Loading...
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5 tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40config CRYPTO_ALGAPI2
41 tristate
42
43config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_RSA
97 tristate "RSA algorithm"
98 select CRYPTO_AKCIPHER
99 select CRYPTO_MANAGER
100 select MPILIB
101 select ASN1
102 help
103 Generic implementation of the RSA public key algorithm.
104
105config CRYPTO_MANAGER
106 tristate "Cryptographic algorithm manager"
107 select CRYPTO_MANAGER2
108 help
109 Create default cryptographic template instantiations such as
110 cbc(aes).
111
112config CRYPTO_MANAGER2
113 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
114 select CRYPTO_AEAD2
115 select CRYPTO_HASH2
116 select CRYPTO_BLKCIPHER2
117 select CRYPTO_AKCIPHER2
118
119config CRYPTO_USER
120 tristate "Userspace cryptographic algorithm configuration"
121 depends on NET
122 select CRYPTO_MANAGER
123 help
124 Userspace configuration for cryptographic instantiations such as
125 cbc(aes).
126
127config CRYPTO_MANAGER_DISABLE_TESTS
128 bool "Disable run-time self tests"
129 default y
130 depends on CRYPTO_MANAGER2
131 help
132 Disable run-time self tests that normally take place at
133 algorithm registration.
134
135config CRYPTO_GF128MUL
136 tristate "GF(2^128) multiplication functions"
137 help
138 Efficient table driven implementation of multiplications in the
139 field GF(2^128). This is needed by some cypher modes. This
140 option will be selected automatically if you select such a
141 cipher mode. Only select this option by hand if you expect to load
142 an external module that requires these functions.
143
144config CRYPTO_NULL
145 tristate "Null algorithms"
146 select CRYPTO_NULL2
147 help
148 These are 'Null' algorithms, used by IPsec, which do nothing.
149
150config CRYPTO_NULL2
151 tristate
152 select CRYPTO_ALGAPI2
153 select CRYPTO_BLKCIPHER2
154 select CRYPTO_HASH2
155
156config CRYPTO_PCRYPT
157 tristate "Parallel crypto engine"
158 depends on SMP
159 select PADATA
160 select CRYPTO_MANAGER
161 select CRYPTO_AEAD
162 help
163 This converts an arbitrary crypto algorithm into a parallel
164 algorithm that executes in kernel threads.
165
166config CRYPTO_WORKQUEUE
167 tristate
168
169config CRYPTO_CRYPTD
170 tristate "Software async crypto daemon"
171 select CRYPTO_BLKCIPHER
172 select CRYPTO_HASH
173 select CRYPTO_MANAGER
174 select CRYPTO_WORKQUEUE
175 help
176 This is a generic software asynchronous crypto daemon that
177 converts an arbitrary synchronous software crypto algorithm
178 into an asynchronous algorithm that executes in a kernel thread.
179
180config CRYPTO_MCRYPTD
181 tristate "Software async multi-buffer crypto daemon"
182 select CRYPTO_BLKCIPHER
183 select CRYPTO_HASH
184 select CRYPTO_MANAGER
185 select CRYPTO_WORKQUEUE
186 help
187 This is a generic software asynchronous crypto daemon that
188 provides the kernel thread to assist multi-buffer crypto
189 algorithms for submitting jobs and flushing jobs in multi-buffer
190 crypto algorithms. Multi-buffer crypto algorithms are executed
191 in the context of this kernel thread and drivers can post
192 their crypto request asynchronously to be processed by this daemon.
193
194config CRYPTO_AUTHENC
195 tristate "Authenc support"
196 select CRYPTO_AEAD
197 select CRYPTO_BLKCIPHER
198 select CRYPTO_MANAGER
199 select CRYPTO_HASH
200 select CRYPTO_NULL
201 help
202 Authenc: Combined mode wrapper for IPsec.
203 This is required for IPSec.
204
205config CRYPTO_TEST
206 tristate "Testing module"
207 depends on m
208 select CRYPTO_MANAGER
209 help
210 Quick & dirty crypto test module.
211
212config CRYPTO_ABLK_HELPER
213 tristate
214 select CRYPTO_CRYPTD
215
216config CRYPTO_GLUE_HELPER_X86
217 tristate
218 depends on X86
219 select CRYPTO_ALGAPI
220
221config CRYPTO_ENGINE
222 tristate
223
224comment "Authenticated Encryption with Associated Data"
225
226config CRYPTO_CCM
227 tristate "CCM support"
228 select CRYPTO_CTR
229 select CRYPTO_AEAD
230 help
231 Support for Counter with CBC MAC. Required for IPsec.
232
233config CRYPTO_GCM
234 tristate "GCM/GMAC support"
235 select CRYPTO_CTR
236 select CRYPTO_AEAD
237 select CRYPTO_GHASH
238 select CRYPTO_NULL
239 help
240 Support for Galois/Counter Mode (GCM) and Galois Message
241 Authentication Code (GMAC). Required for IPSec.
242
243config CRYPTO_CHACHA20POLY1305
244 tristate "ChaCha20-Poly1305 AEAD support"
245 select CRYPTO_CHACHA20
246 select CRYPTO_POLY1305
247 select CRYPTO_AEAD
248 help
249 ChaCha20-Poly1305 AEAD support, RFC7539.
250
251 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
252 with the Poly1305 authenticator. It is defined in RFC7539 for use in
253 IETF protocols.
254
255config CRYPTO_SEQIV
256 tristate "Sequence Number IV Generator"
257 select CRYPTO_AEAD
258 select CRYPTO_BLKCIPHER
259 select CRYPTO_NULL
260 select CRYPTO_RNG_DEFAULT
261 help
262 This IV generator generates an IV based on a sequence number by
263 xoring it with a salt. This algorithm is mainly useful for CTR
264
265config CRYPTO_ECHAINIV
266 tristate "Encrypted Chain IV Generator"
267 select CRYPTO_AEAD
268 select CRYPTO_NULL
269 select CRYPTO_RNG_DEFAULT
270 default m
271 help
272 This IV generator generates an IV based on the encryption of
273 a sequence number xored with a salt. This is the default
274 algorithm for CBC.
275
276comment "Block modes"
277
278config CRYPTO_CBC
279 tristate "CBC support"
280 select CRYPTO_BLKCIPHER
281 select CRYPTO_MANAGER
282 help
283 CBC: Cipher Block Chaining mode
284 This block cipher algorithm is required for IPSec.
285
286config CRYPTO_CTR
287 tristate "CTR support"
288 select CRYPTO_BLKCIPHER
289 select CRYPTO_SEQIV
290 select CRYPTO_MANAGER
291 help
292 CTR: Counter mode
293 This block cipher algorithm is required for IPSec.
294
295config CRYPTO_CTS
296 tristate "CTS support"
297 select CRYPTO_BLKCIPHER
298 help
299 CTS: Cipher Text Stealing
300 This is the Cipher Text Stealing mode as described by
301 Section 8 of rfc2040 and referenced by rfc3962.
302 (rfc3962 includes errata information in its Appendix A)
303 This mode is required for Kerberos gss mechanism support
304 for AES encryption.
305
306config CRYPTO_ECB
307 tristate "ECB support"
308 select CRYPTO_BLKCIPHER
309 select CRYPTO_MANAGER
310 help
311 ECB: Electronic CodeBook mode
312 This is the simplest block cipher algorithm. It simply encrypts
313 the input block by block.
314
315config CRYPTO_LRW
316 tristate "LRW support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 select CRYPTO_GF128MUL
320 help
321 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
322 narrow block cipher mode for dm-crypt. Use it with cipher
323 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
324 The first 128, 192 or 256 bits in the key are used for AES and the
325 rest is used to tie each cipher block to its logical position.
326
327config CRYPTO_PCBC
328 tristate "PCBC support"
329 select CRYPTO_BLKCIPHER
330 select CRYPTO_MANAGER
331 help
332 PCBC: Propagating Cipher Block Chaining mode
333 This block cipher algorithm is required for RxRPC.
334
335config CRYPTO_XTS
336 tristate "XTS support"
337 select CRYPTO_BLKCIPHER
338 select CRYPTO_MANAGER
339 select CRYPTO_GF128MUL
340 help
341 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
342 key size 256, 384 or 512 bits. This implementation currently
343 can't handle a sectorsize which is not a multiple of 16 bytes.
344
345config CRYPTO_KEYWRAP
346 tristate "Key wrapping support"
347 select CRYPTO_BLKCIPHER
348 help
349 Support for key wrapping (NIST SP800-38F / RFC3394) without
350 padding.
351
352comment "Hash modes"
353
354config CRYPTO_CMAC
355 tristate "CMAC support"
356 select CRYPTO_HASH
357 select CRYPTO_MANAGER
358 help
359 Cipher-based Message Authentication Code (CMAC) specified by
360 The National Institute of Standards and Technology (NIST).
361
362 https://tools.ietf.org/html/rfc4493
363 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
364
365config CRYPTO_HMAC
366 tristate "HMAC support"
367 select CRYPTO_HASH
368 select CRYPTO_MANAGER
369 help
370 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
371 This is required for IPSec.
372
373config CRYPTO_XCBC
374 tristate "XCBC support"
375 select CRYPTO_HASH
376 select CRYPTO_MANAGER
377 help
378 XCBC: Keyed-Hashing with encryption algorithm
379 http://www.ietf.org/rfc/rfc3566.txt
380 http://csrc.nist.gov/encryption/modes/proposedmodes/
381 xcbc-mac/xcbc-mac-spec.pdf
382
383config CRYPTO_VMAC
384 tristate "VMAC support"
385 select CRYPTO_HASH
386 select CRYPTO_MANAGER
387 help
388 VMAC is a message authentication algorithm designed for
389 very high speed on 64-bit architectures.
390
391 See also:
392 <http://fastcrypto.org/vmac>
393
394comment "Digest"
395
396config CRYPTO_CRC32C
397 tristate "CRC32c CRC algorithm"
398 select CRYPTO_HASH
399 select CRC32
400 help
401 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
402 by iSCSI for header and data digests and by others.
403 See Castagnoli93. Module will be crc32c.
404
405config CRYPTO_CRC32C_INTEL
406 tristate "CRC32c INTEL hardware acceleration"
407 depends on X86
408 select CRYPTO_HASH
409 help
410 In Intel processor with SSE4.2 supported, the processor will
411 support CRC32C implementation using hardware accelerated CRC32
412 instruction. This option will create 'crc32c-intel' module,
413 which will enable any routine to use the CRC32 instruction to
414 gain performance compared with software implementation.
415 Module will be crc32c-intel.
416
417config CRYPTO_CRC32C_SPARC64
418 tristate "CRC32c CRC algorithm (SPARC64)"
419 depends on SPARC64
420 select CRYPTO_HASH
421 select CRC32
422 help
423 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
424 when available.
425
426config CRYPTO_CRC32
427 tristate "CRC32 CRC algorithm"
428 select CRYPTO_HASH
429 select CRC32
430 help
431 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
432 Shash crypto api wrappers to crc32_le function.
433
434config CRYPTO_CRC32_PCLMUL
435 tristate "CRC32 PCLMULQDQ hardware acceleration"
436 depends on X86
437 select CRYPTO_HASH
438 select CRC32
439 help
440 From Intel Westmere and AMD Bulldozer processor with SSE4.2
441 and PCLMULQDQ supported, the processor will support
442 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
443 instruction. This option will create 'crc32-plcmul' module,
444 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
445 and gain better performance as compared with the table implementation.
