Linux Audio

Check our new training course

Loading...
v4.6
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
 
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on MODULE_SIG
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_RSA
  97	tristate "RSA algorithm"
  98	select CRYPTO_AKCIPHER
  99	select CRYPTO_MANAGER
 100	select MPILIB
 101	select ASN1
 102	help
 103	  Generic implementation of the RSA public key algorithm.
 
 
 
 
 
 
 
 
 
 
 104
 105config CRYPTO_MANAGER
 106	tristate "Cryptographic algorithm manager"
 107	select CRYPTO_MANAGER2
 108	help
 109	  Create default cryptographic template instantiations such as
 110	  cbc(aes).
 111
 112config CRYPTO_MANAGER2
 113	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 114	select CRYPTO_AEAD2
 115	select CRYPTO_HASH2
 116	select CRYPTO_BLKCIPHER2
 117	select CRYPTO_AKCIPHER2
 
 
 118
 119config CRYPTO_USER
 120	tristate "Userspace cryptographic algorithm configuration"
 121	depends on NET
 122	select CRYPTO_MANAGER
 123	help
 124	  Userspace configuration for cryptographic instantiations such as
 125	  cbc(aes).
 126
 127config CRYPTO_MANAGER_DISABLE_TESTS
 128	bool "Disable run-time self tests"
 129	default y
 130	depends on CRYPTO_MANAGER2
 131	help
 132	  Disable run-time self tests that normally take place at
 133	  algorithm registration.
 134
 135config CRYPTO_GF128MUL
 136	tristate "GF(2^128) multiplication functions"
 
 137	help
 138	  Efficient table driven implementation of multiplications in the
 139	  field GF(2^128).  This is needed by some cypher modes. This
 140	  option will be selected automatically if you select such a
 141	  cipher mode.  Only select this option by hand if you expect to load
 142	  an external module that requires these functions.
 143
 144config CRYPTO_NULL
 145	tristate "Null algorithms"
 146	select CRYPTO_NULL2
 147	help
 148	  These are 'Null' algorithms, used by IPsec, which do nothing.
 149
 150config CRYPTO_NULL2
 151	tristate
 152	select CRYPTO_ALGAPI2
 153	select CRYPTO_BLKCIPHER2
 154	select CRYPTO_HASH2
 155
 156config CRYPTO_PCRYPT
 157	tristate "Parallel crypto engine"
 158	depends on SMP
 159	select PADATA
 160	select CRYPTO_MANAGER
 161	select CRYPTO_AEAD
 162	help
 163	  This converts an arbitrary crypto algorithm into a parallel
 164	  algorithm that executes in kernel threads.
 165
 166config CRYPTO_WORKQUEUE
 167       tristate
 168
 169config CRYPTO_CRYPTD
 170	tristate "Software async crypto daemon"
 171	select CRYPTO_BLKCIPHER
 172	select CRYPTO_HASH
 173	select CRYPTO_MANAGER
 174	select CRYPTO_WORKQUEUE
 175	help
 176	  This is a generic software asynchronous crypto daemon that
 177	  converts an arbitrary synchronous software crypto algorithm
 178	  into an asynchronous algorithm that executes in a kernel thread.
 179
 180config CRYPTO_MCRYPTD
 181	tristate "Software async multi-buffer crypto daemon"
 182	select CRYPTO_BLKCIPHER
 183	select CRYPTO_HASH
 184	select CRYPTO_MANAGER
 185	select CRYPTO_WORKQUEUE
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  provides the kernel thread to assist multi-buffer crypto
 189	  algorithms for submitting jobs and flushing jobs in multi-buffer
 190	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 191	  in the context of this kernel thread and drivers can post
 192	  their crypto request asynchronously to be processed by this daemon.
 193
 194config CRYPTO_AUTHENC
 195	tristate "Authenc support"
 196	select CRYPTO_AEAD
 197	select CRYPTO_BLKCIPHER
 198	select CRYPTO_MANAGER
 199	select CRYPTO_HASH
 200	select CRYPTO_NULL
 201	help
 202	  Authenc: Combined mode wrapper for IPsec.
 203	  This is required for IPSec.
 
 204
 205config CRYPTO_TEST
 206	tristate "Testing module"
 207	depends on m
 208	select CRYPTO_MANAGER
 209	help
 210	  Quick & dirty crypto test module.
 211
 212config CRYPTO_ABLK_HELPER
 213	tristate
 214	select CRYPTO_CRYPTD
 215
 216config CRYPTO_GLUE_HELPER_X86
 217	tristate
 218	depends on X86
 219	select CRYPTO_ALGAPI
 220
 221config CRYPTO_ENGINE
 222	tristate
 223
 224comment "Authenticated Encryption with Associated Data"
 225
 226config CRYPTO_CCM
 227	tristate "CCM support"
 228	select CRYPTO_CTR
 229	select CRYPTO_AEAD
 230	help
 231	  Support for Counter with CBC MAC. Required for IPsec.
 232
 233config CRYPTO_GCM
 234	tristate "GCM/GMAC support"
 235	select CRYPTO_CTR
 236	select CRYPTO_AEAD
 237	select CRYPTO_GHASH
 238	select CRYPTO_NULL
 239	help
 240	  Support for Galois/Counter Mode (GCM) and Galois Message
 241	  Authentication Code (GMAC). Required for IPSec.
 242
 243config CRYPTO_CHACHA20POLY1305
 244	tristate "ChaCha20-Poly1305 AEAD support"
 245	select CRYPTO_CHACHA20
 246	select CRYPTO_POLY1305
 247	select CRYPTO_AEAD
 248	help
 249	  ChaCha20-Poly1305 AEAD support, RFC7539.
 250
 251	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 252	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 253	  IETF protocols.
 254
 255config CRYPTO_SEQIV
 256	tristate "Sequence Number IV Generator"
 257	select CRYPTO_AEAD
 258	select CRYPTO_BLKCIPHER
 259	select CRYPTO_NULL
 260	select CRYPTO_RNG_DEFAULT
 261	help
 262	  This IV generator generates an IV based on a sequence number by
 263	  xoring it with a salt.  This algorithm is mainly useful for CTR
 264
 265config CRYPTO_ECHAINIV
 266	tristate "Encrypted Chain IV Generator"
 267	select CRYPTO_AEAD
 268	select CRYPTO_NULL
 269	select CRYPTO_RNG_DEFAULT
 270	default m
 271	help
 272	  This IV generator generates an IV based on the encryption of
 273	  a sequence number xored with a salt.  This is the default
 274	  algorithm for CBC.
 275
 276comment "Block modes"
 277
 278config CRYPTO_CBC
 279	tristate "CBC support"
 280	select CRYPTO_BLKCIPHER
 281	select CRYPTO_MANAGER
 282	help
 283	  CBC: Cipher Block Chaining mode
 284	  This block cipher algorithm is required for IPSec.
 285
 286config CRYPTO_CTR
 287	tristate "CTR support"
 288	select CRYPTO_BLKCIPHER
 289	select CRYPTO_SEQIV
 290	select CRYPTO_MANAGER
 
 
 291	help
 292	  CTR: Counter mode
 293	  This block cipher algorithm is required for IPSec.
 294
 295config CRYPTO_CTS
 296	tristate "CTS support"
 297	select CRYPTO_BLKCIPHER
 298	help
 299	  CTS: Cipher Text Stealing
 300	  This is the Cipher Text Stealing mode as described by
 301	  Section 8 of rfc2040 and referenced by rfc3962.
 302	  (rfc3962 includes errata information in its Appendix A)
 303	  This mode is required for Kerberos gss mechanism support
 304	  for AES encryption.
 305
 306config CRYPTO_ECB
 307	tristate "ECB support"
 308	select CRYPTO_BLKCIPHER
 309	select CRYPTO_MANAGER
 310	help
 311	  ECB: Electronic CodeBook mode
 312	  This is the simplest block cipher algorithm.  It simply encrypts
 313	  the input block by block.
 314
 315config CRYPTO_LRW
 316	tristate "LRW support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	select CRYPTO_GF128MUL
 320	help
 321	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 322	  narrow block cipher mode for dm-crypt.  Use it with cipher
 323	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 324	  The first 128, 192 or 256 bits in the key are used for AES and the
 325	  rest is used to tie each cipher block to its logical position.
 326
 327config CRYPTO_PCBC
 328	tristate "PCBC support"
 329	select CRYPTO_BLKCIPHER
 330	select CRYPTO_MANAGER
 331	help
 332	  PCBC: Propagating Cipher Block Chaining mode
 333	  This block cipher algorithm is required for RxRPC.
 334
 335config CRYPTO_XTS
 336	tristate "XTS support"
 337	select CRYPTO_BLKCIPHER
 338	select CRYPTO_MANAGER
 339	select CRYPTO_GF128MUL
 340	help
 341	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 342	  key size 256, 384 or 512 bits. This implementation currently
 343	  can't handle a sectorsize which is not a multiple of 16 bytes.
 344
 345config CRYPTO_KEYWRAP
 346	tristate "Key wrapping support"
 347	select CRYPTO_BLKCIPHER
 348	help
 349	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 350	  padding.
 351
 352comment "Hash modes"
 
 
 353
 354config CRYPTO_CMAC
 355	tristate "CMAC support"
 356	select CRYPTO_HASH
 357	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 358	help
 359	  Cipher-based Message Authentication Code (CMAC) specified by
 360	  The National Institute of Standards and Technology (NIST).
 361
 362	  https://tools.ietf.org/html/rfc4493
 363	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 364
 365config CRYPTO_HMAC
 366	tristate "HMAC support"
 367	select CRYPTO_HASH
 368	select CRYPTO_MANAGER
 
 
 
 369	help
 370	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 371	  This is required for IPSec.
 372
 373config CRYPTO_XCBC
 374	tristate "XCBC support"
 375	select CRYPTO_HASH
 376	select CRYPTO_MANAGER
 377	help
 378	  XCBC: Keyed-Hashing with encryption algorithm
 379		http://www.ietf.org/rfc/rfc3566.txt
 380		http://csrc.nist.gov/encryption/modes/proposedmodes/
 381		 xcbc-mac/xcbc-mac-spec.pdf
 382
 383config CRYPTO_VMAC
 384	tristate "VMAC support"
 385	select CRYPTO_HASH
 
