Linux Audio

Check our new training course

Loading...
v4.6
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->init_layout.base;
 46 *			else
 47 *				val -= (uint32_t)me->core_layout.base;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 
 69
 70#if 0
 71#define DEBUGP printk
 72#else
 73#define DEBUGP(fmt...)
 74#endif
 75
 76#define RELOC_REACHABLE(val, bits) \
 77	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 78	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 79	0 : 1)
 80
 81#define CHECK_RELOC(val, bits) \
 82	if (!RELOC_REACHABLE(val, bits)) { \
 83		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 84		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 85		return -ENOEXEC;			\
 86	}
 87
 88/* Maximum number of GOT entries. We use a long displacement ldd from
 89 * the bottom of the table, which has a maximum signed displacement of
 90 * 0x3fff; however, since we're only going forward, this becomes
 91 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 92 * at most 1023 entries.
 93 * To overcome this 14bit displacement with some kernel modules, we'll
 94 * use instead the unusal 16bit displacement method (see reassemble_16a)
 95 * which gives us a maximum positive displacement of 0x7fff, and as such
 96 * allows us to allocate up to 4095 GOT entries. */
 97#define MAX_GOTS	4095
 98
 99/* three functions to determine where in the module core
100 * or init pieces the location is */
101static inline int in_init(struct module *me, void *loc)
102{
103	return (loc >= me->init_layout.base &&
104		loc <= (me->init_layout.base + me->init_layout.size));
105}
106
107static inline int in_core(struct module *me, void *loc)
108{
109	return (loc >= me->core_layout.base &&
110		loc <= (me->core_layout.base + me->core_layout.size));
111}
112
113static inline int in_local(struct module *me, void *loc)
114{
115	return in_init(me, loc) || in_core(me, loc);
116}
117
118#ifndef CONFIG_64BIT
119struct got_entry {
120	Elf32_Addr addr;
121};
122
123struct stub_entry {
124	Elf32_Word insns[2]; /* each stub entry has two insns */
125};
126#else
127struct got_entry {
128	Elf64_Addr addr;
129};
130
131struct stub_entry {
132	Elf64_Word insns[4]; /* each stub entry has four insns */
133};
134#endif
135
136/* Field selection types defined by hppa */
137#define rnd(x)			(((x)+0x1000)&~0x1fff)
138/* fsel: full 32 bits */
139#define fsel(v,a)		((v)+(a))
140/* lsel: select left 21 bits */
141#define lsel(v,a)		(((v)+(a))>>11)
142/* rsel: select right 11 bits */
143#define rsel(v,a)		(((v)+(a))&0x7ff)
144/* lrsel with rounding of addend to nearest 8k */
145#define lrsel(v,a)		(((v)+rnd(a))>>11)
146/* rrsel with rounding of addend to nearest 8k */
147#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148
149#define mask(x,sz)		((x) & ~((1<<(sz))-1))
150
151
152/* The reassemble_* functions prepare an immediate value for
153   insertion into an opcode. pa-risc uses all sorts of weird bitfields
154   in the instruction to hold the value.  */
155static inline int sign_unext(int x, int len)
156{
157	int len_ones;
158
159	len_ones = (1 << len) - 1;
160	return x & len_ones;
161}
162
163static inline int low_sign_unext(int x, int len)
164{
165	int sign, temp;
166
167	sign = (x >> (len-1)) & 1;
168	temp = sign_unext(x, len-1);
169	return (temp << 1) | sign;
170}
171
172static inline int reassemble_14(int as14)
173{
174	return (((as14 & 0x1fff) << 1) |
175		((as14 & 0x2000) >> 13));
176}
177
178static inline int reassemble_16a(int as16)
179{
180	int s, t;
181
182	/* Unusual 16-bit encoding, for wide mode only.  */
183	t = (as16 << 1) & 0xffff;
184	s = (as16 & 0x8000);
185	return (t ^ s ^ (s >> 1)) | (s >> 15);
186}
187
188
189static inline int reassemble_17(int as17)
190{
191	return (((as17 & 0x10000) >> 16) |
192		((as17 & 0x0f800) << 5) |
193		((as17 & 0x00400) >> 8) |
194		((as17 & 0x003ff) << 3));
195}
196
197static inline int reassemble_21(int as21)
198{
199	return (((as21 & 0x100000) >> 20) |
200		((as21 & 0x0ffe00) >> 8) |
201		((as21 & 0x000180) << 7) |
202		((as21 & 0x00007c) << 14) |
203		((as21 & 0x000003) << 12));
204}
205
206static inline int reassemble_22(int as22)
207{
208	return (((as22 & 0x200000) >> 21) |
209		((as22 & 0x1f0000) << 5) |
210		((as22 & 0x00f800) << 5) |
211		((as22 & 0x000400) >> 8) |
212		((as22 & 0x0003ff) << 3));
213}
214
215void *module_alloc(unsigned long size)
216{
217	/* using RWX means less protection for modules, but it's
218	 * easier than trying to map the text, data, init_text and
219	 * init_data correctly */
220	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
221				    GFP_KERNEL | __GFP_HIGHMEM,
222				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
223				    __builtin_return_address(0));
224}
225
226#ifndef CONFIG_64BIT
227static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
228{
229	return 0;
230}
231
232static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233{
234	return 0;
235}
236
237static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
238{
239	unsigned long cnt = 0;
240
241	for (; n > 0; n--, rela++)
242	{
243		switch (ELF32_R_TYPE(rela->r_info)) {
244			case R_PARISC_PCREL17F:
245			case R_PARISC_PCREL22F:
246				cnt++;
247		}
248	}
249
250	return cnt;
251}
252#else
253static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
254{
255	unsigned long cnt = 0;
256
257	for (; n > 0; n--, rela++)
258	{
259		switch (ELF64_R_TYPE(rela->r_info)) {
260			case R_PARISC_LTOFF21L:
261			case R_PARISC_LTOFF14R:
262			case R_PARISC_PCREL22F:
263				cnt++;
264		}
265	}
266
267	return cnt;
268}
269
270static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
271{
272	unsigned long cnt = 0;
273
274	for (; n > 0; n--, rela++)
275	{
276		switch (ELF64_R_TYPE(rela->r_info)) {
277			case R_PARISC_FPTR64:
278				cnt++;
279		}
280	}
281
282	return cnt;
283}
284
285static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
286{
287	unsigned long cnt = 0;
288
289	for (; n > 0; n--, rela++)
290	{
291		switch (ELF64_R_TYPE(rela->r_info)) {
292			case R_PARISC_PCREL22F:
293				cnt++;
294		}
295	}
296
297	return cnt;
298}
299#endif
300
301void module_arch_freeing_init(struct module *mod)
302{
303	kfree(mod->arch.section);
304	mod->arch.section = NULL;
305}
306
307/* Additional bytes needed in front of individual sections */
308unsigned int arch_mod_section_prepend(struct module *mod,
309				      unsigned int section)
310{
311	/* size needed for all stubs of this section (including
312	 * one additional for correct alignment of the stubs) */
313	return (mod->arch.section[section].stub_entries + 1)
314		* sizeof(struct stub_entry);
315}
316
317#define CONST 
318int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
319			      CONST Elf_Shdr *sechdrs,
320			      CONST char *secstrings,
321			      struct module *me)
322{
323	unsigned long gots = 0, fdescs = 0, len;
324	unsigned int i;
325
326	len = hdr->e_shnum * sizeof(me->arch.section[0]);
327	me->arch.section = kzalloc(len, GFP_KERNEL);
328	if (!me->arch.section)
329		return -ENOMEM;
330
331	for (i = 1; i < hdr->e_shnum; i++) {
332		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
333		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
334		unsigned int count, s;
335
336		if (strncmp(secstrings + sechdrs[i].sh_name,
337			    ".PARISC.unwind", 14) == 0)
338			me->arch.unwind_section = i;
339
340		if (sechdrs[i].sh_type != SHT_RELA)
341			continue;
342
343		/* some of these are not relevant for 32-bit/64-bit
344		 * we leave them here to make the code common. the
345		 * compiler will do its thing and optimize out the
346		 * stuff we don't need
347		 */
348		gots += count_gots(rels, nrels);
349		fdescs += count_fdescs(rels, nrels);
350
351		/* XXX: By sorting the relocs and finding duplicate entries
352		 *  we could reduce the number of necessary stubs and save
353		 *  some memory. */
354		count = count_stubs(rels, nrels);
355		if (!count)
