Linux Audio

Check our new training course

Loading...
v4.6
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->init_layout.base;
 46 *			else
 47 *				val -= (uint32_t)me->core_layout.base;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->init_layout.base &&
104		loc <= (me->init_layout.base + me->init_layout.size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->core_layout.base &&
110		loc <= (me->core_layout.base + me->core_layout.size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
 
 
217	/* using RWX means less protection for modules, but it's
218	 * easier than trying to map the text, data, init_text and
219	 * init_data correctly */
220	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221				    GFP_KERNEL | __GFP_HIGHMEM,
222				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
223				    __builtin_return_address(0));
224}
225
226#ifndef CONFIG_64BIT
227static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228{
229	return 0;
230}
231
232static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233{
234	return 0;
235}
236
237static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238{
239	unsigned long cnt = 0;
240
241	for (; n > 0; n--, rela++)
242	{
243		switch (ELF32_R_TYPE(rela->r_info)) {
244			case R_PARISC_PCREL17F:
245			case R_PARISC_PCREL22F:
246				cnt++;
247		}
248	}
249
250	return cnt;
251}
252#else
253static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254{
255	unsigned long cnt = 0;
256
257	for (; n > 0; n--, rela++)
258	{
259		switch (ELF64_R_TYPE(rela->r_info)) {
260			case R_PARISC_LTOFF21L:
261			case R_PARISC_LTOFF14R:
262			case R_PARISC_PCREL22F:
263				cnt++;
264		}
265	}
266
267	return cnt;
268}
269
270static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271{
272	unsigned long cnt = 0;
273
274	for (; n > 0; n--, rela++)
275	{
276		switch (ELF64_R_TYPE(rela->r_info)) {
277			case R_PARISC_FPTR64:
278				cnt++;
279		}
280	}
281
282	return cnt;
283}
284
285static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286{
287	unsigned long cnt = 0;
288
289	for (; n > 0; n--, rela++)
290	{
291		switch (ELF64_R_TYPE(rela->r_info)) {
292			case R_PARISC_PCREL22F:
293				cnt++;
294		}
295	}
296
297	return cnt;
298}
299#endif
300
301void module_arch_freeing_init(struct module *mod)
 
 
302{
303	kfree(mod->arch.section);
304	mod->arch.section = NULL;
 
 
305}
306
307/* Additional bytes needed in front of individual sections */
308unsigned int arch_mod_section_prepend(struct module *mod,
309				      unsigned int section)
310{
311	/* size needed for all stubs of this section (including
312	 * one additional for correct alignment of the stubs) */
313	return (mod->arch.section[section].stub_entries + 1)
314		* sizeof(struct stub_entry);
315}
316
317#define CONST 
318int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
319			      CONST Elf_Shdr *sechdrs,
320			      CONST char *secstrings,
321			      struct module *me)
322{
323	unsigned long gots = 0, fdescs = 0, len;
324	unsigned int i;
325
326	len = hdr->e_shnum * sizeof(me->arch.section[0]);
327	me->arch.section = kzalloc(len, GFP_KERNEL);
328	if (!me->arch.section)
329		return -ENOMEM;
330
331	for (i = 1; i < hdr->e_shnum; i++) {
332		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
333		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
334		unsigned int count, s;
335
336		if (strncmp(secstrings + sechdrs[i].sh_name,
337			    ".PARISC.unwind", 14) == 0)
338			me->arch.unwind_section = i;
339
340		if (sechdrs[i].sh_type != SHT_RELA)
341			continue;
342
343		/* some of these are not relevant for 32-bit/64-bit
344		 * we leave them here to make the code common. the
345		 * compiler will do its thing and optimize out the
346		 * stuff we don't need
347		 */
348		gots += count_gots(rels, nrels);
349		fdescs += count_fdescs(rels, nrels);
350
351		/* XXX: By sorting the relocs and finding duplicate entries
352		 *  we could reduce the number of necessary stubs and save
353		 *  some memory. */
354		count = count_stubs(rels, nrels);
355		if (!count)
356			continue;
357
358		/* so we need relocation stubs. reserve necessary memory. */
359		/* sh_info gives the section for which we need to add stubs. */
360		s = sechdrs[i].sh_info;
361
362		/* each code section should only have one relocation section */
363		WARN_ON(me->arch.section[s].stub_entries);
364
365		/* store number of stubs we need for this section */
366		me->arch.section[s].stub_entries += count;
367	}
368
369	/* align things a bit */
370	me->core_layout.size = ALIGN(me->core_layout.size, 16);
371	me->arch.got_offset = me->core_layout.size;
372	me->core_layout.size += gots * sizeof(struct got_entry);
373
374	me->core_layout.size = ALIGN(me->core_layout.size, 16);
375	me->arch.fdesc_offset = me->core_layout.size;
376	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
377
378	me->arch.got_max = gots;
379	me->arch.fdesc_max = fdescs;
380
381	return 0;
382}
383
384#ifdef CONFIG_64BIT
385static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
386{
387	unsigned int i;
388	struct got_entry *got;
389
390	value += addend;
391
392	BUG_ON(value == 0);
393
394	got = me->core_layout.base + me->arch.got_offset;
395	for (i = 0; got[i].addr; i++)
396		if (got[i].addr == value)
397			goto out;
398
399	BUG_ON(++me->arch.got_count > me->arch.got_max);
400
401	got[i].addr = value;
402 out:
403	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
404	       value);
405	return i * sizeof(struct got_entry);
406}
407#endif /* CONFIG_64BIT */
408
409#ifdef CONFIG_64BIT
410static Elf_Addr get_fdesc(struct module *me, unsigned long value)
411{
412	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
413
414	if (!value) {
415		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
416		return 0;
417	}
418
419	/* Look for existing fdesc entry. */
420	while (fdesc->addr) {
421		if (fdesc->addr == value)
422			return (Elf_Addr)fdesc;
423		fdesc++;
424	}
425
426	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
