Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2016 Intel Corporation
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include <drm/drm_print.h>
   9
  10#include "gem/i915_gem_context.h"
  11#include "gem/i915_gem_internal.h"
  12#include "gt/intel_gt_regs.h"
  13
  14#include "i915_cmd_parser.h"
  15#include "i915_drv.h"
  16#include "i915_irq.h"
  17#include "i915_reg.h"
  18#include "intel_breadcrumbs.h"
  19#include "intel_context.h"
  20#include "intel_engine.h"
  21#include "intel_engine_pm.h"
  22#include "intel_engine_regs.h"
  23#include "intel_engine_user.h"
  24#include "intel_execlists_submission.h"
  25#include "intel_gt.h"
  26#include "intel_gt_mcr.h"
  27#include "intel_gt_pm.h"
  28#include "intel_gt_requests.h"
  29#include "intel_lrc.h"
  30#include "intel_lrc_reg.h"
  31#include "intel_reset.h"
  32#include "intel_ring.h"
  33#include "uc/intel_guc_submission.h"
  34
  35/* Haswell does have the CXT_SIZE register however it does not appear to be
  36 * valid. Now, docs explain in dwords what is in the context object. The full
  37 * size is 70720 bytes, however, the power context and execlist context will
  38 * never be saved (power context is stored elsewhere, and execlists don't work
  39 * on HSW) - so the final size, including the extra state required for the
  40 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
  41 */
  42#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
  43
  44#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  45#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
  46#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  47#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
  48
  49#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
  50
  51#define MAX_MMIO_BASES 3
  52struct engine_info {
  53	u8 class;
  54	u8 instance;
  55	/* mmio bases table *must* be sorted in reverse graphics_ver order */
  56	struct engine_mmio_base {
  57		u32 graphics_ver : 8;
  58		u32 base : 24;
  59	} mmio_bases[MAX_MMIO_BASES];
  60};
  61
  62static const struct engine_info intel_engines[] = {
  63	[RCS0] = {
  64		.class = RENDER_CLASS,
  65		.instance = 0,
  66		.mmio_bases = {
  67			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
  68		},
  69	},
  70	[BCS0] = {
  71		.class = COPY_ENGINE_CLASS,
  72		.instance = 0,
  73		.mmio_bases = {
  74			{ .graphics_ver = 6, .base = BLT_RING_BASE }
  75		},
  76	},
  77	[BCS1] = {
  78		.class = COPY_ENGINE_CLASS,
  79		.instance = 1,
  80		.mmio_bases = {
  81			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
  82		},
  83	},
  84	[BCS2] = {
  85		.class = COPY_ENGINE_CLASS,
  86		.instance = 2,
  87		.mmio_bases = {
  88			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
  89		},
  90	},
  91	[BCS3] = {
  92		.class = COPY_ENGINE_CLASS,
  93		.instance = 3,
  94		.mmio_bases = {
  95			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
  96		},
  97	},
  98	[BCS4] = {
  99		.class = COPY_ENGINE_CLASS,
 100		.instance = 4,
 101		.mmio_bases = {
 102			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
 103		},
 104	},
 105	[BCS5] = {
 106		.class = COPY_ENGINE_CLASS,
 107		.instance = 5,
 108		.mmio_bases = {
 109			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
 110		},
 111	},
 112	[BCS6] = {
 113		.class = COPY_ENGINE_CLASS,
 114		.instance = 6,
 115		.mmio_bases = {
 116			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
 117		},
 118	},
 119	[BCS7] = {
 120		.class = COPY_ENGINE_CLASS,
 121		.instance = 7,
 122		.mmio_bases = {
 123			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
 124		},
 125	},
 126	[BCS8] = {
 127		.class = COPY_ENGINE_CLASS,
 128		.instance = 8,
 129		.mmio_bases = {
 130			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
 131		},
 132	},
 133	[VCS0] = {
 134		.class = VIDEO_DECODE_CLASS,
 135		.instance = 0,
 136		.mmio_bases = {
 137			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
 138			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
 139			{ .graphics_ver = 4, .base = BSD_RING_BASE }
 140		},
 141	},
 142	[VCS1] = {
 143		.class = VIDEO_DECODE_CLASS,
 144		.instance = 1,
 145		.mmio_bases = {
 146			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
 147			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
 148		},
 149	},
 150	[VCS2] = {
 151		.class = VIDEO_DECODE_CLASS,
 152		.instance = 2,
 153		.mmio_bases = {
 154			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
 155		},
 156	},
 157	[VCS3] = {
 158		.class = VIDEO_DECODE_CLASS,
 159		.instance = 3,
 160		.mmio_bases = {
 161			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
 162		},
 163	},
 164	[VCS4] = {
 165		.class = VIDEO_DECODE_CLASS,
 166		.instance = 4,
 167		.mmio_bases = {
 168			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
 169		},
 170	},
 171	[VCS5] = {
 172		.class = VIDEO_DECODE_CLASS,
 173		.instance = 5,
 174		.mmio_bases = {
 175			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
 176		},
 177	},
 178	[VCS6] = {
 179		.class = VIDEO_DECODE_CLASS,
 180		.instance = 6,
 181		.mmio_bases = {
 182			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
 183		},
 184	},
 185	[VCS7] = {
 186		.class = VIDEO_DECODE_CLASS,
 187		.instance = 7,
 188		.mmio_bases = {
 189			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
 190		},
 191	},
 192	[VECS0] = {
 193		.class = VIDEO_ENHANCEMENT_CLASS,
 194		.instance = 0,
 195		.mmio_bases = {
 196			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
 197			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
 198		},
 199	},
 200	[VECS1] = {
 201		.class = VIDEO_ENHANCEMENT_CLASS,
 202		.instance = 1,
 203		.mmio_bases = {
 204			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
 205		},
 206	},
 207	[VECS2] = {
 208		.class = VIDEO_ENHANCEMENT_CLASS,
 209		.instance = 2,
 210		.mmio_bases = {
 211			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
 212		},
 213	},
 214	[VECS3] = {
 215		.class = VIDEO_ENHANCEMENT_CLASS,
 216		.instance = 3,
 217		.mmio_bases = {
 218			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
 219		},
 220	},
 221	[CCS0] = {
 222		.class = COMPUTE_CLASS,
 223		.instance = 0,
 224		.mmio_bases = {
 225			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
 226		}
 227	},
 228	[CCS1] = {
 229		.class = COMPUTE_CLASS,
 230		.instance = 1,
 231		.mmio_bases = {
 232			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
 233		}
 234	},
 235	[CCS2] = {
 236		.class = COMPUTE_CLASS,
 237		.instance = 2,
 238		.mmio_bases = {
 239			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
 240		}
 241	},
 242	[CCS3] = {
 243		.class = COMPUTE_CLASS,
 244		.instance = 3,
 245		.mmio_bases = {
 246			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
 247		}
 248	},
 249	[GSC0] = {
 250		.class = OTHER_CLASS,
 251		.instance = OTHER_GSC_INSTANCE,
 252		.mmio_bases = {
 253			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
 254		}
 255	},
 256};
 257
 258/**
 259 * intel_engine_context_size() - return the size of the context for an engine
 260 * @gt: the gt
 261 * @class: engine class
 262 *
 263 * Each engine class may require a different amount of space for a context
 264 * image.
 265 *
 266 * Return: size (in bytes) of an engine class specific context image
 267 *
 268 * Note: this size includes the HWSP, which is part of the context image
 269 * in LRC mode, but does not include the "shared data page" used with
 270 * GuC submission. The caller should account for this if using the GuC.
 271 */
 272u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
 273{
 274	struct intel_uncore *uncore = gt->uncore;
 275	u32 cxt_size;
 276
 277	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
 278
 279	switch (class) {
 280	case COMPUTE_CLASS:
 281		fallthrough;
 282	case RENDER_CLASS:
 283		switch (GRAPHICS_VER(gt->i915)) {
 284		default:
 285			MISSING_CASE(GRAPHICS_VER(gt->i915));
 286			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
 287		case 12:
 288		case 11:
 289			return GEN11_LR_CONTEXT_RENDER_SIZE;
 290		case 9:
 291			return GEN9_LR_CONTEXT_RENDER_SIZE;
 292		case 8:
 293			return GEN8_LR_CONTEXT_RENDER_SIZE;
 294		case 7:
 295			if (IS_HASWELL(gt->i915))
 296				return HSW_CXT_TOTAL_SIZE;
 297
 298			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
 299			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
 300					PAGE_SIZE);
 301		case 6:
 302			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
 303			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
 304					PAGE_SIZE);
 305		case 5:
 306		case 4:
 307			/*
 308			 * There is a discrepancy here between the size reported
 309			 * by the register and the size of the context layout
 310			 * in the docs. Both are described as authorative!
 311			 *
 312			 * The discrepancy is on the order of a few cachelines,
 313			 * but the total is under one page (4k), which is our
 314			 * minimum allocation anyway so it should all come
 315			 * out in the wash.
