
1957	for_each_pipe(dev_priv, pipe) {
1958		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962			if (IS_IVYBRIDGE(dev))
1963				ivb_pipe_crc_irq_handler(dev, pipe);
1964			else
1965				hsw_pipe_crc_irq_handler(dev, pipe);
1966		}
1967	}
1968
1969	I915_WRITE(GEN7_ERR_INT, err_int);
1970}
1971
1972static void cpt_serr_int_handler(struct drm_device *dev)
1973{
1974	struct drm_i915_private *dev_priv = dev->dev_private;
1975	u32 serr_int = I915_READ(SERR_INT);
1976
1977	if (serr_int & SERR_INT_POISON)
1978		DRM_ERROR("PCH poison interrupt\n");
1979
1980	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
 
1988
1989	I915_WRITE(SERR_INT, serr_int);
1990}
1991
1992static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993{
1994	struct drm_i915_private *dev_priv = dev->dev_private;
1995	int pipe;
1996	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002			       SDE_AUDIO_POWER_SHIFT_CPT);
2003		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004				 port_name(port));
2005	}
2006
2007	if (pch_iir & SDE_AUX_MASK_CPT)
2008		dp_aux_irq_handler(dev);
2009
2010	if (pch_iir & SDE_GMBUS_CPT)
2011		gmbus_irq_handler(dev);
2012
2013	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019	if (pch_iir & SDE_FDI_MASK_CPT)
2020		for_each_pipe(dev_priv, pipe)
2021			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022					 pipe_name(pipe),
2023					 I915_READ(FDI_RX_IIR(pipe)));
 
2024
2025	if (pch_iir & SDE_ERROR_CPT)
2026		cpt_serr_int_handler(dev);
2027}
2028
2029static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030{
2031	struct drm_i915_private *dev_priv = dev->dev_private;
2032	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033		~SDE_PORTE_HOTPLUG_SPT;
2034	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035	u32 pin_mask = 0, long_mask = 0;
2036
2037	if (hotplug_trigger) {
2038		u32 dig_hotplug_reg;
2039
2040		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044				   dig_hotplug_reg, hpd_spt,
 
2045				   spt_port_hotplug_long_detect);
2046	}
2047
2048	if (hotplug2_trigger) {
2049		u32 dig_hotplug_reg;
2050
2051		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055				   dig_hotplug_reg, hpd_spt,
 
2056				   spt_port_hotplug2_long_detect);
2057	}
2058
2059	if (pin_mask)
2060		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062	if (pch_iir & SDE_GMBUS_CPT)
2063		gmbus_irq_handler(dev);
2064}
2065
2066static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067				const u32 hpd[HPD_NUM_PINS])
2068{
2069	struct drm_i915_private *dev_priv = to_i915(dev);
2070	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076			   dig_hotplug_reg, hpd,
 
2077			   ilk_port_hotplug_long_detect);
2078
2079	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080}
2081
2082static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
2083{
2084	struct drm_i915_private *dev_priv = dev->dev_private;
2085	enum pipe pipe;
2086	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088	if (hotplug_trigger)
2089		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091	if (de_iir & DE_AUX_CHANNEL_A)
2092		dp_aux_irq_handler(dev);
2093
2094	if (de_iir & DE_GSE)
2095		intel_opregion_asle_intr(dev);
2096
2097	if (de_iir & DE_POISON)
2098		DRM_ERROR("Poison interrupt\n");
2099
2100	for_each_pipe(dev_priv, pipe) {
2101		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102		    intel_pipe_handle_vblank(dev, pipe))
2103			intel_check_page_flip(dev, pipe);
 
 
2104
2105		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109			i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111		/* plane/pipes map 1:1 on ilk+ */
2112		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113			intel_prepare_page_flip(dev, pipe);
2114			intel_finish_page_flip_plane(dev, pipe);
2115		}
2116	}
2117
2118	/* check event from PCH */
2119	if (de_iir & DE_PCH_EVENT) {
2120		u32 pch_iir = I915_READ(SDEIIR);
2121
2122		if (HAS_PCH_CPT(dev))
2123			cpt_irq_handler(dev, pch_iir);
2124		else
2125			ibx_irq_handler(dev, pch_iir);
2126
2127		/* should clear PCH hotplug event before clear CPU irq */
2128		I915_WRITE(SDEIIR, pch_iir);
2129	}
2130
2131	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132		ironlake_rps_change_irq_handler(dev);
2133}
2134
2135static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	enum pipe pipe;
2139	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141	if (hotplug_trigger)
2142		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144	if (de_iir & DE_ERR_INT_IVB)
2145		ivb_err_int_handler(dev);
2146
2147	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148		dp_aux_irq_handler(dev);
2149
2150	if (de_iir & DE_GSE_IVB)
2151		intel_opregion_asle_intr(dev);
2152
2153	for_each_pipe(dev_priv, pipe) {
2154		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155		    intel_pipe_handle_vblank(dev, pipe))
2156			intel_check_page_flip(dev, pipe);
2157
2158		/* plane/pipes map 1:1 on ilk+ */
2159		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160			intel_prepare_page_flip(dev, pipe);
2161			intel_finish_page_flip_plane(dev, pipe);
2162		}
2163	}
2164
2165	/* check event from PCH */
2166	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167		u32 pch_iir = I915_READ(SDEIIR);
2168
2169		cpt_irq_handler(dev, pch_iir);
2170
2171		/* clear PCH hotplug event before clear CPU irq */
2172		I915_WRITE(SDEIIR, pch_iir);
2173	}
2174}
2175
2176/*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185{
2186	struct drm_device *dev = arg;
2187	struct drm_i915_private *dev_priv = dev->dev_private;
2188	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189	irqreturn_t ret = IRQ_NONE;
2190
2191	if (!intel_irqs_enabled(dev_priv))
2192		return IRQ_NONE;
2193
2194	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195	disable_rpm_wakeref_asserts(dev_priv);
2196
2197	/* disable master interrupt before clearing iir  */
2198	de_ier = I915_READ(DEIER);
2199	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200	POSTING_READ(DEIER);
2201
2202	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2203	 * interrupts will will be stored on its back queue, and then we'll be
2204	 * able to process them after we restore SDEIER (as soon as we restore
2205	 * it, we'll get an interrupt if SDEIIR still has something to process
2206	 * due to its back queue). */
2207	if (!HAS_PCH_NOP(dev)) {
2208		sde_ier = I915_READ(SDEIER);
2209		I915_WRITE(SDEIER, 0);
2210		POSTING_READ(SDEIER);
2211	}
2212
2213	/* Find, clear, then process each source of interrupt */
2214
2215	gt_iir = I915_READ(GTIIR);
2216	if (gt_iir) {
2217		I915_WRITE(GTIIR, gt_iir);
2218		ret = IRQ_HANDLED;
2219		if (INTEL_INFO(dev)->gen >= 6)
2220			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221		else
2222			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
 
2223	}
2224
2225	de_iir = I915_READ(DEIIR);
2226	if (de_iir) {
2227		I915_WRITE(DEIIR, de_iir);
2228		ret = IRQ_HANDLED;
2229		if (INTEL_INFO(dev)->gen >= 7)
2230			ivb_display_irq_handler(dev, de_iir);
2231		else
2232			ilk_display_irq_handler(dev, de_iir);
 
2233	}
2234
2235	if (INTEL_INFO(dev)->gen >= 6) {
2236		u32 pm_iir = I915_READ(GEN6_PMIIR);
2237		if (pm_iir) {
2238			I915_WRITE(GEN6_PMIIR, pm_iir);
 
2239			ret = IRQ_HANDLED;
2240			gen6_rps_irq_handler(dev_priv, pm_iir);
2241		}
2242	}
2243
2244	I915_WRITE(DEIER, de_ier);
2245	POSTING_READ(DEIER);
2246	if (!HAS_PCH_NOP(dev)) {
2247		I915_WRITE(SDEIER, sde_ier);
2248		POSTING_READ(SDEIER);
2249	}
2250
2251	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252	enable_rpm_wakeref_asserts(dev_priv);
2253
2254	return ret;
2255}
2256
2257static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258				const u32 hpd[HPD_NUM_PINS])
2259{
2260	struct drm_i915_private *dev_priv = to_i915(dev);
2261	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267			   dig_hotplug_reg, hpd,
 
2268			   bxt_port_hotplug_long_detect);
2269
2270	intel_hpd_irq_handler(dev, pin_mask, long_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271}
2272
2273static irqreturn_t
2274gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275{
2276	struct drm_device *dev = dev_priv->dev;
2277	irqreturn_t ret = IRQ_NONE;
2278	u32 iir;
2279	enum pipe pipe;
2280
 
 
2281	if (master_ctl & GEN8_DE_MISC_IRQ) {
2282		iir = I915_READ(GEN8_DE_MISC_IIR);
2283		if (iir) {
2284			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285			ret = IRQ_HANDLED;
2286			if (iir & GEN8_DE_MISC_GSE)
2287				intel_opregion_asle_intr(dev);
2288			else
2289				DRM_ERROR("Unexpected DE Misc interrupt\n");
 
 
 
 
 
 
 
 
 
 
 
 
2290		}
2291		else
2292			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293	}
2294
2295	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296		iir = I915_READ(GEN8_DE_PORT_IIR);
2297		if (iir) {
2298			u32 tmp_mask;
2299			bool found = false;
2300
2301			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302			ret = IRQ_HANDLED;
2303
2304			tmp_mask = GEN8_AUX_CHANNEL_A;
2305			if (INTEL_INFO(dev_priv)->gen >= 9)
2306				tmp_mask |= GEN9_AUX_CHANNEL_B |
2307					    GEN9_AUX_CHANNEL_C |
2308					    GEN9_AUX_CHANNEL_D;
2309
2310			if (iir & tmp_mask) {
2311				dp_aux_irq_handler(dev);
2312				found = true;
2313			}
2314
2315			if (IS_BROXTON(dev_priv)) {
2316				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317				if (tmp_mask) {
2318					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
 
2319					found = true;
2320				}
2321			} else if (IS_BROADWELL(dev_priv)) {
2322				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323				if (tmp_mask) {
2324					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
 
2325					found = true;
2326				}
2327			}
2328
2329			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330				gmbus_irq_handler(dev);
 
2331				found = true;
2332			}
2333
 
 
 
 
 
 
 
 
 
2334			if (!found)
2335				DRM_ERROR("Unexpected DE Port interrupt\n");
 
2336		}
2337		else
2338			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
 
2339	}
2340
2341	for_each_pipe(dev_priv, pipe) {
2342		u32 flip_done, fault_errors;
2343
2344		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345			continue;
2346
2347		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348		if (!iir) {
2349			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
 
2350			continue;
2351		}
2352
2353		ret = IRQ_HANDLED;
2354		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356		if (iir & GEN8_PIPE_VBLANK &&
2357		    intel_pipe_handle_vblank(dev, pipe))
2358			intel_check_page_flip(dev, pipe);
2359
2360		flip_done = iir;
2361		if (INTEL_INFO(dev_priv)->gen >= 9)
2362			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363		else
2364			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366		if (flip_done) {
2367			intel_prepare_page_flip(dev, pipe);
2368			intel_finish_page_flip_plane(dev, pipe);
2369		}
2370
2371		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372			hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377		fault_errors = iir;
2378		if (INTEL_INFO(dev_priv)->gen >= 9)
2379			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380		else
2381			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383		if (fault_errors)
2384			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385				  pipe_name(pipe),
2386				  fault_errors);
 
2387	}
2388
2389	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390	    master_ctl & GEN8_DE_PCH_IRQ) {
2391		/*
2392		 * FIXME(BDW): Assume for now that the new interrupt handling
2393		 * scheme also closed the SDE interrupt handling race we've seen
2394		 * on older pch-split platforms. But this needs testing.
2395		 */
2396		iir = I915_READ(SDEIIR);
2397		if (iir) {
2398			I915_WRITE(SDEIIR, iir);
2399			ret = IRQ_HANDLED;
2400
2401			if (HAS_PCH_SPT(dev_priv))
2402				spt_irq_handler(dev, iir);
 
 
2403			else
2404				cpt_irq_handler(dev, iir);
2405		} else {
2406			/*
2407			 * Like on previous PCH there seems to be something
2408			 * fishy going on with forwarding PCH interrupts.
2409			 */
2410			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
 
2411		}
2412	}
2413
2414	return ret;
2415}
2416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418{
2419	struct drm_device *dev = arg;
2420	struct drm_i915_private *dev_priv = dev->dev_private;
2421	u32 master_ctl;
2422	irqreturn_t ret;
2423
2424	if (!intel_irqs_enabled(dev_priv))
2425		return IRQ_NONE;
2426
2427	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429	if (!master_ctl)
2430		return IRQ_NONE;
 
2431
2432	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
 
2433
2434	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435	disable_rpm_wakeref_asserts(dev_priv);
2436
2437	/* Find, clear, then process each source of interrupt */
2438	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442	POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444	enable_rpm_wakeref_asserts(dev_priv);
2445
2446	return ret;
2447}
2448
2449static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450			       bool reset_completed)
2451{
2452	struct intel_engine_cs *ring;
2453	int i;
2454
2455	/*
2456	 * Notify all waiters for GPU completion events that reset state has
2457	 * been changed, and that they need to restart their wait after
2458	 * checking for potential errors (and bail out to drop locks if there is
2459	 * a gpu reset pending so that i915_error_work_func can acquire them).
2460	 */
 
 
 
2461
2462	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463	for_each_ring(ring, dev_priv, i)
2464		wake_up_all(&ring->irq_queue);
 
 
 
2465
2466	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467	wake_up_all(&dev_priv->pending_flip_queue);
 
2468
2469	/*
2470	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471	 * reset state is cleared.
 
 
2472	 */
2473	if (reset_completed)
2474		wake_up_all(&dev_priv->gpu_error.reset_queue);
2475}
2476
2477/**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484static void i915_reset_and_wakeup(struct drm_device *dev)
2485{
2486	struct drm_i915_private *dev_priv = to_i915(dev);
2487	struct i915_gpu_error *error = &dev_priv->gpu_error;
2488	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491	int ret;
2492
2493	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
 
 
 
 
2494
 
2495	/*
2496	 * Note that there's only one work item which does gpu resets, so we
2497	 * need not worry about concurrent gpu resets potentially incrementing
2498	 * error->reset_counter twice. We only need to take care of another
2499	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500	 * quick check for that is good enough: schedule_work ensures the
2501	 * correct ordering between hang detection and this work item, and since
2502	 * the reset in-progress bit is only ever set by code outside of this
2503	 * work we don't need to worry about any other races.
2504	 */
2505	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506		DRM_DEBUG_DRIVER("resetting chip\n");
2507		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508				   reset_event);
2509
2510		/*
2511		 * In most cases it's guaranteed that we get here with an RPM
2512		 * reference held, for example because there is a pending GPU
2513		 * request that won't finish until the reset is done. This
2514		 * isn't the case at least when we get here by doing a
2515		 * simulated reset via debugs, so get an RPM reference.
2516		 */
2517		intel_runtime_pm_get(dev_priv);
2518
2519		intel_prepare_reset(dev);
 
 
 
 
 
 
2520
2521		/*
2522		 * All state reset _must_ be completed before we update the
2523		 * reset counter, for otherwise waiters might miss the reset
2524		 * pending state and not properly drop locks, resulting in
2525		 * deadlocks with the reset work.
2526		 */
2527		ret = i915_reset(dev);
2528
2529		intel_finish_reset(dev);
 
 
 
 
2530
2531		intel_runtime_pm_put(dev_priv);
 
2532
2533		if (ret == 0) {
2534			/*
2535			 * After all the gem state is reset, increment the reset
2536			 * counter and wake up everyone waiting for the reset to
2537			 * complete.
2538			 *
2539			 * Since unlock operations are a one-sided barrier only,
2540			 * we need to insert a barrier here to order any seqno
2541			 * updates before
2542			 * the counter increment.
2543			 */
2544			smp_mb__before_atomic();
2545			atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547			kobject_uevent_env(&dev->primary->kdev->kobj,
2548					   KOBJ_CHANGE, reset_done_event);
2549		} else {
2550			atomic_or(I915_WEDGED, &error->reset_counter);
2551		}
2552
2553		/*
2554		 * Note: The wake_up also serves as a memory barrier so that
2555		 * waiters see the update value of the reset counter atomic_t.
2556		 */
2557		i915_error_wake_up(dev_priv, true);
2558	}
 
2559}
2560
2561static void i915_report_and_clear_eir(struct drm_device *dev)
2562{
2563	struct drm_i915_private *dev_priv = dev->dev_private;
2564	uint32_t instdone[I915_NUM_INSTDONE_REG];
2565	u32 eir = I915_READ(EIR);
2566	int pipe, i;
2567
2568	if (!eir)
2569		return;
2570
2571	pr_err("render error detected, EIR: 0x%08x\n", eir);
 
 
 
2572
2573	i915_get_extra_instdone(dev, instdone);
2574
2575	if (IS_G4X(dev)) {
2576		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577			u32 ipeir = I915_READ(IPEIR_I965);
2578
2579			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585			I915_WRITE(IPEIR_I965, ipeir);
2586			POSTING_READ(IPEIR_I965);
2587		}
2588		if (eir & GM45_ERROR_PAGE_TABLE) {
2589			u32 pgtbl_err = I915_READ(PGTBL_ER);
2590			pr_err("page table error\n");
2591			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592			I915_WRITE(PGTBL_ER, pgtbl_err);
2593			POSTING_READ(PGTBL_ER);
2594		}
2595	}
2596
2597	if (!IS_GEN2(dev)) {
2598		if (eir & I915_ERROR_PAGE_TABLE) {
2599			u32 pgtbl_err = I915_READ(PGTBL_ER);
2600			pr_err("page table error\n");
2601			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602			I915_WRITE(PGTBL_ER, pgtbl_err);
2603			POSTING_READ(PGTBL_ER);
2604		}
2605	}
2606
2607	if (eir & I915_ERROR_MEMORY_REFRESH) {
2608		pr_err("memory refresh error:\n");
2609		for_each_pipe(dev_priv, pipe)
2610			pr_err("pipe %c stat: 0x%08x\n",
2611			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612		/* pipestat has already been acked */
2613	}
2614	if (eir & I915_ERROR_INSTRUCTION) {
2615		pr_err("instruction error\n");
2616		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619		if (INTEL_INFO(dev)->gen < 4) {
2620			u32 ipeir = I915_READ(IPEIR);
2621
2622			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625			I915_WRITE(IPEIR, ipeir);
2626			POSTING_READ(IPEIR);
2627		} else {
2628			u32 ipeir = I915_READ(IPEIR_I965);
2629
2630			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634			I915_WRITE(IPEIR_I965, ipeir);
2635			POSTING_READ(IPEIR_I965);
2636		}
2637	}
2638
2639	I915_WRITE(EIR, eir);
2640	POSTING_READ(EIR);
2641	eir = I915_READ(EIR);
2642	if (eir) {
2643		/*
2644		 * some errors might have become stuck,
2645		 * mask them.
2646		 */
2647		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648		I915_WRITE(EMR, I915_READ(EMR) | eir);
2649		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650	}
2651}
2652
2653/**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog.  Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs.  Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663void i915_handle_error(struct drm_device *dev, bool wedged,
2664		       const char *fmt, ...)
2665{
2666	struct drm_i915_private *dev_priv = dev->dev_private;
2667	va_list args;
2668	char error_msg[80];
2669
2670	va_start(args, fmt);
2671	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672	va_end(args);
2673
2674	i915_capture_error_state(dev, wedged, error_msg);
2675	i915_report_and_clear_eir(dev);
2676
2677	if (wedged) {
2678		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679				&dev_priv->gpu_error.reset_counter);
2680
2681		/*
2682		 * Wakeup waiting processes so that the reset function
2683		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684		 * various locks. By bumping the reset counter first, the woken
2685		 * processes will see a reset in progress and back off,
2686		 * releasing their locks and then wait for the reset completion.
2687		 * We must do this for _all_ gpu waiters that might hold locks
2688		 * that the reset work needs to acquire.
2689		 *
2690		 * Note: The wake_up serves as the required memory barrier to
2691		 * ensure that the waiters see the updated value of the reset
2692		 * counter atomic_t.
2693		 */
2694		i915_error_wake_up(dev_priv, false);
2695	}
2696
2697	i915_reset_and_wakeup(dev);
2698}
2699
2700/* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
 
2706	unsigned long irqflags;
2707
2708	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709	if (INTEL_INFO(dev)->gen >= 4)
2710		i915_enable_pipestat(dev_priv, pipe,
2711				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2712	else
2713		i915_enable_pipestat(dev_priv, pipe,
2714				     PIPE_VBLANK_INTERRUPT_STATUS);
2715	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717	return 0;
2718}
2719
2720static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721{
2722	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723	unsigned long irqflags;
2724	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725						     DE_PIPE_VBLANK(pipe);
2726
2727	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728	ilk_enable_display_irq(dev_priv, bit);
 
2729	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731	return 0;
2732}
2733
2734static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735{
2736	struct drm_i915_private *dev_priv = dev->dev_private;
 
2737	unsigned long irqflags;
 
 
2738
2739	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740	i915_enable_pipestat(dev_priv, pipe,
2741			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2742	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
 
 
 
 
 
 
2744	return 0;
2745}
2746
2747static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748{
2749	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
2750	unsigned long irqflags;
2751
 
 
 
2752	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
 
 
 
 
 
 
2756	return 0;
2757}
2758
2759/* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764	struct drm_i915_private *dev_priv = dev->dev_private;
 
2765	unsigned long irqflags;
2766
2767	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768	i915_disable_pipestat(dev_priv, pipe,
2769			      PIPE_VBLANK_INTERRUPT_STATUS |
2770			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2771	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772}
2773
2774static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775{
2776	struct drm_i915_private *dev_priv = dev->dev_private;
2777	unsigned long irqflags;
2778	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779						     DE_PIPE_VBLANK(pipe);
2780
2781	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782	ilk_disable_display_irq(dev_priv, bit);
2783	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
2784}
2785
2786static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787{
2788	struct drm_i915_private *dev_priv = dev->dev_private;
 
2789	unsigned long irqflags;
2790
2791	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792	i915_disable_pipestat(dev_priv, pipe,
2793			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2794	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795}
2796
2797static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798{
2799	struct drm_i915_private *dev_priv = dev->dev_private;
 
2800	unsigned long irqflags;
 
 
2801
2802	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805}
2806
2807static bool
2808ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809{
2810	return (list_empty(&ring->request_list) ||
2811		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812}
 
2813
2814static bool
2815ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816{
2817	if (INTEL_INFO(dev)->gen >= 8) {
2818		return (ipehr >> 23) == 0x1c;
2819	} else {
2820		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822				 MI_SEMAPHORE_REGISTER);
2823	}
2824}
2825
2826static struct intel_engine_cs *
2827semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828{
2829	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830	struct intel_engine_cs *signaller;
2831	int i;
2832
2833	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834		for_each_ring(signaller, dev_priv, i) {
2835			if (ring == signaller)
2836				continue;
2837
2838			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839				return signaller;
2840		}
2841	} else {
2842		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844		for_each_ring(signaller, dev_priv, i) {
2845			if(ring == signaller)
2846				continue;
2847
2848			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849				return signaller;
2850		}
2851	}
2852
2853	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854		  ring->id, ipehr, offset);
 
 
 
 
 
2855
2856	return NULL;
 
 
 
2857}
2858
2859static struct intel_engine_cs *
2860semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861{
2862	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863	u32 cmd, ipehr, head;
2864	u64 offset = 0;
2865	int i, backwards;
2866
2867	/*
2868	 * This function does not support execlist mode - any attempt to
2869	 * proceed further into this function will result in a kernel panic
2870	 * when dereferencing ring->buffer, which is not set up in execlist
2871	 * mode.
2872	 *
2873	 * The correct way of doing it would be to derive the currently
2874	 * executing ring buffer from the current context, which is derived
2875	 * from the currently running request. Unfortunately, to get the
2876	 * current request we would have to grab the struct_mutex before doing
2877	 * anything else, which would be ill-advised since some other thread
2878	 * might have grabbed it already and managed to hang itself, causing
2879	 * the hang checker to deadlock.
2880	 *
2881	 * Therefore, this function does not support execlist mode in its
2882	 * current form. Just return NULL and move on.
2883	 */
2884	if (ring->buffer == NULL)
2885		return NULL;
2886
2887	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889		return NULL;
2890
2891	/*
2892	 * HEAD is likely pointing to the dword after the actual command,
2893	 * so scan backwards until we find the MBOX. But limit it to just 3
2894	 * or 4 dwords depending on the semaphore wait command size.
2895	 * Note that we don't care about ACTHD here since that might
2896	 * point at at batch, and semaphores are always emitted into the
2897	 * ringbuffer itself.
2898	 */
2899	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902	for (i = backwards; i; --i) {
2903		/*
2904		 * Be paranoid and presume the hw has gone off into the wild -
2905		 * our ring is smaller than what the hardware (and hence
2906		 * HEAD_ADDR) allows. Also handles wrap-around.
2907		 */
2908		head &= ring->buffer->size - 1;
2909
2910		/* This here seems to blow up */
2911		cmd = ioread32(ring->buffer->virtual_start + head);
2912		if (cmd == ipehr)
2913			break;
2914
2915		head -= 4;
2916	}
2917
2918	if (!i)
2919		return NULL;
2920
2921	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922	if (INTEL_INFO(ring->dev)->gen >= 8) {
2923		offset = ioread32(ring->buffer->virtual_start + head + 12);
2924		offset <<= 32;
2925		offset = ioread32(ring->buffer->virtual_start + head + 8);
2926	}
2927	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928}
2929
2930static int semaphore_passed(struct intel_engine_cs *ring)
 