356			continue;
357
358		/* so we need relocation stubs. reserve necessary memory. */
359		/* sh_info gives the section for which we need to add stubs. */
360		s = sechdrs[i].sh_info;
361
362		/* each code section should only have one relocation section */
363		WARN_ON(me->arch.section[s].stub_entries);
364
365		/* store number of stubs we need for this section */
366		me->arch.section[s].stub_entries += count;
367	}
368
369	/* align things a bit */
370	me->core_layout.size = ALIGN(me->core_layout.size, 16);
371	me->arch.got_offset = me->core_layout.size;
372	me->core_layout.size += gots * sizeof(struct got_entry);
373
374	me->core_layout.size = ALIGN(me->core_layout.size, 16);
375	me->arch.fdesc_offset = me->core_layout.size;
376	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
377
378	me->arch.got_max = gots;
379	me->arch.fdesc_max = fdescs;
380
381	return 0;
382}
383
384#ifdef CONFIG_64BIT
385static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
386{
387	unsigned int i;
388	struct got_entry *got;
389
390	value += addend;
391
392	BUG_ON(value == 0);
393
394	got = me->core_layout.base + me->arch.got_offset;
395	for (i = 0; got[i].addr; i++)
396		if (got[i].addr == value)
397			goto out;
398
399	BUG_ON(++me->arch.got_count > me->arch.got_max);
400
401	got[i].addr = value;
402 out:
403	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
404	       value);
405	return i * sizeof(struct got_entry);
406}
407#endif /* CONFIG_64BIT */
408
409#ifdef CONFIG_64BIT
410static Elf_Addr get_fdesc(struct module *me, unsigned long value)
411{
412	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
413
414	if (!value) {
415		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
416		return 0;
417	}
418
419	/* Look for existing fdesc entry. */
420	while (fdesc->addr) {
421		if (fdesc->addr == value)
422			return (Elf_Addr)fdesc;
423		fdesc++;
424	}
425
426	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
427
428	/* Create new one */
429	fdesc->addr = value;
430	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
431	return (Elf_Addr)fdesc;
432}
433#endif /* CONFIG_64BIT */
434
435enum elf_stub_type {
436	ELF_STUB_GOT,
437	ELF_STUB_MILLI,
438	ELF_STUB_DIRECT,
439};
440
441static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
442	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
443{
444	struct stub_entry *stub;
445	int __maybe_unused d;
446
447	/* initialize stub_offset to point in front of the section */
448	if (!me->arch.section[targetsec].stub_offset) {
449		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
450				sizeof(struct stub_entry);
451		/* get correct alignment for the stubs */
452		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
453		me->arch.section[targetsec].stub_offset = loc0;
454	}
455
456	/* get address of stub entry */
457	stub = (void *) me->arch.section[targetsec].stub_offset;
458	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
459
460	/* do not write outside available stub area */
461	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
462
463
464#ifndef CONFIG_64BIT
465/* for 32-bit the stub looks like this:
466 * 	ldil L'XXX,%r1
467 * 	be,n R'XXX(%sr4,%r1)
468 */
469	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
470
471	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
472	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
473
474	stub->insns[0] |= reassemble_21(lrsel(value, addend));
475	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
476
477#else
478/* for 64-bit we have three kinds of stubs:
479 * for normal function calls:
480 * 	ldd 0(%dp),%dp
481 * 	ldd 10(%dp), %r1
482 * 	bve (%r1)
483 * 	ldd 18(%dp), %dp
484 *
485 * for millicode:
486 * 	ldil 0, %r1
487 * 	ldo 0(%r1), %r1
488 * 	ldd 10(%r1), %r1
489 * 	bve,n (%r1)
490 *
491 * for direct branches (jumps between different section of the
492 * same module):
493 *	ldil 0, %r1
494 *	ldo 0(%r1), %r1
495 *	bve,n (%r1)
496 */
497	switch (stub_type) {
498	case ELF_STUB_GOT:
499		d = get_got(me, value, addend);
500		if (d <= 15) {
501			/* Format 5 */
502			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
503			stub->insns[0] |= low_sign_unext(d, 5) << 16;
504		} else {
505			/* Format 3 */
506			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
507			stub->insns[0] |= reassemble_16a(d);
508		}
509		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
510		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
511		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
512		break;
513	case ELF_STUB_MILLI:
514		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
515		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
516		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
517		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
518
519		stub->insns[0] |= reassemble_21(lrsel(value, addend));
520		stub->insns[1] |= reassemble_14(rrsel(value, addend));
521		break;
522	case ELF_STUB_DIRECT:
523		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
524		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
525		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
526
527		stub->insns[0] |= reassemble_21(lrsel(value, addend));
528		stub->insns[1] |= reassemble_14(rrsel(value, addend));
529		break;
530	}
531
532#endif
533
534	return (Elf_Addr)stub;
535}
536
537#ifndef CONFIG_64BIT
538int apply_relocate_add(Elf_Shdr *sechdrs,
539		       const char *strtab,
540		       unsigned int symindex,
541		       unsigned int relsec,
542		       struct module *me)
543{
544	int i;
545	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
546	Elf32_Sym *sym;
547	Elf32_Word *loc;
548	Elf32_Addr val;
549	Elf32_Sword addend;
550	Elf32_Addr dot;
551	Elf_Addr loc0;
552	unsigned int targetsec = sechdrs[relsec].sh_info;
553	//unsigned long dp = (unsigned long)$global$;
554	register unsigned long dp asm ("r27");
555
556	DEBUGP("Applying relocate section %u to %u\n", relsec,
557	       targetsec);
558	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
559		/* This is where to make the change */
560		loc = (void *)sechdrs[targetsec].sh_addr
561		      + rel[i].r_offset;
562		/* This is the start of the target section */
563		loc0 = sechdrs[targetsec].sh_addr;
564		/* This is the symbol it is referring to */
565		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
566			+ ELF32_R_SYM(rel[i].r_info);
567		if (!sym->st_value) {
568			printk(KERN_WARNING "%s: Unknown symbol %s\n",
569			       me->name, strtab + sym->st_name);
570			return -ENOENT;
571		}
572		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
573		dot =  (Elf32_Addr)loc & ~0x03;
574
575		val = sym->st_value;
576		addend = rel[i].r_addend;
577
578#if 0
579#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
580		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
581			strtab + sym->st_name,
582			(uint32_t)loc, val, addend,
583			r(R_PARISC_PLABEL32)
584			r(R_PARISC_DIR32)
585			r(R_PARISC_DIR21L)
586			r(R_PARISC_DIR14R)
587			r(R_PARISC_SEGREL32)
588			r(R_PARISC_DPREL21L)
589			r(R_PARISC_DPREL14R)
590			r(R_PARISC_PCREL17F)
591			r(R_PARISC_PCREL22F)
592			"UNKNOWN");
593#undef r
594#endif
595
596		switch (ELF32_R_TYPE(rel[i].r_info)) {
597		case R_PARISC_PLABEL32:
598			/* 32-bit function address */
599			/* no function descriptors... */
600			*loc = fsel(val, addend);
601			break;
602		case R_PARISC_DIR32:
603			/* direct 32-bit ref */
604			*loc = fsel(val, addend);
605			break;
606		case R_PARISC_DIR21L:
607			/* left 21 bits of effective address */
608			val = lrsel(val, addend);
609			*loc = mask(*loc, 21) | reassemble_21(val);
610			break;
611		case R_PARISC_DIR14R:
612			/* right 14 bits of effective address */
613			val = rrsel(val, addend);
614			*loc = mask(*loc, 14) | reassemble_14(val);
615			break;
616		case R_PARISC_SEGREL32:
617			/* 32-bit segment relative address */
618			/* See note about special handling of SEGREL32 at
619			 * the beginning of this file.