446
447config CRYPTO_CRCT10DIF
448 tristate "CRCT10DIF algorithm"
449 select CRYPTO_HASH
450 help
451 CRC T10 Data Integrity Field computation is being cast as
452 a crypto transform. This allows for faster crc t10 diff
453 transforms to be used if they are available.
454
455config CRYPTO_CRCT10DIF_PCLMUL
456 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
457 depends on X86 && 64BIT && CRC_T10DIF
458 select CRYPTO_HASH
459 help
460 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
461 CRC T10 DIF PCLMULQDQ computation can be hardware
462 accelerated PCLMULQDQ instruction. This option will create
463 'crct10dif-plcmul' module, which is faster when computing the
464 crct10dif checksum as compared with the generic table implementation.
465
466config CRYPTO_GHASH
467 tristate "GHASH digest algorithm"
468 select CRYPTO_GF128MUL
469 select CRYPTO_HASH
470 help
471 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
472
473config CRYPTO_POLY1305
474 tristate "Poly1305 authenticator algorithm"
475 select CRYPTO_HASH
476 help
477 Poly1305 authenticator algorithm, RFC7539.
478
479 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
480 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
481 in IETF protocols. This is the portable C implementation of Poly1305.
482
483config CRYPTO_POLY1305_X86_64
484 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
485 depends on X86 && 64BIT
486 select CRYPTO_POLY1305
487 help
488 Poly1305 authenticator algorithm, RFC7539.
489
490 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
491 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
492 in IETF protocols. This is the x86_64 assembler implementation using SIMD
493 instructions.
494
495config CRYPTO_MD4
496 tristate "MD4 digest algorithm"
497 select CRYPTO_HASH
498 help
499 MD4 message digest algorithm (RFC1320).
500
501config CRYPTO_MD5
502 tristate "MD5 digest algorithm"
503 select CRYPTO_HASH
504 help
505 MD5 message digest algorithm (RFC1321).
506
507config CRYPTO_MD5_OCTEON
508 tristate "MD5 digest algorithm (OCTEON)"
509 depends on CPU_CAVIUM_OCTEON
510 select CRYPTO_MD5
511 select CRYPTO_HASH
512 help
513 MD5 message digest algorithm (RFC1321) implemented
514 using OCTEON crypto instructions, when available.
515
516config CRYPTO_MD5_PPC
517 tristate "MD5 digest algorithm (PPC)"
518 depends on PPC
519 select CRYPTO_HASH
520 help
521 MD5 message digest algorithm (RFC1321) implemented
522 in PPC assembler.
523
524config CRYPTO_MD5_SPARC64
525 tristate "MD5 digest algorithm (SPARC64)"
526 depends on SPARC64
527 select CRYPTO_MD5
528 select CRYPTO_HASH
529 help
530 MD5 message digest algorithm (RFC1321) implemented
531 using sparc64 crypto instructions, when available.
532
533config CRYPTO_MICHAEL_MIC
534 tristate "Michael MIC keyed digest algorithm"
535 select CRYPTO_HASH
536 help
537 Michael MIC is used for message integrity protection in TKIP
538 (IEEE 802.11i). This algorithm is required for TKIP, but it
539 should not be used for other purposes because of the weakness
540 of the algorithm.
541
542config CRYPTO_RMD128
543 tristate "RIPEMD-128 digest algorithm"
544 select CRYPTO_HASH
545 help
546 RIPEMD-128 (ISO/IEC 10118-3:2004).
547
548 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
549 be used as a secure replacement for RIPEMD. For other use cases,
550 RIPEMD-160 should be used.
551
552 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
553 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
554
555config CRYPTO_RMD160
556 tristate "RIPEMD-160 digest algorithm"
557 select CRYPTO_HASH
558 help
559 RIPEMD-160 (ISO/IEC 10118-3:2004).
560
561 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
562 to be used as a secure replacement for the 128-bit hash functions
563 MD4, MD5 and it's predecessor RIPEMD
564 (not to be confused with RIPEMD-128).
565
566 It's speed is comparable to SHA1 and there are no known attacks
567 against RIPEMD-160.
568
569 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
570 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
571
572config CRYPTO_RMD256
573 tristate "RIPEMD-256 digest algorithm"
574 select CRYPTO_HASH
575 help
576 RIPEMD-256 is an optional extension of RIPEMD-128 with a
577 256 bit hash. It is intended for applications that require
578 longer hash-results, without needing a larger security level
579 (than RIPEMD-128).
580
581 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
582 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
583
584config CRYPTO_RMD320
585 tristate "RIPEMD-320 digest algorithm"
586 select CRYPTO_HASH
587 help
588 RIPEMD-320 is an optional extension of RIPEMD-160 with a
589 320 bit hash. It is intended for applications that require
590 longer hash-results, without needing a larger security level
591 (than RIPEMD-160).
592
593 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
594 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
595
596config CRYPTO_SHA1
597 tristate "SHA1 digest algorithm"
598 select CRYPTO_HASH
599 help
600 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
601
602config CRYPTO_SHA1_SSSE3
603 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
604 depends on X86 && 64BIT
605 select CRYPTO_SHA1
606 select CRYPTO_HASH
607 help
608 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
609 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
610 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
611 when available.
612
613config CRYPTO_SHA256_SSSE3
614 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
615 depends on X86 && 64BIT
616 select CRYPTO_SHA256
617 select CRYPTO_HASH
618 help
619 SHA-256 secure hash standard (DFIPS 180-2) implemented
620 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
621 Extensions version 1 (AVX1), or Advanced Vector Extensions
622 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
623 Instructions) when available.
624
625config CRYPTO_SHA512_SSSE3
626 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
627 depends on X86 && 64BIT
628 select CRYPTO_SHA512
629 select CRYPTO_HASH
630 help
631 SHA-512 secure hash standard (DFIPS 180-2) implemented
632 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
633 Extensions version 1 (AVX1), or Advanced Vector Extensions
634 version 2 (AVX2) instructions, when available.
635
636config CRYPTO_SHA1_OCTEON
637 tristate "SHA1 digest algorithm (OCTEON)"
638 depends on CPU_CAVIUM_OCTEON
639 select CRYPTO_SHA1
640 select CRYPTO_HASH
641 help
642 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
643 using OCTEON crypto instructions, when available.
644
645config CRYPTO_SHA1_SPARC64
646 tristate "SHA1 digest algorithm (SPARC64)"
647 depends on SPARC64
648 select CRYPTO_SHA1
649 select CRYPTO_HASH
650 help
651 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
652 using sparc64 crypto instructions, when available.
653
654config CRYPTO_SHA1_PPC
655 tristate "SHA1 digest algorithm (powerpc)"
656 depends on PPC
657 help
658 This is the powerpc hardware accelerated implementation of the
659 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
660
661config CRYPTO_SHA1_PPC_SPE
662 tristate "SHA1 digest algorithm (PPC SPE)"
663 depends on PPC && SPE
664 help
665 SHA-1 secure hash standard (DFIPS 180-4) implemented
666 using powerpc SPE SIMD instruction set.
667
668config CRYPTO_SHA1_MB
669 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
670 depends on X86 && 64BIT
671 select CRYPTO_SHA1
672 select CRYPTO_HASH
673 select CRYPTO_MCRYPTD
674 help
675 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
676 using multi-buffer technique. This algorithm computes on
677 multiple data lanes concurrently with SIMD instructions for
678 better throughput. It should not be enabled by default but
679 used when there is significant amount of work to keep the keep
680 the data lanes filled to get performance benefit. If the data
681 lanes remain unfilled, a flush operation will be initiated to
682 process the crypto jobs, adding a slight latency.
683
684config CRYPTO_SHA256
685 tristate "SHA224 and SHA256 digest algorithm"
686 select CRYPTO_HASH
687 help
688 SHA256 secure hash standard (DFIPS 180-2).
689
690 This version of SHA implements a 256 bit hash with 128 bits of
691 security against collision attacks.
692
693 This code also includes SHA-224, a 224 bit hash with 112 bits
694 of security against collision attacks.
695
696config CRYPTO_SHA256_PPC_SPE
697 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
698 depends on PPC && SPE
699 select CRYPTO_SHA256
700 select CRYPTO_HASH
701 help
702 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
703 implemented using powerpc SPE SIMD instruction set.
704
705config CRYPTO_SHA256_OCTEON
706 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
707 depends on CPU_CAVIUM_OCTEON
708 select CRYPTO_SHA256
709 select CRYPTO_HASH
710 help
711 SHA-256 secure hash standard (DFIPS 180-2) implemented
712 using OCTEON crypto instructions, when available.
713
714config CRYPTO_SHA256_SPARC64
715 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
716 depends on SPARC64
717 select CRYPTO_SHA256
718 select CRYPTO_HASH
719 help
720 SHA-256 secure hash standard (DFIPS 180-2) implemented
721 using sparc64 crypto instructions, when available.
722
723config CRYPTO_SHA512
724 tristate "SHA384 and SHA512 digest algorithms"
725 select CRYPTO_HASH
726 help
727 SHA512 secure hash standard (DFIPS 180-2).
728
729 This version of SHA implements a 512 bit hash with 256 bits of
730 security against collision attacks.
731
732 This code also includes SHA-384, a 384 bit hash with 192 bits
733 of security against collision attacks.
734
735config CRYPTO_SHA512_OCTEON
736 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
737 depends on CPU_CAVIUM_OCTEON
738 select CRYPTO_SHA512
739 select CRYPTO_HASH
740 help
741 SHA-512 secure hash standard (DFIPS 180-2) implemented
742 using OCTEON crypto instructions, when available.
743
744config CRYPTO_SHA512_SPARC64
745 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
746 depends on SPARC64
747 select CRYPTO_SHA512
748 select CRYPTO_HASH
749 help
750 SHA-512 secure hash standard (DFIPS 180-2) implemented
751 using sparc64 crypto instructions, when available.
752
753config CRYPTO_TGR192
754 tristate "Tiger digest algorithms"
755 select CRYPTO_HASH
756 help
757 Tiger hash algorithm 192, 160 and 128-bit hashes
758
759 Tiger is a hash function optimized for 64-bit processors while
760 still having decent performance on 32-bit processors.
761 Tiger was developed by Ross Anderson and Eli Biham.
762
763 See also:
764 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
765
766config CRYPTO_WP512
767 tristate "Whirlpool digest algorithms"
768 select CRYPTO_HASH
769 help
770 Whirlpool hash algorithm 512, 384 and 256-bit hashes
771
772 Whirlpool-512 is part of the NESSIE cryptographic primitives.
773 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
774
775 See also:
776 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
777
778config CRYPTO_GHASH_CLMUL_NI_INTEL
779 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
780 depends on X86 && 64BIT
781 select CRYPTO_CRYPTD
782 help
783 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
784 The implementation is accelerated by CLMUL-NI of Intel.
785
786comment "Ciphers"
787
788config CRYPTO_AES
789 tristate "AES cipher algorithms"
790 select CRYPTO_ALGAPI
791 help
792 AES cipher algorithms (FIPS-197). AES uses the Rijndael
793 algorithm.
