Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#include "core.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43#include "pwrseq.h"
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
47#include "sdio_ops.h"
48
49/* If the device is not responding */
50#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
51
52/*
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
55 */
56#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
57
58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
65bool use_spi_crc = 1;
66module_param(use_spi_crc, bool, 0);
67
68static int mmc_schedule_delayed_work(struct delayed_work *work,
69 unsigned long delay)
70{
71 /*
72 * We use the system_freezable_wq, because of two reasons.
73 * First, it allows several works (not the same work item) to be
74 * executed simultaneously. Second, the queue becomes frozen when
75 * userspace becomes frozen during system PM.
76 */
77 return queue_delayed_work(system_freezable_wq, work, delay);
78}
79
80#ifdef CONFIG_FAIL_MMC_REQUEST
81
82/*
83 * Internal function. Inject random data errors.
84 * If mmc_data is NULL no errors are injected.
85 */
86static void mmc_should_fail_request(struct mmc_host *host,
87 struct mmc_request *mrq)
88{
89 struct mmc_command *cmd = mrq->cmd;
90 struct mmc_data *data = mrq->data;
91 static const int data_errors[] = {
92 -ETIMEDOUT,
93 -EILSEQ,
94 -EIO,
95 };
96
97 if (!data)
98 return;
99
100 if (cmd->error || data->error ||
101 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
102 return;
103
104 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
105 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
106}
107
108#else /* CONFIG_FAIL_MMC_REQUEST */
109
110static inline void mmc_should_fail_request(struct mmc_host *host,
111 struct mmc_request *mrq)
112{
113}
114
115#endif /* CONFIG_FAIL_MMC_REQUEST */
116
117/**
118 * mmc_request_done - finish processing an MMC request
119 * @host: MMC host which completed request
120 * @mrq: MMC request which request
121 *
122 * MMC drivers should call this function when they have completed
123 * their processing of a request.
124 */
125void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
126{
127 struct mmc_command *cmd = mrq->cmd;
128 int err = cmd->error;
129
130 /* Flag re-tuning needed on CRC errors */
131 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
132 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
133 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
134 (mrq->data && mrq->data->error == -EILSEQ) ||
135 (mrq->stop && mrq->stop->error == -EILSEQ)))
136 mmc_retune_needed(host);
137
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
141 }
142
143 if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 /*
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
147 */
148 if (mrq->done)
149 mrq->done(mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
152
153 led_trigger_event(host->led, LED_OFF);
154
155 if (mrq->sbc) {
156 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host), mrq->sbc->opcode,
158 mrq->sbc->error,
159 mrq->sbc->resp[0], mrq->sbc->resp[1],
160 mrq->sbc->resp[2], mrq->sbc->resp[3]);
161 }
162
163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 mmc_hostname(host), cmd->opcode, err,
165 cmd->resp[0], cmd->resp[1],
166 cmd->resp[2], cmd->resp[3]);
167
168 if (mrq->data) {
169 pr_debug("%s: %d bytes transferred: %d\n",
170 mmc_hostname(host),
171 mrq->data->bytes_xfered, mrq->data->error);
172 }
173
174 if (mrq->stop) {
175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
176 mmc_hostname(host), mrq->stop->opcode,
177 mrq->stop->error,
178 mrq->stop->resp[0], mrq->stop->resp[1],
179 mrq->stop->resp[2], mrq->stop->resp[3]);
180 }
181
182 if (mrq->done)
183 mrq->done(mrq);
184 }
185}
186
187EXPORT_SYMBOL(mmc_request_done);
188
189static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190{
191 int err;
192
193 /* Assumes host controller has been runtime resumed by mmc_claim_host */
194 err = mmc_retune(host);
195 if (err) {
196 mrq->cmd->error = err;
197 mmc_request_done(host, mrq);
198 return;
199 }
200
201 /*
202 * For sdio rw commands we must wait for card busy otherwise some
203 * sdio devices won't work properly.
204 */
205 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
206 int tries = 500; /* Wait aprox 500ms at maximum */
207
208 while (host->ops->card_busy(host) && --tries)
209 mmc_delay(1);
210
211 if (tries == 0) {
212 mrq->cmd->error = -EBUSY;
213 mmc_request_done(host, mrq);
214 return;
215 }
216 }
217
218 host->ops->request(host, mrq);
219}
220
221static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223#ifdef CONFIG_MMC_DEBUG
224 unsigned int i, sz;
225 struct scatterlist *sg;
226#endif
227 mmc_retune_hold(host);
228
229 if (mmc_card_removed(host->card))
230 return -ENOMEDIUM;
231
232 if (mrq->sbc) {
233 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
234 mmc_hostname(host), mrq->sbc->opcode,
235 mrq->sbc->arg, mrq->sbc->flags);
236 }
237
238 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
239 mmc_hostname(host), mrq->cmd->opcode,
240 mrq->cmd->arg, mrq->cmd->flags);
241
242 if (mrq->data) {
243 pr_debug("%s: blksz %d blocks %d flags %08x "
244 "tsac %d ms nsac %d\n",
245 mmc_hostname(host), mrq->data->blksz,
246 mrq->data->blocks, mrq->data->flags,
247 mrq->data->timeout_ns / 1000000,
248 mrq->data->timeout_clks);
249 }
250
251 if (mrq->stop) {
252 pr_debug("%s: CMD%u arg %08x flags %08x\n",
253 mmc_hostname(host), mrq->stop->opcode,
254 mrq->stop->arg, mrq->stop->flags);
255 }
256
257 WARN_ON(!host->claimed);
258
259 mrq->cmd->error = 0;
260 mrq->cmd->mrq = mrq;
261 if (mrq->sbc) {
262 mrq->sbc->error = 0;
263 mrq->sbc->mrq = mrq;
264 }
265 if (mrq->data) {
266 BUG_ON(mrq->data->blksz > host->max_blk_size);
267 BUG_ON(mrq->data->blocks > host->max_blk_count);
268 BUG_ON(mrq->data->blocks * mrq->data->blksz >
269 host->max_req_size);
270
271#ifdef CONFIG_MMC_DEBUG
272 sz = 0;
273 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
274 sz += sg->length;
275 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
276#endif
277
278 mrq->cmd->data = mrq->data;
279 mrq->data->error = 0;
280 mrq->data->mrq = mrq;
281 if (mrq->stop) {
282 mrq->data->stop = mrq->stop;
283 mrq->stop->error = 0;
284 mrq->stop->mrq = mrq;
285 }
286 }
287 led_trigger_event(host->led, LED_FULL);
288 __mmc_start_request(host, mrq);
289
290 return 0;
291}
292
293/**
294 * mmc_start_bkops - start BKOPS for supported cards
295 * @card: MMC card to start BKOPS
296 * @form_exception: A flag to indicate if this function was
297 * called due to an exception raised by the card
298 *
299 * Start background operations whenever requested.
300 * When the urgent BKOPS bit is set in a R1 command response
301 * then background operations should be started immediately.
302*/
303void mmc_start_bkops(struct mmc_card *card, bool from_exception)
304{
305 int err;
306 int timeout;
307 bool use_busy_signal;
308
309 BUG_ON(!card);
310
311 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
312 return;
313
314 err = mmc_read_bkops_status(card);
315 if (err) {
316 pr_err("%s: Failed to read bkops status: %d\n",
317 mmc_hostname(card->host), err);
318 return;
319 }
320
321 if (!card->ext_csd.raw_bkops_status)
322 return;
323
324 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
325 from_exception)
326 return;
327
328 mmc_claim_host(card->host);
329 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
330 timeout = MMC_BKOPS_MAX_TIMEOUT;
331 use_busy_signal = true;
332 } else {
333 timeout = 0;
334 use_busy_signal = false;
335 }
336
337 mmc_retune_hold(card->host);
338
339 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
340 EXT_CSD_BKOPS_START, 1, timeout,
341 use_busy_signal, true, false);
342 if (err) {
343 pr_warn("%s: Error %d starting bkops\n",
344 mmc_hostname(card->host), err);
345 mmc_retune_release(card->host);
346 goto out;
347 }
348
349 /*
350 * For urgent bkops status (LEVEL_2 and more)
351 * bkops executed synchronously, otherwise
352 * the operation is in progress
353 */
354 if (!use_busy_signal)
355 mmc_card_set_doing_bkops(card);
356 else
357 mmc_retune_release(card->host);
358out:
359 mmc_release_host(card->host);
360}
361EXPORT_SYMBOL(mmc_start_bkops);
362
363/*
364 * mmc_wait_data_done() - done callback for data request
365 * @mrq: done data request
366 *
367 * Wakes up mmc context, passed as a callback to host controller driver
368 */
369static void mmc_wait_data_done(struct mmc_request *mrq)
370{
371 struct mmc_context_info *context_info = &mrq->host->context_info;
372
373 context_info->is_done_rcv = true;
374 wake_up_interruptible(&context_info->wait);
375}
376
377static void mmc_wait_done(struct mmc_request *mrq)
378{
379 complete(&mrq->completion);
380}
381
382/*
383 *__mmc_start_data_req() - starts data request
384 * @host: MMC host to start the request
385 * @mrq: data request to start
386 *
387 * Sets the done callback to be called when request is completed by the card.
388 * Starts data mmc request execution
389 */
390static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
391{
392 int err;
393
394 mrq->done = mmc_wait_data_done;
395 mrq->host = host;
396
397 err = mmc_start_request(host, mrq);
398 if (err) {
399 mrq->cmd->error = err;
400 mmc_wait_data_done(mrq);
401 }
402
403 return err;
404}
405
406static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
407{
408 int err;
409
410 init_completion(&mrq->completion);
411 mrq->done = mmc_wait_done;
412
413 err = mmc_start_request(host, mrq);
414 if (err) {
415 mrq->cmd->error = err;
416 complete(&mrq->completion);
417 }
418
419 return err;
420}
421
422/*
423 * mmc_wait_for_data_req_done() - wait for request completed
424 * @host: MMC host to prepare the command.
425 * @mrq: MMC request to wait for
426 *
427 * Blocks MMC context till host controller will ack end of data request
428 * execution or new request notification arrives from the block layer.
429 * Handles command retries.
430 *
431 * Returns enum mmc_blk_status after checking errors.
432 */
433static int mmc_wait_for_data_req_done(struct mmc_host *host,
434 struct mmc_request *mrq,
435 struct mmc_async_req *next_req)
436{
437 struct mmc_command *cmd;
438 struct mmc_context_info *context_info = &host->context_info;
439 int err;
440 unsigned long flags;
441
442 while (1) {
443 wait_event_interruptible(context_info->wait,
444 (context_info->is_done_rcv ||
445 context_info->is_new_req));
446 spin_lock_irqsave(&context_info->lock, flags);
447 context_info->is_waiting_last_req = false;
448 spin_unlock_irqrestore(&context_info->lock, flags);
449 if (context_info->is_done_rcv) {
450 context_info->is_done_rcv = false;
451 context_info->is_new_req = false;
452 cmd = mrq->cmd;
453
454 if (!cmd->error || !cmd->retries ||
455 mmc_card_removed(host->card)) {
456 err = host->areq->err_check(host->card,
457 host->areq);
458 break; /* return err */
459 } else {
460 mmc_retune_recheck(host);
461 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
462 mmc_hostname(host),
463 cmd->opcode, cmd->error);
464 cmd->retries--;
465 cmd->error = 0;
466 __mmc_start_request(host, mrq);
467 continue; /* wait for done/new event again */
468 }
469 } else if (context_info->is_new_req) {
470 context_info->is_new_req = false;
471 if (!next_req)
472 return MMC_BLK_NEW_REQUEST;
473 }
474 }
475 mmc_retune_release(host);
476 return err;
477}
478
479static void mmc_wait_for_req_done(struct mmc_host *host,
480 struct mmc_request *mrq)
481{
482 struct mmc_command *cmd;
483
484 while (1) {
485 wait_for_completion(&mrq->completion);
486
487 cmd = mrq->cmd;
488
489 /*
490 * If host has timed out waiting for the sanitize
491 * to complete, card might be still in programming state
492 * so let's try to bring the card out of programming
493 * state.