 386	select CRYPTO_MANAGER
 
 
 387	help
 388	  VMAC is a message authentication algorithm designed for
 389	  very high speed on 64-bit architectures.
 390
 391	  See also:
 392	  <http://fastcrypto.org/vmac>
 393
 394comment "Digest"
 395
 396config CRYPTO_CRC32C
 397	tristate "CRC32c CRC algorithm"
 398	select CRYPTO_HASH
 399	select CRC32
 400	help
 401	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 402	  by iSCSI for header and data digests and by others.
 403	  See Castagnoli93.  Module will be crc32c.
 404
 405config CRYPTO_CRC32C_INTEL
 406	tristate "CRC32c INTEL hardware acceleration"
 407	depends on X86
 408	select CRYPTO_HASH
 409	help
 410	  In Intel processor with SSE4.2 supported, the processor will
 411	  support CRC32C implementation using hardware accelerated CRC32
 412	  instruction. This option will create 'crc32c-intel' module,
 413	  which will enable any routine to use the CRC32 instruction to
 414	  gain performance compared with software implementation.
 415	  Module will be crc32c-intel.
 416
 417config CRYPTO_CRC32C_SPARC64
 418	tristate "CRC32c CRC algorithm (SPARC64)"
 419	depends on SPARC64
 420	select CRYPTO_HASH
 421	select CRC32
 422	help
 423	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 424	  when available.
 425
 426config CRYPTO_CRC32
 427	tristate "CRC32 CRC algorithm"
 428	select CRYPTO_HASH
 429	select CRC32
 430	help
 431	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 432	  Shash crypto api wrappers to crc32_le function.
 433
 434config CRYPTO_CRC32_PCLMUL
 435	tristate "CRC32 PCLMULQDQ hardware acceleration"
 436	depends on X86
 437	select CRYPTO_HASH
 438	select CRC32
 439	help
 440	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 441	  and PCLMULQDQ supported, the processor will support
 442	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 443	  instruction. This option will create 'crc32-plcmul' module,
 444	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 445	  and gain better performance as compared with the table implementation.
 446
 447config CRYPTO_CRCT10DIF
 448	tristate "CRCT10DIF algorithm"
 449	select CRYPTO_HASH
 450	help
 451	  CRC T10 Data Integrity Field computation is being cast as
 452	  a crypto transform.  This allows for faster crc t10 diff
 453	  transforms to be used if they are available.
 454
 455config CRYPTO_CRCT10DIF_PCLMUL
 456	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 457	depends on X86 && 64BIT && CRC_T10DIF
 458	select CRYPTO_HASH
 459	help
 460	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 461	  CRC T10 DIF PCLMULQDQ computation can be hardware
 462	  accelerated PCLMULQDQ instruction. This option will create
 463	  'crct10dif-plcmul' module, which is faster when computing the
 464	  crct10dif checksum as compared with the generic table implementation.
 465
 466config CRYPTO_GHASH
 467	tristate "GHASH digest algorithm"
 468	select CRYPTO_GF128MUL
 469	select CRYPTO_HASH
 470	help
 471	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 472
 473config CRYPTO_POLY1305
 474	tristate "Poly1305 authenticator algorithm"
 475	select CRYPTO_HASH
 476	help
 477	  Poly1305 authenticator algorithm, RFC7539.
 478
 479	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 480	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 481	  in IETF protocols. This is the portable C implementation of Poly1305.
 
 482
 483config CRYPTO_POLY1305_X86_64
 484	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 485	depends on X86 && 64BIT
 486	select CRYPTO_POLY1305
 487	help
 488	  Poly1305 authenticator algorithm, RFC7539.
 489
 490	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 491	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 492	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 493	  instructions.
 494
 495config CRYPTO_MD4
 496	tristate "MD4 digest algorithm"
 497	select CRYPTO_HASH
 498	help
 499	  MD4 message digest algorithm (RFC1320).
 500
 501config CRYPTO_MD5
 502	tristate "MD5 digest algorithm"
 503	select CRYPTO_HASH
 
 504	help
 505	  MD5 message digest algorithm (RFC1321).
 506
 507config CRYPTO_MD5_OCTEON
 508	tristate "MD5 digest algorithm (OCTEON)"
 509	depends on CPU_CAVIUM_OCTEON
 510	select CRYPTO_MD5
 511	select CRYPTO_HASH
 512	help
 513	  MD5 message digest algorithm (RFC1321) implemented
 514	  using OCTEON crypto instructions, when available.
 515
 516config CRYPTO_MD5_PPC
 517	tristate "MD5 digest algorithm (PPC)"
 518	depends on PPC
 519	select CRYPTO_HASH
 520	help
 521	  MD5 message digest algorithm (RFC1321) implemented
 522	  in PPC assembler.
 523
 524config CRYPTO_MD5_SPARC64
 525	tristate "MD5 digest algorithm (SPARC64)"
 526	depends on SPARC64
 527	select CRYPTO_MD5
 528	select CRYPTO_HASH
 529	help
 530	  MD5 message digest algorithm (RFC1321) implemented
 531	  using sparc64 crypto instructions, when available.
 532
 533config CRYPTO_MICHAEL_MIC
 534	tristate "Michael MIC keyed digest algorithm"
 535	select CRYPTO_HASH
 536	help
 537	  Michael MIC is used for message integrity protection in TKIP
 538	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 539	  should not be used for other purposes because of the weakness
 540	  of the algorithm.
 
 
 
 
 
 541
 542config CRYPTO_RMD128
 543	tristate "RIPEMD-128 digest algorithm"
 544	select CRYPTO_HASH
 
 545	help
 546	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 547
 548	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 549	  be used as a secure replacement for RIPEMD. For other use cases,
 550	  RIPEMD-160 should be used.
 551
 552	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 553	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 554
 555config CRYPTO_RMD160
 556	tristate "RIPEMD-160 digest algorithm"
 557	select CRYPTO_HASH
 558	help
 559	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 560
 561	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 562	  to be used as a secure replacement for the 128-bit hash functions
 563	  MD4, MD5 and it's predecessor RIPEMD
 564	  (not to be confused with RIPEMD-128).
 565
 566	  It's speed is comparable to SHA1 and there are no known attacks
 567	  against RIPEMD-160.
 568
 569	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 570	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 571
 572config CRYPTO_RMD256
 573	tristate "RIPEMD-256 digest algorithm"
 574	select CRYPTO_HASH
 575	help
 576	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 577	  256 bit hash. It is intended for applications that require
 578	  longer hash-results, without needing a larger security level
 579	  (than RIPEMD-128).
 580
 581	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 582	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 583
 584config CRYPTO_RMD320
 585	tristate "RIPEMD-320 digest algorithm"
 586	select CRYPTO_HASH
 587	help
 588	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 589	  320 bit hash. It is intended for applications that require
 590	  longer hash-results, without needing a larger security level
 591	  (than RIPEMD-160).
 592
 593	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 594	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 595
 596config CRYPTO_SHA1
 597	tristate "SHA1 digest algorithm"
 598	select CRYPTO_HASH
 599	help
 600	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 601
 602config CRYPTO_SHA1_SSSE3
 603	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 604	depends on X86 && 64BIT
 605	select CRYPTO_SHA1
 606	select CRYPTO_HASH
 607	help
 608	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 609	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 610	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 611	  when available.
 612
 613config CRYPTO_SHA256_SSSE3
 614	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 615	depends on X86 && 64BIT
 616	select CRYPTO_SHA256
 617	select CRYPTO_HASH
 618	help
 619	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 620	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 621	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 622	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 623	  Instructions) when available.
 624
 625config CRYPTO_SHA512_SSSE3
 626	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 627	depends on X86 && 64BIT
 628	select CRYPTO_SHA512
 629	select CRYPTO_HASH
 630	help
 631	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 632	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 633	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 634	  version 2 (AVX2) instructions, when available.
 635
 636config CRYPTO_SHA1_OCTEON
 637	tristate "SHA1 digest algorithm (OCTEON)"
 638	depends on CPU_CAVIUM_OCTEON
 639	select CRYPTO_SHA1
 640	select CRYPTO_HASH
 641	help
 642	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 643	  using OCTEON crypto instructions, when available.
 644
 645config CRYPTO_SHA1_SPARC64
 646	tristate "SHA1 digest algorithm (SPARC64)"
 647	depends on SPARC64
 648	select CRYPTO_SHA1
 649	select CRYPTO_HASH
 650	help
 651	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 652	  using sparc64 crypto instructions, when available.
 653
 654config CRYPTO_SHA1_PPC
 655	tristate "SHA1 digest algorithm (powerpc)"
 656	depends on PPC
 657	help
 658	  This is the powerpc hardware accelerated implementation of the
 659	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 660
 661config CRYPTO_SHA1_PPC_SPE
 662	tristate "SHA1 digest algorithm (PPC SPE)"
 663	depends on PPC && SPE
 664	help
 665	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 666	  using powerpc SPE SIMD instruction set.
 667
 668config CRYPTO_SHA1_MB
 669	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 670	depends on X86 && 64BIT
 671	select CRYPTO_SHA1
 672	select CRYPTO_HASH
 673	select CRYPTO_MCRYPTD
 674	help
 675	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 676	  using multi-buffer technique.  This algorithm computes on
 677	  multiple data lanes concurrently with SIMD instructions for
 678	  better throughput.  It should not be enabled by default but
 679	  used when there is significant amount of work to keep the keep
 680	  the data lanes filled to get performance benefit.  If the data
 681	  lanes remain unfilled, a flush operation will be initiated to
 682	  process the crypto jobs, adding a slight latency.
 683
 684config CRYPTO_SHA256
 685	tristate "SHA224 and SHA256 digest algorithm"
 686	select CRYPTO_HASH
 687	help
 688	  SHA256 secure hash standard (DFIPS 180-2).
 689
 690	  This version of SHA implements a 256 bit hash with 128 bits of
 691	  security against collision attacks.
 692
 693	  This code also includes SHA-224, a 224 bit hash with 112 bits
 694	  of security against collision attacks.
 695
 696config CRYPTO_SHA256_PPC_SPE
 697	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 698	depends on PPC && SPE
 699	select CRYPTO_SHA256
 700	select CRYPTO_HASH
 701	help
 702	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 703	  implemented using powerpc SPE SIMD instruction set.
 704
 705config CRYPTO_SHA256_OCTEON
 706	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 707	depends on CPU_CAVIUM_OCTEON
 708	select CRYPTO_SHA256
 709	select CRYPTO_HASH
 710	help
 711	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 712	  using OCTEON crypto instructions, when available.
 713
 714config CRYPTO_SHA256_SPARC64
 715	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 716	depends on SPARC64
 717	select CRYPTO_SHA256
 718	select CRYPTO_HASH
 719	help
 720	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 721	  using sparc64 crypto instructions, when available.
 722
 723config CRYPTO_SHA512
 724	tristate "SHA384 and SHA512 digest algorithms"
 725	select CRYPTO_HASH
 
 726	help
 727	  SHA512 secure hash standard (DFIPS 180-2).
 728
 729	  This version of SHA implements a 512 bit hash with 256 bits of
 730	  security against collision attacks.
 731
 732	  This code also includes SHA-384, a 384 bit hash with 192 bits
 733	  of security against collision attacks.
 734
 735config CRYPTO_SHA512_OCTEON
 736	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 737	depends on CPU_CAVIUM_OCTEON
 738	select CRYPTO_SHA512
 739	select CRYPTO_HASH
 740	help
 741	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 742	  using OCTEON crypto instructions, when available.
 743
 744config CRYPTO_SHA512_SPARC64
 745	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 746	depends on SPARC64
 747	select CRYPTO_SHA512
 748	select CRYPTO_HASH
 749	help
 750	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 751	  using sparc64 crypto instructions, when available.
 752
 753config CRYPTO_TGR192
 754	tristate "Tiger digest algorithms"
 755	select CRYPTO_HASH
 
 756	help
 757	  Tiger hash algorithm 192, 160 and 128-bit hashes
 758
 759	  Tiger is a hash function optimized for 64-bit processors while
 760	  still having decent performance on 32-bit processors.
 761	  Tiger was developed by Ross Anderson and Eli Biham.
 762
 763	  See also:
 764	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 765
 766config CRYPTO_WP512
 767	tristate "Whirlpool digest algorithms"
 768	select CRYPTO_HASH
 
