Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Copyright © 2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <drm/drm_print.h>
  26
  27#include "gem/i915_gem_context.h"
  28
  29#include "i915_drv.h"
  30
  31#include "intel_context.h"
  32#include "intel_engine.h"
  33#include "intel_engine_pm.h"
  34#include "intel_engine_user.h"
  35#include "intel_gt.h"
  36#include "intel_gt_requests.h"
  37#include "intel_gt_pm.h"
  38#include "intel_lrc.h"
  39#include "intel_reset.h"
  40#include "intel_ring.h"
  41
  42/* Haswell does have the CXT_SIZE register however it does not appear to be
  43 * valid. Now, docs explain in dwords what is in the context object. The full
  44 * size is 70720 bytes, however, the power context and execlist context will
  45 * never be saved (power context is stored elsewhere, and execlists don't work
  46 * on HSW) - so the final size, including the extra state required for the
  47 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
  48 */
  49#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
  50
  51#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  52#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
  53#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  54#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
  55#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
  56
  57#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
  58
  59#define MAX_MMIO_BASES 3
  60struct engine_info {
  61	unsigned int hw_id;
  62	u8 class;
  63	u8 instance;
  64	/* mmio bases table *must* be sorted in reverse gen order */
  65	struct engine_mmio_base {
  66		u32 gen : 8;
  67		u32 base : 24;
  68	} mmio_bases[MAX_MMIO_BASES];
  69};
  70
  71static const struct engine_info intel_engines[] = {
  72	[RCS0] = {
  73		.hw_id = RCS0_HW,
  74		.class = RENDER_CLASS,
  75		.instance = 0,
  76		.mmio_bases = {
  77			{ .gen = 1, .base = RENDER_RING_BASE }
  78		},
  79	},
  80	[BCS0] = {
  81		.hw_id = BCS0_HW,
  82		.class = COPY_ENGINE_CLASS,
  83		.instance = 0,
  84		.mmio_bases = {
  85			{ .gen = 6, .base = BLT_RING_BASE }
  86		},
  87	},
  88	[VCS0] = {
  89		.hw_id = VCS0_HW,
  90		.class = VIDEO_DECODE_CLASS,
  91		.instance = 0,
  92		.mmio_bases = {
  93			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
  94			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
  95			{ .gen = 4, .base = BSD_RING_BASE }
  96		},
  97	},
  98	[VCS1] = {
  99		.hw_id = VCS1_HW,
 100		.class = VIDEO_DECODE_CLASS,
 101		.instance = 1,
 102		.mmio_bases = {
 103			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
 104			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
 105		},
 106	},
 107	[VCS2] = {
 108		.hw_id = VCS2_HW,
 109		.class = VIDEO_DECODE_CLASS,
 110		.instance = 2,
 111		.mmio_bases = {
 112			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
 113		},
 114	},
 115	[VCS3] = {
 116		.hw_id = VCS3_HW,
 117		.class = VIDEO_DECODE_CLASS,
 118		.instance = 3,
 119		.mmio_bases = {
 120			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
 121		},
 122	},
 123	[VECS0] = {
 124		.hw_id = VECS0_HW,
 125		.class = VIDEO_ENHANCEMENT_CLASS,
 126		.instance = 0,
 127		.mmio_bases = {
 128			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
 129			{ .gen = 7, .base = VEBOX_RING_BASE }
 130		},
 131	},
 132	[VECS1] = {
 133		.hw_id = VECS1_HW,
 134		.class = VIDEO_ENHANCEMENT_CLASS,
 135		.instance = 1,
 136		.mmio_bases = {
 137			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
 138		},
 139	},
 140};
 141
 142/**
 143 * intel_engine_context_size() - return the size of the context for an engine
 144 * @gt: the gt
 145 * @class: engine class
 146 *
 147 * Each engine class may require a different amount of space for a context
 148 * image.
 149 *
 150 * Return: size (in bytes) of an engine class specific context image
 151 *
 152 * Note: this size includes the HWSP, which is part of the context image
 153 * in LRC mode, but does not include the "shared data page" used with
 154 * GuC submission. The caller should account for this if using the GuC.
 155 */
 156u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
 157{
 158	struct intel_uncore *uncore = gt->uncore;
 159	u32 cxt_size;
 160
 161	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
 162
 163	switch (class) {
 164	case RENDER_CLASS:
 165		switch (INTEL_GEN(gt->i915)) {
 166		default:
 167			MISSING_CASE(INTEL_GEN(gt->i915));
 168			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
 169		case 12:
 170		case 11:
 171			return GEN11_LR_CONTEXT_RENDER_SIZE;
 172		case 10:
 173			return GEN10_LR_CONTEXT_RENDER_SIZE;
 174		case 9:
 175			return GEN9_LR_CONTEXT_RENDER_SIZE;
 176		case 8:
 177			return GEN8_LR_CONTEXT_RENDER_SIZE;
 178		case 7:
 179			if (IS_HASWELL(gt->i915))
 180				return HSW_CXT_TOTAL_SIZE;
 181
 182			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
 183			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
 184					PAGE_SIZE);
 185		case 6:
 186			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
 187			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
 188					PAGE_SIZE);
 189		case 5:
 190		case 4:
 191			/*
 192			 * There is a discrepancy here between the size reported
 193			 * by the register and the size of the context layout
 194			 * in the docs. Both are described as authorative!
 195			 *
 196			 * The discrepancy is on the order of a few cachelines,
 197			 * but the total is under one page (4k), which is our
 198			 * minimum allocation anyway so it should all come
 199			 * out in the wash.
 200			 */
 201			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
 202			drm_dbg(&gt->i915->drm,
 203				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
 204				INTEL_GEN(gt->i915), cxt_size * 64,
 205				cxt_size - 1);
 206			return round_up(cxt_size * 64, PAGE_SIZE);
 207		case 3:
 208		case 2:
 209		/* For the special day when i810 gets merged. */
 210		case 1:
 211			return 0;
 212		}
 213		break;
 214	default:
 215		MISSING_CASE(class);
 216		fallthrough;
 217	case VIDEO_DECODE_CLASS:
 218	case VIDEO_ENHANCEMENT_CLASS:
 219	case COPY_ENGINE_CLASS:
 220		if (INTEL_GEN(gt->i915) < 8)
 221			return 0;
 222		return GEN8_LR_CONTEXT_OTHER_SIZE;
 223	}
 224}
 225
 226static u32 __engine_mmio_base(struct drm_i915_private *i915,
 227			      const struct engine_mmio_base *bases)
 228{
 229	int i;
 230
 231	for (i = 0; i < MAX_MMIO_BASES; i++)
 232		if (INTEL_GEN(i915) >= bases[i].gen)
 233			break;
 234
 235	GEM_BUG_ON(i == MAX_MMIO_BASES);
 236	GEM_BUG_ON(!bases[i].base);
 237
 238	return bases[i].base;
 239}
 240
 241static void __sprint_engine_name(struct intel_engine_cs *engine)
 242{
 243	/*
 244	 * Before we know what the uABI name for this engine will be,
 245	 * we still would like to keep track of this engine in the debug logs.