494 */
495 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
496 if (!mmc_interrupt_hpi(host->card)) {
497 pr_warn("%s: %s: Interrupted sanitize\n",
498 mmc_hostname(host), __func__);
499 cmd->error = 0;
500 break;
501 } else {
502 pr_err("%s: %s: Failed to interrupt sanitize\n",
503 mmc_hostname(host), __func__);
504 }
505 }
506 if (!cmd->error || !cmd->retries ||
507 mmc_card_removed(host->card))
508 break;
509
510 mmc_retune_recheck(host);
511
512 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
513 mmc_hostname(host), cmd->opcode, cmd->error);
514 cmd->retries--;
515 cmd->error = 0;
516 __mmc_start_request(host, mrq);
517 }
518
519 mmc_retune_release(host);
520}
521
522/**
523 * mmc_pre_req - Prepare for a new request
524 * @host: MMC host to prepare command
525 * @mrq: MMC request to prepare for
526 * @is_first_req: true if there is no previous started request
527 * that may run in parellel to this call, otherwise false
528 *
529 * mmc_pre_req() is called in prior to mmc_start_req() to let
530 * host prepare for the new request. Preparation of a request may be
531 * performed while another request is running on the host.
532 */
533static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
534 bool is_first_req)
535{
536 if (host->ops->pre_req)
537 host->ops->pre_req(host, mrq, is_first_req);
538}
539
540/**
541 * mmc_post_req - Post process a completed request
542 * @host: MMC host to post process command
543 * @mrq: MMC request to post process for
544 * @err: Error, if non zero, clean up any resources made in pre_req
545 *
546 * Let the host post process a completed request. Post processing of
547 * a request may be performed while another reuqest is running.
548 */
549static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
550 int err)
551{
552 if (host->ops->post_req)
553 host->ops->post_req(host, mrq, err);
554}
555
556/**
557 * mmc_start_req - start a non-blocking request
558 * @host: MMC host to start command
559 * @areq: async request to start
560 * @error: out parameter returns 0 for success, otherwise non zero
561 *
562 * Start a new MMC custom command request for a host.
563 * If there is on ongoing async request wait for completion
564 * of that request and start the new one and return.
565 * Does not wait for the new request to complete.
566 *
567 * Returns the completed request, NULL in case of none completed.
568 * Wait for the an ongoing request (previoulsy started) to complete and
569 * return the completed request. If there is no ongoing request, NULL
570 * is returned without waiting. NULL is not an error condition.
571 */
572struct mmc_async_req *mmc_start_req(struct mmc_host *host,
573 struct mmc_async_req *areq, int *error)
574{
575 int err = 0;
576 int start_err = 0;
577 struct mmc_async_req *data = host->areq;
578
579 /* Prepare a new request */
580 if (areq)
581 mmc_pre_req(host, areq->mrq, !host->areq);
582
583 if (host->areq) {
584 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
585 if (err == MMC_BLK_NEW_REQUEST) {
586 if (error)
587 *error = err;
588 /*
589 * The previous request was not completed,
590 * nothing to return
591 */
592 return NULL;
593 }
594 /*
595 * Check BKOPS urgency for each R1 response
596 */
597 if (host->card && mmc_card_mmc(host->card) &&
598 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
599 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
600 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
601
602 /* Cancel the prepared request */
603 if (areq)
604 mmc_post_req(host, areq->mrq, -EINVAL);
605
606 mmc_start_bkops(host->card, true);
607
608 /* prepare the request again */
609 if (areq)
610 mmc_pre_req(host, areq->mrq, !host->areq);
611 }
612 }
613
614 if (!err && areq)
615 start_err = __mmc_start_data_req(host, areq->mrq);
616
617 if (host->areq)
618 mmc_post_req(host, host->areq->mrq, 0);
619
620 /* Cancel a prepared request if it was not started. */
621 if ((err || start_err) && areq)
622 mmc_post_req(host, areq->mrq, -EINVAL);
623
624 if (err)
625 host->areq = NULL;
626 else
627 host->areq = areq;
628
629 if (error)
630 *error = err;
631 return data;
632}
633EXPORT_SYMBOL(mmc_start_req);
634
635/**
636 * mmc_wait_for_req - start a request and wait for completion
637 * @host: MMC host to start command
638 * @mrq: MMC request to start
639 *
640 * Start a new MMC custom command request for a host, and wait
641 * for the command to complete. Does not attempt to parse the
642 * response.
643 */
644void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
645{
646 __mmc_start_req(host, mrq);
647 mmc_wait_for_req_done(host, mrq);
648}
649EXPORT_SYMBOL(mmc_wait_for_req);
650
651/**
652 * mmc_interrupt_hpi - Issue for High priority Interrupt
653 * @card: the MMC card associated with the HPI transfer
654 *
655 * Issued High Priority Interrupt, and check for card status
656 * until out-of prg-state.
657 */
658int mmc_interrupt_hpi(struct mmc_card *card)
659{
660 int err;
661 u32 status;
662 unsigned long prg_wait;
663
664 BUG_ON(!card);
665
666 if (!card->ext_csd.hpi_en) {
667 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
668 return 1;
669 }
670
671 mmc_claim_host(card->host);
672 err = mmc_send_status(card, &status);
673 if (err) {
674 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
675 goto out;
676 }
677
678 switch (R1_CURRENT_STATE(status)) {
679 case R1_STATE_IDLE:
680 case R1_STATE_READY:
681 case R1_STATE_STBY:
682 case R1_STATE_TRAN:
683 /*
684 * In idle and transfer states, HPI is not needed and the caller
685 * can issue the next intended command immediately
686 */
687 goto out;
688 case R1_STATE_PRG:
689 break;
690 default:
691 /* In all other states, it's illegal to issue HPI */
692 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
693 mmc_hostname(card->host), R1_CURRENT_STATE(status));
694 err = -EINVAL;
695 goto out;
696 }
697
698 err = mmc_send_hpi_cmd(card, &status);
699 if (err)
700 goto out;
701
702 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
703 do {
704 err = mmc_send_status(card, &status);
705
706 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
707 break;
708 if (time_after(jiffies, prg_wait))
709 err = -ETIMEDOUT;
710 } while (!err);
711
712out:
713 mmc_release_host(card->host);
714 return err;
715}
716EXPORT_SYMBOL(mmc_interrupt_hpi);
717
718/**
719 * mmc_wait_for_cmd - start a command and wait for completion
720 * @host: MMC host to start command
721 * @cmd: MMC command to start
722 * @retries: maximum number of retries
723 *
724 * Start a new MMC command for a host, and wait for the command
725 * to complete. Return any error that occurred while the command
726 * was executing. Do not attempt to parse the response.
727 */
728int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
729{
730 struct mmc_request mrq = {NULL};
731
732 WARN_ON(!host->claimed);
733
734 memset(cmd->resp, 0, sizeof(cmd->resp));
735 cmd->retries = retries;
736
737 mrq.cmd = cmd;
738 cmd->data = NULL;
739
740 mmc_wait_for_req(host, &mrq);
741
742 return cmd->error;
743}
744
745EXPORT_SYMBOL(mmc_wait_for_cmd);
746
747/**
748 * mmc_stop_bkops - stop ongoing BKOPS
749 * @card: MMC card to check BKOPS
750 *
751 * Send HPI command to stop ongoing background operations to
752 * allow rapid servicing of foreground operations, e.g. read/
753 * writes. Wait until the card comes out of the programming state
754 * to avoid errors in servicing read/write requests.
755 */
756int mmc_stop_bkops(struct mmc_card *card)
757{
758 int err = 0;
759
760 BUG_ON(!card);
761 err = mmc_interrupt_hpi(card);
762
763 /*
764 * If err is EINVAL, we can't issue an HPI.
765 * It should complete the BKOPS.
766 */
767 if (!err || (err == -EINVAL)) {
768 mmc_card_clr_doing_bkops(card);
769 mmc_retune_release(card->host);
770 err = 0;
771 }
772
773 return err;
774}
775EXPORT_SYMBOL(mmc_stop_bkops);
776
777int mmc_read_bkops_status(struct mmc_card *card)
778{
779 int err;
780 u8 *ext_csd;
781
782 mmc_claim_host(card->host);
783 err = mmc_get_ext_csd(card, &ext_csd);
784 mmc_release_host(card->host);
785 if (err)
786 return err;
787
788 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
789 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
790 kfree(ext_csd);
791 return 0;
792}
793EXPORT_SYMBOL(mmc_read_bkops_status);
794
795/**
796 * mmc_set_data_timeout - set the timeout for a data command
797 * @data: data phase for command
798 * @card: the MMC card associated with the data transfer
799 *
800 * Computes the data timeout parameters according to the
801 * correct algorithm given the card type.
802 */
803void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
804{
805 unsigned int mult;
806
807 /*
808 * SDIO cards only define an upper 1 s limit on access.
809 */
810 if (mmc_card_sdio(card)) {
811 data->timeout_ns = 1000000000;
812 data->timeout_clks = 0;
813 return;
814 }
815
816 /*
817 * SD cards use a 100 multiplier rather than 10
818 */
819 mult = mmc_card_sd(card) ? 100 : 10;
820
821 /*
822 * Scale up the multiplier (and therefore the timeout) by
823 * the r2w factor for writes.
824 */
825 if (data->flags & MMC_DATA_WRITE)
826 mult <<= card->csd.r2w_factor;
827
828 data->timeout_ns = card->csd.tacc_ns * mult;
829 data->timeout_clks = card->csd.tacc_clks * mult;
830
831 /*
832 * SD cards also have an upper limit on the timeout.
833 */
834 if (mmc_card_sd(card)) {
835 unsigned int timeout_us, limit_us;
836
837 timeout_us = data->timeout_ns / 1000;
838 if (card->host->ios.clock)
839 timeout_us += data->timeout_clks * 1000 /
840 (card->host->ios.clock / 1000);
841
842 if (data->flags & MMC_DATA_WRITE)
843 /*
844 * The MMC spec "It is strongly recommended
845 * for hosts to implement more than 500ms
846 * timeout value even if the card indicates
847 * the 250ms maximum busy length." Even the
848 * previous value of 300ms is known to be
849 * insufficient for some cards.
850 */
851 limit_us = 3000000;
852 else
853 limit_us = 100000;
854
855 /*
856 * SDHC cards always use these fixed values.
857 */
858 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
859 data->timeout_ns = limit_us * 1000;
860 data->timeout_clks = 0;
861 }
862
863 /* assign limit value if invalid */
864 if (timeout_us == 0)
865 data->timeout_ns = limit_us * 1000;
866 }
867
868 /*
869 * Some cards require longer data read timeout than indicated in CSD.
870 * Address this by setting the read timeout to a "reasonably high"
871 * value. For the cards tested, 300ms has proven enough. If necessary,
872 * this value can be increased if other problematic cards require this.
873 */
874 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
875 data->timeout_ns = 300000000;
876 data->timeout_clks = 0;
877 }
878
879 /*
880 * Some cards need very high timeouts if driven in SPI mode.
881 * The worst observed timeout was 900ms after writing a
882 * continuous stream of data until the internal logic
883 * overflowed.