 769	help
 770	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 771
 772	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 773	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 774
 775	  See also:
 776	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 777
 778config CRYPTO_GHASH_CLMUL_NI_INTEL
 779	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 780	depends on X86 && 64BIT
 781	select CRYPTO_CRYPTD
 782	help
 783	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 784	  The implementation is accelerated by CLMUL-NI of Intel.
 785
 786comment "Ciphers"
 
 787
 788config CRYPTO_AES
 789	tristate "AES cipher algorithms"
 790	select CRYPTO_ALGAPI
 791	help
 792	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 793	  algorithm.
 794
 795	  Rijndael appears to be consistently a very good performer in
 796	  both hardware and software across a wide range of computing
 797	  environments regardless of its use in feedback or non-feedback
 798	  modes. Its key setup time is excellent, and its key agility is
 799	  good. Rijndael's very low memory requirements make it very well
 800	  suited for restricted-space environments, in which it also
 801	  demonstrates excellent performance. Rijndael's operations are
 802	  among the easiest to defend against power and timing attacks.
 803
 804	  The AES specifies three key sizes: 128, 192 and 256 bits
 805
 806	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 
 807
 808config CRYPTO_AES_586
 809	tristate "AES cipher algorithms (i586)"
 810	depends on (X86 || UML_X86) && !64BIT
 811	select CRYPTO_ALGAPI
 812	select CRYPTO_AES
 813	help
 814	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 815	  algorithm.
 816
 817	  Rijndael appears to be consistently a very good performer in
 818	  both hardware and software across a wide range of computing
 819	  environments regardless of its use in feedback or non-feedback
 820	  modes. Its key setup time is excellent, and its key agility is
 821	  good. Rijndael's very low memory requirements make it very well
 822	  suited for restricted-space environments, in which it also
 823	  demonstrates excellent performance. Rijndael's operations are
 824	  among the easiest to defend against power and timing attacks.
 825
 826	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 827
 828	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 
 
 829
 830config CRYPTO_AES_X86_64
 831	tristate "AES cipher algorithms (x86_64)"
 832	depends on (X86 || UML_X86) && 64BIT
 833	select CRYPTO_ALGAPI
 834	select CRYPTO_AES
 835	help
 836	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 837	  algorithm.
 838
 839	  Rijndael appears to be consistently a very good performer in
 840	  both hardware and software across a wide range of computing
 841	  environments regardless of its use in feedback or non-feedback
 842	  modes. Its key setup time is excellent, and its key agility is
 843	  good. Rijndael's very low memory requirements make it very well
 844	  suited for restricted-space environments, in which it also
 845	  demonstrates excellent performance. Rijndael's operations are
 846	  among the easiest to defend against power and timing attacks.
 847
 848	  The AES specifies three key sizes: 128, 192 and 256 bits
 849
 850	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 851
 852config CRYPTO_AES_NI_INTEL
 853	tristate "AES cipher algorithms (AES-NI)"
 854	depends on X86
 855	select CRYPTO_AES_X86_64 if 64BIT
 856	select CRYPTO_AES_586 if !64BIT
 857	select CRYPTO_CRYPTD
 858	select CRYPTO_ABLK_HELPER
 859	select CRYPTO_ALGAPI
 860	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 861	select CRYPTO_LRW
 862	select CRYPTO_XTS
 863	help
 864	  Use Intel AES-NI instructions for AES algorithm.
 865
 866	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 867	  algorithm.
 868
 869	  Rijndael appears to be consistently a very good performer in
 870	  both hardware and software across a wide range of computing
 871	  environments regardless of its use in feedback or non-feedback
 872	  modes. Its key setup time is excellent, and its key agility is
 873	  good. Rijndael's very low memory requirements make it very well
 874	  suited for restricted-space environments, in which it also
 875	  demonstrates excellent performance. Rijndael's operations are
 876	  among the easiest to defend against power and timing attacks.
 877
 878	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 879
 880	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 881
 882	  In addition to AES cipher algorithm support, the acceleration
 883	  for some popular block cipher mode is supported too, including
 884	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 885	  acceleration for CTR.
 886
 887config CRYPTO_AES_SPARC64
 888	tristate "AES cipher algorithms (SPARC64)"
 889	depends on SPARC64
 890	select CRYPTO_CRYPTD
 891	select CRYPTO_ALGAPI
 
 892	help
 893	  Use SPARC64 crypto opcodes for AES algorithm.
 894
 895	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 896	  algorithm.
 
 
 897
 898	  Rijndael appears to be consistently a very good performer in
 899	  both hardware and software across a wide range of computing
 900	  environments regardless of its use in feedback or non-feedback
 901	  modes. Its key setup time is excellent, and its key agility is
 902	  good. Rijndael's very low memory requirements make it very well
 903	  suited for restricted-space environments, in which it also
 904	  demonstrates excellent performance. Rijndael's operations are
 905	  among the easiest to defend against power and timing attacks.
 906
 907	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 908
 909	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 910
 911	  In addition to AES cipher algorithm support, the acceleration
 912	  for some popular block cipher mode is supported too, including
 913	  ECB and CBC.
 914
 915config CRYPTO_AES_PPC_SPE
 916	tristate "AES cipher algorithms (PPC SPE)"
 917	depends on PPC && SPE
 918	help
 919	  AES cipher algorithms (FIPS-197). Additionally the acceleration
 920	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
 921	  This module should only be used for low power (router) devices
 922	  without hardware AES acceleration (e.g. caam crypto). It reduces the
 923	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
 924	  timining attacks. Nevertheless it might be not as secure as other
 925	  architecture specific assembler implementations that work on 1KB
 926	  tables or 256 bytes S-boxes.
 927
 928config CRYPTO_ANUBIS
 929	tristate "Anubis cipher algorithm"
 930	select CRYPTO_ALGAPI
 
 
 
 931	help
 932	  Anubis cipher algorithm.
 933
 934	  Anubis is a variable key length cipher which can use keys from
 935	  128 bits to 320 bits in length.  It was evaluated as a entrant
 936	  in the NESSIE competition.
 
 
 
 
 
 
 
 
 
 
 937
 938	  See also:
 939	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 940	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 941
 942config CRYPTO_ARC4
 943	tristate "ARC4 cipher algorithm"
 944	select CRYPTO_BLKCIPHER
 
 
 945	help
 946	  ARC4 cipher algorithm.
 947
 948	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 949	  bits in length.  This algorithm is required for driver-based
 950	  WEP, but it should not be for other purposes because of the
 951	  weakness of the algorithm.
 952
 953config CRYPTO_BLOWFISH
 954	tristate "Blowfish cipher algorithm"
 955	select CRYPTO_ALGAPI
 956	select CRYPTO_BLOWFISH_COMMON
 957	help
 958	  Blowfish cipher algorithm, by Bruce Schneier.
 959
 960	  This is a variable key length cipher which can use keys from 32
 961	  bits to 448 bits in length.  It's fast, simple and specifically
 962	  designed for use on "large microprocessors".
 
 963
 964	  See also:
 965	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 
 
 
 966
 967config CRYPTO_BLOWFISH_COMMON
 968	tristate
 
 
 969	help
 970	  Common parts of the Blowfish cipher algorithm shared by the
 971	  generic c and the assembler implementations.
 972
 973	  See also:
 974	  <http://www.schneier.com/blowfish.html>
 975
 976config CRYPTO_BLOWFISH_X86_64
 977	tristate "Blowfish cipher algorithm (x86_64)"
 978	depends on X86 && 64BIT
 979	select CRYPTO_ALGAPI
 980	select CRYPTO_BLOWFISH_COMMON
 981	help
 982	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 983
 984	  This is a variable key length cipher which can use keys from 32
 985	  bits to 448 bits in length.  It's fast, simple and specifically
 986	  designed for use on "large microprocessors".
 987
 988	  See also:
 989	  <http://www.schneier.com/blowfish.html>
 990
 991config CRYPTO_CAMELLIA
 992	tristate "Camellia cipher algorithms"
 993	depends on CRYPTO
 994	select CRYPTO_ALGAPI
 995	help
 996	  Camellia cipher algorithms module.
 997
 998	  Camellia is a symmetric key block cipher developed jointly
 999	  at NTT and Mitsubishi Electric Corporation.
1000
1001	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
1002
1003	  See also:
1004	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1005
1006config CRYPTO_CAMELLIA_X86_64
1007	tristate "Camellia cipher algorithm (x86_64)"
1008	depends on X86 && 64BIT
1009	depends on CRYPTO
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_GLUE_HELPER_X86
1012	select CRYPTO_LRW
1013	select CRYPTO_XTS
1014	help
1015	  Camellia cipher algorithm module (x86_64).
1016
1017	  Camellia is a symmetric key block cipher developed jointly
1018	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
1019
1020	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
1021
1022	  See also:
1023	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027	depends on X86 && 64BIT
1028	depends on CRYPTO
1029	select CRYPTO_ALGAPI
1030	select CRYPTO_CRYPTD
1031	select CRYPTO_ABLK_HELPER
1032	select CRYPTO_GLUE_HELPER_X86
1033	select CRYPTO_CAMELLIA_X86_64
1034	select CRYPTO_LRW
1035	select CRYPTO_XTS
1036	help
1037	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
 
1038
1039	  Camellia is a symmetric key block cipher developed jointly
1040	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
1041
1042	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
1043
1044	  See also:
1045	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049	depends on X86 && 64BIT
1050	depends on CRYPTO
1051	select CRYPTO_ALGAPI
1052	select CRYPTO_CRYPTD
1053	select CRYPTO_ABLK_HELPER
1054	select CRYPTO_GLUE_HELPER_X86
1055	select CRYPTO_CAMELLIA_X86_64
1056	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057	select CRYPTO_LRW
1058	select CRYPTO_XTS
1059	help
1060	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062	  Camellia is a symmetric key block cipher developed jointly
1063	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
1064
1065	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
1066
1067	  See also:
1068	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071	tristate "Camellia cipher algorithm (SPARC64)"
1072	depends on SPARC64
1073	depends on CRYPTO
1074	select CRYPTO_ALGAPI
1075	help
1076	  Camellia cipher algorithm module (SPARC64).
1077
1078	  Camellia is a symmetric key block cipher developed jointly
1079	  at NTT and Mitsubishi Electric Corporation.
1080
1081	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1082
1083	  See also:
1084	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087	tristate
1088	help
1089	  Common parts of the CAST cipher algorithms shared by the
1090	  generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093	tristate "CAST5 (CAST-128) cipher algorithm"
1094	select CRYPTO_ALGAPI
1095	select CRYPTO_CAST_COMMON
1096	help
1097	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1098	  described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102	depends on X86 && 64BIT
1103	select CRYPTO_ALGAPI
1104	select CRYPTO_CRYPTD
1105	select CRYPTO_ABLK_HELPER
1106	select CRYPTO_CAST_COMMON
1107	select CRYPTO_CAST5
1108	help
1109	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1110	  described in RFC2144.
1111
1112	  This module provides the Cast5 cipher algorithm that processes
1113	  sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116	tristate "CAST6 (CAST-256) cipher algorithm"
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_CAST_COMMON
 
 
1119	help
1120	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1121	  described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125	depends on X86 && 64BIT
1126	select CRYPTO_ALGAPI
1127	select CRYPTO_CRYPTD
1128	select CRYPTO_ABLK_HELPER
1129	select CRYPTO_GLUE_HELPER_X86
1130	select CRYPTO_CAST_COMMON
1131	select CRYPTO_CAST6
1132	select CRYPTO_LRW
1133	select CRYPTO_XTS
1134	help
1135	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1136	  described in RFC2612.
1137
1138	  This module provides the Cast6 cipher algorithm that processes
1139	  eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142	tristate "DES and Triple DES EDE cipher algorithms"
1143	select CRYPTO_ALGAPI
 
 
 
1144	help
1145	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
 
1146
1147config CRYPTO_DES_SPARC64
1148	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149	depends on SPARC64
1150	select CRYPTO_ALGAPI
1151	select CRYPTO_DES
 
1152	help
1153	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154	  optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157	tristate "Triple DES EDE cipher algorithm (x86-64)"
1158	depends on X86 && 64BIT
1159	select CRYPTO_ALGAPI
1160	select CRYPTO_DES
 
 
1161	help
1162	  Triple DES EDE (FIPS 46-3) algorithm.
 