620			 */
621			*loc = fsel(val, addend); 
622			break;
 
 
 
 
623		case R_PARISC_DPREL21L:
624			/* left 21 bit of relative address */
625			val = lrsel(val - dp, addend);
626			*loc = mask(*loc, 21) | reassemble_21(val);
627			break;
628		case R_PARISC_DPREL14R:
629			/* right 14 bit of relative address */
630			val = rrsel(val - dp, addend);
631			*loc = mask(*loc, 14) | reassemble_14(val);
632			break;
633		case R_PARISC_PCREL17F:
634			/* 17-bit PC relative address */
635			/* calculate direct call offset */
636			val += addend;
637			val = (val - dot - 8)/4;
638			if (!RELOC_REACHABLE(val, 17)) {
639				/* direct distance too far, create
640				 * stub entry instead */
641				val = get_stub(me, sym->st_value, addend,
642					ELF_STUB_DIRECT, loc0, targetsec);
643				val = (val - dot - 8)/4;
644				CHECK_RELOC(val, 17);
645			}
646			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
647			break;
648		case R_PARISC_PCREL22F:
649			/* 22-bit PC relative address; only defined for pa20 */
650			/* calculate direct call offset */
651			val += addend;
652			val = (val - dot - 8)/4;
653			if (!RELOC_REACHABLE(val, 22)) {
654				/* direct distance too far, create
655				 * stub entry instead */
656				val = get_stub(me, sym->st_value, addend,
657					ELF_STUB_DIRECT, loc0, targetsec);
658				val = (val - dot - 8)/4;
659				CHECK_RELOC(val, 22);
660			}
661			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
662			break;
663		case R_PARISC_PCREL32:
664			/* 32-bit PC relative address */
665			*loc = val - dot - 8 + addend;
666			break;
667
668		default:
669			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
670			       me->name, ELF32_R_TYPE(rel[i].r_info));
671			return -ENOEXEC;
672		}
673	}
674
675	return 0;
676}
677
678#else
679int apply_relocate_add(Elf_Shdr *sechdrs,
680		       const char *strtab,
681		       unsigned int symindex,
682		       unsigned int relsec,
683		       struct module *me)
684{
685	int i;
686	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
687	Elf64_Sym *sym;
688	Elf64_Word *loc;
689	Elf64_Xword *loc64;
690	Elf64_Addr val;
691	Elf64_Sxword addend;
692	Elf64_Addr dot;
693	Elf_Addr loc0;
694	unsigned int targetsec = sechdrs[relsec].sh_info;
695
696	DEBUGP("Applying relocate section %u to %u\n", relsec,
697	       targetsec);
698	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
699		/* This is where to make the change */
700		loc = (void *)sechdrs[targetsec].sh_addr
701		      + rel[i].r_offset;
702		/* This is the start of the target section */
703		loc0 = sechdrs[targetsec].sh_addr;
704		/* This is the symbol it is referring to */
705		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
706			+ ELF64_R_SYM(rel[i].r_info);
707		if (!sym->st_value) {
708			printk(KERN_WARNING "%s: Unknown symbol %s\n",
709			       me->name, strtab + sym->st_name);
710			return -ENOENT;
711		}
712		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
713		dot = (Elf64_Addr)loc & ~0x03;
714		loc64 = (Elf64_Xword *)loc;
715
716		val = sym->st_value;
717		addend = rel[i].r_addend;
718
719#if 0
720#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
721		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
722			strtab + sym->st_name,
723			loc, val, addend,
724			r(R_PARISC_LTOFF14R)
725			r(R_PARISC_LTOFF21L)
726			r(R_PARISC_PCREL22F)
727			r(R_PARISC_DIR64)
728			r(R_PARISC_SEGREL32)
729			r(R_PARISC_FPTR64)
730			"UNKNOWN");
731#undef r
732#endif
733
734		switch (ELF64_R_TYPE(rel[i].r_info)) {
735		case R_PARISC_LTOFF21L:
736			/* LT-relative; left 21 bits */
737			val = get_got(me, val, addend);
738			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
739			       strtab + sym->st_name,
740			       loc, val);
741			val = lrsel(val, 0);
742			*loc = mask(*loc, 21) | reassemble_21(val);
743			break;
744		case R_PARISC_LTOFF14R:
745			/* L(ltoff(val+addend)) */
746			/* LT-relative; right 14 bits */
747			val = get_got(me, val, addend);
748			val = rrsel(val, 0);
749			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
750			       strtab + sym->st_name,
751			       loc, val);
752			*loc = mask(*loc, 14) | reassemble_14(val);
753			break;
754		case R_PARISC_PCREL22F:
755			/* PC-relative; 22 bits */
756			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
757			       strtab + sym->st_name,
758			       loc, val);
759			val += addend;
760			/* can we reach it locally? */
761			if (in_local(me, (void *)val)) {
762				/* this is the case where the symbol is local
763				 * to the module, but in a different section,
764				 * so stub the jump in case it's more than 22
765				 * bits away */
766				val = (val - dot - 8)/4;
767				if (!RELOC_REACHABLE(val, 22)) {
768					/* direct distance too far, create
769					 * stub entry instead */
770					val = get_stub(me, sym->st_value,
771						addend, ELF_STUB_DIRECT,
772						loc0, targetsec);
773				} else {
774					/* Ok, we can reach it directly. */
775					val = sym->st_value;
776					val += addend;
777				}
778			} else {
779				val = sym->st_value;
780				if (strncmp(strtab + sym->st_name, "$$", 2)
781				    == 0)
782					val = get_stub(me, val, addend, ELF_STUB_MILLI,
783						       loc0, targetsec);
784				else
785					val = get_stub(me, val, addend, ELF_STUB_GOT,
786						       loc0, targetsec);
787			}
788			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
789			       strtab + sym->st_name, loc, sym->st_value,
790			       addend, val);
791			val = (val - dot - 8)/4;
792			CHECK_RELOC(val, 22);
793			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
794			break;
795		case R_PARISC_PCREL32:
796			/* 32-bit PC relative address */
797			*loc = val - dot - 8 + addend;
798			break;
799		case R_PARISC_DIR64:
800			/* 64-bit effective address */
801			*loc64 = val + addend;
802			break;
803		case R_PARISC_SEGREL32:
804			/* 32-bit segment relative address */
805			/* See note about special handling of SEGREL32 at
806			 * the beginning of this file.