884 */
885 if (mmc_host_is_spi(card->host)) {
886 if (data->flags & MMC_DATA_WRITE) {
887 if (data->timeout_ns < 1000000000)
888 data->timeout_ns = 1000000000; /* 1s */
889 } else {
890 if (data->timeout_ns < 100000000)
891 data->timeout_ns = 100000000; /* 100ms */
892 }
893 }
894}
895EXPORT_SYMBOL(mmc_set_data_timeout);
896
897/**
898 * mmc_align_data_size - pads a transfer size to a more optimal value
899 * @card: the MMC card associated with the data transfer
900 * @sz: original transfer size
901 *
902 * Pads the original data size with a number of extra bytes in
903 * order to avoid controller bugs and/or performance hits
904 * (e.g. some controllers revert to PIO for certain sizes).
905 *
906 * Returns the improved size, which might be unmodified.
907 *
908 * Note that this function is only relevant when issuing a
909 * single scatter gather entry.
910 */
911unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
912{
913 /*
914 * FIXME: We don't have a system for the controller to tell
915 * the core about its problems yet, so for now we just 32-bit
916 * align the size.
917 */
918 sz = ((sz + 3) / 4) * 4;
919
920 return sz;
921}
922EXPORT_SYMBOL(mmc_align_data_size);
923
924/**
925 * __mmc_claim_host - exclusively claim a host
926 * @host: mmc host to claim
927 * @abort: whether or not the operation should be aborted
928 *
929 * Claim a host for a set of operations. If @abort is non null and
930 * dereference a non-zero value then this will return prematurely with
931 * that non-zero value without acquiring the lock. Returns zero
932 * with the lock held otherwise.
933 */
934int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
935{
936 DECLARE_WAITQUEUE(wait, current);
937 unsigned long flags;
938 int stop;
939 bool pm = false;
940
941 might_sleep();
942
943 add_wait_queue(&host->wq, &wait);
944 spin_lock_irqsave(&host->lock, flags);
945 while (1) {
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 stop = abort ? atomic_read(abort) : 0;
948 if (stop || !host->claimed || host->claimer == current)
949 break;
950 spin_unlock_irqrestore(&host->lock, flags);
951 schedule();
952 spin_lock_irqsave(&host->lock, flags);
953 }
954 set_current_state(TASK_RUNNING);
955 if (!stop) {
956 host->claimed = 1;
957 host->claimer = current;
958 host->claim_cnt += 1;
959 if (host->claim_cnt == 1)
960 pm = true;
961 } else
962 wake_up(&host->wq);
963 spin_unlock_irqrestore(&host->lock, flags);
964 remove_wait_queue(&host->wq, &wait);
965
966 if (pm)
967 pm_runtime_get_sync(mmc_dev(host));
968
969 return stop;
970}
971EXPORT_SYMBOL(__mmc_claim_host);
972
973/**
974 * mmc_release_host - release a host
975 * @host: mmc host to release
976 *
977 * Release a MMC host, allowing others to claim the host
978 * for their operations.
979 */
980void mmc_release_host(struct mmc_host *host)
981{
982 unsigned long flags;
983
984 WARN_ON(!host->claimed);
985
986 spin_lock_irqsave(&host->lock, flags);
987 if (--host->claim_cnt) {
988 /* Release for nested claim */
989 spin_unlock_irqrestore(&host->lock, flags);
990 } else {
991 host->claimed = 0;
992 host->claimer = NULL;
993 spin_unlock_irqrestore(&host->lock, flags);
994 wake_up(&host->wq);
995 pm_runtime_mark_last_busy(mmc_dev(host));
996 pm_runtime_put_autosuspend(mmc_dev(host));
997 }
998}
999EXPORT_SYMBOL(mmc_release_host);
1000
1001/*
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1004 */
1005void mmc_get_card(struct mmc_card *card)
1006{
1007 pm_runtime_get_sync(&card->dev);
1008 mmc_claim_host(card->host);
1009}
1010EXPORT_SYMBOL(mmc_get_card);
1011
1012/*
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1015 */
1016void mmc_put_card(struct mmc_card *card)
1017{
1018 mmc_release_host(card->host);
1019 pm_runtime_mark_last_busy(&card->dev);
1020 pm_runtime_put_autosuspend(&card->dev);
1021}
1022EXPORT_SYMBOL(mmc_put_card);
1023
1024/*
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1027 */
1028static inline void mmc_set_ios(struct mmc_host *host)
1029{
1030 struct mmc_ios *ios = &host->ios;
1031
1032 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033 "width %u timing %u\n",
1034 mmc_hostname(host), ios->clock, ios->bus_mode,
1035 ios->power_mode, ios->chip_select, ios->vdd,
1036 1 << ios->bus_width, ios->timing);
1037
1038 host->ops->set_ios(host, ios);
1039}
1040
1041/*
1042 * Control chip select pin on a host.
1043 */
1044void mmc_set_chip_select(struct mmc_host *host, int mode)
1045{
1046 host->ios.chip_select = mode;
1047 mmc_set_ios(host);
1048}
1049
1050/*
1051 * Sets the host clock to the highest possible frequency that
1052 * is below "hz".
1053 */
1054void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1055{
1056 WARN_ON(hz && hz < host->f_min);
1057
1058 if (hz > host->f_max)
1059 hz = host->f_max;
1060
1061 host->ios.clock = hz;
1062 mmc_set_ios(host);
1063}
1064
1065int mmc_execute_tuning(struct mmc_card *card)
1066{
1067 struct mmc_host *host = card->host;
1068 u32 opcode;
1069 int err;
1070
1071 if (!host->ops->execute_tuning)
1072 return 0;
1073
1074 if (mmc_card_mmc(card))
1075 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1076 else
1077 opcode = MMC_SEND_TUNING_BLOCK;
1078
1079 err = host->ops->execute_tuning(host, opcode);
1080
1081 if (err)
1082 pr_err("%s: tuning execution failed: %d\n",
1083 mmc_hostname(host), err);
1084 else
1085 mmc_retune_enable(host);
1086
1087 return err;
1088}
1089
1090/*
1091 * Change the bus mode (open drain/push-pull) of a host.
1092 */
1093void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1094{
1095 host->ios.bus_mode = mode;
1096 mmc_set_ios(host);
1097}
1098
1099/*
1100 * Change data bus width of a host.
1101 */
1102void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1103{
1104 host->ios.bus_width = width;
1105 mmc_set_ios(host);
1106}
1107
1108/*
1109 * Set initial state after a power cycle or a hw_reset.
1110 */
1111void mmc_set_initial_state(struct mmc_host *host)
1112{
1113 mmc_retune_disable(host);
1114
1115 if (mmc_host_is_spi(host))
1116 host->ios.chip_select = MMC_CS_HIGH;
1117 else
1118 host->ios.chip_select = MMC_CS_DONTCARE;
1119 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1120 host->ios.bus_width = MMC_BUS_WIDTH_1;
1121 host->ios.timing = MMC_TIMING_LEGACY;
1122 host->ios.drv_type = 0;
1123
1124 mmc_set_ios(host);
1125}
1126
1127/**
1128 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1129 * @vdd: voltage (mV)
1130 * @low_bits: prefer low bits in boundary cases
1131 *
1132 * This function returns the OCR bit number according to the provided @vdd
1133 * value. If conversion is not possible a negative errno value returned.
1134 *
1135 * Depending on the @low_bits flag the function prefers low or high OCR bits
1136 * on boundary voltages. For example,
1137 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1138 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 *
1140 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 */
1142static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1143{
1144 const int max_bit = ilog2(MMC_VDD_35_36);
1145 int bit;
1146
1147 if (vdd < 1650 || vdd > 3600)
1148 return -EINVAL;
1149
1150 if (vdd >= 1650 && vdd <= 1950)
1151 return ilog2(MMC_VDD_165_195);
1152
1153 if (low_bits)
1154 vdd -= 1;
1155
1156 /* Base 2000 mV, step 100 mV, bit's base 8. */
1157 bit = (vdd - 2000) / 100 + 8;
1158 if (bit > max_bit)
1159 return max_bit;
1160 return bit;
1161}
1162
1163/**
1164 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1165 * @vdd_min: minimum voltage value (mV)
1166 * @vdd_max: maximum voltage value (mV)
1167 *
1168 * This function returns the OCR mask bits according to the provided @vdd_min
1169 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 *
1171 * Notes wrt boundary cases:
1172 * This function sets the OCR bits for all boundary voltages, for example
1173 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1174 * MMC_VDD_34_35 mask.
1175 */
1176u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1177{
1178 u32 mask = 0;
1179
1180 if (vdd_max < vdd_min)
1181 return 0;
1182
1183 /* Prefer high bits for the boundary vdd_max values. */
1184 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1185 if (vdd_max < 0)
1186 return 0;
1187
1188 /* Prefer low bits for the boundary vdd_min values. */
1189 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1190 if (vdd_min < 0)
1191 return 0;
1192
1193 /* Fill the mask, from max bit to min bit. */
1194 while (vdd_max >= vdd_min)
1195 mask |= 1 << vdd_max--;
1196
1197 return mask;
1198}
1199EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1200
1201#ifdef CONFIG_OF
1202
1203/**
1204 * mmc_of_parse_voltage - return mask of supported voltages
1205 * @np: The device node need to be parsed.
1206 * @mask: mask of voltages available for MMC/SD/SDIO
1207 *
1208 * Parse the "voltage-ranges" DT property, returning zero if it is not
1209 * found, negative errno if the voltage-range specification is invalid,
1210 * or one if the voltage-range is specified and successfully parsed.
1211 */
1212int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1213{
1214 const u32 *voltage_ranges;
1215 int num_ranges, i;
1216
1217 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1218 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1219 if (!voltage_ranges) {
1220 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1221 return 0;
1222 }
1223 if (!num_ranges) {
1224 pr_err("%s: voltage-ranges empty\n", np->full_name);
1225 return -EINVAL;
1226 }
1227
1228 for (i = 0; i < num_ranges; i++) {
1229 const int j = i * 2;
1230 u32 ocr_mask;
1231
1232 ocr_mask = mmc_vddrange_to_ocrmask(
1233 be32_to_cpu(voltage_ranges[j]),
1234 be32_to_cpu(voltage_ranges[j + 1]));
1235 if (!ocr_mask) {
1236 pr_err("%s: voltage-range #%d is invalid\n",
1237 np->full_name, i);
1238 return -EINVAL;
1239 }
1240 *mask |= ocr_mask;
1241 }
1242
1243 return 1;
1244}
1245EXPORT_SYMBOL(mmc_of_parse_voltage);
1246
1247#endif /* CONFIG_OF */
1248
1249static int mmc_of_get_func_num(struct device_node *node)
1250{
1251 u32 reg;
1252 int ret;
1253
1254 ret = of_property_read_u32(node, "reg", ®);
1255 if (ret < 0)
1256 return ret;
1257
1258 return reg;
1259}
1260
1261struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262 unsigned func_num)
1263{
1264 struct device_node *node;
1265
1266 if (!host->parent || !host->parent->of_node)
1267 return NULL;
1268
1269 for_each_child_of_node(host->parent->of_node, node) {
1270 if (mmc_of_get_func_num(node) == func_num)
1271 return node;
1272 }
1273
1274 return NULL;
1275}
1276
1277#ifdef CONFIG_REGULATOR
1278
1279/**
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit: OCR bit number
1282 * @min_uV: minimum voltage value (mV)
1283 * @max_uV: maximum voltage value (mV)
1284 *
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1287 */
1288static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1289{
1290 int tmp;
1291
1292 if (!vdd_bit)
1293 return -EINVAL;
1294
1295 /*
1296 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297 * bits this regulator doesn't quite support ... don't
1298 * be too picky, most cards and regulators are OK with
1299 * a 0.1V range goof (it's a small error percentage).
