Linux Audio

Check our new training course

Loading...
v4.6
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on MODULE_SIG
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
 
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_RSA
  97	tristate "RSA algorithm"
  98	select CRYPTO_AKCIPHER
  99	select CRYPTO_MANAGER
 100	select MPILIB
 101	select ASN1
 102	help
 103	  Generic implementation of the RSA public key algorithm.
 104
 105config CRYPTO_MANAGER
 106	tristate "Cryptographic algorithm manager"
 107	select CRYPTO_MANAGER2
 108	help
 109	  Create default cryptographic template instantiations such as
 110	  cbc(aes).
 111
 112config CRYPTO_MANAGER2
 113	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 114	select CRYPTO_AEAD2
 115	select CRYPTO_HASH2
 116	select CRYPTO_BLKCIPHER2
 117	select CRYPTO_AKCIPHER2
 118
 119config CRYPTO_USER
 120	tristate "Userspace cryptographic algorithm configuration"
 121	depends on NET
 122	select CRYPTO_MANAGER
 123	help
 124	  Userspace configuration for cryptographic instantiations such as
 125	  cbc(aes).
 126
 127config CRYPTO_MANAGER_DISABLE_TESTS
 128	bool "Disable run-time self tests"
 129	default y
 130	depends on CRYPTO_MANAGER2
 131	help
 132	  Disable run-time self tests that normally take place at
 133	  algorithm registration.
 134
 135config CRYPTO_GF128MUL
 136	tristate "GF(2^128) multiplication functions"
 137	help
 138	  Efficient table driven implementation of multiplications in the
 139	  field GF(2^128).  This is needed by some cypher modes. This
 140	  option will be selected automatically if you select such a
 141	  cipher mode.  Only select this option by hand if you expect to load
 142	  an external module that requires these functions.
 143
 144config CRYPTO_NULL
 145	tristate "Null algorithms"
 146	select CRYPTO_NULL2
 
 
 147	help
 148	  These are 'Null' algorithms, used by IPsec, which do nothing.
 149
 150config CRYPTO_NULL2
 151	tristate
 152	select CRYPTO_ALGAPI2
 153	select CRYPTO_BLKCIPHER2
 154	select CRYPTO_HASH2
 155
 156config CRYPTO_PCRYPT
 157	tristate "Parallel crypto engine"
 158	depends on SMP
 159	select PADATA
 160	select CRYPTO_MANAGER
 161	select CRYPTO_AEAD
 162	help
 163	  This converts an arbitrary crypto algorithm into a parallel
 164	  algorithm that executes in kernel threads.
 165
 166config CRYPTO_WORKQUEUE
 167       tristate
 168
 169config CRYPTO_CRYPTD
 170	tristate "Software async crypto daemon"
 171	select CRYPTO_BLKCIPHER
 172	select CRYPTO_HASH
 173	select CRYPTO_MANAGER
 174	select CRYPTO_WORKQUEUE
 175	help
 176	  This is a generic software asynchronous crypto daemon that
 177	  converts an arbitrary synchronous software crypto algorithm
 178	  into an asynchronous algorithm that executes in a kernel thread.
 179
 180config CRYPTO_MCRYPTD
 181	tristate "Software async multi-buffer crypto daemon"
 182	select CRYPTO_BLKCIPHER
 183	select CRYPTO_HASH
 184	select CRYPTO_MANAGER
 185	select CRYPTO_WORKQUEUE
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  provides the kernel thread to assist multi-buffer crypto
 189	  algorithms for submitting jobs and flushing jobs in multi-buffer
 190	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 191	  in the context of this kernel thread and drivers can post
 192	  their crypto request asynchronously to be processed by this daemon.
 193
 194config CRYPTO_AUTHENC
 195	tristate "Authenc support"
 196	select CRYPTO_AEAD
 197	select CRYPTO_BLKCIPHER
 198	select CRYPTO_MANAGER
 199	select CRYPTO_HASH
 200	select CRYPTO_NULL
 201	help
 202	  Authenc: Combined mode wrapper for IPsec.
 203	  This is required for IPSec.
 204
 205config CRYPTO_TEST
 206	tristate "Testing module"
 207	depends on m
 208	select CRYPTO_MANAGER
 209	help
 210	  Quick & dirty crypto test module.
 211
 212config CRYPTO_ABLK_HELPER
 213	tristate
 214	select CRYPTO_CRYPTD
 215
 216config CRYPTO_GLUE_HELPER_X86
 217	tristate
 218	depends on X86
 219	select CRYPTO_ALGAPI
 220
 221config CRYPTO_ENGINE
 222	tristate
 223
 224comment "Authenticated Encryption with Associated Data"
 225
 226config CRYPTO_CCM
 227	tristate "CCM support"
 228	select CRYPTO_CTR
 229	select CRYPTO_AEAD
 230	help
 231	  Support for Counter with CBC MAC. Required for IPsec.
 232
 233config CRYPTO_GCM
 234	tristate "GCM/GMAC support"
 235	select CRYPTO_CTR
 236	select CRYPTO_AEAD
 237	select CRYPTO_GHASH
 238	select CRYPTO_NULL
 239	help
 240	  Support for Galois/Counter Mode (GCM) and Galois Message
 241	  Authentication Code (GMAC). Required for IPSec.
 242
 243config CRYPTO_CHACHA20POLY1305
 244	tristate "ChaCha20-Poly1305 AEAD support"
 245	select CRYPTO_CHACHA20
 246	select CRYPTO_POLY1305
 247	select CRYPTO_AEAD
 248	help
 249	  ChaCha20-Poly1305 AEAD support, RFC7539.
 250
 251	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 252	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 253	  IETF protocols.
 254
 255config CRYPTO_SEQIV
 256	tristate "Sequence Number IV Generator"
 257	select CRYPTO_AEAD
 258	select CRYPTO_BLKCIPHER
 259	select CRYPTO_NULL
 260	select CRYPTO_RNG_DEFAULT
 261	help
 262	  This IV generator generates an IV based on a sequence number by
 263	  xoring it with a salt.  This algorithm is mainly useful for CTR
 264
 265config CRYPTO_ECHAINIV
 266	tristate "Encrypted Chain IV Generator"
 267	select CRYPTO_AEAD
 268	select CRYPTO_NULL
 269	select CRYPTO_RNG_DEFAULT
 270	default m
 271	help
 272	  This IV generator generates an IV based on the encryption of
 273	  a sequence number xored with a salt.  This is the default
 274	  algorithm for CBC.
 275
 276comment "Block modes"
 277
 278config CRYPTO_CBC
 279	tristate "CBC support"
 280	select CRYPTO_BLKCIPHER
 281	select CRYPTO_MANAGER
 282	help
 283	  CBC: Cipher Block Chaining mode
 284	  This block cipher algorithm is required for IPSec.
 285
 286config CRYPTO_CTR
 287	tristate "CTR support"
 288	select CRYPTO_BLKCIPHER
 289	select CRYPTO_SEQIV
 290	select CRYPTO_MANAGER
 291	help
 292	  CTR: Counter mode
 293	  This block cipher algorithm is required for IPSec.
 294
 295config CRYPTO_CTS
 296	tristate "CTS support"
 297	select CRYPTO_BLKCIPHER
 298	help
 299	  CTS: Cipher Text Stealing
 300	  This is the Cipher Text Stealing mode as described by
 301	  Section 8 of rfc2040 and referenced by rfc3962.
 302	  (rfc3962 includes errata information in its Appendix A)
 303	  This mode is required for Kerberos gss mechanism support
 304	  for AES encryption.
 305
 306config CRYPTO_ECB
 307	tristate "ECB support"
 308	select CRYPTO_BLKCIPHER
 309	select CRYPTO_MANAGER
 310	help
 311	  ECB: Electronic CodeBook mode
 312	  This is the simplest block cipher algorithm.  It simply encrypts
 313	  the input block by block.
 314
 315config CRYPTO_LRW
 316	tristate "LRW support"
 
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	select CRYPTO_GF128MUL
 320	help
 321	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 322	  narrow block cipher mode for dm-crypt.  Use it with cipher
 323	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 324	  The first 128, 192 or 256 bits in the key are used for AES and the
 325	  rest is used to tie each cipher block to its logical position.
 326
 327config CRYPTO_PCBC
 328	tristate "PCBC support"
 329	select CRYPTO_BLKCIPHER
 330	select CRYPTO_MANAGER
 331	help
 332	  PCBC: Propagating Cipher Block Chaining mode
 333	  This block cipher algorithm is required for RxRPC.
 334
 335config CRYPTO_XTS
 336	tristate "XTS support"
 
 337	select CRYPTO_BLKCIPHER
 338	select CRYPTO_MANAGER
 339	select CRYPTO_GF128MUL
 340	help
 341	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 342	  key size 256, 384 or 512 bits. This implementation currently
 343	  can't handle a sectorsize which is not a multiple of 16 bytes.
 344
 345config CRYPTO_KEYWRAP
 346	tristate "Key wrapping support"
 347	select CRYPTO_BLKCIPHER
 348	help
 349	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 350	  padding.
 351
 352comment "Hash modes"
 353
 354config CRYPTO_CMAC
 355	tristate "CMAC support"
 356	select CRYPTO_HASH
 357	select CRYPTO_MANAGER
 358	help
 359	  Cipher-based Message Authentication Code (CMAC) specified by
 360	  The National Institute of Standards and Technology (NIST).
 361
 362	  https://tools.ietf.org/html/rfc4493
 363	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 364
 365config CRYPTO_HMAC
 366	tristate "HMAC support"
 367	select CRYPTO_HASH
 368	select CRYPTO_MANAGER
 369	help
 370	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 371	  This is required for IPSec.
 372
 373config CRYPTO_XCBC
 374	tristate "XCBC support"
 
 375	select CRYPTO_HASH
 376	select CRYPTO_MANAGER
 377	help
 378	  XCBC: Keyed-Hashing with encryption algorithm
 379		http://www.ietf.org/rfc/rfc3566.txt
 380		http://csrc.nist.gov/encryption/modes/proposedmodes/
 381		 xcbc-mac/xcbc-mac-spec.pdf
 382
 383config CRYPTO_VMAC
 384	tristate "VMAC support"
 