794
795 Rijndael appears to be consistently a very good performer in
796 both hardware and software across a wide range of computing
797 environments regardless of its use in feedback or non-feedback
798 modes. Its key setup time is excellent, and its key agility is
799 good. Rijndael's very low memory requirements make it very well
800 suited for restricted-space environments, in which it also
801 demonstrates excellent performance. Rijndael's operations are
802 among the easiest to defend against power and timing attacks.
803
804 The AES specifies three key sizes: 128, 192 and 256 bits
805
806 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
807
808config CRYPTO_AES_586
809 tristate "AES cipher algorithms (i586)"
810 depends on (X86 || UML_X86) && !64BIT
811 select CRYPTO_ALGAPI
812 select CRYPTO_AES
813 help
814 AES cipher algorithms (FIPS-197). AES uses the Rijndael
815 algorithm.
816
817 Rijndael appears to be consistently a very good performer in
818 both hardware and software across a wide range of computing
819 environments regardless of its use in feedback or non-feedback
820 modes. Its key setup time is excellent, and its key agility is
821 good. Rijndael's very low memory requirements make it very well
822 suited for restricted-space environments, in which it also
823 demonstrates excellent performance. Rijndael's operations are
824 among the easiest to defend against power and timing attacks.
825
826 The AES specifies three key sizes: 128, 192 and 256 bits
827
828 See <http://csrc.nist.gov/encryption/aes/> for more information.
829
830config CRYPTO_AES_X86_64
831 tristate "AES cipher algorithms (x86_64)"
832 depends on (X86 || UML_X86) && 64BIT
833 select CRYPTO_ALGAPI
834 select CRYPTO_AES
835 help
836 AES cipher algorithms (FIPS-197). AES uses the Rijndael
837 algorithm.
838
839 Rijndael appears to be consistently a very good performer in
840 both hardware and software across a wide range of computing
841 environments regardless of its use in feedback or non-feedback
842 modes. Its key setup time is excellent, and its key agility is
843 good. Rijndael's very low memory requirements make it very well
844 suited for restricted-space environments, in which it also
845 demonstrates excellent performance. Rijndael's operations are
846 among the easiest to defend against power and timing attacks.
847
848 The AES specifies three key sizes: 128, 192 and 256 bits
849
850 See <http://csrc.nist.gov/encryption/aes/> for more information.
851
852config CRYPTO_AES_NI_INTEL
853 tristate "AES cipher algorithms (AES-NI)"
854 depends on X86
855 select CRYPTO_AES_X86_64 if 64BIT
856 select CRYPTO_AES_586 if !64BIT
857 select CRYPTO_CRYPTD
858 select CRYPTO_ABLK_HELPER
859 select CRYPTO_ALGAPI
860 select CRYPTO_GLUE_HELPER_X86 if 64BIT
861 select CRYPTO_LRW
862 select CRYPTO_XTS
863 help
864 Use Intel AES-NI instructions for AES algorithm.
865
866 AES cipher algorithms (FIPS-197). AES uses the Rijndael
867 algorithm.
868
869 Rijndael appears to be consistently a very good performer in
870 both hardware and software across a wide range of computing
871 environments regardless of its use in feedback or non-feedback
872 modes. Its key setup time is excellent, and its key agility is
873 good. Rijndael's very low memory requirements make it very well
874 suited for restricted-space environments, in which it also
875 demonstrates excellent performance. Rijndael's operations are
876 among the easiest to defend against power and timing attacks.
877
878 The AES specifies three key sizes: 128, 192 and 256 bits
879
880 See <http://csrc.nist.gov/encryption/aes/> for more information.
881
882 In addition to AES cipher algorithm support, the acceleration
883 for some popular block cipher mode is supported too, including
884 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
885 acceleration for CTR.
886
887config CRYPTO_AES_SPARC64
888 tristate "AES cipher algorithms (SPARC64)"
889 depends on SPARC64
890 select CRYPTO_CRYPTD
891 select CRYPTO_ALGAPI
892 help
893 Use SPARC64 crypto opcodes for AES algorithm.
894
895 AES cipher algorithms (FIPS-197). AES uses the Rijndael
896 algorithm.
897
898 Rijndael appears to be consistently a very good performer in
899 both hardware and software across a wide range of computing
900 environments regardless of its use in feedback or non-feedback
901 modes. Its key setup time is excellent, and its key agility is
902 good. Rijndael's very low memory requirements make it very well
903 suited for restricted-space environments, in which it also
904 demonstrates excellent performance. Rijndael's operations are
905 among the easiest to defend against power and timing attacks.
906
907 The AES specifies three key sizes: 128, 192 and 256 bits
908
909 See <http://csrc.nist.gov/encryption/aes/> for more information.
910
911 In addition to AES cipher algorithm support, the acceleration
912 for some popular block cipher mode is supported too, including
913 ECB and CBC.
914
915config CRYPTO_AES_PPC_SPE
916 tristate "AES cipher algorithms (PPC SPE)"
917 depends on PPC && SPE
918 help
919 AES cipher algorithms (FIPS-197). Additionally the acceleration
920 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
921 This module should only be used for low power (router) devices
922 without hardware AES acceleration (e.g. caam crypto). It reduces the
923 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
924 timining attacks. Nevertheless it might be not as secure as other
925 architecture specific assembler implementations that work on 1KB
926 tables or 256 bytes S-boxes.
927
928config CRYPTO_ANUBIS
929 tristate "Anubis cipher algorithm"
930 select CRYPTO_ALGAPI
931 help
932 Anubis cipher algorithm.
933
934 Anubis is a variable key length cipher which can use keys from
935 128 bits to 320 bits in length. It was evaluated as a entrant
936 in the NESSIE competition.
937
938 See also:
939 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
940 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
941
942config CRYPTO_ARC4
943 tristate "ARC4 cipher algorithm"
944 select CRYPTO_BLKCIPHER
945 help
946 ARC4 cipher algorithm.
947
948 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
949 bits in length. This algorithm is required for driver-based
950 WEP, but it should not be for other purposes because of the
951 weakness of the algorithm.
952
953config CRYPTO_BLOWFISH
954 tristate "Blowfish cipher algorithm"
955 select CRYPTO_ALGAPI
956 select CRYPTO_BLOWFISH_COMMON
957 help
958 Blowfish cipher algorithm, by Bruce Schneier.
959
960 This is a variable key length cipher which can use keys from 32
961 bits to 448 bits in length. It's fast, simple and specifically
962 designed for use on "large microprocessors".
963
964 See also:
965 <http://www.schneier.com/blowfish.html>
966
967config CRYPTO_BLOWFISH_COMMON
968 tristate
969 help
970 Common parts of the Blowfish cipher algorithm shared by the
971 generic c and the assembler implementations.
972
973 See also:
974 <http://www.schneier.com/blowfish.html>
975
976config CRYPTO_BLOWFISH_X86_64
977 tristate "Blowfish cipher algorithm (x86_64)"
978 depends on X86 && 64BIT
979 select CRYPTO_ALGAPI
980 select CRYPTO_BLOWFISH_COMMON
981 help
982 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
983
984 This is a variable key length cipher which can use keys from 32
985 bits to 448 bits in length. It's fast, simple and specifically
986 designed for use on "large microprocessors".
987
988 See also:
989 <http://www.schneier.com/blowfish.html>
990
991config CRYPTO_CAMELLIA
992 tristate "Camellia cipher algorithms"
993 depends on CRYPTO
994 select CRYPTO_ALGAPI
995 help
996 Camellia cipher algorithms module.
997
998 Camellia is a symmetric key block cipher developed jointly
999 at NTT and Mitsubishi Electric Corporation.
1000
1001 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1002
1003 See also:
1004 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1005
1006config CRYPTO_CAMELLIA_X86_64
1007 tristate "Camellia cipher algorithm (x86_64)"
1008 depends on X86 && 64BIT
1009 depends on CRYPTO
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_GLUE_HELPER_X86
1012 select CRYPTO_LRW
1013 select CRYPTO_XTS
1014 help
1015 Camellia cipher algorithm module (x86_64).
1016
1017 Camellia is a symmetric key block cipher developed jointly
1018 at NTT and Mitsubishi Electric Corporation.
1019
1020 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1021
1022 See also:
1023 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027 depends on X86 && 64BIT
1028 depends on CRYPTO
1029 select CRYPTO_ALGAPI
1030 select CRYPTO_CRYPTD
1031 select CRYPTO_ABLK_HELPER
1032 select CRYPTO_GLUE_HELPER_X86
1033 select CRYPTO_CAMELLIA_X86_64
1034 select CRYPTO_LRW
1035 select CRYPTO_XTS
1036 help
1037 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1038
1039 Camellia is a symmetric key block cipher developed jointly
1040 at NTT and Mitsubishi Electric Corporation.
1041
1042 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1043
1044 See also:
1045 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049 depends on X86 && 64BIT
1050 depends on CRYPTO
1051 select CRYPTO_ALGAPI
1052 select CRYPTO_CRYPTD
1053 select CRYPTO_ABLK_HELPER
1054 select CRYPTO_GLUE_HELPER_X86
1055 select CRYPTO_CAMELLIA_X86_64
1056 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057 select CRYPTO_LRW
1058 select CRYPTO_XTS
1059 help
1060 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062 Camellia is a symmetric key block cipher developed jointly
1063 at NTT and Mitsubishi Electric Corporation.
1064
1065 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1066
1067 See also:
1068 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071 tristate "Camellia cipher algorithm (SPARC64)"
1072 depends on SPARC64
1073 depends on CRYPTO
1074 select CRYPTO_ALGAPI
1075 help
1076 Camellia cipher algorithm module (SPARC64).
1077
1078 Camellia is a symmetric key block cipher developed jointly
1079 at NTT and Mitsubishi Electric Corporation.
1080
1081 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1082
1083 See also:
1084 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087 tristate
1088 help
1089 Common parts of the CAST cipher algorithms shared by the
1090 generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093 tristate "CAST5 (CAST-128) cipher algorithm"
1094 select CRYPTO_ALGAPI
1095 select CRYPTO_CAST_COMMON
1096 help
1097 The CAST5 encryption algorithm (synonymous with CAST-128) is
1098 described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102 depends on X86 && 64BIT
1103 select CRYPTO_ALGAPI
1104 select CRYPTO_CRYPTD
1105 select CRYPTO_ABLK_HELPER
1106 select CRYPTO_CAST_COMMON
1107 select CRYPTO_CAST5
1108 help
1109 The CAST5 encryption algorithm (synonymous with CAST-128) is
1110 described in RFC2144.
1111
1112 This module provides the Cast5 cipher algorithm that processes
1113 sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116 tristate "CAST6 (CAST-256) cipher algorithm"
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_CAST_COMMON
1119 help
1120 The CAST6 encryption algorithm (synonymous with CAST-256) is
1121 described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125 depends on X86 && 64BIT
1126 select CRYPTO_ALGAPI
1127 select CRYPTO_CRYPTD
1128 select CRYPTO_ABLK_HELPER
1129 select CRYPTO_GLUE_HELPER_X86
1130 select CRYPTO_CAST_COMMON
1131 select CRYPTO_CAST6
1132 select CRYPTO_LRW
1133 select CRYPTO_XTS
1134 help
1135 The CAST6 encryption algorithm (synonymous with CAST-256) is
1136 described in RFC2612.