1300 */
1301 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302 if (tmp == 0) {
1303 *min_uV = 1650 * 1000;
1304 *max_uV = 1950 * 1000;
1305 } else {
1306 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307 *max_uV = *min_uV + 100 * 1000;
1308 }
1309
1310 return 0;
1311}
1312
1313/**
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1316 *
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator. This would normally be called before registering the
1320 * MMC host adapter.
1321 */
1322int mmc_regulator_get_ocrmask(struct regulator *supply)
1323{
1324 int result = 0;
1325 int count;
1326 int i;
1327 int vdd_uV;
1328 int vdd_mV;
1329
1330 count = regulator_count_voltages(supply);
1331 if (count < 0)
1332 return count;
1333
1334 for (i = 0; i < count; i++) {
1335 vdd_uV = regulator_list_voltage(supply, i);
1336 if (vdd_uV <= 0)
1337 continue;
1338
1339 vdd_mV = vdd_uV / 1000;
1340 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1341 }
1342
1343 if (!result) {
1344 vdd_uV = regulator_get_voltage(supply);
1345 if (vdd_uV <= 0)
1346 return vdd_uV;
1347
1348 vdd_mV = vdd_uV / 1000;
1349 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1350 }
1351
1352 return result;
1353}
1354EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1355
1356/**
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358 * @mmc: the host to regulate
1359 * @supply: regulator to use
1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1361 *
1362 * Returns zero on success, else negative errno.
1363 *
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage. This would normally be called from the
1366 * set_ios() method.
1367 */
1368int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369 struct regulator *supply,
1370 unsigned short vdd_bit)
1371{
1372 int result = 0;
1373 int min_uV, max_uV;
1374
1375 if (vdd_bit) {
1376 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1377
1378 result = regulator_set_voltage(supply, min_uV, max_uV);
1379 if (result == 0 && !mmc->regulator_enabled) {
1380 result = regulator_enable(supply);
1381 if (!result)
1382 mmc->regulator_enabled = true;
1383 }
1384 } else if (mmc->regulator_enabled) {
1385 result = regulator_disable(supply);
1386 if (result == 0)
1387 mmc->regulator_enabled = false;
1388 }
1389
1390 if (result)
1391 dev_err(mmc_dev(mmc),
1392 "could not set regulator OCR (%d)\n", result);
1393 return result;
1394}
1395EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396
1397static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1398 int min_uV, int target_uV,
1399 int max_uV)
1400{
1401 /*
1402 * Check if supported first to avoid errors since we may try several
1403 * signal levels during power up and don't want to show errors.
1404 */
1405 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1406 return -EINVAL;
1407
1408 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1409 max_uV);
1410}
1411
1412/**
1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1414 *
1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1418 * SD card spec also define VQMMC in terms of VMMC.
1419 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1420 *
1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422 * requested voltage. This is definitely a good idea for UHS where there's a
1423 * separate regulator on the card that's trying to make 1.8V and it's best if
1424 * we match.
1425 *
1426 * This function is expected to be used by a controller's
1427 * start_signal_voltage_switch() function.
1428 */
1429int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1430{
1431 struct device *dev = mmc_dev(mmc);
1432 int ret, volt, min_uV, max_uV;
1433
1434 /* If no vqmmc supply then we can't change the voltage */
1435 if (IS_ERR(mmc->supply.vqmmc))
1436 return -EINVAL;
1437
1438 switch (ios->signal_voltage) {
1439 case MMC_SIGNAL_VOLTAGE_120:
1440 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1441 1100000, 1200000, 1300000);
1442 case MMC_SIGNAL_VOLTAGE_180:
1443 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1444 1700000, 1800000, 1950000);
1445 case MMC_SIGNAL_VOLTAGE_330:
1446 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1447 if (ret < 0)
1448 return ret;
1449
1450 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1451 __func__, volt, max_uV);
1452
1453 min_uV = max(volt - 300000, 2700000);
1454 max_uV = min(max_uV + 200000, 3600000);
1455
1456 /*
1457 * Due to a limitation in the current implementation of
1458 * regulator_set_voltage_triplet() which is taking the lowest
1459 * voltage possible if below the target, search for a suitable
1460 * voltage in two steps and try to stay close to vmmc
1461 * with a 0.3V tolerance at first.
1462 */
1463 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1464 min_uV, volt, max_uV))
1465 return 0;
1466
1467 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1468 2700000, volt, 3600000);
1469 default:
1470 return -EINVAL;
1471 }
1472}
1473EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1474
1475#endif /* CONFIG_REGULATOR */
1476
1477int mmc_regulator_get_supply(struct mmc_host *mmc)
1478{
1479 struct device *dev = mmc_dev(mmc);
1480 int ret;
1481
1482 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1483 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1484
1485 if (IS_ERR(mmc->supply.vmmc)) {
1486 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1487 return -EPROBE_DEFER;
1488 dev_dbg(dev, "No vmmc regulator found\n");
1489 } else {
1490 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1491 if (ret > 0)
1492 mmc->ocr_avail = ret;
1493 else
1494 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1495 }
1496
1497 if (IS_ERR(mmc->supply.vqmmc)) {
1498 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1499 return -EPROBE_DEFER;
1500 dev_dbg(dev, "No vqmmc regulator found\n");
1501 }
1502
1503 return 0;
1504}
1505EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1506
1507/*
1508 * Mask off any voltages we don't support and select
1509 * the lowest voltage
1510 */
1511u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1512{
1513 int bit;
1514
1515 /*
1516 * Sanity check the voltages that the card claims to
1517 * support.
1518 */
1519 if (ocr & 0x7F) {
1520 dev_warn(mmc_dev(host),
1521 "card claims to support voltages below defined range\n");
1522 ocr &= ~0x7F;
1523 }
1524
1525 ocr &= host->ocr_avail;
1526 if (!ocr) {
1527 dev_warn(mmc_dev(host), "no support for card's volts\n");
1528 return 0;
1529 }
1530
1531 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1532 bit = ffs(ocr) - 1;
1533 ocr &= 3 << bit;
1534 mmc_power_cycle(host, ocr);
1535 } else {
1536 bit = fls(ocr) - 1;
1537 ocr &= 3 << bit;
1538 if (bit != host->ios.vdd)
1539 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1540 }
1541
1542 return ocr;
1543}
1544
1545int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1546{
1547 int err = 0;
1548 int old_signal_voltage = host->ios.signal_voltage;
1549
1550 host->ios.signal_voltage = signal_voltage;
1551 if (host->ops->start_signal_voltage_switch)
1552 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1553
1554 if (err)
1555 host->ios.signal_voltage = old_signal_voltage;
1556
1557 return err;
1558
1559}
1560
1561int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1562{
1563 struct mmc_command cmd = {0};
1564 int err = 0;
1565 u32 clock;
1566
1567 BUG_ON(!host);
1568
1569 /*
1570 * Send CMD11 only if the request is to switch the card to
1571 * 1.8V signalling.
1572 */
1573 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1574 return __mmc_set_signal_voltage(host, signal_voltage);
1575
1576 /*
1577 * If we cannot switch voltages, return failure so the caller
1578 * can continue without UHS mode
1579 */
1580 if (!host->ops->start_signal_voltage_switch)
1581 return -EPERM;
1582 if (!host->ops->card_busy)
1583 pr_warn("%s: cannot verify signal voltage switch\n",
1584 mmc_hostname(host));
1585
1586 cmd.opcode = SD_SWITCH_VOLTAGE;
1587 cmd.arg = 0;
1588 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1589
1590 err = mmc_wait_for_cmd(host, &cmd, 0);
1591 if (err)
1592 return err;
1593
1594 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1595 return -EIO;
1596
1597 /*
1598 * The card should drive cmd and dat[0:3] low immediately
1599 * after the response of cmd11, but wait 1 ms to be sure
1600 */
1601 mmc_delay(1);
1602 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1603 err = -EAGAIN;
1604 goto power_cycle;
1605 }
1606 /*
1607 * During a signal voltage level switch, the clock must be gated
1608 * for 5 ms according to the SD spec
1609 */
1610 clock = host->ios.clock;
1611 host->ios.clock = 0;
1612 mmc_set_ios(host);
1613
1614 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1615 /*
1616 * Voltages may not have been switched, but we've already
1617 * sent CMD11, so a power cycle is required anyway
1618 */
1619 err = -EAGAIN;
1620 goto power_cycle;
1621 }
1622
1623 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1624 mmc_delay(10);
1625 host->ios.clock = clock;
1626 mmc_set_ios(host);
1627
1628 /* Wait for at least 1 ms according to spec */
1629 mmc_delay(1);
1630
1631 /*
1632 * Failure to switch is indicated by the card holding
1633 * dat[0:3] low
1634 */
1635 if (host->ops->card_busy && host->ops->card_busy(host))
1636 err = -EAGAIN;
1637
1638power_cycle:
1639 if (err) {
1640 pr_debug("%s: Signal voltage switch failed, "
1641 "power cycling card\n", mmc_hostname(host));
1642 mmc_power_cycle(host, ocr);
1643 }
1644
1645 return err;
1646}
1647
1648/*
1649 * Select timing parameters for host.
1650 */
1651void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1652{
1653 host->ios.timing = timing;
1654 mmc_set_ios(host);
1655}
1656
1657/*
1658 * Select appropriate driver type for host.
1659 */
1660void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1661{
1662 host->ios.drv_type = drv_type;
1663 mmc_set_ios(host);
1664}
1665
1666int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1667 int card_drv_type, int *drv_type)
1668{
1669 struct mmc_host *host = card->host;
1670 int host_drv_type = SD_DRIVER_TYPE_B;
1671
1672 *drv_type = 0;
1673
1674 if (!host->ops->select_drive_strength)
1675 return 0;
1676
1677 /* Use SD definition of driver strength for hosts */
1678 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1679 host_drv_type |= SD_DRIVER_TYPE_A;
1680
1681 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1682 host_drv_type |= SD_DRIVER_TYPE_C;
1683
1684 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1685 host_drv_type |= SD_DRIVER_TYPE_D;
1686
1687 /*
1688 * The drive strength that the hardware can support
1689 * depends on the board design. Pass the appropriate
1690 * information and let the hardware specific code
1691 * return what is possible given the options
1692 */
1693 return host->ops->select_drive_strength(card, max_dtr,
1694 host_drv_type,
1695 card_drv_type,
1696 drv_type);
1697}
1698
1699/*
1700 * Apply power to the MMC stack. This is a two-stage process.
1701 * First, we enable power to the card without the clock running.
1702 * We then wait a bit for the power to stabilise. Finally,
1703 * enable the bus drivers and clock to the card.
1704 *
1705 * We must _NOT_ enable the clock prior to power stablising.
1706 *
1707 * If a host does all the power sequencing itself, ignore the
1708 * initial MMC_POWER_UP stage.
1709 */
1710void mmc_power_up(struct mmc_host *host, u32 ocr)
1711{
1712 if (host->ios.power_mode == MMC_POWER_ON)
1713 return;
1714
1715 mmc_pwrseq_pre_power_on(host);
1716
1717 host->ios.vdd = fls(ocr) - 1;
1718 host->ios.power_mode = MMC_POWER_UP;
1719 /* Set initial state and call mmc_set_ios */
1720 mmc_set_initial_state(host);
1721
1722 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1724 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1725 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1726 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1727 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1728 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1729
1730 /*
1731 * This delay should be sufficient to allow the power supply
1732 * to reach the minimum voltage.
1733 */
1734 mmc_delay(10);
1735
1736 mmc_pwrseq_post_power_on(host);
1737
1738 host->ios.clock = host->f_init;
1739
1740 host->ios.power_mode = MMC_POWER_ON;
1741 mmc_set_ios(host);
1742
1743 /*
1744 * This delay must be at least 74 clock sizes, or 1 ms, or the
1745 * time required to reach a stable voltage.
