Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->init_layout.base;
 46 *			else
 47 *				val -= (uint32_t)me->core_layout.base;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->init_layout.base &&
104		loc <= (me->init_layout.base + me->init_layout.size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->core_layout.base &&
110		loc <= (me->core_layout.base + me->core_layout.size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
217	/* using RWX means less protection for modules, but it's
218	 * easier than trying to map the text, data, init_text and
219	 * init_data correctly */
220	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221				    GFP_KERNEL | __GFP_HIGHMEM,
222				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
223				    __builtin_return_address(0));
224}
225
226#ifndef CONFIG_64BIT
227static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228{
229	return 0;
230}
231
232static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233{
234	return 0;
235}
236
237static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238{
239	unsigned long cnt = 0;
240
241	for (; n > 0; n--, rela++)
242	{
243		switch (ELF32_R_TYPE(rela->r_info)) {
244			case R_PARISC_PCREL17F:
245			case R_PARISC_PCREL22F:
246				cnt++;
247		}
248	}
249
250	return cnt;
251}
252#else
253static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254{
255	unsigned long cnt = 0;
256
257	for (; n > 0; n--, rela++)
258	{
259		switch (ELF64_R_TYPE(rela->r_info)) {
260			case R_PARISC_LTOFF21L:
261			case R_PARISC_LTOFF14R:
262			case R_PARISC_PCREL22F:
263				cnt++;
264		}
265	}
266
267	return cnt;
268}
269
270static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271{
272	unsigned long cnt = 0;
273
274	for (; n > 0; n--, rela++)
275	{
276		switch (ELF64_R_TYPE(rela->r_info)) {
277			case R_PARISC_FPTR64:
278				cnt++;
279		}
280	}
281
282	return cnt;
283}
284
285static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286{
287	unsigned long cnt = 0;
288
289	for (; n > 0; n--, rela++)
290	{
291		switch (ELF64_R_TYPE(rela->r_info)) {
292			case R_PARISC_PCREL22F:
293				cnt++;
294		}
295	}
296
297	return cnt;
298}
299#endif
300
301void module_arch_freeing_init(struct module *mod)
302{
303	kfree(mod->arch.section);
304	mod->arch.section = NULL;
305}
306
307/* Additional bytes needed in front of individual sections */
308unsigned int arch_mod_section_prepend(struct module *mod,
309				      unsigned int section)
310{
311	/* size needed for all stubs of this section (including
312	 * one additional for correct alignment of the stubs) */
313	return (mod->arch.section[section].stub_entries + 1)
314		* sizeof(struct stub_entry);
315}
316
317#define CONST 
318int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
319			      CONST Elf_Shdr *sechdrs,
320			      CONST char *secstrings,
321			      struct module *me)
322{
323	unsigned long gots = 0, fdescs = 0, len;
324	unsigned int i;
325
326	len = hdr->e_shnum * sizeof(me->arch.section[0]);
327	me->arch.section = kzalloc(len, GFP_KERNEL);
328	if (!me->arch.section)
329		return -ENOMEM;
330
331	for (i = 1; i < hdr->e_shnum; i++) {
332		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
333		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
334		unsigned int count, s;
335
336		if (strncmp(secstrings + sechdrs[i].sh_name,
337			    ".PARISC.unwind", 14) == 0)
338			me->arch.unwind_section = i;
339
340		if (sechdrs[i].sh_type != SHT_RELA)
341			continue;
342
343		/* some of these are not relevant for 32-bit/64-bit
344		 * we leave them here to make the code common. the
345		 * compiler will do its thing and optimize out the
346		 * stuff we don't need
347		 */
348		gots += count_gots(rels, nrels);
349		fdescs += count_fdescs(rels, nrels);
350
351		/* XXX: By sorting the relocs and finding duplicate entries
352		 *  we could reduce the number of necessary stubs and save
353		 *  some memory. */
354		count = count_stubs(rels, nrels);
355		if (!count)
356			continue;
357
358		/* so we need relocation stubs. reserve necessary memory. */
359		/* sh_info gives the section for which we need to add stubs. */
360		s = sechdrs[i].sh_info;
361
362		/* each code section should only have one relocation section */
363		WARN_ON(me->arch.section[s].stub_entries);
364
365		/* store number of stubs we need for this section */
366		me->arch.section[s].stub_entries += count;
367	}
368
369	/* align things a bit */
370	me->core_layout.size = ALIGN(me->core_layout.size, 16);
371	me->arch.got_offset = me->core_layout.size;
372	me->core_layout.size += gots * sizeof(struct got_entry);
373
374	me->core_layout.size = ALIGN(me->core_layout.size, 16);
375	me->arch.fdesc_offset = me->core_layout.size;
376	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
377
378	me->arch.got_max = gots;
379	me->arch.fdesc_max = fdescs;
380
381	return 0;
382}
383
384#ifdef CONFIG_64BIT
385static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
386{
387	unsigned int i;
388	struct got_entry *got;
389
390	value += addend;
391
392	BUG_ON(value == 0);
393
394	got = me->core_layout.base + me->arch.got_offset;
395	for (i = 0; got[i].addr; i++)
396		if (got[i].addr == value)
397			goto out;
398
399	BUG_ON(++me->arch.got_count > me->arch.got_max);
400
401	got[i].addr = value;
402 out:
403	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
404	       value);
405	return i * sizeof(struct got_entry);
406}
407#endif /* CONFIG_64BIT */
408
409#ifdef CONFIG_64BIT
410static Elf_Addr get_fdesc(struct module *me, unsigned long value)
411{
412	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
413
414	if (!value) {
415		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
416		return 0;
417	}
418
419	/* Look for existing fdesc entry. */
420	while (fdesc->addr) {
421		if (fdesc->addr == value)
422			return (Elf_Addr)fdesc;
423		fdesc++;
424	}
425
426	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
427
428	/* Create new one */