 385	select CRYPTO_HASH
 386	select CRYPTO_MANAGER
 387	help
 388	  VMAC is a message authentication algorithm designed for
 389	  very high speed on 64-bit architectures.
 390
 391	  See also:
 392	  <http://fastcrypto.org/vmac>
 393
 394comment "Digest"
 395
 396config CRYPTO_CRC32C
 397	tristate "CRC32c CRC algorithm"
 398	select CRYPTO_HASH
 399	select CRC32
 400	help
 401	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 402	  by iSCSI for header and data digests and by others.
 403	  See Castagnoli93.  Module will be crc32c.
 404
 405config CRYPTO_CRC32C_INTEL
 406	tristate "CRC32c INTEL hardware acceleration"
 407	depends on X86
 408	select CRYPTO_HASH
 409	help
 410	  In Intel processor with SSE4.2 supported, the processor will
 411	  support CRC32C implementation using hardware accelerated CRC32
 412	  instruction. This option will create 'crc32c-intel' module,
 413	  which will enable any routine to use the CRC32 instruction to
 414	  gain performance compared with software implementation.
 415	  Module will be crc32c-intel.
 416
 417config CRYPTO_CRC32C_SPARC64
 418	tristate "CRC32c CRC algorithm (SPARC64)"
 419	depends on SPARC64
 420	select CRYPTO_HASH
 421	select CRC32
 422	help
 423	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 424	  when available.
 425
 426config CRYPTO_CRC32
 427	tristate "CRC32 CRC algorithm"
 428	select CRYPTO_HASH
 429	select CRC32
 430	help
 431	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 432	  Shash crypto api wrappers to crc32_le function.
 433
 434config CRYPTO_CRC32_PCLMUL
 435	tristate "CRC32 PCLMULQDQ hardware acceleration"
 436	depends on X86
 437	select CRYPTO_HASH
 438	select CRC32
 439	help
 440	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 441	  and PCLMULQDQ supported, the processor will support
 442	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 443	  instruction. This option will create 'crc32-plcmul' module,
 444	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 445	  and gain better performance as compared with the table implementation.
 446
 447config CRYPTO_CRCT10DIF
 448	tristate "CRCT10DIF algorithm"
 449	select CRYPTO_HASH
 450	help
 451	  CRC T10 Data Integrity Field computation is being cast as
 452	  a crypto transform.  This allows for faster crc t10 diff
 453	  transforms to be used if they are available.
 454
 455config CRYPTO_CRCT10DIF_PCLMUL
 456	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 457	depends on X86 && 64BIT && CRC_T10DIF
 458	select CRYPTO_HASH
 459	help
 460	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 461	  CRC T10 DIF PCLMULQDQ computation can be hardware
 462	  accelerated PCLMULQDQ instruction. This option will create
 463	  'crct10dif-plcmul' module, which is faster when computing the
 464	  crct10dif checksum as compared with the generic table implementation.
 465
 466config CRYPTO_GHASH
 467	tristate "GHASH digest algorithm"
 
 468	select CRYPTO_GF128MUL
 469	select CRYPTO_HASH
 470	help
 471	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 472
 473config CRYPTO_POLY1305
 474	tristate "Poly1305 authenticator algorithm"
 475	select CRYPTO_HASH
 476	help
 477	  Poly1305 authenticator algorithm, RFC7539.
 478
 479	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 480	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 481	  in IETF protocols. This is the portable C implementation of Poly1305.
 482
 483config CRYPTO_POLY1305_X86_64
 484	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 485	depends on X86 && 64BIT
 486	select CRYPTO_POLY1305
 487	help
 488	  Poly1305 authenticator algorithm, RFC7539.
 489
 490	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 491	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 492	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 493	  instructions.
 494
 495config CRYPTO_MD4
 496	tristate "MD4 digest algorithm"
 497	select CRYPTO_HASH
 498	help
 499	  MD4 message digest algorithm (RFC1320).
 500
 501config CRYPTO_MD5
 502	tristate "MD5 digest algorithm"
 503	select CRYPTO_HASH
 504	help
 505	  MD5 message digest algorithm (RFC1321).
 506
 507config CRYPTO_MD5_OCTEON
 508	tristate "MD5 digest algorithm (OCTEON)"
 509	depends on CPU_CAVIUM_OCTEON
 510	select CRYPTO_MD5
 511	select CRYPTO_HASH
 512	help
 513	  MD5 message digest algorithm (RFC1321) implemented
 514	  using OCTEON crypto instructions, when available.
 515
 516config CRYPTO_MD5_PPC
 517	tristate "MD5 digest algorithm (PPC)"
 518	depends on PPC
 519	select CRYPTO_HASH
 520	help
 521	  MD5 message digest algorithm (RFC1321) implemented
 522	  in PPC assembler.
 523
 524config CRYPTO_MD5_SPARC64
 525	tristate "MD5 digest algorithm (SPARC64)"
 526	depends on SPARC64
 527	select CRYPTO_MD5
 528	select CRYPTO_HASH
 529	help
 530	  MD5 message digest algorithm (RFC1321) implemented
 531	  using sparc64 crypto instructions, when available.
 532
 533config CRYPTO_MICHAEL_MIC
 534	tristate "Michael MIC keyed digest algorithm"
 535	select CRYPTO_HASH
 536	help
 537	  Michael MIC is used for message integrity protection in TKIP
 538	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 539	  should not be used for other purposes because of the weakness
 540	  of the algorithm.
 541
 542config CRYPTO_RMD128
 543	tristate "RIPEMD-128 digest algorithm"
 544	select CRYPTO_HASH
 545	help
 546	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 547
 548	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 549	  be used as a secure replacement for RIPEMD. For other use cases,
 550	  RIPEMD-160 should be used.
 551
 552	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 553	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 554
 555config CRYPTO_RMD160
 556	tristate "RIPEMD-160 digest algorithm"
 557	select CRYPTO_HASH
 558	help
 559	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 560
 561	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 562	  to be used as a secure replacement for the 128-bit hash functions
 563	  MD4, MD5 and it's predecessor RIPEMD
 564	  (not to be confused with RIPEMD-128).
 565
 566	  It's speed is comparable to SHA1 and there are no known attacks
 567	  against RIPEMD-160.
 568
 569	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 570	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 571
 572config CRYPTO_RMD256
 573	tristate "RIPEMD-256 digest algorithm"
 574	select CRYPTO_HASH
 575	help
 576	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 577	  256 bit hash. It is intended for applications that require
 578	  longer hash-results, without needing a larger security level
 579	  (than RIPEMD-128).
 580
 581	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 582	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 583
 584config CRYPTO_RMD320
 585	tristate "RIPEMD-320 digest algorithm"
 586	select CRYPTO_HASH
 587	help
 588	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 589	  320 bit hash. It is intended for applications that require
 590	  longer hash-results, without needing a larger security level
 591	  (than RIPEMD-160).
 592
 593	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 594	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 595
 596config CRYPTO_SHA1
 597	tristate "SHA1 digest algorithm"
 598	select CRYPTO_HASH
 599	help
 600	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 601
 602config CRYPTO_SHA1_SSSE3
 603	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 604	depends on X86 && 64BIT
 605	select CRYPTO_SHA1
 606	select CRYPTO_HASH
 607	help
 608	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 609	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 610	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 611	  when available.
 612
 613config CRYPTO_SHA256_SSSE3
 614	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 615	depends on X86 && 64BIT
 616	select CRYPTO_SHA256
 617	select CRYPTO_HASH
 618	help
 619	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 620	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 621	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 622	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 623	  Instructions) when available.
 624
 625config CRYPTO_SHA512_SSSE3
 626	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 627	depends on X86 && 64BIT
 628	select CRYPTO_SHA512
 629	select CRYPTO_HASH
 630	help
 631	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 632	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 633	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 634	  version 2 (AVX2) instructions, when available.
 635
 636config CRYPTO_SHA1_OCTEON
 637	tristate "SHA1 digest algorithm (OCTEON)"
 638	depends on CPU_CAVIUM_OCTEON
 639	select CRYPTO_SHA1
 640	select CRYPTO_HASH
 641	help
 642	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 643	  using OCTEON crypto instructions, when available.
 644
 645config CRYPTO_SHA1_SPARC64
 646	tristate "SHA1 digest algorithm (SPARC64)"
 647	depends on SPARC64
 648	select CRYPTO_SHA1
 649	select CRYPTO_HASH
 650	help
 651	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 652	  using sparc64 crypto instructions, when available.
 653
 654config CRYPTO_SHA1_PPC
 655	tristate "SHA1 digest algorithm (powerpc)"
 656	depends on PPC
 657	help
 658	  This is the powerpc hardware accelerated implementation of the
 659	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 660
 661config CRYPTO_SHA1_PPC_SPE
 662	tristate "SHA1 digest algorithm (PPC SPE)"
 663	depends on PPC && SPE
 664	help
 665	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 666	  using powerpc SPE SIMD instruction set.
 667
 668config CRYPTO_SHA1_MB
 669	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 670	depends on X86 && 64BIT
 671	select CRYPTO_SHA1
 672	select CRYPTO_HASH
 673	select CRYPTO_MCRYPTD
 674	help
 675	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 676	  using multi-buffer technique.  This algorithm computes on
 677	  multiple data lanes concurrently with SIMD instructions for
 678	  better throughput.  It should not be enabled by default but
 679	  used when there is significant amount of work to keep the keep
 680	  the data lanes filled to get performance benefit.  If the data
 681	  lanes remain unfilled, a flush operation will be initiated to
 682	  process the crypto jobs, adding a slight latency.
 683
 684config CRYPTO_SHA256
 685	tristate "SHA224 and SHA256 digest algorithm"
 686	select CRYPTO_HASH
 687	help
 688	  SHA256 secure hash standard (DFIPS 180-2).
 689
 690	  This version of SHA implements a 256 bit hash with 128 bits of
 691	  security against collision attacks.
 692
 693	  This code also includes SHA-224, a 224 bit hash with 112 bits
 694	  of security against collision attacks.
 695
 696config CRYPTO_SHA256_PPC_SPE
 697	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 698	depends on PPC && SPE
 699	select CRYPTO_SHA256
 700	select CRYPTO_HASH
 701	help
 702	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 703	  implemented using powerpc SPE SIMD instruction set.
 704
 705config CRYPTO_SHA256_OCTEON
 706	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 707	depends on CPU_CAVIUM_OCTEON
 708	select CRYPTO_SHA256
 709	select CRYPTO_HASH
 710	help
 711	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 712	  using OCTEON crypto instructions, when available.
 713
 714config CRYPTO_SHA256_SPARC64
 715	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 716	depends on SPARC64
 717	select CRYPTO_SHA256
 718	select CRYPTO_HASH
 719	help
 720	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 721	  using sparc64 crypto instructions, when available.
 722
 723config CRYPTO_SHA512
 724	tristate "SHA384 and SHA512 digest algorithms"
 725	select CRYPTO_HASH
 726	help
 727	  SHA512 secure hash standard (DFIPS 180-2).
 728
 729	  This version of SHA implements a 512 bit hash with 256 bits of
 730	  security against collision attacks.
 731
 732	  This code also includes SHA-384, a 384 bit hash with 192 bits
 733	  of security against collision attacks.
 734
 735config CRYPTO_SHA512_OCTEON
 736	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 737	depends on CPU_CAVIUM_OCTEON
 738	select CRYPTO_SHA512
 739	select CRYPTO_HASH
 740	help
 741	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 742	  using OCTEON crypto instructions, when available.
 743
 744config CRYPTO_SHA512_SPARC64
 745	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 746	depends on SPARC64
 747	select CRYPTO_SHA512
 748	select CRYPTO_HASH
 749	help
 750	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 751	  using sparc64 crypto instructions, when available.
 752
 753config CRYPTO_TGR192
 754	tristate "Tiger digest algorithms"
 755	select CRYPTO_HASH
 756	help
 757	  Tiger hash algorithm 192, 160 and 128-bit hashes
 758
 759	  Tiger is a hash function optimized for 64-bit processors while
 760	  still having decent performance on 32-bit processors.
 761	  Tiger was developed by Ross Anderson and Eli Biham.
 762
 763	  See also:
 764	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 765
 766config CRYPTO_WP512
 767	tristate "Whirlpool digest algorithms"
 768	select CRYPTO_HASH
 769	help
 770	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 771
 772	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 773	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 774
 775	  See also:
 776	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 777
 778config CRYPTO_GHASH_CLMUL_NI_INTEL
 779	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 780	depends on X86 && 64BIT
 