1746 */
1747 mmc_delay(10);
1748}
1749
1750void mmc_power_off(struct mmc_host *host)
1751{
1752 if (host->ios.power_mode == MMC_POWER_OFF)
1753 return;
1754
1755 mmc_pwrseq_power_off(host);
1756
1757 host->ios.clock = 0;
1758 host->ios.vdd = 0;
1759
1760 host->ios.power_mode = MMC_POWER_OFF;
1761 /* Set initial state and call mmc_set_ios */
1762 mmc_set_initial_state(host);
1763
1764 /*
1765 * Some configurations, such as the 802.11 SDIO card in the OLPC
1766 * XO-1.5, require a short delay after poweroff before the card
1767 * can be successfully turned on again.
1768 */
1769 mmc_delay(1);
1770}
1771
1772void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1773{
1774 mmc_power_off(host);
1775 /* Wait at least 1 ms according to SD spec */
1776 mmc_delay(1);
1777 mmc_power_up(host, ocr);
1778}
1779
1780/*
1781 * Cleanup when the last reference to the bus operator is dropped.
1782 */
1783static void __mmc_release_bus(struct mmc_host *host)
1784{
1785 BUG_ON(!host);
1786 BUG_ON(host->bus_refs);
1787 BUG_ON(!host->bus_dead);
1788
1789 host->bus_ops = NULL;
1790}
1791
1792/*
1793 * Increase reference count of bus operator
1794 */
1795static inline void mmc_bus_get(struct mmc_host *host)
1796{
1797 unsigned long flags;
1798
1799 spin_lock_irqsave(&host->lock, flags);
1800 host->bus_refs++;
1801 spin_unlock_irqrestore(&host->lock, flags);
1802}
1803
1804/*
1805 * Decrease reference count of bus operator and free it if
1806 * it is the last reference.
1807 */
1808static inline void mmc_bus_put(struct mmc_host *host)
1809{
1810 unsigned long flags;
1811
1812 spin_lock_irqsave(&host->lock, flags);
1813 host->bus_refs--;
1814 if ((host->bus_refs == 0) && host->bus_ops)
1815 __mmc_release_bus(host);
1816 spin_unlock_irqrestore(&host->lock, flags);
1817}
1818
1819/*
1820 * Assign a mmc bus handler to a host. Only one bus handler may control a
1821 * host at any given time.
1822 */
1823void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1824{
1825 unsigned long flags;
1826
1827 BUG_ON(!host);
1828 BUG_ON(!ops);
1829
1830 WARN_ON(!host->claimed);
1831
1832 spin_lock_irqsave(&host->lock, flags);
1833
1834 BUG_ON(host->bus_ops);
1835 BUG_ON(host->bus_refs);
1836
1837 host->bus_ops = ops;
1838 host->bus_refs = 1;
1839 host->bus_dead = 0;
1840
1841 spin_unlock_irqrestore(&host->lock, flags);
1842}
1843
1844/*
1845 * Remove the current bus handler from a host.
1846 */
1847void mmc_detach_bus(struct mmc_host *host)
1848{
1849 unsigned long flags;
1850
1851 BUG_ON(!host);
1852
1853 WARN_ON(!host->claimed);
1854 WARN_ON(!host->bus_ops);
1855
1856 spin_lock_irqsave(&host->lock, flags);
1857
1858 host->bus_dead = 1;
1859
1860 spin_unlock_irqrestore(&host->lock, flags);
1861
1862 mmc_bus_put(host);
1863}
1864
1865static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1866 bool cd_irq)
1867{
1868#ifdef CONFIG_MMC_DEBUG
1869 unsigned long flags;
1870 spin_lock_irqsave(&host->lock, flags);
1871 WARN_ON(host->removed);
1872 spin_unlock_irqrestore(&host->lock, flags);
1873#endif
1874
1875 /*
1876 * If the device is configured as wakeup, we prevent a new sleep for
1877 * 5 s to give provision for user space to consume the event.
1878 */
1879 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1880 device_can_wakeup(mmc_dev(host)))
1881 pm_wakeup_event(mmc_dev(host), 5000);
1882
1883 host->detect_change = 1;
1884 mmc_schedule_delayed_work(&host->detect, delay);
1885}
1886
1887/**
1888 * mmc_detect_change - process change of state on a MMC socket
1889 * @host: host which changed state.
1890 * @delay: optional delay to wait before detection (jiffies)
1891 *
1892 * MMC drivers should call this when they detect a card has been
1893 * inserted or removed. The MMC layer will confirm that any
1894 * present card is still functional, and initialize any newly
1895 * inserted.
1896 */
1897void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1898{
1899 _mmc_detect_change(host, delay, true);
1900}
1901EXPORT_SYMBOL(mmc_detect_change);
1902
1903void mmc_init_erase(struct mmc_card *card)
1904{
1905 unsigned int sz;
1906
1907 if (is_power_of_2(card->erase_size))
1908 card->erase_shift = ffs(card->erase_size) - 1;
1909 else
1910 card->erase_shift = 0;
1911
1912 /*
1913 * It is possible to erase an arbitrarily large area of an SD or MMC
1914 * card. That is not desirable because it can take a long time
1915 * (minutes) potentially delaying more important I/O, and also the
1916 * timeout calculations become increasingly hugely over-estimated.
1917 * Consequently, 'pref_erase' is defined as a guide to limit erases
1918 * to that size and alignment.
1919 *
1920 * For SD cards that define Allocation Unit size, limit erases to one
1921 * Allocation Unit at a time. For MMC cards that define High Capacity
1922 * Erase Size, whether it is switched on or not, limit to that size.
1923 * Otherwise just have a stab at a good value. For modern cards it
1924 * will end up being 4MiB. Note that if the value is too small, it
1925 * can end up taking longer to erase.
1926 */
1927 if (mmc_card_sd(card) && card->ssr.au) {
1928 card->pref_erase = card->ssr.au;
1929 card->erase_shift = ffs(card->ssr.au) - 1;
1930 } else if (card->ext_csd.hc_erase_size) {
1931 card->pref_erase = card->ext_csd.hc_erase_size;
1932 } else if (card->erase_size) {
1933 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1934 if (sz < 128)
1935 card->pref_erase = 512 * 1024 / 512;
1936 else if (sz < 512)
1937 card->pref_erase = 1024 * 1024 / 512;
1938 else if (sz < 1024)
1939 card->pref_erase = 2 * 1024 * 1024 / 512;
1940 else
1941 card->pref_erase = 4 * 1024 * 1024 / 512;
1942 if (card->pref_erase < card->erase_size)
1943 card->pref_erase = card->erase_size;
1944 else {
1945 sz = card->pref_erase % card->erase_size;
1946 if (sz)
1947 card->pref_erase += card->erase_size - sz;
1948 }
1949 } else
1950 card->pref_erase = 0;
1951}
1952
1953static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg, unsigned int qty)
1955{
1956 unsigned int erase_timeout;
1957
1958 if (arg == MMC_DISCARD_ARG ||
1959 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1960 erase_timeout = card->ext_csd.trim_timeout;
1961 } else if (card->ext_csd.erase_group_def & 1) {
1962 /* High Capacity Erase Group Size uses HC timeouts */
1963 if (arg == MMC_TRIM_ARG)
1964 erase_timeout = card->ext_csd.trim_timeout;
1965 else
1966 erase_timeout = card->ext_csd.hc_erase_timeout;
1967 } else {
1968 /* CSD Erase Group Size uses write timeout */
1969 unsigned int mult = (10 << card->csd.r2w_factor);
1970 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1971 unsigned int timeout_us;
1972
1973 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974 if (card->csd.tacc_ns < 1000000)
1975 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1976 else
1977 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1978
1979 /*
1980 * ios.clock is only a target. The real clock rate might be
1981 * less but not that much less, so fudge it by multiplying by 2.
1982 */
1983 timeout_clks <<= 1;
1984 timeout_us += (timeout_clks * 1000) /
1985 (card->host->ios.clock / 1000);
1986
1987 erase_timeout = timeout_us / 1000;
1988
1989 /*
1990 * Theoretically, the calculation could underflow so round up
1991 * to 1ms in that case.
1992 */
1993 if (!erase_timeout)
1994 erase_timeout = 1;
1995 }
1996
1997 /* Multiplier for secure operations */
1998 if (arg & MMC_SECURE_ARGS) {
1999 if (arg == MMC_SECURE_ERASE_ARG)
2000 erase_timeout *= card->ext_csd.sec_erase_mult;
2001 else
2002 erase_timeout *= card->ext_csd.sec_trim_mult;
2003 }
2004
2005 erase_timeout *= qty;
2006
2007 /*
2008 * Ensure at least a 1 second timeout for SPI as per
2009 * 'mmc_set_data_timeout()'
2010 */
2011 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2012 erase_timeout = 1000;
2013
2014 return erase_timeout;
2015}
2016
2017static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2018 unsigned int arg,
2019 unsigned int qty)
2020{
2021 unsigned int erase_timeout;
2022
2023 if (card->ssr.erase_timeout) {
2024 /* Erase timeout specified in SD Status Register (SSR) */
2025 erase_timeout = card->ssr.erase_timeout * qty +
2026 card->ssr.erase_offset;
2027 } else {
2028 /*
2029 * Erase timeout not specified in SD Status Register (SSR) so
2030 * use 250ms per write block.
2031 */
2032 erase_timeout = 250 * qty;
2033 }
2034
2035 /* Must not be less than 1 second */
2036 if (erase_timeout < 1000)
2037 erase_timeout = 1000;
2038
2039 return erase_timeout;
2040}
2041
2042static unsigned int mmc_erase_timeout(struct mmc_card *card,
2043 unsigned int arg,
2044 unsigned int qty)
2045{
2046 if (mmc_card_sd(card))
2047 return mmc_sd_erase_timeout(card, arg, qty);
2048 else
2049 return mmc_mmc_erase_timeout(card, arg, qty);
2050}
2051
2052static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2053 unsigned int to, unsigned int arg)
2054{
2055 struct mmc_command cmd = {0};
2056 unsigned int qty = 0;
2057 unsigned long timeout;
2058 int err;
2059
2060 mmc_retune_hold(card->host);
2061
2062 /*
2063 * qty is used to calculate the erase timeout which depends on how many
2064 * erase groups (or allocation units in SD terminology) are affected.
2065 * We count erasing part of an erase group as one erase group.
2066 * For SD, the allocation units are always a power of 2. For MMC, the
2067 * erase group size is almost certainly also power of 2, but it does not
2068 * seem to insist on that in the JEDEC standard, so we fall back to
2069 * division in that case. SD may not specify an allocation unit size,
2070 * in which case the timeout is based on the number of write blocks.
2071 *
2072 * Note that the timeout for secure trim 2 will only be correct if the
2073 * number of erase groups specified is the same as the total of all
2074 * preceding secure trim 1 commands. Since the power may have been
2075 * lost since the secure trim 1 commands occurred, it is generally
2076 * impossible to calculate the secure trim 2 timeout correctly.