429	fdesc->addr = value;
430	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
431	return (Elf_Addr)fdesc;
432}
433#endif /* CONFIG_64BIT */
434
435enum elf_stub_type {
436	ELF_STUB_GOT,
437	ELF_STUB_MILLI,
438	ELF_STUB_DIRECT,
439};
440
441static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
442	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
443{
444	struct stub_entry *stub;
445	int __maybe_unused d;
446
447	/* initialize stub_offset to point in front of the section */
448	if (!me->arch.section[targetsec].stub_offset) {
449		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
450				sizeof(struct stub_entry);
451		/* get correct alignment for the stubs */
452		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
453		me->arch.section[targetsec].stub_offset = loc0;
454	}
455
456	/* get address of stub entry */
457	stub = (void *) me->arch.section[targetsec].stub_offset;
458	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
459
460	/* do not write outside available stub area */
461	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
462
463
464#ifndef CONFIG_64BIT
465/* for 32-bit the stub looks like this:
466 * 	ldil L'XXX,%r1
467 * 	be,n R'XXX(%sr4,%r1)
468 */
469	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
470
471	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
472	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
473
474	stub->insns[0] |= reassemble_21(lrsel(value, addend));
475	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
476
477#else
478/* for 64-bit we have three kinds of stubs:
479 * for normal function calls:
480 * 	ldd 0(%dp),%dp
481 * 	ldd 10(%dp), %r1
482 * 	bve (%r1)
483 * 	ldd 18(%dp), %dp
484 *
485 * for millicode:
486 * 	ldil 0, %r1
487 * 	ldo 0(%r1), %r1
488 * 	ldd 10(%r1), %r1
489 * 	bve,n (%r1)
490 *
491 * for direct branches (jumps between different section of the
492 * same module):
493 *	ldil 0, %r1
494 *	ldo 0(%r1), %r1
495 *	bve,n (%r1)
496 */
497	switch (stub_type) {
498	case ELF_STUB_GOT:
499		d = get_got(me, value, addend);
500		if (d <= 15) {
501			/* Format 5 */
502			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
503			stub->insns[0] |= low_sign_unext(d, 5) << 16;
504		} else {
505			/* Format 3 */
506			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
507			stub->insns[0] |= reassemble_16a(d);
508		}
509		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
510		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
511		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
512		break;
513	case ELF_STUB_MILLI:
514		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
515		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
516		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
517		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
518
519		stub->insns[0] |= reassemble_21(lrsel(value, addend));
520		stub->insns[1] |= reassemble_14(rrsel(value, addend));
521		break;
522	case ELF_STUB_DIRECT:
523		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
524		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
525		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
526
527		stub->insns[0] |= reassemble_21(lrsel(value, addend));
528		stub->insns[1] |= reassemble_14(rrsel(value, addend));
529		break;
530	}
531
532#endif
533
534	return (Elf_Addr)stub;
535}
536
537#ifndef CONFIG_64BIT
538int apply_relocate_add(Elf_Shdr *sechdrs,
539		       const char *strtab,
540		       unsigned int symindex,
541		       unsigned int relsec,
542		       struct module *me)
543{
544	int i;
545	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
546	Elf32_Sym *sym;
547	Elf32_Word *loc;
548	Elf32_Addr val;
549	Elf32_Sword addend;
550	Elf32_Addr dot;
551	Elf_Addr loc0;
552	unsigned int targetsec = sechdrs[relsec].sh_info;
553	//unsigned long dp = (unsigned long)$global$;
554	register unsigned long dp asm ("r27");
555
556	DEBUGP("Applying relocate section %u to %u\n", relsec,
557	       targetsec);
558	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
559		/* This is where to make the change */
560		loc = (void *)sechdrs[targetsec].sh_addr
561		      + rel[i].r_offset;
562		/* This is the start of the target section */
563		loc0 = sechdrs[targetsec].sh_addr;
564		/* This is the symbol it is referring to */
565		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
566			+ ELF32_R_SYM(rel[i].r_info);
567		if (!sym->st_value) {
568			printk(KERN_WARNING "%s: Unknown symbol %s\n",
569			       me->name, strtab + sym->st_name);
570			return -ENOENT;
571		}
572		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
573		dot =  (Elf32_Addr)loc & ~0x03;
574
575		val = sym->st_value;
576		addend = rel[i].r_addend;
577
578#if 0
579#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
580		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
581			strtab + sym->st_name,
582			(uint32_t)loc, val, addend,
583			r(R_PARISC_PLABEL32)
584			r(R_PARISC_DIR32)
585			r(R_PARISC_DIR21L)
586			r(R_PARISC_DIR14R)
587			r(R_PARISC_SEGREL32)
588			r(R_PARISC_DPREL21L)
589			r(R_PARISC_DPREL14R)
590			r(R_PARISC_PCREL17F)
591			r(R_PARISC_PCREL22F)
592			"UNKNOWN");
593#undef r
594#endif
595
596		switch (ELF32_R_TYPE(rel[i].r_info)) {
597		case R_PARISC_PLABEL32:
598			/* 32-bit function address */
599			/* no function descriptors... */
600			*loc = fsel(val, addend);
601			break;
602		case R_PARISC_DIR32:
603			/* direct 32-bit ref */
604			*loc = fsel(val, addend);
605			break;
606		case R_PARISC_DIR21L:
607			/* left 21 bits of effective address */
608			val = lrsel(val, addend);
609			*loc = mask(*loc, 21) | reassemble_21(val);
610			break;
611		case R_PARISC_DIR14R:
612			/* right 14 bits of effective address */
613			val = rrsel(val, addend);
614			*loc = mask(*loc, 14) | reassemble_14(val);
615			break;
616		case R_PARISC_SEGREL32:
617			/* 32-bit segment relative address */
618			/* See note about special handling of SEGREL32 at
619			 * the beginning of this file.