 781	select CRYPTO_CRYPTD
 782	help
 783	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 784	  The implementation is accelerated by CLMUL-NI of Intel.
 785
 786comment "Ciphers"
 787
 788config CRYPTO_AES
 789	tristate "AES cipher algorithms"
 790	select CRYPTO_ALGAPI
 791	help
 792	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 793	  algorithm.
 794
 795	  Rijndael appears to be consistently a very good performer in
 796	  both hardware and software across a wide range of computing
 797	  environments regardless of its use in feedback or non-feedback
 798	  modes. Its key setup time is excellent, and its key agility is
 799	  good. Rijndael's very low memory requirements make it very well
 800	  suited for restricted-space environments, in which it also
 801	  demonstrates excellent performance. Rijndael's operations are
 802	  among the easiest to defend against power and timing attacks.
 803
 804	  The AES specifies three key sizes: 128, 192 and 256 bits
 805
 806	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 807
 808config CRYPTO_AES_586
 809	tristate "AES cipher algorithms (i586)"
 810	depends on (X86 || UML_X86) && !64BIT
 811	select CRYPTO_ALGAPI
 812	select CRYPTO_AES
 813	help
 814	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 815	  algorithm.
 816
 817	  Rijndael appears to be consistently a very good performer in
 818	  both hardware and software across a wide range of computing
 819	  environments regardless of its use in feedback or non-feedback
 820	  modes. Its key setup time is excellent, and its key agility is
 821	  good. Rijndael's very low memory requirements make it very well
 822	  suited for restricted-space environments, in which it also
 823	  demonstrates excellent performance. Rijndael's operations are
 824	  among the easiest to defend against power and timing attacks.
 825
 826	  The AES specifies three key sizes: 128, 192 and 256 bits
 827
 828	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 829
 830config CRYPTO_AES_X86_64
 831	tristate "AES cipher algorithms (x86_64)"
 832	depends on (X86 || UML_X86) && 64BIT
 833	select CRYPTO_ALGAPI
 834	select CRYPTO_AES
 835	help
 836	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 837	  algorithm.
 838
 839	  Rijndael appears to be consistently a very good performer in
 840	  both hardware and software across a wide range of computing
 841	  environments regardless of its use in feedback or non-feedback
 842	  modes. Its key setup time is excellent, and its key agility is
 843	  good. Rijndael's very low memory requirements make it very well
 844	  suited for restricted-space environments, in which it also
 845	  demonstrates excellent performance. Rijndael's operations are
 846	  among the easiest to defend against power and timing attacks.
 847
 848	  The AES specifies three key sizes: 128, 192 and 256 bits
 849
 850	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 851
 852config CRYPTO_AES_NI_INTEL
 853	tristate "AES cipher algorithms (AES-NI)"
 854	depends on X86
 855	select CRYPTO_AES_X86_64 if 64BIT
 856	select CRYPTO_AES_586 if !64BIT
 857	select CRYPTO_CRYPTD
 858	select CRYPTO_ABLK_HELPER
 859	select CRYPTO_ALGAPI
 860	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 861	select CRYPTO_LRW
 862	select CRYPTO_XTS
 863	help
 864	  Use Intel AES-NI instructions for AES algorithm.
 865
 866	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 867	  algorithm.
 868
 869	  Rijndael appears to be consistently a very good performer in
 870	  both hardware and software across a wide range of computing
 871	  environments regardless of its use in feedback or non-feedback
 872	  modes. Its key setup time is excellent, and its key agility is
 873	  good. Rijndael's very low memory requirements make it very well
 874	  suited for restricted-space environments, in which it also
 875	  demonstrates excellent performance. Rijndael's operations are
 876	  among the easiest to defend against power and timing attacks.
 877
 878	  The AES specifies three key sizes: 128, 192 and 256 bits
 879
 880	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 881
 882	  In addition to AES cipher algorithm support, the acceleration
 883	  for some popular block cipher mode is supported too, including
 884	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 885	  acceleration for CTR.
 886
 887config CRYPTO_AES_SPARC64
 888	tristate "AES cipher algorithms (SPARC64)"
 889	depends on SPARC64
 890	select CRYPTO_CRYPTD
 891	select CRYPTO_ALGAPI
 892	help
 893	  Use SPARC64 crypto opcodes for AES algorithm.
 894
 895	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 896	  algorithm.
 897
 898	  Rijndael appears to be consistently a very good performer in
 899	  both hardware and software across a wide range of computing
 900	  environments regardless of its use in feedback or non-feedback
 901	  modes. Its key setup time is excellent, and its key agility is
 902	  good. Rijndael's very low memory requirements make it very well
 903	  suited for restricted-space environments, in which it also
 904	  demonstrates excellent performance. Rijndael's operations are
 905	  among the easiest to defend against power and timing attacks.
 906
 907	  The AES specifies three key sizes: 128, 192 and 256 bits
 908
 909	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 910
 911	  In addition to AES cipher algorithm support, the acceleration
 912	  for some popular block cipher mode is supported too, including
 913	  ECB and CBC.
 914
 915config CRYPTO_AES_PPC_SPE
 916	tristate "AES cipher algorithms (PPC SPE)"
 917	depends on PPC && SPE
 918	help
 919	  AES cipher algorithms (FIPS-197). Additionally the acceleration
 920	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
 921	  This module should only be used for low power (router) devices
 922	  without hardware AES acceleration (e.g. caam crypto). It reduces the
 923	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
 924	  timining attacks. Nevertheless it might be not as secure as other
 925	  architecture specific assembler implementations that work on 1KB
 926	  tables or 256 bytes S-boxes.
 927
 928config CRYPTO_ANUBIS
 929	tristate "Anubis cipher algorithm"
 930	select CRYPTO_ALGAPI
 931	help
 932	  Anubis cipher algorithm.
 933
 934	  Anubis is a variable key length cipher which can use keys from
 935	  128 bits to 320 bits in length.  It was evaluated as a entrant
 936	  in the NESSIE competition.
 937
 938	  See also:
 939	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
 940	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
 941
 942config CRYPTO_ARC4
 943	tristate "ARC4 cipher algorithm"
 944	select CRYPTO_BLKCIPHER
 945	help
 946	  ARC4 cipher algorithm.
 947
 948	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 949	  bits in length.  This algorithm is required for driver-based
 950	  WEP, but it should not be for other purposes because of the
 951	  weakness of the algorithm.
 952
 953config CRYPTO_BLOWFISH
 954	tristate "Blowfish cipher algorithm"
 955	select CRYPTO_ALGAPI
 956	select CRYPTO_BLOWFISH_COMMON
 957	help
 958	  Blowfish cipher algorithm, by Bruce Schneier.
 959
 960	  This is a variable key length cipher which can use keys from 32
 961	  bits to 448 bits in length.  It's fast, simple and specifically