427
428	/* Create new one */
429	fdesc->addr = value;
430	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
431	return (Elf_Addr)fdesc;
432}
433#endif /* CONFIG_64BIT */
434
435enum elf_stub_type {
436	ELF_STUB_GOT,
437	ELF_STUB_MILLI,
438	ELF_STUB_DIRECT,
439};
440
441static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
442	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
443{
444	struct stub_entry *stub;
445	int __maybe_unused d;
446
447	/* initialize stub_offset to point in front of the section */
448	if (!me->arch.section[targetsec].stub_offset) {
449		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
450				sizeof(struct stub_entry);
451		/* get correct alignment for the stubs */
452		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
453		me->arch.section[targetsec].stub_offset = loc0;
454	}
455
456	/* get address of stub entry */
457	stub = (void *) me->arch.section[targetsec].stub_offset;
458	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
459
460	/* do not write outside available stub area */
461	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
462
463
464#ifndef CONFIG_64BIT
465/* for 32-bit the stub looks like this:
466 * 	ldil L'XXX,%r1
467 * 	be,n R'XXX(%sr4,%r1)
468 */
469	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
470
471	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
472	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
473
474	stub->insns[0] |= reassemble_21(lrsel(value, addend));
475	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
476
477#else
478/* for 64-bit we have three kinds of stubs:
479 * for normal function calls:
480 * 	ldd 0(%dp),%dp
481 * 	ldd 10(%dp), %r1
482 * 	bve (%r1)
483 * 	ldd 18(%dp), %dp
484 *
485 * for millicode:
486 * 	ldil 0, %r1
487 * 	ldo 0(%r1), %r1
488 * 	ldd 10(%r1), %r1
489 * 	bve,n (%r1)
490 *
491 * for direct branches (jumps between different section of the
492 * same module):
493 *	ldil 0, %r1
494 *	ldo 0(%r1), %r1
495 *	bve,n (%r1)
496 */
497	switch (stub_type) {
498	case ELF_STUB_GOT:
499		d = get_got(me, value, addend);
500		if (d <= 15) {
501			/* Format 5 */
502			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
503			stub->insns[0] |= low_sign_unext(d, 5) << 16;
504		} else {
505			/* Format 3 */
506			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
507			stub->insns[0] |= reassemble_16a(d);
508		}
509		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
510		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
511		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
512		break;
513	case ELF_STUB_MILLI:
514		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
515		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
516		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
517		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
518
519		stub->insns[0] |= reassemble_21(lrsel(value, addend));
520		stub->insns[1] |= reassemble_14(rrsel(value, addend));
521		break;
522	case ELF_STUB_DIRECT:
523		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
524		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
525		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
526
527		stub->insns[0] |= reassemble_21(lrsel(value, addend));
528		stub->insns[1] |= reassemble_14(rrsel(value, addend));
529		break;
530	}
531
532#endif
533
534	return (Elf_Addr)stub;
535}
536
537#ifndef CONFIG_64BIT
538int apply_relocate_add(Elf_Shdr *sechdrs,
539		       const char *strtab,
540		       unsigned int symindex,
541		       unsigned int relsec,
542		       struct module *me)
543{
544	int i;
545	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
546	Elf32_Sym *sym;
547	Elf32_Word *loc;
548	Elf32_Addr val;
549	Elf32_Sword addend;
550	Elf32_Addr dot;
551	Elf_Addr loc0;
552	unsigned int targetsec = sechdrs[relsec].sh_info;
553	//unsigned long dp = (unsigned long)$global$;
554	register unsigned long dp asm ("r27");
555
556	DEBUGP("Applying relocate section %u to %u\n", relsec,
557	       targetsec);
558	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
559		/* This is where to make the change */
560		loc = (void *)sechdrs[targetsec].sh_addr
561		      + rel[i].r_offset;
562		/* This is the start of the target section */
563		loc0 = sechdrs[targetsec].sh_addr;
564		/* This is the symbol it is referring to */
565		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
566			+ ELF32_R_SYM(rel[i].r_info);
567		if (!sym->st_value) {
568			printk(KERN_WARNING "%s: Unknown symbol %s\n",
569			       me->name, strtab + sym->st_name);
570			return -ENOENT;
571		}
572		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
573		dot =  (Elf32_Addr)loc & ~0x03;
574
575		val = sym->st_value;
576		addend = rel[i].r_addend;
577
578#if 0
579#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
580		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
581			strtab + sym->st_name,
582			(uint32_t)loc, val, addend,
583			r(R_PARISC_PLABEL32)
584			r(R_PARISC_DIR32)
585			r(R_PARISC_DIR21L)
586			r(R_PARISC_DIR14R)
587			r(R_PARISC_SEGREL32)
588			r(R_PARISC_DPREL21L)
589			r(R_PARISC_DPREL14R)
590			r(R_PARISC_PCREL17F)
591			r(R_PARISC_PCREL22F)
592			"UNKNOWN");
593#undef r
594#endif
595
596		switch (ELF32_R_TYPE(rel[i].r_info)) {
597		case R_PARISC_PLABEL32:
598			/* 32-bit function address */
599			/* no function descriptors... */
600			*loc = fsel(val, addend);
601			break;
602		case R_PARISC_DIR32:
603			/* direct 32-bit ref */
604			*loc = fsel(val, addend);
605			break;
606		case R_PARISC_DIR21L:
607			/* left 21 bits of effective address */
608			val = lrsel(val, addend);
609			*loc = mask(*loc, 21) | reassemble_21(val);
610			break;
611		case R_PARISC_DIR14R:
612			/* right 14 bits of effective address */
613			val = rrsel(val, addend);
614			*loc = mask(*loc, 14) | reassemble_14(val);
615			break;
616		case R_PARISC_SEGREL32:
617			/* 32-bit segment relative address */
618			/* See note about special handling of SEGREL32 at
619			 * the beginning of this file.