 316			 */
 317			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
 318			drm_dbg(&gt->i915->drm,
 319				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
 320				GRAPHICS_VER(gt->i915), cxt_size * 64,
 321				cxt_size - 1);
 322			return round_up(cxt_size * 64, PAGE_SIZE);
 323		case 3:
 324		case 2:
 325		/* For the special day when i810 gets merged. */
 326		case 1:
 327			return 0;
 328		}
 329		break;
 330	default:
 331		MISSING_CASE(class);
 332		fallthrough;
 333	case VIDEO_DECODE_CLASS:
 334	case VIDEO_ENHANCEMENT_CLASS:
 335	case COPY_ENGINE_CLASS:
 336	case OTHER_CLASS:
 337		if (GRAPHICS_VER(gt->i915) < 8)
 338			return 0;
 339		return GEN8_LR_CONTEXT_OTHER_SIZE;
 340	}
 341}
 342
 343static u32 __engine_mmio_base(struct drm_i915_private *i915,
 344			      const struct engine_mmio_base *bases)
 345{
 346	int i;
 347
 348	for (i = 0; i < MAX_MMIO_BASES; i++)
 349		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
 350			break;
 351
 352	GEM_BUG_ON(i == MAX_MMIO_BASES);
 353	GEM_BUG_ON(!bases[i].base);
 354
 355	return bases[i].base;
 356}
 357
 358static void __sprint_engine_name(struct intel_engine_cs *engine)
 359{
 360	/*
 361	 * Before we know what the uABI name for this engine will be,
 362	 * we still would like to keep track of this engine in the debug logs.
 363	 * We throw in a ' here as a reminder that this isn't its final name.
 364	 */
 365	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
 366			     intel_engine_class_repr(engine->class),
 367			     engine->instance) >= sizeof(engine->name));
 368}
 369
 370void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
 371{
 372	/*
 373	 * Though they added more rings on g4x/ilk, they did not add
 374	 * per-engine HWSTAM until gen6.
 375	 */
 376	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
 377		return;
 378
 379	if (GRAPHICS_VER(engine->i915) >= 3)
 380		ENGINE_WRITE(engine, RING_HWSTAM, mask);
 381	else
 382		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
 383}
 384
 385static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
 386{
 387	/* Mask off all writes into the unknown HWSP */
 388	intel_engine_set_hwsp_writemask(engine, ~0u);
 389}
 390
 391static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
 392{
 393	GEM_DEBUG_WARN_ON(iir);
 394}
 395
 396static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
 397{
 398	u32 reset_domain;
 399
 400	if (ver >= 11) {
 401		static const u32 engine_reset_domains[] = {
 402			[RCS0]  = GEN11_GRDOM_RENDER,
 403			[BCS0]  = GEN11_GRDOM_BLT,
 404			[BCS1]  = XEHPC_GRDOM_BLT1,
 405			[BCS2]  = XEHPC_GRDOM_BLT2,
 406			[BCS3]  = XEHPC_GRDOM_BLT3,
 407			[BCS4]  = XEHPC_GRDOM_BLT4,
 408			[BCS5]  = XEHPC_GRDOM_BLT5,
 409			[BCS6]  = XEHPC_GRDOM_BLT6,
 410			[BCS7]  = XEHPC_GRDOM_BLT7,
 411			[BCS8]  = XEHPC_GRDOM_BLT8,
 412			[VCS0]  = GEN11_GRDOM_MEDIA,
 413			[VCS1]  = GEN11_GRDOM_MEDIA2,
 414			[VCS2]  = GEN11_GRDOM_MEDIA3,
 415			[VCS3]  = GEN11_GRDOM_MEDIA4,
 416			[VCS4]  = GEN11_GRDOM_MEDIA5,
 417			[VCS5]  = GEN11_GRDOM_MEDIA6,
 418			[VCS6]  = GEN11_GRDOM_MEDIA7,
 419			[VCS7]  = GEN11_GRDOM_MEDIA8,
 420			[VECS0] = GEN11_GRDOM_VECS,
 421			[VECS1] = GEN11_GRDOM_VECS2,
 422			[VECS2] = GEN11_GRDOM_VECS3,
 423			[VECS3] = GEN11_GRDOM_VECS4,
 424			[CCS0]  = GEN11_GRDOM_RENDER,
 425			[CCS1]  = GEN11_GRDOM_RENDER,
 426			[CCS2]  = GEN11_GRDOM_RENDER,
 427			[CCS3]  = GEN11_GRDOM_RENDER,
 428			[GSC0]  = GEN12_GRDOM_GSC,
 429		};
 430		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 431			   !engine_reset_domains[id]);
 432		reset_domain = engine_reset_domains[id];
 433	} else {
 434		static const u32 engine_reset_domains[] = {
 435			[RCS0]  = GEN6_GRDOM_RENDER,
 436			[BCS0]  = GEN6_GRDOM_BLT,
 437			[VCS0]  = GEN6_GRDOM_MEDIA,
 438			[VCS1]  = GEN8_GRDOM_MEDIA2,
 439			[VECS0] = GEN6_GRDOM_VECS,
 440		};
 441		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 442			   !engine_reset_domains[id]);
 443		reset_domain = engine_reset_domains[id];
 444	}
 445
 446	return reset_domain;
 447}
 448
 449static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
 450			      u8 logical_instance)
 451{
 452	const struct engine_info *info = &intel_engines[id];
 453	struct drm_i915_private *i915 = gt->i915;
 454	struct intel_engine_cs *engine;
 455	u8 guc_class;
 456
 457	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
 458	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
 459	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
 460	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
 461
 462	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
 463		return -EINVAL;
 464
 465	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
 466		return -EINVAL;
 467
 468	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
 469		return -EINVAL;
 470
 471	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
 472		return -EINVAL;
 473
 474	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
 475	if (!engine)
 476		return -ENOMEM;
 477
 478	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
 479
 480	INIT_LIST_HEAD(&engine->pinned_contexts_list);
 481	engine->id = id;
 482	engine->legacy_idx = INVALID_ENGINE;
 483	engine->mask = BIT(id);
 484	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
 485						id);
 486	engine->i915 = i915;
 487	engine->gt = gt;
 488	engine->uncore = gt->uncore;
 489	guc_class = engine_class_to_guc_class(info->class);
 490	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
 491	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
 492
 493	engine->irq_handler = nop_irq_handler;
 494
 495	engine->class = info->class;
 496	engine->instance = info->instance;
 497	engine->logical_mask = BIT(logical_instance);
 498	__sprint_engine_name(engine);
 499
 500	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
 501	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
 502	     engine->class == RENDER_CLASS)
 503		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
 504
 505	/* features common between engines sharing EUs */
 506	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
 507		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
 508		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
 509	}
 510
 511	engine->props.heartbeat_interval_ms =
 512		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
 513	engine->props.max_busywait_duration_ns =
 514		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
 515	engine->props.preempt_timeout_ms =
 516		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
 517	engine->props.stop_timeout_ms =
 518		CONFIG_DRM_I915_STOP_TIMEOUT;
 519	engine->props.timeslice_duration_ms =
 520		CONFIG_DRM_I915_TIMESLICE_DURATION;
 521
 522	/*
 523	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
 524	 * some compute workloads run quite long threads. That means they get
 525	 * reset due to not pre-empting in a timely manner. So, bump the
 526	 * pre-emption timeout value to be much higher for compute engines.
 527	 */
 528	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
 529		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
 530
 531	/* Cap properties according to any system limits */
 532#define CLAMP_PROP(field) \
 533	do { \
 534		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
 535		if (clamp != engine->props.field) { \
 536			drm_notice(&engine->i915->drm, \
 537				   "Warning, clamping %s to %lld to prevent overflow\n", \
 538				   #field, clamp); \
 539			engine->props.field = clamp; \
 540		} \
 541	} while (0)
 542
 543	CLAMP_PROP(heartbeat_interval_ms);
 544	CLAMP_PROP(max_busywait_duration_ns);
 545	CLAMP_PROP(preempt_timeout_ms);
 546	CLAMP_PROP(stop_timeout_ms);
 547	CLAMP_PROP(timeslice_duration_ms);
 548
 549#undef CLAMP_PROP
 550
 551	engine->defaults = engine->props; /* never to change again */
 552
 553	engine->context_size = intel_engine_context_size(gt, engine->class);
 554	if (WARN_ON(engine->context_size > BIT(20)))
 555		engine->context_size = 0;
 556	if (engine->context_size)
 557		DRIVER_CAPS(i915)->has_logical_contexts = true;
 558
 559	ewma__engine_latency_init(&engine->latency);
 560	seqcount_init(&engine->stats.execlists.lock);
 561
 562	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
 563
 564	/* Scrub mmio state on takeover */
 565	intel_engine_sanitize_mmio(engine);
 566
 567	gt->engine_class[info->class][info->instance] = engine;
 568	gt->engine[id] = engine;
 569
 570	return 0;
 571}
 572
 573u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
 574{
 575	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 576
 577	return value;
 578}
 579
 580u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
 581{
 582	value = min(value, jiffies_to_nsecs(2));
 583
 584	return value;
 585}
 586
 587u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
 588{
 589	/*
 590	 * NB: The GuC API only supports 32bit values. However, the limit is further
 591	 * reduced due to internal calculations which would otherwise overflow.