 962	  designed for use on "large microprocessors".
 963
 964	  See also:
 965	  <http://www.schneier.com/blowfish.html>
 966
 967config CRYPTO_BLOWFISH_COMMON
 968	tristate
 969	help
 970	  Common parts of the Blowfish cipher algorithm shared by the
 971	  generic c and the assembler implementations.
 972
 973	  See also:
 974	  <http://www.schneier.com/blowfish.html>
 975
 976config CRYPTO_BLOWFISH_X86_64
 977	tristate "Blowfish cipher algorithm (x86_64)"
 978	depends on X86 && 64BIT
 979	select CRYPTO_ALGAPI
 980	select CRYPTO_BLOWFISH_COMMON
 981	help
 982	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
 983
 984	  This is a variable key length cipher which can use keys from 32
 985	  bits to 448 bits in length.  It's fast, simple and specifically
 986	  designed for use on "large microprocessors".
 987
 988	  See also:
 989	  <http://www.schneier.com/blowfish.html>
 990
 991config CRYPTO_CAMELLIA
 992	tristate "Camellia cipher algorithms"
 993	depends on CRYPTO
 994	select CRYPTO_ALGAPI
 995	help
 996	  Camellia cipher algorithms module.
 997
 998	  Camellia is a symmetric key block cipher developed jointly
 999	  at NTT and Mitsubishi Electric Corporation.
1000
1001	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1002
1003	  See also:
1004	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1005
1006config CRYPTO_CAMELLIA_X86_64
1007	tristate "Camellia cipher algorithm (x86_64)"
1008	depends on X86 && 64BIT
1009	depends on CRYPTO
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_GLUE_HELPER_X86
1012	select CRYPTO_LRW
1013	select CRYPTO_XTS
1014	help
1015	  Camellia cipher algorithm module (x86_64).
1016
1017	  Camellia is a symmetric key block cipher developed jointly
1018	  at NTT and Mitsubishi Electric Corporation.
1019
1020	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1021
1022	  See also:
1023	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1024
1025config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1026	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1027	depends on X86 && 64BIT
1028	depends on CRYPTO
1029	select CRYPTO_ALGAPI
1030	select CRYPTO_CRYPTD
1031	select CRYPTO_ABLK_HELPER
1032	select CRYPTO_GLUE_HELPER_X86
1033	select CRYPTO_CAMELLIA_X86_64
1034	select CRYPTO_LRW
1035	select CRYPTO_XTS
1036	help
1037	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1038
1039	  Camellia is a symmetric key block cipher developed jointly
1040	  at NTT and Mitsubishi Electric Corporation.
1041
1042	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1043
1044	  See also:
1045	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1046
1047config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1048	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1049	depends on X86 && 64BIT
1050	depends on CRYPTO
1051	select CRYPTO_ALGAPI
1052	select CRYPTO_CRYPTD
1053	select CRYPTO_ABLK_HELPER
1054	select CRYPTO_GLUE_HELPER_X86
1055	select CRYPTO_CAMELLIA_X86_64
1056	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1057	select CRYPTO_LRW
1058	select CRYPTO_XTS
1059	help
1060	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1061
1062	  Camellia is a symmetric key block cipher developed jointly
1063	  at NTT and Mitsubishi Electric Corporation.
1064
1065	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1066
1067	  See also:
1068	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1069
1070config CRYPTO_CAMELLIA_SPARC64
1071	tristate "Camellia cipher algorithm (SPARC64)"
1072	depends on SPARC64
1073	depends on CRYPTO
1074	select CRYPTO_ALGAPI
1075	help
1076	  Camellia cipher algorithm module (SPARC64).
1077
1078	  Camellia is a symmetric key block cipher developed jointly
1079	  at NTT and Mitsubishi Electric Corporation.
1080
1081	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1082
1083	  See also:
1084	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1085
1086config CRYPTO_CAST_COMMON
1087	tristate
1088	help
1089	  Common parts of the CAST cipher algorithms shared by the
1090	  generic c and the assembler implementations.
1091
1092config CRYPTO_CAST5
1093	tristate "CAST5 (CAST-128) cipher algorithm"
1094	select CRYPTO_ALGAPI
1095	select CRYPTO_CAST_COMMON
1096	help
1097	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1098	  described in RFC2144.
1099
1100config CRYPTO_CAST5_AVX_X86_64
1101	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1102	depends on X86 && 64BIT
1103	select CRYPTO_ALGAPI
1104	select CRYPTO_CRYPTD
1105	select CRYPTO_ABLK_HELPER
1106	select CRYPTO_CAST_COMMON
1107	select CRYPTO_CAST5
1108	help
1109	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1110	  described in RFC2144.
1111
1112	  This module provides the Cast5 cipher algorithm that processes
1113	  sixteen blocks parallel using the AVX instruction set.
1114
1115config CRYPTO_CAST6
1116	tristate "CAST6 (CAST-256) cipher algorithm"
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_CAST_COMMON
1119	help
1120	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1121	  described in RFC2612.
1122
1123config CRYPTO_CAST6_AVX_X86_64
1124	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1125	depends on X86 && 64BIT
1126	select CRYPTO_ALGAPI
1127	select CRYPTO_CRYPTD
1128	select CRYPTO_ABLK_HELPER
1129	select CRYPTO_GLUE_HELPER_X86
1130	select CRYPTO_CAST_COMMON
1131	select CRYPTO_CAST6
1132	select CRYPTO_LRW
1133	select CRYPTO_XTS
1134	help
1135	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1136	  described in RFC2612.
1137
1138	  This module provides the Cast6 cipher algorithm that processes
1139	  eight blocks parallel using the AVX instruction set.
1140
1141config CRYPTO_DES
1142	tristate "DES and Triple DES EDE cipher algorithms"
1143	select CRYPTO_ALGAPI
1144	help
1145	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1146
1147config CRYPTO_DES_SPARC64
1148	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1149	depends on SPARC64
1150	select CRYPTO_ALGAPI
1151	select CRYPTO_DES
1152	help
1153	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1154	  optimized using SPARC64 crypto opcodes.
1155
1156config CRYPTO_DES3_EDE_X86_64
1157	tristate "Triple DES EDE cipher algorithm (x86-64)"
1158	depends on X86 && 64BIT
1159	select CRYPTO_ALGAPI
1160	select CRYPTO_DES
1161	help
1162	  Triple DES EDE (FIPS 46-3) algorithm.
1163
1164	  This module provides implementation of the Triple DES EDE cipher
1165	  algorithm that is optimized for x86-64 processors. Two versions of
1166	  algorithm are provided; regular processing one input block and
1167	  one that processes three blocks parallel.
1168
1169config CRYPTO_FCRYPT
1170	tristate "FCrypt cipher algorithm"
1171	select CRYPTO_ALGAPI
1172	select CRYPTO_BLKCIPHER
1173	help
1174	  FCrypt algorithm used by RxRPC.
1175
1176config CRYPTO_KHAZAD
1177	tristate "Khazad cipher algorithm"
1178	select CRYPTO_ALGAPI
1179	help
1180	  Khazad cipher algorithm.
1181
1182	  Khazad was a finalist in the initial NESSIE competition.  It is
1183	  an algorithm optimized for 64-bit processors with good performance
1184	  on 32-bit processors.  Khazad uses an 128 bit key size.
1185
1186	  See also:
1187	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1188
1189config CRYPTO_SALSA20
1190	tristate "Salsa20 stream cipher algorithm"
 