1163
1164	  This module provides implementation of the Triple DES EDE cipher
1165	  algorithm that is optimized for x86-64 processors. Two versions of
1166	  algorithm are provided; regular processing one input block and
1167	  one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170	tristate "FCrypt cipher algorithm"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_BLKCIPHER
 
 
 
1173	help
1174	  FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177	tristate "Khazad cipher algorithm"
1178	select CRYPTO_ALGAPI
1179	help
1180	  Khazad cipher algorithm.
1181
1182	  Khazad was a finalist in the initial NESSIE competition.  It is
1183	  an algorithm optimized for 64-bit processors with good performance
1184	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
 
 
 
 
 
1185
1186	  See also:
1187	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
 
1188
1189config CRYPTO_SALSA20
1190	tristate "Salsa20 stream cipher algorithm"
1191	select CRYPTO_BLKCIPHER
1192	help
1193	  Salsa20 stream cipher algorithm.
1194
1195	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
 
 
 
1197
1198	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1199	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
 
 
 
1200
1201config CRYPTO_SALSA20_586
1202	tristate "Salsa20 stream cipher algorithm (i586)"
1203	depends on (X86 || UML_X86) && !64BIT
1204	select CRYPTO_BLKCIPHER
1205	help
1206	  Salsa20 stream cipher algorithm.
 
1207
1208	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1212	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1213
1214config CRYPTO_SALSA20_X86_64
1215	tristate "Salsa20 stream cipher algorithm (x86_64)"
1216	depends on (X86 || UML_X86) && 64BIT
1217	select CRYPTO_BLKCIPHER
1218	help
1219	  Salsa20 stream cipher algorithm.
1220
1221	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1225	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
1226
1227config CRYPTO_CHACHA20
1228	tristate "ChaCha20 cipher algorithm"
1229	select CRYPTO_BLKCIPHER
1230	help
1231	  ChaCha20 cipher algorithm, RFC7539.
1232
1233	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1235	  This is the portable C implementation of ChaCha20.
1236
1237	  See also:
1238	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
 
 
 
 
1239
1240config CRYPTO_CHACHA20_X86_64
1241	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CHACHA20
1245	help
1246	  ChaCha20 cipher algorithm, RFC7539.
1247
1248	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1250	  This is the x86_64 assembler implementation using SIMD instructions.
 
 
 
 
1251
1252	  See also:
1253	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1254
1255config CRYPTO_SEED
1256	tristate "SEED cipher algorithm"
1257	select CRYPTO_ALGAPI
1258	help
1259	  SEED cipher algorithm (RFC4269).
1260
1261	  SEED is a 128-bit symmetric key block cipher that has been
1262	  developed by KISA (Korea Information Security Agency) as a
1263	  national standard encryption algorithm of the Republic of Korea.
1264	  It is a 16 round block cipher with the key size of 128 bit.
1265
1266	  See also:
1267	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
 
 
 
1268
1269config CRYPTO_SERPENT
1270	tristate "Serpent cipher algorithm"
1271	select CRYPTO_ALGAPI
1272	help
1273	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275	  Keys are allowed to be from 0 to 256 bits in length, in steps
1276	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1277	  variant of Serpent for compatibility with old kerneli.org code.
1278
1279	  See also:
1280	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284	depends on X86 && 64BIT
1285	select CRYPTO_ALGAPI
1286	select CRYPTO_CRYPTD
1287	select CRYPTO_ABLK_HELPER
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SERPENT
1290	select CRYPTO_LRW
1291	select CRYPTO_XTS
1292	help
1293	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295	  Keys are allowed to be from 0 to 256 bits in length, in steps
1296	  of 8 bits.
1297
1298	  This module provides Serpent cipher algorithm that processes eight
1299	  blocks parallel using SSE2 instruction set.
 
 
 
 
1300
1301	  See also:
1302	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1303
1304config CRYPTO_SERPENT_SSE2_586
1305	tristate "Serpent cipher algorithm (i586/SSE2)"
1306	depends on X86 && !64BIT
1307	select CRYPTO_ALGAPI
1308	select CRYPTO_CRYPTD
1309	select CRYPTO_ABLK_HELPER
1310	select CRYPTO_GLUE_HELPER_X86
1311	select CRYPTO_SERPENT
1312	select CRYPTO_LRW
1313	select CRYPTO_XTS
1314	help
1315	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1316
1317	  Keys are allowed to be from 0 to 256 bits in length, in steps
1318	  of 8 bits.
 
 
1319
1320	  This module provides Serpent cipher algorithm that processes four
1321	  blocks parallel using SSE2 instruction set.
1322
1323	  See also:
1324	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327	tristate "Serpent cipher algorithm (x86_64/AVX)"
1328	depends on X86 && 64BIT
1329	select CRYPTO_ALGAPI
1330	select CRYPTO_CRYPTD
1331	select CRYPTO_ABLK_HELPER
1332	select CRYPTO_GLUE_HELPER_X86
1333	select CRYPTO_SERPENT
1334	select CRYPTO_LRW
1335	select CRYPTO_XTS
1336	help
1337	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339	  Keys are allowed to be from 0 to 256 bits in length, in steps
1340	  of 8 bits.
 
 
 
 
1341
1342	  This module provides the Serpent cipher algorithm that processes
1343	  eight blocks parallel using the AVX instruction set.
1344
1345	  See also:
1346	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
 
 
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350	depends on X86 && 64BIT
1351	select CRYPTO_ALGAPI
1352	select CRYPTO_CRYPTD
1353	select CRYPTO_ABLK_HELPER
1354	select CRYPTO_GLUE_HELPER_X86
1355	select CRYPTO_SERPENT
1356	select CRYPTO_SERPENT_AVX_X86_64
1357	select CRYPTO_LRW
1358	select CRYPTO_XTS
1359	help
1360	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1361
1362	  Keys are allowed to be from 0 to 256 bits in length, in steps
1363	  of 8 bits.
1364
1365	  This module provides Serpent cipher algorithm that processes 16
1366	  blocks parallel using AVX2 instruction set.
 
 
 
 
1367
1368	  See also:
1369	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_TEA
1372	tristate "TEA, XTEA and XETA cipher algorithms"
1373	select CRYPTO_ALGAPI
 
 
 
 
1374	help
1375	  TEA cipher algorithm.
1376
1377	  Tiny Encryption Algorithm is a simple cipher that uses
1378	  many rounds for security.  It is very fast and uses
1379	  little memory.
1380
1381	  Xtendend Tiny Encryption Algorithm is a modification to
1382	  the TEA algorithm to address a potential key weakness
1383	  in the TEA algorithm.
1384
1385	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1386	  of the XTEA algorithm for compatibility purposes.
 
 
 
 
 
1387
1388config CRYPTO_TWOFISH
1389	tristate "Twofish cipher algorithm"
1390	select CRYPTO_ALGAPI
1391	select CRYPTO_TWOFISH_COMMON
 
1392	help
1393	  Twofish cipher algorithm.
1394
1395	  Twofish was submitted as an AES (Advanced Encryption Standard)
1396	  candidate cipher by researchers at CounterPane Systems.  It is a
1397	  16 round block cipher supporting key sizes of 128, 192, and 256
1398	  bits.
1399
1400	  See also:
1401	  <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404	tristate
 
 
 
 
 
1405	help
1406	  Common parts of the Twofish cipher algorithm shared by the
1407	  generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410	tristate "Twofish cipher algorithms (i586)"
1411	depends on (X86 || UML_X86) && !64BIT
1412	select CRYPTO_ALGAPI
1413	select CRYPTO_TWOFISH_COMMON
1414	help
1415	  Twofish cipher algorithm.
1416
1417	  Twofish was submitted as an AES (Advanced Encryption Standard)
1418	  candidate cipher by researchers at CounterPane Systems.  It is a
1419	  16 round block cipher supporting key sizes of 128, 192, and 256
1420	  bits.
1421
1422	  See also:
1423	  <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426	tristate "Twofish cipher algorithm (x86_64)"
1427	depends on (X86 || UML_X86) && 64BIT
1428	select CRYPTO_ALGAPI
1429	select CRYPTO_TWOFISH_COMMON
 
 
 
1430	help
1431	  Twofish cipher algorithm (x86_64).
1432
1433	  Twofish was submitted as an AES (Advanced Encryption Standard)
1434	  candidate cipher by researchers at CounterPane Systems.  It is a
1435	  16 round block cipher supporting key sizes of 128, 192, and 256
1436	  bits.
 
1437
1438	  See also:
1439	  <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443	depends on X86 && 64BIT
1444	select CRYPTO_ALGAPI
1445	select CRYPTO_TWOFISH_COMMON
1446	select CRYPTO_TWOFISH_X86_64
1447	select CRYPTO_GLUE_HELPER_X86
1448	select CRYPTO_LRW
1449	select CRYPTO_XTS
1450	help
1451	  Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453	  Twofish was submitted as an AES (Advanced Encryption Standard)
1454	  candidate cipher by researchers at CounterPane Systems.  It is a
1455	  16 round block cipher supporting key sizes of 128, 192, and 256
1456	  bits.
1457
1458	  This module provides Twofish cipher algorithm that processes three
1459	  blocks parallel, utilizing resources of out-of-order CPUs better.
 
 
 
1460
1461	  See also:
1462	  <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465	tristate "Twofish cipher algorithm (x86_64/AVX)"
1466	depends on X86 && 64BIT
1467	select CRYPTO_ALGAPI
1468	select CRYPTO_CRYPTD
1469	select CRYPTO_ABLK_HELPER
1470	select CRYPTO_GLUE_HELPER_X86
1471	select CRYPTO_TWOFISH_COMMON
1472	select CRYPTO_TWOFISH_X86_64
1473	select CRYPTO_TWOFISH_X86_64_3WAY
1474	select CRYPTO_LRW
1475	select CRYPTO_XTS
1476	help
1477	  Twofish cipher algorithm (x86_64/AVX).
1478
1479	  Twofish was submitted as an AES (Advanced Encryption Standard)
1480	  candidate cipher by researchers at CounterPane Systems.  It is a
1481	  16 round block cipher supporting key sizes of 128, 192, and 256
1482	  bits.
1483
1484	  This module provides the Twofish cipher algorithm that processes
1485	  eight blocks parallel using the AVX Instruction Set.
1486
1487	  See also:
1488	  <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493	tristate "Deflate compression algorithm"
1494	select CRYPTO_ALGAPI
 
1495	select ZLIB_INFLATE
1496	select ZLIB_DEFLATE
1497	help
1498	  This is the Deflate algorithm (RFC1951), specified for use in
1499	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501	  You will most probably want this if using IPSec.
1502
1503config CRYPTO_LZO
1504	tristate "LZO compression algorithm"
1505	select CRYPTO_ALGAPI
 
1506	select LZO_COMPRESS
1507	select LZO_DECOMPRESS
1508	help
1509	  This is the LZO algorithm.
 