620			 */
621			*loc = fsel(val, addend); 
622			break;
623		case R_PARISC_DPREL21L:
624			/* left 21 bit of relative address */
625			val = lrsel(val - dp, addend);
626			*loc = mask(*loc, 21) | reassemble_21(val);
627			break;
628		case R_PARISC_DPREL14R:
629			/* right 14 bit of relative address */
630			val = rrsel(val - dp, addend);
631			*loc = mask(*loc, 14) | reassemble_14(val);
632			break;
633		case R_PARISC_PCREL17F:
634			/* 17-bit PC relative address */
635			/* calculate direct call offset */
636			val += addend;
637			val = (val - dot - 8)/4;
638			if (!RELOC_REACHABLE(val, 17)) {
639				/* direct distance too far, create
640				 * stub entry instead */
641				val = get_stub(me, sym->st_value, addend,
642					ELF_STUB_DIRECT, loc0, targetsec);
643				val = (val - dot - 8)/4;
644				CHECK_RELOC(val, 17);
645			}
646			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
647			break;
648		case R_PARISC_PCREL22F:
649			/* 22-bit PC relative address; only defined for pa20 */
650			/* calculate direct call offset */
651			val += addend;
652			val = (val - dot - 8)/4;
653			if (!RELOC_REACHABLE(val, 22)) {
654				/* direct distance too far, create
655				 * stub entry instead */
656				val = get_stub(me, sym->st_value, addend,
657					ELF_STUB_DIRECT, loc0, targetsec);
658				val = (val - dot - 8)/4;
659				CHECK_RELOC(val, 22);
660			}
661			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
662			break;
663		case R_PARISC_PCREL32:
664			/* 32-bit PC relative address */
665			*loc = val - dot - 8 + addend;
666			break;
667
668		default:
669			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
670			       me->name, ELF32_R_TYPE(rel[i].r_info));
671			return -ENOEXEC;
672		}
673	}
674
675	return 0;
676}
677
678#else
679int apply_relocate_add(Elf_Shdr *sechdrs,
680		       const char *strtab,
681		       unsigned int symindex,
682		       unsigned int relsec,
683		       struct module *me)
684{
685	int i;
686	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
687	Elf64_Sym *sym;
688	Elf64_Word *loc;
689	Elf64_Xword *loc64;
690	Elf64_Addr val;
691	Elf64_Sxword addend;
692	Elf64_Addr dot;
693	Elf_Addr loc0;
694	unsigned int targetsec = sechdrs[relsec].sh_info;
695
696	DEBUGP("Applying relocate section %u to %u\n", relsec,
697	       targetsec);
698	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
699		/* This is where to make the change */
700		loc = (void *)sechdrs[targetsec].sh_addr
701		      + rel[i].r_offset;
702		/* This is the start of the target section */
703		loc0 = sechdrs[targetsec].sh_addr;
704		/* This is the symbol it is referring to */
705		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
706			+ ELF64_R_SYM(rel[i].r_info);
707		if (!sym->st_value) {
708			printk(KERN_WARNING "%s: Unknown symbol %s\n",
709			       me->name, strtab + sym->st_name);
710			return -ENOENT;
711		}
712		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
713		dot = (Elf64_Addr)loc & ~0x03;
714		loc64 = (Elf64_Xword *)loc;
715
716		val = sym->st_value;
717		addend = rel[i].r_addend;
718
719#if 0
720#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
721		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
722			strtab + sym->st_name,
723			loc, val, addend,
724			r(R_PARISC_LTOFF14R)
725			r(R_PARISC_LTOFF21L)
726			r(R_PARISC_PCREL22F)
727			r(R_PARISC_DIR64)
728			r(R_PARISC_SEGREL32)
729			r(R_PARISC_FPTR64)
730			"UNKNOWN");
731#undef r
732#endif
733
734		switch (ELF64_R_TYPE(rel[i].r_info)) {
735		case R_PARISC_LTOFF21L:
736			/* LT-relative; left 21 bits */
737			val = get_got(me, val, addend);
738			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
739			       strtab + sym->st_name,
740			       loc, val);
741			val = lrsel(val, 0);
742			*loc = mask(*loc, 21) | reassemble_21(val);
743			break;
744		case R_PARISC_LTOFF14R:
745			/* L(ltoff(val+addend)) */
746			/* LT-relative; right 14 bits */
747			val = get_got(me, val, addend);
748			val = rrsel(val, 0);
749			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
750			       strtab + sym->st_name,
751			       loc, val);
752			*loc = mask(*loc, 14) | reassemble_14(val);
753			break;
754		case R_PARISC_PCREL22F:
755			/* PC-relative; 22 bits */
756			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
757			       strtab + sym->st_name,
758			       loc, val);
759			val += addend;
760			/* can we reach it locally? */
761			if (in_local(me, (void *)val)) {
762				/* this is the case where the symbol is local
763				 * to the module, but in a different section,
764				 * so stub the jump in case it's more than 22
765				 * bits away */
766				val = (val - dot - 8)/4;
767				if (!RELOC_REACHABLE(val, 22)) {
768					/* direct distance too far, create
769					 * stub entry instead */
770					val = get_stub(me, sym->st_value,
771						addend, ELF_STUB_DIRECT,
772						loc0, targetsec);
773				} else {
774					/* Ok, we can reach it directly. */
775					val = sym->st_value;
776					val += addend;
777				}
778			} else {
779				val = sym->st_value;
780				if (strncmp(strtab + sym->st_name, "$$", 2)
781				    == 0)
782					val = get_stub(me, val, addend, ELF_STUB_MILLI,
783						       loc0, targetsec);
784				else
785					val = get_stub(me, val, addend, ELF_STUB_GOT,
786						       loc0, targetsec);
787			}
788			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
789			       strtab + sym->st_name, loc, sym->st_value,
790			       addend, val);
791			val = (val - dot - 8)/4;
792			CHECK_RELOC(val, 22);
793			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
794			break;
795		case R_PARISC_PCREL32:
796			/* 32-bit PC relative address */
797			*loc = val - dot - 8 + addend;
798			break;
799		case R_PARISC_DIR64:
800			/* 64-bit effective address */
801			*loc64 = val + addend;
802			break;
803		case R_PARISC_SEGREL32:
804			/* 32-bit segment relative address */
805			/* See note about special handling of SEGREL32 at
806			 * the beginning of this file.