1137
1138 This module provides the Cast6 cipher algorithm that processes
1139 eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142 tristate "DES and Triple DES EDE cipher algorithms"
1143 select CRYPTO_ALGAPI
1144 help
1145 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1146
1147config CRYPTO_DES_SPARC64
1148 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149 depends on SPARC64
1150 select CRYPTO_ALGAPI
1151 select CRYPTO_DES
1152 help
1153 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154 optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157 tristate "Triple DES EDE cipher algorithm (x86-64)"
1158 depends on X86 && 64BIT
1159 select CRYPTO_ALGAPI
1160 select CRYPTO_DES
1161 help
1162 Triple DES EDE (FIPS 46-3) algorithm.
1163
1164 This module provides implementation of the Triple DES EDE cipher
1165 algorithm that is optimized for x86-64 processors. Two versions of
1166 algorithm are provided; regular processing one input block and
1167 one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170 tristate "FCrypt cipher algorithm"
1171 select CRYPTO_ALGAPI
1172 select CRYPTO_BLKCIPHER
1173 help
1174 FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177 tristate "Khazad cipher algorithm"
1178 select CRYPTO_ALGAPI
1179 help
1180 Khazad cipher algorithm.
1181
1182 Khazad was a finalist in the initial NESSIE competition. It is
1183 an algorithm optimized for 64-bit processors with good performance
1184 on 32-bit processors. Khazad uses an 128 bit key size.
1185
1186 See also:
1187 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1188
1189config CRYPTO_SALSA20
1190 tristate "Salsa20 stream cipher algorithm"
1191 select CRYPTO_BLKCIPHER
1192 help
1193 Salsa20 stream cipher algorithm.
1194
1195 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1197
1198 The Salsa20 stream cipher algorithm is designed by Daniel J.
1199 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1200
1201config CRYPTO_SALSA20_586
1202 tristate "Salsa20 stream cipher algorithm (i586)"
1203 depends on (X86 || UML_X86) && !64BIT
1204 select CRYPTO_BLKCIPHER
1205 help
1206 Salsa20 stream cipher algorithm.
1207
1208 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211 The Salsa20 stream cipher algorithm is designed by Daniel J.
1212 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1213
1214config CRYPTO_SALSA20_X86_64
1215 tristate "Salsa20 stream cipher algorithm (x86_64)"
1216 depends on (X86 || UML_X86) && 64BIT
1217 select CRYPTO_BLKCIPHER
1218 help
1219 Salsa20 stream cipher algorithm.
1220
1221 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224 The Salsa20 stream cipher algorithm is designed by Daniel J.
1225 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1226
1227config CRYPTO_CHACHA20
1228 tristate "ChaCha20 cipher algorithm"
1229 select CRYPTO_BLKCIPHER
1230 help
1231 ChaCha20 cipher algorithm, RFC7539.
1232
1233 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234 Bernstein and further specified in RFC7539 for use in IETF protocols.
1235 This is the portable C implementation of ChaCha20.
1236
1237 See also:
1238 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1239
1240config CRYPTO_CHACHA20_X86_64
1241 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CHACHA20
1245 help
1246 ChaCha20 cipher algorithm, RFC7539.
1247
1248 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249 Bernstein and further specified in RFC7539 for use in IETF protocols.
1250 This is the x86_64 assembler implementation using SIMD instructions.
1251
1252 See also:
1253 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1254
1255config CRYPTO_SEED
1256 tristate "SEED cipher algorithm"
1257 select CRYPTO_ALGAPI
1258 help
1259 SEED cipher algorithm (RFC4269).
1260
1261 SEED is a 128-bit symmetric key block cipher that has been
1262 developed by KISA (Korea Information Security Agency) as a
1263 national standard encryption algorithm of the Republic of Korea.
1264 It is a 16 round block cipher with the key size of 128 bit.
1265
1266 See also:
1267 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1268
1269config CRYPTO_SERPENT
1270 tristate "Serpent cipher algorithm"
1271 select CRYPTO_ALGAPI
1272 help
1273 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275 Keys are allowed to be from 0 to 256 bits in length, in steps
1276 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1277 variant of Serpent for compatibility with old kerneli.org code.
1278
1279 See also:
1280 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284 depends on X86 && 64BIT
1285 select CRYPTO_ALGAPI
1286 select CRYPTO_CRYPTD
1287 select CRYPTO_ABLK_HELPER
1288 select CRYPTO_GLUE_HELPER_X86
1289 select CRYPTO_SERPENT
1290 select CRYPTO_LRW
1291 select CRYPTO_XTS
1292 help
1293 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295 Keys are allowed to be from 0 to 256 bits in length, in steps
1296 of 8 bits.
1297
1298 This module provides Serpent cipher algorithm that processes eight
1299 blocks parallel using SSE2 instruction set.
1300
1301 See also:
1302 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304config CRYPTO_SERPENT_SSE2_586
1305 tristate "Serpent cipher algorithm (i586/SSE2)"
1306 depends on X86 && !64BIT
1307 select CRYPTO_ALGAPI
1308 select CRYPTO_CRYPTD
1309 select CRYPTO_ABLK_HELPER
1310 select CRYPTO_GLUE_HELPER_X86
1311 select CRYPTO_SERPENT
1312 select CRYPTO_LRW
1313 select CRYPTO_XTS
1314 help
1315 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1316
1317 Keys are allowed to be from 0 to 256 bits in length, in steps
1318 of 8 bits.
1319
1320 This module provides Serpent cipher algorithm that processes four
1321 blocks parallel using SSE2 instruction set.
1322
1323 See also:
1324 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327 tristate "Serpent cipher algorithm (x86_64/AVX)"
1328 depends on X86 && 64BIT
1329 select CRYPTO_ALGAPI
1330 select CRYPTO_CRYPTD
1331 select CRYPTO_ABLK_HELPER
1332 select CRYPTO_GLUE_HELPER_X86
1333 select CRYPTO_SERPENT
1334 select CRYPTO_LRW
1335 select CRYPTO_XTS
1336 help
1337 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339 Keys are allowed to be from 0 to 256 bits in length, in steps
1340 of 8 bits.
1341
1342 This module provides the Serpent cipher algorithm that processes
1343 eight blocks parallel using the AVX instruction set.
1344
1345 See also:
1346 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350 depends on X86 && 64BIT
1351 select CRYPTO_ALGAPI
1352 select CRYPTO_CRYPTD
1353 select CRYPTO_ABLK_HELPER
1354 select CRYPTO_GLUE_HELPER_X86
1355 select CRYPTO_SERPENT
1356 select CRYPTO_SERPENT_AVX_X86_64
1357 select CRYPTO_LRW
1358 select CRYPTO_XTS
1359 help
1360 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1361
1362 Keys are allowed to be from 0 to 256 bits in length, in steps
1363 of 8 bits.
1364
1365 This module provides Serpent cipher algorithm that processes 16
1366 blocks parallel using AVX2 instruction set.
1367
1368 See also:
1369 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_TEA
1372 tristate "TEA, XTEA and XETA cipher algorithms"
1373 select CRYPTO_ALGAPI
1374 help
1375 TEA cipher algorithm.
1376
1377 Tiny Encryption Algorithm is a simple cipher that uses
1378 many rounds for security. It is very fast and uses
1379 little memory.
1380
1381 Xtendend Tiny Encryption Algorithm is a modification to
1382 the TEA algorithm to address a potential key weakness
1383 in the TEA algorithm.
1384
1385 Xtendend Encryption Tiny Algorithm is a mis-implementation
1386 of the XTEA algorithm for compatibility purposes.
1387
1388config CRYPTO_TWOFISH
1389 tristate "Twofish cipher algorithm"
1390 select CRYPTO_ALGAPI
1391 select CRYPTO_TWOFISH_COMMON
1392 help
1393 Twofish cipher algorithm.
1394
1395 Twofish was submitted as an AES (Advanced Encryption Standard)
1396 candidate cipher by researchers at CounterPane Systems. It is a
1397 16 round block cipher supporting key sizes of 128, 192, and 256
1398 bits.
1399
1400 See also:
1401 <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404 tristate
1405 help
1406 Common parts of the Twofish cipher algorithm shared by the
1407 generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410 tristate "Twofish cipher algorithms (i586)"
1411 depends on (X86 || UML_X86) && !64BIT
1412 select CRYPTO_ALGAPI
1413 select CRYPTO_TWOFISH_COMMON
1414 help
1415 Twofish cipher algorithm.
1416
1417 Twofish was submitted as an AES (Advanced Encryption Standard)
1418 candidate cipher by researchers at CounterPane Systems. It is a
1419 16 round block cipher supporting key sizes of 128, 192, and 256
1420 bits.
1421
1422 See also:
1423 <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426 tristate "Twofish cipher algorithm (x86_64)"
1427 depends on (X86 || UML_X86) && 64BIT
1428 select CRYPTO_ALGAPI
1429 select CRYPTO_TWOFISH_COMMON
1430 help
1431 Twofish cipher algorithm (x86_64).
1432
1433 Twofish was submitted as an AES (Advanced Encryption Standard)
1434 candidate cipher by researchers at CounterPane Systems. It is a
1435 16 round block cipher supporting key sizes of 128, 192, and 256
1436 bits.
1437
1438 See also:
1439 <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443 depends on X86 && 64BIT
1444 select CRYPTO_ALGAPI
1445 select CRYPTO_TWOFISH_COMMON
1446 select CRYPTO_TWOFISH_X86_64
1447 select CRYPTO_GLUE_HELPER_X86
1448 select CRYPTO_LRW
1449 select CRYPTO_XTS
1450 help
1451 Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453 Twofish was submitted as an AES (Advanced Encryption Standard)
1454 candidate cipher by researchers at CounterPane Systems. It is a
1455 16 round block cipher supporting key sizes of 128, 192, and 256
1456 bits.
1457
1458 This module provides Twofish cipher algorithm that processes three
1459 blocks parallel, utilizing resources of out-of-order CPUs better.
1460
1461 See also:
1462 <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465 tristate "Twofish cipher algorithm (x86_64/AVX)"
1466 depends on X86 && 64BIT
1467 select CRYPTO_ALGAPI
1468 select CRYPTO_CRYPTD
1469 select CRYPTO_ABLK_HELPER
1470 select CRYPTO_GLUE_HELPER_X86
1471 select CRYPTO_TWOFISH_COMMON
1472 select CRYPTO_TWOFISH_X86_64
1473 select CRYPTO_TWOFISH_X86_64_3WAY
1474 select CRYPTO_LRW
1475 select CRYPTO_XTS
1476 help
1477 Twofish cipher algorithm (x86_64/AVX).
1478
1479 Twofish was submitted as an AES (Advanced Encryption Standard)
1480 candidate cipher by researchers at CounterPane Systems. It is a
1481 16 round block cipher supporting key sizes of 128, 192, and 256
1482 bits.
1483
1484 This module provides the Twofish cipher algorithm that processes
1485 eight blocks parallel using the AVX Instruction Set.
1486
1487 See also:
1488 <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493 tristate "Deflate compression algorithm"
1494 select CRYPTO_ALGAPI
1495 select ZLIB_INFLATE
1496 select ZLIB_DEFLATE
1497 help
1498 This is the Deflate algorithm (RFC1951), specified for use in
1499 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501 You will most probably want this if using IPSec.