 
1510
1511config CRYPTO_842
1512	tristate "842 compression algorithm"
1513	select CRYPTO_ALGAPI
 
1514	select 842_COMPRESS
1515	select 842_DECOMPRESS
1516	help
1517	  This is the 842 algorithm.
 
 
1518
1519config CRYPTO_LZ4
1520	tristate "LZ4 compression algorithm"
1521	select CRYPTO_ALGAPI
 
1522	select LZ4_COMPRESS
1523	select LZ4_DECOMPRESS
1524	help
1525	  This is the LZ4 algorithm.
 
 
1526
1527config CRYPTO_LZ4HC
1528	tristate "LZ4HC compression algorithm"
1529	select CRYPTO_ALGAPI
 
1530	select LZ4HC_COMPRESS
1531	select LZ4_DECOMPRESS
1532	help
1533	  This is the LZ4 high compression mode algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535comment "Random Number Generation"
 
 
1536
1537config CRYPTO_ANSI_CPRNG
1538	tristate "Pseudo Random Number Generation for Cryptographic modules"
1539	select CRYPTO_AES
1540	select CRYPTO_RNG
1541	help
1542	  This option enables the generic pseudo random number generator
1543	  for cryptographic modules.  Uses the Algorithm specified in
1544	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1545	  CRYPTO_FIPS is selected
 
1546
1547menuconfig CRYPTO_DRBG_MENU
1548	tristate "NIST SP800-90A DRBG"
1549	help
1550	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1551	  more of the DRBG types must be selected.
 
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556	bool
1557	default y
1558	select CRYPTO_HMAC
1559	select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562	bool "Enable Hash DRBG"
1563	select CRYPTO_SHA256
1564	help
1565	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1566
1567config CRYPTO_DRBG_CTR
1568	bool "Enable CTR DRBG"
1569	select CRYPTO_AES
 
1570	help
1571	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1572
1573config CRYPTO_DRBG
1574	tristate
1575	default CRYPTO_DRBG_MENU
1576	select CRYPTO_RNG
1577	select CRYPTO_JITTERENTROPY
1578
1579endif	# if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583	select CRYPTO_RNG
1584	help
1585	  The Jitterentropy RNG is a noise that is intended
1586	  to provide seed to another RNG. The RNG does not
1587	  perform any cryptographic whitening of the generated
1588	  random numbers. This Jitterentropy RNG registers with
1589	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
1590
1591config CRYPTO_USER_API
1592	tristate
1593
1594config CRYPTO_USER_API_HASH
1595	tristate "User-space interface for hash algorithms"
1596	depends on NET
1597	select CRYPTO_HASH
1598	select CRYPTO_USER_API
1599	help
1600	  This option enables the user-spaces interface for hash
1601	  algorithms.
 
 
1602
1603config CRYPTO_USER_API_SKCIPHER
1604	tristate "User-space interface for symmetric key cipher algorithms"
1605	depends on NET
1606	select CRYPTO_BLKCIPHER
1607	select CRYPTO_USER_API
1608	help
1609	  This option enables the user-spaces interface for symmetric
1610	  key cipher algorithms.
 
 
1611
1612config CRYPTO_USER_API_RNG
1613	tristate "User-space interface for random number generator algorithms"
1614	depends on NET
1615	select CRYPTO_RNG
1616	select CRYPTO_USER_API
1617	help
1618	  This option enables the user-spaces interface for random
1619	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621config CRYPTO_USER_API_AEAD
1622	tristate "User-space interface for AEAD cipher algorithms"
1623	depends on NET
1624	select CRYPTO_AEAD
 
 
1625	select CRYPTO_USER_API
1626	help
1627	  This option enables the user-spaces interface for AEAD
1628	  cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630config CRYPTO_HASH_INFO
1631	bool
1632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif	# if CRYPTO
v6.2
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74	select CRYPTO_NULL2
  75	select CRYPTO_RNG2
  76
  77config CRYPTO_SKCIPHER
  78	tristate
  79	select CRYPTO_SKCIPHER2
  80	select CRYPTO_ALGAPI
  81
  82config CRYPTO_SKCIPHER2
  83	tristate
  84	select CRYPTO_ALGAPI2
  85	select CRYPTO_RNG2
 
  86
  87config CRYPTO_HASH
  88	tristate
  89	select CRYPTO_HASH2
  90	select CRYPTO_ALGAPI
  91
  92config CRYPTO_HASH2
  93	tristate
  94	select CRYPTO_ALGAPI2
  95
  96config CRYPTO_RNG
  97	tristate
  98	select CRYPTO_RNG2
  99	select CRYPTO_ALGAPI
 100
 101config CRYPTO_RNG2
 102	tristate
 103	select CRYPTO_ALGAPI2
 104
 105config CRYPTO_RNG_DEFAULT
 106	tristate
 107	select CRYPTO_DRBG_MENU
 108
 109config CRYPTO_AKCIPHER2
 110	tristate
 111	select CRYPTO_ALGAPI2
 112
 113config CRYPTO_AKCIPHER
 114	tristate
 115	select CRYPTO_AKCIPHER2
 116	select CRYPTO_ALGAPI
 117
 118config CRYPTO_KPP2
 119	tristate
 120	select CRYPTO_ALGAPI2
 121
 122config CRYPTO_KPP
 123	tristate
 124	select CRYPTO_ALGAPI
 125	select CRYPTO_KPP2
 126
 127config CRYPTO_ACOMP2
 128	tristate
 129	select CRYPTO_ALGAPI2
 130	select SGL_ALLOC
 131
 132config CRYPTO_ACOMP
 133	tristate
 134	select CRYPTO_ALGAPI
 135	select CRYPTO_ACOMP2
 136
 137config CRYPTO_MANAGER
 138	tristate "Cryptographic algorithm manager"
 139	select CRYPTO_MANAGER2
 140	help
 141	  Create default cryptographic template instantiations such as
 142	  cbc(aes).
 143
 144config CRYPTO_MANAGER2
 145	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 146	select CRYPTO_AEAD2
 147	select CRYPTO_HASH2
 148	select CRYPTO_SKCIPHER2
 149	select CRYPTO_AKCIPHER2
 150	select CRYPTO_KPP2
 151	select CRYPTO_ACOMP2
 152
 153config CRYPTO_USER
 154	tristate "Userspace cryptographic algorithm configuration"
 155	depends on NET
 156	select CRYPTO_MANAGER
 157	help
 158	  Userspace configuration for cryptographic instantiations such as
 159	  cbc(aes).
 160
 161config CRYPTO_MANAGER_DISABLE_TESTS
 162	bool "Disable run-time self tests"
 163	default y
 
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_MANAGER_EXTRA_TESTS
 169	bool "Enable extra run-time crypto self tests"
 170	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 171	help
 172	  Enable extra run-time self tests of registered crypto algorithms,
 173	  including randomized fuzz tests.
 174
 175	  This is intended for developer use only, as these tests take much
 176	  longer to run than the normal self tests.
 177
 178config CRYPTO_NULL
 179	tristate "Null algorithms"
 180	select CRYPTO_NULL2
 181	help
 182	  These are 'Null' algorithms, used by IPsec, which do nothing.
 183
 184config CRYPTO_NULL2
 185	tristate
 186	select CRYPTO_ALGAPI2
 187	select CRYPTO_SKCIPHER2
 188	select CRYPTO_HASH2
 189
 190config CRYPTO_PCRYPT
 191	tristate "Parallel crypto engine"
 192	depends on SMP
 193	select PADATA
 194	select CRYPTO_MANAGER
 195	select CRYPTO_AEAD
 196	help
 197	  This converts an arbitrary crypto algorithm into a parallel
 198	  algorithm that executes in kernel threads.
 199
 
 
 
 200config CRYPTO_CRYPTD
 201	tristate "Software async crypto daemon"
 202	select CRYPTO_SKCIPHER
 203	select CRYPTO_HASH
 204	select CRYPTO_MANAGER
 
 205	help
 206	  This is a generic software asynchronous crypto daemon that
 207	  converts an arbitrary synchronous software crypto algorithm
 208	  into an asynchronous algorithm that executes in a kernel thread.
 209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210config CRYPTO_AUTHENC
 211	tristate "Authenc support"
 212	select CRYPTO_AEAD
 213	select CRYPTO_SKCIPHER
 214	select CRYPTO_MANAGER
 215	select CRYPTO_HASH
 216	select CRYPTO_NULL
 217	help
 218	  Authenc: Combined mode wrapper for IPsec.
 219
 220	  This is required for IPSec ESP (XFRM_ESP).
 221
 222config CRYPTO_TEST
 223	tristate "Testing module"
 224	depends on m || EXPERT
 225	select CRYPTO_MANAGER
 226	help
 227	  Quick & dirty crypto test module.
 228
 229config CRYPTO_SIMD
 230	tristate
 231	select CRYPTO_CRYPTD
 232
 
 
 
 
 
 233config CRYPTO_ENGINE
 234	tristate
 235
 236endmenu
 
 
 
 
 
 
 
 237
 238menu "Public-key cryptography"
 
 
 
 
 
 
 
 
 239
 240config CRYPTO_RSA
 241	tristate "RSA (Rivest-Shamir-Adleman)"
 242	select CRYPTO_AKCIPHER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	select CRYPTO_MANAGER
 244	select MPILIB
 245	select ASN1
 246	help
 247	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249config CRYPTO_DH
 250	tristate "DH (Diffie-Hellman)"
 251	select CRYPTO_KPP
 252	select MPILIB
 253	help
 254	  DH (Diffie-Hellman) key exchange algorithm
 
 
 255
 256config CRYPTO_DH_RFC7919_GROUPS
 257	bool "RFC 7919 FFDHE groups"
 258	depends on CRYPTO_DH
 259	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 
 
 
 
 
 
 260	help
 261	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 262	  defined in RFC7919.
 263
 264	  Support these finite-field groups in DH key exchanges:
 265	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 
 
 
 
 
 
 
 266
 267	  If unsure, say N.
 
 
 
 
 
 268
 269config CRYPTO_ECC
 270	tristate
 271	select CRYPTO_RNG_DEFAULT
 272
 273config CRYPTO_ECDH
 274	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 275	select CRYPTO_ECC
 276	select CRYPTO_KPP
 277	help
 278	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 279	  using curves P-192, P-256, and P-384 (FIPS 186)
 280
 281config CRYPTO_ECDSA
 282	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 283	select CRYPTO_ECC
 284	select CRYPTO_AKCIPHER
 285	select ASN1
 286	help
 287	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 288	  ISO/IEC 14888-3)
 289	  using curves P-192, P-256, and P-384
 290
 291	  Only signature verification is implemented.
 292
 293config CRYPTO_ECRDSA
 294	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 295	select CRYPTO_ECC
 296	select CRYPTO_AKCIPHER
 297	select CRYPTO_STREEBOG
 298	select OID_REGISTRY
 299	select ASN1
 300	help
 301	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 302	  RFC 7091, ISO/IEC 14888-3)
 303
 304	  One of the Russian cryptographic standard algorithms (called GOST
 305	  algorithms). Only signature verification is implemented.
 