807			 */
808			*loc = fsel(val, addend); 
809			break;
810		case R_PARISC_FPTR64:
811			/* 64-bit function address */
812			if(in_local(me, (void *)(val + addend))) {
813				*loc64 = get_fdesc(me, val+addend);
814				DEBUGP("FDESC for %s at %p points to %lx\n",
815				       strtab + sym->st_name, *loc64,
816				       ((Elf_Fdesc *)*loc64)->addr);
817			} else {
818				/* if the symbol is not local to this
819				 * module then val+addend is a pointer
820				 * to the function descriptor */
821				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
822				       strtab + sym->st_name,
823				       loc, val);
824				*loc64 = val + addend;
825			}
826			break;
827
828		default:
829			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
830			       me->name, ELF64_R_TYPE(rel[i].r_info));
831			return -ENOEXEC;
832		}
833	}
834	return 0;
835}
836#endif
837
838static void
839register_unwind_table(struct module *me,
840		      const Elf_Shdr *sechdrs)
841{
842	unsigned char *table, *end;
843	unsigned long gp;
844
845	if (!me->arch.unwind_section)
846		return;
847
848	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
849	end = table + sechdrs[me->arch.unwind_section].sh_size;
850	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
851
852	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
853	       me->arch.unwind_section, table, end, gp);
854	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
855}
856
857static void
858deregister_unwind_table(struct module *me)
859{
860	if (me->arch.unwind)
861		unwind_table_remove(me->arch.unwind);
862}
863
864int module_finalize(const Elf_Ehdr *hdr,
865		    const Elf_Shdr *sechdrs,
866		    struct module *me)
867{
868	int i;
869	unsigned long nsyms;
870	const char *strtab = NULL;
871	Elf_Sym *newptr, *oldptr;
872	Elf_Shdr *symhdr = NULL;
873#ifdef DEBUG
874	Elf_Fdesc *entry;
875	u32 *addr;
876
877	entry = (Elf_Fdesc *)me->init;
878	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
879	       entry->gp, entry->addr);
880	addr = (u32 *)entry->addr;
881	printk("INSNS: %x %x %x %x\n",
882	       addr[0], addr[1], addr[2], addr[3]);
883	printk("got entries used %ld, gots max %ld\n"
884	       "fdescs used %ld, fdescs max %ld\n",
885	       me->arch.got_count, me->arch.got_max,
886	       me->arch.fdesc_count, me->arch.fdesc_max);
887#endif
888
889	register_unwind_table(me, sechdrs);
890
891	/* haven't filled in me->symtab yet, so have to find it
892	 * ourselves */
893	for (i = 1; i < hdr->e_shnum; i++) {
894		if(sechdrs[i].sh_type == SHT_SYMTAB
895		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
896			int strindex = sechdrs[i].sh_link;
897			/* FIXME: AWFUL HACK
898			 * The cast is to drop the const from
899			 * the sechdrs pointer */
900			symhdr = (Elf_Shdr *)&sechdrs[i];
901			strtab = (char *)sechdrs[strindex].sh_addr;
902			break;
903		}
904	}
905
906	DEBUGP("module %s: strtab %p, symhdr %p\n",
907	       me->name, strtab, symhdr);
908
909	if(me->arch.got_count > MAX_GOTS) {
910		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
911				me->name, me->arch.got_count, MAX_GOTS);
912		return -EINVAL;
913	}
914
915	kfree(me->arch.section);
916	me->arch.section = NULL;
917
918	/* no symbol table */
919	if(symhdr == NULL)
920		return 0;
921
922	oldptr = (void *)symhdr->sh_addr;
923	newptr = oldptr + 1;	/* we start counting at 1 */
924	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
925	DEBUGP("OLD num_symtab %lu\n", nsyms);
926
927	for (i = 1; i < nsyms; i++) {
928		oldptr++;	/* note, count starts at 1 so preincrement */
929		if(strncmp(strtab + oldptr->st_name,
930			      ".L", 2) == 0)
931			continue;
932
933		if(newptr != oldptr)
934			*newptr++ = *oldptr;
935		else
936			newptr++;
937
938	}
939	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
940	DEBUGP("NEW num_symtab %lu\n", nsyms);
941	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
942	return 0;
943}
944
945void module_arch_cleanup(struct module *mod)
946{
947	deregister_unwind_table(mod);
948}
v3.1
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->module_init;
 46 *			else
 47 *				val -= (uint32_t)me->module_core;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->module_init &&
104		loc <= (me->module_init + me->init_size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->module_core &&
110		loc <= (me->module_core + me->core_size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
217	if (size == 0)
218		return NULL;
219	/* using RWX means less protection for modules, but it's
220	 * easier than trying to map the text, data, init_text and
221	 * init_data correctly */
222	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
223				    GFP_KERNEL | __GFP_HIGHMEM,
224				    PAGE_KERNEL_RWX, -1,
225				    __builtin_return_address(0));
226}
227
228#ifndef CONFIG_64BIT
229static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
230{
231	return 0;
232}
233
234static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
235{
236	return 0;
237}
238
239static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
240{
241	unsigned long cnt = 0;
242
243	for (; n > 0; n--, rela++)
244	{
245		switch (ELF32_R_TYPE(rela->r_info)) {
246			case R_PARISC_PCREL17F:
247			case R_PARISC_PCREL22F:
248				cnt++;
249		}
250	}
251
252	return cnt;
253}
254#else