807			 */
808			*loc = fsel(val, addend); 
809			break;
 
 
 
 
810		case R_PARISC_FPTR64:
811			/* 64-bit function address */
812			if(in_local(me, (void *)(val + addend))) {
813				*loc64 = get_fdesc(me, val+addend);
814				DEBUGP("FDESC for %s at %p points to %lx\n",
815				       strtab + sym->st_name, *loc64,
816				       ((Elf_Fdesc *)*loc64)->addr);
817			} else {
818				/* if the symbol is not local to this
819				 * module then val+addend is a pointer
820				 * to the function descriptor */
821				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
822				       strtab + sym->st_name,
823				       loc, val);
824				*loc64 = val + addend;
825			}
826			break;
827
828		default:
829			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
830			       me->name, ELF64_R_TYPE(rel[i].r_info));
831			return -ENOEXEC;
832		}
833	}
834	return 0;
835}
836#endif
837
838static void
839register_unwind_table(struct module *me,
840		      const Elf_Shdr *sechdrs)
841{
842	unsigned char *table, *end;
843	unsigned long gp;
844
845	if (!me->arch.unwind_section)
846		return;
847
848	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
849	end = table + sechdrs[me->arch.unwind_section].sh_size;
850	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
851
852	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
853	       me->arch.unwind_section, table, end, gp);
854	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
855}
856
857static void
858deregister_unwind_table(struct module *me)
859{
860	if (me->arch.unwind)
861		unwind_table_remove(me->arch.unwind);
862}
863
864int module_finalize(const Elf_Ehdr *hdr,
865		    const Elf_Shdr *sechdrs,
866		    struct module *me)
867{
868	int i;
869	unsigned long nsyms;
870	const char *strtab = NULL;
871	Elf_Sym *newptr, *oldptr;
872	Elf_Shdr *symhdr = NULL;
873#ifdef DEBUG
874	Elf_Fdesc *entry;
875	u32 *addr;
876
877	entry = (Elf_Fdesc *)me->init;
878	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
879	       entry->gp, entry->addr);
880	addr = (u32 *)entry->addr;
881	printk("INSNS: %x %x %x %x\n",
882	       addr[0], addr[1], addr[2], addr[3]);
883	printk("got entries used %ld, gots max %ld\n"
884	       "fdescs used %ld, fdescs max %ld\n",
885	       me->arch.got_count, me->arch.got_max,
886	       me->arch.fdesc_count, me->arch.fdesc_max);
887#endif
888
889	register_unwind_table(me, sechdrs);
890
891	/* haven't filled in me->symtab yet, so have to find it
892	 * ourselves */
893	for (i = 1; i < hdr->e_shnum; i++) {
894		if(sechdrs[i].sh_type == SHT_SYMTAB
895		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
896			int strindex = sechdrs[i].sh_link;
897			/* FIXME: AWFUL HACK
898			 * The cast is to drop the const from
899			 * the sechdrs pointer */
900			symhdr = (Elf_Shdr *)&sechdrs[i];
901			strtab = (char *)sechdrs[strindex].sh_addr;
902			break;
903		}
904	}
905
906	DEBUGP("module %s: strtab %p, symhdr %p\n",
907	       me->name, strtab, symhdr);
908
909	if(me->arch.got_count > MAX_GOTS) {
910		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
911				me->name, me->arch.got_count, MAX_GOTS);
912		return -EINVAL;
913	}
914
915	kfree(me->arch.section);
916	me->arch.section = NULL;
917
918	/* no symbol table */
919	if(symhdr == NULL)
920		return 0;
921
922	oldptr = (void *)symhdr->sh_addr;
923	newptr = oldptr + 1;	/* we start counting at 1 */
924	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
925	DEBUGP("OLD num_symtab %lu\n", nsyms);
926
927	for (i = 1; i < nsyms; i++) {
928		oldptr++;	/* note, count starts at 1 so preincrement */
929		if(strncmp(strtab + oldptr->st_name,
930			      ".L", 2) == 0)
931			continue;
932
933		if(newptr != oldptr)
934			*newptr++ = *oldptr;
935		else
936			newptr++;
937
938	}
939	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
940	DEBUGP("NEW num_symtab %lu\n", nsyms);
941	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
942	return 0;
943}
944
945void module_arch_cleanup(struct module *mod)
946{
947	deregister_unwind_table(mod);
948}
v4.17
  1/*    Kernel dynamically loadable module help for PARISC.
  2 *
  3 *    The best reference for this stuff is probably the Processor-
  4 *    Specific ELF Supplement for PA-RISC:
  5 *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
  6 *
  7 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
  8 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
  9 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
 10 *
 11 *
 12 *    This program is free software; you can redistribute it and/or modify
 13 *    it under the terms of the GNU General Public License as published by
 14 *    the Free Software Foundation; either version 2 of the License, or
 15 *    (at your option) any later version.
 16 *
 17 *    This program is distributed in the hope that it will be useful,
 18 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 19 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20 *    GNU General Public License for more details.
 21 *
 22 *    You should have received a copy of the GNU General Public License
 23 *    along with this program; if not, write to the Free Software
 24 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25 *
 26 *
 27 *    Notes:
 28 *    - PLT stub handling
 29 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
 30 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
 31 *      fail to reach their PLT stub if we only create one big stub array for
 32 *      all sections at the beginning of the core or init section.
 33 *      Instead we now insert individual PLT stub entries directly in front of
 34 *      of the code sections where the stubs are actually called.
 35 *      This reduces the distance between the PCREL location and the stub entry
 36 *      so that the relocations can be fulfilled.
 37 *      While calculating the final layout of the kernel module in memory, the
 38 *      kernel module loader calls arch_mod_section_prepend() to request the
 39 *      to be reserved amount of memory in front of each individual section.