 
 
 
 
 
 
 306
 307config CRYPTO_SM2
 308	tristate "SM2 (ShangMi 2)"
 309	select CRYPTO_SM3
 310	select CRYPTO_AKCIPHER
 311	select CRYPTO_MANAGER
 312	select MPILIB
 313	select ASN1
 314	help
 315	  SM2 (ShangMi 2) public key algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317	  Published by State Encryption Management Bureau, China,
 318	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 
 
 
 319
 320	  References:
 321	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 322	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 323	  http://www.gmbz.org.cn/main/bzlb.html
 324
 325config CRYPTO_CURVE25519
 326	tristate "Curve25519"
 327	select CRYPTO_KPP
 328	select CRYPTO_LIB_CURVE25519_GENERIC
 329	help
 330	  Curve25519 elliptic curve (RFC7748)
 331
 332endmenu
 
 
 
 333
 334menu "Block ciphers"
 
 
 
 
 335
 336config CRYPTO_AES
 337	tristate "AES (Advanced Encryption Standard)"
 338	select CRYPTO_ALGAPI
 339	select CRYPTO_LIB_AES
 340	help
 341	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 342
 343	  Rijndael appears to be consistently a very good performer in
 344	  both hardware and software across a wide range of computing
 345	  environments regardless of its use in feedback or non-feedback
 346	  modes. Its key setup time is excellent, and its key agility is
 347	  good. Rijndael's very low memory requirements make it very well
 348	  suited for restricted-space environments, in which it also
 349	  demonstrates excellent performance. Rijndael's operations are
 350	  among the easiest to defend against power and timing attacks.
 351
 352	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 
 
 
 353
 354config CRYPTO_AES_TI
 355	tristate "AES (Advanced Encryption Standard) (fixed time)"
 356	select CRYPTO_ALGAPI
 357	select CRYPTO_LIB_AES
 
 358	help
 359	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 360
 361	  This is a generic implementation of AES that attempts to eliminate
 362	  data dependent latencies as much as possible without affecting
 363	  performance too much. It is intended for use by the generic CCM
 364	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 365	  solely on encryption (although decryption is supported as well, but
 366	  with a more dramatic performance hit)
 367
 368	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 369	  8 for decryption), this implementation only uses just two S-boxes of
 370	  256 bytes each, and attempts to eliminate data dependent latencies by
 371	  prefetching the entire table into the cache at the start of each
 372	  block. Interrupts are also disabled to avoid races where cachelines
 373	  are evicted when the CPU is interrupted to do something else.
 374
 375config CRYPTO_ANUBIS
 376	tristate "Anubis"
 377	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 378	select CRYPTO_ALGAPI
 379	help
 380	  Anubis cipher algorithm
 381
 382	  Anubis is a variable key length cipher which can use keys from
 383	  128 bits to 320 bits in length.  It was evaluated as a entrant
 384	  in the NESSIE competition.
 385
 386	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 387	  for further information.
 388
 389config CRYPTO_ARIA
 390	tristate "ARIA"
 391	select CRYPTO_ALGAPI
 392	help
 393	  ARIA cipher algorithm (RFC5794)
 394
 395	  ARIA is a standard encryption algorithm of the Republic of Korea.
 396	  The ARIA specifies three key sizes and rounds.
 397	  128-bit: 12 rounds.
 398	  192-bit: 14 rounds.
 399	  256-bit: 16 rounds.
 
 
 400
 401	  See:
 402	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 403
 404config CRYPTO_BLOWFISH
 405	tristate "Blowfish"
 406	select CRYPTO_ALGAPI
 407	select CRYPTO_BLOWFISH_COMMON
 
 
 
 
 
 
 
 
 
 
 
 408	help
 409	  Blowfish cipher algorithm, by Bruce Schneier
 
 
 
 410
 411	  This is a variable key length cipher which can use keys from 32
 412	  bits to 448 bits in length.  It's fast, simple and specifically
 413	  designed for use on "large microprocessors".
 414
 415	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 416
 417config CRYPTO_BLOWFISH_COMMON
 418	tristate
 
 
 
 419	help
 420	  Common parts of the Blowfish cipher algorithm shared by the
 421	  generic c and the assembler implementations.
 
 
 422
 423config CRYPTO_CAMELLIA
 424	tristate "Camellia"
 425	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	help
 427	  Camellia cipher algorithms (ISO/IEC 18033-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429	  Camellia is a symmetric key block cipher developed jointly
 430	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 431
 432	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 433
 434	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 435
 436config CRYPTO_CAST_COMMON
 437	tristate
 
 
 
 438	help
 439	  Common parts of the CAST cipher algorithms shared by the
 440	  generic c and the assembler implementations.
 441
 442config CRYPTO_CAST5
 443	tristate "CAST5 (CAST-128)"
 444	select CRYPTO_ALGAPI
 445	select CRYPTO_CAST_COMMON
 
 446	help
 447	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 
 448
 449config CRYPTO_CAST6
 450	tristate "CAST6 (CAST-256)"
 451	select CRYPTO_ALGAPI
 452	select CRYPTO_CAST_COMMON
 
 453	help
 454	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 
 455
 456config CRYPTO_DES
 457	tristate "DES and Triple DES EDE"
 458	select CRYPTO_ALGAPI
 459	select CRYPTO_LIB_DES
 460	help
 461	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 462	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 463	  cipher algorithms
 
 
 
 
 464
 465config CRYPTO_FCRYPT
 466	tristate "FCrypt"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_SKCIPHER
 
 469	help
 470	  FCrypt algorithm used by RxRPC
 
 471
 472	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 
 
 
 
 
 
 473
 474config CRYPTO_KHAZAD
 475	tristate "Khazad"
 476	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 477	select CRYPTO_ALGAPI
 478	help
 479	  Khazad cipher algorithm
 480
 481	  Khazad was a finalist in the initial NESSIE competition.  It is
 482	  an algorithm optimized for 64-bit processors with good performance
 483	  on 32-bit processors.  Khazad uses an 128 bit key size.
 484
 485	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 486	  for further information.
 487
 488config CRYPTO_SEED
 489	tristate "SEED"
 490	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 491	select CRYPTO_ALGAPI
 492	help
 493	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 
 
 
 494
 495	  SEED is a 128-bit symmetric key block cipher that has been
 496	  developed by KISA (Korea Information Security Agency) as a
 497	  national standard encryption algorithm of the Republic of Korea.
 498	  It is a 16 round block cipher with the key size of 128 bit.
 
 
 
 
 
 
 499
 500	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 501	  for further information.
 502
 503config CRYPTO_SERPENT
 504	tristate "Serpent"
 505	select CRYPTO_ALGAPI
 506	help
 507	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 508
 509	  Keys are allowed to be from 0 to 256 bits in length, in steps
 510	  of 8 bits.
 
 
 
 
 
 
 511
 512	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 513
 514config CRYPTO_SM4
 515	tristate
 516
 517config CRYPTO_SM4_GENERIC
 518	tristate "SM4 (ShangMi 4)"
 
 519	select CRYPTO_ALGAPI
 520	select CRYPTO_SM4
 521	help
 522	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 523	  ISO/IEC 18033-3:2010/Amd 1:2021)
 
 
 
 
 
 
 
 
 
 524
 525	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 526	  Organization of State Commercial Administration of China (OSCCA)
 527	  as an authorized cryptographic algorithms for the use within China.
 528
 529	  SMS4 was originally created for use in protecting wireless
 530	  networks, and is mandated in the Chinese National Standard for
 531	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 532	  (GB.15629.11-2003).
 533
 534	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 535	  standardized through TC 260 of the Standardization Administration
 536	  of the People's Republic of China (SAC).
 
 
 
 
 
 537
 538	  The input, output, and key of SMS4 are each 128 bits.
 
 
 
 
 
 
 
 539
 540	  See https://eprint.iacr.org/2008/329.pdf for further information.
 541
 542	  If unsure, say N.
 543
 544config CRYPTO_TEA
 545	tristate "TEA, XTEA and XETA"
 546	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 
 
 
 
 547	select CRYPTO_ALGAPI
 
 
 
 548	help
 549	  TEA (Tiny Encryption Algorithm) cipher algorithms
 
 
 
 550
 551	  Tiny Encryption Algorithm is a simple cipher that uses
 552	  many rounds for security.  It is very fast and uses
 553	  little memory.
 
 
 
 
 
 554
 555	  Xtendend Tiny Encryption Algorithm is a modification to
 556	  the TEA algorithm to address a potential key weakness
 557	  in the TEA algorithm.
 558
 559	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 560	  of the XTEA algorithm for compatibility purposes.
 561
 562config CRYPTO_TWOFISH
 563	tristate "Twofish"
 
 
 
 
 
 
 
 564	select CRYPTO_ALGAPI
 565	select CRYPTO_TWOFISH_COMMON
 566	help
 567	  Twofish cipher algorithm
 568
 569	  Twofish was submitted as an AES (Advanced Encryption Standard)
 570	  candidate cipher by researchers at CounterPane Systems.  It is a
 571	  16 round block cipher supporting key sizes of 128, 192, and 256
 572	  bits.
 573
 574	  See https://www.schneier.com/twofish.html for further information.
 
 
 
 
 
 
 
 575
 576config CRYPTO_TWOFISH_COMMON
 577	tristate
 578	help
 579	  Common parts of the Twofish cipher algorithm shared by the
 580	  generic c and the assembler implementations.
 581
 582endmenu
 583
 584menu "Length-preserving ciphers and modes"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586config CRYPTO_ADIANTUM
 587	tristate "Adiantum"
 588	select CRYPTO_CHACHA20
 589	select CRYPTO_LIB_POLY1305_GENERIC
 590	select CRYPTO_NHPOLY1305
 591	select CRYPTO_MANAGER
 592	help
 593	  Adiantum tweakable, length-preserving encryption mode
 594
 595	  Designed for fast and secure disk encryption, especially on
 596	  CPUs without dedicated crypto instructions.  It encrypts
 597	  each sector using the XChaCha12 stream cipher, two passes of
 598	  an ε-almost-∆-universal hash function, and an invocation of
 599	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 600	  without AES instructions, Adiantum is much faster than
 601	  AES-XTS.
 602
 603	  Adiantum's security is provably reducible to that of its
 604	  underlying stream and block ciphers, subject to a security
 605	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 606	  mode, so it actually provides an even stronger notion of
 607	  security than XTS, subject to the security bound.
 608
 609	  If unsure, say N.
 