1502
1503config CRYPTO_LZO
1504 tristate "LZO compression algorithm"
1505 select CRYPTO_ALGAPI
1506 select LZO_COMPRESS
1507 select LZO_DECOMPRESS
1508 help
1509 This is the LZO algorithm.
1510
1511config CRYPTO_842
1512 tristate "842 compression algorithm"
1513 select CRYPTO_ALGAPI
1514 select 842_COMPRESS
1515 select 842_DECOMPRESS
1516 help
1517 This is the 842 algorithm.
1518
1519config CRYPTO_LZ4
1520 tristate "LZ4 compression algorithm"
1521 select CRYPTO_ALGAPI
1522 select LZ4_COMPRESS
1523 select LZ4_DECOMPRESS
1524 help
1525 This is the LZ4 algorithm.
1526
1527config CRYPTO_LZ4HC
1528 tristate "LZ4HC compression algorithm"
1529 select CRYPTO_ALGAPI
1530 select LZ4HC_COMPRESS
1531 select LZ4_DECOMPRESS
1532 help
1533 This is the LZ4 high compression mode algorithm.
1534
1535comment "Random Number Generation"
1536
1537config CRYPTO_ANSI_CPRNG
1538 tristate "Pseudo Random Number Generation for Cryptographic modules"
1539 select CRYPTO_AES
1540 select CRYPTO_RNG
1541 help
1542 This option enables the generic pseudo random number generator
1543 for cryptographic modules. Uses the Algorithm specified in
1544 ANSI X9.31 A.2.4. Note that this option must be enabled if
1545 CRYPTO_FIPS is selected
1546
1547menuconfig CRYPTO_DRBG_MENU
1548 tristate "NIST SP800-90A DRBG"
1549 help
1550 NIST SP800-90A compliant DRBG. In the following submenu, one or
1551 more of the DRBG types must be selected.
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556 bool
1557 default y
1558 select CRYPTO_HMAC
1559 select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562 bool "Enable Hash DRBG"
1563 select CRYPTO_SHA256
1564 help
1565 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1566
1567config CRYPTO_DRBG_CTR
1568 bool "Enable CTR DRBG"
1569 select CRYPTO_AES
1570 help
1571 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1572
1573config CRYPTO_DRBG
1574 tristate
1575 default CRYPTO_DRBG_MENU
1576 select CRYPTO_RNG
1577 select CRYPTO_JITTERENTROPY
1578
1579endif # if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583 select CRYPTO_RNG
1584 help
1585 The Jitterentropy RNG is a noise that is intended
1586 to provide seed to another RNG. The RNG does not
1587 perform any cryptographic whitening of the generated
1588 random numbers. This Jitterentropy RNG registers with
1589 the kernel crypto API and can be used by any caller.
1590
1591config CRYPTO_USER_API
1592 tristate
1593
1594config CRYPTO_USER_API_HASH
1595 tristate "User-space interface for hash algorithms"
1596 depends on NET
1597 select CRYPTO_HASH
1598 select CRYPTO_USER_API
1599 help
1600 This option enables the user-spaces interface for hash
1601 algorithms.
1602
1603config CRYPTO_USER_API_SKCIPHER
1604 tristate "User-space interface for symmetric key cipher algorithms"
1605 depends on NET
1606 select CRYPTO_BLKCIPHER
1607 select CRYPTO_USER_API
1608 help
1609 This option enables the user-spaces interface for symmetric
1610 key cipher algorithms.
1611
1612config CRYPTO_USER_API_RNG
1613 tristate "User-space interface for random number generator algorithms"
1614 depends on NET
1615 select CRYPTO_RNG
1616 select CRYPTO_USER_API
1617 help
1618 This option enables the user-spaces interface for random
1619 number generator algorithms.
1620
1621config CRYPTO_USER_API_AEAD
1622 tristate "User-space interface for AEAD cipher algorithms"
1623 depends on NET
1624 select CRYPTO_AEAD
1625 select CRYPTO_USER_API
1626 help
1627 This option enables the user-spaces interface for AEAD
1628 cipher algorithms.
1629
1630config CRYPTO_HASH_INFO
1631 bool
1632
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74 select CRYPTO_NULL2
75 select CRYPTO_RNG2
76
77config CRYPTO_SKCIPHER
78 tristate
79 select CRYPTO_SKCIPHER2
80 select CRYPTO_ALGAPI
81
82config CRYPTO_SKCIPHER2
83 tristate
84 select CRYPTO_ALGAPI2
85 select CRYPTO_RNG2
86
87config CRYPTO_HASH
88 tristate
89 select CRYPTO_HASH2
90 select CRYPTO_ALGAPI
91
92config CRYPTO_HASH2
93 tristate
94 select CRYPTO_ALGAPI2
95
96config CRYPTO_RNG
97 tristate
98 select CRYPTO_RNG2
99 select CRYPTO_ALGAPI
100
101config CRYPTO_RNG2
102 tristate
103 select CRYPTO_ALGAPI2
104
105config CRYPTO_RNG_DEFAULT
106 tristate
107 select CRYPTO_DRBG_MENU
108
109config CRYPTO_AKCIPHER2
110 tristate
111 select CRYPTO_ALGAPI2
112
113config CRYPTO_AKCIPHER
114 tristate
115 select CRYPTO_AKCIPHER2
116 select CRYPTO_ALGAPI
117
118config CRYPTO_KPP2
119 tristate
120 select CRYPTO_ALGAPI2
121
122config CRYPTO_KPP
123 tristate
124 select CRYPTO_ALGAPI
125 select CRYPTO_KPP2
126
127config CRYPTO_ACOMP2
128 tristate
129 select CRYPTO_ALGAPI2
130 select SGL_ALLOC
131
132config CRYPTO_ACOMP
133 tristate
134 select CRYPTO_ALGAPI
135 select CRYPTO_ACOMP2
136
137config CRYPTO_MANAGER
138 tristate "Cryptographic algorithm manager"
139 select CRYPTO_MANAGER2
140 help
141 Create default cryptographic template instantiations such as
142 cbc(aes).
143
144config CRYPTO_MANAGER2
145 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
146 select CRYPTO_AEAD2
147 select CRYPTO_HASH2
148 select CRYPTO_SKCIPHER2
149 select CRYPTO_AKCIPHER2
150 select CRYPTO_KPP2
151 select CRYPTO_ACOMP2
152
153config CRYPTO_USER
154 tristate "Userspace cryptographic algorithm configuration"
155 depends on NET
156 select CRYPTO_MANAGER
157 help
158 Userspace configuration for cryptographic instantiations such as
159 cbc(aes).
160
161config CRYPTO_MANAGER_DISABLE_TESTS
162 bool "Disable run-time self tests"
163 default y
164 help
165 Disable run-time self tests that normally take place at
166 algorithm registration.
167
168config CRYPTO_MANAGER_EXTRA_TESTS
169 bool "Enable extra run-time crypto self tests"
170 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
171 help
172 Enable extra run-time self tests of registered crypto algorithms,
173 including randomized fuzz tests.
174
175 This is intended for developer use only, as these tests take much
176 longer to run than the normal self tests.
177
178config CRYPTO_NULL
179 tristate "Null algorithms"
180 select CRYPTO_NULL2
181 help
182 These are 'Null' algorithms, used by IPsec, which do nothing.
183
184config CRYPTO_NULL2
185 tristate
186 select CRYPTO_ALGAPI2
187 select CRYPTO_SKCIPHER2
188 select CRYPTO_HASH2
189
190config CRYPTO_PCRYPT
191 tristate "Parallel crypto engine"
192 depends on SMP
193 select PADATA
194 select CRYPTO_MANAGER
195 select CRYPTO_AEAD
196 help
197 This converts an arbitrary crypto algorithm into a parallel
198 algorithm that executes in kernel threads.
199
200config CRYPTO_CRYPTD
201 tristate "Software async crypto daemon"
202 select CRYPTO_SKCIPHER
203 select CRYPTO_HASH
204 select CRYPTO_MANAGER
205 help
206 This is a generic software asynchronous crypto daemon that
207 converts an arbitrary synchronous software crypto algorithm
208 into an asynchronous algorithm that executes in a kernel thread.
209
210config CRYPTO_AUTHENC
211 tristate "Authenc support"
212 select CRYPTO_AEAD
213 select CRYPTO_SKCIPHER
214 select CRYPTO_MANAGER
215 select CRYPTO_HASH
216 select CRYPTO_NULL
217 help
218 Authenc: Combined mode wrapper for IPsec.
219
220 This is required for IPSec ESP (XFRM_ESP).
221
222config CRYPTO_TEST
223 tristate "Testing module"
224 depends on m || EXPERT
225 select CRYPTO_MANAGER
226 help
227 Quick & dirty crypto test module.
228
229config CRYPTO_SIMD
230 tristate
231 select CRYPTO_CRYPTD
232
233config CRYPTO_ENGINE
234 tristate
235
236endmenu
237
238menu "Public-key cryptography"
239
240config CRYPTO_RSA
241 tristate "RSA (Rivest-Shamir-Adleman)"
242 select CRYPTO_AKCIPHER
243 select CRYPTO_MANAGER
244 select MPILIB
245 select ASN1
246 help
247 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
248
249config CRYPTO_DH
250 tristate "DH (Diffie-Hellman)"
251 select CRYPTO_KPP
252 select MPILIB
253 help
254 DH (Diffie-Hellman) key exchange algorithm
255
256config CRYPTO_DH_RFC7919_GROUPS
257 bool "RFC 7919 FFDHE groups"
258 depends on CRYPTO_DH
259 select CRYPTO_RNG_DEFAULT
260 help
261 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
262 defined in RFC7919.
263
264 Support these finite-field groups in DH key exchanges:
265 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
266
267 If unsure, say N.
268
269config CRYPTO_ECC
270 tristate
271 select CRYPTO_RNG_DEFAULT
272
273config CRYPTO_ECDH
274 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
275 select CRYPTO_ECC
276 select CRYPTO_KPP
277 help
278 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
279 using curves P-192, P-256, and P-384 (FIPS 186)
280
281config CRYPTO_ECDSA
282 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
283 select CRYPTO_ECC
284 select CRYPTO_AKCIPHER
285 select ASN1
286 help
287 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
288 ISO/IEC 14888-3)
289 using curves P-192, P-256, and P-384
290
291 Only signature verification is implemented.
292
293config CRYPTO_ECRDSA
294 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
295 select CRYPTO_ECC
296 select CRYPTO_AKCIPHER
297 select CRYPTO_STREEBOG
298 select OID_REGISTRY
299 select ASN1
300 help
301 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
302 RFC 7091, ISO/IEC 14888-3)
303
304 One of the Russian cryptographic standard algorithms (called GOST
305 algorithms). Only signature verification is implemented.