 
2931{
2932	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933	struct intel_engine_cs *signaller;
2934	u32 seqno;
2935
2936	ring->hangcheck.deadlock++;
 
2937
2938	signaller = semaphore_waits_for(ring, &seqno);
2939	if (signaller == NULL)
2940		return -1;
2941
2942	/* Prevent pathological recursion due to driver bugs */
2943	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944		return -1;
2945
2946	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947		return 1;
2948
2949	/* cursory check for an unkickable deadlock */
2950	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951	    semaphore_passed(signaller) < 0)
2952		return -1;
2953
2954	return 0;
2955}
2956
2957static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958{
2959	struct intel_engine_cs *ring;
2960	int i;
 
 
2961
2962	for_each_ring(ring, dev_priv, i)
2963		ring->hangcheck.deadlock = 0;
 
 
2964}
2965
2966static bool subunits_stuck(struct intel_engine_cs *ring)
2967{
2968	u32 instdone[I915_NUM_INSTDONE_REG];
2969	bool stuck;
2970	int i;
2971
2972	if (ring->id != RCS)
2973		return true;
2974
2975	i915_get_extra_instdone(ring->dev, instdone);
2976
2977	/* There might be unstable subunit states even when
2978	 * actual head is not moving. Filter out the unstable ones by
2979	 * accumulating the undone -> done transitions and only
2980	 * consider those as progress.
2981	 */
2982	stuck = true;
2983	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984		const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986		if (tmp != ring->hangcheck.instdone[i])
2987			stuck = false;
2988
2989		ring->hangcheck.instdone[i] |= tmp;
2990	}
 
 
2991
2992	return stuck;
 
2993}
2994
2995static enum intel_ring_hangcheck_action
2996head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997{
2998	if (acthd != ring->hangcheck.acthd) {
2999
3000		/* Clear subunit states on head movement */
3001		memset(ring->hangcheck.instdone, 0,
3002		       sizeof(ring->hangcheck.instdone));
3003
3004		if (acthd > ring->hangcheck.max_acthd) {
3005			ring->hangcheck.max_acthd = acthd;
3006			return HANGCHECK_ACTIVE;
3007		}
3008
3009		return HANGCHECK_ACTIVE_LOOP;
3010	}
 
3011
3012	if (!subunits_stuck(ring))
3013		return HANGCHECK_ACTIVE;
3014
3015	return HANGCHECK_HUNG;
3016}
3017
3018static enum intel_ring_hangcheck_action
3019ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020{
3021	struct drm_device *dev = ring->dev;
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	enum intel_ring_hangcheck_action ha;
3024	u32 tmp;
3025
3026	ha = head_stuck(ring, acthd);
3027	if (ha != HANGCHECK_HUNG)
3028		return ha;
3029
3030	if (IS_GEN2(dev))
3031		return HANGCHECK_HUNG;
3032
3033	/* Is the chip hanging on a WAIT_FOR_EVENT?
3034	 * If so we can simply poke the RB_WAIT bit
3035	 * and break the hang. This should work on
3036	 * all but the second generation chipsets.
3037	 */
3038	tmp = I915_READ_CTL(ring);
3039	if (tmp & RING_WAIT) {
3040		i915_handle_error(dev, false,
3041				  "Kicking stuck wait on %s",
3042				  ring->name);
3043		I915_WRITE_CTL(ring, tmp);
3044		return HANGCHECK_KICK;
3045	}
3046
3047	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048		switch (semaphore_passed(ring)) {
3049		default:
3050			return HANGCHECK_HUNG;
3051		case 1:
3052			i915_handle_error(dev, false,
3053					  "Kicking stuck semaphore on %s",
3054					  ring->name);
3055			I915_WRITE_CTL(ring, tmp);
3056			return HANGCHECK_KICK;
3057		case 0:
3058			return HANGCHECK_WAIT;
3059		}
 
 
 
3060	}
3061
3062	return HANGCHECK_HUNG;
 
 
 
 
 
 
 
 
 
 
3063}
3064
3065/*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073static void i915_hangcheck_elapsed(struct work_struct *work)
3074{
3075	struct drm_i915_private *dev_priv =
3076		container_of(work, typeof(*dev_priv),
3077			     gpu_error.hangcheck_work.work);
3078	struct drm_device *dev = dev_priv->dev;
3079	struct intel_engine_cs *ring;
3080	int i;
3081	int busy_count = 0, rings_hung = 0;
3082	bool stuck[I915_NUM_RINGS] = { 0 };
3083#define BUSY 1
3084#define KICK 5
3085#define HUNG 20
3086
3087	if (!i915.enable_hangcheck)
3088		return;
3089
3090	/*
3091	 * The hangcheck work is synced during runtime suspend, we don't
3092	 * require a wakeref. TODO: instead of disabling the asserts make
3093	 * sure that we hold a reference when this work is running.
3094	 */
3095	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097	/* As enabling the GPU requires fairly extensive mmio access,
3098	 * periodically arm the mmio checker to see if we are triggering
3099	 * any invalid access.
3100	 */
3101	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103	for_each_ring(ring, dev_priv, i) {
3104		u64 acthd;
3105		u32 seqno;
3106		bool busy = true;
3107
3108		semaphore_clear_deadlocks(dev_priv);
3109
3110		seqno = ring->get_seqno(ring, false);
3111		acthd = intel_ring_get_active_head(ring);
3112
3113		if (ring->hangcheck.seqno == seqno) {
3114			if (ring_idle(ring, seqno)) {
3115				ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117				if (waitqueue_active(&ring->irq_queue)) {
3118					/* Issue a wake-up to catch stuck h/w. */
3119					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122								  ring->name);
3123						else
3124							DRM_INFO("Fake missed irq on %s\n",
3125								 ring->name);
3126						wake_up_all(&ring->irq_queue);
3127					}
3128					/* Safeguard against driver failure */
3129					ring->hangcheck.score += BUSY;
3130				} else
3131					busy = false;
3132			} else {
3133				/* We always increment the hangcheck score
3134				 * if the ring is busy and still processing
3135				 * the same request, so that no single request
3136				 * can run indefinitely (such as a chain of
3137				 * batches). The only time we do not increment
3138				 * the hangcheck score on this ring, if this
3139				 * ring is in a legitimate wait for another
3140				 * ring. In that case the waiting ring is a
3141				 * victim and we want to be sure we catch the
3142				 * right culprit. Then every time we do kick
3143				 * the ring, add a small increment to the
3144				 * score so that we can catch a batch that is
3145				 * being repeatedly kicked and so responsible
3146				 * for stalling the machine.
3147				 */
3148				ring->hangcheck.action = ring_stuck(ring,
3149								    acthd);
3150
3151				switch (ring->hangcheck.action) {
3152				case HANGCHECK_IDLE:
3153				case HANGCHECK_WAIT:
3154				case HANGCHECK_ACTIVE:
3155					break;
3156				case HANGCHECK_ACTIVE_LOOP:
3157					ring->hangcheck.score += BUSY;
3158					break;
3159				case HANGCHECK_KICK:
3160					ring->hangcheck.score += KICK;
3161					break;
3162				case HANGCHECK_HUNG:
3163					ring->hangcheck.score += HUNG;
3164					stuck[i] = true;
3165					break;
3166				}
3167			}
3168		} else {
3169			ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171			/* Gradually reduce the count so that we catch DoS
3172			 * attempts across multiple batches.
3173			 */
3174			if (ring->hangcheck.score > 0)
3175				ring->hangcheck.score--;
3176
3177			/* Clear head and subunit states on seqno movement */
3178			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180			memset(ring->hangcheck.instdone, 0,
3181			       sizeof(ring->hangcheck.instdone));
3182		}
3183
3184		ring->hangcheck.seqno = seqno;
3185		ring->hangcheck.acthd = acthd;
3186		busy_count += busy;
3187	}
 
 
 
 
3188
3189	for_each_ring(ring, dev_priv, i) {
3190		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191			DRM_INFO("%s on %s\n",
3192				 stuck[i] ? "stuck" : "no progress",
3193				 ring->name);
3194			rings_hung++;
3195		}
3196	}
3197
3198	if (rings_hung) {
3199		i915_handle_error(dev, true, "Ring hung");
3200		goto out;
3201	}
3202
3203	if (busy_count)
3204		/* Reset timer case chip hangs without another request
3205		 * being added */
3206		i915_queue_hangcheck(dev);
3207
3208out:
3209	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210}
3211
3212void i915_queue_hangcheck(struct drm_device *dev)
 
3213{
3214	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
 
 
 
3215
3216	if (!i915.enable_hangcheck)
 
3217		return;
 
3218
3219	/* Don't continually defer the hangcheck so that it is always run at
3220	 * least once after work has been scheduled on any ring. Otherwise,
3221	 * we will ignore a hung ring if a second ring is kept busy.
3222	 */
3223
3224	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226}
3227
3228static void ibx_irq_reset(struct drm_device *dev)
3229{
3230	struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232	if (HAS_PCH_NOP(dev))
3233		return;
 
 
3234
3235	GEN5_IRQ_RESET(SDE);
3236
3237	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238		I915_WRITE(SERR_INT, 0xffffffff);
 
 
3239}
3240
3241/*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250{
3251	struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253	if (HAS_PCH_NOP(dev))
3254		return;
3255
3256	WARN_ON(I915_READ(SDEIER) != 0);
3257	I915_WRITE(SDEIER, 0xffffffff);
3258	POSTING_READ(SDEIER);
 
 
 
 
 
 
 
 
 
 
 
 
3259}
3260
3261static void gen5_gt_irq_reset(struct drm_device *dev)
3262{
3263	struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265	GEN5_IRQ_RESET(GT);
3266	if (INTEL_INFO(dev)->gen >= 6)
3267		GEN5_IRQ_RESET(GEN6_PM);
 
 
 
 
 
 
 
 
 
3268}
3269
3270/* drm_dma.h hooks
3271*/
3272static void ironlake_irq_reset(struct drm_device *dev)
3273{
3274	struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276	I915_WRITE(HWSTAM, 0xffffffff);
 
3277
3278	GEN5_IRQ_RESET(DE);
3279	if (IS_GEN7(dev))
3280		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282	gen5_gt_irq_reset(dev);
3283
3284	ibx_irq_reset(dev);
3285}
3286
3287static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
 
3288{
3289	enum pipe pipe;
3290
3291	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294	for_each_pipe(dev_priv, pipe)
3295		I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297	GEN5_IRQ_RESET(VLV_);
3298}
3299
3300static void valleyview_irq_preinstall(struct drm_device *dev)
 
3301{
3302	struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304	/* VLV magic */
3305	I915_WRITE(VLV_IMR, 0);
3306	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310	gen5_gt_irq_reset(dev);
3311
3312	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314	vlv_display_irq_reset(dev_priv);
3315}
3316
3317static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318{
3319	GEN8_IRQ_RESET_NDX(GT, 0);
3320	GEN8_IRQ_RESET_NDX(GT, 1);
3321	GEN8_IRQ_RESET_NDX(GT, 2);
3322	GEN8_IRQ_RESET_NDX(GT, 3);
 
 
3323}
3324
3325static void gen8_irq_reset(struct drm_device *dev)
3326{
3327	struct drm_i915_private *dev_priv = dev->dev_private;
3328	int pipe;
 
 
 
 
 
 
 
3329
3330	I915_WRITE(GEN8_MASTER_IRQ, 0);
3331	POSTING_READ(GEN8_MASTER_IRQ);
 
3332
3333	gen8_gt_irq_reset(dev_priv);
 
3334
3335	for_each_pipe(dev_priv, pipe)
3336		if (intel_display_power_is_enabled(dev_priv,
3337						   POWER_DOMAIN_PIPE(pipe)))
3338			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342	GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344	if (HAS_PCH_SPLIT(dev))
3345		ibx_irq_reset(dev);
3346}
3347
3348void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349				     unsigned int pipe_mask)
3350{
3351	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352	enum pipe pipe;
3353
3354	spin_lock_irq(&dev_priv->irq_lock);
3355	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357				  dev_priv->de_irq_mask[pipe],
3358				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3359	spin_unlock_irq(&dev_priv->irq_lock);
 
 
3360}
3361
3362void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363				     unsigned int pipe_mask)
3364{
3365	enum pipe pipe;
 
 
 
 
 
3366
3367	spin_lock_irq(&dev_priv->irq_lock);
3368	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370	spin_unlock_irq(&dev_priv->irq_lock);
 
3371
3372	/* make sure we're done processing display irqs */
3373	synchronize_irq(dev_priv->dev->irq);
 
 
 
 
 
 
 
 
3374}
3375
3376static void cherryview_irq_preinstall(struct drm_device *dev)
3377{
3378	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 
 
 
 
 
3379
3380	I915_WRITE(GEN8_MASTER_IRQ, 0);
3381	POSTING_READ(GEN8_MASTER_IRQ);
 
3382
3383	gen8_gt_irq_reset(dev_priv);
 
3384
3385	GEN5_IRQ_RESET(GEN8_PCU_);
 
 
3386
3387	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
 
3388
3389	vlv_display_irq_reset(dev_priv);
 
3390}
3391
3392static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393				  const u32 hpd[HPD_NUM_PINS])
3394{
3395	struct drm_i915_private *dev_priv = to_i915(dev);
3396	struct intel_encoder *encoder;
3397	u32 enabled_irqs = 0;
3398
3399	for_each_intel_encoder(dev, encoder)
3400		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401			enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403	return enabled_irqs;
 
 
 
3404}
3405
3406static void ibx_hpd_irq_setup(struct drm_device *dev)
 
3407{
3408	struct drm_i915_private *dev_priv = dev->dev_private;
3409	u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411	if (HAS_PCH_IBX(dev)) {
3412		hotplug_irqs = SDE_HOTPLUG_MASK;
3413		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414	} else {
3415		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417	}
3418
3419	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421	/*
3422	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3423	 * duration to 2ms (which is the minimum in the Display Port spec).
3424	 * The pulse duration bits are reserved on LPT+.
3425	 */
3426	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3431	/*
3432	 * When CPU and PCH are on the same package, port A
3433	 * HPD must be enabled in both north and south.
3434	 */
3435	if (HAS_PCH_LPT_LP(dev))
3436		hotplug |= PORTA_HOTPLUG_ENABLE;
3437	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438}
3439
3440static void spt_hpd_irq_setup(struct drm_device *dev)
3441{
3442	struct drm_i915_private *dev_priv = dev->dev_private;
3443	u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3447
3448	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450	/* Enable digital hotplug on the PCH */
3451	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
 
 
3455
3456	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457	hotplug |= PORTE_HOTPLUG_ENABLE;
3458	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459}
3460
3461static void ilk_hpd_irq_setup(struct drm_device *dev)
3462{
3463	struct drm_i915_private *dev_priv = dev->dev_private;
3464	u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466	if (INTEL_INFO(dev)->gen >= 8) {
3467		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471	} else if (INTEL_INFO(dev)->gen >= 7) {
3472		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476	} else {
3477		hotplug_irqs = DE_DP_A_HOTPLUG;
3478		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
 
 
 
 
 
 
 
 
3481	}
 
3482
 
 
3483	/*
3484	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3485	 * duration to 2ms (which is the minimum in the Display Port spec)
3486	 * The pulse duration bits are reserved on HSW+.
3487	 */
3488	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3492
3493	ibx_hpd_irq_setup(dev);
3494}
3495
3496static void bxt_hpd_irq_setup(struct drm_device *dev)
3497{
3498	struct drm_i915_private *dev_priv = dev->dev_private;
3499	u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3502	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
3505
3506	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508		PORTA_HOTPLUG_ENABLE;
3509	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510}
3511
3512static void ibx_irq_postinstall(struct drm_device *dev)
 
3513{
3514	struct drm_i915_private *dev_priv = dev->dev_private;
3515	u32 mask;
3516
3517	if (HAS_PCH_NOP(dev))
3518		return;
3519
3520	if (HAS_PCH_IBX(dev))
3521		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522	else
3523		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
 
 
 
 
 
 
 
 
 
 
 
 
3524
3525	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526	I915_WRITE(SDEIMR, ~mask);
 
 
 
 
 
 
3527}
3528
3529static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530{
3531	struct drm_i915_private *dev_priv = dev->dev_private;
3532	u32 pm_irqs, gt_irqs;
3533
3534	pm_irqs = gt_irqs = 0;
 
3535
3536	dev_priv->gt_irq_mask = ~0;
3537	if (HAS_L3_DPF(dev)) {
3538		/* L3 parity interrupt is always unmasked. */
3539		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540		gt_irqs |= GT_PARITY_ERROR(dev);
3541	}
3542
3543	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544	if (IS_GEN5(dev)) {
3545		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546			   ILK_BSD_USER_INTERRUPT;
3547	} else {
3548		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549	}
3550
3551	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552
3553	if (INTEL_INFO(dev)->gen >= 6) {
3554		/*
3555		 * RPS interrupts will get enabled/disabled on demand when RPS
3556		 * itself is enabled/disabled.
3557		 */
3558		if (HAS_VEBOX(dev))
3559			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561		dev_priv->pm_irq_mask = 0xffffffff;
3562		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563	}
 
 
 
 
 
3564}
3565
3566static int ironlake_irq_postinstall(struct drm_device *dev)
3567{
3568	struct drm_i915_private *dev_priv = dev->dev_private;
3569	u32 display_mask, extra_mask;
3570
3571	if (INTEL_INFO(dev)->gen >= 7) {
3572		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574				DE_PLANEB_FLIP_DONE_IVB |
3575				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
 
 
 
3578			      DE_DP_A_HOTPLUG_IVB);
3579	} else {
3580		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582				DE_AUX_CHANNEL_A |
3583				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584				DE_POISON);
3585		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
 
 
3587			      DE_DP_A_HOTPLUG);
3588	}
3589
3590	dev_priv->irq_mask = ~display_mask;
3591
3592	I915_WRITE(HWSTAM, 0xeffe);
3593
3594	ibx_irq_pre_postinstall(dev);
3595
3596	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598	gen5_gt_irq_postinstall(dev);
3599
3600	ibx_irq_postinstall(dev);
3601
3602	if (IS_IRONLAKE_M(dev)) {
3603		/* Enable PCU event interrupts
3604		 *
3605		 * spinlocking not required here for correctness since interrupt
3606		 * setup is guaranteed to run in single-threaded context. But we
3607		 * need it to make the assert_spin_locked happy. */
3608		spin_lock_irq(&dev_priv->irq_lock);
3609		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610		spin_unlock_irq(&dev_priv->irq_lock);
3611	}
3612
3613	return 0;
3614}
3615
3616static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617{
3618	u32 pipestat_mask;
3619	u32 iir_mask;
3620	enum pipe pipe;
3621
3622	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623			PIPE_FIFO_UNDERRUN_STATUS;
3624
3625	for_each_pipe(dev_priv, pipe)
3626		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627	POSTING_READ(PIPESTAT(PIPE_A));
3628
3629	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630			PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633	for_each_pipe(dev_priv, pipe)
3634		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639	if (IS_CHERRYVIEW(dev_priv))
3640		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641	dev_priv->irq_mask &= ~iir_mask;
3642
3643	I915_WRITE(VLV_IIR, iir_mask);
3644	I915_WRITE(VLV_IIR, iir_mask);
3645	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647	POSTING_READ(VLV_IMR);
3648}
3649
3650static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651{
3652	u32 pipestat_mask;
3653	u32 iir_mask;
3654	enum pipe pipe;
3655
3656	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659	if (IS_CHERRYVIEW(dev_priv))
3660		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662	dev_priv->irq_mask |= iir_mask;
3663	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665	I915_WRITE(VLV_IIR, iir_mask);
3666	I915_WRITE(VLV_IIR, iir_mask);
3667	POSTING_READ(VLV_IIR);
3668
3669	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670			PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673	for_each_pipe(dev_priv, pipe)
3674		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677			PIPE_FIFO_UNDERRUN_STATUS;
3678
3679	for_each_pipe(dev_priv, pipe)
3680		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681	POSTING_READ(PIPESTAT(PIPE_A));
3682}
3683
3684void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685{
3686	assert_spin_locked(&dev_priv->irq_lock);
3687
3688	if (dev_priv->display_irqs_enabled)
3689		return;
3690
3691	dev_priv->display_irqs_enabled = true;
3692
3693	if (intel_irqs_enabled(dev_priv))
3694		valleyview_display_irqs_install(dev_priv);
 
 
3695}
3696
3697void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698{
3699	assert_spin_locked(&dev_priv->irq_lock);
3700
3701	if (!dev_priv->display_irqs_enabled)
3702		return;
3703
3704	dev_priv->display_irqs_enabled = false;
3705
3706	if (intel_irqs_enabled(dev_priv))
3707		valleyview_display_irqs_uninstall(dev_priv);
3708}
3709
3710static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711{
3712	dev_priv->irq_mask = ~0;
3713
3714	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715	POSTING_READ(PORT_HOTPLUG_EN);
3716
3717	I915_WRITE(VLV_IIR, 0xffffffff);
3718	I915_WRITE(VLV_IIR, 0xffffffff);
3719	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721	POSTING_READ(VLV_IMR);
3722
3723	/* Interrupt setup is already guaranteed to be single-threaded, this is
3724	 * just to make the assert_spin_locked check happy. */
3725	spin_lock_irq(&dev_priv->irq_lock);
3726	if (dev_priv->display_irqs_enabled)
3727		valleyview_display_irqs_install(dev_priv);
3728	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
3729}
3730
3731static int valleyview_irq_postinstall(struct drm_device *dev)
3732{
3733	struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735	vlv_display_irq_postinstall(dev_priv);
3736
3737	gen5_gt_irq_postinstall(dev);
 
 
 
 
 
 
3738
3739	/* ack & enable invalid PTE error interrupts */
3740#if 0 /* FIXME: add support to irq handler for checking these bits */
3741	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743#endif
3744
3745	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
3746
3747	return 0;
3748}
3749
3750static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751{
3752	/* These are interrupts we'll toggle with the ring mask register */
3753	uint32_t gt_interrupts[] = {
3754		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763		0,
3764		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766		};
3767
3768	dev_priv->pm_irq_mask = 0xffffffff;
3769	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771	/*
3772	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3773	 * is enabled/disabled.
3774	 */
3775	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777}
3778
3779static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780{
3781	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782	uint32_t de_pipe_enables;
3783	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784	u32 de_port_enables;
3785	enum pipe pipe;
3786
3787	if (INTEL_INFO(dev_priv)->gen >= 9) {
3788		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3790		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791				  GEN9_AUX_CHANNEL_D;
3792		if (IS_BROXTON(dev_priv))
3793			de_port_masked |= BXT_DE_PORT_GMBUS;
3794	} else {
3795		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797	}
3798
3799	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800					   GEN8_PIPE_FIFO_UNDERRUN;
 
 
3801
3802	de_port_enables = de_port_masked;
3803	if (IS_BROXTON(dev_priv))
3804		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805	else if (IS_BROADWELL(dev_priv))
3806		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3811
3812	for_each_pipe(dev_priv, pipe)
3813		if (intel_display_power_is_enabled(dev_priv,
3814				POWER_DOMAIN_PIPE(pipe)))
3815			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816					  dev_priv->de_irq_mask[pipe],
3817					  de_pipe_enables);
3818
3819	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820}
 
3821
3822static int gen8_irq_postinstall(struct drm_device *dev)
3823{
3824	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
3825
3826	if (HAS_PCH_SPLIT(dev))
3827		ibx_irq_pre_postinstall(dev);
3828
3829	gen8_gt_irq_postinstall(dev_priv);
3830	gen8_de_irq_postinstall(dev_priv);
 
 
 
 
3831
3832	if (HAS_PCH_SPLIT(dev))
3833		ibx_irq_postinstall(dev);
3834
3835	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836	POSTING_READ(GEN8_MASTER_IRQ);
 
 
3837
3838	return 0;
 
 
3839}
3840
3841static int cherryview_irq_postinstall(struct drm_device *dev)
3842{
3843	struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845	vlv_display_irq_postinstall(dev_priv);
3846
3847	gen8_gt_irq_postinstall(dev_priv);
3848
3849	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850	POSTING_READ(GEN8_MASTER_IRQ);
3851
3852	return 0;
3853}
3854
3855static void gen8_irq_uninstall(struct drm_device *dev)
3856{
3857	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
3858
3859	if (!dev_priv)
3860		return;
3861
3862	gen8_irq_reset(dev);
3863}
3864
3865static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866{
3867	/* Interrupt setup is already guaranteed to be single-threaded, this is
3868	 * just to make the assert_spin_locked check happy. */
3869	spin_lock_irq(&dev_priv->irq_lock);
3870	if (dev_priv->display_irqs_enabled)
3871		valleyview_display_irqs_uninstall(dev_priv);
3872	spin_unlock_irq(&dev_priv->irq_lock);
3873
3874	vlv_display_irq_reset(dev_priv);
3875
3876	dev_priv->irq_mask = ~0;
 
3877}
3878
3879static void valleyview_irq_uninstall(struct drm_device *dev)
3880{
3881	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
3882
3883	if (!dev_priv)
3884		return;
3885
3886	I915_WRITE(VLV_MASTER_IER, 0);
3887
3888	gen5_gt_irq_reset(dev);
 
3889
3890	I915_WRITE(HWSTAM, 0xffffffff);
3891
3892	vlv_display_irq_uninstall(dev_priv);
 
3893}
3894
3895static void cherryview_irq_uninstall(struct drm_device *dev)
3896{
3897	struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899	if (!dev_priv)
3900		return;
3901
3902	I915_WRITE(GEN8_MASTER_IRQ, 0);
3903	POSTING_READ(GEN8_MASTER_IRQ);
3904
3905	gen8_gt_irq_reset(dev_priv);
3906
3907	GEN5_IRQ_RESET(GEN8_PCU_);
 
 
 
 
 
3908
3909	vlv_display_irq_uninstall(dev_priv);
 
3910}
3911
3912static void ironlake_irq_uninstall(struct drm_device *dev)
3913{
3914	struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916	if (!dev_priv)
3917		return;
 
 
3918
3919	ironlake_irq_reset(dev);
 
3920}
3921
3922static void i8xx_irq_preinstall(struct drm_device * dev)
3923{
3924	struct drm_i915_private *dev_priv = dev->dev_private;
3925	int pipe;
3926
3927	for_each_pipe(dev_priv, pipe)
3928		I915_WRITE(PIPESTAT(pipe), 0);
3929	I915_WRITE16(IMR, 0xffff);
3930	I915_WRITE16(IER, 0x0);
3931	POSTING_READ16(IER);
3932}
3933
3934static int i8xx_irq_postinstall(struct drm_device *dev)
3935{
3936	struct drm_i915_private *dev_priv = dev->dev_private;
 
3937
3938	I915_WRITE16(EMR,
3939		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
 
3940
3941	/* Unmask the interrupts that we always want on. */
3942	dev_priv->irq_mask =
3943		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3947	I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949	I915_WRITE16(IER,
3950		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952		     I915_USER_INTERRUPT);
3953	POSTING_READ16(IER);
3954
3955	/* Interrupt setup is already guaranteed to be single-threaded, this is
3956	 * just to make the assert_spin_locked check happy. */
3957	spin_lock_irq(&dev_priv->irq_lock);
3958	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960	spin_unlock_irq(&dev_priv->irq_lock);
 
3961
3962	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963}
3964
3965/*
3966 * Returns true when a page flip has completed.
3967 */
3968static bool i8xx_handle_vblank(struct drm_device *dev,
3969			       int plane, int pipe, u32 iir)
3970{
3971	struct drm_i915_private *dev_priv = dev->dev_private;
3972	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974	if (!intel_pipe_handle_vblank(dev, pipe))
3975		return false;
 
 
 
 
 
 
 
 
 
3976
3977	if ((iir & flip_pending) == 0)
3978		goto check_page_flip;
 
3979
3980	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3981	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983	 * the flip is completed (no longer pending). Since this doesn't raise
3984	 * an interrupt per se, we watch for the change at vblank.
 