 40 *
 41 *    - SEGREL32 handling
 42 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
 43 *      should do a value offset, like this:
 44 *			if (in_init(me, (void *)val))
 45 *				val -= (uint32_t)me->init_layout.base;
 46 *			else
 47 *				val -= (uint32_t)me->core_layout.base;
 48 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
 49 *	those entries to have an absolute address, and not just an offset.
 50 *
 51 *	The unwind table mechanism has the ability to specify an offset for 
 52 *	the unwind table; however, because we split off the init functions into
 53 *	a different piece of memory, it is not possible to do this using a 
 54 *	single offset. Instead, we use the above hack for now.
 55 */
 56
 57#include <linux/moduleloader.h>
 58#include <linux/elf.h>
 59#include <linux/vmalloc.h>
 60#include <linux/fs.h>
 61#include <linux/string.h>
 62#include <linux/kernel.h>
 63#include <linux/bug.h>
 64#include <linux/mm.h>
 65#include <linux/slab.h>
 66
 67#include <asm/pgtable.h>
 68#include <asm/unwind.h>
 69#include <asm/sections.h>
 70
 71#if 0
 72#define DEBUGP printk
 73#else
 74#define DEBUGP(fmt...)
 75#endif
 76
 77#define RELOC_REACHABLE(val, bits) \
 78	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
 79	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
 80	0 : 1)
 81
 82#define CHECK_RELOC(val, bits) \
 83	if (!RELOC_REACHABLE(val, bits)) { \
 84		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
 85		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
 86		return -ENOEXEC;			\
 87	}
 88
 89/* Maximum number of GOT entries. We use a long displacement ldd from
 90 * the bottom of the table, which has a maximum signed displacement of
 91 * 0x3fff; however, since we're only going forward, this becomes
 92 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
 93 * at most 1023 entries.
 94 * To overcome this 14bit displacement with some kernel modules, we'll
 95 * use instead the unusal 16bit displacement method (see reassemble_16a)
 96 * which gives us a maximum positive displacement of 0x7fff, and as such
 97 * allows us to allocate up to 4095 GOT entries. */
 98#define MAX_GOTS	4095
 99
100/* three functions to determine where in the module core
101 * or init pieces the location is */
102static inline int in_init(struct module *me, void *loc)
103{
104	return (loc >= me->init_layout.base &&
105		loc <= (me->init_layout.base + me->init_layout.size));
106}
107
108static inline int in_core(struct module *me, void *loc)
109{
110	return (loc >= me->core_layout.base &&
111		loc <= (me->core_layout.base + me->core_layout.size));
112}
113
114static inline int in_local(struct module *me, void *loc)
115{
116	return in_init(me, loc) || in_core(me, loc);
117}
118
119#ifndef CONFIG_64BIT
120struct got_entry {
121	Elf32_Addr addr;
122};
123
124struct stub_entry {
125	Elf32_Word insns[2]; /* each stub entry has two insns */
126};
127#else
128struct got_entry {
129	Elf64_Addr addr;
130};
131
132struct stub_entry {
133	Elf64_Word insns[4]; /* each stub entry has four insns */
134};
135#endif
136
137/* Field selection types defined by hppa */
138#define rnd(x)			(((x)+0x1000)&~0x1fff)
139/* fsel: full 32 bits */
140#define fsel(v,a)		((v)+(a))
141/* lsel: select left 21 bits */
142#define lsel(v,a)		(((v)+(a))>>11)
143/* rsel: select right 11 bits */
144#define rsel(v,a)		(((v)+(a))&0x7ff)
145/* lrsel with rounding of addend to nearest 8k */
146#define lrsel(v,a)		(((v)+rnd(a))>>11)
147/* rrsel with rounding of addend to nearest 8k */
148#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
149
150#define mask(x,sz)		((x) & ~((1<<(sz))-1))
151
152
153/* The reassemble_* functions prepare an immediate value for
154   insertion into an opcode. pa-risc uses all sorts of weird bitfields
155   in the instruction to hold the value.  */
156static inline int sign_unext(int x, int len)
157{
158	int len_ones;
159
160	len_ones = (1 << len) - 1;
161	return x & len_ones;
162}
163
164static inline int low_sign_unext(int x, int len)
165{
166	int sign, temp;
167
168	sign = (x >> (len-1)) & 1;
169	temp = sign_unext(x, len-1);
170	return (temp << 1) | sign;
171}
172
173static inline int reassemble_14(int as14)
174{
175	return (((as14 & 0x1fff) << 1) |
176		((as14 & 0x2000) >> 13));
177}
178
179static inline int reassemble_16a(int as16)
180{
181	int s, t;
182
183	/* Unusual 16-bit encoding, for wide mode only.  */
184	t = (as16 << 1) & 0xffff;
185	s = (as16 & 0x8000);
186	return (t ^ s ^ (s >> 1)) | (s >> 15);
187}
188
189
190static inline int reassemble_17(int as17)
191{
192	return (((as17 & 0x10000) >> 16) |
193		((as17 & 0x0f800) << 5) |
194		((as17 & 0x00400) >> 8) |
195		((as17 & 0x003ff) << 3));
196}
197
198static inline int reassemble_21(int as21)
199{
200	return (((as21 & 0x100000) >> 20) |
201		((as21 & 0x0ffe00) >> 8) |
202		((as21 & 0x000180) << 7) |
203		((as21 & 0x00007c) << 14) |
204		((as21 & 0x000003) << 12));
205}
206
207static inline int reassemble_22(int as22)
208{
209	return (((as22 & 0x200000) >> 21) |
210		((as22 & 0x1f0000) << 5) |
211		((as22 & 0x00f800) << 5) |
212		((as22 & 0x000400) >> 8) |
213		((as22 & 0x0003ff) << 3));
214}
215
216void *module_alloc(unsigned long size)
217{
218	/* using RWX means less protection for modules, but it's
219	 * easier than trying to map the text, data, init_text and
220	 * init_data correctly */
221	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
222				    GFP_KERNEL,
223				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
224				    __builtin_return_address(0));
225}
226
227#ifndef CONFIG_64BIT
228static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
229{
230	return 0;
231}
232
233static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
234{
235	return 0;
236}
237
238static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
239{
240	unsigned long cnt = 0;
241
242	for (; n > 0; n--, rela++)
243	{
244		switch (ELF32_R_TYPE(rela->r_info)) {
245			case R_PARISC_PCREL17F:
246			case R_PARISC_PCREL22F:
247				cnt++;
248		}
249	}
250
251	return cnt;
252}
253#else
254static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
255{
256	unsigned long cnt = 0;
257
258	for (; n > 0; n--, rela++)
259	{
260		switch (ELF64_R_TYPE(rela->r_info)) {
261			case R_PARISC_LTOFF21L:
262			case R_PARISC_LTOFF14R:
263			case R_PARISC_PCREL22F:
264				cnt++;
265		}
266	}
267
268	return cnt;
269}
270
271static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
272{
273	unsigned long cnt = 0;
274
275	for (; n > 0; n--, rela++)
276	{
277		switch (ELF64_R_TYPE(rela->r_info)) {
278			case R_PARISC_FPTR64:
279				cnt++;
280		}
281	}
282
283	return cnt;
284}
285
286static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
287{
288	unsigned long cnt = 0;
289
290	for (; n > 0; n--, rela++)
291	{
292		switch (ELF64_R_TYPE(rela->r_info)) {