1191	select CRYPTO_BLKCIPHER
1192	help
1193	  Salsa20 stream cipher algorithm.
1194
1195	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1196	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1197
1198	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1199	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1200
1201config CRYPTO_SALSA20_586
1202	tristate "Salsa20 stream cipher algorithm (i586)"
1203	depends on (X86 || UML_X86) && !64BIT
 
1204	select CRYPTO_BLKCIPHER
1205	help
1206	  Salsa20 stream cipher algorithm.
1207
1208	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1209	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1210
1211	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1212	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1213
1214config CRYPTO_SALSA20_X86_64
1215	tristate "Salsa20 stream cipher algorithm (x86_64)"
1216	depends on (X86 || UML_X86) && 64BIT
 
1217	select CRYPTO_BLKCIPHER
1218	help
1219	  Salsa20 stream cipher algorithm.
1220
1221	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1222	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1223
1224	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1225	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1226
1227config CRYPTO_CHACHA20
1228	tristate "ChaCha20 cipher algorithm"
1229	select CRYPTO_BLKCIPHER
1230	help
1231	  ChaCha20 cipher algorithm, RFC7539.
1232
1233	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1234	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1235	  This is the portable C implementation of ChaCha20.
1236
1237	  See also:
1238	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1239
1240config CRYPTO_CHACHA20_X86_64
1241	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CHACHA20
1245	help
1246	  ChaCha20 cipher algorithm, RFC7539.
1247
1248	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1249	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1250	  This is the x86_64 assembler implementation using SIMD instructions.
1251
1252	  See also:
1253	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1254
1255config CRYPTO_SEED
1256	tristate "SEED cipher algorithm"
1257	select CRYPTO_ALGAPI
1258	help
1259	  SEED cipher algorithm (RFC4269).
1260
1261	  SEED is a 128-bit symmetric key block cipher that has been
1262	  developed by KISA (Korea Information Security Agency) as a
1263	  national standard encryption algorithm of the Republic of Korea.
1264	  It is a 16 round block cipher with the key size of 128 bit.
1265
1266	  See also:
1267	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1268
1269config CRYPTO_SERPENT
1270	tristate "Serpent cipher algorithm"
1271	select CRYPTO_ALGAPI
1272	help
1273	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1274
1275	  Keys are allowed to be from 0 to 256 bits in length, in steps
1276	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1277	  variant of Serpent for compatibility with old kerneli.org code.
1278
1279	  See also:
1280	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1281
1282config CRYPTO_SERPENT_SSE2_X86_64
1283	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1284	depends on X86 && 64BIT
1285	select CRYPTO_ALGAPI
1286	select CRYPTO_CRYPTD
1287	select CRYPTO_ABLK_HELPER
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SERPENT
1290	select CRYPTO_LRW
1291	select CRYPTO_XTS
1292	help
1293	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1294
1295	  Keys are allowed to be from 0 to 256 bits in length, in steps
1296	  of 8 bits.
1297
1298	  This module provides Serpent cipher algorithm that processes eight
1299	  blocks parallel using SSE2 instruction set.
1300
1301	  See also:
1302	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1303
1304config CRYPTO_SERPENT_SSE2_586
1305	tristate "Serpent cipher algorithm (i586/SSE2)"
1306	depends on X86 && !64BIT
1307	select CRYPTO_ALGAPI
1308	select CRYPTO_CRYPTD
1309	select CRYPTO_ABLK_HELPER
1310	select CRYPTO_GLUE_HELPER_X86
1311	select CRYPTO_SERPENT
1312	select CRYPTO_LRW
1313	select CRYPTO_XTS
1314	help
1315	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1316
1317	  Keys are allowed to be from 0 to 256 bits in length, in steps
1318	  of 8 bits.
1319
1320	  This module provides Serpent cipher algorithm that processes four
1321	  blocks parallel using SSE2 instruction set.
1322
1323	  See also:
1324	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1325
1326config CRYPTO_SERPENT_AVX_X86_64
1327	tristate "Serpent cipher algorithm (x86_64/AVX)"
1328	depends on X86 && 64BIT
1329	select CRYPTO_ALGAPI
1330	select CRYPTO_CRYPTD
1331	select CRYPTO_ABLK_HELPER
1332	select CRYPTO_GLUE_HELPER_X86
1333	select CRYPTO_SERPENT
1334	select CRYPTO_LRW
1335	select CRYPTO_XTS
1336	help
1337	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1338
1339	  Keys are allowed to be from 0 to 256 bits in length, in steps
1340	  of 8 bits.
1341
1342	  This module provides the Serpent cipher algorithm that processes
1343	  eight blocks parallel using the AVX instruction set.
1344
1345	  See also:
1346	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1347
1348config CRYPTO_SERPENT_AVX2_X86_64
1349	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1350	depends on X86 && 64BIT
1351	select CRYPTO_ALGAPI
1352	select CRYPTO_CRYPTD
1353	select CRYPTO_ABLK_HELPER
1354	select CRYPTO_GLUE_HELPER_X86
1355	select CRYPTO_SERPENT
1356	select CRYPTO_SERPENT_AVX_X86_64
1357	select CRYPTO_LRW
1358	select CRYPTO_XTS
1359	help
1360	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1361
1362	  Keys are allowed to be from 0 to 256 bits in length, in steps
1363	  of 8 bits.
1364
1365	  This module provides Serpent cipher algorithm that processes 16
1366	  blocks parallel using AVX2 instruction set.
1367
1368	  See also:
1369	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_TEA
1372	tristate "TEA, XTEA and XETA cipher algorithms"
1373	select CRYPTO_ALGAPI
1374	help
1375	  TEA cipher algorithm.
1376
1377	  Tiny Encryption Algorithm is a simple cipher that uses
1378	  many rounds for security.  It is very fast and uses
1379	  little memory.
1380
1381	  Xtendend Tiny Encryption Algorithm is a modification to
1382	  the TEA algorithm to address a potential key weakness
1383	  in the TEA algorithm.
1384
1385	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1386	  of the XTEA algorithm for compatibility purposes.
1387
1388config CRYPTO_TWOFISH
1389	tristate "Twofish cipher algorithm"
1390	select CRYPTO_ALGAPI
1391	select CRYPTO_TWOFISH_COMMON
1392	help
1393	  Twofish cipher algorithm.
1394
1395	  Twofish was submitted as an AES (Advanced Encryption Standard)
1396	  candidate cipher by researchers at CounterPane Systems.  It is a
1397	  16 round block cipher supporting key sizes of 128, 192, and 256
1398	  bits.
1399
1400	  See also:
1401	  <http://www.schneier.com/twofish.html>
1402
1403config CRYPTO_TWOFISH_COMMON
1404	tristate
1405	help
1406	  Common parts of the Twofish cipher algorithm shared by the
1407	  generic c and the assembler implementations.
1408
1409config CRYPTO_TWOFISH_586
1410	tristate "Twofish cipher algorithms (i586)"
1411	depends on (X86 || UML_X86) && !64BIT
1412	select CRYPTO_ALGAPI
1413	select CRYPTO_TWOFISH_COMMON
1414	help
1415	  Twofish cipher algorithm.
1416
1417	  Twofish was submitted as an AES (Advanced Encryption Standard)
1418	  candidate cipher by researchers at CounterPane Systems.  It is a
1419	  16 round block cipher supporting key sizes of 128, 192, and 256
1420	  bits.
1421
1422	  See also:
1423	  <http://www.schneier.com/twofish.html>
1424
1425config CRYPTO_TWOFISH_X86_64
1426	tristate "Twofish cipher algorithm (x86_64)"
1427	depends on (X86 || UML_X86) && 64BIT
1428	select CRYPTO_ALGAPI
1429	select CRYPTO_TWOFISH_COMMON
1430	help
1431	  Twofish cipher algorithm (x86_64).
1432
1433	  Twofish was submitted as an AES (Advanced Encryption Standard)
1434	  candidate cipher by researchers at CounterPane Systems.  It is a
1435	  16 round block cipher supporting key sizes of 128, 192, and 256
1436	  bits.
1437
1438	  See also:
1439	  <http://www.schneier.com/twofish.html>
1440
1441config CRYPTO_TWOFISH_X86_64_3WAY
1442	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1443	depends on X86 && 64BIT
1444	select CRYPTO_ALGAPI
1445	select CRYPTO_TWOFISH_COMMON
1446	select CRYPTO_TWOFISH_X86_64
1447	select CRYPTO_GLUE_HELPER_X86
1448	select CRYPTO_LRW
1449	select CRYPTO_XTS
1450	help
1451	  Twofish cipher algorithm (x86_64, 3-way parallel).
1452
1453	  Twofish was submitted as an AES (Advanced Encryption Standard)
1454	  candidate cipher by researchers at CounterPane Systems.  It is a
1455	  16 round block cipher supporting key sizes of 128, 192, and 256
1456	  bits.
1457
1458	  This module provides Twofish cipher algorithm that processes three
1459	  blocks parallel, utilizing resources of out-of-order CPUs better.
1460
1461	  See also:
1462	  <http://www.schneier.com/twofish.html>
1463
1464config CRYPTO_TWOFISH_AVX_X86_64
1465	tristate "Twofish cipher algorithm (x86_64/AVX)"
1466	depends on X86 && 64BIT
1467	select CRYPTO_ALGAPI
1468	select CRYPTO_CRYPTD
1469	select CRYPTO_ABLK_HELPER
1470	select CRYPTO_GLUE_HELPER_X86
1471	select CRYPTO_TWOFISH_COMMON
1472	select CRYPTO_TWOFISH_X86_64
1473	select CRYPTO_TWOFISH_X86_64_3WAY
1474	select CRYPTO_LRW
1475	select CRYPTO_XTS
1476	help
1477	  Twofish cipher algorithm (x86_64/AVX).
1478
1479	  Twofish was submitted as an AES (Advanced Encryption Standard)
1480	  candidate cipher by researchers at CounterPane Systems.  It is a
1481	  16 round block cipher supporting key sizes of 128, 192, and 256
1482	  bits.
1483
1484	  This module provides the Twofish cipher algorithm that processes
1485	  eight blocks parallel using the AVX Instruction Set.
1486
1487	  See also:
1488	  <http://www.schneier.com/twofish.html>
1489
1490comment "Compression"
1491
1492config CRYPTO_DEFLATE
1493	tristate "Deflate compression algorithm"
1494	select CRYPTO_ALGAPI
1495	select ZLIB_INFLATE
1496	select ZLIB_DEFLATE
1497	help
1498	  This is the Deflate algorithm (RFC1951), specified for use in
1499	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1500
1501	  You will most probably want this if using IPSec.
1502
 
 
 
 
 
 
 
 
 
1503config CRYPTO_LZO
1504	tristate "LZO compression algorithm"
1505	select CRYPTO_ALGAPI
1506	select LZO_COMPRESS
1507	select LZO_DECOMPRESS
1508	help
1509	  This is the LZO algorithm.
1510
1511config CRYPTO_842
1512	tristate "842 compression algorithm"
1513	select CRYPTO_ALGAPI
1514	select 842_COMPRESS
1515	select 842_DECOMPRESS
1516	help
1517	  This is the 842 algorithm.
1518
1519config CRYPTO_LZ4
1520	tristate "LZ4 compression algorithm"
1521	select CRYPTO_ALGAPI
1522	select LZ4_COMPRESS
1523	select LZ4_DECOMPRESS
1524	help
1525	  This is the LZ4 algorithm.
1526
1527config CRYPTO_LZ4HC
1528	tristate "LZ4HC compression algorithm"
1529	select CRYPTO_ALGAPI
1530	select LZ4HC_COMPRESS
1531	select LZ4_DECOMPRESS
1532	help
1533	  This is the LZ4 high compression mode algorithm.
1534
1535comment "Random Number Generation"
1536
1537config CRYPTO_ANSI_CPRNG
1538	tristate "Pseudo Random Number Generation for Cryptographic modules"
 