2077 */
2078 if (card->erase_shift)
2079 qty += ((to >> card->erase_shift) -
2080 (from >> card->erase_shift)) + 1;
2081 else if (mmc_card_sd(card))
2082 qty += to - from + 1;
2083 else
2084 qty += ((to / card->erase_size) -
2085 (from / card->erase_size)) + 1;
2086
2087 if (!mmc_card_blockaddr(card)) {
2088 from <<= 9;
2089 to <<= 9;
2090 }
2091
2092 if (mmc_card_sd(card))
2093 cmd.opcode = SD_ERASE_WR_BLK_START;
2094 else
2095 cmd.opcode = MMC_ERASE_GROUP_START;
2096 cmd.arg = from;
2097 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2098 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2099 if (err) {
2100 pr_err("mmc_erase: group start error %d, "
2101 "status %#x\n", err, cmd.resp[0]);
2102 err = -EIO;
2103 goto out;
2104 }
2105
2106 memset(&cmd, 0, sizeof(struct mmc_command));
2107 if (mmc_card_sd(card))
2108 cmd.opcode = SD_ERASE_WR_BLK_END;
2109 else
2110 cmd.opcode = MMC_ERASE_GROUP_END;
2111 cmd.arg = to;
2112 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114 if (err) {
2115 pr_err("mmc_erase: group end error %d, status %#x\n",
2116 err, cmd.resp[0]);
2117 err = -EIO;
2118 goto out;
2119 }
2120
2121 memset(&cmd, 0, sizeof(struct mmc_command));
2122 cmd.opcode = MMC_ERASE;
2123 cmd.arg = arg;
2124 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2125 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2126 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2127 if (err) {
2128 pr_err("mmc_erase: erase error %d, status %#x\n",
2129 err, cmd.resp[0]);
2130 err = -EIO;
2131 goto out;
2132 }
2133
2134 if (mmc_host_is_spi(card->host))
2135 goto out;
2136
2137 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2138 do {
2139 memset(&cmd, 0, sizeof(struct mmc_command));
2140 cmd.opcode = MMC_SEND_STATUS;
2141 cmd.arg = card->rca << 16;
2142 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2143 /* Do not retry else we can't see errors */
2144 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2145 if (err || (cmd.resp[0] & 0xFDF92000)) {
2146 pr_err("error %d requesting status %#x\n",
2147 err, cmd.resp[0]);
2148 err = -EIO;
2149 goto out;
2150 }
2151
2152 /* Timeout if the device never becomes ready for data and
2153 * never leaves the program state.
2154 */
2155 if (time_after(jiffies, timeout)) {
2156 pr_err("%s: Card stuck in programming state! %s\n",
2157 mmc_hostname(card->host), __func__);
2158 err = -EIO;
2159 goto out;
2160 }
2161
2162 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2163 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2164out:
2165 mmc_retune_release(card->host);
2166 return err;
2167}
2168
2169/**
2170 * mmc_erase - erase sectors.
2171 * @card: card to erase
2172 * @from: first sector to erase
2173 * @nr: number of sectors to erase
2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2175 *
2176 * Caller must claim host before calling this function.
2177 */
2178int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2179 unsigned int arg)
2180{
2181 unsigned int rem, to = from + nr;
2182 int err;
2183
2184 if (!(card->host->caps & MMC_CAP_ERASE) ||
2185 !(card->csd.cmdclass & CCC_ERASE))
2186 return -EOPNOTSUPP;
2187
2188 if (!card->erase_size)
2189 return -EOPNOTSUPP;
2190
2191 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2192 return -EOPNOTSUPP;
2193
2194 if ((arg & MMC_SECURE_ARGS) &&
2195 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2196 return -EOPNOTSUPP;
2197
2198 if ((arg & MMC_TRIM_ARGS) &&
2199 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2200 return -EOPNOTSUPP;
2201
2202 if (arg == MMC_SECURE_ERASE_ARG) {
2203 if (from % card->erase_size || nr % card->erase_size)
2204 return -EINVAL;
2205 }
2206
2207 if (arg == MMC_ERASE_ARG) {
2208 rem = from % card->erase_size;
2209 if (rem) {
2210 rem = card->erase_size - rem;
2211 from += rem;
2212 if (nr > rem)
2213 nr -= rem;
2214 else
2215 return 0;
2216 }
2217 rem = nr % card->erase_size;
2218 if (rem)
2219 nr -= rem;
2220 }
2221
2222 if (nr == 0)
2223 return 0;
2224
2225 to = from + nr;
2226
2227 if (to <= from)
2228 return -EINVAL;
2229
2230 /* 'from' and 'to' are inclusive */
2231 to -= 1;
2232
2233 /*
2234 * Special case where only one erase-group fits in the timeout budget:
2235 * If the region crosses an erase-group boundary on this particular
2236 * case, we will be trimming more than one erase-group which, does not
2237 * fit in the timeout budget of the controller, so we need to split it
2238 * and call mmc_do_erase() twice if necessary. This special case is
2239 * identified by the card->eg_boundary flag.
2240 */
2241 rem = card->erase_size - (from % card->erase_size);
2242 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2243 err = mmc_do_erase(card, from, from + rem - 1, arg);
2244 from += rem;
2245 if ((err) || (to <= from))
2246 return err;
2247 }
2248
2249 return mmc_do_erase(card, from, to, arg);
2250}
2251EXPORT_SYMBOL(mmc_erase);
2252
2253int mmc_can_erase(struct mmc_card *card)
2254{
2255 if ((card->host->caps & MMC_CAP_ERASE) &&
2256 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2257 return 1;
2258 return 0;
2259}
2260EXPORT_SYMBOL(mmc_can_erase);
2261
2262int mmc_can_trim(struct mmc_card *card)
2263{
2264 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2265 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2266 return 1;
2267 return 0;
2268}
2269EXPORT_SYMBOL(mmc_can_trim);
2270
2271int mmc_can_discard(struct mmc_card *card)
2272{
2273 /*
2274 * As there's no way to detect the discard support bit at v4.5
2275 * use the s/w feature support filed.
2276 */
2277 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2278 return 1;
2279 return 0;
2280}
2281EXPORT_SYMBOL(mmc_can_discard);
2282
2283int mmc_can_sanitize(struct mmc_card *card)
2284{
2285 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2286 return 0;
2287 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2288 return 1;
2289 return 0;
2290}
2291EXPORT_SYMBOL(mmc_can_sanitize);
2292
2293int mmc_can_secure_erase_trim(struct mmc_card *card)
2294{
2295 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2296 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2297 return 1;
2298 return 0;
2299}
2300EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2301
2302int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2303 unsigned int nr)
2304{
2305 if (!card->erase_size)
2306 return 0;
2307 if (from % card->erase_size || nr % card->erase_size)
2308 return 0;
2309 return 1;
2310}
2311EXPORT_SYMBOL(mmc_erase_group_aligned);
2312
2313static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2314 unsigned int arg)
2315{
2316 struct mmc_host *host = card->host;
2317 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2318 unsigned int last_timeout = 0;
2319
2320 if (card->erase_shift)
2321 max_qty = UINT_MAX >> card->erase_shift;
2322 else if (mmc_card_sd(card))
2323 max_qty = UINT_MAX;
2324 else
2325 max_qty = UINT_MAX / card->erase_size;
2326
2327 /* Find the largest qty with an OK timeout */
2328 do {
2329 y = 0;
2330 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2331 timeout = mmc_erase_timeout(card, arg, qty + x);
2332 if (timeout > host->max_busy_timeout)
2333 break;
2334 if (timeout < last_timeout)
2335 break;
2336 last_timeout = timeout;
2337 y = x;
2338 }
2339 qty += y;
2340 } while (y);
2341
2342 if (!qty)
2343 return 0;
2344
2345 /*
2346 * When specifying a sector range to trim, chances are we might cross
2347 * an erase-group boundary even if the amount of sectors is less than
2348 * one erase-group.
2349 * If we can only fit one erase-group in the controller timeout budget,
2350 * we have to care that erase-group boundaries are not crossed by a
2351 * single trim operation. We flag that special case with "eg_boundary".
2352 * In all other cases we can just decrement qty and pretend that we
2353 * always touch (qty + 1) erase-groups as a simple optimization.
2354 */
2355 if (qty == 1)
2356 card->eg_boundary = 1;
2357 else
2358 qty--;
2359
2360 /* Convert qty to sectors */
2361 if (card->erase_shift)
2362 max_discard = qty << card->erase_shift;
2363 else if (mmc_card_sd(card))
2364 max_discard = qty + 1;
2365 else
2366 max_discard = qty * card->erase_size;
2367
2368 return max_discard;
2369}
2370
2371unsigned int mmc_calc_max_discard(struct mmc_card *card)
2372{
2373 struct mmc_host *host = card->host;
2374 unsigned int max_discard, max_trim;
2375
2376 if (!host->max_busy_timeout)
2377 return UINT_MAX;
2378
2379 /*
2380 * Without erase_group_def set, MMC erase timeout depends on clock
2381 * frequence which can change. In that case, the best choice is
2382 * just the preferred erase size.
2383 */
2384 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2385 return card->pref_erase;
2386
2387 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2388 if (mmc_can_trim(card)) {
2389 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2390 if (max_trim < max_discard)
2391 max_discard = max_trim;
2392 } else if (max_discard < card->erase_size) {
2393 max_discard = 0;
2394 }
2395 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396 mmc_hostname(host), max_discard, host->max_busy_timeout);
2397 return max_discard;
2398}
2399EXPORT_SYMBOL(mmc_calc_max_discard);
2400
2401int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402{
2403 struct mmc_command cmd = {0};
2404
2405 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2406 return 0;
2407
2408 cmd.opcode = MMC_SET_BLOCKLEN;
2409 cmd.arg = blocklen;
2410 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2411 return mmc_wait_for_cmd(card->host, &cmd, 5);
2412}
2413EXPORT_SYMBOL(mmc_set_blocklen);
2414
2415int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2416 bool is_rel_write)
2417{
2418 struct mmc_command cmd = {0};
2419
2420 cmd.opcode = MMC_SET_BLOCK_COUNT;
2421 cmd.arg = blockcount & 0x0000FFFF;
2422 if (is_rel_write)
2423 cmd.arg |= 1 << 31;
2424 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2425 return mmc_wait_for_cmd(card->host, &cmd, 5);
2426}
2427EXPORT_SYMBOL(mmc_set_blockcount);
2428
2429static void mmc_hw_reset_for_init(struct mmc_host *host)
2430{
2431 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2432 return;
2433 host->ops->hw_reset(host);
2434}
2435
2436int mmc_hw_reset(struct mmc_host *host)
2437{
2438 int ret;
2439
2440 if (!host->card)
2441 return -EINVAL;
2442
2443 mmc_bus_get(host);
2444 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2445 mmc_bus_put(host);
2446 return -EOPNOTSUPP;
2447 }
2448
2449 ret = host->bus_ops->reset(host);
2450 mmc_bus_put(host);
2451
2452 if (ret != -EOPNOTSUPP)
2453 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2454
2455 return ret;
2456}
2457EXPORT_SYMBOL(mmc_hw_reset);
2458
2459static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2460{
2461 host->f_init = freq;
2462
2463#ifdef CONFIG_MMC_DEBUG
2464 pr_info("%s: %s: trying to init card at %u Hz\n",
2465 mmc_hostname(host), __func__, host->f_init);
2466#endif
2467 mmc_power_up(host, host->ocr_avail);
2468
2469 /*
2470 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471 * do a hardware reset if possible.
2472 */
2473 mmc_hw_reset_for_init(host);
2474
2475 /*
2476 * sdio_reset sends CMD52 to reset card. Since we do not know
2477 * if the card is being re-initialized, just send it. CMD52
2478 * should be ignored by SD/eMMC cards.