620			 */
621			*loc = fsel(val, addend); 
 
 
 
 
622			break;
623		case R_PARISC_DPREL21L:
624			/* left 21 bit of relative address */
625			val = lrsel(val - dp, addend);
626			*loc = mask(*loc, 21) | reassemble_21(val);
627			break;
628		case R_PARISC_DPREL14R:
629			/* right 14 bit of relative address */
630			val = rrsel(val - dp, addend);
631			*loc = mask(*loc, 14) | reassemble_14(val);
632			break;
633		case R_PARISC_PCREL17F:
634			/* 17-bit PC relative address */
635			/* calculate direct call offset */
636			val += addend;
637			val = (val - dot - 8)/4;
638			if (!RELOC_REACHABLE(val, 17)) {
639				/* direct distance too far, create
640				 * stub entry instead */
641				val = get_stub(me, sym->st_value, addend,
642					ELF_STUB_DIRECT, loc0, targetsec);
643				val = (val - dot - 8)/4;
644				CHECK_RELOC(val, 17);
645			}
646			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
647			break;
648		case R_PARISC_PCREL22F:
649			/* 22-bit PC relative address; only defined for pa20 */
650			/* calculate direct call offset */
651			val += addend;
652			val = (val - dot - 8)/4;
653			if (!RELOC_REACHABLE(val, 22)) {
654				/* direct distance too far, create
655				 * stub entry instead */
656				val = get_stub(me, sym->st_value, addend,
657					ELF_STUB_DIRECT, loc0, targetsec);
658				val = (val - dot - 8)/4;
659				CHECK_RELOC(val, 22);
660			}
661			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
662			break;
663		case R_PARISC_PCREL32:
664			/* 32-bit PC relative address */
665			*loc = val - dot - 8 + addend;
666			break;
667
668		default:
669			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
670			       me->name, ELF32_R_TYPE(rel[i].r_info));
671			return -ENOEXEC;
672		}
673	}
674
675	return 0;
676}
677
678#else
679int apply_relocate_add(Elf_Shdr *sechdrs,
680		       const char *strtab,
681		       unsigned int symindex,
682		       unsigned int relsec,
683		       struct module *me)
684{
685	int i;
686	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
687	Elf64_Sym *sym;
688	Elf64_Word *loc;
689	Elf64_Xword *loc64;
690	Elf64_Addr val;
691	Elf64_Sxword addend;
692	Elf64_Addr dot;
693	Elf_Addr loc0;
694	unsigned int targetsec = sechdrs[relsec].sh_info;
695
696	DEBUGP("Applying relocate section %u to %u\n", relsec,
697	       targetsec);
698	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
699		/* This is where to make the change */
700		loc = (void *)sechdrs[targetsec].sh_addr
701		      + rel[i].r_offset;
702		/* This is the start of the target section */
703		loc0 = sechdrs[targetsec].sh_addr;
704		/* This is the symbol it is referring to */
705		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
706			+ ELF64_R_SYM(rel[i].r_info);
707		if (!sym->st_value) {
708			printk(KERN_WARNING "%s: Unknown symbol %s\n",
709			       me->name, strtab + sym->st_name);
710			return -ENOENT;
711		}
712		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
713		dot = (Elf64_Addr)loc & ~0x03;
714		loc64 = (Elf64_Xword *)loc;
715
716		val = sym->st_value;
717		addend = rel[i].r_addend;
718
719#if 0
720#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
721		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
722			strtab + sym->st_name,
723			loc, val, addend,
724			r(R_PARISC_LTOFF14R)
725			r(R_PARISC_LTOFF21L)
726			r(R_PARISC_PCREL22F)
727			r(R_PARISC_DIR64)
728			r(R_PARISC_SEGREL32)
729			r(R_PARISC_FPTR64)
730			"UNKNOWN");
731#undef r
732#endif
733
734		switch (ELF64_R_TYPE(rel[i].r_info)) {
735		case R_PARISC_LTOFF21L:
736			/* LT-relative; left 21 bits */
737			val = get_got(me, val, addend);
738			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
739			       strtab + sym->st_name,
740			       loc, val);
741			val = lrsel(val, 0);
742			*loc = mask(*loc, 21) | reassemble_21(val);
743			break;
744		case R_PARISC_LTOFF14R:
745			/* L(ltoff(val+addend)) */
746			/* LT-relative; right 14 bits */
747			val = get_got(me, val, addend);
748			val = rrsel(val, 0);
749			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
750			       strtab + sym->st_name,
751			       loc, val);
752			*loc = mask(*loc, 14) | reassemble_14(val);
753			break;
754		case R_PARISC_PCREL22F:
755			/* PC-relative; 22 bits */
756			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
757			       strtab + sym->st_name,
758			       loc, val);
759			val += addend;
760			/* can we reach it locally? */
761			if (in_local(me, (void *)val)) {
762				/* this is the case where the symbol is local
763				 * to the module, but in a different section,
764				 * so stub the jump in case it's more than 22
765				 * bits away */
766				val = (val - dot - 8)/4;
767				if (!RELOC_REACHABLE(val, 22)) {
768					/* direct distance too far, create
769					 * stub entry instead */
770					val = get_stub(me, sym->st_value,
771						addend, ELF_STUB_DIRECT,
772						loc0, targetsec);
773				} else {
774					/* Ok, we can reach it directly. */
775					val = sym->st_value;
776					val += addend;
777				}
778			} else {
779				val = sym->st_value;
780				if (strncmp(strtab + sym->st_name, "$$", 2)
781				    == 0)
782					val = get_stub(me, val, addend, ELF_STUB_MILLI,
783						       loc0, targetsec);
784				else
785					val = get_stub(me, val, addend, ELF_STUB_GOT,
786						       loc0, targetsec);
787			}
788			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
789			       strtab + sym->st_name, loc, sym->st_value,
790			       addend, val);
791			val = (val - dot - 8)/4;
792			CHECK_RELOC(val, 22);
793			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
794			break;
795		case R_PARISC_PCREL32:
796			/* 32-bit PC relative address */
797			*loc = val - dot - 8 + addend;
798			break;
 
 
 
 
799		case R_PARISC_DIR64:
800			/* 64-bit effective address */
801			*loc64 = val + addend;
802			break;
803		case R_PARISC_SEGREL32:
804			/* 32-bit segment relative address */
805			/* See note about special handling of SEGREL32 at
806			 * the beginning of this file.