 592	 */
 593	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
 594		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
 595
 596	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 597
 598	return value;
 599}
 600
 601u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
 602{
 603	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 604
 605	return value;
 606}
 607
 608u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
 609{
 610	/*
 611	 * NB: The GuC API only supports 32bit values. However, the limit is further
 612	 * reduced due to internal calculations which would otherwise overflow.
 613	 */
 614	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
 615		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
 616
 617	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 618
 619	return value;
 620}
 621
 622static void __setup_engine_capabilities(struct intel_engine_cs *engine)
 623{
 624	struct drm_i915_private *i915 = engine->i915;
 625
 626	if (engine->class == VIDEO_DECODE_CLASS) {
 627		/*
 628		 * HEVC support is present on first engine instance
 629		 * before Gen11 and on all instances afterwards.
 630		 */
 631		if (GRAPHICS_VER(i915) >= 11 ||
 632		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 633			engine->uabi_capabilities |=
 634				I915_VIDEO_CLASS_CAPABILITY_HEVC;
 635
 636		/*
 637		 * SFC block is present only on even logical engine
 638		 * instances.
 639		 */
 640		if ((GRAPHICS_VER(i915) >= 11 &&
 641		     (engine->gt->info.vdbox_sfc_access &
 642		      BIT(engine->instance))) ||
 643		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 644			engine->uabi_capabilities |=
 645				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 646	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
 647		if (GRAPHICS_VER(i915) >= 9 &&
 648		    engine->gt->info.sfc_mask & BIT(engine->instance))
 649			engine->uabi_capabilities |=
 650				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 651	}
 652}
 653
 654static void intel_setup_engine_capabilities(struct intel_gt *gt)
 655{
 656	struct intel_engine_cs *engine;
 657	enum intel_engine_id id;
 658
 659	for_each_engine(engine, gt, id)
 660		__setup_engine_capabilities(engine);
 661}
 662
 663/**
 664 * intel_engines_release() - free the resources allocated for Command Streamers
 665 * @gt: pointer to struct intel_gt
 666 */
 667void intel_engines_release(struct intel_gt *gt)
 668{
 669	struct intel_engine_cs *engine;
 670	enum intel_engine_id id;
 671
 672	/*
 673	 * Before we release the resources held by engine, we must be certain
 674	 * that the HW is no longer accessing them -- having the GPU scribble
 675	 * to or read from a page being used for something else causes no end
 676	 * of fun.
 677	 *
 678	 * The GPU should be reset by this point, but assume the worst just
 679	 * in case we aborted before completely initialising the engines.
 680	 */
 681	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
 682	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
 683		__intel_gt_reset(gt, ALL_ENGINES);
 684
 685	/* Decouple the backend; but keep the layout for late GPU resets */
 686	for_each_engine(engine, gt, id) {
 687		if (!engine->release)
 688			continue;
 689
 690		intel_wakeref_wait_for_idle(&engine->wakeref);
 691		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
 692
 693		engine->release(engine);
 694		engine->release = NULL;
 695
 696		memset(&engine->reset, 0, sizeof(engine->reset));
 697	}
 698}
 699
 700void intel_engine_free_request_pool(struct intel_engine_cs *engine)
 701{
 702	if (!engine->request_pool)
 703		return;
 704
 705	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
 706}
 707
 708void intel_engines_free(struct intel_gt *gt)
 709{
 710	struct intel_engine_cs *engine;
 711	enum intel_engine_id id;
 712
 713	/* Free the requests! dma-resv keeps fences around for an eternity */
 714	rcu_barrier();
 715
 716	for_each_engine(engine, gt, id) {
 717		intel_engine_free_request_pool(engine);
 718		kfree(engine);
 719		gt->engine[id] = NULL;
 720	}
 721}
 722
 723static
 724bool gen11_vdbox_has_sfc(struct intel_gt *gt,
 725			 unsigned int physical_vdbox,
 726			 unsigned int logical_vdbox, u16 vdbox_mask)
 727{
 728	struct drm_i915_private *i915 = gt->i915;
 729
 730	/*
 731	 * In Gen11, only even numbered logical VDBOXes are hooked
 732	 * up to an SFC (Scaler & Format Converter) unit.
 733	 * In Gen12, Even numbered physical instance always are connected
 734	 * to an SFC. Odd numbered physical instances have SFC only if
 735	 * previous even instance is fused off.
 736	 *
 737	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
 738	 * in the fuse register that tells us whether a specific SFC is present.
 739	 */
 740	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
 741		return false;
 742	else if (MEDIA_VER(i915) >= 12)
 743		return (physical_vdbox % 2 == 0) ||
 744			!(BIT(physical_vdbox - 1) & vdbox_mask);
 745	else if (MEDIA_VER(i915) == 11)
 746		return logical_vdbox % 2 == 0;
 747
 748	return false;
 749}
 750
 751static void engine_mask_apply_media_fuses(struct intel_gt *gt)
 752{
 753	struct drm_i915_private *i915 = gt->i915;
 754	unsigned int logical_vdbox = 0;
 755	unsigned int i;
 756	u32 media_fuse, fuse1;
 757	u16 vdbox_mask;
 758	u16 vebox_mask;
 759
 760	if (MEDIA_VER(gt->i915) < 11)
 761		return;
 762
 763	/*
 764	 * On newer platforms the fusing register is called 'enable' and has
 765	 * enable semantics, while on older platforms it is called 'disable'
 766	 * and bits have disable semantices.
 767	 */
 768	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
 769	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
 770		media_fuse = ~media_fuse;
 771
 772	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
 773	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
 774		      GEN11_GT_VEBOX_DISABLE_SHIFT;
 775
 776	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
 777		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
 778		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
 779	} else {
 780		gt->info.sfc_mask = ~0;
 781	}
 782
 783	for (i = 0; i < I915_MAX_VCS; i++) {
 784		if (!HAS_ENGINE(gt, _VCS(i))) {
 785			vdbox_mask &= ~BIT(i);
 786			continue;
 787		}
 788
 789		if (!(BIT(i) & vdbox_mask)) {
 790			gt->info.engine_mask &= ~BIT(_VCS(i));
 791			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
 792			continue;
 793		}
 794
 795		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
 796			gt->info.vdbox_sfc_access |= BIT(i);
 797		logical_vdbox++;
 798	}
 799	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
 800		vdbox_mask, VDBOX_MASK(gt));
 801	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
 802
 803	for (i = 0; i < I915_MAX_VECS; i++) {
 804		if (!HAS_ENGINE(gt, _VECS(i))) {
 805			vebox_mask &= ~BIT(i);
 806			continue;
 807		}
 808
 809		if (!(BIT(i) & vebox_mask)) {
 810			gt->info.engine_mask &= ~BIT(_VECS(i));
 811			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
 812		}
 813	}
 814	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
 815		vebox_mask, VEBOX_MASK(gt));
 816	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
 817}
 818
 819static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
 820{
 821	struct drm_i915_private *i915 = gt->i915;
 822	struct intel_gt_info *info = &gt->info;
 823	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
 824	unsigned long ccs_mask;
 825	unsigned int i;
 826
 827	if (GRAPHICS_VER(i915) < 11)
 828		return;
 829
 830	if (hweight32(CCS_MASK(gt)) <= 1)
 831		return;
 832
 833	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
 834						     ss_per_ccs);
 835	/*
 836	 * If all DSS in a quadrant are fused off, the corresponding CCS
 837	 * engine is not available for use.
 838	 */
 839	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
 840		info->engine_mask &= ~BIT(_CCS(i));
 841		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
 842	}
 843}
 844
 845static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
 846{
 847	struct drm_i915_private *i915 = gt->i915;
 848	struct intel_gt_info *info = &gt->info;
 849	unsigned long meml3_mask;
 850	unsigned long quad;
 851
 852	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
 853	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
 854		return;
 855
 856	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
 857	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
 858
 859	/*
 860	 * Link Copy engines may be fused off according to meml3_mask. Each
 861	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
 862	 */
 863	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
 864		unsigned int instance = quad * 2 + 1;
 865		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
 866						   _BCS(instance));
 867
 868		if (mask & info->engine_mask) {
 869			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
 870			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
 871
 872			info->engine_mask &= ~mask;
 873		}
 874	}
 875}
 876
 877/*
 878 * Determine which engines are fused off in our particular hardware.
 879 * Note that we have a catch-22 situation where we need to be able to access
 880 * the blitter forcewake domain to read the engine fuses, but at the same time
 881 * we need to know which engines are available on the system to know which
 882 * forcewake domains are present. We solve this by intializing the forcewake
 883 * domains based on the full engine mask in the platform capabilities before
 884 * calling this function and pruning the domains for fused-off engines
 885 * afterwards.