2479 * Skip it if we already know that we do not support SDIO commands
2480 */
2481 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2482 sdio_reset(host);
2483
2484 mmc_go_idle(host);
2485
2486 mmc_send_if_cond(host, host->ocr_avail);
2487
2488 /* Order's important: probe SDIO, then SD, then MMC */
2489 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2490 if (!mmc_attach_sdio(host))
2491 return 0;
2492
2493 if (!mmc_attach_sd(host))
2494 return 0;
2495 if (!mmc_attach_mmc(host))
2496 return 0;
2497
2498 mmc_power_off(host);
2499 return -EIO;
2500}
2501
2502int _mmc_detect_card_removed(struct mmc_host *host)
2503{
2504 int ret;
2505
2506 if (!host->card || mmc_card_removed(host->card))
2507 return 1;
2508
2509 ret = host->bus_ops->alive(host);
2510
2511 /*
2512 * Card detect status and alive check may be out of sync if card is
2513 * removed slowly, when card detect switch changes while card/slot
2514 * pads are still contacted in hardware (refer to "SD Card Mechanical
2515 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2516 * detect work 200ms later for this case.
2517 */
2518 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2519 mmc_detect_change(host, msecs_to_jiffies(200));
2520 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2521 }
2522
2523 if (ret) {
2524 mmc_card_set_removed(host->card);
2525 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2526 }
2527
2528 return ret;
2529}
2530
2531int mmc_detect_card_removed(struct mmc_host *host)
2532{
2533 struct mmc_card *card = host->card;
2534 int ret;
2535
2536 WARN_ON(!host->claimed);
2537
2538 if (!card)
2539 return 1;
2540
2541 if (!mmc_card_is_removable(host))
2542 return 0;
2543
2544 ret = mmc_card_removed(card);
2545 /*
2546 * The card will be considered unchanged unless we have been asked to
2547 * detect a change or host requires polling to provide card detection.
2548 */
2549 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2550 return ret;
2551
2552 host->detect_change = 0;
2553 if (!ret) {
2554 ret = _mmc_detect_card_removed(host);
2555 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2556 /*
2557 * Schedule a detect work as soon as possible to let a
2558 * rescan handle the card removal.
2559 */
2560 cancel_delayed_work(&host->detect);
2561 _mmc_detect_change(host, 0, false);
2562 }
2563 }
2564
2565 return ret;
2566}
2567EXPORT_SYMBOL(mmc_detect_card_removed);
2568
2569void mmc_rescan(struct work_struct *work)
2570{
2571 struct mmc_host *host =
2572 container_of(work, struct mmc_host, detect.work);
2573 int i;
2574
2575 if (host->rescan_disable)
2576 return;
2577
2578 /* If there is a non-removable card registered, only scan once */
2579 if (!mmc_card_is_removable(host) && host->rescan_entered)
2580 return;
2581 host->rescan_entered = 1;
2582
2583 if (host->trigger_card_event && host->ops->card_event) {
2584 mmc_claim_host(host);
2585 host->ops->card_event(host);
2586 mmc_release_host(host);
2587 host->trigger_card_event = false;
2588 }
2589
2590 mmc_bus_get(host);
2591
2592 /*
2593 * if there is a _removable_ card registered, check whether it is
2594 * still present
2595 */
2596 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2597 host->bus_ops->detect(host);
2598
2599 host->detect_change = 0;
2600
2601 /*
2602 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2603 * the card is no longer present.
2604 */
2605 mmc_bus_put(host);
2606 mmc_bus_get(host);
2607
2608 /* if there still is a card present, stop here */
2609 if (host->bus_ops != NULL) {
2610 mmc_bus_put(host);
2611 goto out;
2612 }
2613
2614 /*
2615 * Only we can add a new handler, so it's safe to
2616 * release the lock here.
2617 */
2618 mmc_bus_put(host);
2619
2620 mmc_claim_host(host);
2621 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2622 host->ops->get_cd(host) == 0) {
2623 mmc_power_off(host);
2624 mmc_release_host(host);
2625 goto out;
2626 }
2627
2628 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2629 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2630 break;
2631 if (freqs[i] <= host->f_min)
2632 break;
2633 }
2634 mmc_release_host(host);
2635
2636 out:
2637 if (host->caps & MMC_CAP_NEEDS_POLL)
2638 mmc_schedule_delayed_work(&host->detect, HZ);
2639}
2640
2641void mmc_start_host(struct mmc_host *host)
2642{
2643 host->f_init = max(freqs[0], host->f_min);
2644 host->rescan_disable = 0;
2645 host->ios.power_mode = MMC_POWER_UNDEFINED;
2646
2647 mmc_claim_host(host);
2648 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2649 mmc_power_off(host);
2650 else
2651 mmc_power_up(host, host->ocr_avail);
2652 mmc_release_host(host);
2653
2654 mmc_gpiod_request_cd_irq(host);
2655 _mmc_detect_change(host, 0, false);
2656}
2657
2658void mmc_stop_host(struct mmc_host *host)
2659{
2660#ifdef CONFIG_MMC_DEBUG
2661 unsigned long flags;
2662 spin_lock_irqsave(&host->lock, flags);
2663 host->removed = 1;
2664 spin_unlock_irqrestore(&host->lock, flags);
2665#endif
2666 if (host->slot.cd_irq >= 0)
2667 disable_irq(host->slot.cd_irq);
2668
2669 host->rescan_disable = 1;
2670 cancel_delayed_work_sync(&host->detect);
2671
2672 /* clear pm flags now and let card drivers set them as needed */
2673 host->pm_flags = 0;
2674
2675 mmc_bus_get(host);
2676 if (host->bus_ops && !host->bus_dead) {
2677 /* Calling bus_ops->remove() with a claimed host can deadlock */
2678 host->bus_ops->remove(host);
2679 mmc_claim_host(host);
2680 mmc_detach_bus(host);
2681 mmc_power_off(host);
2682 mmc_release_host(host);
2683 mmc_bus_put(host);
2684 return;
2685 }
2686 mmc_bus_put(host);
2687
2688 BUG_ON(host->card);
2689
2690 mmc_claim_host(host);
2691 mmc_power_off(host);
2692 mmc_release_host(host);
2693}
2694
2695int mmc_power_save_host(struct mmc_host *host)
2696{
2697 int ret = 0;
2698
2699#ifdef CONFIG_MMC_DEBUG
2700 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2701#endif
2702
2703 mmc_bus_get(host);
2704
2705 if (!host->bus_ops || host->bus_dead) {
2706 mmc_bus_put(host);
2707 return -EINVAL;
2708 }
2709
2710 if (host->bus_ops->power_save)
2711 ret = host->bus_ops->power_save(host);
2712
2713 mmc_bus_put(host);
2714
2715 mmc_power_off(host);
2716
2717 return ret;
2718}
2719EXPORT_SYMBOL(mmc_power_save_host);
2720
2721int mmc_power_restore_host(struct mmc_host *host)
2722{
2723 int ret;
2724
2725#ifdef CONFIG_MMC_DEBUG
2726 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2727#endif
2728
2729 mmc_bus_get(host);
2730
2731 if (!host->bus_ops || host->bus_dead) {
2732 mmc_bus_put(host);
2733 return -EINVAL;
2734 }
2735
2736 mmc_power_up(host, host->card->ocr);
2737 ret = host->bus_ops->power_restore(host);
2738
2739 mmc_bus_put(host);
2740
2741 return ret;
2742}
2743EXPORT_SYMBOL(mmc_power_restore_host);
2744
2745/*
2746 * Flush the cache to the non-volatile storage.
2747 */
2748int mmc_flush_cache(struct mmc_card *card)
2749{
2750 int err = 0;
2751
2752 if (mmc_card_mmc(card) &&
2753 (card->ext_csd.cache_size > 0) &&
2754 (card->ext_csd.cache_ctrl & 1)) {
2755 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2756 EXT_CSD_FLUSH_CACHE, 1, 0);
2757 if (err)
2758 pr_err("%s: cache flush error %d\n",
2759 mmc_hostname(card->host), err);
2760 }
2761
2762 return err;
2763}
2764EXPORT_SYMBOL(mmc_flush_cache);
2765
2766#ifdef CONFIG_PM_SLEEP
2767/* Do the card removal on suspend if card is assumed removeable
2768 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2769 to sync the card.
2770*/
2771static int mmc_pm_notify(struct notifier_block *notify_block,
2772 unsigned long mode, void *unused)
2773{
2774 struct mmc_host *host = container_of(
2775 notify_block, struct mmc_host, pm_notify);
2776 unsigned long flags;
2777 int err = 0;
2778
2779 switch (mode) {
2780 case PM_HIBERNATION_PREPARE:
2781 case PM_SUSPEND_PREPARE:
2782 case PM_RESTORE_PREPARE:
2783 spin_lock_irqsave(&host->lock, flags);
2784 host->rescan_disable = 1;
2785 spin_unlock_irqrestore(&host->lock, flags);
2786 cancel_delayed_work_sync(&host->detect);
2787
2788 if (!host->bus_ops)
2789 break;
2790
2791 /* Validate prerequisites for suspend */
2792 if (host->bus_ops->pre_suspend)
2793 err = host->bus_ops->pre_suspend(host);
2794 if (!err)
2795 break;
2796
2797 /* Calling bus_ops->remove() with a claimed host can deadlock */
2798 host->bus_ops->remove(host);
2799 mmc_claim_host(host);
2800 mmc_detach_bus(host);
2801 mmc_power_off(host);
2802 mmc_release_host(host);
2803 host->pm_flags = 0;
2804 break;
2805
2806 case PM_POST_SUSPEND:
2807 case PM_POST_HIBERNATION:
2808 case PM_POST_RESTORE:
2809
2810 spin_lock_irqsave(&host->lock, flags);
2811 host->rescan_disable = 0;
2812 spin_unlock_irqrestore(&host->lock, flags);
2813 _mmc_detect_change(host, 0, false);
2814
2815 }
2816
2817 return 0;
2818}
2819
2820void mmc_register_pm_notifier(struct mmc_host *host)
2821{
2822 host->pm_notify.notifier_call = mmc_pm_notify;
2823 register_pm_notifier(&host->pm_notify);
2824}
2825
2826void mmc_unregister_pm_notifier(struct mmc_host *host)
2827{
2828 unregister_pm_notifier(&host->pm_notify);
2829}
2830#endif
2831
2832/**
2833 * mmc_init_context_info() - init synchronization context
2834 * @host: mmc host
2835 *
2836 * Init struct context_info needed to implement asynchronous
2837 * request mechanism, used by mmc core, host driver and mmc requests
2838 * supplier.