 
 
 
3985	 */
3986	if (I915_READ16(ISR) & flip_pending)
3987		goto check_page_flip;
 
3988
3989	intel_prepare_page_flip(dev, plane);
3990	intel_finish_page_flip(dev, pipe);
3991	return true;
 
3992
3993check_page_flip:
3994	intel_check_page_flip(dev, pipe);
3995	return false;
3996}
3997
3998static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999{
4000	struct drm_device *dev = arg;
4001	struct drm_i915_private *dev_priv = dev->dev_private;
4002	u16 iir, new_iir;
4003	u32 pipe_stats[2];
4004	int pipe;
4005	u16 flip_mask =
4006		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008	irqreturn_t ret;
4009
4010	if (!intel_irqs_enabled(dev_priv))
4011		return IRQ_NONE;
4012
4013	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014	disable_rpm_wakeref_asserts(dev_priv);
4015
4016	ret = IRQ_NONE;
4017	iir = I915_READ16(IIR);
4018	if (iir == 0)
4019		goto out;
4020
4021	while (iir & ~flip_mask) {
4022		/* Can't rely on pipestat interrupt bit in iir as it might
4023		 * have been cleared after the pipestat interrupt was received.
4024		 * It doesn't set the bit in iir again, but it still produces
4025		 * interrupts (for non-MSI).
4026		 */
4027		spin_lock(&dev_priv->irq_lock);
4028		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031		for_each_pipe(dev_priv, pipe) {
4032			i915_reg_t reg = PIPESTAT(pipe);
4033			pipe_stats[pipe] = I915_READ(reg);
4034
4035			/*
4036			 * Clear the PIPE*STAT regs before the IIR
4037			 */
4038			if (pipe_stats[pipe] & 0x8000ffff)
4039				I915_WRITE(reg, pipe_stats[pipe]);
4040		}
4041		spin_unlock(&dev_priv->irq_lock);
4042
4043		I915_WRITE16(IIR, iir & ~flip_mask);
4044		new_iir = I915_READ16(IIR); /* Flush posted writes */
 
 
4045
4046		if (iir & I915_USER_INTERRUPT)
4047			notify_ring(&dev_priv->ring[RCS]);
4048
4049		for_each_pipe(dev_priv, pipe) {
4050			int plane = pipe;
4051			if (HAS_FBC(dev))
4052				plane = !plane;
4053
4054			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055			    i8xx_handle_vblank(dev, plane, pipe, iir))
4056				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059				i9xx_pipe_crc_irq_handler(dev, pipe);
4060
4061			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063								    pipe);
4064		}
4065
4066		iir = new_iir;
4067	}
4068	ret = IRQ_HANDLED;
4069
4070out:
4071	enable_rpm_wakeref_asserts(dev_priv);
4072
4073	return ret;
4074}
4075
4076static void i8xx_irq_uninstall(struct drm_device * dev)
4077{
4078	struct drm_i915_private *dev_priv = dev->dev_private;
4079	int pipe;
4080
4081	for_each_pipe(dev_priv, pipe) {
4082		/* Clear enable bits; then clear status bits */
4083		I915_WRITE(PIPESTAT(pipe), 0);
4084		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085	}
4086	I915_WRITE16(IMR, 0xffff);
4087	I915_WRITE16(IER, 0x0);
4088	I915_WRITE16(IIR, I915_READ16(IIR));
4089}
4090
4091static void i915_irq_preinstall(struct drm_device * dev)
4092{
4093	struct drm_i915_private *dev_priv = dev->dev_private;
4094	int pipe;
4095
4096	if (I915_HAS_HOTPLUG(dev)) {
4097		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099	}
4100
4101	I915_WRITE16(HWSTAM, 0xeffe);
4102	for_each_pipe(dev_priv, pipe)
4103		I915_WRITE(PIPESTAT(pipe), 0);
4104	I915_WRITE(IMR, 0xffffffff);
4105	I915_WRITE(IER, 0x0);
4106	POSTING_READ(IER);
4107}
4108
4109static int i915_irq_postinstall(struct drm_device *dev)
4110{
4111	struct drm_i915_private *dev_priv = dev->dev_private;
4112	u32 enable_mask;
4113
4114	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
4115
4116	/* Unmask the interrupts that we always want on. */
4117	dev_priv->irq_mask =
4118		~(I915_ASLE_INTERRUPT |
4119		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124	enable_mask =
4125		I915_ASLE_INTERRUPT |
4126		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
4128		I915_USER_INTERRUPT;
4129
4130	if (I915_HAS_HOTPLUG(dev)) {
4131		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132		POSTING_READ(PORT_HOTPLUG_EN);
4133
4134		/* Enable in IER... */
4135		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136		/* and unmask in IMR */
4137		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138	}
4139
4140	I915_WRITE(IMR, dev_priv->irq_mask);
4141	I915_WRITE(IER, enable_mask);
4142	POSTING_READ(IER);
4143
4144	i915_enable_asle_pipestat(dev);
4145
4146	/* Interrupt setup is already guaranteed to be single-threaded, this is
4147	 * just to make the assert_spin_locked check happy. */
4148	spin_lock_irq(&dev_priv->irq_lock);
4149	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151	spin_unlock_irq(&dev_priv->irq_lock);
4152
4153	return 0;
4154}
4155
4156/*
4157 * Returns true when a page flip has completed.
4158 */
4159static bool i915_handle_vblank(struct drm_device *dev,
4160			       int plane, int pipe, u32 iir)
4161{
4162	struct drm_i915_private *dev_priv = dev->dev_private;
4163	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165	if (!intel_pipe_handle_vblank(dev, pipe))
4166		return false;
4167
4168	if ((iir & flip_pending) == 0)
4169		goto check_page_flip;
4170
4171	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4172	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174	 * the flip is completed (no longer pending). Since this doesn't raise
4175	 * an interrupt per se, we watch for the change at vblank.
4176	 */
4177	if (I915_READ(ISR) & flip_pending)
4178		goto check_page_flip;
4179
4180	intel_prepare_page_flip(dev, plane);
4181	intel_finish_page_flip(dev, pipe);
4182	return true;
4183
4184check_page_flip:
4185	intel_check_page_flip(dev, pipe);
4186	return false;
4187}
4188
4189static irqreturn_t i915_irq_handler(int irq, void *arg)
4190{
4191	struct drm_device *dev = arg;
4192	struct drm_i915_private *dev_priv = dev->dev_private;
4193	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194	u32 flip_mask =
4195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197	int pipe, ret = IRQ_NONE;
4198
4199	if (!intel_irqs_enabled(dev_priv))
4200		return IRQ_NONE;
4201
4202	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203	disable_rpm_wakeref_asserts(dev_priv);
4204
4205	iir = I915_READ(IIR);
4206	do {
4207		bool irq_received = (iir & ~flip_mask) != 0;
4208		bool blc_event = false;
4209
4210		/* Can't rely on pipestat interrupt bit in iir as it might
4211		 * have been cleared after the pipestat interrupt was received.
4212		 * It doesn't set the bit in iir again, but it still produces
4213		 * interrupts (for non-MSI).
4214		 */
4215		spin_lock(&dev_priv->irq_lock);
4216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219		for_each_pipe(dev_priv, pipe) {
4220			i915_reg_t reg = PIPESTAT(pipe);
4221			pipe_stats[pipe] = I915_READ(reg);
4222
4223			/* Clear the PIPE*STAT regs before the IIR */
4224			if (pipe_stats[pipe] & 0x8000ffff) {
4225				I915_WRITE(reg, pipe_stats[pipe]);
4226				irq_received = true;
4227			}
4228		}
4229		spin_unlock(&dev_priv->irq_lock);
4230
4231		if (!irq_received)
4232			break;
4233
4234		/* Consume port.  Then clear IIR or we'll miss events */
4235		if (I915_HAS_HOTPLUG(dev) &&
 
4236		    iir & I915_DISPLAY_PORT_INTERRUPT)
4237			i9xx_hpd_irq_handler(dev);
4238
4239		I915_WRITE(IIR, iir & ~flip_mask);
4240		new_iir = I915_READ(IIR); /* Flush posted writes */
 
4241
4242		if (iir & I915_USER_INTERRUPT)
4243			notify_ring(&dev_priv->ring[RCS]);
4244
4245		for_each_pipe(dev_priv, pipe) {
4246			int plane = pipe;
4247			if (HAS_FBC(dev))
4248				plane = !plane;
4249
4250			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251			    i915_handle_vblank(dev, plane, pipe, iir))
4252				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4253
4254			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255				blc_event = true;
4256
4257			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258				i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262								    pipe);
4263		}
4264
4265		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266			intel_opregion_asle_intr(dev);
4267
4268		/* With MSI, interrupts are only generated when iir
4269		 * transitions from zero to nonzero.  If another bit got
4270		 * set while we were handling the existing iir bits, then
4271		 * we would never get another interrupt.
4272		 *
4273		 * This is fine on non-MSI as well, as if we hit this path
4274		 * we avoid exiting the interrupt handler only to generate
4275		 * another one.
4276		 *
4277		 * Note that for MSI this could cause a stray interrupt report
4278		 * if an interrupt landed in the time between writing IIR and
4279		 * the posting read.  This should be rare enough to never
4280		 * trigger the 99% of 100,000 interrupts test for disabling
4281		 * stray interrupts.
4282		 */
4283		ret = IRQ_HANDLED;
4284		iir = new_iir;
4285	} while (iir & ~flip_mask);
4286
4287	enable_rpm_wakeref_asserts(dev_priv);
 
4288
4289	return ret;
4290}
4291
4292static void i915_irq_uninstall(struct drm_device * dev)
4293{
4294	struct drm_i915_private *dev_priv = dev->dev_private;
4295	int pipe;
4296
4297	if (I915_HAS_HOTPLUG(dev)) {
4298		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300	}
4301
4302	I915_WRITE16(HWSTAM, 0xffff);
4303	for_each_pipe(dev_priv, pipe) {
4304		/* Clear enable bits; then clear status bits */
4305		I915_WRITE(PIPESTAT(pipe), 0);
4306		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307	}
4308	I915_WRITE(IMR, 0xffffffff);
4309	I915_WRITE(IER, 0x0);
4310
4311	I915_WRITE(IIR, I915_READ(IIR));
4312}
4313
4314static void i965_irq_preinstall(struct drm_device * dev)
4315{
4316	struct drm_i915_private *dev_priv = dev->dev_private;
4317	int pipe;
4318
4319	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4321
4322	I915_WRITE(HWSTAM, 0xeffe);
4323	for_each_pipe(dev_priv, pipe)
4324		I915_WRITE(PIPESTAT(pipe), 0);
4325	I915_WRITE(IMR, 0xffffffff);
4326	I915_WRITE(IER, 0x0);
4327	POSTING_READ(IER);
4328}
4329
4330static int i965_irq_postinstall(struct drm_device *dev)
4331{
4332	struct drm_i915_private *dev_priv = dev->dev_private;
4333	u32 enable_mask;
4334	u32 error_mask;
4335
4336	/* Unmask the interrupts that we always want on. */
4337	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338			       I915_DISPLAY_PORT_INTERRUPT |
4339			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345	enable_mask = ~dev_priv->irq_mask;
4346	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348	enable_mask |= I915_USER_INTERRUPT;
4349
4350	if (IS_G4X(dev))
4351		enable_mask |= I915_BSD_USER_INTERRUPT;
4352
4353	/* Interrupt setup is already guaranteed to be single-threaded, this is
4354	 * just to make the assert_spin_locked check happy. */
4355	spin_lock_irq(&dev_priv->irq_lock);
4356	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359	spin_unlock_irq(&dev_priv->irq_lock);
4360
4361	/*
4362	 * Enable some error detection, note the instruction error mask
4363	 * bit is reserved, so we leave it masked.
4364	 */
4365	if (IS_G4X(dev)) {
4366		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367			       GM45_ERROR_MEM_PRIV |
4368			       GM45_ERROR_CP_PRIV |
4369			       I915_ERROR_MEMORY_REFRESH);
4370	} else {
4371		error_mask = ~(I915_ERROR_PAGE_TABLE |
4372			       I915_ERROR_MEMORY_REFRESH);
4373	}
4374	I915_WRITE(EMR, error_mask);
 
 
 
 
 
 
 
 
4375
4376	I915_WRITE(IMR, dev_priv->irq_mask);
4377	I915_WRITE(IER, enable_mask);
4378	POSTING_READ(IER);
 
 
 
 
4379
4380	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381	POSTING_READ(PORT_HOTPLUG_EN);
4382
4383	i915_enable_asle_pipestat(dev);
4384
4385	return 0;
 
 
 
 
 
 
 
 
4386}
4387
4388static void i915_hpd_irq_setup(struct drm_device *dev)
4389{
4390	struct drm_i915_private *dev_priv = dev->dev_private;
4391	u32 hotplug_en;
4392
4393	assert_spin_locked(&dev_priv->irq_lock);
4394
4395	/* Note HDMI and DP share hotplug bits */
4396	/* enable bits are the same for all generations */
4397	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398	/* Programming the CRT detection parameters tends
4399	   to generate a spurious hotplug event about three
4400	   seconds later.  So just do it once.
4401	*/
4402	if (IS_G4X(dev))
4403		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406	/* Ignore TV since it's buggy */
4407	i915_hotplug_interrupt_update_locked(dev_priv,
4408					     HOTPLUG_INT_EN_MASK |
4409					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411					     hotplug_en);
4412}
4413
4414static irqreturn_t i965_irq_handler(int irq, void *arg)
4415{
4416	struct drm_device *dev = arg;
4417	struct drm_i915_private *dev_priv = dev->dev_private;
4418	u32 iir, new_iir;
4419	u32 pipe_stats[I915_MAX_PIPES];
4420	int ret = IRQ_NONE, pipe;
4421	u32 flip_mask =
4422		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425	if (!intel_irqs_enabled(dev_priv))
4426		return IRQ_NONE;
4427
4428	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429	disable_rpm_wakeref_asserts(dev_priv);
4430
4431	iir = I915_READ(IIR);
4432
4433	for (;;) {
4434		bool irq_received = (iir & ~flip_mask) != 0;
4435		bool blc_event = false;
4436
4437		/* Can't rely on pipestat interrupt bit in iir as it might
4438		 * have been cleared after the pipestat interrupt was received.
4439		 * It doesn't set the bit in iir again, but it still produces
4440		 * interrupts (for non-MSI).
4441		 */
4442		spin_lock(&dev_priv->irq_lock);
4443		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446		for_each_pipe(dev_priv, pipe) {
4447			i915_reg_t reg = PIPESTAT(pipe);
4448			pipe_stats[pipe] = I915_READ(reg);
4449
4450			/*
4451			 * Clear the PIPE*STAT regs before the IIR
4452			 */
4453			if (pipe_stats[pipe] & 0x8000ffff) {
4454				I915_WRITE(reg, pipe_stats[pipe]);
4455				irq_received = true;
4456			}
4457		}
4458		spin_unlock(&dev_priv->irq_lock);
4459
4460		if (!irq_received)
 
4461			break;
4462
4463		ret = IRQ_HANDLED;
4464
4465		/* Consume port.  Then clear IIR or we'll miss events */
4466		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467			i9xx_hpd_irq_handler(dev);
4468
4469		I915_WRITE(IIR, iir & ~flip_mask);
4470		new_iir = I915_READ(IIR); /* Flush posted writes */
 
4471
4472		if (iir & I915_USER_INTERRUPT)
4473			notify_ring(&dev_priv->ring[RCS]);
4474		if (iir & I915_BSD_USER_INTERRUPT)
4475			notify_ring(&dev_priv->ring[VCS]);
4476
4477		for_each_pipe(dev_priv, pipe) {
4478			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479			    i915_handle_vblank(dev, pipe, pipe, iir))
4480				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4481
4482			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483				blc_event = true;
 
4484
4485			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486				i9xx_pipe_crc_irq_handler(dev, pipe);
 
4487
4488			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490		}
4491
4492		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493			intel_opregion_asle_intr(dev);
4494
4495		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496			gmbus_irq_handler(dev);
4497
4498		/* With MSI, interrupts are only generated when iir
4499		 * transitions from zero to nonzero.  If another bit got
4500		 * set while we were handling the existing iir bits, then
4501		 * we would never get another interrupt.
4502		 *
4503		 * This is fine on non-MSI as well, as if we hit this path
4504		 * we avoid exiting the interrupt handler only to generate
4505		 * another one.
4506		 *
4507		 * Note that for MSI this could cause a stray interrupt report
4508		 * if an interrupt landed in the time between writing IIR and
4509		 * the posting read.  This should be rare enough to never
4510		 * trigger the 99% of 100,000 interrupts test for disabling
4511		 * stray interrupts.
4512		 */
4513		iir = new_iir;
4514	}
4515
4516	enable_rpm_wakeref_asserts(dev_priv);
4517
4518	return ret;
4519}
4520
4521static void i965_irq_uninstall(struct drm_device * dev)
4522{
4523	struct drm_i915_private *dev_priv = dev->dev_private;
4524	int pipe;
4525
4526	if (!dev_priv)
4527		return;
4528
4529	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4531
4532	I915_WRITE(HWSTAM, 0xffffffff);
4533	for_each_pipe(dev_priv, pipe)
4534		I915_WRITE(PIPESTAT(pipe), 0);
4535	I915_WRITE(IMR, 0xffffffff);
4536	I915_WRITE(IER, 0x0);
 
 
 
 
 
 
 
 
4537
4538	for_each_pipe(dev_priv, pipe)
4539		I915_WRITE(PIPESTAT(pipe),
4540			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541	I915_WRITE(IIR, I915_READ(IIR));
4542}
4543
4544/**
4545 * intel_irq_init - initializes irq support
4546 * @dev_priv: i915 device instance
4547 *
4548 * This function initializes all the irq support including work items, timers
4549 * and all the vtables. It does not setup the interrupt itself though.
4550 */
4551void intel_irq_init(struct drm_i915_private *dev_priv)
4552{
4553	struct drm_device *dev = dev_priv->dev;
4554
4555	intel_hpd_init_work(dev_priv);
 
 
 
 
 
 
4556
4557	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4558	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4559
4560	/* Let's track the enabled rps events */
4561	if (IS_VALLEYVIEW(dev_priv))
4562		/* WaGsvRC0ResidencyMethod:vlv */
4563		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564	else
4565		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4566
4567	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568			  i915_hangcheck_elapsed);
4569
4570	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4571
4572	if (IS_GEN2(dev_priv)) {
4573		dev->max_vblank_count = 0;
4574		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
 
 
 
 
 
 
 
4578	} else {
4579		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
 
 
 
 
 
 
 
 
 
 
 
 
4581	}
 
4582
4583	/*
4584	 * Opt out of the vblank disable timer on everything except gen2.
4585	 * Gen2 doesn't have a hardware frame counter and so depends on
4586	 * vblank interrupts to produce sane vblank seuquence numbers.
4587	 */
4588	if (!IS_GEN2(dev_priv))
4589		dev->vblank_disable_immediate = true;
 
 
4590
4591	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
4593
4594	if (IS_CHERRYVIEW(dev_priv)) {
4595		dev->driver->irq_handler = cherryview_irq_handler;
4596		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599		dev->driver->enable_vblank = valleyview_enable_vblank;
4600		dev->driver->disable_vblank = valleyview_disable_vblank;
4601		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602	} else if (IS_VALLEYVIEW(dev_priv)) {
4603		dev->driver->irq_handler = valleyview_irq_handler;
4604		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607		dev->driver->enable_vblank = valleyview_enable_vblank;
4608		dev->driver->disable_vblank = valleyview_disable_vblank;
4609		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611		dev->driver->irq_handler = gen8_irq_handler;
4612		dev->driver->irq_preinstall = gen8_irq_reset;
4613		dev->driver->irq_postinstall = gen8_irq_postinstall;
4614		dev->driver->irq_uninstall = gen8_irq_uninstall;
4615		dev->driver->enable_vblank = gen8_enable_vblank;
4616		dev->driver->disable_vblank = gen8_disable_vblank;
4617		if (IS_BROXTON(dev))
4618			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619		else if (HAS_PCH_SPT(dev))
4620			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621		else
4622			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4623	} else if (HAS_PCH_SPLIT(dev)) {
4624		dev->driver->irq_handler = ironlake_irq_handler;
4625		dev->driver->irq_preinstall = ironlake_irq_reset;
4626		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628		dev->driver->enable_vblank = ironlake_enable_vblank;
4629		dev->driver->disable_vblank = ironlake_disable_vblank;
4630		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4631	} else {
4632		if (INTEL_INFO(dev_priv)->gen == 2) {
4633			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635			dev->driver->irq_handler = i8xx_irq_handler;
4636			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4638			dev->driver->irq_preinstall = i915_irq_preinstall;
4639			dev->driver->irq_postinstall = i915_irq_postinstall;
4640			dev->driver->irq_uninstall = i915_irq_uninstall;
4641			dev->driver->irq_handler = i915_irq_handler;
4642		} else {
4643			dev->driver->irq_preinstall = i965_irq_preinstall;
4644			dev->driver->irq_postinstall = i965_irq_postinstall;
4645			dev->driver->irq_uninstall = i965_irq_uninstall;
4646			dev->driver->irq_handler = i965_irq_handler;
4647		}
4648		if (I915_HAS_HOTPLUG(dev_priv))
4649			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650		dev->driver->enable_vblank = i915_enable_vblank;
4651		dev->driver->disable_vblank = i915_disable_vblank;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4652	}
4653}
4654
4655/**
4656 * intel_irq_install - enables the hardware interrupt
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function enables the hardware interrupt handling, but leaves the hotplug
4660 * handling still disabled. It is called after intel_irq_init().
4661 *
4662 * In the driver load and resume code we need working interrupts in a few places
4663 * but don't want to deal with the hassle of concurrent probe and hotplug
4664 * workers. Hence the split into this two-stage approach.
4665 */
4666int intel_irq_install(struct drm_i915_private *dev_priv)
4667{
 
 
 