306
307config CRYPTO_SM2
308 tristate "SM2 (ShangMi 2)"
309 select CRYPTO_SM3
310 select CRYPTO_AKCIPHER
311 select CRYPTO_MANAGER
312 select MPILIB
313 select ASN1
314 help
315 SM2 (ShangMi 2) public key algorithm
316
317 Published by State Encryption Management Bureau, China,
318 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
319
320 References:
321 https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
322 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
323 http://www.gmbz.org.cn/main/bzlb.html
324
325config CRYPTO_CURVE25519
326 tristate "Curve25519"
327 select CRYPTO_KPP
328 select CRYPTO_LIB_CURVE25519_GENERIC
329 help
330 Curve25519 elliptic curve (RFC7748)
331
332endmenu
333
334menu "Block ciphers"
335
336config CRYPTO_AES
337 tristate "AES (Advanced Encryption Standard)"
338 select CRYPTO_ALGAPI
339 select CRYPTO_LIB_AES
340 help
341 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
342
343 Rijndael appears to be consistently a very good performer in
344 both hardware and software across a wide range of computing
345 environments regardless of its use in feedback or non-feedback
346 modes. Its key setup time is excellent, and its key agility is
347 good. Rijndael's very low memory requirements make it very well
348 suited for restricted-space environments, in which it also
349 demonstrates excellent performance. Rijndael's operations are
350 among the easiest to defend against power and timing attacks.
351
352 The AES specifies three key sizes: 128, 192 and 256 bits
353
354config CRYPTO_AES_TI
355 tristate "AES (Advanced Encryption Standard) (fixed time)"
356 select CRYPTO_ALGAPI
357 select CRYPTO_LIB_AES
358 help
359 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
360
361 This is a generic implementation of AES that attempts to eliminate
362 data dependent latencies as much as possible without affecting
363 performance too much. It is intended for use by the generic CCM
364 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
365 solely on encryption (although decryption is supported as well, but
366 with a more dramatic performance hit)
367
368 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
369 8 for decryption), this implementation only uses just two S-boxes of
370 256 bytes each, and attempts to eliminate data dependent latencies by
371 prefetching the entire table into the cache at the start of each
372 block. Interrupts are also disabled to avoid races where cachelines
373 are evicted when the CPU is interrupted to do something else.
374
375config CRYPTO_ANUBIS
376 tristate "Anubis"
377 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
378 select CRYPTO_ALGAPI
379 help
380 Anubis cipher algorithm
381
382 Anubis is a variable key length cipher which can use keys from
383 128 bits to 320 bits in length. It was evaluated as a entrant
384 in the NESSIE competition.
385
386 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
387 for further information.
388
389config CRYPTO_ARIA
390 tristate "ARIA"
391 select CRYPTO_ALGAPI
392 help
393 ARIA cipher algorithm (RFC5794)
394
395 ARIA is a standard encryption algorithm of the Republic of Korea.
396 The ARIA specifies three key sizes and rounds.
397 128-bit: 12 rounds.
398 192-bit: 14 rounds.
399 256-bit: 16 rounds.
400
401 See:
402 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
403
404config CRYPTO_BLOWFISH
405 tristate "Blowfish"
406 select CRYPTO_ALGAPI
407 select CRYPTO_BLOWFISH_COMMON
408 help
409 Blowfish cipher algorithm, by Bruce Schneier
410
411 This is a variable key length cipher which can use keys from 32
412 bits to 448 bits in length. It's fast, simple and specifically
413 designed for use on "large microprocessors".
414
415 See https://www.schneier.com/blowfish.html for further information.
416
417config CRYPTO_BLOWFISH_COMMON
418 tristate
419 help
420 Common parts of the Blowfish cipher algorithm shared by the
421 generic c and the assembler implementations.
422
423config CRYPTO_CAMELLIA
424 tristate "Camellia"
425 select CRYPTO_ALGAPI
426 help
427 Camellia cipher algorithms (ISO/IEC 18033-3)
428
429 Camellia is a symmetric key block cipher developed jointly
430 at NTT and Mitsubishi Electric Corporation.
431
432 The Camellia specifies three key sizes: 128, 192 and 256 bits.
433
434 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
435
436config CRYPTO_CAST_COMMON
437 tristate
438 help
439 Common parts of the CAST cipher algorithms shared by the
440 generic c and the assembler implementations.
441
442config CRYPTO_CAST5
443 tristate "CAST5 (CAST-128)"
444 select CRYPTO_ALGAPI
445 select CRYPTO_CAST_COMMON
446 help
447 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
448
449config CRYPTO_CAST6
450 tristate "CAST6 (CAST-256)"
451 select CRYPTO_ALGAPI
452 select CRYPTO_CAST_COMMON
453 help
454 CAST6 (CAST-256) encryption algorithm (RFC2612)
455
456config CRYPTO_DES
457 tristate "DES and Triple DES EDE"
458 select CRYPTO_ALGAPI
459 select CRYPTO_LIB_DES
460 help
461 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
462 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
463 cipher algorithms
464
465config CRYPTO_FCRYPT
466 tristate "FCrypt"
467 select CRYPTO_ALGAPI
468 select CRYPTO_SKCIPHER
469 help
470 FCrypt algorithm used by RxRPC
471
472 See https://ota.polyonymo.us/fcrypt-paper.txt
473
474config CRYPTO_KHAZAD
475 tristate "Khazad"
476 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
477 select CRYPTO_ALGAPI
478 help
479 Khazad cipher algorithm
480
481 Khazad was a finalist in the initial NESSIE competition. It is
482 an algorithm optimized for 64-bit processors with good performance
483 on 32-bit processors. Khazad uses an 128 bit key size.
484
485 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
486 for further information.
487
488config CRYPTO_SEED
489 tristate "SEED"
490 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
491 select CRYPTO_ALGAPI
492 help
493 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
494
495 SEED is a 128-bit symmetric key block cipher that has been
496 developed by KISA (Korea Information Security Agency) as a
497 national standard encryption algorithm of the Republic of Korea.
498 It is a 16 round block cipher with the key size of 128 bit.
499
500 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
501 for further information.
502
503config CRYPTO_SERPENT
504 tristate "Serpent"
505 select CRYPTO_ALGAPI
506 help
507 Serpent cipher algorithm, by Anderson, Biham & Knudsen
508
509 Keys are allowed to be from 0 to 256 bits in length, in steps
510 of 8 bits.
511
512 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
513
514config CRYPTO_SM4
515 tristate
516
517config CRYPTO_SM4_GENERIC
518 tristate "SM4 (ShangMi 4)"
519 select CRYPTO_ALGAPI
520 select CRYPTO_SM4
521 help
522 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
523 ISO/IEC 18033-3:2010/Amd 1:2021)
524
525 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
526 Organization of State Commercial Administration of China (OSCCA)
527 as an authorized cryptographic algorithms for the use within China.
528
529 SMS4 was originally created for use in protecting wireless
530 networks, and is mandated in the Chinese National Standard for
531 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
532 (GB.15629.11-2003).
533
534 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
535 standardized through TC 260 of the Standardization Administration
536 of the People's Republic of China (SAC).
537
538 The input, output, and key of SMS4 are each 128 bits.
539
540 See https://eprint.iacr.org/2008/329.pdf for further information.
541
542 If unsure, say N.
543
544config CRYPTO_TEA
545 tristate "TEA, XTEA and XETA"
546 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
547 select CRYPTO_ALGAPI
548 help
549 TEA (Tiny Encryption Algorithm) cipher algorithms
550
551 Tiny Encryption Algorithm is a simple cipher that uses
552 many rounds for security. It is very fast and uses
553 little memory.
554
555 Xtendend Tiny Encryption Algorithm is a modification to
556 the TEA algorithm to address a potential key weakness
557 in the TEA algorithm.
558
559 Xtendend Encryption Tiny Algorithm is a mis-implementation
560 of the XTEA algorithm for compatibility purposes.
561
562config CRYPTO_TWOFISH
563 tristate "Twofish"
564 select CRYPTO_ALGAPI
565 select CRYPTO_TWOFISH_COMMON
566 help
567 Twofish cipher algorithm
568
569 Twofish was submitted as an AES (Advanced Encryption Standard)
570 candidate cipher by researchers at CounterPane Systems. It is a
571 16 round block cipher supporting key sizes of 128, 192, and 256
572 bits.
573
574 See https://www.schneier.com/twofish.html for further information.
575
576config CRYPTO_TWOFISH_COMMON
577 tristate
578 help
579 Common parts of the Twofish cipher algorithm shared by the
580 generic c and the assembler implementations.
581
582endmenu
583
584menu "Length-preserving ciphers and modes"
585
586config CRYPTO_ADIANTUM
587 tristate "Adiantum"
588 select CRYPTO_CHACHA20
589 select CRYPTO_LIB_POLY1305_GENERIC
590 select CRYPTO_NHPOLY1305
591 select CRYPTO_MANAGER
592 help
593 Adiantum tweakable, length-preserving encryption mode
594
595 Designed for fast and secure disk encryption, especially on
596 CPUs without dedicated crypto instructions. It encrypts
597 each sector using the XChaCha12 stream cipher, two passes of
598 an ε-almost-∆-universal hash function, and an invocation of
599 the AES-256 block cipher on a single 16-byte block. On CPUs
600 without AES instructions, Adiantum is much faster than
601 AES-XTS.
602
603 Adiantum's security is provably reducible to that of its
604 underlying stream and block ciphers, subject to a security
605 bound. Unlike XTS, Adiantum is a true wide-block encryption
606 mode, so it actually provides an even stronger notion of
607 security than XTS, subject to the security bound.
608
609 If unsure, say N.
610
611config CRYPTO_ARC4
612 tristate "ARC4 (Alleged Rivest Cipher 4)"
613 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
614 select CRYPTO_SKCIPHER
615 select CRYPTO_LIB_ARC4
616 help
617 ARC4 cipher algorithm
618
619 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
620 bits in length. This algorithm is required for driver-based
621 WEP, but it should not be for other purposes because of the
622 weakness of the algorithm.
623
624config CRYPTO_CHACHA20
625 tristate "ChaCha"
626 select CRYPTO_LIB_CHACHA_GENERIC
627 select CRYPTO_SKCIPHER
628 help
629 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
630
631 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
632 Bernstein and further specified in RFC7539 for use in IETF protocols.
633 This is the portable C implementation of ChaCha20. See
634 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
635
636 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
637 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
638 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
639 while provably retaining ChaCha20's security. See
640 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
641
642 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
643 reduced security margin but increased performance. It can be needed
644 in some performance-sensitive scenarios.
645
646config CRYPTO_CBC
647 tristate "CBC (Cipher Block Chaining)"
648 select CRYPTO_SKCIPHER
649 select CRYPTO_MANAGER
650 help
651 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
652
653 This block cipher mode is required for IPSec ESP (XFRM_ESP).
654
655config CRYPTO_CFB
656 tristate "CFB (Cipher Feedback)"
657 select CRYPTO_SKCIPHER
658 select CRYPTO_MANAGER
659 help
660 CFB (Cipher Feedback) mode (NIST SP800-38A)
661
662 This block cipher mode is required for TPM2 Cryptography.
663
664config CRYPTO_CTR
665 tristate "CTR (Counter)"
666 select CRYPTO_SKCIPHER
667 select CRYPTO_MANAGER
668 help
669 CTR (Counter) mode (NIST SP800-38A)
670
671config CRYPTO_CTS
672 tristate "CTS (Cipher Text Stealing)"
673 select CRYPTO_SKCIPHER
674 select CRYPTO_MANAGER
675 help
676 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
677 Addendum to SP800-38A (October 2010))
678
679 This mode is required for Kerberos gss mechanism support
680 for AES encryption.