 
 610
 611config CRYPTO_ARC4
 612	tristate "ARC4 (Alleged Rivest Cipher 4)"
 613	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 614	select CRYPTO_SKCIPHER
 615	select CRYPTO_LIB_ARC4
 616	help
 617	  ARC4 cipher algorithm
 618
 619	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 620	  bits in length.  This algorithm is required for driver-based
 621	  WEP, but it should not be for other purposes because of the
 622	  weakness of the algorithm.
 623
 624config CRYPTO_CHACHA20
 625	tristate "ChaCha"
 626	select CRYPTO_LIB_CHACHA_GENERIC
 627	select CRYPTO_SKCIPHER
 628	help
 629	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 630
 631	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 632	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 633	  This is the portable C implementation of ChaCha20.  See
 634	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 635
 636	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 637	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 638	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 639	  while provably retaining ChaCha20's security.  See
 640	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 641
 642	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 643	  reduced security margin but increased performance.  It can be needed
 644	  in some performance-sensitive scenarios.
 645
 646config CRYPTO_CBC
 647	tristate "CBC (Cipher Block Chaining)"
 648	select CRYPTO_SKCIPHER
 649	select CRYPTO_MANAGER
 650	help
 651	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 
 652
 653	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 654
 655config CRYPTO_CFB
 656	tristate "CFB (Cipher Feedback)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 
 659	help
 660	  CFB (Cipher Feedback) mode (NIST SP800-38A)
 
 
 
 
 661
 662	  This block cipher mode is required for TPM2 Cryptography.
 
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER
 685	select CRYPTO_MANAGER
 
 
 
 
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 728
 729config CRYPTO_OFB
 730	tristate "OFB (Output Feedback)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 733	help
 734	  OFB (Output Feedback) mode (NIST SP800-38A)
 735
 736	  This mode makes a block cipher into a synchronous
 737	  stream cipher. It generates keystream blocks, which are then XORed
 738	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 739	  ciphertext produces a flipped bit in the plaintext at the same
 740	  location. This property allows many error correcting codes to function
 741	  normally even when applied before encryption.
 742
 743config CRYPTO_PCBC
 744	tristate "PCBC (Propagating Cipher Block Chaining)"
 745	select CRYPTO_SKCIPHER
 746	select CRYPTO_MANAGER
 747	help
 748	  PCBC (Propagating Cipher Block Chaining) mode
 749
 750	  This block cipher mode is required for RxRPC.
 
 751
 752config CRYPTO_XCTR
 753	tristate
 754	select CRYPTO_SKCIPHER
 755	select CRYPTO_MANAGER
 
 756	help
 757	  XCTR (XOR Counter) mode for HCTR2
 758
 759	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 760	  addition rather than big-endian arithmetic.
 761
 762	  XCTR mode is used to implement HCTR2.
 763
 764config CRYPTO_XTS
 765	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 766	select CRYPTO_SKCIPHER
 767	select CRYPTO_MANAGER
 768	select CRYPTO_ECB
 769	help
 770	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 771	  and IEEE 1619)
 772
 773	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 774	  implementation currently can't handle a sectorsize which is not a
 775	  multiple of 16 bytes.
 
 
 
 
 776
 777config CRYPTO_NHPOLY1305
 778	tristate
 779	select CRYPTO_HASH
 780	select CRYPTO_LIB_POLY1305_GENERIC
 
 
 
 
 
 
 
 781
 782endmenu
 
 783
 784menu "AEAD (authenticated encryption with associated data) ciphers"
 785
 786config CRYPTO_AEGIS128
 787	tristate "AEGIS-128"
 788	select CRYPTO_AEAD
 789	select CRYPTO_AES  # for AES S-box tables
 790	help
 791	  AEGIS-128 AEAD algorithm
 
 792
 793config CRYPTO_AEGIS128_SIMD
 794	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 795	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 796	default y
 
 
 
 
 
 
 
 797	help
 798	  AEGIS-128 AEAD algorithm
 
 799
 800	  Architecture: arm or arm64 using:
 801	  - NEON (Advanced SIMD) extension
 802
 803config CRYPTO_CHACHA20POLY1305
 804	tristate "ChaCha20-Poly1305"
 805	select CRYPTO_CHACHA20
 806	select CRYPTO_POLY1305
 807	select CRYPTO_AEAD
 808	select CRYPTO_MANAGER
 809	help
 810	  ChaCha20 stream cipher and Poly1305 authenticator combined
 811	  mode (RFC8439)
 812
 813config CRYPTO_CCM
 814	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 815	select CRYPTO_CTR
 816	select CRYPTO_HASH
 817	select CRYPTO_AEAD
 818	select CRYPTO_MANAGER
 819	help
 820	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 821	  authenticated encryption mode (NIST SP800-38C)
 822
 823config CRYPTO_GCM
 824	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 825	select CRYPTO_CTR
 826	select CRYPTO_AEAD
 827	select CRYPTO_GHASH
 828	select CRYPTO_NULL
 829	select CRYPTO_MANAGER
 830	help
 831	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 832	  (GCM Message Authentication Code) (NIST SP800-38D)
 833
 834	  This is required for IPSec ESP (XFRM_ESP).
 
 
 
 835
 836config CRYPTO_SEQIV
 837	tristate "Sequence Number IV Generator"
 838	select CRYPTO_AEAD
 839	select CRYPTO_SKCIPHER
 840	select CRYPTO_NULL
 841	select CRYPTO_RNG_DEFAULT
 842	select CRYPTO_MANAGER
 843	help
 844	  Sequence Number IV generator
 845
 846	  This IV generator generates an IV based on a sequence number by
 847	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 
 
 
 848
 849	  This is required for IPsec ESP (XFRM_ESP).
 850
 851config CRYPTO_ECHAINIV
 852	tristate "Encrypted Chain IV Generator"
 853	select CRYPTO_AEAD
 854	select CRYPTO_NULL
 855	select CRYPTO_RNG_DEFAULT
 856	select CRYPTO_MANAGER
 857	help
 858	  Encrypted Chain IV generator
 859
 860	  This IV generator generates an IV based on the encryption of
 861	  a sequence number xored with a salt.  This is the default
 862	  algorithm for CBC.
 863
 864config CRYPTO_ESSIV
 865	tristate "Encrypted Salt-Sector IV Generator"
 866	select CRYPTO_AUTHENC
 867	help
 868	  Encrypted Salt-Sector IV generator
 869
 870	  This IV generator is used in some cases by fscrypt and/or
 871	  dm-crypt. It uses the hash of the block encryption key as the
 872	  symmetric key for a block encryption pass applied to the input
 873	  IV, making low entropy IV sources more suitable for block
 874	  encryption.
 875
 876	  This driver implements a crypto API template that can be
 877	  instantiated either as an skcipher or as an AEAD (depending on the
 878	  type of the first template argument), and which defers encryption
 879	  and decryption requests to the encapsulated cipher after applying
 880	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 881	  that the keys are presented in the same format used by the authenc
 882	  template, and that the IV appears at the end of the authenticated
 883	  associated data (AAD) region (which is how dm-crypt uses it.)
 884
 885	  Note that the use of ESSIV is not recommended for new deployments,
 886	  and so this only needs to be enabled when interoperability with
 887	  existing encrypted volumes of filesystems is required, or when
 888	  building for a particular system that requires it (e.g., when
 889	  the SoC in question has accelerated CBC but not XTS, making CBC
 890	  combined with ESSIV the only feasible mode for h/w accelerated
 891	  block encryption)
 892
 893endmenu
 
 894
 895menu "Hashes, digests, and MACs"
 
 896
 897config CRYPTO_BLAKE2B
 898	tristate "BLAKE2b"
 899	select CRYPTO_HASH
 
 900	help
 901	  BLAKE2b cryptographic hash function (RFC 7693)
 902
 903	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 904	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 905
 906	  This module provides the following algorithms:
 907	  - blake2b-160
 908	  - blake2b-256
 909	  - blake2b-384
 910	  - blake2b-512
 911
 912	  Used by the btrfs filesystem.
 
 
 
 
 913
 914	  See https://blake2.net for further information.
 
 
 915
 916config CRYPTO_CMAC
 917	tristate "CMAC (Cipher-based MAC)"
 918	select CRYPTO_HASH
 919	select CRYPTO_MANAGER
 920	help
 921	  CMAC (Cipher-based Message Authentication Code) authentication
 922	  mode (NIST SP800-38B and IETF RFC4493)
 923
 924config CRYPTO_GHASH
 925	tristate "GHASH"
 926	select CRYPTO_HASH
 927	select CRYPTO_LIB_GF128MUL
 
 928	help
 929	  GCM GHASH function (NIST SP800-38D)
 930
 931config CRYPTO_HMAC
 932	tristate "HMAC (Keyed-Hash MAC)"
 933	select CRYPTO_HASH
 934	select CRYPTO_MANAGER
 935	help
 936	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 937	  RFC2104)
 938
 939	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 940
 941config CRYPTO_MD4
 942	tristate "MD4"
 943	select CRYPTO_HASH
 944	help
 945	  MD4 message digest algorithm (RFC1320)
 
 
 
 
 
 946
 947config CRYPTO_MD5
 948	tristate "MD5"
 949	select CRYPTO_HASH
 950	help
 951	  MD5 message digest algorithm (RFC1321)
 952
 953config CRYPTO_MICHAEL_MIC
 954	tristate "Michael MIC"
 955	select CRYPTO_HASH
 956	help
 957	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 958
 959	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 960	  known as WPA (Wif-Fi Protected Access).
 
 961
 962	  This algorithm is required for TKIP, but it should not be used for
 963	  other purposes because of the weakness of the algorithm.
 964
 965config CRYPTO_POLYVAL
 966	tristate
 967	select CRYPTO_HASH
 968	select CRYPTO_LIB_GF128MUL
 
 
 
 
 
 
 969	help
 970	  POLYVAL hash function for HCTR2
 971
 972	  This is used in HCTR2.  It is not a general-purpose
 973	  cryptographic hash function.
 974
 975config CRYPTO_POLY1305
 976	tristate "Poly1305"
 977	select CRYPTO_HASH
 978	select CRYPTO_LIB_POLY1305_GENERIC
 979	help
 980	  Poly1305 authenticator algorithm (RFC7539)
 981
 982	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 983	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 984	  in IETF protocols. This is the portable C implementation of Poly1305.
 985
 986config CRYPTO_RMD160
 987	tristate "RIPEMD-160"
 988	select CRYPTO_HASH
 
 
 
 
 
 
 
 989	help
 990	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 991
 992	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 993	  to be used as a secure replacement for the 128-bit hash functions
 994	  MD4, MD5 and its predecessor RIPEMD
 995	  (not to be confused with RIPEMD-128).
 996
 997	  Its speed is comparable to SHA-1 and there are no known attacks
 998	  against RIPEMD-160.
 999
1000	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
1001	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
1002	  for further information.
1003
1004config CRYPTO_SHA1
1005	tristate "SHA-1"
1006	select CRYPTO_HASH
1007	select CRYPTO_LIB_SHA1
 
 
 
 
 
 
1008	help
1009	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
1010
1011config CRYPTO_SHA256
1012	tristate "SHA-224 and SHA-256"
1013	select CRYPTO_HASH
1014	select CRYPTO_LIB_SHA256
1015	help
1016	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1017
1018	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1019	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
1020
1021config CRYPTO_SHA512
1022	tristate "SHA-384 and SHA-512"
1023	select CRYPTO_HASH
1024	help
1025	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1026
1027config CRYPTO_SHA3
1028	tristate "SHA-3"
1029	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1030	help
1031	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1032
1033config CRYPTO_SM3
1034	tristate
1035
1036config CRYPTO_SM3_GENERIC
1037	tristate "SM3 (ShangMi 3)"
1038	select CRYPTO_HASH
1039	select CRYPTO_SM3
1040	help
1041	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1042
1043	  This is part of the Chinese Commercial Cryptography suite.
 