4668	/*
4669	 * We enable some interrupt sources in our postinstall hooks, so mark
4670	 * interrupts as enabled _before_ actually enabling them to avoid
4671	 * special cases in our ordering checks.
4672	 */
4673	dev_priv->pm.irqs_enabled = true;
4674
4675	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
4676}
4677
4678/**
4679 * intel_irq_uninstall - finilizes all irq handling
4680 * @dev_priv: i915 device instance
4681 *
4682 * This stops interrupt and hotplug handling and unregisters and frees all
4683 * resources acquired in the init functions.
4684 */
4685void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686{
4687	drm_irq_uninstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4688	intel_hpd_cancel_work(dev_priv);
4689	dev_priv->pm.irqs_enabled = false;
4690}
4691
4692/**
4693 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This function is used to disable interrupts at runtime, both in the runtime
4697 * pm and the system suspend/resume code.
4698 */
4699void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700{
4701	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702	dev_priv->pm.irqs_enabled = false;
4703	synchronize_irq(dev_priv->dev->irq);
4704}
4705
4706/**
4707 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to enable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714{
4715	dev_priv->pm.irqs_enabled = true;
4716	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4718}
v6.2
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
 
  31#include <linux/slab.h>
  32#include <linux/sysrq.h>
  33
  34#include <drm/drm_drv.h>
  35
  36#include "display/icl_dsi_regs.h"
  37#include "display/intel_de.h"
  38#include "display/intel_display_trace.h"
  39#include "display/intel_display_types.h"
  40#include "display/intel_fifo_underrun.h"
  41#include "display/intel_hotplug.h"
  42#include "display/intel_lpe_audio.h"
  43#include "display/intel_psr.h"
  44
  45#include "gt/intel_breadcrumbs.h"
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49#include "gt/intel_gt_regs.h"
  50#include "gt/intel_rps.h"
  51
  52#include "i915_driver.h"
  53#include "i915_drv.h"
  54#include "i915_irq.h"
  55#include "intel_pm.h"
  56
  57/**
  58 * DOC: interrupt handling
  59 *
  60 * These functions provide the basic support for enabling and disabling the
  61 * interrupt handling support. There's a lot more functionality in i915_irq.c
  62 * and related files, but that will be described in separate chapters.
  63 */
  64
  65/*
  66 * Interrupt statistic for PMU. Increments the counter only if the
  67 * interrupt originated from the GPU so interrupts from a device which
  68 * shares the interrupt line are not accounted.
  69 */
  70static inline void pmu_irq_stats(struct drm_i915_private *i915,
  71				 irqreturn_t res)
  72{
  73	if (unlikely(res != IRQ_HANDLED))
  74		return;
  75
  76	/*
  77	 * A clever compiler translates that into INC. A not so clever one
  78	 * should at least prevent store tearing.
  79	 */
  80	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
  81}
  82
  83typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  84typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
  85				    enum hpd_pin pin);
  86
  87static const u32 hpd_ilk[HPD_NUM_PINS] = {
  88	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  89};
  90
  91static const u32 hpd_ivb[HPD_NUM_PINS] = {
  92	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  93};
  94
  95static const u32 hpd_bdw[HPD_NUM_PINS] = {
  96	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
  97};
  98
  99static const u32 hpd_ibx[HPD_NUM_PINS] = {
 100	[HPD_CRT] = SDE_CRT_HOTPLUG,
 101	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
 102	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
 103	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
 104	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
 105};
 106
 107static const u32 hpd_cpt[HPD_NUM_PINS] = {
 108	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
 109	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
 110	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
 111	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
 112	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
 113};
 114
 115static const u32 hpd_spt[HPD_NUM_PINS] = {
 116	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
 117	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
 118	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
 119	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
 120	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
 121};
 122
 123static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 124	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 125	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 126	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 127	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 128	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 129	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
 130};
 131
 132static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 133	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 134	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 135	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 136	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 137	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 138	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 139};
 140
 141static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 142	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 143	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 144	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 145	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 146	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 147	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 148};
 149
 
 150static const u32 hpd_bxt[HPD_NUM_PINS] = {
 151	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
 152	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
 153	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
 154};
 155
 156static const u32 hpd_gen11[HPD_NUM_PINS] = {
 157	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
 158	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
 159	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
 160	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
 161	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
 162	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
 163};
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165static const u32 hpd_icp[HPD_NUM_PINS] = {
 166	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
 167	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
 168	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
 169	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
 170	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
 171	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
 172	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
 173	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
 174	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
 175};
 176
 177static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
 178	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
 179	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
 180	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
 181	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
 182	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_DG2(HPD_PORT_TC1),
 183};
 184
 185static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
 186{
 187	struct intel_hotplug *hpd = &dev_priv->display.hotplug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	if (HAS_GMCH(dev_priv)) {
 190		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 191		    IS_CHERRYVIEW(dev_priv))
 192			hpd->hpd = hpd_status_g4x;
 193		else
 194			hpd->hpd = hpd_status_i915;
 195		return;
 196	}
 197
 198	if (DISPLAY_VER(dev_priv) >= 11)
 199		hpd->hpd = hpd_gen11;
 200	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
 201		hpd->hpd = hpd_bxt;
 202	else if (DISPLAY_VER(dev_priv) >= 8)
 203		hpd->hpd = hpd_bdw;
 204	else if (DISPLAY_VER(dev_priv) >= 7)
 205		hpd->hpd = hpd_ivb;
 206	else
 207		hpd->hpd = hpd_ilk;
 208
 209	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
 210	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
 211		return;
 212
 213	if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
 214		hpd->pch_hpd = hpd_sde_dg1;
 215	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
 216		hpd->pch_hpd = hpd_icp;
 217	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
 218		hpd->pch_hpd = hpd_spt;
 219	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
 220		hpd->pch_hpd = hpd_cpt;
 221	else if (HAS_PCH_IBX(dev_priv))
 222		hpd->pch_hpd = hpd_ibx;
 223	else
 224		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
 225}
 226
 227static void
 228intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 229{
 230	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
 231
 232	drm_crtc_handle_vblank(&crtc->base);
 233}
 234
 235void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 236		    i915_reg_t iir, i915_reg_t ier)
 
 
 
 
 
 
 
 237{
 238	intel_uncore_write(uncore, imr, 0xffffffff);
 239	intel_uncore_posting_read(uncore, imr);
 240
 241	intel_uncore_write(uncore, ier, 0);
 242
 243	/* IIR can theoretically queue up two events. Be paranoid. */
 244	intel_uncore_write(uncore, iir, 0xffffffff);
 245	intel_uncore_posting_read(uncore, iir);
 246	intel_uncore_write(uncore, iir, 0xffffffff);
 247	intel_uncore_posting_read(uncore, iir);
 248}
 249
 250static void gen2_irq_reset(struct intel_uncore *uncore)
 251{
 252	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 253	intel_uncore_posting_read16(uncore, GEN2_IMR);
 254
 255	intel_uncore_write16(uncore, GEN2_IER, 0);
 
 
 256
 257	/* IIR can theoretically queue up two events. Be paranoid. */
 258	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 259	intel_uncore_posting_read16(uncore, GEN2_IIR);
 260	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 261	intel_uncore_posting_read16(uncore, GEN2_IIR);
 262}
 263
 264/*
 265 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 
 
 
 266 */
 267static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 
 
 268{
 269	u32 val = intel_uncore_read(uncore, reg);
 270
 271	if (val == 0)
 
 
 272		return;
 273
 274	drm_WARN(&uncore->i915->drm, 1,
 275		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 276		 i915_mmio_reg_offset(reg), val);
 277	intel_uncore_write(uncore, reg, 0xffffffff);
 278	intel_uncore_posting_read(uncore, reg);
 279	intel_uncore_write(uncore, reg, 0xffffffff);
 280	intel_uncore_posting_read(uncore, reg);
 281}
 282
 283static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 284{
 285	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 286
 287	if (val == 0)
 288		return;
 289
 290	drm_WARN(&uncore->i915->drm, 1,
 291		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 292		 i915_mmio_reg_offset(GEN2_IIR), val);
 293	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 294	intel_uncore_posting_read16(uncore, GEN2_IIR);
 295	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 296	intel_uncore_posting_read16(uncore, GEN2_IIR);
 297}
 298
 299void gen3_irq_init(struct intel_uncore *uncore,
 300		   i915_reg_t imr, u32 imr_val,
 301		   i915_reg_t ier, u32 ier_val,
 302		   i915_reg_t iir)
 303{
 304	gen3_assert_iir_is_zero(uncore, iir);
 305
 306	intel_uncore_write(uncore, ier, ier_val);
 307	intel_uncore_write(uncore, imr, imr_val);
 308	intel_uncore_posting_read(uncore, imr);
 309}
 310
 311static void gen2_irq_init(struct intel_uncore *uncore,
 312			  u32 imr_val, u32 ier_val)
 313{
 314	gen2_assert_iir_is_zero(uncore);
 315
 316	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 317	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 318	intel_uncore_posting_read16(uncore, GEN2_IMR);
 319}
 320
 321/* For display hotplug interrupt */
 322static inline void
 323i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 324				     u32 mask,
 325				     u32 bits)
 326{
 327	lockdep_assert_held(&dev_priv->irq_lock);
 328	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
 329
 330	intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_EN, mask, bits);
 331}
 332
 333/**
 334 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 335 * @dev_priv: driver private
 336 * @mask: bits to update
 337 * @bits: bits to enable
 338 * NOTE: the HPD enable bits are modified both inside and outside
 339 * of an interrupt context. To avoid that read-modify-write cycles
 340 * interfer, these bits are protected by a spinlock. Since this
 341 * function is usually not called from a context where the lock is
 342 * held already, this function acquires the lock itself. A non-locking
 343 * version is also available.
 344 */
 345void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 346				   u32 mask,
 347				   u32 bits)
 348{
 349	spin_lock_irq(&dev_priv->irq_lock);
 350	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 351	spin_unlock_irq(&dev_priv->irq_lock);
 352}
 353
 354/**
 355 * ilk_update_display_irq - update DEIMR
 356 * @dev_priv: driver private
 357 * @interrupt_mask: mask of interrupt bits to update
 358 * @enabled_irq_mask: mask of interrupt bits to enable
 359 */
 360static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 361				   u32 interrupt_mask, u32 enabled_irq_mask)
 
 362{
 363	u32 new_val;
 364
 365	lockdep_assert_held(&dev_priv->irq_lock);
 366	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 367
 368	new_val = dev_priv->irq_mask;
 
 
 369	new_val &= ~interrupt_mask;
 370	new_val |= (~enabled_irq_mask & interrupt_mask);
 371
 372	if (new_val != dev_priv->irq_mask &&
 373	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
 374		dev_priv->irq_mask = new_val;
 375		intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
 376		intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
 377	}
 378}
 379
 380void ilk_enable_display_irq(struct drm_i915_private *i915, u32 bits)
 381{
 382	ilk_update_display_irq(i915, bits, bits);
 
 
 
 
 
 
 
 
 
 383}
 384
 385void ilk_disable_display_irq(struct drm_i915_private *i915, u32 bits)
 386{
 387	ilk_update_display_irq(i915, bits, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388}
 389
 390/**
 391 * bdw_update_port_irq - update DE port interrupt
 392 * @dev_priv: driver private
 393 * @interrupt_mask: mask of interrupt bits to update
 394 * @enabled_irq_mask: mask of interrupt bits to enable
 395 */
 396static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 397				u32 interrupt_mask,
 398				u32 enabled_irq_mask)
 399{
 400	u32 new_val;
 401	u32 old_val;
 402
 403	lockdep_assert_held(&dev_priv->irq_lock);
 404
 405	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 406
 407	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 408		return;
 409
 410	old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
 411
 412	new_val = old_val;
 413	new_val &= ~interrupt_mask;
 414	new_val |= (~enabled_irq_mask & interrupt_mask);
 415
 416	if (new_val != old_val) {
 417		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
 418		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
 419	}
 420}
 421
 422/**
 423 * bdw_update_pipe_irq - update DE pipe interrupt
 424 * @dev_priv: driver private
 425 * @pipe: pipe whose interrupt to update
 426 * @interrupt_mask: mask of interrupt bits to update
 427 * @enabled_irq_mask: mask of interrupt bits to enable
 428 */
 429static void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 430				enum pipe pipe, u32 interrupt_mask,
 431				u32 enabled_irq_mask)
 
 432{
 433	u32 new_val;
 434
 435	lockdep_assert_held(&dev_priv->irq_lock);
 436
 437	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 438
 439	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 440		return;
 441
 442	new_val = dev_priv->de_irq_mask[pipe];
 443	new_val &= ~interrupt_mask;
 444	new_val |= (~enabled_irq_mask & interrupt_mask);
 445
 446	if (new_val != dev_priv->de_irq_mask[pipe]) {
 447		dev_priv->de_irq_mask[pipe] = new_val;
 448		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 449		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
 450	}
 451}
 452
 453void bdw_enable_pipe_irq(struct drm_i915_private *i915,
 454			 enum pipe pipe, u32 bits)
 455{
 456	bdw_update_pipe_irq(i915, pipe, bits, bits);
 457}
 458
 459void bdw_disable_pipe_irq(struct drm_i915_private *i915,
 460			  enum pipe pipe, u32 bits)
 461{
 462	bdw_update_pipe_irq(i915, pipe, bits, 0);
 463}
 464
 465/**
 466 * ibx_display_interrupt_update - update SDEIMR
 467 * @dev_priv: driver private
 468 * @interrupt_mask: mask of interrupt bits to update
 469 * @enabled_irq_mask: mask of interrupt bits to enable
 470 */
 471static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 472					 u32 interrupt_mask,
 473					 u32 enabled_irq_mask)
 474{
 475	u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
 476	sdeimr &= ~interrupt_mask;
 477	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 478
 479	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 480
 481	lockdep_assert_held(&dev_priv->irq_lock);
 482
 483	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 484		return;
 485
 486	intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
 487	intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
 488}
 489
 490void ibx_enable_display_interrupt(struct drm_i915_private *i915, u32 bits)
 
 
 491{
 492	ibx_display_interrupt_update(i915, bits, bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493}
 494
 495void ibx_disable_display_interrupt(struct drm_i915_private *i915, u32 bits)
 
 
 496{
 497	ibx_display_interrupt_update(i915, bits, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498}
 499
 500u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 501			      enum pipe pipe)
 502{
 503	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 504	u32 enable_mask = status_mask << 16;
 505
 506	lockdep_assert_held(&dev_priv->irq_lock);
 507
 508	if (DISPLAY_VER(dev_priv) < 5)
 509		goto out;
 510
 511	/*
 512	 * On pipe A we don't support the PSR interrupt yet,
 513	 * on pipe B and C the same bit MBZ.
 514	 */
 515	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 516			     status_mask & PIPE_A_PSR_STATUS_VLV))
 517		return 0;
 518	/*
 519	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 520	 * A the same bit is for perf counters which we don't use either.
 521	 */
 522	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 523			     status_mask & PIPE_B_PSR_STATUS_VLV))
 524		return 0;
 525
 526	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 527			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 528			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 529	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 530		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 531	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 532		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 533
 534out:
 535	drm_WARN_ONCE(&dev_priv->drm,
 536		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 537		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 538		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 539		      pipe_name(pipe), enable_mask, status_mask);
 540
 541	return enable_mask;
 542}
 543
 544void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 545			  enum pipe pipe, u32 status_mask)
 
 546{
 547	i915_reg_t reg = PIPESTAT(pipe);
 548	u32 enable_mask;
 549
 550	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 551		      "pipe %c: status_mask=0x%x\n",
 552		      pipe_name(pipe), status_mask);
 553
 554	lockdep_assert_held(&dev_priv->irq_lock);
 555	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 556
 557	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 558		return;
 559
 560	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 561	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 562
 563	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
 564	intel_uncore_posting_read(&dev_priv->uncore, reg);
 565}
 566
 567void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 568			   enum pipe pipe, u32 status_mask)
 
 569{
 570	i915_reg_t reg = PIPESTAT(pipe);
 571	u32 enable_mask;
 572
 573	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 574		      "pipe %c: status_mask=0x%x\n",
 575		      pipe_name(pipe), status_mask);
 576
 577	lockdep_assert_held(&dev_priv->irq_lock);
 578	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 579
 580	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 581		return;
 582
 583	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 584	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 585
 586	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
 587	intel_uncore_posting_read(&dev_priv->uncore, reg);
 588}
 589
 590static bool i915_has_asle(struct drm_i915_private *dev_priv)
 591{
 592	if (!dev_priv->display.opregion.asle)
 593		return false;
 594
 595	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 596}
 597
 598/**
 599 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 600 * @dev_priv: i915 device private
 601 */
 602static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 603{
 604	if (!i915_has_asle(dev_priv))
 
 
 605		return;
 606
 607	spin_lock_irq(&dev_priv->irq_lock);
 608
 609	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 610	if (DISPLAY_VER(dev_priv) >= 4)
 611		i915_enable_pipestat(dev_priv, PIPE_A,
 612				     PIPE_LEGACY_BLC_EVENT_STATUS);
 613
 614	spin_unlock_irq(&dev_priv->irq_lock);
 615}
 616
 617/*
 618 * This timing diagram depicts the video signal in and
 619 * around the vertical blanking period.
 620 *
 621 * Assumptions about the fictitious mode used in this example:
 622 *  vblank_start >= 3
 623 *  vsync_start = vblank_start + 1
 624 *  vsync_end = vblank_start + 2
 625 *  vtotal = vblank_start + 3
 626 *
 627 *           start of vblank:
 628 *           latch double buffered registers
 629 *           increment frame counter (ctg+)
 630 *           generate start of vblank interrupt (gen4+)
 631 *           |
 632 *           |          frame start:
 633 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 634 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 635 *           |          |
 636 *           |          |  start of vsync:
 637 *           |          |  generate vsync interrupt
 638 *           |          |  |
 639 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 640 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 641 * ----va---> <-----------------vb--------------------> <--------va-------------
 642 *       |          |       <----vs----->                     |
 643 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 644 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 645 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 646 *       |          |                                         |
 647 *       last visible pixel                                   first visible pixel
 648 *                  |                                         increment frame counter (gen3/4)
 649 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 650 *
 651 * x  = horizontal active
 652 * _  = horizontal blanking
 653 * hs = horizontal sync
 654 * va = vertical active
 655 * vb = vertical blanking
 656 * vs = vertical sync
 657 * vbs = vblank_start (number)
 658 *
 659 * Summary:
 660 * - most events happen at the start of horizontal sync
 661 * - frame start happens at the start of horizontal blank, 1-4 lines
 662 *   (depending on PIPECONF settings) after the start of vblank
 663 * - gen3/4 pixel and frame counter are synchronized with the start
 664 *   of horizontal active on the first line of vertical active
 665 */
 666
 
 
 
 
 
 
 667/* Called from drm generic code, passed a 'crtc', which
 668 * we use as a pipe index
 669 */
 670u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 671{
 672	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 673	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 674	const struct drm_display_mode *mode = &vblank->hwmode;
 675	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 676	i915_reg_t high_frame, low_frame;
 677	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 678	unsigned long irqflags;
 679
 680	/*
 681	 * On i965gm TV output the frame counter only works up to
 682	 * the point when we enable the TV encoder. After that the
 683	 * frame counter ceases to work and reads zero. We need a
 684	 * vblank wait before enabling the TV encoder and so we
 685	 * have to enable vblank interrupts while the frame counter
 686	 * is still in a working state. However the core vblank code
 687	 * does not like us returning non-zero frame counter values
 688	 * when we've told it that we don't have a working frame
 689	 * counter. Thus we must stop non-zero values leaking out.
 690	 */
 691	if (!vblank->max_vblank_count)
 692		return 0;
 693
 694	htotal = mode->crtc_htotal;
 695	hsync_start = mode->crtc_hsync_start;
 696	vbl_start = mode->crtc_vblank_start;
 697	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 698		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 699
 700	/* Convert to pixel count */
 701	vbl_start *= htotal;
 702
 703	/* Start of vblank event occurs at start of hsync */
 704	vbl_start -= htotal - hsync_start;
 705
 706	high_frame = PIPEFRAME(pipe);
 707	low_frame = PIPEFRAMEPIXEL(pipe);
 708
 709	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 710
 711	/*
 712	 * High & low register fields aren't synchronized, so make sure
 713	 * we get a low value that's stable across two reads of the high
 714	 * register.
 715	 */
 716	do {
 717		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 718		low   = intel_de_read_fw(dev_priv, low_frame);
 719		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 720	} while (high1 != high2);
 721
 722	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 723
 724	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 725	pixel = low & PIPE_PIXEL_MASK;
 726	low >>= PIPE_FRAME_LOW_SHIFT;
 727
 728	/*
 729	 * The frame counter increments at beginning of active.
 730	 * Cook up a vblank counter by also checking the pixel
 731	 * counter against vblank start.
 732	 */
 733	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 734}
 735
 736u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 737{
 738	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 739	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 740	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 741
 742	if (!vblank->max_vblank_count)
 743		return 0;
 744
 745	return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
 746}
 747
 748static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
 749{
 750	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 751	struct drm_vblank_crtc *vblank =
 752		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 753	const struct drm_display_mode *mode = &vblank->hwmode;
 754	u32 htotal = mode->crtc_htotal;
 755	u32 clock = mode->crtc_clock;
 756	u32 scan_prev_time, scan_curr_time, scan_post_time;
 757
 758	/*
 759	 * To avoid the race condition where we might cross into the
 760	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 761	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 762	 * during the same frame.
 763	 */
 764	do {
 765		/*
 766		 * This field provides read back of the display
 767		 * pipe frame time stamp. The time stamp value
 768		 * is sampled at every start of vertical blank.
 769		 */
 770		scan_prev_time = intel_de_read_fw(dev_priv,
 771						  PIPE_FRMTMSTMP(crtc->pipe));
 772
 773		/*
 774		 * The TIMESTAMP_CTR register has the current
 775		 * time stamp value.
 776		 */
 777		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
 778
 779		scan_post_time = intel_de_read_fw(dev_priv,
 780						  PIPE_FRMTMSTMP(crtc->pipe));
 781	} while (scan_post_time != scan_prev_time);
 782
 783	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 784				   clock), 1000 * htotal);
 785}
 786
 787/*
 788 * On certain encoders on certain platforms, pipe
 789 * scanline register will not work to get the scanline,
 790 * since the timings are driven from the PORT or issues
 791 * with scanline register updates.
 792 * This function will use Framestamp and current
 793 * timestamp registers to calculate the scanline.
 794 */
 795static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 796{
 797	struct drm_vblank_crtc *vblank =
 798		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 799	const struct drm_display_mode *mode = &vblank->hwmode;
 800	u32 vblank_start = mode->crtc_vblank_start;
 801	u32 vtotal = mode->crtc_vtotal;
 802	u32 scanline;
 803
 804	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
 805	scanline = min(scanline, vtotal - 1);
 806	scanline = (scanline + vblank_start) % vtotal;
 807
 808	return scanline;
 809}
 810
 811/*
 812 * intel_de_read_fw(), only for fast reads of display block, no need for
 813 * forcewake etc.
 814 */
 815static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 816{
 817	struct drm_device *dev = crtc->base.dev;
 818	struct drm_i915_private *dev_priv = to_i915(dev);
 819	const struct drm_display_mode *mode;
 820	struct drm_vblank_crtc *vblank;
 821	enum pipe pipe = crtc->pipe;
 822	int position, vtotal;
 823
 824	if (!crtc->active)
 825		return 0;
 826
 827	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 828	mode = &vblank->hwmode;
 829
 830	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 831		return __intel_get_crtc_scanline_from_timestamp(crtc);
 832
 833	vtotal = mode->crtc_vtotal;
 834	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 835		vtotal /= 2;
 836
 837	position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
 
 
 
 838
 839	/*
 840	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 841	 * read it just before the start of vblank.  So try it again
 842	 * so we don't accidentally end up spanning a vblank frame
 843	 * increment, causing the pipe_update_end() code to squak at us.
 844	 *
 845	 * The nature of this problem means we can't simply check the ISR
 846	 * bit and return the vblank start value; nor can we use the scanline
 847	 * debug register in the transcoder as it appears to have the same
 848	 * problem.  We may need to extend this to include other platforms,
 849	 * but so far testing only shows the problem on HSW.
 850	 */
 851	if (HAS_DDI(dev_priv) && !position) {
 852		int i, temp;
 853
 854		for (i = 0; i < 100; i++) {
 855			udelay(1);
 856			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
 
 857			if (temp != position) {
 858				position = temp;
 859				break;
 860			}
 861		}
 862	}
 863
 864	/*
 865	 * See update_scanline_offset() for the details on the
 866	 * scanline_offset adjustment.
 867	 */
 868	return (position + crtc->scanline_offset) % vtotal;
 869}
 870
 871static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
 872				     bool in_vblank_irq,
 873				     int *vpos, int *hpos,
 874				     ktime_t *stime, ktime_t *etime,
 875				     const struct drm_display_mode *mode)
 876{
 877	struct drm_device *dev = _crtc->dev;
 878	struct drm_i915_private *dev_priv = to_i915(dev);
 879	struct intel_crtc *crtc = to_intel_crtc(_crtc);
 880	enum pipe pipe = crtc->pipe;
 881	int position;
 882	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 
 
 883	unsigned long irqflags;
 884	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
 885		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
 886		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 887
 888	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
 889		drm_dbg(&dev_priv->drm,
 890			"trying to get scanoutpos for disabled "
 891			"pipe %c\n", pipe_name(pipe));
 892		return false;
 893	}
 894
 895	htotal = mode->crtc_htotal;
 896	hsync_start = mode->crtc_hsync_start;
 897	vtotal = mode->crtc_vtotal;
 898	vbl_start = mode->crtc_vblank_start;
 899	vbl_end = mode->crtc_vblank_end;
 900
 901	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 902		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 903		vbl_end /= 2;
 904		vtotal /= 2;
 905	}
 906
 