 886 */
 887static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
 888{
 889	struct intel_gt_info *info = &gt->info;
 890
 891	GEM_BUG_ON(!info->engine_mask);
 892
 893	engine_mask_apply_media_fuses(gt);
 894	engine_mask_apply_compute_fuses(gt);
 895	engine_mask_apply_copy_fuses(gt);
 896
 897	return info->engine_mask;
 898}
 899
 900static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
 901				 u8 class, const u8 *map, u8 num_instances)
 902{
 903	int i, j;
 904	u8 current_logical_id = 0;
 905
 906	for (j = 0; j < num_instances; ++j) {
 907		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
 908			if (!HAS_ENGINE(gt, i) ||
 909			    intel_engines[i].class != class)
 910				continue;
 911
 912			if (intel_engines[i].instance == map[j]) {
 913				logical_ids[intel_engines[i].instance] =
 914					current_logical_id++;
 915				break;
 916			}
 917		}
 918	}
 919}
 920
 921static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
 922{
 923	/*
 924	 * Logical to physical mapping is needed for proper support
 925	 * to split-frame feature.
 926	 */
 927	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
 928		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
 929
 930		populate_logical_ids(gt, logical_ids, class,
 931				     map, ARRAY_SIZE(map));
 932	} else {
 933		int i;
 934		u8 map[MAX_ENGINE_INSTANCE + 1];
 935
 936		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
 937			map[i] = i;
 938		populate_logical_ids(gt, logical_ids, class,
 939				     map, ARRAY_SIZE(map));
 940	}
 941}
 942
 943/**
 944 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
 945 * @gt: pointer to struct intel_gt
 946 *
 947 * Return: non-zero if the initialization failed.
 948 */
 949int intel_engines_init_mmio(struct intel_gt *gt)
 950{
 951	struct drm_i915_private *i915 = gt->i915;
 952	const unsigned int engine_mask = init_engine_mask(gt);
 953	unsigned int mask = 0;
 954	unsigned int i, class;
 955	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
 956	int err;
 957
 958	drm_WARN_ON(&i915->drm, engine_mask == 0);
 959	drm_WARN_ON(&i915->drm, engine_mask &
 960		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
 961
 962	if (i915_inject_probe_failure(i915))
 963		return -ENODEV;
 964
 965	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
 966		setup_logical_ids(gt, logical_ids, class);
 967
 968		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
 969			u8 instance = intel_engines[i].instance;
 970
 971			if (intel_engines[i].class != class ||
 972			    !HAS_ENGINE(gt, i))
 973				continue;
 974
 975			err = intel_engine_setup(gt, i,
 976						 logical_ids[instance]);
 977			if (err)
 978				goto cleanup;
 979
 980			mask |= BIT(i);
 981		}
 982	}
 983
 984	/*
 985	 * Catch failures to update intel_engines table when the new engines
 986	 * are added to the driver by a warning and disabling the forgotten
 987	 * engines.
 988	 */
 989	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
 990		gt->info.engine_mask = mask;
 991
 992	gt->info.num_engines = hweight32(mask);
 993
 994	intel_gt_check_and_clear_faults(gt);
 995
 996	intel_setup_engine_capabilities(gt);
 997
 998	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
 999
1000	return 0;
1001
1002cleanup:
1003	intel_engines_free(gt);
1004	return err;
1005}
1006
1007void intel_engine_init_execlists(struct intel_engine_cs *engine)
1008{
1009	struct intel_engine_execlists * const execlists = &engine->execlists;
1010
1011	execlists->port_mask = 1;
1012	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1013	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1014
1015	memset(execlists->pending, 0, sizeof(execlists->pending));
1016	execlists->active =
1017		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1018}
1019
1020static void cleanup_status_page(struct intel_engine_cs *engine)
1021{
1022	struct i915_vma *vma;
1023
1024	/* Prevent writes into HWSP after returning the page to the system */
1025	intel_engine_set_hwsp_writemask(engine, ~0u);
1026
1027	vma = fetch_and_zero(&engine->status_page.vma);
1028	if (!vma)
1029		return;
1030
1031	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1032		i915_vma_unpin(vma);
1033
1034	i915_gem_object_unpin_map(vma->obj);
1035	i915_gem_object_put(vma->obj);
1036}
1037
1038static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1039				struct i915_gem_ww_ctx *ww,
1040				struct i915_vma *vma)
1041{
1042	unsigned int flags;
1043
1044	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1045		/*
1046		 * On g33, we cannot place HWS above 256MiB, so
1047		 * restrict its pinning to the low mappable arena.
1048		 * Though this restriction is not documented for
1049		 * gen4, gen5, or byt, they also behave similarly
1050		 * and hang if the HWS is placed at the top of the
1051		 * GTT. To generalise, it appears that all !llc
1052		 * platforms have issues with us placing the HWS
1053		 * above the mappable region (even though we never
1054		 * actually map it).
1055		 */
1056		flags = PIN_MAPPABLE;
1057	else
1058		flags = PIN_HIGH;
1059
1060	return i915_ggtt_pin(vma, ww, 0, flags);
1061}
1062
1063static int init_status_page(struct intel_engine_cs *engine)
1064{
1065	struct drm_i915_gem_object *obj;
1066	struct i915_gem_ww_ctx ww;
1067	struct i915_vma *vma;
1068	void *vaddr;
1069	int ret;
1070
1071	INIT_LIST_HEAD(&engine->status_page.timelines);
1072
1073	/*
1074	 * Though the HWS register does support 36bit addresses, historically
1075	 * we have had hangs and corruption reported due to wild writes if
1076	 * the HWS is placed above 4G. We only allow objects to be allocated
1077	 * in GFP_DMA32 for i965, and no earlier physical address users had
1078	 * access to more than 4G.
1079	 */
1080	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1081	if (IS_ERR(obj)) {
1082		drm_err(&engine->i915->drm,
1083			"Failed to allocate status page\n");
1084		return PTR_ERR(obj);
1085	}
1086
1087	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1088
1089	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1090	if (IS_ERR(vma)) {
1091		ret = PTR_ERR(vma);
1092		goto err_put;
1093	}
1094
1095	i915_gem_ww_ctx_init(&ww, true);
1096retry:
1097	ret = i915_gem_object_lock(obj, &ww);
1098	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1099		ret = pin_ggtt_status_page(engine, &ww, vma);
1100	if (ret)
1101		goto err;
1102
1103	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1104	if (IS_ERR(vaddr)) {
1105		ret = PTR_ERR(vaddr);
1106		goto err_unpin;
1107	}
1108
1109	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1110	engine->status_page.vma = vma;
1111
1112err_unpin:
1113	if (ret)
1114		i915_vma_unpin(vma);
1115err:
1116	if (ret == -EDEADLK) {
1117		ret = i915_gem_ww_ctx_backoff(&ww);
1118		if (!ret)
1119			goto retry;
1120	}
1121	i915_gem_ww_ctx_fini(&ww);
1122err_put:
1123	if (ret)
1124		i915_gem_object_put(obj);
1125	return ret;
1126}
1127
1128static int engine_setup_common(struct intel_engine_cs *engine)
1129{
1130	int err;
1131
1132	init_llist_head(&engine->barrier_tasks);
1133
1134	err = init_status_page(engine);
1135	if (err)
1136		return err;
1137
1138	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1139	if (!engine->breadcrumbs) {
1140		err = -ENOMEM;
1141		goto err_status;
1142	}
1143
1144	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1145	if (!engine->sched_engine) {
1146		err = -ENOMEM;
1147		goto err_sched_engine;
1148	}
1149	engine->sched_engine->private_data = engine;
1150
1151	err = intel_engine_init_cmd_parser(engine);
1152	if (err)
1153		goto err_cmd_parser;
1154
1155	intel_engine_init_execlists(engine);
1156	intel_engine_init__pm(engine);
1157	intel_engine_init_retire(engine);
1158
1159	/* Use the whole device by default */
1160	engine->sseu =
1161		intel_sseu_from_device_info(&engine->gt->info.sseu);
1162
1163	intel_engine_init_workarounds(engine);
1164	intel_engine_init_whitelist(engine);
1165	intel_engine_init_ctx_wa(engine);
1166
1167	if (GRAPHICS_VER(engine->i915) >= 12)
1168		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1169
1170	return 0;
1171
1172err_cmd_parser:
1173	i915_sched_engine_put(engine->sched_engine);
1174err_sched_engine:
1175	intel_breadcrumbs_put(engine->breadcrumbs);
1176err_status:
1177	cleanup_status_page(engine);
1178	return err;
1179}
1180
1181struct measure_breadcrumb {
1182	struct i915_request rq;
1183	struct intel_ring ring;
1184	u32 cs[2048];
1185};
1186
1187static int measure_breadcrumb_dw(struct intel_context *ce)
1188{
1189	struct intel_engine_cs *engine = ce->engine;
1190	struct measure_breadcrumb *frame;
1191	int dw;
1192
1193	GEM_BUG_ON(!engine->gt->scratch);
1194
1195	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1196	if (!frame)
1197		return -ENOMEM;
1198
1199	frame->rq.engine = engine;
1200	frame->rq.context = ce;
1201	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1202	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1203
1204	frame->ring.vaddr = frame->cs;
1205	frame->ring.size = sizeof(frame->cs);
1206	frame->ring.wrap =
1207		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1208	frame->ring.effective_size = frame->ring.size;
1209	intel_ring_update_space(&frame->ring);
1210	frame->rq.ring = &frame->ring;
1211
1212	mutex_lock(&ce->timeline->mutex);
1213	spin_lock_irq(&engine->sched_engine->lock);
1214
1215	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1216
1217	spin_unlock_irq(&engine->sched_engine->lock);
1218	mutex_unlock(&ce->timeline->mutex);
1219
1220	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1221
1222	kfree(frame);
1223	return dw;
1224}
1225
1226struct intel_context *
1227intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1228				   struct i915_address_space *vm,
1229				   unsigned int ring_size,
1230				   unsigned int hwsp,
1231				   struct lock_class_key *key,
1232				   const char *name)
1233{
1234	struct intel_context *ce;
1235	int err;
1236
1237	ce = intel_context_create(engine);
1238	if (IS_ERR(ce))
1239		return ce;
1240
1241	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1242	ce->timeline = page_pack_bits(NULL, hwsp);
1243	ce->ring = NULL;
1244	ce->ring_size = ring_size;
1245
1246	i915_vm_put(ce->vm);
1247	ce->vm = i915_vm_get(vm);
1248
1249	err = intel_context_pin(ce); /* perma-pin so it is always available */
1250	if (err) {
1251		intel_context_put(ce);
1252		return ERR_PTR(err);
1253	}
1254
1255	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1256
1257	/*
1258	 * Give our perma-pinned kernel timelines a separate lockdep class,
1259	 * so that we can use them from within the normal user timelines
1260	 * should we need to inject GPU operations during their request
1261	 * construction.