1539	select CRYPTO_AES
1540	select CRYPTO_RNG
1541	help
1542	  This option enables the generic pseudo random number generator
1543	  for cryptographic modules.  Uses the Algorithm specified in
1544	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1545	  CRYPTO_FIPS is selected
1546
1547menuconfig CRYPTO_DRBG_MENU
1548	tristate "NIST SP800-90A DRBG"
1549	help
1550	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1551	  more of the DRBG types must be selected.
1552
1553if CRYPTO_DRBG_MENU
1554
1555config CRYPTO_DRBG_HMAC
1556	bool
1557	default y
1558	select CRYPTO_HMAC
1559	select CRYPTO_SHA256
1560
1561config CRYPTO_DRBG_HASH
1562	bool "Enable Hash DRBG"
1563	select CRYPTO_SHA256
1564	help
1565	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1566
1567config CRYPTO_DRBG_CTR
1568	bool "Enable CTR DRBG"
1569	select CRYPTO_AES
1570	help
1571	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1572
1573config CRYPTO_DRBG
1574	tristate
1575	default CRYPTO_DRBG_MENU
1576	select CRYPTO_RNG
1577	select CRYPTO_JITTERENTROPY
1578
1579endif	# if CRYPTO_DRBG_MENU
1580
1581config CRYPTO_JITTERENTROPY
1582	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1583	select CRYPTO_RNG
1584	help
1585	  The Jitterentropy RNG is a noise that is intended
1586	  to provide seed to another RNG. The RNG does not
1587	  perform any cryptographic whitening of the generated
1588	  random numbers. This Jitterentropy RNG registers with
1589	  the kernel crypto API and can be used by any caller.
1590
1591config CRYPTO_USER_API
1592	tristate
1593
1594config CRYPTO_USER_API_HASH
1595	tristate "User-space interface for hash algorithms"
1596	depends on NET
1597	select CRYPTO_HASH
1598	select CRYPTO_USER_API
1599	help
1600	  This option enables the user-spaces interface for hash
1601	  algorithms.
1602
1603config CRYPTO_USER_API_SKCIPHER
1604	tristate "User-space interface for symmetric key cipher algorithms"
1605	depends on NET
1606	select CRYPTO_BLKCIPHER
1607	select CRYPTO_USER_API
1608	help
1609	  This option enables the user-spaces interface for symmetric
1610	  key cipher algorithms.
1611
1612config CRYPTO_USER_API_RNG
1613	tristate "User-space interface for random number generator algorithms"
1614	depends on NET
1615	select CRYPTO_RNG
1616	select CRYPTO_USER_API
1617	help
1618	  This option enables the user-spaces interface for random
1619	  number generator algorithms.
1620
1621config CRYPTO_USER_API_AEAD
1622	tristate "User-space interface for AEAD cipher algorithms"
1623	depends on NET
1624	select CRYPTO_AEAD
1625	select CRYPTO_USER_API
1626	help
1627	  This option enables the user-spaces interface for AEAD
1628	  cipher algorithms.
1629
1630config CRYPTO_HASH_INFO
1631	bool
1632
1633source "drivers/crypto/Kconfig"
1634source crypto/asymmetric_keys/Kconfig
1635source certs/Kconfig
1636
1637endif	# if CRYPTO
v3.1
  1#
  2# Generic algorithms support
  3#
  4config XOR_BLOCKS
  5	tristate
  6
  7#
  8# async_tx api: hardware offloaded memory transfer/transform support
  9#
 10source "crypto/async_tx/Kconfig"
 11
 12#
 13# Cryptographic API Configuration
 14#
 15menuconfig CRYPTO
 16	tristate "Cryptographic API"
 17	help
 18	  This option provides the core Cryptographic API.
 19
 20if CRYPTO
 21
 22comment "Crypto core or helper"
 23
 24config CRYPTO_FIPS
 25	bool "FIPS 200 compliance"
 26	depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
 
 27	help
 28	  This options enables the fips boot option which is
 29	  required if you want to system to operate in a FIPS 200
 30	  certification.  You should say no unless you know what
 31	  this is.
 32
 33config CRYPTO_ALGAPI
 34	tristate
 35	select CRYPTO_ALGAPI2
 36	help
 37	  This option provides the API for cryptographic algorithms.
 38
 39config CRYPTO_ALGAPI2
 40	tristate
 41
 42config CRYPTO_AEAD
 43	tristate
 44	select CRYPTO_AEAD2
 45	select CRYPTO_ALGAPI
 46
 47config CRYPTO_AEAD2
 48	tristate
 49	select CRYPTO_ALGAPI2
 
 
 50
 51config CRYPTO_BLKCIPHER
 52	tristate
 53	select CRYPTO_BLKCIPHER2
 54	select CRYPTO_ALGAPI
 55
 56config CRYPTO_BLKCIPHER2
 57	tristate
 58	select CRYPTO_ALGAPI2
 59	select CRYPTO_RNG2
 60	select CRYPTO_WORKQUEUE
 61
 62config CRYPTO_HASH
 63	tristate
 64	select CRYPTO_HASH2
 65	select CRYPTO_ALGAPI
 66
 67config CRYPTO_HASH2
 68	tristate
 69	select CRYPTO_ALGAPI2
 70
 71config CRYPTO_RNG
 72	tristate
 73	select CRYPTO_RNG2
 74	select CRYPTO_ALGAPI
 75
 76config CRYPTO_RNG2
 77	tristate
 78	select CRYPTO_ALGAPI2
 79
 80config CRYPTO_PCOMP
 81	tristate
 82	select CRYPTO_PCOMP2
 83	select CRYPTO_ALGAPI
 84
 85config CRYPTO_PCOMP2
 86	tristate
 87	select CRYPTO_ALGAPI2
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89config CRYPTO_MANAGER
 90	tristate "Cryptographic algorithm manager"
 91	select CRYPTO_MANAGER2
 92	help
 93	  Create default cryptographic template instantiations such as
 94	  cbc(aes).
 95
 96config CRYPTO_MANAGER2
 97	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 98	select CRYPTO_AEAD2
 99	select CRYPTO_HASH2
100	select CRYPTO_BLKCIPHER2
101	select CRYPTO_PCOMP2
 
 
 
 
 
 
 
 
102
103config CRYPTO_MANAGER_DISABLE_TESTS
104	bool "Disable run-time self tests"
105	default y
106	depends on CRYPTO_MANAGER2
107	help
108	  Disable run-time self tests that normally take place at
109	  algorithm registration.
110
111config CRYPTO_GF128MUL
112	tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
113	help
114	  Efficient table driven implementation of multiplications in the
115	  field GF(2^128).  This is needed by some cypher modes. This
116	  option will be selected automatically if you select such a
117	  cipher mode.  Only select this option by hand if you expect to load
118	  an external module that requires these functions.
119
120config CRYPTO_NULL
121	tristate "Null algorithms"
122	select CRYPTO_ALGAPI
123	select CRYPTO_BLKCIPHER
124	select CRYPTO_HASH
125	help
126	  These are 'Null' algorithms, used by IPsec, which do nothing.
127
 
 
 
 
 
 
128config CRYPTO_PCRYPT
129	tristate "Parallel crypto engine (EXPERIMENTAL)"
130	depends on SMP && EXPERIMENTAL
131	select PADATA
132	select CRYPTO_MANAGER
133	select CRYPTO_AEAD
134	help
135	  This converts an arbitrary crypto algorithm into a parallel
136	  algorithm that executes in kernel threads.
137
138config CRYPTO_WORKQUEUE
139       tristate
140
141config CRYPTO_CRYPTD
142	tristate "Software async crypto daemon"
143	select CRYPTO_BLKCIPHER
144	select CRYPTO_HASH
145	select CRYPTO_MANAGER
146	select CRYPTO_WORKQUEUE
147	help
148	  This is a generic software asynchronous crypto daemon that
149	  converts an arbitrary synchronous software crypto algorithm
150	  into an asynchronous algorithm that executes in a kernel thread.
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152config CRYPTO_AUTHENC
153	tristate "Authenc support"
154	select CRYPTO_AEAD
155	select CRYPTO_BLKCIPHER
156	select CRYPTO_MANAGER
157	select CRYPTO_HASH
 
158	help
159	  Authenc: Combined mode wrapper for IPsec.
160	  This is required for IPSec.
161
162config CRYPTO_TEST
163	tristate "Testing module"
164	depends on m
165	select CRYPTO_MANAGER
166	help
167	  Quick & dirty crypto test module.
168
 
 
 
 
 
 
 
 
 
 
 
 
169comment "Authenticated Encryption with Associated Data"
170
171config CRYPTO_CCM
172	tristate "CCM support"
173	select CRYPTO_CTR
174	select CRYPTO_AEAD
175	help
176	  Support for Counter with CBC MAC. Required for IPsec.
177
178config CRYPTO_GCM
179	tristate "GCM/GMAC support"
180	select CRYPTO_CTR
181	select CRYPTO_AEAD
182	select CRYPTO_GHASH
 
183	help
184	  Support for Galois/Counter Mode (GCM) and Galois Message
185	  Authentication Code (GMAC). Required for IPSec.
186
 
 
 
 
 
 
 
 
 
 
 
 
187config CRYPTO_SEQIV
188	tristate "Sequence Number IV Generator"
189	select CRYPTO_AEAD
190	select CRYPTO_BLKCIPHER
191	select CRYPTO_RNG
 
192	help
193	  This IV generator generates an IV based on a sequence number by
194	  xoring it with a salt.  This algorithm is mainly useful for CTR
195
 
 
 
 
 
 
 
 
 
 
 
196comment "Block modes"
197
198config CRYPTO_CBC
199	tristate "CBC support"
200	select CRYPTO_BLKCIPHER
201	select CRYPTO_MANAGER
202	help
203	  CBC: Cipher Block Chaining mode
204	  This block cipher algorithm is required for IPSec.
205
206config CRYPTO_CTR
207	tristate "CTR support"
208	select CRYPTO_BLKCIPHER
209	select CRYPTO_SEQIV
210	select CRYPTO_MANAGER
211	help
212	  CTR: Counter mode
213	  This block cipher algorithm is required for IPSec.
214
215config CRYPTO_CTS
216	tristate "CTS support"
217	select CRYPTO_BLKCIPHER
218	help
219	  CTS: Cipher Text Stealing
220	  This is the Cipher Text Stealing mode as described by
221	  Section 8 of rfc2040 and referenced by rfc3962.
222	  (rfc3962 includes errata information in its Appendix A)
223	  This mode is required for Kerberos gss mechanism support
224	  for AES encryption.
225
226config CRYPTO_ECB
227	tristate "ECB support"
228	select CRYPTO_BLKCIPHER
229	select CRYPTO_MANAGER
230	help
231	  ECB: Electronic CodeBook mode
232	  This is the simplest block cipher algorithm.  It simply encrypts
233	  the input block by block.
234
235config CRYPTO_LRW
236	tristate "LRW support (EXPERIMENTAL)"
237	depends on EXPERIMENTAL
238	select CRYPTO_BLKCIPHER
239	select CRYPTO_MANAGER
240	select CRYPTO_GF128MUL
241	help
242	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
243	  narrow block cipher mode for dm-crypt.  Use it with cipher
244	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
245	  The first 128, 192 or 256 bits in the key are used for AES and the
246	  rest is used to tie each cipher block to its logical position.
247
248config CRYPTO_PCBC
249	tristate "PCBC support"
250	select CRYPTO_BLKCIPHER
251	select CRYPTO_MANAGER
252	help
253	  PCBC: Propagating Cipher Block Chaining mode
254	  This block cipher algorithm is required for RxRPC.
255
256config CRYPTO_XTS
257	tristate "XTS support (EXPERIMENTAL)"
258	depends on EXPERIMENTAL
259	select CRYPTO_BLKCIPHER
260	select CRYPTO_MANAGER
261	select CRYPTO_GF128MUL
262	help
263	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
264	  key size 256, 384 or 512 bits. This implementation currently
265	  can't handle a sectorsize which is not a multiple of 16 bytes.
266
 