 246	 * We throw in a ' here as a reminder that this isn't its final name.
 247	 */
 248	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
 249			     intel_engine_class_repr(engine->class),
 250			     engine->instance) >= sizeof(engine->name));
 251}
 252
 253void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
 254{
 255	/*
 256	 * Though they added more rings on g4x/ilk, they did not add
 257	 * per-engine HWSTAM until gen6.
 258	 */
 259	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
 260		return;
 261
 262	if (INTEL_GEN(engine->i915) >= 3)
 263		ENGINE_WRITE(engine, RING_HWSTAM, mask);
 264	else
 265		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
 266}
 267
 268static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
 269{
 270	/* Mask off all writes into the unknown HWSP */
 271	intel_engine_set_hwsp_writemask(engine, ~0u);
 272}
 273
 274static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
 275{
 276	const struct engine_info *info = &intel_engines[id];
 277	struct drm_i915_private *i915 = gt->i915;
 278	struct intel_engine_cs *engine;
 279
 280	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
 281	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
 282
 283	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
 284		return -EINVAL;
 285
 286	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
 287		return -EINVAL;
 288
 289	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
 290		return -EINVAL;
 291
 292	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
 293		return -EINVAL;
 294
 295	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
 296	if (!engine)
 297		return -ENOMEM;
 298
 299	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
 300
 301	engine->id = id;
 302	engine->legacy_idx = INVALID_ENGINE;
 303	engine->mask = BIT(id);
 304	engine->i915 = i915;
 305	engine->gt = gt;
 306	engine->uncore = gt->uncore;
 307	engine->hw_id = engine->guc_id = info->hw_id;
 308	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
 309
 310	engine->class = info->class;
 311	engine->instance = info->instance;
 312	__sprint_engine_name(engine);
 313
 314	engine->props.heartbeat_interval_ms =
 315		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
 316	engine->props.max_busywait_duration_ns =
 317		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
 318	engine->props.preempt_timeout_ms =
 319		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
 320	engine->props.stop_timeout_ms =
 321		CONFIG_DRM_I915_STOP_TIMEOUT;
 322	engine->props.timeslice_duration_ms =
 323		CONFIG_DRM_I915_TIMESLICE_DURATION;
 324
 325	/* Override to uninterruptible for OpenCL workloads. */
 326	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
 327		engine->props.preempt_timeout_ms = 0;
 328
 329	engine->defaults = engine->props; /* never to change again */
 330
 331	engine->context_size = intel_engine_context_size(gt, engine->class);
 332	if (WARN_ON(engine->context_size > BIT(20)))
 333		engine->context_size = 0;
 334	if (engine->context_size)
 335		DRIVER_CAPS(i915)->has_logical_contexts = true;
 336
 337	/* Nothing to do here, execute in order of dependencies */
 338	engine->schedule = NULL;
 339
 340	ewma__engine_latency_init(&engine->latency);
 341	seqlock_init(&engine->stats.lock);
 342
 343	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
 344
 345	/* Scrub mmio state on takeover */
 346	intel_engine_sanitize_mmio(engine);
 347
 348	gt->engine_class[info->class][info->instance] = engine;
 349	gt->engine[id] = engine;
 350
 351	return 0;
 352}
 353
 354static void __setup_engine_capabilities(struct intel_engine_cs *engine)
 355{
 356	struct drm_i915_private *i915 = engine->i915;
 357
 358	if (engine->class == VIDEO_DECODE_CLASS) {
 359		/*
 360		 * HEVC support is present on first engine instance
 361		 * before Gen11 and on all instances afterwards.
 362		 */
 363		if (INTEL_GEN(i915) >= 11 ||
 364		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
 365			engine->uabi_capabilities |=
 366				I915_VIDEO_CLASS_CAPABILITY_HEVC;
 367
 368		/*
 369		 * SFC block is present only on even logical engine
 370		 * instances.
 371		 */
 372		if ((INTEL_GEN(i915) >= 11 &&
 373		     engine->gt->info.vdbox_sfc_access & engine->mask) ||
 374		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
 375			engine->uabi_capabilities |=
 376				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 377	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
 378		if (INTEL_GEN(i915) >= 9)
 379			engine->uabi_capabilities |=
 380				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 381	}
 382}
 383
 384static void intel_setup_engine_capabilities(struct intel_gt *gt)
 385{
 386	struct intel_engine_cs *engine;
 387	enum intel_engine_id id;
 388
 389	for_each_engine(engine, gt, id)
 390		__setup_engine_capabilities(engine);
 391}
 392
 393/**
 394 * intel_engines_release() - free the resources allocated for Command Streamers
 395 * @gt: pointer to struct intel_gt
 396 */
 397void intel_engines_release(struct intel_gt *gt)
 398{
 399	struct intel_engine_cs *engine;
 400	enum intel_engine_id id;
 401
 402	/*
 403	 * Before we release the resources held by engine, we must be certain
 404	 * that the HW is no longer accessing them -- having the GPU scribble
 405	 * to or read from a page being used for something else causes no end
 406	 * of fun.
 407	 *
 408	 * The GPU should be reset by this point, but assume the worst just
 409	 * in case we aborted before completely initialising the engines.
 410	 */
 411	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
 412	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
 413		__intel_gt_reset(gt, ALL_ENGINES);
 414
 415	/* Decouple the backend; but keep the layout for late GPU resets */
 416	for_each_engine(engine, gt, id) {
 417		if (!engine->release)
 418			continue;
 419
 420		intel_wakeref_wait_for_idle(&engine->wakeref);
 421		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
 422
 423		engine->release(engine);
 424		engine->release = NULL;
 425
 426		memset(&engine->reset, 0, sizeof(engine->reset));
 427	}
 428}
 429
 430void intel_engine_free_request_pool(struct intel_engine_cs *engine)
 431{
 432	if (!engine->request_pool)
 433		return;
 434
 435	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
 436}
 437
 438void intel_engines_free(struct intel_gt *gt)
 439{
 440	struct intel_engine_cs *engine;
 441	enum intel_engine_id id;
 442
 443	/* Free the requests! dma-resv keeps fences around for an eternity */
 444	rcu_barrier();
 445
 446	for_each_engine(engine, gt, id) {
 447		intel_engine_free_request_pool(engine);
 448		kfree(engine);
 449		gt->engine[id] = NULL;
 450	}
 451}
 452
 453/*
 454 * Determine which engines are fused off in our particular hardware.