1262	 */
1263	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1264
1265	return ce;
1266}
1267
1268void intel_engine_destroy_pinned_context(struct intel_context *ce)
1269{
1270	struct intel_engine_cs *engine = ce->engine;
1271	struct i915_vma *hwsp = engine->status_page.vma;
1272
1273	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1274
1275	mutex_lock(&hwsp->vm->mutex);
1276	list_del(&ce->timeline->engine_link);
1277	mutex_unlock(&hwsp->vm->mutex);
1278
1279	list_del(&ce->pinned_contexts_link);
1280	intel_context_unpin(ce);
1281	intel_context_put(ce);
1282}
1283
1284static struct intel_context *
1285create_kernel_context(struct intel_engine_cs *engine)
1286{
1287	static struct lock_class_key kernel;
1288
1289	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1290						  I915_GEM_HWS_SEQNO_ADDR,
1291						  &kernel, "kernel_context");
1292}
1293
1294/**
1295 * intel_engines_init_common - initialize cengine state which might require hw access
1296 * @engine: Engine to initialize.
1297 *
1298 * Initializes @engine@ structure members shared between legacy and execlists
1299 * submission modes which do require hardware access.
1300 *
1301 * Typcally done at later stages of submission mode specific engine setup.
1302 *
1303 * Returns zero on success or an error code on failure.
1304 */
1305static int engine_init_common(struct intel_engine_cs *engine)
1306{
1307	struct intel_context *ce;
1308	int ret;
1309
1310	engine->set_default_submission(engine);
1311
1312	/*
1313	 * We may need to do things with the shrinker which
1314	 * require us to immediately switch back to the default
1315	 * context. This can cause a problem as pinning the
1316	 * default context also requires GTT space which may not
1317	 * be available. To avoid this we always pin the default
1318	 * context.
1319	 */
1320	ce = create_kernel_context(engine);
1321	if (IS_ERR(ce))
1322		return PTR_ERR(ce);
1323
1324	ret = measure_breadcrumb_dw(ce);
1325	if (ret < 0)
1326		goto err_context;
1327
1328	engine->emit_fini_breadcrumb_dw = ret;
1329	engine->kernel_context = ce;
1330
1331	return 0;
1332
1333err_context:
1334	intel_engine_destroy_pinned_context(ce);
1335	return ret;
1336}
1337
1338int intel_engines_init(struct intel_gt *gt)
1339{
1340	int (*setup)(struct intel_engine_cs *engine);
1341	struct intel_engine_cs *engine;
1342	enum intel_engine_id id;
1343	int err;
1344
1345	if (intel_uc_uses_guc_submission(&gt->uc)) {
1346		gt->submission_method = INTEL_SUBMISSION_GUC;
1347		setup = intel_guc_submission_setup;
1348	} else if (HAS_EXECLISTS(gt->i915)) {
1349		gt->submission_method = INTEL_SUBMISSION_ELSP;
1350		setup = intel_execlists_submission_setup;
1351	} else {
1352		gt->submission_method = INTEL_SUBMISSION_RING;
1353		setup = intel_ring_submission_setup;
1354	}
1355
1356	for_each_engine(engine, gt, id) {
1357		err = engine_setup_common(engine);
1358		if (err)
1359			return err;
1360
1361		err = setup(engine);
1362		if (err) {
1363			intel_engine_cleanup_common(engine);
1364			return err;
1365		}
1366
1367		/* The backend should now be responsible for cleanup */
1368		GEM_BUG_ON(engine->release == NULL);
1369
1370		err = engine_init_common(engine);
1371		if (err)
1372			return err;
1373
1374		intel_engine_add_user(engine);
1375	}
1376
1377	return 0;
1378}
1379
1380/**
1381 * intel_engines_cleanup_common - cleans up the engine state created by
1382 *                                the common initiailizers.
1383 * @engine: Engine to cleanup.
1384 *
1385 * This cleans up everything created by the common helpers.
1386 */
1387void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1388{
1389	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1390
1391	i915_sched_engine_put(engine->sched_engine);
1392	intel_breadcrumbs_put(engine->breadcrumbs);
1393
1394	intel_engine_fini_retire(engine);
1395	intel_engine_cleanup_cmd_parser(engine);
1396
1397	if (engine->default_state)
1398		fput(engine->default_state);
1399
1400	if (engine->kernel_context)
1401		intel_engine_destroy_pinned_context(engine->kernel_context);
1402
1403	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1404	cleanup_status_page(engine);
1405
1406	intel_wa_list_free(&engine->ctx_wa_list);
1407	intel_wa_list_free(&engine->wa_list);
1408	intel_wa_list_free(&engine->whitelist);
1409}
1410
1411/**
1412 * intel_engine_resume - re-initializes the HW state of the engine
1413 * @engine: Engine to resume.
1414 *
1415 * Returns zero on success or an error code on failure.
1416 */
1417int intel_engine_resume(struct intel_engine_cs *engine)
1418{
1419	intel_engine_apply_workarounds(engine);
1420	intel_engine_apply_whitelist(engine);
1421
1422	return engine->resume(engine);
1423}
1424
1425u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1426{
1427	struct drm_i915_private *i915 = engine->i915;
1428
1429	u64 acthd;
1430
1431	if (GRAPHICS_VER(i915) >= 8)
1432		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1433	else if (GRAPHICS_VER(i915) >= 4)
1434		acthd = ENGINE_READ(engine, RING_ACTHD);
1435	else
1436		acthd = ENGINE_READ(engine, ACTHD);
1437
1438	return acthd;
1439}
1440
1441u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1442{
1443	u64 bbaddr;
1444
1445	if (GRAPHICS_VER(engine->i915) >= 8)
1446		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1447	else
1448		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1449
1450	return bbaddr;
1451}
1452
1453static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1454{
1455	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1456		return 0;
1457
1458	/*
1459	 * If we are doing a normal GPU reset, we can take our time and allow
1460	 * the engine to quiesce. We've stopped submission to the engine, and
1461	 * if we wait long enough an innocent context should complete and
1462	 * leave the engine idle. So they should not be caught unaware by
1463	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1464	 */
1465	return READ_ONCE(engine->props.stop_timeout_ms);
1466}
1467
1468static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1469				  int fast_timeout_us,
1470				  int slow_timeout_ms)
1471{
1472	struct intel_uncore *uncore = engine->uncore;
1473	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1474	int err;
1475
1476	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1477
1478	/*
1479	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1480	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1481	 */
1482	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1483		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1484				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1485
1486	err = __intel_wait_for_register_fw(engine->uncore, mode,
1487					   MODE_IDLE, MODE_IDLE,
1488					   fast_timeout_us,
1489					   slow_timeout_ms,
1490					   NULL);
1491
1492	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1493	intel_uncore_posting_read_fw(uncore, mode);
1494	return err;
1495}
1496
1497int intel_engine_stop_cs(struct intel_engine_cs *engine)
1498{
1499	int err = 0;
1500
1501	if (GRAPHICS_VER(engine->i915) < 3)
1502		return -ENODEV;
1503
1504	ENGINE_TRACE(engine, "\n");
1505	/*
1506	 * TODO: Find out why occasionally stopping the CS times out. Seen
1507	 * especially with gem_eio tests.