1044
1045	  References:
1046	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1047	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1048
1049config CRYPTO_STREEBOG
1050	tristate "Streebog"
1051	select CRYPTO_HASH
1052	help
1053	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1054
1055	  This is one of the Russian cryptographic standard algorithms (called
1056	  GOST algorithms). This setting enables two hash algorithms with
1057	  256 and 512 bits output.
1058
1059	  References:
1060	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1061	  https://tools.ietf.org/html/rfc6986
1062
1063config CRYPTO_VMAC
1064	tristate "VMAC"
1065	select CRYPTO_HASH
1066	select CRYPTO_MANAGER
1067	help
1068	  VMAC is a message authentication algorithm designed for
1069	  very high speed on 64-bit architectures.
1070
1071	  See https://fastcrypto.org/vmac for further information.
1072
1073config CRYPTO_WP512
1074	tristate "Whirlpool"
1075	select CRYPTO_HASH
1076	help
1077	  Whirlpool hash function (ISO/IEC 10118-3)
1078
1079	  512, 384 and 256-bit hashes.
 
 
 
1080
1081	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1082
1083	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1084	  for further information.
1085
1086config CRYPTO_XCBC
1087	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1088	select CRYPTO_HASH
1089	select CRYPTO_MANAGER
1090	help
1091	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1092	  Code) (RFC3566)
1093
1094config CRYPTO_XXHASH
1095	tristate "xxHash"
1096	select CRYPTO_HASH
1097	select XXHASH
 
1098	help
1099	  xxHash non-cryptographic hash algorithm
1100
1101	  Extremely fast, working at speeds close to RAM limits.
 
 
 
1102
1103	  Used by the btrfs filesystem.
 
1104
1105endmenu
1106
1107menu "CRCs (cyclic redundancy checks)"
1108
1109config CRYPTO_CRC32C
1110	tristate "CRC32c"
1111	select CRYPTO_HASH
1112	select CRC32
1113	help
1114	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1115
1116	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1117	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1118	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1119	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1120	  iSCSI.
1121
1122	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1123
1124config CRYPTO_CRC32
1125	tristate "CRC32"
1126	select CRYPTO_HASH
1127	select CRC32
 
 
 
 
 
1128	help
1129	  CRC32 CRC algorithm (IEEE 802.3)
1130
1131	  Used by RoCEv2 and f2fs.
 
 
 
1132
1133config CRYPTO_CRCT10DIF
1134	tristate "CRCT10DIF"
1135	select CRYPTO_HASH
1136	help
1137	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1138
1139	  CRC algorithm used by the SCSI Block Commands standard.
 
1140
1141config CRYPTO_CRC64_ROCKSOFT
1142	tristate "CRC64 based on Rocksoft Model algorithm"
1143	depends on CRC64
1144	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1145	help
1146	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1147
1148	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1149
1150	  See https://zlib.net/crc_v3.txt
 
1151
1152endmenu
 
1153
1154menu "Compression"
1155
1156config CRYPTO_DEFLATE
1157	tristate "Deflate"
1158	select CRYPTO_ALGAPI
1159	select CRYPTO_ACOMP2
1160	select ZLIB_INFLATE
1161	select ZLIB_DEFLATE
1162	help
1163	  Deflate compression algorithm (RFC1951)
 
1164
1165	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1166
1167config CRYPTO_LZO
1168	tristate "LZO"
1169	select CRYPTO_ALGAPI
1170	select CRYPTO_ACOMP2
1171	select LZO_COMPRESS
1172	select LZO_DECOMPRESS
1173	help
1174	  LZO compression algorithm
1175
1176	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1177
1178config CRYPTO_842
1179	tristate "842"
1180	select CRYPTO_ALGAPI
1181	select CRYPTO_ACOMP2
1182	select 842_COMPRESS
1183	select 842_DECOMPRESS
1184	help
1185	  842 compression algorithm by IBM
1186
1187	  See https://github.com/plauth/lib842 for further information.
1188
1189config CRYPTO_LZ4
1190	tristate "LZ4"
1191	select CRYPTO_ALGAPI
1192	select CRYPTO_ACOMP2
1193	select LZ4_COMPRESS
1194	select LZ4_DECOMPRESS
1195	help
1196	  LZ4 compression algorithm
1197
1198	  See https://github.com/lz4/lz4 for further information.
1199
1200config CRYPTO_LZ4HC
1201	tristate "LZ4HC"
1202	select CRYPTO_ALGAPI
1203	select CRYPTO_ACOMP2
1204	select LZ4HC_COMPRESS
1205	select LZ4_DECOMPRESS
1206	help
1207	  LZ4 high compression mode algorithm
1208
1209	  See https://github.com/lz4/lz4 for further information.
1210
1211config CRYPTO_ZSTD
1212	tristate "Zstd"
1213	select CRYPTO_ALGAPI
1214	select CRYPTO_ACOMP2
1215	select ZSTD_COMPRESS
1216	select ZSTD_DECOMPRESS
1217	help
1218	  zstd compression algorithm
1219
1220	  See https://github.com/facebook/zstd for further information.
1221
1222endmenu
1223
1224menu "Random number generation"
1225
1226config CRYPTO_ANSI_CPRNG
1227	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1228	select CRYPTO_AES
1229	select CRYPTO_RNG
1230	help
1231	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1232
1233	  This uses the AES cipher algorithm.
1234
1235	  Note that this option must be enabled if CRYPTO_FIPS is selected
1236
1237menuconfig CRYPTO_DRBG_MENU
1238	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1239	help
1240	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1241
1242	  In the following submenu, one or more of the DRBG types must be selected.
1243
1244if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_DRBG_HMAC
1247	bool
1248	default y
1249	select CRYPTO_HMAC
1250	select CRYPTO_SHA512
1251
1252config CRYPTO_DRBG_HASH
1253	bool "Hash_DRBG"
1254	select CRYPTO_SHA256
1255	help
1256	  Hash_DRBG variant as defined in NIST SP800-90A.
1257
1258	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1259
1260config CRYPTO_DRBG_CTR
1261	bool "CTR_DRBG"
1262	select CRYPTO_AES
1263	select CRYPTO_CTR
1264	help
1265	  CTR_DRBG variant as defined in NIST SP800-90A.
1266
1267	  This uses the AES cipher algorithm with the counter block mode.
1268
1269config CRYPTO_DRBG
1270	tristate
1271	default CRYPTO_DRBG_MENU
1272	select CRYPTO_RNG
1273	select CRYPTO_JITTERENTROPY
1274
1275endif	# if CRYPTO_DRBG_MENU
1276
1277config CRYPTO_JITTERENTROPY
1278	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1279	select CRYPTO_RNG
1280	help
1281	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1282
1283	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1284	  compliant with NIST SP800-90B) intended to provide a seed to a
1285	  deterministic RNG (e.g.  per NIST SP800-90C).
1286	  This RNG does not perform any cryptographic whitening of the generated
1287
1288	  See https://www.chronox.de/jent.html
1289
1290config CRYPTO_KDF800108_CTR
1291	tristate
1292	select CRYPTO_HMAC
1293	select CRYPTO_SHA256
1294
1295endmenu
1296menu "Userspace interface"
1297
1298config CRYPTO_USER_API
1299	tristate
1300
1301config CRYPTO_USER_API_HASH
1302	tristate "Hash algorithms"
1303	depends on NET
1304	select CRYPTO_HASH
1305	select CRYPTO_USER_API
1306	help
1307	  Enable the userspace interface for hash algorithms.
1308
1309	  See Documentation/crypto/userspace-if.rst and
1310	  https://www.chronox.de/libkcapi/html/index.html
1311
1312config CRYPTO_USER_API_SKCIPHER
1313	tristate "Symmetric key cipher algorithms"
1314	depends on NET
1315	select CRYPTO_SKCIPHER
1316	select CRYPTO_USER_API
1317	help
1318	  Enable the userspace interface for symmetric key cipher algorithms.
1319
1320	  See Documentation/crypto/userspace-if.rst and
1321	  https://www.chronox.de/libkcapi/html/index.html
1322
1323config CRYPTO_USER_API_RNG
1324	tristate "RNG (random number generator) algorithms"
1325	depends on NET
1326	select CRYPTO_RNG
1327	select CRYPTO_USER_API
1328	help
1329	  Enable the userspace interface for RNG (random number generator)
1330	  algorithms.
1331
1332	  See Documentation/crypto/userspace-if.rst and
1333	  https://www.chronox.de/libkcapi/html/index.html
1334
1335config CRYPTO_USER_API_RNG_CAVP
1336	bool "Enable CAVP testing of DRBG"
1337	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1338	help
1339	  Enable extra APIs in the userspace interface for NIST CAVP
1340	  (Cryptographic Algorithm Validation Program) testing:
1341	  - resetting DRBG entropy
1342	  - providing Additional Data
1343
1344	  This should only be enabled for CAVP testing. You should say
1345	  no unless you know what this is.
1346
1347config CRYPTO_USER_API_AEAD
1348	tristate "AEAD cipher algorithms"
1349	depends on NET
1350	select CRYPTO_AEAD
1351	select CRYPTO_SKCIPHER
1352	select CRYPTO_NULL
1353	select CRYPTO_USER_API
1354	help
1355	  Enable the userspace interface for AEAD cipher algorithms.
1356
1357	  See Documentation/crypto/userspace-if.rst and
1358	  https://www.chronox.de/libkcapi/html/index.html
1359
1360config CRYPTO_USER_API_ENABLE_OBSOLETE
1361	bool "Obsolete cryptographic algorithms"
1362	depends on CRYPTO_USER_API
1363	default y
1364	help
1365	  Allow obsolete cryptographic algorithms to be selected that have
1366	  already been phased out from internal use by the kernel, and are
1367	  only useful for userspace clients that still rely on them.
1368
1369config CRYPTO_STATS
1370	bool "Crypto usage statistics"
1371	depends on CRYPTO_USER
1372	help
1373	  Enable the gathering of crypto stats.
1374
1375	  This collects data sizes, numbers of requests, and numbers
1376	  of errors processed by:
1377	  - AEAD ciphers (encrypt, decrypt)
1378	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1379	  - symmetric key ciphers (encrypt, decrypt)
1380	  - compression algorithms (compress, decompress)
1381	  - hash algorithms (hash)
1382	  - key-agreement protocol primitives (setsecret, generate
1383	    public key, compute shared secret)
1384	  - RNG (generate, seed)
1385
1386endmenu
1387
1388config CRYPTO_HASH_INFO
1389	bool
1390
1391if !KMSAN # avoid false positives from assembly
1392if ARM
1393source "arch/arm/crypto/Kconfig"
1394endif
1395if ARM64
1396source "arch/arm64/crypto/Kconfig"
1397endif
1398if MIPS
1399source "arch/mips/crypto/Kconfig"
1400endif
1401if PPC
1402source "arch/powerpc/crypto/Kconfig"
1403endif
1404if S390
1405source "arch/s390/crypto/Kconfig"
1406endif
1407if SPARC
1408source "arch/sparc/crypto/Kconfig"
1409endif
1410if X86
1411source "arch/x86/crypto/Kconfig"
1412endif
1413endif
1414
1415source "drivers/crypto/Kconfig"
1416source "crypto/asymmetric_keys/Kconfig"
1417source "certs/Kconfig"
1418
1419endif	# if CRYPTO