255static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
256{
257	unsigned long cnt = 0;
258
259	for (; n > 0; n--, rela++)
260	{
261		switch (ELF64_R_TYPE(rela->r_info)) {
262			case R_PARISC_LTOFF21L:
263			case R_PARISC_LTOFF14R:
264			case R_PARISC_PCREL22F:
265				cnt++;
266		}
267	}
268
269	return cnt;
270}
271
272static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
273{
274	unsigned long cnt = 0;
275
276	for (; n > 0; n--, rela++)
277	{
278		switch (ELF64_R_TYPE(rela->r_info)) {
279			case R_PARISC_FPTR64:
280				cnt++;
281		}
282	}
283
284	return cnt;
285}
286
287static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
288{
289	unsigned long cnt = 0;
290
291	for (; n > 0; n--, rela++)
292	{
293		switch (ELF64_R_TYPE(rela->r_info)) {
294			case R_PARISC_PCREL22F:
295				cnt++;
296		}
297	}
298
299	return cnt;
300}
301#endif
302
303
304/* Free memory returned from module_alloc */
305void module_free(struct module *mod, void *module_region)
306{
307	kfree(mod->arch.section);
308	mod->arch.section = NULL;
309
310	vfree(module_region);
311}
312
313/* Additional bytes needed in front of individual sections */
314unsigned int arch_mod_section_prepend(struct module *mod,
315				      unsigned int section)
316{
317	/* size needed for all stubs of this section (including
318	 * one additional for correct alignment of the stubs) */
319	return (mod->arch.section[section].stub_entries + 1)
320		* sizeof(struct stub_entry);
321}
322
323#define CONST 
324int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
325			      CONST Elf_Shdr *sechdrs,
326			      CONST char *secstrings,
327			      struct module *me)
328{
329	unsigned long gots = 0, fdescs = 0, len;
330	unsigned int i;
331
332	len = hdr->e_shnum * sizeof(me->arch.section[0]);
333	me->arch.section = kzalloc(len, GFP_KERNEL);
334	if (!me->arch.section)
335		return -ENOMEM;
336
337	for (i = 1; i < hdr->e_shnum; i++) {
338		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
339		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
340		unsigned int count, s;
341
342		if (strncmp(secstrings + sechdrs[i].sh_name,
343			    ".PARISC.unwind", 14) == 0)
344			me->arch.unwind_section = i;
345
346		if (sechdrs[i].sh_type != SHT_RELA)
347			continue;
348
349		/* some of these are not relevant for 32-bit/64-bit
350		 * we leave them here to make the code common. the
351		 * compiler will do its thing and optimize out the
352		 * stuff we don't need
353		 */
354		gots += count_gots(rels, nrels);
355		fdescs += count_fdescs(rels, nrels);
356
357		/* XXX: By sorting the relocs and finding duplicate entries
358		 *  we could reduce the number of necessary stubs and save
359		 *  some memory. */
360		count = count_stubs(rels, nrels);
361		if (!count)
362			continue;
363
364		/* so we need relocation stubs. reserve necessary memory. */
365		/* sh_info gives the section for which we need to add stubs. */
366		s = sechdrs[i].sh_info;
367
368		/* each code section should only have one relocation section */
369		WARN_ON(me->arch.section[s].stub_entries);
370
371		/* store number of stubs we need for this section */
372		me->arch.section[s].stub_entries += count;
373	}
374
375	/* align things a bit */
376	me->core_size = ALIGN(me->core_size, 16);
377	me->arch.got_offset = me->core_size;
378	me->core_size += gots * sizeof(struct got_entry);
379
380	me->core_size = ALIGN(me->core_size, 16);
381	me->arch.fdesc_offset = me->core_size;
382	me->core_size += fdescs * sizeof(Elf_Fdesc);
383
384	me->arch.got_max = gots;
385	me->arch.fdesc_max = fdescs;
386
387	return 0;
388}
389
390#ifdef CONFIG_64BIT
391static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
392{
393	unsigned int i;
394	struct got_entry *got;
395
396	value += addend;
397
398	BUG_ON(value == 0);
399
400	got = me->module_core + me->arch.got_offset;
401	for (i = 0; got[i].addr; i++)
402		if (got[i].addr == value)
403			goto out;
404
405	BUG_ON(++me->arch.got_count > me->arch.got_max);
406
407	got[i].addr = value;
408 out:
409	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
410	       value);
411	return i * sizeof(struct got_entry);
412}
413#endif /* CONFIG_64BIT */
414
415#ifdef CONFIG_64BIT
416static Elf_Addr get_fdesc(struct module *me, unsigned long value)
417{
418	Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
419
420	if (!value) {
421		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
422		return 0;
423	}
424
425	/* Look for existing fdesc entry. */
426	while (fdesc->addr) {
427		if (fdesc->addr == value)
428			return (Elf_Addr)fdesc;
429		fdesc++;
430	}
431
432	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
433
434	/* Create new one */
435	fdesc->addr = value;
436	fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
437	return (Elf_Addr)fdesc;
438}
439#endif /* CONFIG_64BIT */
440
441enum elf_stub_type {
442	ELF_STUB_GOT,
443	ELF_STUB_MILLI,
444	ELF_STUB_DIRECT,
445};
446
447static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
448	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
449{
450	struct stub_entry *stub;
451	int __maybe_unused d;
452
453	/* initialize stub_offset to point in front of the section */
454	if (!me->arch.section[targetsec].stub_offset) {
455		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
456				sizeof(struct stub_entry);