1508	 *
1509	 * Occasionally trying to stop the cs times out, but does not adversely
1510	 * affect functionality. The timeout is set as a config parameter that
1511	 * defaults to 100ms. In most cases the follow up operation is to wait
1512	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1513	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1514	 * caused, the caller must check and handle the return from this
1515	 * function.
1516	 */
1517	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1518		ENGINE_TRACE(engine,
1519			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1520			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1521			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1522
1523		/*
1524		 * Sometimes we observe that the idle flag is not
1525		 * set even though the ring is empty. So double
1526		 * check before giving up.
1527		 */
1528		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1529		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1530			err = -ETIMEDOUT;
1531	}
1532
1533	return err;
1534}
1535
1536void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1537{
1538	ENGINE_TRACE(engine, "\n");
1539
1540	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1541}
1542
1543static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1544{
1545	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1546		[RCS0] = MSG_IDLE_CS,
1547		[BCS0] = MSG_IDLE_BCS,
1548		[VCS0] = MSG_IDLE_VCS0,
1549		[VCS1] = MSG_IDLE_VCS1,
1550		[VCS2] = MSG_IDLE_VCS2,
1551		[VCS3] = MSG_IDLE_VCS3,
1552		[VCS4] = MSG_IDLE_VCS4,
1553		[VCS5] = MSG_IDLE_VCS5,
1554		[VCS6] = MSG_IDLE_VCS6,
1555		[VCS7] = MSG_IDLE_VCS7,
1556		[VECS0] = MSG_IDLE_VECS0,
1557		[VECS1] = MSG_IDLE_VECS1,
1558		[VECS2] = MSG_IDLE_VECS2,
1559		[VECS3] = MSG_IDLE_VECS3,
1560		[CCS0] = MSG_IDLE_CS,
1561		[CCS1] = MSG_IDLE_CS,
1562		[CCS2] = MSG_IDLE_CS,
1563		[CCS3] = MSG_IDLE_CS,
1564	};
1565	u32 val;
1566
1567	if (!_reg[engine->id].reg) {
1568		drm_err(&engine->i915->drm,
1569			"MSG IDLE undefined for engine id %u\n", engine->id);
1570		return 0;
1571	}
1572
1573	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1574
1575	/* bits[29:25] & bits[13:9] >> shift */
1576	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1577}
1578
1579static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1580{
1581	int ret;
1582
1583	/* Ensure GPM receives fw up/down after CS is stopped */
1584	udelay(1);
1585
1586	/* Wait for forcewake request to complete in GPM */
1587	ret =  __intel_wait_for_register_fw(gt->uncore,
1588					    GEN9_PWRGT_DOMAIN_STATUS,
1589					    fw_mask, fw_mask, 5000, 0, NULL);
1590
1591	/* Ensure CS receives fw ack from GPM */
1592	udelay(1);
1593
1594	if (ret)
1595		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1596}
1597
1598/*
1599 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1600 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1601 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1602 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1603 * are concerned only with the gt reset here, we use a logical OR of pending
1604 * forcewakeups from all reset domains and then wait for them to complete by
1605 * querying PWRGT_DOMAIN_STATUS.
1606 */
1607void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1608{
1609	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1610
1611	if (fw_pending)
1612		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1613}
1614
1615/* NB: please notice the memset */
1616void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1617			       struct intel_instdone *instdone)
1618{
1619	struct drm_i915_private *i915 = engine->i915;
1620	struct intel_uncore *uncore = engine->uncore;
1621	u32 mmio_base = engine->mmio_base;
1622	int slice;
1623	int subslice;
1624	int iter;
1625
1626	memset(instdone, 0, sizeof(*instdone));
1627
1628	if (GRAPHICS_VER(i915) >= 8) {
1629		instdone->instdone =
1630			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1631
1632		if (engine->id != RCS0)
1633			return;
1634
1635		instdone->slice_common =
1636			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1637		if (GRAPHICS_VER(i915) >= 12) {
1638			instdone->slice_common_extra[0] =
1639				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1640			instdone->slice_common_extra[1] =
1641				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1642		}
1643
1644		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1645			instdone->sampler[slice][subslice] =
1646				intel_gt_mcr_read(engine->gt,
1647						  GEN8_SAMPLER_INSTDONE,
1648						  slice, subslice);
1649			instdone->row[slice][subslice] =
1650				intel_gt_mcr_read(engine->gt,
1651						  GEN8_ROW_INSTDONE,
1652						  slice, subslice);
1653		}
1654
1655		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1656			for_each_ss_steering(iter, engine->gt, slice, subslice)
1657				instdone->geom_svg[slice][subslice] =
1658					intel_gt_mcr_read(engine->gt,
1659							  XEHPG_INSTDONE_GEOM_SVG,
1660							  slice, subslice);
1661		}
1662	} else if (GRAPHICS_VER(i915) >= 7) {
1663		instdone->instdone =
1664			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1665
1666		if (engine->id != RCS0)
1667			return;
1668
1669		instdone->slice_common =
1670			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1671		instdone->sampler[0][0] =
1672			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1673		instdone->row[0][0] =
1674			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1675	} else if (GRAPHICS_VER(i915) >= 4) {
1676		instdone->instdone =
1677			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1678		if (engine->id == RCS0)
1679			/* HACK: Using the wrong struct member */
1680			instdone->slice_common =
1681				intel_uncore_read(uncore, GEN4_INSTDONE1);
1682	} else {
1683		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1684	}
1685}
1686
1687static bool ring_is_idle(struct intel_engine_cs *engine)
1688{
1689	bool idle = true;
1690
1691	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1692		return true;
1693
1694	if (!intel_engine_pm_get_if_awake(engine))
1695		return true;
1696
1697	/* First check that no commands are left in the ring */
1698	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1699	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1700		idle = false;
1701
1702	/* No bit for gen2, so assume the CS parser is idle */
1703	if (GRAPHICS_VER(engine->i915) > 2 &&
1704	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1705		idle = false;
1706
1707	intel_engine_pm_put(engine);
1708
1709	return idle;
1710}
1711
1712void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1713{
1714	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1715
1716	if (!t->callback)
1717		return;
1718
1719	local_bh_disable();
1720	if (tasklet_trylock(t)) {
1721		/* Must wait for any GPU reset in progress. */
1722		if (__tasklet_is_enabled(t))
1723			t->callback(t);
1724		tasklet_unlock(t);
1725	}
1726	local_bh_enable();
1727
1728	/* Synchronise and wait for the tasklet on another CPU */
1729	if (sync)
1730		tasklet_unlock_wait(t);
1731}
1732
1733/**
1734 * intel_engine_is_idle() - Report if the engine has finished process all work
1735 * @engine: the intel_engine_cs
1736 *
1737 * Return true if there are no requests pending, nothing left to be submitted
1738 * to hardware, and that the engine is idle.
1739 */
1740bool intel_engine_is_idle(struct intel_engine_cs *engine)
1741{
1742	/* More white lies, if wedged, hw state is inconsistent */
1743	if (intel_gt_is_wedged(engine->gt))
1744		return true;
1745
1746	if (!intel_engine_pm_is_awake(engine))
1747		return true;
1748
1749	/* Waiting to drain ELSP? */
1750	intel_synchronize_hardirq(engine->i915);
1751	intel_engine_flush_submission(engine);
1752
1753	/* ELSP is empty, but there are ready requests? E.g. after reset */
1754	if (!i915_sched_engine_is_empty(engine->sched_engine))
1755		return false;
1756
1757	/* Ring stopped? */
1758	return ring_is_idle(engine);
1759}
1760
1761bool intel_engines_are_idle(struct intel_gt *gt)
1762{
1763	struct intel_engine_cs *engine;
1764	enum intel_engine_id id;
1765
1766	/*
1767	 * If the driver is wedged, HW state may be very inconsistent and
1768	 * report that it is still busy, even though we have stopped using it.