807			 */
808			*loc = fsel(val, addend); 
 
 
 
 
809			break;
810		case R_PARISC_FPTR64:
811			/* 64-bit function address */
812			if(in_local(me, (void *)(val + addend))) {
813				*loc64 = get_fdesc(me, val+addend);
814				DEBUGP("FDESC for %s at %p points to %lx\n",
815				       strtab + sym->st_name, *loc64,
816				       ((Elf_Fdesc *)*loc64)->addr);
817			} else {
818				/* if the symbol is not local to this
819				 * module then val+addend is a pointer
820				 * to the function descriptor */
821				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
822				       strtab + sym->st_name,
823				       loc, val);
824				*loc64 = val + addend;
825			}
826			break;
827
828		default:
829			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
830			       me->name, ELF64_R_TYPE(rel[i].r_info));
831			return -ENOEXEC;
832		}
833	}
834	return 0;
835}
836#endif
837
838static void
839register_unwind_table(struct module *me,
840		      const Elf_Shdr *sechdrs)
841{
842	unsigned char *table, *end;
843	unsigned long gp;
844
845	if (!me->arch.unwind_section)
846		return;
847
848	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
849	end = table + sechdrs[me->arch.unwind_section].sh_size;
850	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
851
852	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
853	       me->arch.unwind_section, table, end, gp);
854	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
855}
856
857static void
858deregister_unwind_table(struct module *me)
859{
860	if (me->arch.unwind)
861		unwind_table_remove(me->arch.unwind);
862}
863
864int module_finalize(const Elf_Ehdr *hdr,
865		    const Elf_Shdr *sechdrs,
866		    struct module *me)
867{
868	int i;
869	unsigned long nsyms;
870	const char *strtab = NULL;
 
 
 
871	Elf_Sym *newptr, *oldptr;
872	Elf_Shdr *symhdr = NULL;
873#ifdef DEBUG
874	Elf_Fdesc *entry;
875	u32 *addr;
876
877	entry = (Elf_Fdesc *)me->init;
878	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
879	       entry->gp, entry->addr);
880	addr = (u32 *)entry->addr;
881	printk("INSNS: %x %x %x %x\n",
882	       addr[0], addr[1], addr[2], addr[3]);
883	printk("got entries used %ld, gots max %ld\n"
884	       "fdescs used %ld, fdescs max %ld\n",
885	       me->arch.got_count, me->arch.got_max,
886	       me->arch.fdesc_count, me->arch.fdesc_max);
887#endif
888
889	register_unwind_table(me, sechdrs);
890
891	/* haven't filled in me->symtab yet, so have to find it
892	 * ourselves */
893	for (i = 1; i < hdr->e_shnum; i++) {
894		if(sechdrs[i].sh_type == SHT_SYMTAB
895		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
896			int strindex = sechdrs[i].sh_link;
 
897			/* FIXME: AWFUL HACK
898			 * The cast is to drop the const from
899			 * the sechdrs pointer */
900			symhdr = (Elf_Shdr *)&sechdrs[i];
901			strtab = (char *)sechdrs[strindex].sh_addr;
902			break;
903		}
904	}
905
906	DEBUGP("module %s: strtab %p, symhdr %p\n",
907	       me->name, strtab, symhdr);
908
909	if(me->arch.got_count > MAX_GOTS) {
910		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
911				me->name, me->arch.got_count, MAX_GOTS);
912		return -EINVAL;
913	}
914
915	kfree(me->arch.section);
916	me->arch.section = NULL;
917
918	/* no symbol table */
919	if(symhdr == NULL)
920		return 0;
921
922	oldptr = (void *)symhdr->sh_addr;
923	newptr = oldptr + 1;	/* we start counting at 1 */
924	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
925	DEBUGP("OLD num_symtab %lu\n", nsyms);
926
927	for (i = 1; i < nsyms; i++) {
928		oldptr++;	/* note, count starts at 1 so preincrement */
929		if(strncmp(strtab + oldptr->st_name,
930			      ".L", 2) == 0)
931			continue;
932
933		if(newptr != oldptr)
934			*newptr++ = *oldptr;
935		else
936			newptr++;
937
938	}
939	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
940	DEBUGP("NEW num_symtab %lu\n", nsyms);
941	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942	return 0;
943}
944
945void module_arch_cleanup(struct module *mod)
946{
947	deregister_unwind_table(mod);
948}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*    Kernel dynamically loadable module help for PARISC.
  3 *
  4 *    The best reference for this stuff is probably the Processor-
  5 *    Specific ELF Supplement for PA-RISC:
  6 *        https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
  7 *
  8 *    Linux/PA-RISC Project
  9 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
 10 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 11 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12 *    Notes:
 13 *    - PLT stub handling
 14 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 15 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 16 *      fail to reach their PLT stub if we only create one big stub array for
 17 *      all sections at the beginning of the core or init section.
 18 *      Instead we now insert individual PLT stub entries directly in front of
 19 *      of the code sections where the stubs are actually called.
 20 *      This reduces the distance between the PCREL location and the stub entry
 21 *      so that the relocations can be fulfilled.
 22 *      While calculating the final layout of the kernel module in memory, the
 23 *      kernel module loader calls arch_mod_section_prepend() to request the
 24 *      to be reserved amount of memory in front of each individual section.
 25 *
 26 *    - SEGREL32 handling
 27 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 28 *      should do a value offset, like this:
 29 *			if (in_init(me, (void *)val))
 30 *				val -= (uint32_t)me->init_layout.base;
 31 *			else
 32 *				val -= (uint32_t)me->core_layout.base;
 33 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 34 *	those entries to have an absolute address, and not just an offset.
 35 *
 36 *	The unwind table mechanism has the ability to specify an offset for
 37 *	the unwind table; however, because we split off the init functions into
 38 *	a different piece of memory, it is not possible to do this using a
 39 *	single offset. Instead, we use the above hack for now.
 40 */
 41
 42#include <linux/moduleloader.h>
 43#include <linux/elf.h>
 44#include <linux/vmalloc.h>
 45#include <linux/fs.h>
 46#include <linux/ftrace.h>
 47#include <linux/string.h>
 48#include <linux/kernel.h>
 49#include <linux/bug.h>
 50#include <linux/mm.h>
 51#include <linux/slab.h>
 52
 
 53#include <asm/unwind.h>
 54#include <asm/sections.h>
 
 
 
 
 
 55
 56#define RELOC_REACHABLE(val, bits) \
 57	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 58	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 59	0 : 1)
 60
 61#define CHECK_RELOC(val, bits) \
 62	if (!RELOC_REACHABLE(val, bits)) { \
 63		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 64		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 65		return -ENOEXEC;			\
 66	}
 67
 68/* Maximum number of GOT entries. We use a long displacement ldd from
 69 * the bottom of the table, which has a maximum signed displacement of
 70 * 0x3fff; however, since we're only going forward, this becomes
 71 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 72 * at most 1023 entries.