 
 907	/*
 908	 * Lock uncore.lock, as we will do multiple timing critical raw
 909	 * register reads, potentially with preemption disabled, so the
 910	 * following code must not block on uncore.lock.
 911	 */
 912	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 913
 914	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 915
 916	/* Get optional system timestamp before query. */
 917	if (stime)
 918		*stime = ktime_get();
 919
 920	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
 921		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
 922
 923		position = __intel_get_crtc_scanline(crtc);
 924
 925		/*
 926		 * Already exiting vblank? If so, shift our position
 927		 * so it looks like we're already apporaching the full
 928		 * vblank end. This should make the generated timestamp
 929		 * more or less match when the active portion will start.
 930		 */
 931		if (position >= vbl_start && scanlines < position)
 932			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
 933	} else if (use_scanline_counter) {
 934		/* No obvious pixelcount register. Only query vertical
 935		 * scanout position from Display scan line register.
 936		 */
 937		position = __intel_get_crtc_scanline(crtc);
 938	} else {
 939		/* Have access to pixelcount since start of frame.
 940		 * We can split this into vertical and horizontal
 941		 * scanout position.
 942		 */
 943		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 944
 945		/* convert to pixel counts */
 946		vbl_start *= htotal;
 947		vbl_end *= htotal;
 948		vtotal *= htotal;
 949
 950		/*
 951		 * In interlaced modes, the pixel counter counts all pixels,
 952		 * so one field will have htotal more pixels. In order to avoid
 953		 * the reported position from jumping backwards when the pixel
 954		 * counter is beyond the length of the shorter field, just
 955		 * clamp the position the length of the shorter field. This
 956		 * matches how the scanline counter based position works since
 957		 * the scanline counter doesn't count the two half lines.
 958		 */
 959		if (position >= vtotal)
 960			position = vtotal - 1;
 961
 962		/*
 963		 * Start of vblank interrupt is triggered at start of hsync,
 964		 * just prior to the first active line of vblank. However we
 965		 * consider lines to start at the leading edge of horizontal
 966		 * active. So, should we get here before we've crossed into
 967		 * the horizontal active of the first line in vblank, we would
 968		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 969		 * always add htotal-hsync_start to the current pixel position.
 970		 */
 971		position = (position + htotal - hsync_start) % vtotal;
 972	}
 973
 974	/* Get optional system timestamp after query. */
 975	if (etime)
 976		*etime = ktime_get();
 977
 978	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 979
 980	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 981
 
 
 982	/*
 983	 * While in vblank, position will be negative
 984	 * counting up towards 0 at vbl_end. And outside
 985	 * vblank, position will be positive counting
 986	 * up since vbl_end.
 987	 */
 988	if (position >= vbl_start)
 989		position -= vbl_end;
 990	else
 991		position += vtotal - vbl_end;
 992
 993	if (use_scanline_counter) {
 994		*vpos = position;
 995		*hpos = 0;
 996	} else {
 997		*vpos = position / htotal;
 998		*hpos = position - (*vpos * htotal);
 999	}
1000
1001	return true;
1002}
 
1003
1004bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
1005				     ktime_t *vblank_time, bool in_vblank_irq)
1006{
1007	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
1008		crtc, max_error, vblank_time, in_vblank_irq,
1009		i915_get_crtc_scanoutpos);
1010}
1011
1012int intel_get_crtc_scanline(struct intel_crtc *crtc)
1013{
1014	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015	unsigned long irqflags;
1016	int position;
1017
1018	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1019	position = __intel_get_crtc_scanline(crtc);
1020	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1021
1022	return position;
1023}
1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025/**
1026 * ivb_parity_work - Workqueue called when a parity error interrupt
1027 * occurred.
1028 * @work: workqueue struct
1029 *
1030 * Doesn't actually do anything except notify userspace. As a consequence of
1031 * this event, userspace should try to remap the bad rows since statistically
1032 * it is likely the same row is more likely to go bad again.
1033 */
1034static void ivb_parity_work(struct work_struct *work)
1035{
1036	struct drm_i915_private *dev_priv =
1037		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1038	struct intel_gt *gt = to_gt(dev_priv);
1039	u32 error_status, row, bank, subbank;
1040	char *parity_event[6];
1041	u32 misccpctl;
1042	u8 slice = 0;
1043
1044	/* We must turn off DOP level clock gating to access the L3 registers.
1045	 * In order to prevent a get/put style interface, acquire struct mutex
1046	 * any time we access those registers.
1047	 */
1048	mutex_lock(&dev_priv->drm.struct_mutex);
1049
1050	/* If we've screwed up tracking, just let the interrupt fire again */
1051	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1052		goto out;
1053
1054	misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL,
1055				     GEN7_DOP_CLOCK_GATE_ENABLE, 0);
1056	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1057
1058	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1059		i915_reg_t reg;
1060
1061		slice--;
1062		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1063				     slice >= NUM_L3_SLICES(dev_priv)))
1064			break;
1065
1066		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1067
1068		reg = GEN7_L3CDERRST1(slice);
1069
1070		error_status = intel_uncore_read(&dev_priv->uncore, reg);
1071		row = GEN7_PARITY_ERROR_ROW(error_status);
1072		bank = GEN7_PARITY_ERROR_BANK(error_status);
1073		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1074
1075		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1076		intel_uncore_posting_read(&dev_priv->uncore, reg);
1077
1078		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1079		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1080		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1081		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1082		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1083		parity_event[5] = NULL;
1084
1085		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1086				   KOBJ_CHANGE, parity_event);
1087
1088		drm_dbg(&dev_priv->drm,
1089			"Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1090			slice, row, bank, subbank);
1091
1092		kfree(parity_event[4]);
1093		kfree(parity_event[3]);
1094		kfree(parity_event[2]);
1095		kfree(parity_event[1]);
1096	}
1097
1098	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1099
1100out:
1101	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1102	spin_lock_irq(gt->irq_lock);
1103	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1104	spin_unlock_irq(gt->irq_lock);
1105
1106	mutex_unlock(&dev_priv->drm.struct_mutex);
1107}
1108
1109static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1110{
1111	switch (pin) {
1112	case HPD_PORT_TC1:
1113	case HPD_PORT_TC2:
1114	case HPD_PORT_TC3:
1115	case HPD_PORT_TC4:
1116	case HPD_PORT_TC5:
1117	case HPD_PORT_TC6:
1118		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1119	default:
1120		return false;
1121	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
1125{
1126	switch (pin) {
1127	case HPD_PORT_A:
1128		return val & PORTA_HOTPLUG_LONG_DETECT;
1129	case HPD_PORT_B:
1130		return val & PORTB_HOTPLUG_LONG_DETECT;
1131	case HPD_PORT_C:
1132		return val & PORTC_HOTPLUG_LONG_DETECT;
1133	default:
1134		return false;
1135	}
1136}
1137
1138static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
1139{
1140	switch (pin) {
1141	case HPD_PORT_A:
1142	case HPD_PORT_B:
1143	case HPD_PORT_C:
1144	case HPD_PORT_D:
1145		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1146	default:
1147		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	}
 
 
1149}
1150
1151static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1152{
1153	switch (pin) {
1154	case HPD_PORT_TC1:
1155	case HPD_PORT_TC2:
1156	case HPD_PORT_TC3:
1157	case HPD_PORT_TC4:
1158	case HPD_PORT_TC5:
1159	case HPD_PORT_TC6:
1160		return val & ICP_TC_HPD_LONG_DETECT(pin);
1161	default:
1162		return false;
1163	}
1164}
1165
1166static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1167{
1168	switch (pin) {
1169	case HPD_PORT_E:
1170		return val & PORTE_HOTPLUG_LONG_DETECT;
1171	default:
1172		return false;
1173	}
1174}
1175
1176static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1177{
1178	switch (pin) {
1179	case HPD_PORT_A:
1180		return val & PORTA_HOTPLUG_LONG_DETECT;
1181	case HPD_PORT_B:
1182		return val & PORTB_HOTPLUG_LONG_DETECT;
1183	case HPD_PORT_C:
1184		return val & PORTC_HOTPLUG_LONG_DETECT;
1185	case HPD_PORT_D:
1186		return val & PORTD_HOTPLUG_LONG_DETECT;
1187	default:
1188		return false;
1189	}
1190}
1191
1192static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1193{
1194	switch (pin) {
1195	case HPD_PORT_A:
1196		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1197	default:
1198		return false;
1199	}
1200}
1201
1202static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1203{
1204	switch (pin) {
1205	case HPD_PORT_B:
1206		return val & PORTB_HOTPLUG_LONG_DETECT;
1207	case HPD_PORT_C:
1208		return val & PORTC_HOTPLUG_LONG_DETECT;
1209	case HPD_PORT_D:
1210		return val & PORTD_HOTPLUG_LONG_DETECT;
1211	default:
1212		return false;
1213	}
1214}
1215
1216static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1217{
1218	switch (pin) {
1219	case HPD_PORT_B:
1220		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1221	case HPD_PORT_C:
1222		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1223	case HPD_PORT_D:
1224		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1225	default:
1226		return false;
1227	}
1228}
1229
1230/*
1231 * Get a bit mask of pins that have triggered, and which ones may be long.
1232 * This can be called multiple times with the same masks to accumulate
1233 * hotplug detection results from several registers.
1234 *
1235 * Note that the caller is expected to zero out the masks initially.
1236 */
1237static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1238			       u32 *pin_mask, u32 *long_mask,
1239			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1240			       const u32 hpd[HPD_NUM_PINS],
1241			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1242{
1243	enum hpd_pin pin;
 
 
 
 
 
1244
1245	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1246
1247	for_each_hpd_pin(pin) {
1248		if ((hpd[pin] & hotplug_trigger) == 0)
1249			continue;
1250
1251		*pin_mask |= BIT(pin);
1252
1253		if (long_pulse_detect(pin, dig_hotplug_reg))
1254			*long_mask |= BIT(pin);
1255	}
1256
1257	drm_dbg(&dev_priv->drm,
1258		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1259		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1260
1261}
1262
1263static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1264				  const u32 hpd[HPD_NUM_PINS])
1265{
1266	struct intel_encoder *encoder;
1267	u32 enabled_irqs = 0;
1268
1269	for_each_intel_encoder(&dev_priv->drm, encoder)
1270		if (dev_priv->display.hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1271			enabled_irqs |= hpd[encoder->hpd_pin];
1272
1273	return enabled_irqs;
1274}
1275
1276static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1277				  const u32 hpd[HPD_NUM_PINS])
1278{
1279	struct intel_encoder *encoder;
1280	u32 hotplug_irqs = 0;
1281
1282	for_each_intel_encoder(&dev_priv->drm, encoder)
1283		hotplug_irqs |= hpd[encoder->hpd_pin];
1284
1285	return hotplug_irqs;
1286}
1287
1288static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1289				     hotplug_enables_func hotplug_enables)
1290{
1291	struct intel_encoder *encoder;
1292	u32 hotplug = 0;
 
 
 
 
 
1293
1294	for_each_intel_encoder(&i915->drm, encoder)
1295		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1296
1297	return hotplug;
1298}
 
 
 
 
 
 
1299
1300static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1301{
1302	wake_up_all(&dev_priv->display.gmbus.wait_queue);
1303}
 
1304
1305static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1306{
1307	wake_up_all(&dev_priv->display.gmbus.wait_queue);
1308}
1309
1310#if defined(CONFIG_DEBUG_FS)
1311static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1312					 enum pipe pipe,
1313					 u32 crc0, u32 crc1,
1314					 u32 crc2, u32 crc3,
1315					 u32 crc4)
1316{
1317	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1318	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1319	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1320
1321	trace_intel_pipe_crc(crtc, crcs);
 
1322
1323	spin_lock(&pipe_crc->lock);
1324	/*
1325	 * For some not yet identified reason, the first CRC is
1326	 * bonkers. So let's just wait for the next vblank and read
1327	 * out the buggy result.
1328	 *
1329	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1330	 * don't trust that one either.
1331	 */
1332	if (pipe_crc->skipped <= 0 ||
1333	    (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1334		pipe_crc->skipped++;
1335		spin_unlock(&pipe_crc->lock);
1336		return;
1337	}
1338	spin_unlock(&pipe_crc->lock);
1339
1340	drm_crtc_add_crc_entry(&crtc->base, true,
1341				drm_crtc_accurate_vblank_count(&crtc->base),
1342				crcs);
1343}
1344#else
1345static inline void
1346display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1347			     enum pipe pipe,
1348			     u32 crc0, u32 crc1,
1349			     u32 crc2, u32 crc3,
1350			     u32 crc4) {}
1351#endif
1352
1353static void flip_done_handler(struct drm_i915_private *i915,
1354			      enum pipe pipe)
1355{
1356	struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
1357	struct drm_crtc_state *crtc_state = crtc->base.state;
1358	struct drm_pending_vblank_event *e = crtc_state->event;
1359	struct drm_device *dev = &i915->drm;
1360	unsigned long irqflags;
1361
1362	spin_lock_irqsave(&dev->event_lock, irqflags);
1363
1364	crtc_state->event = NULL;
1365
1366	drm_crtc_send_vblank_event(&crtc->base, e);
1367
1368	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1369}
1370
1371static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1372				     enum pipe pipe)
1373{
1374	display_pipe_crc_irq_handler(dev_priv, pipe,
1375				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1376				     0, 0, 0, 0);
1377}
1378
1379static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1380				     enum pipe pipe)
1381{
1382	display_pipe_crc_irq_handler(dev_priv, pipe,
1383				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1384				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1385				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1386				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1387				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1388}
1389
1390static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1391				      enum pipe pipe)
1392{
1393	u32 res1, res2;
 
1394
1395	if (DISPLAY_VER(dev_priv) >= 3)
1396		res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1397	else
1398		res1 = 0;
1399
1400	if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
1401		res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1402	else
1403		res2 = 0;
1404
1405	display_pipe_crc_irq_handler(dev_priv, pipe,
1406				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1407				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1408				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1409				     res1, res2);
1410}
1411
1412static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
1413{
1414	enum pipe pipe;
 
 
 
 
 
 
 
 
 
 
 
1415
1416	for_each_pipe(dev_priv, pipe) {
1417		intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1418			   PIPESTAT_INT_STATUS_MASK |
1419			   PIPE_FIFO_UNDERRUN_STATUS);
1420
1421		dev_priv->pipestat_irq_mask[pipe] = 0;
 
1422	}
1423}
1424
1425static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1426				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
 
 
 
 
 
 
 
1427{
1428	enum pipe pipe;
 
 
1429
1430	spin_lock(&dev_priv->irq_lock);
1431
1432	if (!dev_priv->display_irqs_enabled) {
1433		spin_unlock(&dev_priv->irq_lock);
1434		return;
1435	}
1436
1437	for_each_pipe(dev_priv, pipe) {
1438		i915_reg_t reg;
1439		u32 status_mask, enable_mask, iir_bit = 0;
1440
1441		/*
1442		 * PIPESTAT bits get signalled even when the interrupt is
1443		 * disabled with the mask bits, and some of the status bits do
1444		 * not generate interrupts at all (like the underrun bit). Hence
1445		 * we need to be careful that we only handle what we want to
1446		 * handle.
1447		 */
1448
1449		/* fifo underruns are filterered in the underrun handler. */
1450		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1451
1452		switch (pipe) {
1453		default:
1454		case PIPE_A:
1455			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1456			break;
1457		case PIPE_B:
1458			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1459			break;
1460		case PIPE_C:
1461			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1462			break;
1463		}
1464		if (iir & iir_bit)
1465			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1466
1467		if (!status_mask)
1468			continue;
1469
1470		reg = PIPESTAT(pipe);
1471		pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1472		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1473
1474		/*
1475		 * Clear the PIPE*STAT regs before the IIR
1476		 *
1477		 * Toggle the enable bits to make sure we get an
1478		 * edge in the ISR pipe event bit if we don't clear
1479		 * all the enabled status bits. Otherwise the edge
1480		 * triggered IIR on i965/g4x wouldn't notice that
1481		 * an interrupt is still pending.
1482		 */
1483		if (pipe_stats[pipe]) {
1484			intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1485			intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1486		}
1487	}
1488	spin_unlock(&dev_priv->irq_lock);
1489}
1490
1491static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1492				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1493{
1494	enum pipe pipe;
1495
1496	for_each_pipe(dev_priv, pipe) {
1497		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1498			intel_handle_vblank(dev_priv, pipe);
 
 
 
 
 
 
1499
1500		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1501			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1502
1503		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1504			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1505	}
1506}
1507
1508static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1509				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1510{
1511	bool blc_event = false;
1512	enum pipe pipe;
1513
1514	for_each_pipe(dev_priv, pipe) {
1515		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1516			intel_handle_vblank(dev_priv, pipe);
1517
1518		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1519			blc_event = true;
1520
1521		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1522			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1523
1524		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1525			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1526	}
1527
1528	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1529		intel_opregion_asle_intr(dev_priv);
1530}
1531
1532static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1533				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1534{
1535	bool blc_event = false;
1536	enum pipe pipe;
1537
1538	for_each_pipe(dev_priv, pipe) {
1539		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1540			intel_handle_vblank(dev_priv, pipe);
1541
1542		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1543			blc_event = true;
1544
1545		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1546			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1547
1548		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1549			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1550	}
1551
1552	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1553		intel_opregion_asle_intr(dev_priv);
1554
1555	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1556		gmbus_irq_handler(dev_priv);
1557}
1558
1559static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1560					    u32 pipe_stats[I915_MAX_PIPES])
1561{
1562	enum pipe pipe;
 
 
1563
1564	for_each_pipe(dev_priv, pipe) {
1565		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1566			intel_handle_vblank(dev_priv, pipe);
1567
1568		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1569			flip_done_handler(dev_priv, pipe);
1570
1571		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1572			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1573
1574		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1575			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1576	}
1577
1578	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1579		gmbus_irq_handler(dev_priv);
1580}
1581
1582static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1583{
1584	u32 hotplug_status = 0, hotplug_status_mask;
1585	int i;
1586
1587	if (IS_G4X(dev_priv) ||
1588	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1589		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1590			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1591	else
1592		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1593
 
1594	/*
1595	 * We absolutely have to clear all the pending interrupt
1596	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1597	 * interrupt bit won't have an edge, and the i965/g4x
1598	 * edge triggered IIR will not notice that an interrupt
1599	 * is still pending. We can't use PORT_HOTPLUG_EN to
1600	 * guarantee the edge as the act of toggling the enable
1601	 * bits can itself generate a new hotplug interrupt :(
1602	 */
1603	for (i = 0; i < 10; i++) {
1604		u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1605
1606		if (tmp == 0)
1607			return hotplug_status;
1608
1609		hotplug_status |= tmp;
1610		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1611	}
 
1612
1613	drm_WARN_ONCE(&dev_priv->drm, 1,
1614		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1615		      intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1616
1617	return hotplug_status;
1618}
 
 
1619
1620static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1621				 u32 hotplug_status)
1622{
1623	u32 pin_mask = 0, long_mask = 0;
1624	u32 hotplug_trigger;
1625
1626	if (IS_G4X(dev_priv) ||
1627	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1628		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1629	else
1630		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1631
1632	if (hotplug_trigger) {
1633		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1634				   hotplug_trigger, hotplug_trigger,
1635				   dev_priv->display.hotplug.hpd,
1636				   i9xx_port_hotplug_long_detect);
1637
1638		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1639	}
1640
1641	if ((IS_G4X(dev_priv) ||
1642	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1643	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1644		dp_aux_irq_handler(dev_priv);
1645}
1646
1647static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1648{
1649	struct drm_i915_private *dev_priv = arg;
 
 
1650	irqreturn_t ret = IRQ_NONE;
1651
1652	if (!intel_irqs_enabled(dev_priv))
1653		return IRQ_NONE;
1654
1655	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1656	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
1657
1658	do {
1659		u32 iir, gt_iir, pm_iir;
1660		u32 pipe_stats[I915_MAX_PIPES] = {};
1661		u32 hotplug_status = 0;
1662		u32 ier = 0;
1663
1664		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1665		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1666		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 
 
1667
1668		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1669			break;
1670
1671		ret = IRQ_HANDLED;
1672
1673		/*
1674		 * Theory on interrupt generation, based on empirical evidence:
1675		 *
1676		 * x = ((VLV_IIR & VLV_IER) ||
1677		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1678		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1679		 *
1680		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1681		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1682		 * guarantee the CPU interrupt will be raised again even if we
1683		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1684		 * bits this time around.
1685		 */
1686		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1687		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
1688
1689		if (gt_iir)
1690			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1691		if (pm_iir)
1692			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1693
1694		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1695			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1696
1697		/* Call regardless, as some status bits might not be
1698		 * signalled in iir */
1699		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
1700
1701		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1702			   I915_LPE_PIPE_B_INTERRUPT))
1703			intel_lpe_audio_irq_handler(dev_priv);
1704
1705		/*
1706		 * VLV_IIR is single buffered, and reflects the level
1707		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1708		 */
1709		if (iir)
1710			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1711
1712		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1713		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1714
1715		if (gt_iir)
1716			gen6_gt_irq_handler(to_gt(dev_priv), gt_iir);
1717		if (pm_iir)
1718			gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir);
1719
1720		if (hotplug_status)
1721			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1722
1723		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1724	} while (0);
1725
1726	pmu_irq_stats(dev_priv, ret);
1727
1728	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1729
1730	return ret;
1731}
1732
1733static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1734{
1735	struct drm_i915_private *dev_priv = arg;
 
 
1736	irqreturn_t ret = IRQ_NONE;
1737
1738	if (!intel_irqs_enabled(dev_priv))
1739		return IRQ_NONE;
1740
1741	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1742	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1743
1744	do {
1745		u32 master_ctl, iir;
1746		u32 pipe_stats[I915_MAX_PIPES] = {};
1747		u32 hotplug_status = 0;
1748		u32 ier = 0;
1749
1750		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1751		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1752
1753		if (master_ctl == 0 && iir == 0)
1754			break;
1755
1756		ret = IRQ_HANDLED;
1757
1758		/*
1759		 * Theory on interrupt generation, based on empirical evidence:
1760		 *
1761		 * x = ((VLV_IIR & VLV_IER) ||
1762		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1763		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1764		 *
1765		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1766		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1767		 * guarantee the CPU interrupt will be raised again even if we
1768		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1769		 * bits this time around.
1770		 */
1771		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1772		ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
1773
1774		gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
 
 
 
 
 
1775
1776		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1777			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1778
1779		/* Call regardless, as some status bits might not be
1780		 * signalled in iir */
1781		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1782
1783		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1784			   I915_LPE_PIPE_B_INTERRUPT |
1785			   I915_LPE_PIPE_C_INTERRUPT))
1786			intel_lpe_audio_irq_handler(dev_priv);
1787
1788		/*
1789		 * VLV_IIR is single buffered, and reflects the level
1790		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1791		 */
1792		if (iir)
1793			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1794
1795		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1796		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1797
1798		if (hotplug_status)
1799			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1800
1801		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1802	} while (0);
1803
1804	pmu_irq_stats(dev_priv, ret);
1805
1806	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1807
1808	return ret;
1809}
1810
1811static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1812				u32 hotplug_trigger)
1813{
 
1814	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1815
1816	/*
1817	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1818	 * unless we touch the hotplug register, even if hotplug_trigger is
1819	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1820	 * errors.
1821	 */
1822	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1823	if (!hotplug_trigger) {
1824		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1825			PORTD_HOTPLUG_STATUS_MASK |
1826			PORTC_HOTPLUG_STATUS_MASK |
1827			PORTB_HOTPLUG_STATUS_MASK;
1828		dig_hotplug_reg &= ~mask;
1829	}
1830
1831	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1832	if (!hotplug_trigger)
1833		return;
1834
1835	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1836			   hotplug_trigger, dig_hotplug_reg,
1837			   dev_priv->display.hotplug.pch_hpd,
1838			   pch_port_hotplug_long_detect);
1839
1840	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1841}
1842
1843static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1844{
1845	enum pipe pipe;
 
1846	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1847
1848	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1849
1850	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1851		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1852			       SDE_AUDIO_POWER_SHIFT);
1853		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1854			port_name(port));
1855	}
1856
1857	if (pch_iir & SDE_AUX_MASK)
1858		dp_aux_irq_handler(dev_priv);
1859
1860	if (pch_iir & SDE_GMBUS)
1861		gmbus_irq_handler(dev_priv);
1862
1863	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1864		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1865
1866	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1867		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1868
1869	if (pch_iir & SDE_POISON)
1870		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1871
1872	if (pch_iir & SDE_FDI_MASK) {
1873		for_each_pipe(dev_priv, pipe)
1874			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1875				pipe_name(pipe),
1876				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1877	}
1878
1879	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1880		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1881
1882	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1883		drm_dbg(&dev_priv->drm,
1884			"PCH transcoder CRC error interrupt\n");
1885
1886	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1887		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1888
1889	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1890		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1891}
1892
1893static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1894{
1895	u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
 
1896	enum pipe pipe;
1897
1898	if (err_int & ERR_INT_POISON)
1899		drm_err(&dev_priv->drm, "Poison interrupt\n");
1900
1901	for_each_pipe(dev_priv, pipe) {
1902		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1903			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1904
1905		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1906			if (IS_IVYBRIDGE(dev_priv))
1907				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1908			else
1909				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1910		}
1911	}
1912
1913	intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1914}
1915
1916static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1917{
1918	u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1919	enum pipe pipe;
1920
1921	if (serr_int & SERR_INT_POISON)
1922		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
 