1769	 */
1770	if (intel_gt_is_wedged(gt))
1771		return true;
1772
1773	/* Already parked (and passed an idleness test); must still be idle */
1774	if (!READ_ONCE(gt->awake))
1775		return true;
1776
1777	for_each_engine(engine, gt, id) {
1778		if (!intel_engine_is_idle(engine))
1779			return false;
1780	}
1781
1782	return true;
1783}
1784
1785bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1786{
1787	if (!engine->irq_enable)
1788		return false;
1789
1790	/* Caller disables interrupts */
1791	spin_lock(engine->gt->irq_lock);
1792	engine->irq_enable(engine);
1793	spin_unlock(engine->gt->irq_lock);
1794
1795	return true;
1796}
1797
1798void intel_engine_irq_disable(struct intel_engine_cs *engine)
1799{
1800	if (!engine->irq_disable)
1801		return;
1802
1803	/* Caller disables interrupts */
1804	spin_lock(engine->gt->irq_lock);
1805	engine->irq_disable(engine);
1806	spin_unlock(engine->gt->irq_lock);
1807}
1808
1809void intel_engines_reset_default_submission(struct intel_gt *gt)
1810{
1811	struct intel_engine_cs *engine;
1812	enum intel_engine_id id;
1813
1814	for_each_engine(engine, gt, id) {
1815		if (engine->sanitize)
1816			engine->sanitize(engine);
1817
1818		engine->set_default_submission(engine);
1819	}
1820}
1821
1822bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1823{
1824	switch (GRAPHICS_VER(engine->i915)) {
1825	case 2:
1826		return false; /* uses physical not virtual addresses */
1827	case 3:
1828		/* maybe only uses physical not virtual addresses */
1829		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1830	case 4:
1831		return !IS_I965G(engine->i915); /* who knows! */
1832	case 6:
1833		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1834	default:
1835		return true;
1836	}
1837}
1838
1839static struct intel_timeline *get_timeline(struct i915_request *rq)
1840{
1841	struct intel_timeline *tl;
1842
1843	/*
1844	 * Even though we are holding the engine->sched_engine->lock here, there
1845	 * is no control over the submission queue per-se and we are
1846	 * inspecting the active state at a random point in time, with an
1847	 * unknown queue. Play safe and make sure the timeline remains valid.
1848	 * (Only being used for pretty printing, one extra kref shouldn't
1849	 * cause a camel stampede!)
1850	 */
1851	rcu_read_lock();
1852	tl = rcu_dereference(rq->timeline);
1853	if (!kref_get_unless_zero(&tl->kref))
1854		tl = NULL;
1855	rcu_read_unlock();
1856
1857	return tl;
1858}
1859
1860static int print_ring(char *buf, int sz, struct i915_request *rq)
1861{
1862	int len = 0;
1863
1864	if (!i915_request_signaled(rq)) {
1865		struct intel_timeline *tl = get_timeline(rq);
1866
1867		len = scnprintf(buf, sz,
1868				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1869				i915_ggtt_offset(rq->ring->vma),
1870				tl ? tl->hwsp_offset : 0,
1871				hwsp_seqno(rq),
1872				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1873						      1000 * 1000));
1874
1875		if (tl)
1876			intel_timeline_put(tl);
1877	}
1878
1879	return len;
1880}
1881
1882static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1883{
1884	const size_t rowsize = 8 * sizeof(u32);
1885	const void *prev = NULL;
1886	bool skip = false;
1887	size_t pos;
1888
1889	for (pos = 0; pos < len; pos += rowsize) {
1890		char line[128];
1891
1892		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1893			if (!skip) {
1894				drm_printf(m, "*\n");
1895				skip = true;
1896			}
1897			continue;
1898		}
1899
1900		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1901						rowsize, sizeof(u32),
1902						line, sizeof(line),
1903						false) >= sizeof(line));
1904		drm_printf(m, "[%04zx] %s\n", pos, line);
1905
1906		prev = buf + pos;
1907		skip = false;
1908	}
1909}
1910
1911static const char *repr_timer(const struct timer_list *t)
1912{
1913	if (!READ_ONCE(t->expires))
1914		return "inactive";
1915
1916	if (timer_pending(t))
1917		return "active";
1918
1919	return "expired";
1920}
1921
1922static void intel_engine_print_registers(struct intel_engine_cs *engine,
1923					 struct drm_printer *m)
1924{
1925	struct drm_i915_private *dev_priv = engine->i915;
1926	struct intel_engine_execlists * const execlists = &engine->execlists;
1927	u64 addr;
1928
1929	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1930		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1931	if (HAS_EXECLISTS(dev_priv)) {
1932		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1933			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1934		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1935			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1936	}
1937	drm_printf(m, "\tRING_START: 0x%08x\n",
1938		   ENGINE_READ(engine, RING_START));
1939	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1940		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1941	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1942		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1943	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1944		   ENGINE_READ(engine, RING_CTL),
1945		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1946	if (GRAPHICS_VER(engine->i915) > 2) {
1947		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1948			   ENGINE_READ(engine, RING_MI_MODE),
1949			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1950	}
1951
1952	if (GRAPHICS_VER(dev_priv) >= 6) {
1953		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1954			   ENGINE_READ(engine, RING_IMR));
1955		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1956			   ENGINE_READ(engine, RING_ESR));
1957		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1958			   ENGINE_READ(engine, RING_EMR));
1959		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1960			   ENGINE_READ(engine, RING_EIR));
1961	}
1962
1963	addr = intel_engine_get_active_head(engine);
1964	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1965		   upper_32_bits(addr), lower_32_bits(addr));
1966	addr = intel_engine_get_last_batch_head(engine);
1967	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1968		   upper_32_bits(addr), lower_32_bits(addr));
1969	if (GRAPHICS_VER(dev_priv) >= 8)
1970		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1971	else if (GRAPHICS_VER(dev_priv) >= 4)
1972		addr = ENGINE_READ(engine, RING_DMA_FADD);
1973	else
1974		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1975	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1976		   upper_32_bits(addr), lower_32_bits(addr));
1977	if (GRAPHICS_VER(dev_priv) >= 4) {
1978		drm_printf(m, "\tIPEIR: 0x%08x\n",
1979			   ENGINE_READ(engine, RING_IPEIR));
1980		drm_printf(m, "\tIPEHR: 0x%08x\n",
1981			   ENGINE_READ(engine, RING_IPEHR));
1982	} else {
1983		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1984		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1985	}
1986
1987	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1988		struct i915_request * const *port, *rq;
1989		const u32 *hws =
1990			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1991		const u8 num_entries = execlists->csb_size;
1992		unsigned int idx;
1993		u8 read, write;
1994
1995		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1996			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1997			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1998			   repr_timer(&engine->execlists.preempt),
1999			   repr_timer(&engine->execlists.timer));
2000
2001		read = execlists->csb_head;
2002		write = READ_ONCE(*execlists->csb_write);
2003
2004		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2005			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2006			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2007			   read, write, num_entries);
2008
2009		if (read >= num_entries)
2010			read = 0;
2011		if (write >= num_entries)
2012			write = 0;
2013		if (read > write)
2014			write += num_entries;
2015		while (read < write) {
2016			idx = ++read % num_entries;
2017			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2018				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2019		}
2020
2021		i915_sched_engine_active_lock_bh(engine->sched_engine);
2022		rcu_read_lock();
2023		for (port = execlists->active; (rq = *port); port++) {
2024			char hdr[160];
2025			int len;
2026
2027			len = scnprintf(hdr, sizeof(hdr),
2028					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2029					(int)(port - execlists->active),
2030					rq->context->lrc.ccid,
2031					intel_context_is_closed(rq->context) ? "!" : "",
2032					intel_context_is_banned(rq->context) ? "*" : "");
2033			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2034			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2035			i915_request_show(m, rq, hdr, 0);
2036		}
2037		for (port = execlists->pending; (rq = *port); port++) {
2038			char hdr[160];
2039			int len;
2040
2041			len = scnprintf(hdr, sizeof(hdr),
2042					"\t\tPending[%d]: ccid:%08x%s%s, ",
2043					(int)(port - execlists->pending),
2044					rq->context->lrc.ccid,
2045					intel_context_is_closed(rq->context) ? "!" : "",
2046					intel_context_is_banned(rq->context) ? "*" : "");
2047			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2048			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2049			i915_request_show(m, rq, hdr, 0);
2050		}
2051		rcu_read_unlock();
2052		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2053	} else if (GRAPHICS_VER(dev_priv) > 6) {
2054		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2055			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2056		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2057			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2058		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2059			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2060	}
2061}
2062
2063static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2064{
2065	struct i915_vma_resource *vma_res = rq->batch_res;
2066	void *ring;
2067	int size;
2068
2069	drm_printf(m,
2070		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2071		   rq->head, rq->postfix, rq->tail,
2072		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2073		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2074
2075	size = rq->tail - rq->head;
2076	if (rq->tail < rq->head)
2077		size += rq->ring->size;
2078
2079	ring = kmalloc(size, GFP_ATOMIC);