 73 * To overcome this 14bit displacement with some kernel modules, we'll
 74 * use instead the unusal 16bit displacement method (see reassemble_16a)
 75 * which gives us a maximum positive displacement of 0x7fff, and as such
 76 * allows us to allocate up to 4095 GOT entries. */
 77#define MAX_GOTS	4095
 78
 79/* three functions to determine where in the module core
 80 * or init pieces the location is */
 81static inline int in_init(struct module *me, void *loc)
 82{
 83	return (loc >= me->init_layout.base &&
 84		loc <= (me->init_layout.base + me->init_layout.size));
 85}
 86
 87static inline int in_core(struct module *me, void *loc)
 88{
 89	return (loc >= me->core_layout.base &&
 90		loc <= (me->core_layout.base + me->core_layout.size));
 91}
 92
 93static inline int in_local(struct module *me, void *loc)
 94{
 95	return in_init(me, loc) || in_core(me, loc);
 96}
 97
 98#ifndef CONFIG_64BIT
 99struct got_entry {
100	Elf32_Addr addr;
101};
102
103struct stub_entry {
104	Elf32_Word insns[2]; /* each stub entry has two insns */
105};
106#else
107struct got_entry {
108	Elf64_Addr addr;
109};
110
111struct stub_entry {
112	Elf64_Word insns[4]; /* each stub entry has four insns */
113};
114#endif
115
116/* Field selection types defined by hppa */
117#define rnd(x)			(((x)+0x1000)&~0x1fff)
118/* fsel: full 32 bits */
119#define fsel(v,a)		((v)+(a))
120/* lsel: select left 21 bits */
121#define lsel(v,a)		(((v)+(a))>>11)
122/* rsel: select right 11 bits */
123#define rsel(v,a)		(((v)+(a))&0x7ff)
124/* lrsel with rounding of addend to nearest 8k */
125#define lrsel(v,a)		(((v)+rnd(a))>>11)
126/* rrsel with rounding of addend to nearest 8k */
127#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
128
129#define mask(x,sz)		((x) & ~((1<<(sz))-1))
130
131
132/* The reassemble_* functions prepare an immediate value for
133   insertion into an opcode. pa-risc uses all sorts of weird bitfields
134   in the instruction to hold the value.  */
135static inline int sign_unext(int x, int len)
136{
137	int len_ones;
138
139	len_ones = (1 << len) - 1;
140	return x & len_ones;
141}
142
143static inline int low_sign_unext(int x, int len)
144{
145	int sign, temp;
146
147	sign = (x >> (len-1)) & 1;
148	temp = sign_unext(x, len-1);
149	return (temp << 1) | sign;
150}
151
152static inline int reassemble_14(int as14)
153{
154	return (((as14 & 0x1fff) << 1) |
155		((as14 & 0x2000) >> 13));
156}
157
158static inline int reassemble_16a(int as16)
159{
160	int s, t;
161
162	/* Unusual 16-bit encoding, for wide mode only.  */
163	t = (as16 << 1) & 0xffff;
164	s = (as16 & 0x8000);
165	return (t ^ s ^ (s >> 1)) | (s >> 15);
166}
167
168
169static inline int reassemble_17(int as17)
170{
171	return (((as17 & 0x10000) >> 16) |
172		((as17 & 0x0f800) << 5) |
173		((as17 & 0x00400) >> 8) |
174		((as17 & 0x003ff) << 3));
175}
176
177static inline int reassemble_21(int as21)
178{
179	return (((as21 & 0x100000) >> 20) |
180		((as21 & 0x0ffe00) >> 8) |
181		((as21 & 0x000180) << 7) |
182		((as21 & 0x00007c) << 14) |
183		((as21 & 0x000003) << 12));
184}
185
186static inline int reassemble_22(int as22)
187{
188	return (((as22 & 0x200000) >> 21) |
189		((as22 & 0x1f0000) << 5) |
190		((as22 & 0x00f800) << 5) |
191		((as22 & 0x000400) >> 8) |
192		((as22 & 0x0003ff) << 3));
193}
194
195void *module_alloc(unsigned long size)
196{
197	/* using RWX means less protection for modules, but it's
198	 * easier than trying to map the text, data, init_text and
199	 * init_data correctly */
200	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
201				    GFP_KERNEL,
202				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
203				    __builtin_return_address(0));
204}
205
206#ifndef CONFIG_64BIT
207static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
208{
209	return 0;
210}
211
212static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
213{
214	return 0;
215}
216
217static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
218{
219	unsigned long cnt = 0;
220
221	for (; n > 0; n--, rela++)
222	{
223		switch (ELF32_R_TYPE(rela->r_info)) {
224			case R_PARISC_PCREL17F:
225			case R_PARISC_PCREL22F:
226				cnt++;
227		}
228	}
229
230	return cnt;
231}
232#else
233static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
234{
235	unsigned long cnt = 0;
236
237	for (; n > 0; n--, rela++)
238	{
239		switch (ELF64_R_TYPE(rela->r_info)) {
240			case R_PARISC_LTOFF21L:
241			case R_PARISC_LTOFF14R:
242			case R_PARISC_PCREL22F:
243				cnt++;
244		}
245	}
246
247	return cnt;
248}
249
250static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
251{
252	unsigned long cnt = 0;
253
254	for (; n > 0; n--, rela++)
255	{
256		switch (ELF64_R_TYPE(rela->r_info)) {
257			case R_PARISC_FPTR64:
258				cnt++;
259		}
260	}
261
262	return cnt;
263}
264
265static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
266{
267	unsigned long cnt = 0;
268
269	for (; n > 0; n--, rela++)
270	{
271		switch (ELF64_R_TYPE(rela->r_info)) {
272			case R_PARISC_PCREL22F:
273				cnt++;
274		}
275	}
276
277	return cnt;
278}
279#endif
280
281void module_arch_freeing_init(struct module *mod)
282{
283	kfree(mod->arch.section);
284	mod->arch.section = NULL;
285}
286
287/* Additional bytes needed in front of individual sections */
288unsigned int arch_mod_section_prepend(struct module *mod,
289				      unsigned int section)
290{
291	/* size needed for all stubs of this section (including
292	 * one additional for correct alignment of the stubs) */
293	return (mod->arch.section[section].stub_entries + 1)
294		* sizeof(struct stub_entry);
295}
296
297#define CONST
298int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
299			      CONST Elf_Shdr *sechdrs,
300			      CONST char *secstrings,
301			      struct module *me)
302{
303	unsigned long gots = 0, fdescs = 0, len;
304	unsigned int i;
305
306	len = hdr->e_shnum * sizeof(me->arch.section[0]);
307	me->arch.section = kzalloc(len, GFP_KERNEL);
308	if (!me->arch.section)
309		return -ENOMEM;
310
311	for (i = 1; i < hdr->e_shnum; i++) {
312		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
313		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
314		unsigned int count, s;
315
316		if (strncmp(secstrings + sechdrs[i].sh_name,
317			    ".PARISC.unwind", 14) == 0)
318			me->arch.unwind_section = i;
319
320		if (sechdrs[i].sh_type != SHT_RELA)
321			continue;
322
323		/* some of these are not relevant for 32-bit/64-bit
324		 * we leave them here to make the code common. the
325		 * compiler will do its thing and optimize out the
326		 * stuff we don't need
327		 */
328		gots += count_gots(rels, nrels);
329		fdescs += count_fdescs(rels, nrels);
330
331		/* XXX: By sorting the relocs and finding duplicate entries
332		 *  we could reduce the number of necessary stubs and save
333		 *  some memory. */
334		count = count_stubs(rels, nrels);
335		if (!count)
336			continue;
337
338		/* so we need relocation stubs. reserve necessary memory. */
339		/* sh_info gives the section for which we need to add stubs. */
340		s = sechdrs[i].sh_info;
341
342		/* each code section should only have one relocation section */
343		WARN_ON(me->arch.section[s].stub_entries);
344
345		/* store number of stubs we need for this section */
346		me->arch.section[s].stub_entries += count;
347	}
348
349	/* align things a bit */
350	me->core_layout.size = ALIGN(me->core_layout.size, 16);