293			case R_PARISC_PCREL22F:
294				cnt++;
295		}
296	}
297
298	return cnt;
299}
300#endif
301
302void module_arch_freeing_init(struct module *mod)
303{
304	kfree(mod->arch.section);
305	mod->arch.section = NULL;
306}
307
308/* Additional bytes needed in front of individual sections */
309unsigned int arch_mod_section_prepend(struct module *mod,
310				      unsigned int section)
311{
312	/* size needed for all stubs of this section (including
313	 * one additional for correct alignment of the stubs) */
314	return (mod->arch.section[section].stub_entries + 1)
315		* sizeof(struct stub_entry);
316}
317
318#define CONST 
319int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
320			      CONST Elf_Shdr *sechdrs,
321			      CONST char *secstrings,
322			      struct module *me)
323{
324	unsigned long gots = 0, fdescs = 0, len;
325	unsigned int i;
326
327	len = hdr->e_shnum * sizeof(me->arch.section[0]);
328	me->arch.section = kzalloc(len, GFP_KERNEL);
329	if (!me->arch.section)
330		return -ENOMEM;
331
332	for (i = 1; i < hdr->e_shnum; i++) {
333		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
334		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
335		unsigned int count, s;
336
337		if (strncmp(secstrings + sechdrs[i].sh_name,
338			    ".PARISC.unwind", 14) == 0)
339			me->arch.unwind_section = i;
340
341		if (sechdrs[i].sh_type != SHT_RELA)
342			continue;
343
344		/* some of these are not relevant for 32-bit/64-bit
345		 * we leave them here to make the code common. the
346		 * compiler will do its thing and optimize out the
347		 * stuff we don't need
348		 */
349		gots += count_gots(rels, nrels);
350		fdescs += count_fdescs(rels, nrels);
351
352		/* XXX: By sorting the relocs and finding duplicate entries
353		 *  we could reduce the number of necessary stubs and save
354		 *  some memory. */
355		count = count_stubs(rels, nrels);
356		if (!count)
357			continue;
358
359		/* so we need relocation stubs. reserve necessary memory. */
360		/* sh_info gives the section for which we need to add stubs. */
361		s = sechdrs[i].sh_info;
362
363		/* each code section should only have one relocation section */
364		WARN_ON(me->arch.section[s].stub_entries);
365
366		/* store number of stubs we need for this section */
367		me->arch.section[s].stub_entries += count;
368	}
369
370	/* align things a bit */
371	me->core_layout.size = ALIGN(me->core_layout.size, 16);
372	me->arch.got_offset = me->core_layout.size;
373	me->core_layout.size += gots * sizeof(struct got_entry);
374
375	me->core_layout.size = ALIGN(me->core_layout.size, 16);
376	me->arch.fdesc_offset = me->core_layout.size;
377	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
378
379	me->arch.got_max = gots;
380	me->arch.fdesc_max = fdescs;
381
382	return 0;
383}
384
385#ifdef CONFIG_64BIT
386static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
387{
388	unsigned int i;
389	struct got_entry *got;
390
391	value += addend;
392
393	BUG_ON(value == 0);
394
395	got = me->core_layout.base + me->arch.got_offset;
396	for (i = 0; got[i].addr; i++)
397		if (got[i].addr == value)
398			goto out;
399
400	BUG_ON(++me->arch.got_count > me->arch.got_max);
401
402	got[i].addr = value;
403 out:
404	DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
405	       value);
406	return i * sizeof(struct got_entry);
407}
408#endif /* CONFIG_64BIT */
409
410#ifdef CONFIG_64BIT
411static Elf_Addr get_fdesc(struct module *me, unsigned long value)
412{
413	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
414
415	if (!value) {
416		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
417		return 0;
418	}
419
420	/* Look for existing fdesc entry. */
421	while (fdesc->addr) {
422		if (fdesc->addr == value)
423			return (Elf_Addr)fdesc;
424		fdesc++;
425	}
426
427	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
428
429	/* Create new one */
430	fdesc->addr = value;
431	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
432	return (Elf_Addr)fdesc;
433}
434#endif /* CONFIG_64BIT */
435
436enum elf_stub_type {
437	ELF_STUB_GOT,
438	ELF_STUB_MILLI,
439	ELF_STUB_DIRECT,
440};
441
442static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
443	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
444{
445	struct stub_entry *stub;
446	int __maybe_unused d;
447
448	/* initialize stub_offset to point in front of the section */
449	if (!me->arch.section[targetsec].stub_offset) {
450		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
451				sizeof(struct stub_entry);
452		/* get correct alignment for the stubs */
453		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
454		me->arch.section[targetsec].stub_offset = loc0;
455	}
456
457	/* get address of stub entry */
458	stub = (void *) me->arch.section[targetsec].stub_offset;
459	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
460
461	/* do not write outside available stub area */
462	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
463
464
465#ifndef CONFIG_64BIT
466/* for 32-bit the stub looks like this:
467 * 	ldil L'XXX,%r1
468 * 	be,n R'XXX(%sr4,%r1)
469 */
470	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
471
472	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
473	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
474
475	stub->insns[0] |= reassemble_21(lrsel(value, addend));
476	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
477
478#else
479/* for 64-bit we have three kinds of stubs:
480 * for normal function calls:
481 * 	ldd 0(%dp),%dp
482 * 	ldd 10(%dp), %r1
483 * 	bve (%r1)
484 * 	ldd 18(%dp), %dp
485 *
486 * for millicode:
487 * 	ldil 0, %r1
488 * 	ldo 0(%r1), %r1
489 * 	ldd 10(%r1), %r1
490 * 	bve,n (%r1)
491 *
492 * for direct branches (jumps between different section of the
493 * same module):
494 *	ldil 0, %r1
495 *	ldo 0(%r1), %r1
496 *	bve,n (%r1)
497 */
498	switch (stub_type) {
499	case ELF_STUB_GOT:
500		d = get_got(me, value, addend);
501		if (d <= 15) {
502			/* Format 5 */
503			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
504			stub->insns[0] |= low_sign_unext(d, 5) << 16;
505		} else {
506			/* Format 3 */
507			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
508			stub->insns[0] |= reassemble_16a(d);
509		}
510		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
511		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
512		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
513		break;
514	case ELF_STUB_MILLI:
515		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
516		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
517		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
518		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
519
520		stub->insns[0] |= reassemble_21(lrsel(value, addend));
521		stub->insns[1] |= reassemble_14(rrsel(value, addend));
522		break;
523	case ELF_STUB_DIRECT:
524		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
525		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
526		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
527
528		stub->insns[0] |= reassemble_21(lrsel(value, addend));
529		stub->insns[1] |= reassemble_14(rrsel(value, addend));
530		break;
531	}
532
533#endif
534
535	return (Elf_Addr)stub;
536}
537
538#ifndef CONFIG_64BIT
539int apply_relocate_add(Elf_Shdr *sechdrs,
540		       const char *strtab,
541		       unsigned int symindex,
542		       unsigned int relsec,
543		       struct module *me)
544{
545	int i;
546	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
547	Elf32_Sym *sym;
548	Elf32_Word *loc;
549	Elf32_Addr val;
550	Elf32_Sword addend;
551	Elf32_Addr dot;
552	Elf_Addr loc0;
553	unsigned int targetsec = sechdrs[relsec].sh_info;
554	//unsigned long dp = (unsigned long)$global$;
555	register unsigned long dp asm ("r27");
556
557	DEBUGP("Applying relocate section %u to %u\n", relsec,
558	       targetsec);
559	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
560		/* This is where to make the change */
561		loc = (void *)sechdrs[targetsec].sh_addr
562		      + rel[i].r_offset;
563		/* This is the start of the target section */
564		loc0 = sechdrs[targetsec].sh_addr;
565		/* This is the symbol it is referring to */
566		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
567			+ ELF32_R_SYM(rel[i].r_info);
568		if (!sym->st_value) {
569			printk(KERN_WARNING "%s: Unknown symbol %s\n",
570			       me->name, strtab + sym->st_name);
571			return -ENOENT;
572		}
573		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
574		dot =  (Elf32_Addr)loc & ~0x03;
575
576		val = sym->st_value;
577		addend = rel[i].r_addend;
578
579#if 0
580#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
581		DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
582			strtab + sym->st_name,
583			(uint32_t)loc, val, addend,
584			r(R_PARISC_PLABEL32)
585			r(R_PARISC_DIR32)
586			r(R_PARISC_DIR21L)
587			r(R_PARISC_DIR14R)
588			r(R_PARISC_SEGREL32)
589			r(R_PARISC_DPREL21L)
590			r(R_PARISC_DPREL14R)
591			r(R_PARISC_PCREL17F)
592			r(R_PARISC_PCREL22F)
593			"UNKNOWN");
594#undef r
595#endif
596
597		switch (ELF32_R_TYPE(rel[i].r_info)) {
598		case R_PARISC_PLABEL32:
599			/* 32-bit function address */
600			/* no function descriptors... */
601			*loc = fsel(val, addend);
602			break;
603		case R_PARISC_DIR32:
604			/* direct 32-bit ref */
605			*loc = fsel(val, addend);
606			break;
607		case R_PARISC_DIR21L:
608			/* left 21 bits of effective address */
609			val = lrsel(val, addend);
610			*loc = mask(*loc, 21) | reassemble_21(val);
611			break;
612		case R_PARISC_DIR14R:
613			/* right 14 bits of effective address */
614			val = rrsel(val, addend);
615			*loc = mask(*loc, 14) | reassemble_14(val);
616			break;
617		case R_PARISC_SEGREL32:
618			/* 32-bit segment relative address */
619			/* See note about special handling of SEGREL32 at
620			 * the beginning of this file.
621			 */
622			*loc = fsel(val, addend); 
623			break;
624		case R_PARISC_SECREL32:
625			/* 32-bit section relative address. */
626			*loc = fsel(val, addend);
627			break;
628		case R_PARISC_DPREL21L:
629			/* left 21 bit of relative address */
630			val = lrsel(val - dp, addend);
631			*loc = mask(*loc, 21) | reassemble_21(val);
632			break;
633		case R_PARISC_DPREL14R:
634			/* right 14 bit of relative address */
635			val = rrsel(val - dp, addend);
636			*loc = mask(*loc, 14) | reassemble_14(val);
637			break;
638		case R_PARISC_PCREL17F:
639			/* 17-bit PC relative address */
640			/* calculate direct call offset */
641			val += addend;
642			val = (val - dot - 8)/4;
643			if (!RELOC_REACHABLE(val, 17)) {
644				/* direct distance too far, create
645				 * stub entry instead */
646				val = get_stub(me, sym->st_value, addend,
647					ELF_STUB_DIRECT, loc0, targetsec);
648				val = (val - dot - 8)/4;
649				CHECK_RELOC(val, 17);
650			}
651			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
652			break;
653		case R_PARISC_PCREL22F:
654			/* 22-bit PC relative address; only defined for pa20 */
655			/* calculate direct call offset */
656			val += addend;
657			val = (val - dot - 8)/4;
658			if (!RELOC_REACHABLE(val, 22)) {
659				/* direct distance too far, create
660				 * stub entry instead */
661				val = get_stub(me, sym->st_value, addend,
662					ELF_STUB_DIRECT, loc0, targetsec);
663				val = (val - dot - 8)/4;
664				CHECK_RELOC(val, 22);
665			}
666			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
667			break;
668		case R_PARISC_PCREL32:
669			/* 32-bit PC relative address */
670			*loc = val - dot - 8 + addend;
671			break;
672
673		default:
674			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
675			       me->name, ELF32_R_TYPE(rel[i].r_info));
676			return -ENOEXEC;
677		}
678	}
679
680	return 0;
681}
682
683#else
684int apply_relocate_add(Elf_Shdr *sechdrs,
685		       const char *strtab,
686		       unsigned int symindex,
687		       unsigned int relsec,
688		       struct module *me)
689{
690	int i;
691	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
692	Elf64_Sym *sym;
693	Elf64_Word *loc;
694	Elf64_Xword *loc64;
695	Elf64_Addr val;
696	Elf64_Sxword addend;
697	Elf64_Addr dot;
698	Elf_Addr loc0;
699	unsigned int targetsec = sechdrs[relsec].sh_info;
700
701	DEBUGP("Applying relocate section %u to %u\n", relsec,
702	       targetsec);
703	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
704		/* This is where to make the change */
705		loc = (void *)sechdrs[targetsec].sh_addr
706		      + rel[i].r_offset;
707		/* This is the start of the target section */
708		loc0 = sechdrs[targetsec].sh_addr;
709		/* This is the symbol it is referring to */
710		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
711			+ ELF64_R_SYM(rel[i].r_info);
712		if (!sym->st_value) {
713			printk(KERN_WARNING "%s: Unknown symbol %s\n",
714			       me->name, strtab + sym->st_name);
715			return -ENOENT;
716		}
717		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
718		dot = (Elf64_Addr)loc & ~0x03;
719		loc64 = (Elf64_Xword *)loc;
720
721		val = sym->st_value;
722		addend = rel[i].r_addend;
723
724#if 0
725#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
726		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
727			strtab + sym->st_name,
728			loc, val, addend,
729			r(R_PARISC_LTOFF14R)
730			r(R_PARISC_LTOFF21L)
731			r(R_PARISC_PCREL22F)
732			r(R_PARISC_DIR64)
733			r(R_PARISC_SEGREL32)
734			r(R_PARISC_FPTR64)
735			"UNKNOWN");
736#undef r
737#endif
738
739		switch (ELF64_R_TYPE(rel[i].r_info)) {
740		case R_PARISC_LTOFF21L:
741			/* LT-relative; left 21 bits */
742			val = get_got(me, val, addend);
743			DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
744			       strtab + sym->st_name,
745			       loc, val);