 
 
 
 
 
1923
1924	for_each_pipe(dev_priv, pipe)
1925		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1926			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1927
1928	intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1929}
1930
1931static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1932{
1933	enum pipe pipe;
 
1934	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1935
1936	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1937
1938	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1939		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1940			       SDE_AUDIO_POWER_SHIFT_CPT);
1941		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1942			port_name(port));
1943	}
1944
1945	if (pch_iir & SDE_AUX_MASK_CPT)
1946		dp_aux_irq_handler(dev_priv);
1947
1948	if (pch_iir & SDE_GMBUS_CPT)
1949		gmbus_irq_handler(dev_priv);
1950
1951	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1952		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1953
1954	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1955		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1956
1957	if (pch_iir & SDE_FDI_MASK_CPT) {
1958		for_each_pipe(dev_priv, pipe)
1959			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1960				pipe_name(pipe),
1961				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1962	}
1963
1964	if (pch_iir & SDE_ERROR_CPT)
1965		cpt_serr_int_handler(dev_priv);
1966}
1967
1968static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1969{
1970	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1971	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1972	u32 pin_mask = 0, long_mask = 0;
1973
1974	if (ddi_hotplug_trigger) {
1975		u32 dig_hotplug_reg;
1976
1977		/* Locking due to DSI native GPIO sequences */
1978		spin_lock(&dev_priv->irq_lock);
1979		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI, 0, 0);
1980		spin_unlock(&dev_priv->irq_lock);
1981
1982		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1983				   ddi_hotplug_trigger, dig_hotplug_reg,
1984				   dev_priv->display.hotplug.pch_hpd,
1985				   icp_ddi_port_hotplug_long_detect);
1986	}
1987
1988	if (tc_hotplug_trigger) {
1989		u32 dig_hotplug_reg;
1990
1991		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC, 0, 0);
1992
1993		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1994				   tc_hotplug_trigger, dig_hotplug_reg,
1995				   dev_priv->display.hotplug.pch_hpd,
1996				   icp_tc_port_hotplug_long_detect);
1997	}
1998
1999	if (pin_mask)
2000		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001
2002	if (pch_iir & SDE_GMBUS_ICP)
2003		gmbus_irq_handler(dev_priv);
2004}
2005
2006static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2007{
 
2008	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2009		~SDE_PORTE_HOTPLUG_SPT;
2010	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2011	u32 pin_mask = 0, long_mask = 0;
2012
2013	if (hotplug_trigger) {
2014		u32 dig_hotplug_reg;
2015
2016		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0);
 
2017
2018		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2019				   hotplug_trigger, dig_hotplug_reg,
2020				   dev_priv->display.hotplug.pch_hpd,
2021				   spt_port_hotplug_long_detect);
2022	}
2023
2024	if (hotplug2_trigger) {
2025		u32 dig_hotplug_reg;
2026
2027		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, 0, 0);
 
2028
2029		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2030				   hotplug2_trigger, dig_hotplug_reg,
2031				   dev_priv->display.hotplug.pch_hpd,
2032				   spt_port_hotplug2_long_detect);
2033	}
2034
2035	if (pin_mask)
2036		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2037
2038	if (pch_iir & SDE_GMBUS_CPT)
2039		gmbus_irq_handler(dev_priv);
2040}
2041
2042static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2043				u32 hotplug_trigger)
2044{
 
2045	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2046
2047	dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, 0, 0);
 
2048
2049	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2050			   hotplug_trigger, dig_hotplug_reg,
2051			   dev_priv->display.hotplug.hpd,
2052			   ilk_port_hotplug_long_detect);
2053
2054	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055}
2056
2057static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2058				    u32 de_iir)
2059{
 
2060	enum pipe pipe;
2061	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2062
2063	if (hotplug_trigger)
2064		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2065
2066	if (de_iir & DE_AUX_CHANNEL_A)
2067		dp_aux_irq_handler(dev_priv);
2068
2069	if (de_iir & DE_GSE)
2070		intel_opregion_asle_intr(dev_priv);
2071
2072	if (de_iir & DE_POISON)
2073		drm_err(&dev_priv->drm, "Poison interrupt\n");
2074
2075	for_each_pipe(dev_priv, pipe) {
2076		if (de_iir & DE_PIPE_VBLANK(pipe))
2077			intel_handle_vblank(dev_priv, pipe);
2078
2079		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2080			flip_done_handler(dev_priv, pipe);
2081
2082		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2083			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2084
2085		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2086			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
 
 
 
 
 
 
2087	}
2088
2089	/* check event from PCH */
2090	if (de_iir & DE_PCH_EVENT) {
2091		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2092
2093		if (HAS_PCH_CPT(dev_priv))
2094			cpt_irq_handler(dev_priv, pch_iir);
2095		else
2096			ibx_irq_handler(dev_priv, pch_iir);
2097
2098		/* should clear PCH hotplug event before clear CPU irq */
2099		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2100	}
2101
2102	if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT)
2103		gen5_rps_irq_handler(&to_gt(dev_priv)->rps);
2104}
2105
2106static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2107				    u32 de_iir)
2108{
 
2109	enum pipe pipe;
2110	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2111
2112	if (hotplug_trigger)
2113		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2114
2115	if (de_iir & DE_ERR_INT_IVB)
2116		ivb_err_int_handler(dev_priv);
2117
2118	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2119		dp_aux_irq_handler(dev_priv);
2120
2121	if (de_iir & DE_GSE_IVB)
2122		intel_opregion_asle_intr(dev_priv);
2123
2124	for_each_pipe(dev_priv, pipe) {
2125		if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2126			intel_handle_vblank(dev_priv, pipe);
2127
2128		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2129			flip_done_handler(dev_priv, pipe);
 
 
 
 
2130	}
2131
2132	/* check event from PCH */
2133	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2134		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2135
2136		cpt_irq_handler(dev_priv, pch_iir);
2137
2138		/* clear PCH hotplug event before clear CPU irq */
2139		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2140	}
2141}
2142
2143/*
2144 * To handle irqs with the minimum potential races with fresh interrupts, we:
2145 * 1 - Disable Master Interrupt Control.
2146 * 2 - Find the source(s) of the interrupt.
2147 * 3 - Clear the Interrupt Identity bits (IIR).
2148 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2149 * 5 - Re-enable Master Interrupt Control.
2150 */
2151static irqreturn_t ilk_irq_handler(int irq, void *arg)
2152{
2153	struct drm_i915_private *i915 = arg;
2154	void __iomem * const regs = i915->uncore.regs;
2155	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2156	irqreturn_t ret = IRQ_NONE;
2157
2158	if (unlikely(!intel_irqs_enabled(i915)))
2159		return IRQ_NONE;
2160
2161	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2162	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2163
2164	/* disable master interrupt before clearing iir  */
2165	de_ier = raw_reg_read(regs, DEIER);
2166	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
2167
2168	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2169	 * interrupts will will be stored on its back queue, and then we'll be
2170	 * able to process them after we restore SDEIER (as soon as we restore
2171	 * it, we'll get an interrupt if SDEIIR still has something to process
2172	 * due to its back queue). */
2173	if (!HAS_PCH_NOP(i915)) {
2174		sde_ier = raw_reg_read(regs, SDEIER);
2175		raw_reg_write(regs, SDEIER, 0);
 
2176	}
2177
2178	/* Find, clear, then process each source of interrupt */
2179
2180	gt_iir = raw_reg_read(regs, GTIIR);
2181	if (gt_iir) {
2182		raw_reg_write(regs, GTIIR, gt_iir);
2183		if (GRAPHICS_VER(i915) >= 6)
2184			gen6_gt_irq_handler(to_gt(i915), gt_iir);
 
2185		else
2186			gen5_gt_irq_handler(to_gt(i915), gt_iir);
2187		ret = IRQ_HANDLED;
2188	}
2189
2190	de_iir = raw_reg_read(regs, DEIIR);
2191	if (de_iir) {
2192		raw_reg_write(regs, DEIIR, de_iir);
2193		if (DISPLAY_VER(i915) >= 7)
2194			ivb_display_irq_handler(i915, de_iir);
 
2195		else
2196			ilk_display_irq_handler(i915, de_iir);
2197		ret = IRQ_HANDLED;
2198	}
2199
2200	if (GRAPHICS_VER(i915) >= 6) {
2201		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2202		if (pm_iir) {
2203			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2204			gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir);
2205			ret = IRQ_HANDLED;
 
2206		}
2207	}
2208
2209	raw_reg_write(regs, DEIER, de_ier);
2210	if (sde_ier)
2211		raw_reg_write(regs, SDEIER, sde_ier);
2212
2213	pmu_irq_stats(i915, ret);
 
2214
2215	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2216	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2217
2218	return ret;
2219}
2220
2221static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2222				u32 hotplug_trigger)
2223{
 
2224	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2225
2226	dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0);
 
2227
2228	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2229			   hotplug_trigger, dig_hotplug_reg,
2230			   dev_priv->display.hotplug.hpd,
2231			   bxt_port_hotplug_long_detect);
2232
2233	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2234}
2235
2236static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2237{
2238	u32 pin_mask = 0, long_mask = 0;
2239	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2240	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2241
2242	if (trigger_tc) {
2243		u32 dig_hotplug_reg;
2244
2245		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, 0, 0);
2246
2247		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2248				   trigger_tc, dig_hotplug_reg,
2249				   dev_priv->display.hotplug.hpd,
2250				   gen11_port_hotplug_long_detect);
2251	}
2252
2253	if (trigger_tbt) {
2254		u32 dig_hotplug_reg;
2255
2256		dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, 0, 0);
2257
2258		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2259				   trigger_tbt, dig_hotplug_reg,
2260				   dev_priv->display.hotplug.hpd,
2261				   gen11_port_hotplug_long_detect);
2262	}
2263
2264	if (pin_mask)
2265		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2266	else
2267		drm_err(&dev_priv->drm,
2268			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2269}
2270
2271static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2272{
2273	u32 mask;
2274
2275	if (DISPLAY_VER(dev_priv) >= 13)
2276		return TGL_DE_PORT_AUX_DDIA |
2277			TGL_DE_PORT_AUX_DDIB |
2278			TGL_DE_PORT_AUX_DDIC |
2279			XELPD_DE_PORT_AUX_DDID |
2280			XELPD_DE_PORT_AUX_DDIE |
2281			TGL_DE_PORT_AUX_USBC1 |
2282			TGL_DE_PORT_AUX_USBC2 |
2283			TGL_DE_PORT_AUX_USBC3 |
2284			TGL_DE_PORT_AUX_USBC4;
2285	else if (DISPLAY_VER(dev_priv) >= 12)
2286		return TGL_DE_PORT_AUX_DDIA |
2287			TGL_DE_PORT_AUX_DDIB |
2288			TGL_DE_PORT_AUX_DDIC |
2289			TGL_DE_PORT_AUX_USBC1 |
2290			TGL_DE_PORT_AUX_USBC2 |
2291			TGL_DE_PORT_AUX_USBC3 |
2292			TGL_DE_PORT_AUX_USBC4 |
2293			TGL_DE_PORT_AUX_USBC5 |
2294			TGL_DE_PORT_AUX_USBC6;
2295
2296
2297	mask = GEN8_AUX_CHANNEL_A;
2298	if (DISPLAY_VER(dev_priv) >= 9)
2299		mask |= GEN9_AUX_CHANNEL_B |
2300			GEN9_AUX_CHANNEL_C |
2301			GEN9_AUX_CHANNEL_D;
2302
2303	if (DISPLAY_VER(dev_priv) == 11) {
2304		mask |= ICL_AUX_CHANNEL_F;
2305		mask |= ICL_AUX_CHANNEL_E;
2306	}
2307
2308	return mask;
2309}
2310
2311static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2312{
2313	if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv))
2314		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2315	else if (DISPLAY_VER(dev_priv) >= 11)
2316		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2317	else if (DISPLAY_VER(dev_priv) >= 9)
2318		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2319	else
2320		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2321}
2322
2323static void
2324gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2325{
2326	bool found = false;
2327
2328	if (iir & GEN8_DE_MISC_GSE) {
2329		intel_opregion_asle_intr(dev_priv);
2330		found = true;
2331	}
2332
2333	if (iir & GEN8_DE_EDP_PSR) {
2334		struct intel_encoder *encoder;
2335		u32 psr_iir;
2336		i915_reg_t iir_reg;
2337
2338		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2339			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2340
2341			if (DISPLAY_VER(dev_priv) >= 12)
2342				iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
2343			else
2344				iir_reg = EDP_PSR_IIR;
2345
2346			psr_iir = intel_uncore_rmw(&dev_priv->uncore, iir_reg, 0, 0);
2347
2348			if (psr_iir)
2349				found = true;
2350
2351			intel_psr_irq_handler(intel_dp, psr_iir);
2352
2353			/* prior GEN12 only have one EDP PSR */
2354			if (DISPLAY_VER(dev_priv) < 12)
2355				break;
2356		}
2357	}
2358
2359	if (!found)
2360		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2361}
2362
2363static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2364					   u32 te_trigger)
2365{
2366	enum pipe pipe = INVALID_PIPE;
2367	enum transcoder dsi_trans;
2368	enum port port;
2369	u32 val, tmp;
2370
2371	/*
2372	 * Incase of dual link, TE comes from DSI_1
2373	 * this is to check if dual link is enabled
2374	 */
2375	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2376	val &= PORT_SYNC_MODE_ENABLE;
2377
2378	/*
2379	 * if dual link is enabled, then read DSI_0
2380	 * transcoder registers
2381	 */
2382	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2383						  PORT_A : PORT_B;
2384	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2385
2386	/* Check if DSI configured in command mode */
2387	val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2388	val = val & OP_MODE_MASK;
2389
2390	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2391		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2392		return;
2393	}
2394
2395	/* Get PIPE for handling VBLANK event */
2396	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2397	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2398	case TRANS_DDI_EDP_INPUT_A_ON:
2399		pipe = PIPE_A;
2400		break;
2401	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2402		pipe = PIPE_B;
2403		break;
2404	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2405		pipe = PIPE_C;
2406		break;
2407	default:
2408		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2409		return;
2410	}
2411
2412	intel_handle_vblank(dev_priv, pipe);
2413
2414	/* clear TE in dsi IIR */
2415	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2416	tmp = intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0);
2417}
2418
2419static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2420{
2421	if (DISPLAY_VER(i915) >= 9)
2422		return GEN9_PIPE_PLANE1_FLIP_DONE;
2423	else
2424		return GEN8_PIPE_PRIMARY_FLIP_DONE;
2425}
2426
2427u32 gen8_de_pipe_underrun_mask(struct drm_i915_private *dev_priv)
2428{
2429	u32 mask = GEN8_PIPE_FIFO_UNDERRUN;
2430
2431	if (DISPLAY_VER(dev_priv) >= 13)
2432		mask |= XELPD_PIPE_SOFT_UNDERRUN |
2433			XELPD_PIPE_HARD_UNDERRUN;
2434
2435	return mask;
2436}
2437
2438static irqreturn_t
2439gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2440{
 
2441	irqreturn_t ret = IRQ_NONE;
2442	u32 iir;
2443	enum pipe pipe;
2444
2445	drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv));
2446
2447	if (master_ctl & GEN8_DE_MISC_IRQ) {
2448		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2449		if (iir) {
2450			intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2451			ret = IRQ_HANDLED;
2452			gen8_de_misc_irq_handler(dev_priv, iir);
2453		} else {
2454			drm_err(&dev_priv->drm,
2455				"The master control interrupt lied (DE MISC)!\n");
2456		}
2457	}
2458
2459	if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2460		iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2461		if (iir) {
2462			intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2463			ret = IRQ_HANDLED;
2464			gen11_hpd_irq_handler(dev_priv, iir);
2465		} else {
2466			drm_err(&dev_priv->drm,
2467				"The master control interrupt lied, (DE HPD)!\n");
2468		}
 
 
2469	}
2470
2471	if (master_ctl & GEN8_DE_PORT_IRQ) {
2472		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2473		if (iir) {
 
2474			bool found = false;
2475
2476			intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2477			ret = IRQ_HANDLED;
2478
2479			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2480				dp_aux_irq_handler(dev_priv);
 
 
 
 
 
 
2481				found = true;
2482			}
2483
2484			if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
2485				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2486
2487				if (hotplug_trigger) {
2488					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2489					found = true;
2490				}
2491			} else if (IS_BROADWELL(dev_priv)) {
2492				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2493
2494				if (hotplug_trigger) {
2495					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2496					found = true;
2497				}
2498			}
2499
2500			if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2501			    (iir & BXT_DE_PORT_GMBUS)) {
2502				gmbus_irq_handler(dev_priv);
2503				found = true;
2504			}
2505
2506			if (DISPLAY_VER(dev_priv) >= 11) {
2507				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2508
2509				if (te_trigger) {
2510					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2511					found = true;
2512				}
2513			}
2514
2515			if (!found)
2516				drm_err(&dev_priv->drm,
2517					"Unexpected DE Port interrupt\n");
2518		}
2519		else
2520			drm_err(&dev_priv->drm,
2521				"The master control interrupt lied (DE PORT)!\n");
2522	}
2523
2524	for_each_pipe(dev_priv, pipe) {
2525		u32 fault_errors;
2526
2527		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2528			continue;
2529
2530		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2531		if (!iir) {
2532			drm_err(&dev_priv->drm,
2533				"The master control interrupt lied (DE PIPE)!\n");
2534			continue;
2535		}
2536
2537		ret = IRQ_HANDLED;
2538		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2539
2540		if (iir & GEN8_PIPE_VBLANK)
2541			intel_handle_vblank(dev_priv, pipe);
 
 
 
 
 
 
 
2542
2543		if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2544			flip_done_handler(dev_priv, pipe);
 
 
2545
2546		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2547			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2548
2549		if (iir & gen8_de_pipe_underrun_mask(dev_priv))
2550			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2551
2552		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
 
 
 
 
 
2553		if (fault_errors)
2554			drm_err(&dev_priv->drm,
2555				"Fault errors on pipe %c: 0x%08x\n",
2556				pipe_name(pipe),
2557				fault_errors);
2558	}
2559
2560	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2561	    master_ctl & GEN8_DE_PCH_IRQ) {
2562		/*
2563		 * FIXME(BDW): Assume for now that the new interrupt handling
2564		 * scheme also closed the SDE interrupt handling race we've seen
2565		 * on older pch-split platforms. But this needs testing.
2566		 */
2567		iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2568		if (iir) {
2569			intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2570			ret = IRQ_HANDLED;
2571
2572			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2573				icp_irq_handler(dev_priv, iir);
2574			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2575				spt_irq_handler(dev_priv, iir);
2576			else
2577				cpt_irq_handler(dev_priv, iir);
2578		} else {
2579			/*
2580			 * Like on previous PCH there seems to be something
2581			 * fishy going on with forwarding PCH interrupts.
2582			 */
2583			drm_dbg(&dev_priv->drm,
2584				"The master control interrupt lied (SDE)!\n");
2585		}
2586	}
2587
2588	return ret;
2589}
2590
2591static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2592{
2593	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2594
2595	/*
2596	 * Now with master disabled, get a sample of level indications
2597	 * for this interrupt. Indications will be cleared on related acks.
2598	 * New indications can and will light up during processing,
2599	 * and will generate new interrupt after enabling master.
2600	 */
2601	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2602}
2603
2604static inline void gen8_master_intr_enable(void __iomem * const regs)
2605{
2606	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2607}
2608
2609static irqreturn_t gen8_irq_handler(int irq, void *arg)
2610{
2611	struct drm_i915_private *dev_priv = arg;
2612	void __iomem * const regs = dev_priv->uncore.regs;
2613	u32 master_ctl;
 
2614
2615	if (!intel_irqs_enabled(dev_priv))
2616		return IRQ_NONE;
2617
2618	master_ctl = gen8_master_intr_disable(regs);
2619	if (!master_ctl) {
2620		gen8_master_intr_enable(regs);
2621		return IRQ_NONE;
2622	}
2623
2624	/* Find, queue (onto bottom-halves), then clear each source */
2625	gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
2626
2627	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2628	if (master_ctl & ~GEN8_GT_IRQS) {
2629		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2630		gen8_de_irq_handler(dev_priv, master_ctl);
2631		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2632	}
2633
2634	gen8_master_intr_enable(regs);
 
2635
2636	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2637
2638	return IRQ_HANDLED;
2639}
2640
2641static u32
2642gen11_gu_misc_irq_ack(struct drm_i915_private *i915, const u32 master_ctl)
2643{
2644	void __iomem * const regs = i915->uncore.regs;
2645	u32 iir;
2646
2647	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2648		return 0;
2649
2650	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2651	if (likely(iir))
2652		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2653
2654	return iir;
2655}
2656
2657static void
2658gen11_gu_misc_irq_handler(struct drm_i915_private *i915, const u32 iir)
2659{
2660	if (iir & GEN11_GU_MISC_GSE)
2661		intel_opregion_asle_intr(i915);
2662}
2663
2664static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2665{
2666	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2667
2668	/*
2669	 * Now with master disabled, get a sample of level indications
2670	 * for this interrupt. Indications will be cleared on related acks.
2671	 * New indications can and will light up during processing,
2672	 * and will generate new interrupt after enabling master.
2673	 */
2674	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 
2675}
2676
2677static inline void gen11_master_intr_enable(void __iomem * const regs)
 
 
 
 
 
 
 
2678{
2679	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2680}
 
 
 
 
2681
2682static void
2683gen11_display_irq_handler(struct drm_i915_private *i915)
2684{
2685	void __iomem * const regs = i915->uncore.regs;
2686	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2687
2688	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2689	/*
2690	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2691	 * for the display related bits.
 