457		/* get correct alignment for the stubs */
458		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
459		me->arch.section[targetsec].stub_offset = loc0;
460	}
461
462	/* get address of stub entry */
463	stub = (void *) me->arch.section[targetsec].stub_offset;
464	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
465
466	/* do not write outside available stub area */
467	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
468
469
470#ifndef CONFIG_64BIT
471/* for 32-bit the stub looks like this:
472 * 	ldil L'XXX,%r1
473 * 	be,n R'XXX(%sr4,%r1)
474 */
475	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
476
477	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
478	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
479
480	stub->insns[0] |= reassemble_21(lrsel(value, addend));
481	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
482
483#else
484/* for 64-bit we have three kinds of stubs:
485 * for normal function calls:
486 * 	ldd 0(%dp),%dp
487 * 	ldd 10(%dp), %r1
488 * 	bve (%r1)
489 * 	ldd 18(%dp), %dp
490 *
491 * for millicode:
492 * 	ldil 0, %r1
493 * 	ldo 0(%r1), %r1
494 * 	ldd 10(%r1), %r1
495 * 	bve,n (%r1)
496 *
497 * for direct branches (jumps between different section of the
498 * same module):
499 *	ldil 0, %r1
500 *	ldo 0(%r1), %r1
501 *	bve,n (%r1)
502 */
503	switch (stub_type) {
504	case ELF_STUB_GOT:
505		d = get_got(me, value, addend);
506		if (d <= 15) {
507			/* Format 5 */
508			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
509			stub->insns[0] |= low_sign_unext(d, 5) << 16;
510		} else {
511			/* Format 3 */
512			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
513			stub->insns[0] |= reassemble_16a(d);
514		}
515		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
516		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
517		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
518		break;
519	case ELF_STUB_MILLI:
520		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
521		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
522		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
523		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
524
525		stub->insns[0] |= reassemble_21(lrsel(value, addend));
526		stub->insns[1] |= reassemble_14(rrsel(value, addend));
527		break;
528	case ELF_STUB_DIRECT:
529		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
530		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
531		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
532
533		stub->insns[0] |= reassemble_21(lrsel(value, addend));
534		stub->insns[1] |= reassemble_14(rrsel(value, addend));
535		break;
536	}
537
538#endif
539
540	return (Elf_Addr)stub;
541}
542
543#ifndef CONFIG_64BIT
544int apply_relocate_add(Elf_Shdr *sechdrs,
545		       const char *strtab,
546		       unsigned int symindex,
547		       unsigned int relsec,
548		       struct module *me)
549{
550	int i;
551	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
552	Elf32_Sym *sym;
553	Elf32_Word *loc;
554	Elf32_Addr val;
555	Elf32_Sword addend;
556	Elf32_Addr dot;
557	Elf_Addr loc0;
558	unsigned int targetsec = sechdrs[relsec].sh_info;
559	//unsigned long dp = (unsigned long)$global$;
560	register unsigned long dp asm ("r27");
561
562	DEBUGP("Applying relocate section %u to %u\n", relsec,
563	       targetsec);
564	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
565		/* This is where to make the change */
566		loc = (void *)sechdrs[targetsec].sh_addr
567		      + rel[i].r_offset;
568		/* This is the start of the target section */
569		loc0 = sechdrs[targetsec].sh_addr;
570		/* This is the symbol it is referring to */
571		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
572			+ ELF32_R_SYM(rel[i].r_info);
573		if (!sym->st_value) {
574			printk(KERN_WARNING "%s: Unknown symbol %s\n",
575			       me->name, strtab + sym->st_name);
576			return -ENOENT;
577		}
578		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
579		dot =  (Elf32_Addr)loc & ~0x03;
580
581		val = sym->st_value;
582		addend = rel[i].r_addend;
583
584#if 0
585#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
586		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
587			strtab + sym->st_name,
588			(uint32_t)loc, val, addend,
589			r(R_PARISC_PLABEL32)
590			r(R_PARISC_DIR32)
591			r(R_PARISC_DIR21L)
592			r(R_PARISC_DIR14R)
593			r(R_PARISC_SEGREL32)
594			r(R_PARISC_DPREL21L)
595			r(R_PARISC_DPREL14R)
596			r(R_PARISC_PCREL17F)
597			r(R_PARISC_PCREL22F)
598			"UNKNOWN");
599#undef r
600#endif
601
602		switch (ELF32_R_TYPE(rel[i].r_info)) {
603		case R_PARISC_PLABEL32:
604			/* 32-bit function address */
605			/* no function descriptors... */
606			*loc = fsel(val, addend);
607			break;
608		case R_PARISC_DIR32:
609			/* direct 32-bit ref */
610			*loc = fsel(val, addend);
611			break;
612		case R_PARISC_DIR21L:
613			/* left 21 bits of effective address */
614			val = lrsel(val, addend);
615			*loc = mask(*loc, 21) | reassemble_21(val);
616			break;
617		case R_PARISC_DIR14R:
618			/* right 14 bits of effective address */
619			val = rrsel(val, addend);
620			*loc = mask(*loc, 14) | reassemble_14(val);
621			break;
622		case R_PARISC_SEGREL32:
623			/* 32-bit segment relative address */
624			/* See note about special handling of SEGREL32 at
625			 * the beginning of this file.