746			val = lrsel(val, 0);
747			*loc = mask(*loc, 21) | reassemble_21(val);
748			break;
749		case R_PARISC_LTOFF14R:
750			/* L(ltoff(val+addend)) */
751			/* LT-relative; right 14 bits */
752			val = get_got(me, val, addend);
753			val = rrsel(val, 0);
754			DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
755			       strtab + sym->st_name,
756			       loc, val);
757			*loc = mask(*loc, 14) | reassemble_14(val);
758			break;
759		case R_PARISC_PCREL22F:
760			/* PC-relative; 22 bits */
761			DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
762			       strtab + sym->st_name,
763			       loc, val);
764			val += addend;
765			/* can we reach it locally? */
766			if (in_local(me, (void *)val)) {
767				/* this is the case where the symbol is local
768				 * to the module, but in a different section,
769				 * so stub the jump in case it's more than 22
770				 * bits away */
771				val = (val - dot - 8)/4;
772				if (!RELOC_REACHABLE(val, 22)) {
773					/* direct distance too far, create
774					 * stub entry instead */
775					val = get_stub(me, sym->st_value,
776						addend, ELF_STUB_DIRECT,
777						loc0, targetsec);
778				} else {
779					/* Ok, we can reach it directly. */
780					val = sym->st_value;
781					val += addend;
782				}
783			} else {
784				val = sym->st_value;
785				if (strncmp(strtab + sym->st_name, "$$", 2)
786				    == 0)
787					val = get_stub(me, val, addend, ELF_STUB_MILLI,
788						       loc0, targetsec);
789				else
790					val = get_stub(me, val, addend, ELF_STUB_GOT,
791						       loc0, targetsec);
792			}
793			DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 
794			       strtab + sym->st_name, loc, sym->st_value,
795			       addend, val);
796			val = (val - dot - 8)/4;
797			CHECK_RELOC(val, 22);
798			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
799			break;
800		case R_PARISC_PCREL32:
801			/* 32-bit PC relative address */
802			*loc = val - dot - 8 + addend;
803			break;
804		case R_PARISC_DIR64:
805			/* 64-bit effective address */
806			*loc64 = val + addend;
807			break;
808		case R_PARISC_SEGREL32:
809			/* 32-bit segment relative address */
810			/* See note about special handling of SEGREL32 at
811			 * the beginning of this file.
812			 */
813			*loc = fsel(val, addend); 
814			break;
815		case R_PARISC_SECREL32:
816			/* 32-bit section relative address. */
817			*loc = fsel(val, addend);
818			break;
819		case R_PARISC_FPTR64:
820			/* 64-bit function address */
821			if(in_local(me, (void *)(val + addend))) {
822				*loc64 = get_fdesc(me, val+addend);
823				DEBUGP("FDESC for %s at %p points to %lx\n",
824				       strtab + sym->st_name, *loc64,
825				       ((Elf_Fdesc *)*loc64)->addr);
826			} else {
827				/* if the symbol is not local to this
828				 * module then val+addend is a pointer
829				 * to the function descriptor */
830				DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
831				       strtab + sym->st_name,
832				       loc, val);
833				*loc64 = val + addend;
834			}
835			break;
836
837		default:
838			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
839			       me->name, ELF64_R_TYPE(rel[i].r_info));
840			return -ENOEXEC;
841		}
842	}
843	return 0;
844}
845#endif
846
847static void
848register_unwind_table(struct module *me,
849		      const Elf_Shdr *sechdrs)
850{
851	unsigned char *table, *end;
852	unsigned long gp;
853
854	if (!me->arch.unwind_section)
855		return;
856
857	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
858	end = table + sechdrs[me->arch.unwind_section].sh_size;
859	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
860
861	DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
862	       me->arch.unwind_section, table, end, gp);
863	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
864}
865
866static void
867deregister_unwind_table(struct module *me)
868{
869	if (me->arch.unwind)
870		unwind_table_remove(me->arch.unwind);
871}
872
873int module_finalize(const Elf_Ehdr *hdr,
874		    const Elf_Shdr *sechdrs,
875		    struct module *me)
876{
877	int i;
878	unsigned long nsyms;
879	const char *strtab = NULL;
880	Elf_Sym *newptr, *oldptr;
881	Elf_Shdr *symhdr = NULL;
882#ifdef DEBUG
883	Elf_Fdesc *entry;
884	u32 *addr;
885
886	entry = (Elf_Fdesc *)me->init;
887	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
888	       entry->gp, entry->addr);
889	addr = (u32 *)entry->addr;
890	printk("INSNS: %x %x %x %x\n",
891	       addr[0], addr[1], addr[2], addr[3]);
892	printk("got entries used %ld, gots max %ld\n"
893	       "fdescs used %ld, fdescs max %ld\n",
894	       me->arch.got_count, me->arch.got_max,
895	       me->arch.fdesc_count, me->arch.fdesc_max);
896#endif
897
898	register_unwind_table(me, sechdrs);
899
900	/* haven't filled in me->symtab yet, so have to find it
901	 * ourselves */
902	for (i = 1; i < hdr->e_shnum; i++) {
903		if(sechdrs[i].sh_type == SHT_SYMTAB
904		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
905			int strindex = sechdrs[i].sh_link;
906			/* FIXME: AWFUL HACK
907			 * The cast is to drop the const from
908			 * the sechdrs pointer */
909			symhdr = (Elf_Shdr *)&sechdrs[i];
910			strtab = (char *)sechdrs[strindex].sh_addr;
911			break;
912		}
913	}
914
915	DEBUGP("module %s: strtab %p, symhdr %p\n",
916	       me->name, strtab, symhdr);
917
918	if(me->arch.got_count > MAX_GOTS) {
919		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
920				me->name, me->arch.got_count, MAX_GOTS);
921		return -EINVAL;
922	}
923
924	kfree(me->arch.section);
925	me->arch.section = NULL;
926
927	/* no symbol table */
928	if(symhdr == NULL)
929		return 0;
930
931	oldptr = (void *)symhdr->sh_addr;
932	newptr = oldptr + 1;	/* we start counting at 1 */
933	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
934	DEBUGP("OLD num_symtab %lu\n", nsyms);
935
936	for (i = 1; i < nsyms; i++) {
937		oldptr++;	/* note, count starts at 1 so preincrement */
938		if(strncmp(strtab + oldptr->st_name,
939			      ".L", 2) == 0)
940			continue;
941
942		if(newptr != oldptr)
943			*newptr++ = *oldptr;
944		else
945			newptr++;
946
947	}
948	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
949	DEBUGP("NEW num_symtab %lu\n", nsyms);
950	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
951	return 0;
952}
953
954void module_arch_cleanup(struct module *mod)
955{
956	deregister_unwind_table(mod);
957}
958
959#ifdef CONFIG_64BIT
960void *dereference_module_function_descriptor(struct module *mod, void *ptr)
961{
962	unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
963				   mod->arch.fdesc_offset;
964	unsigned long end_opd = start_opd +
965				mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
966
967	if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
968		return ptr;
969
970	return dereference_function_descriptor(ptr);
971}
972#endif