 455 * Note that we have a catch-22 situation where we need to be able to access
 456 * the blitter forcewake domain to read the engine fuses, but at the same time
 457 * we need to know which engines are available on the system to know which
 458 * forcewake domains are present. We solve this by intializing the forcewake
 459 * domains based on the full engine mask in the platform capabilities before
 460 * calling this function and pruning the domains for fused-off engines
 461 * afterwards.
 462 */
 463static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
 464{
 465	struct drm_i915_private *i915 = gt->i915;
 466	struct intel_gt_info *info = &gt->info;
 467	struct intel_uncore *uncore = gt->uncore;
 468	unsigned int logical_vdbox = 0;
 469	unsigned int i;
 470	u32 media_fuse;
 471	u16 vdbox_mask;
 472	u16 vebox_mask;
 473
 474	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
 475
 476	if (INTEL_GEN(i915) < 11)
 477		return info->engine_mask;
 478
 479	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
 480
 481	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
 482	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
 483		      GEN11_GT_VEBOX_DISABLE_SHIFT;
 484
 485	for (i = 0; i < I915_MAX_VCS; i++) {
 486		if (!HAS_ENGINE(gt, _VCS(i))) {
 487			vdbox_mask &= ~BIT(i);
 488			continue;
 489		}
 490
 491		if (!(BIT(i) & vdbox_mask)) {
 492			info->engine_mask &= ~BIT(_VCS(i));
 493			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
 494			continue;
 495		}
 496
 497		/*
 498		 * In Gen11, only even numbered logical VDBOXes are
 499		 * hooked up to an SFC (Scaler & Format Converter) unit.
 500		 * In TGL each VDBOX has access to an SFC.
 501		 */
 502		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
 503			gt->info.vdbox_sfc_access |= BIT(i);
 504	}
 505	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
 506		vdbox_mask, VDBOX_MASK(gt));
 507	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
 508
 509	for (i = 0; i < I915_MAX_VECS; i++) {
 510		if (!HAS_ENGINE(gt, _VECS(i))) {
 511			vebox_mask &= ~BIT(i);
 512			continue;
 513		}
 514
 515		if (!(BIT(i) & vebox_mask)) {
 516			info->engine_mask &= ~BIT(_VECS(i));
 517			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
 518		}
 519	}
 520	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
 521		vebox_mask, VEBOX_MASK(gt));
 522	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
 523
 524	return info->engine_mask;
 525}
 526
 527/**
 528 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
 529 * @gt: pointer to struct intel_gt
 530 *
 531 * Return: non-zero if the initialization failed.
 532 */
 533int intel_engines_init_mmio(struct intel_gt *gt)
 534{
 535	struct drm_i915_private *i915 = gt->i915;
 536	const unsigned int engine_mask = init_engine_mask(gt);
 537	unsigned int mask = 0;
 538	unsigned int i;
 539	int err;
 540
 541	drm_WARN_ON(&i915->drm, engine_mask == 0);
 542	drm_WARN_ON(&i915->drm, engine_mask &
 543		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
 544
 545	if (i915_inject_probe_failure(i915))
 546		return -ENODEV;
 547
 548	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
 549		if (!HAS_ENGINE(gt, i))
 550			continue;
 551
 552		err = intel_engine_setup(gt, i);
 553		if (err)
 554			goto cleanup;
 555
 556		mask |= BIT(i);
 557	}
 558
 559	/*
 560	 * Catch failures to update intel_engines table when the new engines
 561	 * are added to the driver by a warning and disabling the forgotten
 562	 * engines.
 563	 */
 564	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
 565		gt->info.engine_mask = mask;
 566
 567	gt->info.num_engines = hweight32(mask);
 568
 569	intel_gt_check_and_clear_faults(gt);
 570
 571	intel_setup_engine_capabilities(gt);
 572
 573	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
 574
 575	return 0;
 576
 577cleanup:
 578	intel_engines_free(gt);
 579	return err;
 580}
 581
 582void intel_engine_init_execlists(struct intel_engine_cs *engine)
 583{
 584	struct intel_engine_execlists * const execlists = &engine->execlists;
 585
 586	execlists->port_mask = 1;
 587	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
 588	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
 589
 590	memset(execlists->pending, 0, sizeof(execlists->pending));
 591	execlists->active =
 592		memset(execlists->inflight, 0, sizeof(execlists->inflight));
 593
 594	execlists->queue_priority_hint = INT_MIN;
 595	execlists->queue = RB_ROOT_CACHED;
 596}
 597
 598static void cleanup_status_page(struct intel_engine_cs *engine)
 599{
 600	struct i915_vma *vma;
 601
 602	/* Prevent writes into HWSP after returning the page to the system */
 603	intel_engine_set_hwsp_writemask(engine, ~0u);
 604
 605	vma = fetch_and_zero(&engine->status_page.vma);
 606	if (!vma)
 607		return;
 608
 609	if (!HWS_NEEDS_PHYSICAL(engine->i915))
 610		i915_vma_unpin(vma);
 611
 612	i915_gem_object_unpin_map(vma->obj);
 613	i915_gem_object_put(vma->obj);
 614}
 615
 616static int pin_ggtt_status_page(struct intel_engine_cs *engine,
 617				struct i915_vma *vma)
 618{
 619	unsigned int flags;
 620
 621	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
 622		/*
 623		 * On g33, we cannot place HWS above 256MiB, so
 624		 * restrict its pinning to the low mappable arena.
 625		 * Though this restriction is not documented for
 626		 * gen4, gen5, or byt, they also behave similarly
 627		 * and hang if the HWS is placed at the top of the
 628		 * GTT. To generalise, it appears that all !llc
 629		 * platforms have issues with us placing the HWS
 630		 * above the mappable region (even though we never
 631		 * actually map it).
 632		 */
 633		flags = PIN_MAPPABLE;
 634	else
 635		flags = PIN_HIGH;
 636
 637	return i915_ggtt_pin(vma, 0, flags);
 638}
 639
 640static int init_status_page(struct intel_engine_cs *engine)
 641{
 642	struct drm_i915_gem_object *obj;
 643	struct i915_vma *vma;
 644	void *vaddr;
 645	int ret;
 646
 647	/*
 648	 * Though the HWS register does support 36bit addresses, historically
 649	 * we have had hangs and corruption reported due to wild writes if
 650	 * the HWS is placed above 4G. We only allow objects to be allocated
 651	 * in GFP_DMA32 for i965, and no earlier physical address users had
 652	 * access to more than 4G.