626			 */
627			*loc = fsel(val, addend); 
628			break;
629		case R_PARISC_DPREL21L:
630			/* left 21 bit of relative address */
631			val = lrsel(val - dp, addend);
632			*loc = mask(*loc, 21) | reassemble_21(val);
633			break;
634		case R_PARISC_DPREL14R:
635			/* right 14 bit of relative address */
636			val = rrsel(val - dp, addend);
637			*loc = mask(*loc, 14) | reassemble_14(val);
638			break;
639		case R_PARISC_PCREL17F:
640			/* 17-bit PC relative address */
641			/* calculate direct call offset */
642			val += addend;
643			val = (val - dot - 8)/4;
644			if (!RELOC_REACHABLE(val, 17)) {
645				/* direct distance too far, create
646				 * stub entry instead */
647				val = get_stub(me, sym->st_value, addend,
648					ELF_STUB_DIRECT, loc0, targetsec);
649				val = (val - dot - 8)/4;
650				CHECK_RELOC(val, 17);
651			}
652			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
653			break;
654		case R_PARISC_PCREL22F:
655			/* 22-bit PC relative address; only defined for pa20 */
656			/* calculate direct call offset */
657			val += addend;
658			val = (val - dot - 8)/4;
659			if (!RELOC_REACHABLE(val, 22)) {
660				/* direct distance too far, create
661				 * stub entry instead */
662				val = get_stub(me, sym->st_value, addend,
663					ELF_STUB_DIRECT, loc0, targetsec);
664				val = (val - dot - 8)/4;
665				CHECK_RELOC(val, 22);
666			}
667			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
668			break;
 
 
 
 
669
670		default:
671			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
672			       me->name, ELF32_R_TYPE(rel[i].r_info));
673			return -ENOEXEC;
674		}
675	}
676
677	return 0;
678}
679
680#else
681int apply_relocate_add(Elf_Shdr *sechdrs,
682		       const char *strtab,
683		       unsigned int symindex,
684		       unsigned int relsec,
685		       struct module *me)
686{
687	int i;
688	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
689	Elf64_Sym *sym;
690	Elf64_Word *loc;
691	Elf64_Xword *loc64;
692	Elf64_Addr val;
693	Elf64_Sxword addend;
694	Elf64_Addr dot;
695	Elf_Addr loc0;
696	unsigned int targetsec = sechdrs[relsec].sh_info;
697
698	DEBUGP("Applying relocate section %u to %u\n", relsec,
699	       targetsec);
700	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
701		/* This is where to make the change */
702		loc = (void *)sechdrs[targetsec].sh_addr
703		      + rel[i].r_offset;
704		/* This is the start of the target section */
705		loc0 = sechdrs[targetsec].sh_addr;
706		/* This is the symbol it is referring to */
707		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
708			+ ELF64_R_SYM(rel[i].r_info);
709		if (!sym->st_value) {
710			printk(KERN_WARNING "%s: Unknown symbol %s\n",
711			       me->name, strtab + sym->st_name);
712			return -ENOENT;
713		}
714		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
715		dot = (Elf64_Addr)loc & ~0x03;
716		loc64 = (Elf64_Xword *)loc;
717
718		val = sym->st_value;
719		addend = rel[i].r_addend;
720
721#if 0
722#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
723		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
724			strtab + sym->st_name,
725			loc, val, addend,
726			r(R_PARISC_LTOFF14R)
727			r(R_PARISC_LTOFF21L)
728			r(R_PARISC_PCREL22F)
729			r(R_PARISC_DIR64)
730			r(R_PARISC_SEGREL32)
731			r(R_PARISC_FPTR64)
732			"UNKNOWN");
733#undef r
734#endif
735
736		switch (ELF64_R_TYPE(rel[i].r_info)) {
737		case R_PARISC_LTOFF21L:
738			/* LT-relative; left 21 bits */
739			val = get_got(me, val, addend);
740			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
741			       strtab + sym->st_name,
742			       loc, val);
743			val = lrsel(val, 0);
744			*loc = mask(*loc, 21) | reassemble_21(val);
745			break;
746		case R_PARISC_LTOFF14R:
747			/* L(ltoff(val+addend)) */
748			/* LT-relative; right 14 bits */
749			val = get_got(me, val, addend);
750			val = rrsel(val, 0);
751			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
752			       strtab + sym->st_name,
753			       loc, val);
754			*loc = mask(*loc, 14) | reassemble_14(val);
755			break;
756		case R_PARISC_PCREL22F:
757			/* PC-relative; 22 bits */
758			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
759			       strtab + sym->st_name,
760			       loc, val);
761			val += addend;
762			/* can we reach it locally? */
763			if (in_local(me, (void *)val)) {
764				/* this is the case where the symbol is local
765				 * to the module, but in a different section,
766				 * so stub the jump in case it's more than 22
767				 * bits away */
768				val = (val - dot - 8)/4;
769				if (!RELOC_REACHABLE(val, 22)) {
770					/* direct distance too far, create
771					 * stub entry instead */
772					val = get_stub(me, sym->st_value,
773						addend, ELF_STUB_DIRECT,
774						loc0, targetsec);
775				} else {
776					/* Ok, we can reach it directly. */
777					val = sym->st_value;
778					val += addend;
779				}
780			} else {
781				val = sym->st_value;
782				if (strncmp(strtab + sym->st_name, "$$", 2)
783				    == 0)
784					val = get_stub(me, val, addend, ELF_STUB_MILLI,
785						       loc0, targetsec);
786				else
787					val = get_stub(me, val, addend, ELF_STUB_GOT,
788						       loc0, targetsec);
789			}
790			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
791			       strtab + sym->st_name, loc, sym->st_value,
792			       addend, val);
793			val = (val - dot - 8)/4;
794			CHECK_RELOC(val, 22);
795			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
796			break;
 
 
 
 
797		case R_PARISC_DIR64:
798			/* 64-bit effective address */
799			*loc64 = val + addend;
800			break;
801		case R_PARISC_SEGREL32:
802			/* 32-bit segment relative address */
803			/* See note about special handling of SEGREL32 at
804			 * the beginning of this file.