351	me->arch.got_offset = me->core_layout.size;
352	me->core_layout.size += gots * sizeof(struct got_entry);
353
354	me->core_layout.size = ALIGN(me->core_layout.size, 16);
355	me->arch.fdesc_offset = me->core_layout.size;
356	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
357
358	me->arch.got_max = gots;
359	me->arch.fdesc_max = fdescs;
360
361	return 0;
362}
363
364#ifdef CONFIG_64BIT
365static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
366{
367	unsigned int i;
368	struct got_entry *got;
369
370	value += addend;
371
372	BUG_ON(value == 0);
373
374	got = me->core_layout.base + me->arch.got_offset;
375	for (i = 0; got[i].addr; i++)
376		if (got[i].addr == value)
377			goto out;
378
379	BUG_ON(++me->arch.got_count > me->arch.got_max);
380
381	got[i].addr = value;
382 out:
383	pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
384	       value);
385	return i * sizeof(struct got_entry);
386}
387#endif /* CONFIG_64BIT */
388
389#ifdef CONFIG_64BIT
390static Elf_Addr get_fdesc(struct module *me, unsigned long value)
391{
392	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
393
394	if (!value) {
395		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
396		return 0;
397	}
398
399	/* Look for existing fdesc entry. */
400	while (fdesc->addr) {
401		if (fdesc->addr == value)
402			return (Elf_Addr)fdesc;
403		fdesc++;
404	}
405
406	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
407
408	/* Create new one */
409	fdesc->addr = value;
410	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
411	return (Elf_Addr)fdesc;
412}
413#endif /* CONFIG_64BIT */
414
415enum elf_stub_type {
416	ELF_STUB_GOT,
417	ELF_STUB_MILLI,
418	ELF_STUB_DIRECT,
419};
420
421static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
422	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
423{
424	struct stub_entry *stub;
425	int __maybe_unused d;
426
427	/* initialize stub_offset to point in front of the section */
428	if (!me->arch.section[targetsec].stub_offset) {
429		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
430				sizeof(struct stub_entry);
431		/* get correct alignment for the stubs */
432		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
433		me->arch.section[targetsec].stub_offset = loc0;
434	}
435
436	/* get address of stub entry */
437	stub = (void *) me->arch.section[targetsec].stub_offset;
438	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
439
440	/* do not write outside available stub area */
441	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
442
443
444#ifndef CONFIG_64BIT
445/* for 32-bit the stub looks like this:
446 * 	ldil L'XXX,%r1
447 * 	be,n R'XXX(%sr4,%r1)
448 */
449	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
450
451	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
452	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
453
454	stub->insns[0] |= reassemble_21(lrsel(value, addend));
455	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
456
457#else
458/* for 64-bit we have three kinds of stubs:
459 * for normal function calls:
460 * 	ldd 0(%dp),%dp
461 * 	ldd 10(%dp), %r1
462 * 	bve (%r1)
463 * 	ldd 18(%dp), %dp
464 *
465 * for millicode:
466 * 	ldil 0, %r1
467 * 	ldo 0(%r1), %r1
468 * 	ldd 10(%r1), %r1
469 * 	bve,n (%r1)
470 *
471 * for direct branches (jumps between different section of the
472 * same module):
473 *	ldil 0, %r1
474 *	ldo 0(%r1), %r1
475 *	bve,n (%r1)
476 */
477	switch (stub_type) {
478	case ELF_STUB_GOT:
479		d = get_got(me, value, addend);
480		if (d <= 15) {
481			/* Format 5 */
482			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
483			stub->insns[0] |= low_sign_unext(d, 5) << 16;
484		} else {
485			/* Format 3 */
486			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
487			stub->insns[0] |= reassemble_16a(d);
488		}
489		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
490		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
491		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
492		break;
493	case ELF_STUB_MILLI:
494		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
495		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
496		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
497		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
498
499		stub->insns[0] |= reassemble_21(lrsel(value, addend));
500		stub->insns[1] |= reassemble_14(rrsel(value, addend));
501		break;
502	case ELF_STUB_DIRECT:
503		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
504		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
505		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
506
507		stub->insns[0] |= reassemble_21(lrsel(value, addend));
508		stub->insns[1] |= reassemble_14(rrsel(value, addend));
509		break;
510	}
511
512#endif
513
514	return (Elf_Addr)stub;
515}
516
517#ifndef CONFIG_64BIT
518int apply_relocate_add(Elf_Shdr *sechdrs,
519		       const char *strtab,
520		       unsigned int symindex,
521		       unsigned int relsec,
522		       struct module *me)
523{
524	int i;
525	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
526	Elf32_Sym *sym;
527	Elf32_Word *loc;
528	Elf32_Addr val;
529	Elf32_Sword addend;
530	Elf32_Addr dot;
531	Elf_Addr loc0;
532	unsigned int targetsec = sechdrs[relsec].sh_info;
533	//unsigned long dp = (unsigned long)$global$;
534	register unsigned long dp asm ("r27");
535
536	pr_debug("Applying relocate section %u to %u\n", relsec,
537	       targetsec);
538	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
539		/* This is where to make the change */
540		loc = (void *)sechdrs[targetsec].sh_addr
541		      + rel[i].r_offset;
542		/* This is the start of the target section */
543		loc0 = sechdrs[targetsec].sh_addr;
544		/* This is the symbol it is referring to */
545		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
546			+ ELF32_R_SYM(rel[i].r_info);
547		if (!sym->st_value) {
548			printk(KERN_WARNING "%s: Unknown symbol %s\n",
549			       me->name, strtab + sym->st_name);
550			return -ENOENT;
551		}
552		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
553		dot =  (Elf32_Addr)loc & ~0x03;
554
555		val = sym->st_value;
556		addend = rel[i].r_addend;
557
558#if 0
559#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
560		pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
561			strtab + sym->st_name,
562			(uint32_t)loc, val, addend,
563			r(R_PARISC_PLABEL32)
564			r(R_PARISC_DIR32)
565			r(R_PARISC_DIR21L)
566			r(R_PARISC_DIR14R)
567			r(R_PARISC_SEGREL32)
568			r(R_PARISC_DPREL21L)
569			r(R_PARISC_DPREL14R)
570			r(R_PARISC_PCREL17F)
571			r(R_PARISC_PCREL22F)
572			"UNKNOWN");
573#undef r
574#endif
575
576		switch (ELF32_R_TYPE(rel[i].r_info)) {
577		case R_PARISC_PLABEL32:
578			/* 32-bit function address */
579			/* no function descriptors... */
580			*loc = fsel(val, addend);
581			break;
582		case R_PARISC_DIR32:
583			/* direct 32-bit ref */
584			*loc = fsel(val, addend);
585			break;
586		case R_PARISC_DIR21L:
587			/* left 21 bits of effective address */
588			val = lrsel(val, addend);
589			*loc = mask(*loc, 21) | reassemble_21(val);
590			break;
591		case R_PARISC_DIR14R:
592			/* right 14 bits of effective address */
593			val = rrsel(val, addend);
594			*loc = mask(*loc, 14) | reassemble_14(val);
595			break;
596		case R_PARISC_SEGREL32:
597			/* 32-bit segment relative address */
598			/* See note about special handling of SEGREL32 at
599			 * the beginning of this file.