 653	 */
 654	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
 655	if (IS_ERR(obj)) {
 656		drm_err(&engine->i915->drm,
 657			"Failed to allocate status page\n");
 658		return PTR_ERR(obj);
 659	}
 660
 661	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
 662
 663	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
 664	if (IS_ERR(vma)) {
 665		ret = PTR_ERR(vma);
 666		goto err;
 667	}
 668
 669	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
 670	if (IS_ERR(vaddr)) {
 671		ret = PTR_ERR(vaddr);
 672		goto err;
 673	}
 674
 675	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
 676	engine->status_page.vma = vma;
 677
 678	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
 679		ret = pin_ggtt_status_page(engine, vma);
 680		if (ret)
 681			goto err_unpin;
 682	}
 683
 684	return 0;
 685
 686err_unpin:
 687	i915_gem_object_unpin_map(obj);
 688err:
 689	i915_gem_object_put(obj);
 690	return ret;
 691}
 692
 693static int engine_setup_common(struct intel_engine_cs *engine)
 694{
 695	int err;
 696
 697	init_llist_head(&engine->barrier_tasks);
 698
 699	err = init_status_page(engine);
 700	if (err)
 701		return err;
 702
 703	intel_engine_init_active(engine, ENGINE_PHYSICAL);
 704	intel_engine_init_breadcrumbs(engine);
 705	intel_engine_init_execlists(engine);
 706	intel_engine_init_cmd_parser(engine);
 707	intel_engine_init__pm(engine);
 708	intel_engine_init_retire(engine);
 709
 710	/* Use the whole device by default */
 711	engine->sseu =
 712		intel_sseu_from_device_info(&engine->gt->info.sseu);
 713
 714	intel_engine_init_workarounds(engine);
 715	intel_engine_init_whitelist(engine);
 716	intel_engine_init_ctx_wa(engine);
 717
 718	return 0;
 719}
 720
 721struct measure_breadcrumb {
 722	struct i915_request rq;
 723	struct intel_ring ring;
 724	u32 cs[2048];
 725};
 726
 727static int measure_breadcrumb_dw(struct intel_context *ce)
 728{
 729	struct intel_engine_cs *engine = ce->engine;
 730	struct measure_breadcrumb *frame;
 731	int dw;
 732
 733	GEM_BUG_ON(!engine->gt->scratch);
 734
 735	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
 736	if (!frame)
 737		return -ENOMEM;
 738
 739	frame->rq.engine = engine;
 740	frame->rq.context = ce;
 741	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
 742
 743	frame->ring.vaddr = frame->cs;
 744	frame->ring.size = sizeof(frame->cs);
 745	frame->ring.wrap =
 746		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
 747	frame->ring.effective_size = frame->ring.size;
 748	intel_ring_update_space(&frame->ring);
 749	frame->rq.ring = &frame->ring;
 750
 751	mutex_lock(&ce->timeline->mutex);
 752	spin_lock_irq(&engine->active.lock);
 753
 754	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
 755
 756	spin_unlock_irq(&engine->active.lock);
 757	mutex_unlock(&ce->timeline->mutex);
 758
 759	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
 760
 761	kfree(frame);
 762	return dw;
 763}
 764
 765void
 766intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
 767{
 768	INIT_LIST_HEAD(&engine->active.requests);
 769	INIT_LIST_HEAD(&engine->active.hold);
 770
 771	spin_lock_init(&engine->active.lock);
 772	lockdep_set_subclass(&engine->active.lock, subclass);
 773
 774	/*
 775	 * Due to an interesting quirk in lockdep's internal debug tracking,
 776	 * after setting a subclass we must ensure the lock is used. Otherwise,
 777	 * nr_unused_locks is incremented once too often.
 778	 */
 779#ifdef CONFIG_DEBUG_LOCK_ALLOC
 780	local_irq_disable();
 781	lock_map_acquire(&engine->active.lock.dep_map);
 782	lock_map_release(&engine->active.lock.dep_map);
 783	local_irq_enable();
 784#endif
 785}
 786
 787static struct intel_context *
 788create_kernel_context(struct intel_engine_cs *engine)
 789{
 790	static struct lock_class_key kernel;
 791	struct intel_context *ce;
 792	int err;
 793
 794	ce = intel_context_create(engine);
 795	if (IS_ERR(ce))
 796		return ce;
 797
 798	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
 799
 800	err = intel_context_pin(ce); /* perma-pin so it is always available */
 801	if (err) {
 802		intel_context_put(ce);
 803		return ERR_PTR(err);
 804	}
 805
 806	/*
 807	 * Give our perma-pinned kernel timelines a separate lockdep class,
 808	 * so that we can use them from within the normal user timelines
 809	 * should we need to inject GPU operations during their request
 810	 * construction.
 811	 */
 812	lockdep_set_class(&ce->timeline->mutex, &kernel);
 813
 814	return ce;
 815}
 816
 817/**
 818 * intel_engines_init_common - initialize cengine state which might require hw access
 819 * @engine: Engine to initialize.
 820 *
 821 * Initializes @engine@ structure members shared between legacy and execlists
 822 * submission modes which do require hardware access.
 823 *
 824 * Typcally done at later stages of submission mode specific engine setup.
 825 *
 826 * Returns zero on success or an error code on failure.
 827 */
 828static int engine_init_common(struct intel_engine_cs *engine)
 829{
 830	struct intel_context *ce;
 831	int ret;
 832
 833	engine->set_default_submission(engine);
 834
 835	/*
 836	 * We may need to do things with the shrinker which
 837	 * require us to immediately switch back to the default
 838	 * context. This can cause a problem as pinning the
 839	 * default context also requires GTT space which may not
 840	 * be available. To avoid this we always pin the default
 841	 * context.