681
682config CRYPTO_ECB
683 tristate "ECB (Electronic Codebook)"
684 select CRYPTO_SKCIPHER
685 select CRYPTO_MANAGER
686 help
687 ECB (Electronic Codebook) mode (NIST SP800-38A)
688
689config CRYPTO_HCTR2
690 tristate "HCTR2"
691 select CRYPTO_XCTR
692 select CRYPTO_POLYVAL
693 select CRYPTO_MANAGER
694 help
695 HCTR2 length-preserving encryption mode
696
697 A mode for storage encryption that is efficient on processors with
698 instructions to accelerate AES and carryless multiplication, e.g.
699 x86 processors with AES-NI and CLMUL, and ARM processors with the
700 ARMv8 crypto extensions.
701
702 See https://eprint.iacr.org/2021/1441
703
704config CRYPTO_KEYWRAP
705 tristate "KW (AES Key Wrap)"
706 select CRYPTO_SKCIPHER
707 select CRYPTO_MANAGER
708 help
709 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
710 and RFC3394) without padding.
711
712config CRYPTO_LRW
713 tristate "LRW (Liskov Rivest Wagner)"
714 select CRYPTO_LIB_GF128MUL
715 select CRYPTO_SKCIPHER
716 select CRYPTO_MANAGER
717 select CRYPTO_ECB
718 help
719 LRW (Liskov Rivest Wagner) mode
720
721 A tweakable, non malleable, non movable
722 narrow block cipher mode for dm-crypt. Use it with cipher
723 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
724 The first 128, 192 or 256 bits in the key are used for AES and the
725 rest is used to tie each cipher block to its logical position.
726
727 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
728
729config CRYPTO_OFB
730 tristate "OFB (Output Feedback)"
731 select CRYPTO_SKCIPHER
732 select CRYPTO_MANAGER
733 help
734 OFB (Output Feedback) mode (NIST SP800-38A)
735
736 This mode makes a block cipher into a synchronous
737 stream cipher. It generates keystream blocks, which are then XORed
738 with the plaintext blocks to get the ciphertext. Flipping a bit in the
739 ciphertext produces a flipped bit in the plaintext at the same
740 location. This property allows many error correcting codes to function
741 normally even when applied before encryption.
742
743config CRYPTO_PCBC
744 tristate "PCBC (Propagating Cipher Block Chaining)"
745 select CRYPTO_SKCIPHER
746 select CRYPTO_MANAGER
747 help
748 PCBC (Propagating Cipher Block Chaining) mode
749
750 This block cipher mode is required for RxRPC.
751
752config CRYPTO_XCTR
753 tristate
754 select CRYPTO_SKCIPHER
755 select CRYPTO_MANAGER
756 help
757 XCTR (XOR Counter) mode for HCTR2
758
759 This blockcipher mode is a variant of CTR mode using XORs and little-endian
760 addition rather than big-endian arithmetic.
761
762 XCTR mode is used to implement HCTR2.
763
764config CRYPTO_XTS
765 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
766 select CRYPTO_SKCIPHER
767 select CRYPTO_MANAGER
768 select CRYPTO_ECB
769 help
770 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
771 and IEEE 1619)
772
773 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
774 implementation currently can't handle a sectorsize which is not a
775 multiple of 16 bytes.
776
777config CRYPTO_NHPOLY1305
778 tristate
779 select CRYPTO_HASH
780 select CRYPTO_LIB_POLY1305_GENERIC
781
782endmenu
783
784menu "AEAD (authenticated encryption with associated data) ciphers"
785
786config CRYPTO_AEGIS128
787 tristate "AEGIS-128"
788 select CRYPTO_AEAD
789 select CRYPTO_AES # for AES S-box tables
790 help
791 AEGIS-128 AEAD algorithm
792
793config CRYPTO_AEGIS128_SIMD
794 bool "AEGIS-128 (arm NEON, arm64 NEON)"
795 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
796 default y
797 help
798 AEGIS-128 AEAD algorithm
799
800 Architecture: arm or arm64 using:
801 - NEON (Advanced SIMD) extension
802
803config CRYPTO_CHACHA20POLY1305
804 tristate "ChaCha20-Poly1305"
805 select CRYPTO_CHACHA20
806 select CRYPTO_POLY1305
807 select CRYPTO_AEAD
808 select CRYPTO_MANAGER
809 help
810 ChaCha20 stream cipher and Poly1305 authenticator combined
811 mode (RFC8439)
812
813config CRYPTO_CCM
814 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
815 select CRYPTO_CTR
816 select CRYPTO_HASH
817 select CRYPTO_AEAD
818 select CRYPTO_MANAGER
819 help
820 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
821 authenticated encryption mode (NIST SP800-38C)
822
823config CRYPTO_GCM
824 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
825 select CRYPTO_CTR
826 select CRYPTO_AEAD
827 select CRYPTO_GHASH
828 select CRYPTO_NULL
829 select CRYPTO_MANAGER
830 help
831 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
832 (GCM Message Authentication Code) (NIST SP800-38D)
833
834 This is required for IPSec ESP (XFRM_ESP).
835
836config CRYPTO_SEQIV
837 tristate "Sequence Number IV Generator"
838 select CRYPTO_AEAD
839 select CRYPTO_SKCIPHER
840 select CRYPTO_NULL
841 select CRYPTO_RNG_DEFAULT
842 select CRYPTO_MANAGER
843 help
844 Sequence Number IV generator
845
846 This IV generator generates an IV based on a sequence number by
847 xoring it with a salt. This algorithm is mainly useful for CTR.
848
849 This is required for IPsec ESP (XFRM_ESP).
850
851config CRYPTO_ECHAINIV
852 tristate "Encrypted Chain IV Generator"
853 select CRYPTO_AEAD
854 select CRYPTO_NULL
855 select CRYPTO_RNG_DEFAULT
856 select CRYPTO_MANAGER
857 help
858 Encrypted Chain IV generator
859
860 This IV generator generates an IV based on the encryption of
861 a sequence number xored with a salt. This is the default
862 algorithm for CBC.
863
864config CRYPTO_ESSIV
865 tristate "Encrypted Salt-Sector IV Generator"
866 select CRYPTO_AUTHENC
867 help
868 Encrypted Salt-Sector IV generator
869
870 This IV generator is used in some cases by fscrypt and/or
871 dm-crypt. It uses the hash of the block encryption key as the
872 symmetric key for a block encryption pass applied to the input
873 IV, making low entropy IV sources more suitable for block
874 encryption.
875
876 This driver implements a crypto API template that can be
877 instantiated either as an skcipher or as an AEAD (depending on the
878 type of the first template argument), and which defers encryption
879 and decryption requests to the encapsulated cipher after applying
880 ESSIV to the input IV. Note that in the AEAD case, it is assumed
881 that the keys are presented in the same format used by the authenc
882 template, and that the IV appears at the end of the authenticated
883 associated data (AAD) region (which is how dm-crypt uses it.)
884
885 Note that the use of ESSIV is not recommended for new deployments,
886 and so this only needs to be enabled when interoperability with
887 existing encrypted volumes of filesystems is required, or when
888 building for a particular system that requires it (e.g., when
889 the SoC in question has accelerated CBC but not XTS, making CBC
890 combined with ESSIV the only feasible mode for h/w accelerated
891 block encryption)
892
893endmenu
894
895menu "Hashes, digests, and MACs"
896
897config CRYPTO_BLAKE2B
898 tristate "BLAKE2b"
899 select CRYPTO_HASH
900 help
901 BLAKE2b cryptographic hash function (RFC 7693)
902
903 BLAKE2b is optimized for 64-bit platforms and can produce digests
904 of any size between 1 and 64 bytes. The keyed hash is also implemented.
905
906 This module provides the following algorithms:
907 - blake2b-160
908 - blake2b-256
909 - blake2b-384
910 - blake2b-512
911
912 Used by the btrfs filesystem.
913
914 See https://blake2.net for further information.
915
916config CRYPTO_CMAC
917 tristate "CMAC (Cipher-based MAC)"
918 select CRYPTO_HASH
919 select CRYPTO_MANAGER
920 help
921 CMAC (Cipher-based Message Authentication Code) authentication
922 mode (NIST SP800-38B and IETF RFC4493)
923
924config CRYPTO_GHASH
925 tristate "GHASH"
926 select CRYPTO_HASH
927 select CRYPTO_LIB_GF128MUL
928 help
929 GCM GHASH function (NIST SP800-38D)
930
931config CRYPTO_HMAC
932 tristate "HMAC (Keyed-Hash MAC)"
933 select CRYPTO_HASH
934 select CRYPTO_MANAGER
935 help
936 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
937 RFC2104)
938
939 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
940
941config CRYPTO_MD4
942 tristate "MD4"
943 select CRYPTO_HASH
944 help
945 MD4 message digest algorithm (RFC1320)
946
947config CRYPTO_MD5
948 tristate "MD5"
949 select CRYPTO_HASH
950 help
951 MD5 message digest algorithm (RFC1321)
952
953config CRYPTO_MICHAEL_MIC
954 tristate "Michael MIC"
955 select CRYPTO_HASH
956 help
957 Michael MIC (Message Integrity Code) (IEEE 802.11i)
958
959 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
960 known as WPA (Wif-Fi Protected Access).
961
962 This algorithm is required for TKIP, but it should not be used for
963 other purposes because of the weakness of the algorithm.
964
965config CRYPTO_POLYVAL
966 tristate
967 select CRYPTO_HASH
968 select CRYPTO_LIB_GF128MUL
969 help
970 POLYVAL hash function for HCTR2
971
972 This is used in HCTR2. It is not a general-purpose
973 cryptographic hash function.
974
975config CRYPTO_POLY1305
976 tristate "Poly1305"
977 select CRYPTO_HASH
978 select CRYPTO_LIB_POLY1305_GENERIC
979 help
980 Poly1305 authenticator algorithm (RFC7539)
981
982 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
983 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
984 in IETF protocols. This is the portable C implementation of Poly1305.
985
986config CRYPTO_RMD160
987 tristate "RIPEMD-160"
988 select CRYPTO_HASH
989 help
990 RIPEMD-160 hash function (ISO/IEC 10118-3)
991
992 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
993 to be used as a secure replacement for the 128-bit hash functions
994 MD4, MD5 and its predecessor RIPEMD
995 (not to be confused with RIPEMD-128).
996
997 Its speed is comparable to SHA-1 and there are no known attacks
998 against RIPEMD-160.
999
1000 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
1001 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
1002 for further information.
1003
1004config CRYPTO_SHA1
1005 tristate "SHA-1"
1006 select CRYPTO_HASH
1007 select CRYPTO_LIB_SHA1
1008 help
1009 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
1010
1011config CRYPTO_SHA256
1012 tristate "SHA-224 and SHA-256"
1013 select CRYPTO_HASH
1014 select CRYPTO_LIB_SHA256
1015 help
1016 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1017
1018 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1019 Used by the btrfs filesystem, Ceph, NFS, and SMB.