2080	if (ring) {
2081		const void *vaddr = rq->ring->vaddr;
2082		unsigned int head = rq->head;
2083		unsigned int len = 0;
2084
2085		if (rq->tail < head) {
2086			len = rq->ring->size - head;
2087			memcpy(ring, vaddr + head, len);
2088			head = 0;
2089		}
2090		memcpy(ring + len, vaddr + head, size - len);
2091
2092		hexdump(m, ring, size);
2093		kfree(ring);
2094	}
2095}
2096
2097static unsigned long read_ul(void *p, size_t x)
2098{
2099	return *(unsigned long *)(p + x);
2100}
2101
2102static void print_properties(struct intel_engine_cs *engine,
2103			     struct drm_printer *m)
2104{
2105	static const struct pmap {
2106		size_t offset;
2107		const char *name;
2108	} props[] = {
2109#define P(x) { \
2110	.offset = offsetof(typeof(engine->props), x), \
2111	.name = #x \
2112}
2113		P(heartbeat_interval_ms),
2114		P(max_busywait_duration_ns),
2115		P(preempt_timeout_ms),
2116		P(stop_timeout_ms),
2117		P(timeslice_duration_ms),
2118
2119		{},
2120#undef P
2121	};
2122	const struct pmap *p;
2123
2124	drm_printf(m, "\tProperties:\n");
2125	for (p = props; p->name; p++)
2126		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2127			   p->name,
2128			   read_ul(&engine->props, p->offset),
2129			   read_ul(&engine->defaults, p->offset));
2130}
2131
2132static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2133{
2134	struct intel_timeline *tl = get_timeline(rq);
2135
2136	i915_request_show(m, rq, msg, 0);
2137
2138	drm_printf(m, "\t\tring->start:  0x%08x\n",
2139		   i915_ggtt_offset(rq->ring->vma));
2140	drm_printf(m, "\t\tring->head:   0x%08x\n",
2141		   rq->ring->head);
2142	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2143		   rq->ring->tail);
2144	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2145		   rq->ring->emit);
2146	drm_printf(m, "\t\tring->space:  0x%08x\n",
2147		   rq->ring->space);
2148
2149	if (tl) {
2150		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2151			   tl->hwsp_offset);
2152		intel_timeline_put(tl);
2153	}
2154
2155	print_request_ring(m, rq);
2156
2157	if (rq->context->lrc_reg_state) {
2158		drm_printf(m, "Logical Ring Context:\n");
2159		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2160	}
2161}
2162
2163void intel_engine_dump_active_requests(struct list_head *requests,
2164				       struct i915_request *hung_rq,
2165				       struct drm_printer *m)
2166{
2167	struct i915_request *rq;
2168	const char *msg;
2169	enum i915_request_state state;
2170
2171	list_for_each_entry(rq, requests, sched.link) {
2172		if (rq == hung_rq)
2173			continue;
2174
2175		state = i915_test_request_state(rq);
2176		if (state < I915_REQUEST_QUEUED)
2177			continue;
2178
2179		if (state == I915_REQUEST_ACTIVE)
2180			msg = "\t\tactive on engine";
2181		else
2182			msg = "\t\tactive in queue";
2183
2184		engine_dump_request(rq, m, msg);
2185	}
2186}
2187
2188static void engine_dump_active_requests(struct intel_engine_cs *engine,
2189					struct drm_printer *m)
2190{
2191	struct intel_context *hung_ce = NULL;
2192	struct i915_request *hung_rq = NULL;
2193
2194	/*
2195	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2196	 * The GPU is still running so requests are still executing and any
2197	 * hardware reads will be out of date by the time they are reported.
2198	 * But the intention here is just to report an instantaneous snapshot
2199	 * so that's fine.
2200	 */
2201	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2202
2203	drm_printf(m, "\tRequests:\n");
2204
2205	if (hung_rq)
2206		engine_dump_request(hung_rq, m, "\t\thung");
2207	else if (hung_ce)
2208		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2209
2210	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2211		intel_guc_dump_active_requests(engine, hung_rq, m);
2212	else
2213		intel_execlists_dump_active_requests(engine, hung_rq, m);
2214
2215	if (hung_rq)
2216		i915_request_put(hung_rq);
2217}
2218
2219void intel_engine_dump(struct intel_engine_cs *engine,
2220		       struct drm_printer *m,
2221		       const char *header, ...)
2222{
2223	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2224	struct i915_request *rq;
2225	intel_wakeref_t wakeref;
2226	ktime_t dummy;
2227
2228	if (header) {
2229		va_list ap;
2230
2231		va_start(ap, header);
2232		drm_vprintf(m, header, &ap);
2233		va_end(ap);
2234	}
2235
2236	if (intel_gt_is_wedged(engine->gt))
2237		drm_printf(m, "*** WEDGED ***\n");
2238
2239	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2240	drm_printf(m, "\tBarriers?: %s\n",
2241		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2242	drm_printf(m, "\tLatency: %luus\n",
2243		   ewma__engine_latency_read(&engine->latency));
2244	if (intel_engine_supports_stats(engine))
2245		drm_printf(m, "\tRuntime: %llums\n",
2246			   ktime_to_ms(intel_engine_get_busy_time(engine,
2247								  &dummy)));
2248	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2249		   engine->fw_domain, READ_ONCE(engine->fw_active));
2250
2251	rcu_read_lock();
2252	rq = READ_ONCE(engine->heartbeat.systole);
2253	if (rq)
2254		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2255			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2256	rcu_read_unlock();
2257	drm_printf(m, "\tReset count: %d (global %d)\n",
2258		   i915_reset_engine_count(error, engine),
2259		   i915_reset_count(error));
2260	print_properties(engine, m);
2261
2262	engine_dump_active_requests(engine, m);
2263
2264	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2265	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2266	if (wakeref) {
2267		intel_engine_print_registers(engine, m);
2268		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2269	} else {
2270		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2271	}
2272
2273	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2274
2275	drm_printf(m, "HWSP:\n");
2276	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2277
2278	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2279
2280	intel_engine_print_breadcrumbs(engine, m);
2281}
2282
2283/**
2284 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2285 * @engine: engine to report on
2286 * @now: monotonic timestamp of sampling
2287 *
2288 * Returns accumulated time @engine was busy since engine stats were enabled.
2289 */
2290ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2291{
2292	return engine->busyness(engine, now);
2293}
2294
2295struct intel_context *
2296intel_engine_create_virtual(struct intel_engine_cs **siblings,
2297			    unsigned int count, unsigned long flags)
2298{
2299	if (count == 0)
2300		return ERR_PTR(-EINVAL);
2301
2302	if (count == 1 && !(flags & FORCE_VIRTUAL))
2303		return intel_context_create(siblings[0]);
2304
2305	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2306	return siblings[0]->cops->create_virtual(siblings, count, flags);
2307}
2308
2309static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2310{
2311	struct i915_request *request, *active = NULL;
2312
2313	/*
2314	 * This search does not work in GuC submission mode. However, the GuC
2315	 * will report the hanging context directly to the driver itself. So
2316	 * the driver should never get here when in GuC mode.
2317	 */
2318	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2319
2320	/*
2321	 * We are called by the error capture, reset and to dump engine
2322	 * state at random points in time. In particular, note that neither is
2323	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2324	 * and we assume that no more writes can happen (we waited long enough
2325	 * for all writes that were in transaction to be flushed) - adding an
2326	 * extra delay for a recent interrupt is pointless. Hence, we do
2327	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2328	 * At all other times, we must assume the GPU is still running, but
2329	 * we only care about the snapshot of this moment.
2330	 */
2331	lockdep_assert_held(&engine->sched_engine->lock);
2332
2333	rcu_read_lock();
2334	request = execlists_active(&engine->execlists);
2335	if (request) {
2336		struct intel_timeline *tl = request->context->timeline;
2337
2338		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2339			if (__i915_request_is_complete(request))
2340				break;
2341
2342			active = request;
2343		}
2344	}
2345	rcu_read_unlock();
2346	if (active)
2347		return active;
2348
2349	list_for_each_entry(request, &engine->sched_engine->requests,
2350			    sched.link) {
2351		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2352			continue;
2353
2354		active = request;
2355		break;
2356	}
2357
2358	return active;
2359}
2360
2361void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2362				  struct intel_context **ce, struct i915_request **rq)
2363{
2364	unsigned long flags;
2365
2366	*ce = intel_engine_get_hung_context(engine);
2367	if (*ce) {
2368		intel_engine_clear_hung_context(engine);
2369
2370		*rq = intel_context_get_active_request(*ce);
2371		return;
2372	}
2373
2374	/*
2375	 * Getting here with GuC enabled means it is a forced error capture
2376	 * with no actual hang. So, no need to attempt the execlist search.
2377	 */
2378	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2379		return;
2380
2381	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2382	*rq = engine_execlist_find_hung_request(engine);
2383	if (*rq)
2384		*rq = i915_request_get_rcu(*rq);
2385	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2386}
2387
2388void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2389{
2390	/*
2391	 * If there are any non-fused-off CCS engines, we need to enable CCS
2392	 * support in the RCU_MODE register.  This only needs to be done once,
2393	 * so for simplicity we'll take care of this in the RCS engine's
2394	 * resume handler; since the RCS and all CCS engines belong to the
2395	 * same reset domain and are reset together, this will also take care
2396	 * of re-applying the setting after i915-triggered resets.
2397	 */
2398	if (!CCS_MASK(engine->gt))
2399		return;
2400
2401	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2402			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2403}
2404
2405#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2406#include "mock_engine.c"
2407#include "selftest_engine.c"
2408#include "selftest_engine_cs.c"
2409#endif