 842	 */
 843	ce = create_kernel_context(engine);
 844	if (IS_ERR(ce))
 845		return PTR_ERR(ce);
 846
 847	ret = measure_breadcrumb_dw(ce);
 848	if (ret < 0)
 849		goto err_context;
 850
 851	engine->emit_fini_breadcrumb_dw = ret;
 852	engine->kernel_context = ce;
 853
 854	return 0;
 855
 856err_context:
 857	intel_context_put(ce);
 858	return ret;
 859}
 860
 861int intel_engines_init(struct intel_gt *gt)
 862{
 863	int (*setup)(struct intel_engine_cs *engine);
 864	struct intel_engine_cs *engine;
 865	enum intel_engine_id id;
 866	int err;
 867
 868	if (HAS_EXECLISTS(gt->i915))
 869		setup = intel_execlists_submission_setup;
 870	else
 871		setup = intel_ring_submission_setup;
 872
 873	for_each_engine(engine, gt, id) {
 874		err = engine_setup_common(engine);
 875		if (err)
 876			return err;
 877
 878		err = setup(engine);
 879		if (err)
 880			return err;
 881
 882		err = engine_init_common(engine);
 883		if (err)
 884			return err;
 885
 886		intel_engine_add_user(engine);
 887	}
 888
 889	return 0;
 890}
 891
 892/**
 893 * intel_engines_cleanup_common - cleans up the engine state created by
 894 *                                the common initiailizers.
 895 * @engine: Engine to cleanup.
 896 *
 897 * This cleans up everything created by the common helpers.
 898 */
 899void intel_engine_cleanup_common(struct intel_engine_cs *engine)
 900{
 901	GEM_BUG_ON(!list_empty(&engine->active.requests));
 902	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
 903
 904	cleanup_status_page(engine);
 905
 906	intel_engine_fini_retire(engine);
 907	intel_engine_fini_breadcrumbs(engine);
 908	intel_engine_cleanup_cmd_parser(engine);
 909
 910	if (engine->default_state)
 911		fput(engine->default_state);
 912
 913	if (engine->kernel_context) {
 914		intel_context_unpin(engine->kernel_context);
 915		intel_context_put(engine->kernel_context);
 916	}
 917	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
 918
 919	intel_wa_list_free(&engine->ctx_wa_list);
 920	intel_wa_list_free(&engine->wa_list);
 921	intel_wa_list_free(&engine->whitelist);
 922}
 923
 924/**
 925 * intel_engine_resume - re-initializes the HW state of the engine
 926 * @engine: Engine to resume.
 927 *
 928 * Returns zero on success or an error code on failure.
 929 */
 930int intel_engine_resume(struct intel_engine_cs *engine)
 931{
 932	intel_engine_apply_workarounds(engine);
 933	intel_engine_apply_whitelist(engine);
 934
 935	return engine->resume(engine);
 936}
 937
 938u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
 939{
 940	struct drm_i915_private *i915 = engine->i915;
 941
 942	u64 acthd;
 943
 944	if (INTEL_GEN(i915) >= 8)
 945		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
 946	else if (INTEL_GEN(i915) >= 4)
 947		acthd = ENGINE_READ(engine, RING_ACTHD);
 948	else
 949		acthd = ENGINE_READ(engine, ACTHD);
 950
 951	return acthd;
 952}
 953
 954u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
 955{
 956	u64 bbaddr;
 957
 958	if (INTEL_GEN(engine->i915) >= 8)
 959		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
 960	else
 961		bbaddr = ENGINE_READ(engine, RING_BBADDR);
 962
 963	return bbaddr;
 964}
 965
 966static unsigned long stop_timeout(const struct intel_engine_cs *engine)
 967{
 968	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
 969		return 0;
 970
 971	/*
 972	 * If we are doing a normal GPU reset, we can take our time and allow
 973	 * the engine to quiesce. We've stopped submission to the engine, and
 974	 * if we wait long enough an innocent context should complete and
 975	 * leave the engine idle. So they should not be caught unaware by
 976	 * the forthcoming GPU reset (which usually follows the stop_cs)!
 977	 */
 978	return READ_ONCE(engine->props.stop_timeout_ms);
 979}
 980
 981int intel_engine_stop_cs(struct intel_engine_cs *engine)
 982{
 983	struct intel_uncore *uncore = engine->uncore;
 984	const u32 base = engine->mmio_base;
 985	const i915_reg_t mode = RING_MI_MODE(base);
 986	int err;
 987
 988	if (INTEL_GEN(engine->i915) < 3)
 989		return -ENODEV;
 990
 991	ENGINE_TRACE(engine, "\n");
 992
 993	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
 994
 995	err = 0;
 996	if (__intel_wait_for_register_fw(uncore,
 997					 mode, MODE_IDLE, MODE_IDLE,
 998					 1000, stop_timeout(engine),
 999					 NULL)) {
1000		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1001		err = -ETIMEDOUT;
1002	}
1003
1004	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1005	intel_uncore_posting_read_fw(uncore, mode);
1006
1007	return err;
1008}
1009
1010void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1011{
1012	ENGINE_TRACE(engine, "\n");
1013
1014	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1015}
1016
1017const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1018{
1019	switch (type) {
1020	case I915_CACHE_NONE: return " uncached";
1021	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1022	case I915_CACHE_L3_LLC: return " L3+LLC";
1023	case I915_CACHE_WT: return " WT";
1024	default: return "";
1025	}
1026}
1027
1028static u32
1029read_subslice_reg(const struct intel_engine_cs *engine,
1030		  int slice, int subslice, i915_reg_t reg)
1031{
1032	struct drm_i915_private *i915 = engine->i915;
1033	struct intel_uncore *uncore = engine->uncore;
1034	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1035	enum forcewake_domains fw_domains;
1036
1037	if (INTEL_GEN(i915) >= 11) {
1038		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1039		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1040	} else {
1041		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1042		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1043	}
1044
1045	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1046						    FW_REG_READ);
1047	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1048						     GEN8_MCR_SELECTOR,
1049						     FW_REG_READ | FW_REG_WRITE);
1050
1051	spin_lock_irq(&uncore->lock);
1052	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1053
1054	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1055
1056	mcr &= ~mcr_mask;
1057	mcr |= mcr_ss;
1058	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1059
1060	val = intel_uncore_read_fw(uncore, reg);
1061
1062	mcr &= ~mcr_mask;
1063	mcr |= old_mcr & mcr_mask;
1064
1065	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1066
1067	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1068	spin_unlock_irq(&uncore->lock);
1069
1070	return val;
1071}
1072
1073/* NB: please notice the memset */
1074void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1075			       struct intel_instdone *instdone)
1076{
1077	struct drm_i915_private *i915 = engine->i915;
1078	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1079	struct intel_uncore *uncore = engine->uncore;
1080	u32 mmio_base = engine->mmio_base;
1081	int slice;
1082	int subslice;
1083
1084	memset(instdone, 0, sizeof(*instdone));
1085
1086	switch (INTEL_GEN(i915)) {
1087	default:
1088		instdone->instdone =
1089			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1090
1091		if (engine->id != RCS0)
1092			break;
1093
1094		instdone->slice_common =
1095			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1096		if (INTEL_GEN(i915) >= 12) {
1097			instdone->slice_common_extra[0] =
1098				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1099			instdone->slice_common_extra[1] =
1100				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1101		}
1102		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1103			instdone->sampler[slice][subslice] =
1104				read_subslice_reg(engine, slice, subslice,
1105						  GEN7_SAMPLER_INSTDONE);
1106			instdone->row[slice][subslice] =
1107				read_subslice_reg(engine, slice, subslice,
1108						  GEN7_ROW_INSTDONE);
1109		}
1110		break;
1111	case 7:
1112		instdone->instdone =
1113			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1114
1115		if (engine->id != RCS0)
1116			break;
1117
1118		instdone->slice_common =
1119			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1120		instdone->sampler[0][0] =
1121			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1122		instdone->row[0][0] =
1123			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1124
1125		break;
1126	case 6:
1127	case 5:
1128	case 4:
1129		instdone->instdone =
1130			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1131		if (engine->id == RCS0)
1132			/* HACK: Using the wrong struct member */
1133			instdone->slice_common =
1134				intel_uncore_read(uncore, GEN4_INSTDONE1);
1135		break;
1136	case 3:
1137	case 2:
1138		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1139		break;
1140	}
1141}
1142
1143static bool ring_is_idle(struct intel_engine_cs *engine)
1144{
1145	bool idle = true;
1146
1147	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1148		return true;
1149
1150	if (!intel_engine_pm_get_if_awake(engine))
1151		return true;
1152
1153	/* First check that no commands are left in the ring */
1154	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1155	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1156		idle = false;
1157
1158	/* No bit for gen2, so assume the CS parser is idle */
1159	if (INTEL_GEN(engine->i915) > 2 &&
1160	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1161		idle = false;
1162
1163	intel_engine_pm_put(engine);
1164
1165	return idle;
1166}
1167
1168void intel_engine_flush_submission(struct intel_engine_cs *engine)
1169{
1170	struct tasklet_struct *t = &engine->execlists.tasklet;
1171
1172	if (!t->func)
1173		return;
1174
1175	/* Synchronise and wait for the tasklet on another CPU */
1176	tasklet_kill(t);
1177
1178	/* Having cancelled the tasklet, ensure that is run */
1179	local_bh_disable();
1180	if (tasklet_trylock(t)) {
1181		/* Must wait for any GPU reset in progress. */
1182		if (__tasklet_is_enabled(t))
1183			t->func(t->data);
1184		tasklet_unlock(t);
1185	}
1186	local_bh_enable();
1187}
1188
1189/**
1190 * intel_engine_is_idle() - Report if the engine has finished process all work
1191 * @engine: the intel_engine_cs
1192 *
1193 * Return true if there are no requests pending, nothing left to be submitted
1194 * to hardware, and that the engine is idle.
1195 */
1196bool intel_engine_is_idle(struct intel_engine_cs *engine)
1197{
1198	/* More white lies, if wedged, hw state is inconsistent */
1199	if (intel_gt_is_wedged(engine->gt))
1200		return true;
1201
1202	if (!intel_engine_pm_is_awake(engine))
1203		return true;
1204
1205	/* Waiting to drain ELSP? */
1206	if (execlists_active(&engine->execlists)) {
1207		synchronize_hardirq(engine->i915->drm.pdev->irq);
1208
1209		intel_engine_flush_submission(engine);
1210
1211		if (execlists_active(&engine->execlists))
1212			return false;
1213	}
1214
1215	/* ELSP is empty, but there are ready requests? E.g. after reset */
1216	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1217		return false;
1218
1219	/* Ring stopped? */
1220	return ring_is_idle(engine);
1221}
1222
1223bool intel_engines_are_idle(struct intel_gt *gt)
1224{
1225	struct intel_engine_cs *engine;
1226	enum intel_engine_id id;
1227
1228	/*
1229	 * If the driver is wedged, HW state may be very inconsistent and
1230	 * report that it is still busy, even though we have stopped using it.
1231	 */
1232	if (intel_gt_is_wedged(gt))
1233		return true;
1234
1235	/* Already parked (and passed an idleness test); must still be idle */
1236	if (!READ_ONCE(gt->awake))
1237		return true;
1238
1239	for_each_engine(engine, gt, id) {
1240		if (!intel_engine_is_idle(engine))
1241			return false;
1242	}
1243
1244	return true;
1245}
1246
1247void intel_engines_reset_default_submission(struct intel_gt *gt)
1248{
1249	struct intel_engine_cs *engine;
1250	enum intel_engine_id id;
1251
1252	for_each_engine(engine, gt, id)
1253		engine->set_default_submission(engine);
1254}
1255
1256bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1257{
1258	switch (INTEL_GEN(engine->i915)) {
1259	case 2:
1260		return false; /* uses physical not virtual addresses */
1261	case 3:
1262		/* maybe only uses physical not virtual addresses */
1263		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1264	case 4:
1265		return !IS_I965G(engine->i915); /* who knows! */
1266	case 6:
1267		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1268	default:
1269		return true;
1270	}
1271}
1272
1273static int print_sched_attr(const struct i915_sched_attr *attr,
1274			    char *buf, int x, int len)
1275{
1276	if (attr->priority == I915_PRIORITY_INVALID)
1277		return x;
1278
1279	x += snprintf(buf + x, len - x,
1280		      " prio=%d", attr->priority);
1281
1282	return x;
1283}
1284
1285static void print_request(struct drm_printer *m,
1286			  struct i915_request *rq,
1287			  const char *prefix)
1288{
1289	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1290	char buf[80] = "";
1291	int x = 0;
1292
1293	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1294
1295	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1296		   prefix,
1297		   rq->fence.context, rq->fence.seqno,
1298		   i915_request_completed(rq) ? "!" :
1299		   i915_request_started(rq) ? "*" :
1300		   "",
1301		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1302			    &rq->fence.flags) ? "+" :
1303		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1304			    &rq->fence.flags) ? "-" :
1305		   "",
1306		   buf,
1307		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1308		   name);
1309}
1310
1311static struct intel_timeline *get_timeline(struct i915_request *rq)
1312{
1313	struct intel_timeline *tl;
1314
1315	/*
1316	 * Even though we are holding the engine->active.lock here, there
1317	 * is no control over the submission queue per-se and we are
1318	 * inspecting the active state at a random point in time, with an
1319	 * unknown queue. Play safe and make sure the timeline remains valid.
1320	 * (Only being used for pretty printing, one extra kref shouldn't
1321	 * cause a camel stampede!)