805			 */
806			*loc = fsel(val, addend); 
807			break;
808		case R_PARISC_FPTR64:
809			/* 64-bit function address */
810			if(in_local(me, (void *)(val + addend))) {
811				*loc64 = get_fdesc(me, val+addend);
812				DEBUGP("FDESC for %s at %p points to %lx\n",
813				       strtab + sym->st_name, *loc64,
814				       ((Elf_Fdesc *)*loc64)->addr);
815			} else {
816				/* if the symbol is not local to this
817				 * module then val+addend is a pointer
818				 * to the function descriptor */
819				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
820				       strtab + sym->st_name,
821				       loc, val);
822				*loc64 = val + addend;
823			}
824			break;
825
826		default:
827			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
828			       me->name, ELF64_R_TYPE(rel[i].r_info));
829			return -ENOEXEC;
830		}
831	}
832	return 0;
833}
834#endif
835
836static void
837register_unwind_table(struct module *me,
838		      const Elf_Shdr *sechdrs)
839{
840	unsigned char *table, *end;
841	unsigned long gp;
842
843	if (!me->arch.unwind_section)
844		return;
845
846	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
847	end = table + sechdrs[me->arch.unwind_section].sh_size;
848	gp = (Elf_Addr)me->module_core + me->arch.got_offset;
849
850	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
851	       me->arch.unwind_section, table, end, gp);
852	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
853}
854
855static void
856deregister_unwind_table(struct module *me)
857{
858	if (me->arch.unwind)
859		unwind_table_remove(me->arch.unwind);
860}
861
862int module_finalize(const Elf_Ehdr *hdr,
863		    const Elf_Shdr *sechdrs,
864		    struct module *me)
865{
866	int i;
867	unsigned long nsyms;
868	const char *strtab = NULL;
869	Elf_Sym *newptr, *oldptr;
870	Elf_Shdr *symhdr = NULL;
871#ifdef DEBUG
872	Elf_Fdesc *entry;
873	u32 *addr;
874
875	entry = (Elf_Fdesc *)me->init;
876	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
877	       entry->gp, entry->addr);
878	addr = (u32 *)entry->addr;
879	printk("INSNS: %x %x %x %x\n",
880	       addr[0], addr[1], addr[2], addr[3]);
881	printk("got entries used %ld, gots max %ld\n"
882	       "fdescs used %ld, fdescs max %ld\n",
883	       me->arch.got_count, me->arch.got_max,
884	       me->arch.fdesc_count, me->arch.fdesc_max);
885#endif
886
887	register_unwind_table(me, sechdrs);
888
889	/* haven't filled in me->symtab yet, so have to find it
890	 * ourselves */
891	for (i = 1; i < hdr->e_shnum; i++) {
892		if(sechdrs[i].sh_type == SHT_SYMTAB
893		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
894			int strindex = sechdrs[i].sh_link;
895			/* FIXME: AWFUL HACK
896			 * The cast is to drop the const from
897			 * the sechdrs pointer */
898			symhdr = (Elf_Shdr *)&sechdrs[i];
899			strtab = (char *)sechdrs[strindex].sh_addr;
900			break;
901		}
902	}
903
904	DEBUGP("module %s: strtab %p, symhdr %p\n",
905	       me->name, strtab, symhdr);
906
907	if(me->arch.got_count > MAX_GOTS) {
908		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
909				me->name, me->arch.got_count, MAX_GOTS);
910		return -EINVAL;
911	}
912
913	kfree(me->arch.section);
914	me->arch.section = NULL;
915
916	/* no symbol table */
917	if(symhdr == NULL)
918		return 0;
919
920	oldptr = (void *)symhdr->sh_addr;
921	newptr = oldptr + 1;	/* we start counting at 1 */
922	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
923	DEBUGP("OLD num_symtab %lu\n", nsyms);
924
925	for (i = 1; i < nsyms; i++) {
926		oldptr++;	/* note, count starts at 1 so preincrement */
927		if(strncmp(strtab + oldptr->st_name,
928			      ".L", 2) == 0)
929			continue;
930
931		if(newptr != oldptr)
932			*newptr++ = *oldptr;
933		else
934			newptr++;
935
936	}
937	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
938	DEBUGP("NEW num_symtab %lu\n", nsyms);
939	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
940	return 0;
941}
942
943void module_arch_cleanup(struct module *mod)
944{
945	deregister_unwind_table(mod);
946}