 
 
 
 
 
2692	 */
2693	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2694	gen8_de_irq_handler(i915, disp_ctl);
2695	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2696		      GEN11_DISPLAY_IRQ_ENABLE);
2697
2698	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2699}
 
 
 
 
 
 
2700
2701static irqreturn_t gen11_irq_handler(int irq, void *arg)
2702{
2703	struct drm_i915_private *i915 = arg;
2704	void __iomem * const regs = i915->uncore.regs;
2705	struct intel_gt *gt = to_gt(i915);
2706	u32 master_ctl;
2707	u32 gu_misc_iir;
2708
2709	if (!intel_irqs_enabled(i915))
2710		return IRQ_NONE;
 
 
 
 
 
2711
2712	master_ctl = gen11_master_intr_disable(regs);
2713	if (!master_ctl) {
2714		gen11_master_intr_enable(regs);
2715		return IRQ_NONE;
2716	}
2717
2718	/* Find, queue (onto bottom-halves), then clear each source */
2719	gen11_gt_irq_handler(gt, master_ctl);
2720
2721	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2722	if (master_ctl & GEN11_DISPLAY_IRQ)
2723		gen11_display_irq_handler(i915);
 
 
 
 
 
 
 
 
 
 
2724
2725	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
 
 
 
 
2726
2727	gen11_master_intr_enable(regs);
2728
2729	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
2730
2731	pmu_irq_stats(i915, IRQ_HANDLED);
2732
2733	return IRQ_HANDLED;
2734}
2735
2736static inline u32 dg1_master_intr_disable(void __iomem * const regs)
2737{
2738	u32 val;
 
 
 
2739
2740	/* First disable interrupts */
2741	raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0);
2742
2743	/* Get the indication levels and ack the master unit */
2744	val = raw_reg_read(regs, DG1_MSTR_TILE_INTR);
2745	if (unlikely(!val))
2746		return 0;
2747
2748	raw_reg_write(regs, DG1_MSTR_TILE_INTR, val);
2749
2750	return val;
2751}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752
2753static inline void dg1_master_intr_enable(void __iomem * const regs)
2754{
2755	raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
2756}
 
 
 
 
 
2757
2758static irqreturn_t dg1_irq_handler(int irq, void *arg)
2759{
2760	struct drm_i915_private * const i915 = arg;
2761	struct intel_gt *gt = to_gt(i915);
2762	void __iomem * const regs = gt->uncore->regs;
2763	u32 master_tile_ctl, master_ctl;
2764	u32 gu_misc_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2765
2766	if (!intel_irqs_enabled(i915))
2767		return IRQ_NONE;
2768
2769	master_tile_ctl = dg1_master_intr_disable(regs);
2770	if (!master_tile_ctl) {
2771		dg1_master_intr_enable(regs);
2772		return IRQ_NONE;
2773	}
2774
2775	/* FIXME: we only support tile 0 for now. */
2776	if (master_tile_ctl & DG1_MSTR_TILE(0)) {
2777		master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2778		raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl);
2779	} else {
2780		drm_err(&i915->drm, "Tile not supported: 0x%08x\n",
2781			master_tile_ctl);
2782		dg1_master_intr_enable(regs);
2783		return IRQ_NONE;
 
 
2784	}
 
2785
2786	gen11_gt_irq_handler(gt, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787
2788	if (master_ctl & GEN11_DISPLAY_IRQ)
2789		gen11_display_irq_handler(i915);
2790
2791	gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
2792
2793	dg1_master_intr_enable(regs);
2794
2795	gen11_gu_misc_irq_handler(i915, gu_misc_iir);
2796
2797	pmu_irq_stats(i915, IRQ_HANDLED);
 
 
 
 
 
2798
2799	return IRQ_HANDLED;
2800}
2801
2802/* Called from drm generic code, passed 'crtc' which
2803 * we use as a pipe index
2804 */
2805int i8xx_enable_vblank(struct drm_crtc *crtc)
2806{
2807	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2808	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2809	unsigned long irqflags;
2810
2811	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2812	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
2813	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814
2815	return 0;
2816}
2817
2818int i915gm_enable_vblank(struct drm_crtc *crtc)
2819{
2820	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2821
2822	/*
2823	 * Vblank interrupts fail to wake the device up from C2+.
2824	 * Disabling render clock gating during C-states avoids
2825	 * the problem. There is a small power cost so we do this
2826	 * only when vblank interrupts are actually enabled.
2827	 */
2828	if (dev_priv->vblank_enabled++ == 0)
2829		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2830
2831	return i8xx_enable_vblank(crtc);
2832}
2833
2834int i965_enable_vblank(struct drm_crtc *crtc)
2835{
2836	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2837	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2838	unsigned long irqflags;
 
 
2839
2840	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2841	i915_enable_pipestat(dev_priv, pipe,
2842			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2843	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2844
2845	return 0;
2846}
2847
2848int ilk_enable_vblank(struct drm_crtc *crtc)
2849{
2850	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2851	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2852	unsigned long irqflags;
2853	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2854		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2855
2856	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857	ilk_enable_display_irq(dev_priv, bit);
 
2858	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859
2860	/* Even though there is no DMC, frame counter can get stuck when
2861	 * PSR is active as no frames are generated.
2862	 */
2863	if (HAS_PSR(dev_priv))
2864		drm_crtc_vblank_restore(crtc);
2865
2866	return 0;
2867}
2868
2869static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2870				   bool enable)
2871{
2872	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2873	enum port port;
2874
2875	if (!(intel_crtc->mode_flags &
2876	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2877		return false;
2878
2879	/* for dual link cases we consider TE from slave */
2880	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2881		port = PORT_B;
2882	else
2883		port = PORT_A;
2884
2885	intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_MASK_REG(port), DSI_TE_EVENT,
2886			 enable ? 0 : DSI_TE_EVENT);
2887
2888	intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0);
2889
2890	return true;
2891}
2892
2893int bdw_enable_vblank(struct drm_crtc *_crtc)
2894{
2895	struct intel_crtc *crtc = to_intel_crtc(_crtc);
2896	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2897	enum pipe pipe = crtc->pipe;
2898	unsigned long irqflags;
2899
2900	if (gen11_dsi_configure_te(crtc, true))
2901		return 0;
2902
2903	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2904	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2905	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2906
2907	/* Even if there is no DMC, frame counter can get stuck when
2908	 * PSR is active as no frames are generated, so check only for PSR.
2909	 */
2910	if (HAS_PSR(dev_priv))
2911		drm_crtc_vblank_restore(&crtc->base);
2912
2913	return 0;
2914}
2915
2916/* Called from drm generic code, passed 'crtc' which
2917 * we use as a pipe index
2918 */
2919void i8xx_disable_vblank(struct drm_crtc *crtc)
2920{
2921	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2922	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2923	unsigned long irqflags;
2924
2925	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2926	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
2927	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2928}
2929
2930void i915gm_disable_vblank(struct drm_crtc *crtc)
2931{
2932	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 
 
 
2933
2934	i8xx_disable_vblank(crtc);
2935
2936	if (--dev_priv->vblank_enabled == 0)
2937		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2938}
2939
2940void i965_disable_vblank(struct drm_crtc *crtc)
2941{
2942	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2943	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2944	unsigned long irqflags;
2945
2946	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2947	i915_disable_pipestat(dev_priv, pipe,
2948			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2949	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2950}
2951
2952void ilk_disable_vblank(struct drm_crtc *crtc)
2953{
2954	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2955	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2956	unsigned long irqflags;
2957	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2958		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2959
2960	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2961	ilk_disable_display_irq(dev_priv, bit);
2962	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2963}
2964
2965void bdw_disable_vblank(struct drm_crtc *_crtc)
 
2966{
2967	struct intel_crtc *crtc = to_intel_crtc(_crtc);
2968	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2969	enum pipe pipe = crtc->pipe;
2970	unsigned long irqflags;
2971
2972	if (gen11_dsi_configure_te(crtc, false))
2973		return;
2974
2975	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2976	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2977	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
2978}
2979
2980static void ibx_irq_reset(struct drm_i915_private *dev_priv)
 
2981{
2982	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
2983
2984	if (HAS_PCH_NOP(dev_priv))
2985		return;
 
 
2986
2987	GEN3_IRQ_RESET(uncore, SDE);
 
 
 
 
2988
2989	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2990		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2991}
2992
2993static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2994{
2995	struct intel_uncore *uncore = &dev_priv->uncore;
 
2996
2997	if (IS_CHERRYVIEW(dev_priv))
2998		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2999	else
3000		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_VLV);
3001
3002	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3003	intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0);
3004
3005	i9xx_pipestat_irq_reset(dev_priv);
3006
3007	GEN3_IRQ_RESET(uncore, VLV_);
3008	dev_priv->irq_mask = ~0u;
3009}
3010
3011static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
 
3012{
3013	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
3014
3015	u32 pipestat_mask;
3016	u32 enable_mask;
3017	enum pipe pipe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3018
3019	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
 
 
3020
3021	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3022	for_each_pipe(dev_priv, pipe)
3023		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
 
 
 
 
 
 
 
3024
3025	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3026		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3027		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3028		I915_LPE_PIPE_A_INTERRUPT |
3029		I915_LPE_PIPE_B_INTERRUPT;
 
 
3030
3031	if (IS_CHERRYVIEW(dev_priv))
3032		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3033			I915_LPE_PIPE_C_INTERRUPT;
 
3034
3035	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
 
3036
3037	dev_priv->irq_mask = ~enable_mask;
 
3038
3039	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
 
 
 
 
 
 
3040}
3041
3042/* drm_dma.h hooks
3043*/
3044static void ilk_irq_reset(struct drm_i915_private *dev_priv)
3045{
3046	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
3047
3048	GEN3_IRQ_RESET(uncore, DE);
3049	dev_priv->irq_mask = ~0u;
3050
3051	if (GRAPHICS_VER(dev_priv) == 7)
3052		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
 
3053
3054	if (IS_HASWELL(dev_priv)) {
3055		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3056		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3057	}
 
 
3058
3059	gen5_gt_irq_reset(to_gt(dev_priv));
 
 
 
3060
3061	ibx_irq_reset(dev_priv);
3062}
3063
3064static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3065{
3066	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3067	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3068
3069	gen5_gt_irq_reset(to_gt(dev_priv));
3070
3071	spin_lock_irq(&dev_priv->irq_lock);
3072	if (dev_priv->display_irqs_enabled)
3073		vlv_display_irq_reset(dev_priv);
3074	spin_unlock_irq(&dev_priv->irq_lock);
3075}
3076
3077static void gen8_display_irq_reset(struct drm_i915_private *dev_priv)
3078{
3079	struct intel_uncore *uncore = &dev_priv->uncore;
3080	enum pipe pipe;
 
 
 
 
 
 
3081
3082	if (!HAS_DISPLAY(dev_priv))
3083		return;
 
 
 
 
 
 
3084
3085	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3086	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3087
3088	for_each_pipe(dev_priv, pipe)
3089		if (intel_display_power_is_enabled(dev_priv,
3090						   POWER_DOMAIN_PIPE(pipe)))
3091			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3092
3093	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3094	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3095}
3096
3097static void gen8_irq_reset(struct drm_i915_private *dev_priv)
 
3098{
3099	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
3100
3101	gen8_master_intr_disable(uncore->regs);
 
 
 
3102
3103	gen8_gt_irq_reset(to_gt(dev_priv));
3104	gen8_display_irq_reset(dev_priv);
3105	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3106
3107	if (HAS_PCH_SPLIT(dev_priv))
3108		ibx_irq_reset(dev_priv);
3109
 
3110}
3111
3112static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
 
3113{
3114	struct intel_uncore *uncore = &dev_priv->uncore;
3115	enum pipe pipe;
3116	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3117		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3118
3119	if (!HAS_DISPLAY(dev_priv))
3120		return;
 
3121
3122	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
 
3123
3124	if (DISPLAY_VER(dev_priv) >= 12) {
3125		enum transcoder trans;
 
 
 
 
 
 
 
 
 
 
 
3126
3127		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3128			enum intel_display_power_domain domain;
3129
3130			domain = POWER_DOMAIN_TRANSCODER(trans);
3131			if (!intel_display_power_is_enabled(dev_priv, domain))
3132				continue;
3133
3134			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3135			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
 
 
 
3136		}
3137	} else {
3138		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3139		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3140	}
3141
3142	for_each_pipe(dev_priv, pipe)
3143		if (intel_display_power_is_enabled(dev_priv,
3144						   POWER_DOMAIN_PIPE(pipe)))
3145			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3146
3147	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3148	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3149	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3150
3151	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3152		GEN3_IRQ_RESET(uncore, SDE);
3153}
3154
3155static void gen11_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
3156{
3157	struct intel_gt *gt = to_gt(dev_priv);
3158	struct intel_uncore *uncore = gt->uncore;
 
 
 
 
 
 
 
 
 
3159
3160	gen11_master_intr_disable(dev_priv->uncore.regs);
 
3161
3162	gen11_gt_irq_reset(gt);
3163	gen11_display_irq_reset(dev_priv);
 
 
 
 
3164
3165	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3166	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3167}
 
 
3168
3169static void dg1_irq_reset(struct drm_i915_private *dev_priv)
3170{
3171	struct intel_gt *gt = to_gt(dev_priv);
3172	struct intel_uncore *uncore = gt->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173
3174	dg1_master_intr_disable(dev_priv->uncore.regs);
 
 
 
 
3175
3176	gen11_gt_irq_reset(gt);
3177	gen11_display_irq_reset(dev_priv);
3178
3179	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3180	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3181}
3182
3183void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3184				     u8 pipe_mask)
3185{
3186	struct intel_uncore *uncore = &dev_priv->uncore;
3187	u32 extra_ier = GEN8_PIPE_VBLANK |
3188		gen8_de_pipe_underrun_mask(dev_priv) |
3189		gen8_de_pipe_flip_done_mask(dev_priv);
3190	enum pipe pipe;
3191
3192	spin_lock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
3193
3194	if (!intel_irqs_enabled(dev_priv)) {
3195		spin_unlock_irq(&dev_priv->irq_lock);
3196		return;
3197	}
3198
3199	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3200		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3201				  dev_priv->de_irq_mask[pipe],
3202				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3203
3204	spin_unlock_irq(&dev_priv->irq_lock);
 
3205}
3206
3207void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3208				     u8 pipe_mask)
3209{
3210	struct intel_uncore *uncore = &dev_priv->uncore;
3211	enum pipe pipe;
3212
3213	spin_lock_irq(&dev_priv->irq_lock);
3214
3215	if (!intel_irqs_enabled(dev_priv)) {
3216		spin_unlock_irq(&dev_priv->irq_lock);
3217		return;
3218	}
3219
3220	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3221		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3222
3223	spin_unlock_irq(&dev_priv->irq_lock);
3224
3225	/* make sure we're done processing display irqs */
3226	intel_synchronize_irq(dev_priv);
3227}
3228
3229static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3230{
3231	struct intel_uncore *uncore = &dev_priv->uncore;
3232
3233	intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0);
3234	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3235
3236	gen8_gt_irq_reset(to_gt(dev_priv));
3237
3238	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3247			       enum hpd_pin pin)
 
 
 
 
 
 
 
3248{
3249	switch (pin) {
3250	case HPD_PORT_A:
3251		/*
3252		 * When CPU and PCH are on the same package, port A
3253		 * HPD must be enabled in both north and south.
3254		 */
3255		return HAS_PCH_LPT_LP(i915) ?
3256			PORTA_HOTPLUG_ENABLE : 0;
3257	case HPD_PORT_B:
3258		return PORTB_HOTPLUG_ENABLE |
3259			PORTB_PULSE_DURATION_2ms;
3260	case HPD_PORT_C:
3261		return PORTC_HOTPLUG_ENABLE |
3262			PORTC_PULSE_DURATION_2ms;
3263	case HPD_PORT_D:
3264		return PORTD_HOTPLUG_ENABLE |
3265			PORTD_PULSE_DURATION_2ms;
3266	default:
3267		return 0;
3268	}
3269}
3270
3271static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3272{
3273	/*
3274	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3275	 * duration to 2ms (which is the minimum in the Display Port spec).
3276	 * The pulse duration bits are reserved on LPT+.
3277	 */
3278	intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3279			 PORTA_HOTPLUG_ENABLE |
3280			 PORTB_HOTPLUG_ENABLE |
3281			 PORTC_HOTPLUG_ENABLE |
3282			 PORTD_HOTPLUG_ENABLE |
3283			 PORTB_PULSE_DURATION_MASK |
3284			 PORTC_PULSE_DURATION_MASK |
3285			 PORTD_PULSE_DURATION_MASK,
3286			 intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables));
3287}
3288
3289static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
 
3290{
3291	u32 hotplug_irqs, enabled_irqs;
3292
3293	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3294	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3295
3296	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
 
3297
3298	ibx_hpd_detection_setup(dev_priv);
3299}
3300
3301static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3302				   enum hpd_pin pin)
3303{
3304	switch (pin) {
3305	case HPD_PORT_A:
3306	case HPD_PORT_B:
3307	case HPD_PORT_C:
3308	case HPD_PORT_D:
3309		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3310	default:
3311		return 0;
3312	}
3313}
3314
3315static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3316				  enum hpd_pin pin)
3317{
3318	switch (pin) {
3319	case HPD_PORT_TC1:
3320	case HPD_PORT_TC2:
3321	case HPD_PORT_TC3:
3322	case HPD_PORT_TC4:
3323	case HPD_PORT_TC5:
3324	case HPD_PORT_TC6:
3325		return ICP_TC_HPD_ENABLE(pin);
3326	default:
3327		return 0;
3328	}
 
 
3329}
3330
3331static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3332{
3333	intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI,
3334			 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3335			 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3336			 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3337			 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D),
3338			 intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables));
3339}
3340
3341static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3342{
3343	intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC,
3344			 ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3345			 ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3346			 ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3347			 ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3348			 ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3349			 ICP_TC_HPD_ENABLE(HPD_PORT_TC6),
3350			 intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables));
3351}
3352
3353static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3354{
3355	u32 hotplug_irqs, enabled_irqs;
3356
3357	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3358	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3359
3360	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3361		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
 
 
3362
3363	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
3364
3365	icp_ddi_hpd_detection_setup(dev_priv);
3366	icp_tc_hpd_detection_setup(dev_priv);
3367}
3368
3369static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3370				 enum hpd_pin pin)
3371{
3372	switch (pin) {
3373	case HPD_PORT_TC1:
3374	case HPD_PORT_TC2:
3375	case HPD_PORT_TC3:
3376	case HPD_PORT_TC4:
3377	case HPD_PORT_TC5:
3378	case HPD_PORT_TC6:
3379		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3380	default:
3381		return 0;
3382	}
3383}
3384
3385static void dg1_hpd_invert(struct drm_i915_private *i915)
 
3386{
3387	u32 val = (INVERT_DDIA_HPD |
3388		   INVERT_DDIB_HPD |
3389		   INVERT_DDIC_HPD |
3390		   INVERT_DDID_HPD);
3391	intel_uncore_rmw(&i915->uncore, SOUTH_CHICKEN1, 0, val);
3392}
3393
3394static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3395{
3396	dg1_hpd_invert(dev_priv);
3397	icp_hpd_irq_setup(dev_priv);
3398}
3399
3400static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3401{
3402	intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL,
3403			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3404			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3405			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3406			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3407			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3408			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6),
3409			 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables));
3410}
3411
3412static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3413{
3414	intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL,
3415			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3416			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3417			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3418			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3419			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3420			 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6),
3421			 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables));
3422}
3423
3424static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3425{
3426	u32 hotplug_irqs, enabled_irqs;
3427
3428	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3429	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3430
3431	intel_uncore_rmw(&dev_priv->uncore, GEN11_DE_HPD_IMR, hotplug_irqs,
3432			 ~enabled_irqs & hotplug_irqs);
3433	intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3434
3435	gen11_tc_hpd_detection_setup(dev_priv);
3436	gen11_tbt_hpd_detection_setup(dev_priv);
3437
3438	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3439		icp_hpd_irq_setup(dev_priv);
3440}
3441
3442static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3443			       enum hpd_pin pin)
3444{
3445	switch (pin) {
3446	case HPD_PORT_A:
3447		return PORTA_HOTPLUG_ENABLE;
3448	case HPD_PORT_B:
3449		return PORTB_HOTPLUG_ENABLE;
3450	case HPD_PORT_C:
3451		return PORTC_HOTPLUG_ENABLE;
3452	case HPD_PORT_D:
3453		return PORTD_HOTPLUG_ENABLE;
3454	default:
3455		return 0;
3456	}
3457}
3458
3459static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3460				enum hpd_pin pin)
3461{
3462	switch (pin) {
3463	case HPD_PORT_E:
3464		return PORTE_HOTPLUG_ENABLE;
3465	default:
3466		return 0;
 
 
 
 
3467	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468}
3469
3470static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3471{
3472	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3473	if (HAS_PCH_CNP(dev_priv)) {
3474		intel_uncore_rmw(&dev_priv->uncore, SOUTH_CHICKEN1, CHASSIS_CLK_REQ_DURATION_MASK,
3475				 CHASSIS_CLK_REQ_DURATION(0xf));
3476	}
 
 
3477
3478	/* Enable digital hotplug on the PCH */
3479	intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3480			 PORTA_HOTPLUG_ENABLE |
3481			 PORTB_HOTPLUG_ENABLE |
3482			 PORTC_HOTPLUG_ENABLE |
3483			 PORTD_HOTPLUG_ENABLE,
3484			 intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables));
3485
3486	intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, PORTE_HOTPLUG_ENABLE,
3487			 intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables));
 
3488}
3489
3490static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3491{
3492	u32 hotplug_irqs, enabled_irqs;
 
3493
3494	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3495		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
 
3496
3497	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3498	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
 
 
3499
3500	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
3501
3502	spt_hpd_detection_setup(dev_priv);
3503}
3504
3505static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3506			       enum hpd_pin pin)
3507{
3508	switch (pin) {
3509	case HPD_PORT_A:
3510		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3511			DIGITAL_PORTA_PULSE_DURATION_2ms;
3512	default:
3513		return 0;
3514	}
3515}
3516
3517static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3518{
3519	/*
3520	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3521	 * duration to 2ms (which is the minimum in the Display Port spec)
3522	 * The pulse duration bits are reserved on HSW+.
3523	 */
3524	intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL,
3525			 DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_MASK,
3526			 intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables));
 
 
 
3527}
3528
3529static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3530{
3531	u32 hotplug_irqs, enabled_irqs;
 
3532
3533	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3534	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3535
3536	if (DISPLAY_VER(dev_priv) >= 8)
3537		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3538	else
3539		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3540
3541	ilk_hpd_detection_setup(dev_priv);
3542
3543	ibx_hpd_irq_setup(dev_priv);
 
3544}
3545
3546static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3547			       enum hpd_pin pin)
3548{
3549	u32 hotplug;
3550
3551	switch (pin) {
3552	case HPD_PORT_A:
3553		hotplug = PORTA_HOTPLUG_ENABLE;
3554		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3555			hotplug |= BXT_DDIA_HPD_INVERT;
3556		return hotplug;
3557	case HPD_PORT_B:
3558		hotplug = PORTB_HOTPLUG_ENABLE;
3559		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3560			hotplug |= BXT_DDIB_HPD_INVERT;
3561		return hotplug;
3562	case HPD_PORT_C:
3563		hotplug = PORTC_HOTPLUG_ENABLE;
3564		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3565			hotplug |= BXT_DDIC_HPD_INVERT;
3566		return hotplug;
3567	default:
3568		return 0;
3569	}
3570}
3571
3572static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3573{
3574	intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3575			 PORTA_HOTPLUG_ENABLE |
3576			 PORTB_HOTPLUG_ENABLE |
3577			 PORTC_HOTPLUG_ENABLE |
3578			 BXT_DDI_HPD_INVERT_MASK,
3579			 intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables));
3580}
3581
3582static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3583{
3584	u32 hotplug_irqs, enabled_irqs;
 
3585
3586	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3587	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3588
3589	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
 
 
3590
3591	bxt_hpd_detection_setup(dev_priv);
3592}
 
 
 
 
 
3593
3594/*
3595 * SDEIER is also touched by the interrupt handler to work around missed PCH
3596 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3597 * instead we unconditionally enable all PCH interrupt sources here, but then
3598 * only unmask them as needed with SDEIMR.
3599 *
3600 * Note that we currently do this after installing the interrupt handler,
3601 * but before we enable the master interrupt. That should be sufficient
3602 * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3603 * interrupts could still race.
3604 */
3605static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3606{
3607	struct intel_uncore *uncore = &dev_priv->uncore;
3608	u32 mask;
3609
3610	if (HAS_PCH_NOP(dev_priv))
3611		return;
 
 
 
 
 
3612
3613	if (HAS_PCH_IBX(dev_priv))
3614		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3615	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3616		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3617	else
3618		mask = SDE_GMBUS_CPT;
3619
3620	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3621}
3622
3623static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3624{
3625	struct intel_uncore *uncore = &dev_priv->uncore;
3626	u32 display_mask, extra_mask;
3627
3628	if (GRAPHICS_VER(dev_priv) >= 7) {
3629		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3630				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
 
 
3631		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3632			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3633			      DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3634			      DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3635			      DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3636			      DE_DP_A_HOTPLUG_IVB);
3637	} else {
3638		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3639				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3640				DE_PIPEA_CRC_DONE | DE_POISON);
3641		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
 
 
3642			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3643			      DE_PLANE_FLIP_DONE(PLANE_A) |
3644			      DE_PLANE_FLIP_DONE(PLANE_B) |
3645			      DE_DP_A_HOTPLUG);
3646	}
3647
3648	if (IS_HASWELL(dev_priv)) {
3649		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3650		display_mask |= DE_EDP_PSR_INT_HSW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651	}
3652
3653	if (IS_IRONLAKE_M(dev_priv))
3654		extra_mask |= DE_PCU_EVENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3655
3656	dev_priv->irq_mask = ~display_mask;
 
3657
3658	ibx_irq_postinstall(dev_priv);
 
 
3659
3660	gen5_gt_irq_postinstall(to_gt(dev_priv));
 
3661
3662	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3663		      display_mask | extra_mask);
 
3664}
3665
3666void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3667{
3668	lockdep_assert_held(&dev_priv->irq_lock);
3669
3670	if (dev_priv->display_irqs_enabled)
3671		return;
3672
3673	dev_priv->display_irqs_enabled = true;
3674
3675	if (intel_irqs_enabled(dev_priv)) {
3676		vlv_display_irq_reset(dev_priv);
3677		vlv_display_irq_postinstall(dev_priv);
3678	}
3679}
3680
3681void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3682{
3683	lockdep_assert_held(&dev_priv->irq_lock);
3684
3685	if (!dev_priv->display_irqs_enabled)
3686		return;
3687
3688	dev_priv->display_irqs_enabled = false;
3689
3690	if (intel_irqs_enabled(dev_priv))
3691		vlv_display_irq_reset(dev_priv);
3692}
3693
 
 
 
 
 
 
3694
3695static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3696{
3697	gen5_gt_irq_postinstall(to_gt(dev_priv));
 
 
3698
 
 
3699	spin_lock_irq(&dev_priv->irq_lock);
3700	if (dev_priv->display_irqs_enabled)
3701		vlv_display_irq_postinstall(dev_priv);
3702	spin_unlock_irq(&dev_priv->irq_lock);
3703
3704	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3705	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3706}
3707
3708static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3709{
3710	struct intel_uncore *uncore = &dev_priv->uncore;
3711
3712	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3713		GEN8_PIPE_CDCLK_CRC_DONE;
3714	u32 de_pipe_enables;
3715	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3716	u32 de_port_enables;
3717	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3718	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3719		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3720	enum pipe pipe;
3721
3722	if (!HAS_DISPLAY(dev_priv))
3723		return;
 
 
 
3724
3725	if (DISPLAY_VER(dev_priv) <= 10)
3726		de_misc_masked |= GEN8_DE_MISC_GSE;
3727
3728	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3729		de_port_masked |= BXT_DE_PORT_GMBUS;
3730
3731	if (DISPLAY_VER(dev_priv) >= 11) {
3732		enum port port;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733
3734		if (intel_bios_is_dsi_present(dev_priv, &port))
3735			de_port_masked |= DSI0_TE | DSI1_TE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736	}
3737
3738	de_pipe_enables = de_pipe_masked |
3739		GEN8_PIPE_VBLANK |
3740		gen8_de_pipe_underrun_mask(dev_priv) |
3741		gen8_de_pipe_flip_done_mask(dev_priv);
3742
3743	de_port_enables = de_port_masked;
3744	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3745		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3746	else if (IS_BROADWELL(dev_priv))
3747		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3748
3749	if (DISPLAY_VER(dev_priv) >= 12) {
3750		enum transcoder trans;
 
3751
3752		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3753			enum intel_display_power_domain domain;
 
 
 