600			 */
601			*loc = fsel(val, addend);
602			break;
603		case R_PARISC_SECREL32:
604			/* 32-bit section relative address. */
605			*loc = fsel(val, addend);
606			break;
607		case R_PARISC_DPREL21L:
608			/* left 21 bit of relative address */
609			val = lrsel(val - dp, addend);
610			*loc = mask(*loc, 21) | reassemble_21(val);
611			break;
612		case R_PARISC_DPREL14R:
613			/* right 14 bit of relative address */
614			val = rrsel(val - dp, addend);
615			*loc = mask(*loc, 14) | reassemble_14(val);
616			break;
617		case R_PARISC_PCREL17F:
618			/* 17-bit PC relative address */
619			/* calculate direct call offset */
620			val += addend;
621			val = (val - dot - 8)/4;
622			if (!RELOC_REACHABLE(val, 17)) {
623				/* direct distance too far, create
624				 * stub entry instead */
625				val = get_stub(me, sym->st_value, addend,
626					ELF_STUB_DIRECT, loc0, targetsec);
627				val = (val - dot - 8)/4;
628				CHECK_RELOC(val, 17);
629			}
630			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
631			break;
632		case R_PARISC_PCREL22F:
633			/* 22-bit PC relative address; only defined for pa20 */
634			/* calculate direct call offset */
635			val += addend;
636			val = (val - dot - 8)/4;
637			if (!RELOC_REACHABLE(val, 22)) {
638				/* direct distance too far, create
639				 * stub entry instead */
640				val = get_stub(me, sym->st_value, addend,
641					ELF_STUB_DIRECT, loc0, targetsec);
642				val = (val - dot - 8)/4;
643				CHECK_RELOC(val, 22);
644			}
645			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
646			break;
647		case R_PARISC_PCREL32:
648			/* 32-bit PC relative address */
649			*loc = val - dot - 8 + addend;
650			break;
651
652		default:
653			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
654			       me->name, ELF32_R_TYPE(rel[i].r_info));
655			return -ENOEXEC;
656		}
657	}
658
659	return 0;
660}
661
662#else
663int apply_relocate_add(Elf_Shdr *sechdrs,
664		       const char *strtab,
665		       unsigned int symindex,
666		       unsigned int relsec,
667		       struct module *me)
668{
669	int i;
670	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
671	Elf64_Sym *sym;
672	Elf64_Word *loc;
673	Elf64_Xword *loc64;
674	Elf64_Addr val;
675	Elf64_Sxword addend;
676	Elf64_Addr dot;
677	Elf_Addr loc0;
678	unsigned int targetsec = sechdrs[relsec].sh_info;
679
680	pr_debug("Applying relocate section %u to %u\n", relsec,
681	       targetsec);
682	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
683		/* This is where to make the change */
684		loc = (void *)sechdrs[targetsec].sh_addr
685		      + rel[i].r_offset;
686		/* This is the start of the target section */
687		loc0 = sechdrs[targetsec].sh_addr;
688		/* This is the symbol it is referring to */
689		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
690			+ ELF64_R_SYM(rel[i].r_info);
691		if (!sym->st_value) {
692			printk(KERN_WARNING "%s: Unknown symbol %s\n",
693			       me->name, strtab + sym->st_name);
694			return -ENOENT;
695		}
696		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
697		dot = (Elf64_Addr)loc & ~0x03;
698		loc64 = (Elf64_Xword *)loc;
699
700		val = sym->st_value;
701		addend = rel[i].r_addend;
702
703#if 0
704#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
705		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
706			strtab + sym->st_name,
707			loc, val, addend,
708			r(R_PARISC_LTOFF14R)
709			r(R_PARISC_LTOFF21L)
710			r(R_PARISC_PCREL22F)
711			r(R_PARISC_DIR64)
712			r(R_PARISC_SEGREL32)
713			r(R_PARISC_FPTR64)
714			"UNKNOWN");
715#undef r
716#endif
717
718		switch (ELF64_R_TYPE(rel[i].r_info)) {
719		case R_PARISC_LTOFF21L:
720			/* LT-relative; left 21 bits */
721			val = get_got(me, val, addend);
722			pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
723			       strtab + sym->st_name,
724			       loc, val);
725			val = lrsel(val, 0);
726			*loc = mask(*loc, 21) | reassemble_21(val);
727			break;
728		case R_PARISC_LTOFF14R:
729			/* L(ltoff(val+addend)) */
730			/* LT-relative; right 14 bits */
731			val = get_got(me, val, addend);
732			val = rrsel(val, 0);
733			pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
734			       strtab + sym->st_name,
735			       loc, val);
736			*loc = mask(*loc, 14) | reassemble_14(val);
737			break;
738		case R_PARISC_PCREL22F:
739			/* PC-relative; 22 bits */
740			pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
741			       strtab + sym->st_name,
742			       loc, val);
743			val += addend;
744			/* can we reach it locally? */
745			if (in_local(me, (void *)val)) {
746				/* this is the case where the symbol is local
747				 * to the module, but in a different section,
748				 * so stub the jump in case it's more than 22
749				 * bits away */
750				val = (val - dot - 8)/4;
751				if (!RELOC_REACHABLE(val, 22)) {
752					/* direct distance too far, create
753					 * stub entry instead */
754					val = get_stub(me, sym->st_value,
755						addend, ELF_STUB_DIRECT,
756						loc0, targetsec);
757				} else {
758					/* Ok, we can reach it directly. */
759					val = sym->st_value;
760					val += addend;
761				}
762			} else {
763				val = sym->st_value;
764				if (strncmp(strtab + sym->st_name, "$$", 2)
765				    == 0)
766					val = get_stub(me, val, addend, ELF_STUB_MILLI,
767						       loc0, targetsec);
768				else
769					val = get_stub(me, val, addend, ELF_STUB_GOT,
770						       loc0, targetsec);
771			}
772			pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
773			       strtab + sym->st_name, loc, sym->st_value,
774			       addend, val);
775			val = (val - dot - 8)/4;
776			CHECK_RELOC(val, 22);
777			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
778			break;
779		case R_PARISC_PCREL32:
780			/* 32-bit PC relative address */
781			*loc = val - dot - 8 + addend;
782			break;
783		case R_PARISC_PCREL64:
784			/* 64-bit PC relative address */
785			*loc64 = val - dot - 8 + addend;
786			break;
787		case R_PARISC_DIR64:
788			/* 64-bit effective address */
789			*loc64 = val + addend;
790			break;
791		case R_PARISC_SEGREL32:
792			/* 32-bit segment relative address */
793			/* See note about special handling of SEGREL32 at
794			 * the beginning of this file.