 
 
 
 
 
 
267comment "Hash modes"
268
 
 
 
 
 
 
 
 
 
 
 
269config CRYPTO_HMAC
270	tristate "HMAC support"
271	select CRYPTO_HASH
272	select CRYPTO_MANAGER
273	help
274	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
275	  This is required for IPSec.
276
277config CRYPTO_XCBC
278	tristate "XCBC support"
279	depends on EXPERIMENTAL
280	select CRYPTO_HASH
281	select CRYPTO_MANAGER
282	help
283	  XCBC: Keyed-Hashing with encryption algorithm
284		http://www.ietf.org/rfc/rfc3566.txt
285		http://csrc.nist.gov/encryption/modes/proposedmodes/
286		 xcbc-mac/xcbc-mac-spec.pdf
287
288config CRYPTO_VMAC
289	tristate "VMAC support"
290	depends on EXPERIMENTAL
291	select CRYPTO_HASH
292	select CRYPTO_MANAGER
293	help
294	  VMAC is a message authentication algorithm designed for
295	  very high speed on 64-bit architectures.
296
297	  See also:
298	  <http://fastcrypto.org/vmac>
299
300comment "Digest"
301
302config CRYPTO_CRC32C
303	tristate "CRC32c CRC algorithm"
304	select CRYPTO_HASH
 
305	help
306	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
307	  by iSCSI for header and data digests and by others.
308	  See Castagnoli93.  Module will be crc32c.
309
310config CRYPTO_CRC32C_INTEL
311	tristate "CRC32c INTEL hardware acceleration"
312	depends on X86
313	select CRYPTO_HASH
314	help
315	  In Intel processor with SSE4.2 supported, the processor will
316	  support CRC32C implementation using hardware accelerated CRC32
317	  instruction. This option will create 'crc32c-intel' module,
318	  which will enable any routine to use the CRC32 instruction to
319	  gain performance compared with software implementation.
320	  Module will be crc32c-intel.
321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322config CRYPTO_GHASH
323	tristate "GHASH digest algorithm"
324	select CRYPTO_SHASH
325	select CRYPTO_GF128MUL
 
326	help
327	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329config CRYPTO_MD4
330	tristate "MD4 digest algorithm"
331	select CRYPTO_HASH
332	help
333	  MD4 message digest algorithm (RFC1320).
334
335config CRYPTO_MD5
336	tristate "MD5 digest algorithm"
337	select CRYPTO_HASH
338	help
339	  MD5 message digest algorithm (RFC1321).
340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341config CRYPTO_MICHAEL_MIC
342	tristate "Michael MIC keyed digest algorithm"
343	select CRYPTO_HASH
344	help
345	  Michael MIC is used for message integrity protection in TKIP
346	  (IEEE 802.11i). This algorithm is required for TKIP, but it
347	  should not be used for other purposes because of the weakness
348	  of the algorithm.
349
350config CRYPTO_RMD128
351	tristate "RIPEMD-128 digest algorithm"
352	select CRYPTO_HASH
353	help
354	  RIPEMD-128 (ISO/IEC 10118-3:2004).
355
356	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
357	  be used as a secure replacement for RIPEMD. For other use cases,
358	  RIPEMD-160 should be used.
359
360	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
361	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
362
363config CRYPTO_RMD160
364	tristate "RIPEMD-160 digest algorithm"
365	select CRYPTO_HASH
366	help
367	  RIPEMD-160 (ISO/IEC 10118-3:2004).
368
369	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
370	  to be used as a secure replacement for the 128-bit hash functions
371	  MD4, MD5 and it's predecessor RIPEMD
372	  (not to be confused with RIPEMD-128).
373
374	  It's speed is comparable to SHA1 and there are no known attacks
375	  against RIPEMD-160.
376
377	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
378	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
379
380config CRYPTO_RMD256
381	tristate "RIPEMD-256 digest algorithm"
382	select CRYPTO_HASH
383	help
384	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
385	  256 bit hash. It is intended for applications that require
386	  longer hash-results, without needing a larger security level
387	  (than RIPEMD-128).
388
389	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
390	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
391
392config CRYPTO_RMD320
393	tristate "RIPEMD-320 digest algorithm"
394	select CRYPTO_HASH
395	help
396	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
397	  320 bit hash. It is intended for applications that require
398	  longer hash-results, without needing a larger security level
399	  (than RIPEMD-160).
400
401	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
402	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
403
404config CRYPTO_SHA1
405	tristate "SHA1 digest algorithm"
406	select CRYPTO_HASH
407	help
408	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410config CRYPTO_SHA256
411	tristate "SHA224 and SHA256 digest algorithm"
412	select CRYPTO_HASH
413	help
414	  SHA256 secure hash standard (DFIPS 180-2).
415
416	  This version of SHA implements a 256 bit hash with 128 bits of
417	  security against collision attacks.
418
419	  This code also includes SHA-224, a 224 bit hash with 112 bits
420	  of security against collision attacks.
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422config CRYPTO_SHA512
423	tristate "SHA384 and SHA512 digest algorithms"
424	select CRYPTO_HASH
425	help
426	  SHA512 secure hash standard (DFIPS 180-2).
427
428	  This version of SHA implements a 512 bit hash with 256 bits of
429	  security against collision attacks.
430
431	  This code also includes SHA-384, a 384 bit hash with 192 bits
432	  of security against collision attacks.
433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434config CRYPTO_TGR192
435	tristate "Tiger digest algorithms"
436	select CRYPTO_HASH
437	help
438	  Tiger hash algorithm 192, 160 and 128-bit hashes
439
440	  Tiger is a hash function optimized for 64-bit processors while
441	  still having decent performance on 32-bit processors.
442	  Tiger was developed by Ross Anderson and Eli Biham.
443
444	  See also:
445	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
446
447config CRYPTO_WP512
448	tristate "Whirlpool digest algorithms"
449	select CRYPTO_HASH
450	help
451	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
452
453	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
454	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
455
456	  See also:
457	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
458
459config CRYPTO_GHASH_CLMUL_NI_INTEL
460	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
461	depends on X86 && 64BIT
462	select CRYPTO_SHASH
463	select CRYPTO_CRYPTD
464	help
465	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
466	  The implementation is accelerated by CLMUL-NI of Intel.
467
468comment "Ciphers"
469
470config CRYPTO_AES
471	tristate "AES cipher algorithms"
472	select CRYPTO_ALGAPI
473	help
474	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
475	  algorithm.
476
477	  Rijndael appears to be consistently a very good performer in
478	  both hardware and software across a wide range of computing
479	  environments regardless of its use in feedback or non-feedback
480	  modes. Its key setup time is excellent, and its key agility is
481	  good. Rijndael's very low memory requirements make it very well
482	  suited for restricted-space environments, in which it also
483	  demonstrates excellent performance. Rijndael's operations are
484	  among the easiest to defend against power and timing attacks.
485
486	  The AES specifies three key sizes: 128, 192 and 256 bits
487
488	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
489
490config CRYPTO_AES_586
491	tristate "AES cipher algorithms (i586)"
492	depends on (X86 || UML_X86) && !64BIT
493	select CRYPTO_ALGAPI
494	select CRYPTO_AES
495	help
496	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
497	  algorithm.
498
499	  Rijndael appears to be consistently a very good performer in
500	  both hardware and software across a wide range of computing
501	  environments regardless of its use in feedback or non-feedback
502	  modes. Its key setup time is excellent, and its key agility is
503	  good. Rijndael's very low memory requirements make it very well
504	  suited for restricted-space environments, in which it also
505	  demonstrates excellent performance. Rijndael's operations are
506	  among the easiest to defend against power and timing attacks.
507
508	  The AES specifies three key sizes: 128, 192 and 256 bits
509
510	  See <http://csrc.nist.gov/encryption/aes/> for more information.
511
512config CRYPTO_AES_X86_64
513	tristate "AES cipher algorithms (x86_64)"
514	depends on (X86 || UML_X86) && 64BIT
515	select CRYPTO_ALGAPI
516	select CRYPTO_AES
517	help
518	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
519	  algorithm.
520
521	  Rijndael appears to be consistently a very good performer in
522	  both hardware and software across a wide range of computing
523	  environments regardless of its use in feedback or non-feedback
524	  modes. Its key setup time is excellent, and its key agility is
525	  good. Rijndael's very low memory requirements make it very well
526	  suited for restricted-space environments, in which it also
527	  demonstrates excellent performance. Rijndael's operations are
528	  among the easiest to defend against power and timing attacks.
529
530	  The AES specifies three key sizes: 128, 192 and 256 bits
531
532	  See <http://csrc.nist.gov/encryption/aes/> for more information.
533
534config CRYPTO_AES_NI_INTEL
535	tristate "AES cipher algorithms (AES-NI)"
536	depends on X86
537	select CRYPTO_AES_X86_64 if 64BIT
538	select CRYPTO_AES_586 if !64BIT
539	select CRYPTO_CRYPTD
 
540	select CRYPTO_ALGAPI
 
 
 