 
3754
3755			domain = POWER_DOMAIN_TRANSCODER(trans);
3756			if (!intel_display_power_is_enabled(dev_priv, domain))
3757				continue;
3758
3759			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3760		}
3761	} else {
3762		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3763	}
3764
3765	for_each_pipe(dev_priv, pipe) {
3766		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3767
3768		if (intel_display_power_is_enabled(dev_priv,
3769				POWER_DOMAIN_PIPE(pipe)))
3770			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3771					  dev_priv->de_irq_mask[pipe],
3772					  de_pipe_enables);
3773	}
3774
3775	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3776	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3777
3778	if (DISPLAY_VER(dev_priv) >= 11) {
3779		u32 de_hpd_masked = 0;
3780		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3781				     GEN11_DE_TBT_HOTPLUG_MASK;
3782
3783		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3784			      de_hpd_enables);
3785	}
3786}
3787
3788static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3789{
3790	struct intel_uncore *uncore = &dev_priv->uncore;
3791	u32 mask = SDE_GMBUS_ICP;
 
3792
3793	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
 
 
 
 
 
3794}
3795
3796static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3797{
3798	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3799		icp_irq_postinstall(dev_priv);
3800	else if (HAS_PCH_SPLIT(dev_priv))
3801		ibx_irq_postinstall(dev_priv);
3802
3803	gen8_gt_irq_postinstall(to_gt(dev_priv));
3804	gen8_de_irq_postinstall(dev_priv);
3805
3806	gen8_master_intr_enable(dev_priv->uncore.regs);
3807}
3808
3809static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv)
3810{
3811	if (!HAS_DISPLAY(dev_priv))
3812		return;
 
 
 
 
3813
3814	gen8_de_irq_postinstall(dev_priv);
3815
3816	intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3817			   GEN11_DISPLAY_IRQ_ENABLE);
3818}
3819
3820static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3821{
3822	struct intel_gt *gt = to_gt(dev_priv);
3823	struct intel_uncore *uncore = gt->uncore;
3824	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3825
3826	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3827		icp_irq_postinstall(dev_priv);
 
 
3828
3829	gen11_gt_irq_postinstall(gt);
3830	gen11_de_irq_postinstall(dev_priv);
3831
3832	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3833
3834	gen11_master_intr_enable(uncore->regs);
3835	intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3836}
3837
3838static void dg1_irq_postinstall(struct drm_i915_private *dev_priv)
3839{
3840	struct intel_gt *gt = to_gt(dev_priv);
3841	struct intel_uncore *uncore = gt->uncore;
3842	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 
3843
3844	gen11_gt_irq_postinstall(gt);
 
3845
3846	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3847
3848	if (HAS_DISPLAY(dev_priv)) {
3849		icp_irq_postinstall(dev_priv);
3850		gen8_de_irq_postinstall(dev_priv);
3851		intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3852				   GEN11_DISPLAY_IRQ_ENABLE);
3853	}
3854
3855	dg1_master_intr_enable(uncore->regs);
3856	intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR);
3857}
3858
3859static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3860{
3861	gen8_gt_irq_postinstall(to_gt(dev_priv));
3862
3863	spin_lock_irq(&dev_priv->irq_lock);
3864	if (dev_priv->display_irqs_enabled)
3865		vlv_display_irq_postinstall(dev_priv);
3866	spin_unlock_irq(&dev_priv->irq_lock);
3867
3868	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3869	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3870}
3871
3872static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3873{
3874	struct intel_uncore *uncore = &dev_priv->uncore;
 
3875
3876	i9xx_pipestat_irq_reset(dev_priv);
3877
3878	gen2_irq_reset(uncore);
3879	dev_priv->irq_mask = ~0u;
 
3880}
3881
3882static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	struct intel_uncore *uncore = &dev_priv->uncore;
3885	u16 enable_mask;
3886
3887	intel_uncore_write16(uncore,
3888			     EMR,
3889			     ~(I915_ERROR_PAGE_TABLE |
3890			       I915_ERROR_MEMORY_REFRESH));
3891
3892	/* Unmask the interrupts that we always want on. */
3893	dev_priv->irq_mask =
3894		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3895		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3896		  I915_MASTER_ERROR_INTERRUPT);
3897
3898	enable_mask =
3899		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3900		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3901		I915_MASTER_ERROR_INTERRUPT |
3902		I915_USER_INTERRUPT;
3903
3904	gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask);
3905
3906	/* Interrupt setup is already guaranteed to be single-threaded, this is
3907	 * just to make the assert_spin_locked check happy. */
3908	spin_lock_irq(&dev_priv->irq_lock);
3909	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911	spin_unlock_irq(&dev_priv->irq_lock);
3912}
3913
3914static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3915			       u16 *eir, u16 *eir_stuck)
3916{
3917	struct intel_uncore *uncore = &i915->uncore;
3918	u16 emr;
3919
3920	*eir = intel_uncore_read16(uncore, EIR);
3921
3922	if (*eir)
3923		intel_uncore_write16(uncore, EIR, *eir);
3924
3925	*eir_stuck = intel_uncore_read16(uncore, EIR);
3926	if (*eir_stuck == 0)
3927		return;
3928
3929	/*
3930	 * Toggle all EMR bits to make sure we get an edge
3931	 * in the ISR master error bit if we don't clear
3932	 * all the EIR bits. Otherwise the edge triggered
3933	 * IIR on i965/g4x wouldn't notice that an interrupt
3934	 * is still pending. Also some EIR bits can't be
3935	 * cleared except by handling the underlying error
3936	 * (or by a GPU reset) so we mask any bit that
3937	 * remains set.
3938	 */
3939	emr = intel_uncore_read16(uncore, EMR);
3940	intel_uncore_write16(uncore, EMR, 0xffff);
3941	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3942}
3943
3944static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3945				   u16 eir, u16 eir_stuck)
 
 
 
3946{
3947	drm_dbg(&dev_priv->drm, "Master Error: EIR 0x%04x\n", eir);
 
3948
3949	if (eir_stuck)
3950		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3951			eir_stuck);
3952}
3953
3954static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3955			       u32 *eir, u32 *eir_stuck)
3956{
3957	u32 emr;
3958
3959	*eir = intel_uncore_rmw(&dev_priv->uncore, EIR, 0, 0);
3960
3961	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3962	if (*eir_stuck == 0)
3963		return;
3964
3965	/*
3966	 * Toggle all EMR bits to make sure we get an edge
3967	 * in the ISR master error bit if we don't clear
3968	 * all the EIR bits. Otherwise the edge triggered
3969	 * IIR on i965/g4x wouldn't notice that an interrupt
3970	 * is still pending. Also some EIR bits can't be
3971	 * cleared except by handling the underlying error
3972	 * (or by a GPU reset) so we mask any bit that
3973	 * remains set.
3974	 */
3975	emr = intel_uncore_rmw(&dev_priv->uncore, EMR, ~0, 0xffffffff);
3976	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3977}
3978
3979static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3980				   u32 eir, u32 eir_stuck)
3981{
3982	drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir);
3983
3984	if (eir_stuck)
3985		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3986			eir_stuck);
3987}
3988
3989static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3990{
3991	struct drm_i915_private *dev_priv = arg;
3992	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
 
3993
3994	if (!intel_irqs_enabled(dev_priv))
3995		return IRQ_NONE;
3996
3997	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3998	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3999
4000	do {
4001		u32 pipe_stats[I915_MAX_PIPES] = {};
4002		u16 eir = 0, eir_stuck = 0;
4003		u16 iir;
4004
4005		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4006		if (iir == 0)
4007			break;
 
 
 
 
 
 
4008
4009		ret = IRQ_HANDLED;
 
 
4010
4011		/* Call regardless, as some status bits might not be
4012		 * signalled in iir */
4013		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
4014
4015		if (iir & I915_MASTER_ERROR_INTERRUPT)
4016			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4017
4018		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4019
4020		if (iir & I915_USER_INTERRUPT)
4021			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
4022
4023		if (iir & I915_MASTER_ERROR_INTERRUPT)
4024			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4025
4026		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4027	} while (0);
 
 
 
 
4028
4029	pmu_irq_stats(dev_priv, ret);
 
4030
4031	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
4032
4033	return ret;
 
 
 
 
 
 
 
4034}
4035
4036static void i915_irq_reset(struct drm_i915_private *dev_priv)
4037{
4038	struct intel_uncore *uncore = &dev_priv->uncore;
 
4039
4040	if (I915_HAS_HOTPLUG(dev_priv)) {
4041		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4042		intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_STAT, 0, 0);
4043	}
4044
4045	i9xx_pipestat_irq_reset(dev_priv);
4046
4047	GEN3_IRQ_RESET(uncore, GEN2_);
4048	dev_priv->irq_mask = ~0u;
 
 
4049}
4050
4051static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4052{
4053	struct intel_uncore *uncore = &dev_priv->uncore;
4054	u32 enable_mask;
4055
4056	intel_uncore_write(uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
4057					  I915_ERROR_MEMORY_REFRESH));
4058
4059	/* Unmask the interrupts that we always want on. */
4060	dev_priv->irq_mask =
4061		~(I915_ASLE_INTERRUPT |
4062		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4063		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4064		  I915_MASTER_ERROR_INTERRUPT);
 
4065
4066	enable_mask =
4067		I915_ASLE_INTERRUPT |
4068		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4069		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4070		I915_MASTER_ERROR_INTERRUPT |
4071		I915_USER_INTERRUPT;
4072
4073	if (I915_HAS_HOTPLUG(dev_priv)) {
 
 
 
4074		/* Enable in IER... */
4075		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4076		/* and unmask in IMR */
4077		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4078	}
4079
4080	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
 
 
 
4081
4082	/* Interrupt setup is already guaranteed to be single-threaded, this is
4083	 * just to make the assert_spin_locked check happy. */
4084	spin_lock_irq(&dev_priv->irq_lock);
4085	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4086	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4087	spin_unlock_irq(&dev_priv->irq_lock);
4088
4089	i915_enable_asle_pipestat(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4090}
4091
4092static irqreturn_t i915_irq_handler(int irq, void *arg)
4093{
4094	struct drm_i915_private *dev_priv = arg;
4095	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
4096
4097	if (!intel_irqs_enabled(dev_priv))
4098		return IRQ_NONE;
4099
4100	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4101	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4102
 
4103	do {
4104		u32 pipe_stats[I915_MAX_PIPES] = {};
4105		u32 eir = 0, eir_stuck = 0;
4106		u32 hotplug_status = 0;
4107		u32 iir;
 
 
 
 
 
 
 
4108
4109		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4110		if (iir == 0)
 
 
 
 
 
 
 
 
 
 
 
4111			break;
4112
4113		ret = IRQ_HANDLED;
4114
4115		if (I915_HAS_HOTPLUG(dev_priv) &&
4116		    iir & I915_DISPLAY_PORT_INTERRUPT)
4117			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4118
4119		/* Call regardless, as some status bits might not be
4120		 * signalled in iir */
4121		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4122
4123		if (iir & I915_MASTER_ERROR_INTERRUPT)
4124			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4125
4126		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127
4128		if (iir & I915_USER_INTERRUPT)
4129			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
4130
4131		if (iir & I915_MASTER_ERROR_INTERRUPT)
4132			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4133
4134		if (hotplug_status)
4135			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4136
4137		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4138	} while (0);
 
 
 
 
 
4139
4140	pmu_irq_stats(dev_priv, ret);
 
 
 
4141
4142	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
4143
4144	return ret;
4145}
4146
4147static void i965_irq_reset(struct drm_i915_private *dev_priv)
4148{
4149	struct intel_uncore *uncore = &dev_priv->uncore;
 
4150
4151	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4152	intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0);
4153
4154	i9xx_pipestat_irq_reset(dev_priv);
4155
4156	GEN3_IRQ_RESET(uncore, GEN2_);
4157	dev_priv->irq_mask = ~0u;
 
 
4158}
4159
4160static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4161{
4162	struct intel_uncore *uncore = &dev_priv->uncore;
4163	u32 enable_mask;
4164	u32 error_mask;
4165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4166	/*
4167	 * Enable some error detection, note the instruction error mask
4168	 * bit is reserved, so we leave it masked.
4169	 */
4170	if (IS_G4X(dev_priv)) {
4171		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4172			       GM45_ERROR_MEM_PRIV |
4173			       GM45_ERROR_CP_PRIV |
4174			       I915_ERROR_MEMORY_REFRESH);
4175	} else {
4176		error_mask = ~(I915_ERROR_PAGE_TABLE |
4177			       I915_ERROR_MEMORY_REFRESH);
4178	}
4179	intel_uncore_write(uncore, EMR, error_mask);
4180
4181	/* Unmask the interrupts that we always want on. */
4182	dev_priv->irq_mask =
4183		~(I915_ASLE_INTERRUPT |
4184		  I915_DISPLAY_PORT_INTERRUPT |
4185		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4186		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4187		  I915_MASTER_ERROR_INTERRUPT);
4188
4189	enable_mask =
4190		I915_ASLE_INTERRUPT |
4191		I915_DISPLAY_PORT_INTERRUPT |
4192		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4193		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4194		I915_MASTER_ERROR_INTERRUPT |
4195		I915_USER_INTERRUPT;
4196
4197	if (IS_G4X(dev_priv))
4198		enable_mask |= I915_BSD_USER_INTERRUPT;
4199
4200	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4201
4202	/* Interrupt setup is already guaranteed to be single-threaded, this is
4203	 * just to make the assert_spin_locked check happy. */
4204	spin_lock_irq(&dev_priv->irq_lock);
4205	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4206	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4207	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4208	spin_unlock_irq(&dev_priv->irq_lock);
4209
4210	i915_enable_asle_pipestat(dev_priv);
4211}
4212
4213static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4214{
 
4215	u32 hotplug_en;
4216
4217	lockdep_assert_held(&dev_priv->irq_lock);
4218
4219	/* Note HDMI and DP share hotplug bits */
4220	/* enable bits are the same for all generations */
4221	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4222	/* Programming the CRT detection parameters tends
4223	   to generate a spurious hotplug event about three
4224	   seconds later.  So just do it once.
4225	*/
4226	if (IS_G4X(dev_priv))
4227		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4228	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4229
4230	/* Ignore TV since it's buggy */
4231	i915_hotplug_interrupt_update_locked(dev_priv,
4232					     HOTPLUG_INT_EN_MASK |
4233					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4234					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4235					     hotplug_en);
4236}
4237
4238static irqreturn_t i965_irq_handler(int irq, void *arg)
4239{
4240	struct drm_i915_private *dev_priv = arg;
4241	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
4242
4243	if (!intel_irqs_enabled(dev_priv))
4244		return IRQ_NONE;
4245
4246	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4247	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
4248
4249	do {
4250		u32 pipe_stats[I915_MAX_PIPES] = {};
4251		u32 eir = 0, eir_stuck = 0;
4252		u32 hotplug_status = 0;
4253		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4254
4255		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4256		if (iir == 0)
4257			break;
4258
4259		ret = IRQ_HANDLED;
4260
 
4261		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4262			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4263
4264		/* Call regardless, as some status bits might not be
4265		 * signalled in iir */
4266		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4267
4268		if (iir & I915_MASTER_ERROR_INTERRUPT)
4269			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
 
4270
4271		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
 
 
 
4272
4273		if (iir & I915_USER_INTERRUPT)
4274			intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0],
4275					    iir);
4276
4277		if (iir & I915_BSD_USER_INTERRUPT)
4278			intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0],
4279					    iir >> 25);
4280
4281		if (iir & I915_MASTER_ERROR_INTERRUPT)
4282			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
 
4283
4284		if (hotplug_status)
4285			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4286
4287		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4288	} while (0);
4289
4290	pmu_irq_stats(dev_priv, IRQ_HANDLED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4291
4292	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4293
4294	return ret;
4295}
4296
4297struct intel_hotplug_funcs {
4298	void (*hpd_irq_setup)(struct drm_i915_private *i915);
4299};
 
 
 
 
 
 
 
4300
4301#define HPD_FUNCS(platform)					 \
4302static const struct intel_hotplug_funcs platform##_hpd_funcs = { \
4303	.hpd_irq_setup = platform##_hpd_irq_setup,		 \
4304}
4305
4306HPD_FUNCS(i915);
4307HPD_FUNCS(dg1);
4308HPD_FUNCS(gen11);
4309HPD_FUNCS(bxt);
4310HPD_FUNCS(icp);
4311HPD_FUNCS(spt);
4312HPD_FUNCS(ilk);
4313#undef HPD_FUNCS
4314
4315void intel_hpd_irq_setup(struct drm_i915_private *i915)
4316{
4317	if (i915->display_irqs_enabled && i915->display.funcs.hotplug)
4318		i915->display.funcs.hotplug->hpd_irq_setup(i915);
4319}
4320
4321/**
4322 * intel_irq_init - initializes irq support
4323 * @dev_priv: i915 device instance
4324 *
4325 * This function initializes all the irq support including work items, timers
4326 * and all the vtables. It does not setup the interrupt itself though.
4327 */
4328void intel_irq_init(struct drm_i915_private *dev_priv)
4329{
4330	int i;
4331
4332	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4333	for (i = 0; i < MAX_L3_SLICES; ++i)
4334		dev_priv->l3_parity.remap_info[i] = NULL;
4335
4336	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4337	if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
4338		to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16;
4339
4340	if (!HAS_DISPLAY(dev_priv))
4341		return;
4342
4343	intel_hpd_init_pins(dev_priv);
 
 
 
 
 
4344
4345	intel_hpd_init_early(dev_priv);
 
4346
4347	dev_priv->drm.vblank_disable_immediate = true;
4348
4349	/* Most platforms treat the display irq block as an always-on
4350	 * power domain. vlv/chv can disable it at runtime and need
4351	 * special care to avoid writing any of the display block registers
4352	 * outside of the power domain. We defer setting up the display irqs
4353	 * in this case to the runtime pm.
4354	 */
4355	dev_priv->display_irqs_enabled = true;
4356	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4357		dev_priv->display_irqs_enabled = false;
4358
4359	if (HAS_GMCH(dev_priv)) {
4360		if (I915_HAS_HOTPLUG(dev_priv))
4361			dev_priv->display.funcs.hotplug = &i915_hpd_funcs;
4362	} else {
4363		if (HAS_PCH_DG2(dev_priv))
4364			dev_priv->display.funcs.hotplug = &icp_hpd_funcs;
4365		else if (HAS_PCH_DG1(dev_priv))
4366			dev_priv->display.funcs.hotplug = &dg1_hpd_funcs;
4367		else if (DISPLAY_VER(dev_priv) >= 11)
4368			dev_priv->display.funcs.hotplug = &gen11_hpd_funcs;
4369		else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
4370			dev_priv->display.funcs.hotplug = &bxt_hpd_funcs;
4371		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4372			dev_priv->display.funcs.hotplug = &icp_hpd_funcs;
4373		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4374			dev_priv->display.funcs.hotplug = &spt_hpd_funcs;
4375		else
4376			dev_priv->display.funcs.hotplug = &ilk_hpd_funcs;
4377	}
4378}
4379
4380/**
4381 * intel_irq_fini - deinitializes IRQ support
4382 * @i915: i915 device instance
4383 *
4384 * This function deinitializes all the IRQ support.
4385 */
4386void intel_irq_fini(struct drm_i915_private *i915)
4387{
4388	int i;
4389
4390	for (i = 0; i < MAX_L3_SLICES; ++i)
4391		kfree(i915->l3_parity.remap_info[i]);
4392}
4393
4394static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4395{
4396	if (HAS_GMCH(dev_priv)) {
4397		if (IS_CHERRYVIEW(dev_priv))
4398			return cherryview_irq_handler;
4399		else if (IS_VALLEYVIEW(dev_priv))
4400			return valleyview_irq_handler;
4401		else if (GRAPHICS_VER(dev_priv) == 4)
4402			return i965_irq_handler;
4403		else if (GRAPHICS_VER(dev_priv) == 3)
4404			return i915_irq_handler;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4405		else
4406			return i8xx_irq_handler;
 
 
 
 
 
 
 
 
4407	} else {
4408		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4409			return dg1_irq_handler;
4410		else if (GRAPHICS_VER(dev_priv) >= 11)
4411			return gen11_irq_handler;
4412		else if (GRAPHICS_VER(dev_priv) >= 8)
4413			return gen8_irq_handler;
4414		else
4415			return ilk_irq_handler;
4416	}
4417}
4418
4419static void intel_irq_reset(struct drm_i915_private *dev_priv)
4420{
4421	if (HAS_GMCH(dev_priv)) {
4422		if (IS_CHERRYVIEW(dev_priv))
4423			cherryview_irq_reset(dev_priv);
4424		else if (IS_VALLEYVIEW(dev_priv))
4425			valleyview_irq_reset(dev_priv);
4426		else if (GRAPHICS_VER(dev_priv) == 4)
4427			i965_irq_reset(dev_priv);
4428		else if (GRAPHICS_VER(dev_priv) == 3)
4429			i915_irq_reset(dev_priv);
4430		else
4431			i8xx_irq_reset(dev_priv);
4432	} else {
4433		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4434			dg1_irq_reset(dev_priv);
4435		else if (GRAPHICS_VER(dev_priv) >= 11)
4436			gen11_irq_reset(dev_priv);
4437		else if (GRAPHICS_VER(dev_priv) >= 8)
4438			gen8_irq_reset(dev_priv);
4439		else
4440			ilk_irq_reset(dev_priv);
4441	}
4442}
4443
4444static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_postinstall(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_postinstall(dev_priv);
4451		else if (GRAPHICS_VER(dev_priv) == 4)
4452			i965_irq_postinstall(dev_priv);
4453		else if (GRAPHICS_VER(dev_priv) == 3)
4454			i915_irq_postinstall(dev_priv);
4455		else
4456			i8xx_irq_postinstall(dev_priv);
4457	} else {
4458		if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4459			dg1_irq_postinstall(dev_priv);
4460		else if (GRAPHICS_VER(dev_priv) >= 11)
4461			gen11_irq_postinstall(dev_priv);
4462		else if (GRAPHICS_VER(dev_priv) >= 8)
4463			gen8_irq_postinstall(dev_priv);
4464		else
4465			ilk_irq_postinstall(dev_priv);
4466	}
4467}
4468
4469/**
4470 * intel_irq_install - enables the hardware interrupt
4471 * @dev_priv: i915 device instance
4472 *
4473 * This function enables the hardware interrupt handling, but leaves the hotplug
4474 * handling still disabled. It is called after intel_irq_init().
4475 *
4476 * In the driver load and resume code we need working interrupts in a few places
4477 * but don't want to deal with the hassle of concurrent probe and hotplug
4478 * workers. Hence the split into this two-stage approach.
4479 */
4480int intel_irq_install(struct drm_i915_private *dev_priv)
4481{
4482	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4483	int ret;
4484
4485	/*
4486	 * We enable some interrupt sources in our postinstall hooks, so mark
4487	 * interrupts as enabled _before_ actually enabling them to avoid
4488	 * special cases in our ordering checks.
4489	 */
4490	dev_priv->runtime_pm.irqs_enabled = true;
4491
4492	dev_priv->irq_enabled = true;
4493
4494	intel_irq_reset(dev_priv);
4495
4496	ret = request_irq(irq, intel_irq_handler(dev_priv),
4497			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4498	if (ret < 0) {
4499		dev_priv->irq_enabled = false;
4500		return ret;
4501	}
4502
4503	intel_irq_postinstall(dev_priv);
4504
4505	return ret;
4506}
4507
4508/**
4509 * intel_irq_uninstall - finilizes all irq handling
4510 * @dev_priv: i915 device instance
4511 *
4512 * This stops interrupt and hotplug handling and unregisters and frees all
4513 * resources acquired in the init functions.
4514 */
4515void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4516{
4517	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4518
4519	/*
4520	 * FIXME we can get called twice during driver probe
4521	 * error handling as well as during driver remove due to
4522	 * intel_modeset_driver_remove() calling us out of sequence.
4523	 * Would be nice if it didn't do that...
4524	 */
4525	if (!dev_priv->irq_enabled)
4526		return;
4527
4528	dev_priv->irq_enabled = false;
4529
4530	intel_irq_reset(dev_priv);
4531
4532	free_irq(irq, dev_priv);
4533
4534	intel_hpd_cancel_work(dev_priv);
4535	dev_priv->runtime_pm.irqs_enabled = false;
4536}
4537
4538/**
4539 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4540 * @dev_priv: i915 device instance
4541 *
4542 * This function is used to disable interrupts at runtime, both in the runtime
4543 * pm and the system suspend/resume code.
4544 */
4545void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4546{
4547	intel_irq_reset(dev_priv);
4548	dev_priv->runtime_pm.irqs_enabled = false;
4549	intel_synchronize_irq(dev_priv);
4550}
4551
4552/**
4553 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4554 * @dev_priv: i915 device instance
4555 *
4556 * This function is used to enable interrupts at runtime, both in the runtime
4557 * pm and the system suspend/resume code.
4558 */
4559void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4560{
4561	dev_priv->runtime_pm.irqs_enabled = true;
4562	intel_irq_reset(dev_priv);
4563	intel_irq_postinstall(dev_priv);
4564}
4565
4566bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4567{
4568	return dev_priv->runtime_pm.irqs_enabled;
4569}
4570
4571void intel_synchronize_irq(struct drm_i915_private *i915)
4572{
4573	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
4574}
4575
4576void intel_synchronize_hardirq(struct drm_i915_private *i915)
4577{
4578	synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
4579}