795			 */
796			*loc = fsel(val, addend);
797			break;
798		case R_PARISC_SECREL32:
799			/* 32-bit section relative address. */
800			*loc = fsel(val, addend);
801			break;
802		case R_PARISC_FPTR64:
803			/* 64-bit function address */
804			if(in_local(me, (void *)(val + addend))) {
805				*loc64 = get_fdesc(me, val+addend);
806				pr_debug("FDESC for %s at %llx points to %llx\n",
807				       strtab + sym->st_name, *loc64,
808				       ((Elf_Fdesc *)*loc64)->addr);
809			} else {
810				/* if the symbol is not local to this
811				 * module then val+addend is a pointer
812				 * to the function descriptor */
813				pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
814				       strtab + sym->st_name,
815				       loc, val);
816				*loc64 = val + addend;
817			}
818			break;
819
820		default:
821			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
822			       me->name, ELF64_R_TYPE(rel[i].r_info));
823			return -ENOEXEC;
824		}
825	}
826	return 0;
827}
828#endif
829
830static void
831register_unwind_table(struct module *me,
832		      const Elf_Shdr *sechdrs)
833{
834	unsigned char *table, *end;
835	unsigned long gp;
836
837	if (!me->arch.unwind_section)
838		return;
839
840	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
841	end = table + sechdrs[me->arch.unwind_section].sh_size;
842	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
843
844	pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
845	       me->arch.unwind_section, table, end, gp);
846	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
847}
848
849static void
850deregister_unwind_table(struct module *me)
851{
852	if (me->arch.unwind)
853		unwind_table_remove(me->arch.unwind);
854}
855
856int module_finalize(const Elf_Ehdr *hdr,
857		    const Elf_Shdr *sechdrs,
858		    struct module *me)
859{
860	int i;
861	unsigned long nsyms;
862	const char *strtab = NULL;
863	const Elf_Shdr *s;
864	char *secstrings;
865	int symindex = -1;
866	Elf_Sym *newptr, *oldptr;
867	Elf_Shdr *symhdr = NULL;
868#ifdef DEBUG
869	Elf_Fdesc *entry;
870	u32 *addr;
871
872	entry = (Elf_Fdesc *)me->init;
873	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
874	       entry->gp, entry->addr);
875	addr = (u32 *)entry->addr;
876	printk("INSNS: %x %x %x %x\n",
877	       addr[0], addr[1], addr[2], addr[3]);
878	printk("got entries used %ld, gots max %ld\n"
879	       "fdescs used %ld, fdescs max %ld\n",
880	       me->arch.got_count, me->arch.got_max,
881	       me->arch.fdesc_count, me->arch.fdesc_max);
882#endif
883
884	register_unwind_table(me, sechdrs);
885
886	/* haven't filled in me->symtab yet, so have to find it
887	 * ourselves */
888	for (i = 1; i < hdr->e_shnum; i++) {
889		if(sechdrs[i].sh_type == SHT_SYMTAB
890		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
891			int strindex = sechdrs[i].sh_link;
892			symindex = i;
893			/* FIXME: AWFUL HACK
894			 * The cast is to drop the const from
895			 * the sechdrs pointer */
896			symhdr = (Elf_Shdr *)&sechdrs[i];
897			strtab = (char *)sechdrs[strindex].sh_addr;
898			break;
899		}
900	}
901
902	pr_debug("module %s: strtab %p, symhdr %p\n",
903	       me->name, strtab, symhdr);
904
905	if(me->arch.got_count > MAX_GOTS) {
906		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
907				me->name, me->arch.got_count, MAX_GOTS);
908		return -EINVAL;
909	}
910
911	kfree(me->arch.section);
912	me->arch.section = NULL;
913
914	/* no symbol table */
915	if(symhdr == NULL)
916		return 0;
917
918	oldptr = (void *)symhdr->sh_addr;
919	newptr = oldptr + 1;	/* we start counting at 1 */
920	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
921	pr_debug("OLD num_symtab %lu\n", nsyms);
922
923	for (i = 1; i < nsyms; i++) {
924		oldptr++;	/* note, count starts at 1 so preincrement */
925		if(strncmp(strtab + oldptr->st_name,
926			      ".L", 2) == 0)
927			continue;
928
929		if(newptr != oldptr)
930			*newptr++ = *oldptr;
931		else
932			newptr++;
933
934	}
935	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
936	pr_debug("NEW num_symtab %lu\n", nsyms);
937	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
938
939	/* find .altinstructions section */
940	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
941	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
942		void *aseg = (void *) s->sh_addr;
943		char *secname = secstrings + s->sh_name;
944
945		if (!strcmp(".altinstructions", secname))
946			/* patch .altinstructions */
947			apply_alternatives(aseg, aseg + s->sh_size, me->name);
948
949#ifdef CONFIG_DYNAMIC_FTRACE
950		/* For 32 bit kernels we're compiling modules with
951		 * -ffunction-sections so we must relocate the addresses in the
952		 *  ftrace callsite section.
953		 */
954		if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
955			int err;
956			if (s->sh_type == SHT_REL)
957				err = apply_relocate((Elf_Shdr *)sechdrs,
958							strtab, symindex,
959							s - sechdrs, me);
960			else if (s->sh_type == SHT_RELA)
961				err = apply_relocate_add((Elf_Shdr *)sechdrs,
962							strtab, symindex,
963							s - sechdrs, me);
964			if (err)
965				return err;
966		}
967#endif
968	}
969	return 0;
970}
971
972void module_arch_cleanup(struct module *mod)
973{
974	deregister_unwind_table(mod);
975}
976
977#ifdef CONFIG_64BIT
978void *dereference_module_function_descriptor(struct module *mod, void *ptr)
979{
980	unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
981				   mod->arch.fdesc_offset;
982	unsigned long end_opd = start_opd +
983				mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
984
985	if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
986		return ptr;
987
988	return dereference_function_descriptor(ptr);
989}
990#endif