1020
1021config CRYPTO_SHA512
1022 tristate "SHA-384 and SHA-512"
1023 select CRYPTO_HASH
1024 help
1025 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1026
1027config CRYPTO_SHA3
1028 tristate "SHA-3"
1029 select CRYPTO_HASH
1030 help
1031 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1032
1033config CRYPTO_SM3
1034 tristate
1035
1036config CRYPTO_SM3_GENERIC
1037 tristate "SM3 (ShangMi 3)"
1038 select CRYPTO_HASH
1039 select CRYPTO_SM3
1040 help
1041 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1042
1043 This is part of the Chinese Commercial Cryptography suite.
1044
1045 References:
1046 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1047 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1048
1049config CRYPTO_STREEBOG
1050 tristate "Streebog"
1051 select CRYPTO_HASH
1052 help
1053 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1054
1055 This is one of the Russian cryptographic standard algorithms (called
1056 GOST algorithms). This setting enables two hash algorithms with
1057 256 and 512 bits output.
1058
1059 References:
1060 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1061 https://tools.ietf.org/html/rfc6986
1062
1063config CRYPTO_VMAC
1064 tristate "VMAC"
1065 select CRYPTO_HASH
1066 select CRYPTO_MANAGER
1067 help
1068 VMAC is a message authentication algorithm designed for
1069 very high speed on 64-bit architectures.
1070
1071 See https://fastcrypto.org/vmac for further information.
1072
1073config CRYPTO_WP512
1074 tristate "Whirlpool"
1075 select CRYPTO_HASH
1076 help
1077 Whirlpool hash function (ISO/IEC 10118-3)
1078
1079 512, 384 and 256-bit hashes.
1080
1081 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1082
1083 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1084 for further information.
1085
1086config CRYPTO_XCBC
1087 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1088 select CRYPTO_HASH
1089 select CRYPTO_MANAGER
1090 help
1091 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1092 Code) (RFC3566)
1093
1094config CRYPTO_XXHASH
1095 tristate "xxHash"
1096 select CRYPTO_HASH
1097 select XXHASH
1098 help
1099 xxHash non-cryptographic hash algorithm
1100
1101 Extremely fast, working at speeds close to RAM limits.
1102
1103 Used by the btrfs filesystem.
1104
1105endmenu
1106
1107menu "CRCs (cyclic redundancy checks)"
1108
1109config CRYPTO_CRC32C
1110 tristate "CRC32c"
1111 select CRYPTO_HASH
1112 select CRC32
1113 help
1114 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1115
1116 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1117 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1118 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1119 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1120 iSCSI.
1121
1122 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1123
1124config CRYPTO_CRC32
1125 tristate "CRC32"
1126 select CRYPTO_HASH
1127 select CRC32
1128 help
1129 CRC32 CRC algorithm (IEEE 802.3)
1130
1131 Used by RoCEv2 and f2fs.
1132
1133config CRYPTO_CRCT10DIF
1134 tristate "CRCT10DIF"
1135 select CRYPTO_HASH
1136 help
1137 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1138
1139 CRC algorithm used by the SCSI Block Commands standard.
1140
1141config CRYPTO_CRC64_ROCKSOFT
1142 tristate "CRC64 based on Rocksoft Model algorithm"
1143 depends on CRC64
1144 select CRYPTO_HASH
1145 help
1146 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1147
1148 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1149
1150 See https://zlib.net/crc_v3.txt
1151
1152endmenu
1153
1154menu "Compression"
1155
1156config CRYPTO_DEFLATE
1157 tristate "Deflate"
1158 select CRYPTO_ALGAPI
1159 select CRYPTO_ACOMP2
1160 select ZLIB_INFLATE
1161 select ZLIB_DEFLATE
1162 help
1163 Deflate compression algorithm (RFC1951)
1164
1165 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1166
1167config CRYPTO_LZO
1168 tristate "LZO"
1169 select CRYPTO_ALGAPI
1170 select CRYPTO_ACOMP2
1171 select LZO_COMPRESS
1172 select LZO_DECOMPRESS
1173 help
1174 LZO compression algorithm
1175
1176 See https://www.oberhumer.com/opensource/lzo/ for further information.
1177
1178config CRYPTO_842
1179 tristate "842"
1180 select CRYPTO_ALGAPI
1181 select CRYPTO_ACOMP2
1182 select 842_COMPRESS
1183 select 842_DECOMPRESS
1184 help
1185 842 compression algorithm by IBM
1186
1187 See https://github.com/plauth/lib842 for further information.
1188
1189config CRYPTO_LZ4
1190 tristate "LZ4"
1191 select CRYPTO_ALGAPI
1192 select CRYPTO_ACOMP2
1193 select LZ4_COMPRESS
1194 select LZ4_DECOMPRESS
1195 help
1196 LZ4 compression algorithm
1197
1198 See https://github.com/lz4/lz4 for further information.
1199
1200config CRYPTO_LZ4HC
1201 tristate "LZ4HC"
1202 select CRYPTO_ALGAPI
1203 select CRYPTO_ACOMP2
1204 select LZ4HC_COMPRESS
1205 select LZ4_DECOMPRESS
1206 help
1207 LZ4 high compression mode algorithm
1208
1209 See https://github.com/lz4/lz4 for further information.
1210
1211config CRYPTO_ZSTD
1212 tristate "Zstd"
1213 select CRYPTO_ALGAPI
1214 select CRYPTO_ACOMP2
1215 select ZSTD_COMPRESS
1216 select ZSTD_DECOMPRESS
1217 help
1218 zstd compression algorithm
1219
1220 See https://github.com/facebook/zstd for further information.
1221
1222endmenu
1223
1224menu "Random number generation"
1225
1226config CRYPTO_ANSI_CPRNG
1227 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1228 select CRYPTO_AES
1229 select CRYPTO_RNG
1230 help
1231 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1232
1233 This uses the AES cipher algorithm.
1234
1235 Note that this option must be enabled if CRYPTO_FIPS is selected
1236
1237menuconfig CRYPTO_DRBG_MENU
1238 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1239 help
1240 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1241
1242 In the following submenu, one or more of the DRBG types must be selected.
1243
1244if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_DRBG_HMAC
1247 bool
1248 default y
1249 select CRYPTO_HMAC
1250 select CRYPTO_SHA512
1251
1252config CRYPTO_DRBG_HASH
1253 bool "Hash_DRBG"
1254 select CRYPTO_SHA256
1255 help
1256 Hash_DRBG variant as defined in NIST SP800-90A.
1257
1258 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1259
1260config CRYPTO_DRBG_CTR
1261 bool "CTR_DRBG"
1262 select CRYPTO_AES
1263 select CRYPTO_CTR
1264 help
1265 CTR_DRBG variant as defined in NIST SP800-90A.
1266
1267 This uses the AES cipher algorithm with the counter block mode.
1268
1269config CRYPTO_DRBG
1270 tristate
1271 default CRYPTO_DRBG_MENU
1272 select CRYPTO_RNG
1273 select CRYPTO_JITTERENTROPY
1274
1275endif # if CRYPTO_DRBG_MENU
1276
1277config CRYPTO_JITTERENTROPY
1278 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1279 select CRYPTO_RNG
1280 help
1281 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1282
1283 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1284 compliant with NIST SP800-90B) intended to provide a seed to a
1285 deterministic RNG (e.g. per NIST SP800-90C).
1286 This RNG does not perform any cryptographic whitening of the generated
1287
1288 See https://www.chronox.de/jent.html
1289
1290config CRYPTO_KDF800108_CTR
1291 tristate
1292 select CRYPTO_HMAC
1293 select CRYPTO_SHA256
1294
1295endmenu
1296menu "Userspace interface"
1297
1298config CRYPTO_USER_API
1299 tristate
1300
1301config CRYPTO_USER_API_HASH
1302 tristate "Hash algorithms"
1303 depends on NET
1304 select CRYPTO_HASH
1305 select CRYPTO_USER_API
1306 help
1307 Enable the userspace interface for hash algorithms.
1308
1309 See Documentation/crypto/userspace-if.rst and
1310 https://www.chronox.de/libkcapi/html/index.html
1311
1312config CRYPTO_USER_API_SKCIPHER
1313 tristate "Symmetric key cipher algorithms"
1314 depends on NET
1315 select CRYPTO_SKCIPHER
1316 select CRYPTO_USER_API
1317 help
1318 Enable the userspace interface for symmetric key cipher algorithms.
1319
1320 See Documentation/crypto/userspace-if.rst and
1321 https://www.chronox.de/libkcapi/html/index.html
1322
1323config CRYPTO_USER_API_RNG
1324 tristate "RNG (random number generator) algorithms"
1325 depends on NET
1326 select CRYPTO_RNG
1327 select CRYPTO_USER_API
1328 help
1329 Enable the userspace interface for RNG (random number generator)
1330 algorithms.
1331
1332 See Documentation/crypto/userspace-if.rst and
1333 https://www.chronox.de/libkcapi/html/index.html
1334
1335config CRYPTO_USER_API_RNG_CAVP
1336 bool "Enable CAVP testing of DRBG"
1337 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1338 help
1339 Enable extra APIs in the userspace interface for NIST CAVP
1340 (Cryptographic Algorithm Validation Program) testing:
1341 - resetting DRBG entropy
1342 - providing Additional Data
1343
1344 This should only be enabled for CAVP testing. You should say
1345 no unless you know what this is.
1346
1347config CRYPTO_USER_API_AEAD
1348 tristate "AEAD cipher algorithms"
1349 depends on NET
1350 select CRYPTO_AEAD
1351 select CRYPTO_SKCIPHER
1352 select CRYPTO_NULL
1353 select CRYPTO_USER_API
1354 help
1355 Enable the userspace interface for AEAD cipher algorithms.
1356
1357 See Documentation/crypto/userspace-if.rst and
1358 https://www.chronox.de/libkcapi/html/index.html
1359
1360config CRYPTO_USER_API_ENABLE_OBSOLETE
1361 bool "Obsolete cryptographic algorithms"
1362 depends on CRYPTO_USER_API
1363 default y
1364 help
1365 Allow obsolete cryptographic algorithms to be selected that have
1366 already been phased out from internal use by the kernel, and are
1367 only useful for userspace clients that still rely on them.
1368
1369config CRYPTO_STATS
1370 bool "Crypto usage statistics"
1371 depends on CRYPTO_USER
1372 help
1373 Enable the gathering of crypto stats.
1374
1375 This collects data sizes, numbers of requests, and numbers
1376 of errors processed by:
1377 - AEAD ciphers (encrypt, decrypt)
1378 - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1379 - symmetric key ciphers (encrypt, decrypt)
1380 - compression algorithms (compress, decompress)
1381 - hash algorithms (hash)
1382 - key-agreement protocol primitives (setsecret, generate
1383 public key, compute shared secret)
1384 - RNG (generate, seed)
1385
1386endmenu
1387
1388config CRYPTO_HASH_INFO
1389 bool
1390
1391if !KMSAN # avoid false positives from assembly
1392if ARM
1393source "arch/arm/crypto/Kconfig"
1394endif
1395if ARM64
1396source "arch/arm64/crypto/Kconfig"
1397endif
1398if MIPS
1399source "arch/mips/crypto/Kconfig"
1400endif
1401if PPC
1402source "arch/powerpc/crypto/Kconfig"
1403endif
1404if S390
1405source "arch/s390/crypto/Kconfig"
1406endif
1407if SPARC
1408source "arch/sparc/crypto/Kconfig"
1409endif
1410if X86
1411source "arch/x86/crypto/Kconfig"
1412endif
1413endif
1414
1415source "drivers/crypto/Kconfig"
1416source "crypto/asymmetric_keys/Kconfig"
1417source "certs/Kconfig"
1418
1419endif # if CRYPTO