1322	 */
1323	rcu_read_lock();
1324	tl = rcu_dereference(rq->timeline);
1325	if (!kref_get_unless_zero(&tl->kref))
1326		tl = NULL;
1327	rcu_read_unlock();
1328
1329	return tl;
1330}
1331
1332static int print_ring(char *buf, int sz, struct i915_request *rq)
1333{
1334	int len = 0;
1335
1336	if (!i915_request_signaled(rq)) {
1337		struct intel_timeline *tl = get_timeline(rq);
1338
1339		len = scnprintf(buf, sz,
1340				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1341				i915_ggtt_offset(rq->ring->vma),
1342				tl ? tl->hwsp_offset : 0,
1343				hwsp_seqno(rq),
1344				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1345						      1000 * 1000));
1346
1347		if (tl)
1348			intel_timeline_put(tl);
1349	}
1350
1351	return len;
1352}
1353
1354static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1355{
1356	const size_t rowsize = 8 * sizeof(u32);
1357	const void *prev = NULL;
1358	bool skip = false;
1359	size_t pos;
1360
1361	for (pos = 0; pos < len; pos += rowsize) {
1362		char line[128];
1363
1364		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1365			if (!skip) {
1366				drm_printf(m, "*\n");
1367				skip = true;
1368			}
1369			continue;
1370		}
1371
1372		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1373						rowsize, sizeof(u32),
1374						line, sizeof(line),
1375						false) >= sizeof(line));
1376		drm_printf(m, "[%04zx] %s\n", pos, line);
1377
1378		prev = buf + pos;
1379		skip = false;
1380	}
1381}
1382
1383static const char *repr_timer(const struct timer_list *t)
1384{
1385	if (!READ_ONCE(t->expires))
1386		return "inactive";
1387
1388	if (timer_pending(t))
1389		return "active";
1390
1391	return "expired";
1392}
1393
1394static void intel_engine_print_registers(struct intel_engine_cs *engine,
1395					 struct drm_printer *m)
1396{
1397	struct drm_i915_private *dev_priv = engine->i915;
1398	struct intel_engine_execlists * const execlists = &engine->execlists;
1399	u64 addr;
1400
1401	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1402		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1403	if (HAS_EXECLISTS(dev_priv)) {
1404		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1405			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1406		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1407			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1408	}
1409	drm_printf(m, "\tRING_START: 0x%08x\n",
1410		   ENGINE_READ(engine, RING_START));
1411	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1412		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1413	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1414		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1415	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1416		   ENGINE_READ(engine, RING_CTL),
1417		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1418	if (INTEL_GEN(engine->i915) > 2) {
1419		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1420			   ENGINE_READ(engine, RING_MI_MODE),
1421			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1422	}
1423
1424	if (INTEL_GEN(dev_priv) >= 6) {
1425		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1426			   ENGINE_READ(engine, RING_IMR));
1427		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1428			   ENGINE_READ(engine, RING_ESR));
1429		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1430			   ENGINE_READ(engine, RING_EMR));
1431		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1432			   ENGINE_READ(engine, RING_EIR));
1433	}
1434
1435	addr = intel_engine_get_active_head(engine);
1436	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1437		   upper_32_bits(addr), lower_32_bits(addr));
1438	addr = intel_engine_get_last_batch_head(engine);
1439	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1440		   upper_32_bits(addr), lower_32_bits(addr));
1441	if (INTEL_GEN(dev_priv) >= 8)
1442		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1443	else if (INTEL_GEN(dev_priv) >= 4)
1444		addr = ENGINE_READ(engine, RING_DMA_FADD);
1445	else
1446		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1447	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1448		   upper_32_bits(addr), lower_32_bits(addr));
1449	if (INTEL_GEN(dev_priv) >= 4) {
1450		drm_printf(m, "\tIPEIR: 0x%08x\n",
1451			   ENGINE_READ(engine, RING_IPEIR));
1452		drm_printf(m, "\tIPEHR: 0x%08x\n",
1453			   ENGINE_READ(engine, RING_IPEHR));
1454	} else {
1455		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1456		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1457	}
1458
1459	if (HAS_EXECLISTS(dev_priv)) {
1460		struct i915_request * const *port, *rq;
1461		const u32 *hws =
1462			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1463		const u8 num_entries = execlists->csb_size;
1464		unsigned int idx;
1465		u8 read, write;
1466
1467		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1468			   yesno(test_bit(TASKLET_STATE_SCHED,
1469					  &engine->execlists.tasklet.state)),
1470			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1471			   repr_timer(&engine->execlists.preempt),
1472			   repr_timer(&engine->execlists.timer));
1473
1474		read = execlists->csb_head;
1475		write = READ_ONCE(*execlists->csb_write);
1476
1477		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1478			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1479			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1480			   read, write, num_entries);
1481
1482		if (read >= num_entries)
1483			read = 0;
1484		if (write >= num_entries)
1485			write = 0;
1486		if (read > write)
1487			write += num_entries;
1488		while (read < write) {
1489			idx = ++read % num_entries;
1490			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1491				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1492		}
1493
1494		execlists_active_lock_bh(execlists);
1495		rcu_read_lock();
1496		for (port = execlists->active; (rq = *port); port++) {
1497			char hdr[160];
1498			int len;
1499
1500			len = scnprintf(hdr, sizeof(hdr),
1501					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1502					(int)(port - execlists->active),
1503					rq->context->lrc.ccid,
1504					intel_context_is_closed(rq->context) ? "!" : "",
1505					intel_context_is_banned(rq->context) ? "*" : "");
1506			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1507			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1508			print_request(m, rq, hdr);
1509		}
1510		for (port = execlists->pending; (rq = *port); port++) {
1511			char hdr[160];
1512			int len;
1513
1514			len = scnprintf(hdr, sizeof(hdr),
1515					"\t\tPending[%d]: ccid:%08x%s%s, ",
1516					(int)(port - execlists->pending),
1517					rq->context->lrc.ccid,
1518					intel_context_is_closed(rq->context) ? "!" : "",
1519					intel_context_is_banned(rq->context) ? "*" : "");
1520			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1521			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1522			print_request(m, rq, hdr);
1523		}
1524		rcu_read_unlock();
1525		execlists_active_unlock_bh(execlists);
1526	} else if (INTEL_GEN(dev_priv) > 6) {
1527		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1528			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1529		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1530			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1531		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1532			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1533	}
1534}
1535
1536static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1537{
1538	void *ring;
1539	int size;
1540
1541	drm_printf(m,
1542		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1543		   rq->head, rq->postfix, rq->tail,
1544		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1545		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1546
1547	size = rq->tail - rq->head;
1548	if (rq->tail < rq->head)
1549		size += rq->ring->size;
1550
1551	ring = kmalloc(size, GFP_ATOMIC);
1552	if (ring) {
1553		const void *vaddr = rq->ring->vaddr;
1554		unsigned int head = rq->head;
1555		unsigned int len = 0;
1556
1557		if (rq->tail < head) {
1558			len = rq->ring->size - head;
1559			memcpy(ring, vaddr + head, len);
1560			head = 0;
1561		}
1562		memcpy(ring + len, vaddr + head, size - len);
1563
1564		hexdump(m, ring, size);
1565		kfree(ring);
1566	}
1567}
1568
1569static unsigned long list_count(struct list_head *list)
1570{
1571	struct list_head *pos;
1572	unsigned long count = 0;
1573
1574	list_for_each(pos, list)
1575		count++;
1576
1577	return count;
1578}
1579
1580void intel_engine_dump(struct intel_engine_cs *engine,
1581		       struct drm_printer *m,
1582		       const char *header, ...)