541	help
542	  Use Intel AES-NI instructions for AES algorithm.
543
544	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
545	  algorithm.
546
547	  Rijndael appears to be consistently a very good performer in
548	  both hardware and software across a wide range of computing
549	  environments regardless of its use in feedback or non-feedback
550	  modes. Its key setup time is excellent, and its key agility is
551	  good. Rijndael's very low memory requirements make it very well
552	  suited for restricted-space environments, in which it also
553	  demonstrates excellent performance. Rijndael's operations are
554	  among the easiest to defend against power and timing attacks.
555
556	  The AES specifies three key sizes: 128, 192 and 256 bits
557
558	  See <http://csrc.nist.gov/encryption/aes/> for more information.
559
560	  In addition to AES cipher algorithm support, the acceleration
561	  for some popular block cipher mode is supported too, including
562	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
563	  acceleration for CTR.
564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565config CRYPTO_ANUBIS
566	tristate "Anubis cipher algorithm"
567	select CRYPTO_ALGAPI
568	help
569	  Anubis cipher algorithm.
570
571	  Anubis is a variable key length cipher which can use keys from
572	  128 bits to 320 bits in length.  It was evaluated as a entrant
573	  in the NESSIE competition.
574
575	  See also:
576	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
577	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
578
579config CRYPTO_ARC4
580	tristate "ARC4 cipher algorithm"
581	select CRYPTO_ALGAPI
582	help
583	  ARC4 cipher algorithm.
584
585	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
586	  bits in length.  This algorithm is required for driver-based
587	  WEP, but it should not be for other purposes because of the
588	  weakness of the algorithm.
589
590config CRYPTO_BLOWFISH
591	tristate "Blowfish cipher algorithm"
592	select CRYPTO_ALGAPI
 
593	help
594	  Blowfish cipher algorithm, by Bruce Schneier.
595
596	  This is a variable key length cipher which can use keys from 32
597	  bits to 448 bits in length.  It's fast, simple and specifically
598	  designed for use on "large microprocessors".
599
600	  See also:
601	  <http://www.schneier.com/blowfish.html>
602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603config CRYPTO_CAMELLIA
604	tristate "Camellia cipher algorithms"
605	depends on CRYPTO
606	select CRYPTO_ALGAPI
607	help
608	  Camellia cipher algorithms module.
609
610	  Camellia is a symmetric key block cipher developed jointly
611	  at NTT and Mitsubishi Electric Corporation.
612
613	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
614
615	  See also:
616	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618config CRYPTO_CAST5
619	tristate "CAST5 (CAST-128) cipher algorithm"
620	select CRYPTO_ALGAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
621	help
622	  The CAST5 encryption algorithm (synonymous with CAST-128) is
623	  described in RFC2144.
624
 
 
 
625config CRYPTO_CAST6
626	tristate "CAST6 (CAST-256) cipher algorithm"
627	select CRYPTO_ALGAPI
 
628	help
629	  The CAST6 encryption algorithm (synonymous with CAST-256) is
630	  described in RFC2612.
631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632config CRYPTO_DES
633	tristate "DES and Triple DES EDE cipher algorithms"
634	select CRYPTO_ALGAPI
635	help
636	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638config CRYPTO_FCRYPT
639	tristate "FCrypt cipher algorithm"
640	select CRYPTO_ALGAPI
641	select CRYPTO_BLKCIPHER
642	help
643	  FCrypt algorithm used by RxRPC.
644
645config CRYPTO_KHAZAD
646	tristate "Khazad cipher algorithm"
647	select CRYPTO_ALGAPI
648	help
649	  Khazad cipher algorithm.
650
651	  Khazad was a finalist in the initial NESSIE competition.  It is
652	  an algorithm optimized for 64-bit processors with good performance
653	  on 32-bit processors.  Khazad uses an 128 bit key size.
654
655	  See also:
656	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
657
658config CRYPTO_SALSA20
659	tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
660	depends on EXPERIMENTAL
661	select CRYPTO_BLKCIPHER
662	help
663	  Salsa20 stream cipher algorithm.
664
665	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
666	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
667
668	  The Salsa20 stream cipher algorithm is designed by Daniel J.
669	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
670
671config CRYPTO_SALSA20_586
672	tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
673	depends on (X86 || UML_X86) && !64BIT
674	depends on EXPERIMENTAL
675	select CRYPTO_BLKCIPHER
676	help
677	  Salsa20 stream cipher algorithm.
678
679	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
680	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
681
682	  The Salsa20 stream cipher algorithm is designed by Daniel J.
683	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
684
685config CRYPTO_SALSA20_X86_64
686	tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
687	depends on (X86 || UML_X86) && 64BIT
688	depends on EXPERIMENTAL
689	select CRYPTO_BLKCIPHER
690	help
691	  Salsa20 stream cipher algorithm.
692
693	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
694	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
695
696	  The Salsa20 stream cipher algorithm is designed by Daniel J.
697	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699config CRYPTO_SEED
700	tristate "SEED cipher algorithm"
701	select CRYPTO_ALGAPI
702	help
703	  SEED cipher algorithm (RFC4269).
704
705	  SEED is a 128-bit symmetric key block cipher that has been
706	  developed by KISA (Korea Information Security Agency) as a
707	  national standard encryption algorithm of the Republic of Korea.
708	  It is a 16 round block cipher with the key size of 128 bit.
709
710	  See also:
711	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
712
713config CRYPTO_SERPENT
714	tristate "Serpent cipher algorithm"
715	select CRYPTO_ALGAPI
716	help
717	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
718
719	  Keys are allowed to be from 0 to 256 bits in length, in steps
720	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
721	  variant of Serpent for compatibility with old kerneli.org code.
722
723	  See also:
724	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726config CRYPTO_TEA
727	tristate "TEA, XTEA and XETA cipher algorithms"
728	select CRYPTO_ALGAPI
729	help
730	  TEA cipher algorithm.
731
732	  Tiny Encryption Algorithm is a simple cipher that uses
733	  many rounds for security.  It is very fast and uses
734	  little memory.
735
736	  Xtendend Tiny Encryption Algorithm is a modification to
737	  the TEA algorithm to address a potential key weakness
738	  in the TEA algorithm.
739
740	  Xtendend Encryption Tiny Algorithm is a mis-implementation
741	  of the XTEA algorithm for compatibility purposes.
742
743config CRYPTO_TWOFISH
744	tristate "Twofish cipher algorithm"
745	select CRYPTO_ALGAPI
746	select CRYPTO_TWOFISH_COMMON
747	help
748	  Twofish cipher algorithm.
749
750	  Twofish was submitted as an AES (Advanced Encryption Standard)
751	  candidate cipher by researchers at CounterPane Systems.  It is a
752	  16 round block cipher supporting key sizes of 128, 192, and 256
753	  bits.
754
755	  See also:
756	  <http://www.schneier.com/twofish.html>
757
758config CRYPTO_TWOFISH_COMMON
759	tristate
760	help
761	  Common parts of the Twofish cipher algorithm shared by the
762	  generic c and the assembler implementations.
763
764config CRYPTO_TWOFISH_586
765	tristate "Twofish cipher algorithms (i586)"
766	depends on (X86 || UML_X86) && !64BIT
767	select CRYPTO_ALGAPI
768	select CRYPTO_TWOFISH_COMMON
769	help
770	  Twofish cipher algorithm.
771
772	  Twofish was submitted as an AES (Advanced Encryption Standard)
773	  candidate cipher by researchers at CounterPane Systems.  It is a
774	  16 round block cipher supporting key sizes of 128, 192, and 256
775	  bits.
776
777	  See also:
778	  <http://www.schneier.com/twofish.html>
779
780config CRYPTO_TWOFISH_X86_64
781	tristate "Twofish cipher algorithm (x86_64)"
782	depends on (X86 || UML_X86) && 64BIT
783	select CRYPTO_ALGAPI
784	select CRYPTO_TWOFISH_COMMON
785	help
786	  Twofish cipher algorithm (x86_64).
787
788	  Twofish was submitted as an AES (Advanced Encryption Standard)
789	  candidate cipher by researchers at CounterPane Systems.  It is a
790	  16 round block cipher supporting key sizes of 128, 192, and 256
791	  bits.
792
793	  See also:
794	  <http://www.schneier.com/twofish.html>
795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796comment "Compression"
797
798config CRYPTO_DEFLATE
799	tristate "Deflate compression algorithm"
800	select CRYPTO_ALGAPI
801	select ZLIB_INFLATE
802	select ZLIB_DEFLATE
803	help
804	  This is the Deflate algorithm (RFC1951), specified for use in
805	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
806
807	  You will most probably want this if using IPSec.
808
809config CRYPTO_ZLIB
810	tristate "Zlib compression algorithm"
811	select CRYPTO_PCOMP
812	select ZLIB_INFLATE
813	select ZLIB_DEFLATE
814	select NLATTR
815	help
816	  This is the zlib algorithm.
817
818config CRYPTO_LZO
819	tristate "LZO compression algorithm"
820	select CRYPTO_ALGAPI
821	select LZO_COMPRESS
822	select LZO_DECOMPRESS
823	help
824	  This is the LZO algorithm.
825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826comment "Random Number Generation"
827
828config CRYPTO_ANSI_CPRNG
829	tristate "Pseudo Random Number Generation for Cryptographic modules"
830	default m
831	select CRYPTO_AES
832	select CRYPTO_RNG
833	help
834	  This option enables the generic pseudo random number generator
835	  for cryptographic modules.  Uses the Algorithm specified in
836	  ANSI X9.31 A.2.4. Note that this option must be enabled if
837	  CRYPTO_FIPS is selected
838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839config CRYPTO_USER_API
840	tristate
841
842config CRYPTO_USER_API_HASH
843	tristate "User-space interface for hash algorithms"
844	depends on NET
845	select CRYPTO_HASH
846	select CRYPTO_USER_API
847	help
848	  This option enables the user-spaces interface for hash
849	  algorithms.
850
851config CRYPTO_USER_API_SKCIPHER
852	tristate "User-space interface for symmetric key cipher algorithms"
853	depends on NET
854	select CRYPTO_BLKCIPHER
855	select CRYPTO_USER_API
856	help
857	  This option enables the user-spaces interface for symmetric
858	  key cipher algorithms.
859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860source "drivers/crypto/Kconfig"
 
 
861
862endif	# if CRYPTO