1583{
1584	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1585	struct i915_request *rq;
1586	intel_wakeref_t wakeref;
1587	unsigned long flags;
1588	ktime_t dummy;
1589
1590	if (header) {
1591		va_list ap;
1592
1593		va_start(ap, header);
1594		drm_vprintf(m, header, &ap);
1595		va_end(ap);
1596	}
1597
1598	if (intel_gt_is_wedged(engine->gt))
1599		drm_printf(m, "*** WEDGED ***\n");
1600
1601	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1602	drm_printf(m, "\tBarriers?: %s\n",
1603		   yesno(!llist_empty(&engine->barrier_tasks)));
1604	drm_printf(m, "\tLatency: %luus\n",
1605		   ewma__engine_latency_read(&engine->latency));
1606	if (intel_engine_supports_stats(engine))
1607		drm_printf(m, "\tRuntime: %llums\n",
1608			   ktime_to_ms(intel_engine_get_busy_time(engine,
1609								  &dummy)));
1610	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1611		   engine->fw_domain, atomic_read(&engine->fw_active));
1612
1613	rcu_read_lock();
1614	rq = READ_ONCE(engine->heartbeat.systole);
1615	if (rq)
1616		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1617			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1618	rcu_read_unlock();
1619	drm_printf(m, "\tReset count: %d (global %d)\n",
1620		   i915_reset_engine_count(error, engine),
1621		   i915_reset_count(error));
1622
1623	drm_printf(m, "\tRequests:\n");
1624
1625	spin_lock_irqsave(&engine->active.lock, flags);
1626	rq = intel_engine_find_active_request(engine);
1627	if (rq) {
1628		struct intel_timeline *tl = get_timeline(rq);
1629
1630		print_request(m, rq, "\t\tactive ");
1631
1632		drm_printf(m, "\t\tring->start:  0x%08x\n",
1633			   i915_ggtt_offset(rq->ring->vma));
1634		drm_printf(m, "\t\tring->head:   0x%08x\n",
1635			   rq->ring->head);
1636		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1637			   rq->ring->tail);
1638		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1639			   rq->ring->emit);
1640		drm_printf(m, "\t\tring->space:  0x%08x\n",
1641			   rq->ring->space);
1642
1643		if (tl) {
1644			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1645				   tl->hwsp_offset);
1646			intel_timeline_put(tl);
1647		}
1648
1649		print_request_ring(m, rq);
1650
1651		if (rq->context->lrc_reg_state) {
1652			drm_printf(m, "Logical Ring Context:\n");
1653			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1654		}
1655	}
1656	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1657	spin_unlock_irqrestore(&engine->active.lock, flags);
1658
1659	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1660	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1661	if (wakeref) {
1662		intel_engine_print_registers(engine, m);
1663		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1664	} else {
1665		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1666	}
1667
1668	intel_execlists_show_requests(engine, m, print_request, 8);
1669
1670	drm_printf(m, "HWSP:\n");
1671	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1672
1673	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1674
1675	intel_engine_print_breadcrumbs(engine, m);
1676}
1677
1678static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1679					    ktime_t *now)
1680{
1681	ktime_t total = engine->stats.total;
1682
1683	/*
1684	 * If the engine is executing something at the moment
1685	 * add it to the total.
1686	 */
1687	*now = ktime_get();
1688	if (atomic_read(&engine->stats.active))
1689		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1690
1691	return total;
1692}
1693
1694/**
1695 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1696 * @engine: engine to report on
1697 * @now: monotonic timestamp of sampling
1698 *
1699 * Returns accumulated time @engine was busy since engine stats were enabled.
1700 */
1701ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1702{
1703	unsigned int seq;
1704	ktime_t total;
1705
1706	do {
1707		seq = read_seqbegin(&engine->stats.lock);
1708		total = __intel_engine_get_busy_time(engine, now);
1709	} while (read_seqretry(&engine->stats.lock, seq));
1710
1711	return total;
1712}
1713
1714static bool match_ring(struct i915_request *rq)
1715{
1716	u32 ring = ENGINE_READ(rq->engine, RING_START);
1717
1718	return ring == i915_ggtt_offset(rq->ring->vma);
1719}
1720
1721struct i915_request *
1722intel_engine_find_active_request(struct intel_engine_cs *engine)
1723{
1724	struct i915_request *request, *active = NULL;
1725
1726	/*
1727	 * We are called by the error capture, reset and to dump engine
1728	 * state at random points in time. In particular, note that neither is
1729	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1730	 * and we assume that no more writes can happen (we waited long enough
1731	 * for all writes that were in transaction to be flushed) - adding an
1732	 * extra delay for a recent interrupt is pointless. Hence, we do
1733	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1734	 * At all other times, we must assume the GPU is still running, but
1735	 * we only care about the snapshot of this moment.
1736	 */
1737	lockdep_assert_held(&engine->active.lock);
1738
1739	rcu_read_lock();
1740	request = execlists_active(&engine->execlists);
1741	if (request) {
1742		struct intel_timeline *tl = request->context->timeline;
1743
1744		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1745			if (i915_request_completed(request))
1746				break;
1747
1748			active = request;
1749		}
1750	}
1751	rcu_read_unlock();
1752	if (active)
1753		return active;
1754
1755	list_for_each_entry(request, &engine->active.requests, sched.link) {
1756		if (i915_request_completed(request))
1757			continue;
1758
1759		if (!i915_request_started(request))
1760			continue;
1761
1762		/* More than one preemptible request may match! */
1763		if (!match_ring(request))
1764			continue;
1765
1766		active = request;
1767		break;
1768	}
1769
1770	return active;
1771}
1772
1773#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1774#include "mock_engine.c"
1775#include "selftest_engine.c"
1776#include "selftest_engine_cs.c"
1777#endif