2839 */
2840void mmc_init_context_info(struct mmc_host *host)
2841{
2842 spin_lock_init(&host->context_info.lock);
2843 host->context_info.is_new_req = false;
2844 host->context_info.is_done_rcv = false;
2845 host->context_info.is_waiting_last_req = false;
2846 init_waitqueue_head(&host->context_info.wait);
2847}
2848
2849static int __init mmc_init(void)
2850{
2851 int ret;
2852
2853 ret = mmc_register_bus();
2854 if (ret)
2855 return ret;
2856
2857 ret = mmc_register_host_class();
2858 if (ret)
2859 goto unregister_bus;
2860
2861 ret = sdio_register_bus();
2862 if (ret)
2863 goto unregister_host_class;
2864
2865 return 0;
2866
2867unregister_host_class:
2868 mmc_unregister_host_class();
2869unregister_bus:
2870 mmc_unregister_bus();
2871 return ret;
2872}
2873
2874static void __exit mmc_exit(void)
2875{
2876 sdio_unregister_bus();
2877 mmc_unregister_host_class();
2878 mmc_unregister_bus();
2879}
2880
2881subsys_initcall(mmc_init);
2882module_exit(mmc_exit);
2883
2884MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 init_completion(&mrq->cmd_completion);
340
341 mmc_retune_hold(host);
342
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
345
346 mmc_mrq_pr_debug(host, mrq, false);
347
348 WARN_ON(!host->claimed);
349
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
353
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
356
357 return 0;
358}
359EXPORT_SYMBOL(mmc_start_request);
360
361static void mmc_wait_done(struct mmc_request *mrq)
362{
363 complete(&mrq->completion);
364}
365
366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367{
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369
370 /*
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
373 */
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
376}
377
378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379{
380 int err;
381
382 mmc_wait_ongoing_tfr_cmd(host);
383
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
386
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
392 }
393
394 return err;
395}
396
397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398{
399 struct mmc_command *cmd;
400
401 while (1) {
402 wait_for_completion(&mrq->completion);
403
404 cmd = mrq->cmd;
405
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
409
410 mmc_retune_recheck(host);
411
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
417 }
418
419 mmc_retune_release(host);
420}
421EXPORT_SYMBOL(mmc_wait_for_req_done);
422
423/*
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
427 *
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
430 */
431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432{
433 int err;
434
435 /*
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
440 */
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
444
445 mrq->host = host;
446
447 mmc_mrq_pr_debug(host, mrq, true);
448
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
452
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
456
457 trace_mmc_request_start(host, mrq);
458
459 return 0;
460
461out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
468 }
469 return err;
470}
471EXPORT_SYMBOL(mmc_cqe_start_req);
472
473/**
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
477 *
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
480 */
481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482{
483 mmc_should_fail_request(host, mrq);
484
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
489
490 trace_mmc_request_done(host, mrq);
491
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
498 }
499
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
504 }
505
506 mrq->done(mrq);
507}
508EXPORT_SYMBOL(mmc_cqe_request_done);
509
510/**
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
514 */
515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516{
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
519}
520EXPORT_SYMBOL(mmc_cqe_post_req);
521
522/* Arbitrary 1 second timeout */
523#define MMC_CQE_RECOVERY_TIMEOUT 1000
524
525/*
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
528 *
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
533 */
534int mmc_cqe_recovery(struct mmc_host *host)
535{
536 struct mmc_command cmd;
537 int err;
538
539 mmc_retune_hold_now(host);
540
541 /*
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
544 */
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546
547 host->cqe_ops->cqe_recovery_start(host);
548
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION;
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 mmc_wait_for_cmd(host, &cmd, 0);
555
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
562 err = mmc_wait_for_cmd(host, &cmd, 0);
563
564 host->cqe_ops->cqe_recovery_finish(host);
565
566 mmc_retune_release(host);
567
568 return err;
569}
570EXPORT_SYMBOL(mmc_cqe_recovery);
571
572/**
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
576 *
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
583 */
584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
585{
586 return completion_done(&mrq->completion);
587}
588EXPORT_SYMBOL(mmc_is_req_done);
589
590/**
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
594 *
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
601 */
602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
603{
604 __mmc_start_req(host, mrq);
605
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
608}
609EXPORT_SYMBOL(mmc_wait_for_req);
610
611/**
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
616 *
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
620 */
621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
622{
623 struct mmc_request mrq = {};
624
625 WARN_ON(!host->claimed);
626
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
629
630 mrq.cmd = cmd;
631 cmd->data = NULL;
632
633 mmc_wait_for_req(host, &mrq);
634
635 return cmd->error;
636}
637
638EXPORT_SYMBOL(mmc_wait_for_cmd);
639
640/**
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
644 *
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
647 */
648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
649{
650 unsigned int mult;
651
652 /*
653 * SDIO cards only define an upper 1 s limit on access.
654 */
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
659 }
660
661 /*
662 * SD cards use a 100 multiplier rather than 10
663 */
664 mult = mmc_card_sd(card) ? 100 : 10;
665
666 /*
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
669 */
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
672
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
675
676 /*
677 * SD cards also have an upper limit on the timeout.
678 */
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
681
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
686
687 if (data->flags & MMC_DATA_WRITE)
688 /*
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
695 */
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
699
700 /*
701 * SDHC cards always use these fixed values.
702 */
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
706 }
707
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
711 }
712
713 /*
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
718 */
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
722 }
723
724 /*
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
729 */
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
737 }
738 }
739}
740EXPORT_SYMBOL(mmc_set_data_timeout);
741
742/*
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
745 */
746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
748{
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
751}
752
753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
756{
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
762 }
763 if (task)
764 host->claimer->task = task;
765}
766
767/**
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
773 *
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
778 */
779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
781{
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
787
788 might_sleep();
789
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
800 }
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
812
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
815
816 return stop;
817}
818EXPORT_SYMBOL(__mmc_claim_host);
819
820/**
821 * mmc_release_host - release a host
822 * @host: mmc host to release
823 *
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
826 */
827void mmc_release_host(struct mmc_host *host)
828{
829 unsigned long flags;
830
831 WARN_ON(!host->claimed);
832
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
848 }
849}
850EXPORT_SYMBOL(mmc_release_host);
851
852/*
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
855 */
856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
857{
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
860}
861EXPORT_SYMBOL(mmc_get_card);
862
863/*
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
866 */
867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
868{
869 struct mmc_host *host = card->host;
870
871 WARN_ON(ctx && host->claimer != ctx);
872
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
876}
877EXPORT_SYMBOL(mmc_put_card);
878
879/*
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
882 */
883static inline void mmc_set_ios(struct mmc_host *host)
884{
885 struct mmc_ios *ios = &host->ios;
886
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
892
893 host->ops->set_ios(host, ios);
894}
895
896/*
897 * Control chip select pin on a host.
898 */
899void mmc_set_chip_select(struct mmc_host *host, int mode)
900{
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
903}
904
905/*
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
908 */
909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
910{
911 WARN_ON(hz && hz < host->f_min);
912
913 if (hz > host->f_max)
914 hz = host->f_max;
915
916 host->ios.clock = hz;
917 mmc_set_ios(host);
918}
919
920int mmc_execute_tuning(struct mmc_card *card)
921{
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
925
926 if (!host->ops->execute_tuning)
927 return 0;
928
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
931
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
936
937 err = host->ops->execute_tuning(host, opcode);
938 if (!err) {
939 mmc_retune_clear(host);
940 mmc_retune_enable(host);
941 return 0;
942 }
943
944 /* Only print error when we don't check for card removal */
945 if (!host->detect_change) {
946 pr_err("%s: tuning execution failed: %d\n",
947 mmc_hostname(host), err);
948 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
949 }
950
951 return err;
952}
953
954/*
955 * Change the bus mode (open drain/push-pull) of a host.
956 */
957void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
958{
959 host->ios.bus_mode = mode;
960 mmc_set_ios(host);
961}
962
963/*
964 * Change data bus width of a host.
965 */
966void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
967{
968 host->ios.bus_width = width;
969 mmc_set_ios(host);
970}
971
972/*
973 * Set initial state after a power cycle or a hw_reset.
974 */
975void mmc_set_initial_state(struct mmc_host *host)
976{
977 if (host->cqe_on)
978 host->cqe_ops->cqe_off(host);
979
980 mmc_retune_disable(host);
981
982 if (mmc_host_is_spi(host))
983 host->ios.chip_select = MMC_CS_HIGH;
984 else
985 host->ios.chip_select = MMC_CS_DONTCARE;
986 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
987 host->ios.bus_width = MMC_BUS_WIDTH_1;
988 host->ios.timing = MMC_TIMING_LEGACY;
989 host->ios.drv_type = 0;
990 host->ios.enhanced_strobe = false;
991
992 /*
993 * Make sure we are in non-enhanced strobe mode before we
994 * actually enable it in ext_csd.
995 */
996 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
997 host->ops->hs400_enhanced_strobe)
998 host->ops->hs400_enhanced_strobe(host, &host->ios);
999
1000 mmc_set_ios(host);
1001
1002 mmc_crypto_set_initial_state(host);
1003}
1004
1005/**
1006 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1007 * @vdd: voltage (mV)
1008 * @low_bits: prefer low bits in boundary cases
1009 *
1010 * This function returns the OCR bit number according to the provided @vdd
1011 * value. If conversion is not possible a negative errno value returned.
1012 *
1013 * Depending on the @low_bits flag the function prefers low or high OCR bits
1014 * on boundary voltages. For example,
1015 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1016 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1017 *
1018 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1019 */
1020static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1021{
1022 const int max_bit = ilog2(MMC_VDD_35_36);
1023 int bit;
1024
1025 if (vdd < 1650 || vdd > 3600)
1026 return -EINVAL;
1027
1028 if (vdd >= 1650 && vdd <= 1950)
1029 return ilog2(MMC_VDD_165_195);
1030
1031 if (low_bits)
1032 vdd -= 1;
1033
1034 /* Base 2000 mV, step 100 mV, bit's base 8. */
1035 bit = (vdd - 2000) / 100 + 8;
1036 if (bit > max_bit)
1037 return max_bit;
1038 return bit;
1039}
1040
1041/**
1042 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1043 * @vdd_min: minimum voltage value (mV)
1044 * @vdd_max: maximum voltage value (mV)
1045 *
1046 * This function returns the OCR mask bits according to the provided @vdd_min
1047 * and @vdd_max values. If conversion is not possible the function returns 0.
1048 *
1049 * Notes wrt boundary cases:
1050 * This function sets the OCR bits for all boundary voltages, for example
1051 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1052 * MMC_VDD_34_35 mask.
1053 */
1054u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1055{
1056 u32 mask = 0;
1057
1058 if (vdd_max < vdd_min)
1059 return 0;
1060
1061 /* Prefer high bits for the boundary vdd_max values. */
1062 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1063 if (vdd_max < 0)
1064 return 0;
1065
1066 /* Prefer low bits for the boundary vdd_min values. */
1067 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1068 if (vdd_min < 0)
1069 return 0;
1070
1071 /* Fill the mask, from max bit to min bit. */
1072 while (vdd_max >= vdd_min)
1073 mask |= 1 << vdd_max--;
1074
1075 return mask;
1076}
1077
1078static int mmc_of_get_func_num(struct device_node *node)
1079{
1080 u32 reg;
1081 int ret;
1082
1083 ret = of_property_read_u32(node, "reg", ®);
1084 if (ret < 0)
1085 return ret;
1086
1087 return reg;
1088}
1089
1090struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1091 unsigned func_num)
1092{
1093 struct device_node *node;
1094
1095 if (!host->parent || !host->parent->of_node)
1096 return NULL;
1097
1098 for_each_child_of_node(host->parent->of_node, node) {
1099 if (mmc_of_get_func_num(node) == func_num)
1100 return node;
1101 }
1102
1103 return NULL;
1104}
1105
1106/*
1107 * Mask off any voltages we don't support and select
1108 * the lowest voltage
1109 */
1110u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1111{
1112 int bit;
1113
1114 /*
1115 * Sanity check the voltages that the card claims to
1116 * support.
1117 */
1118 if (ocr & 0x7F) {
1119 dev_warn(mmc_dev(host),
1120 "card claims to support voltages below defined range\n");
1121 ocr &= ~0x7F;
1122 }
1123
1124 ocr &= host->ocr_avail;
1125 if (!ocr) {
1126 dev_warn(mmc_dev(host), "no support for card's volts\n");
1127 return 0;
1128 }
1129
1130 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1131 bit = ffs(ocr) - 1;
1132 ocr &= 3 << bit;
1133 mmc_power_cycle(host, ocr);
1134 } else {
1135 bit = fls(ocr) - 1;
1136 /*
1137 * The bit variable represents the highest voltage bit set in
1138 * the OCR register.
1139 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1140 * we must shift the mask '3' with (bit - 1).
1141 */
1142 ocr &= 3 << (bit - 1);
1143 if (bit != host->ios.vdd)
1144 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 }
1146
1147 return ocr;
1148}
1149
1150int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1151{
1152 int err = 0;
1153 int old_signal_voltage = host->ios.signal_voltage;
1154
1155 host->ios.signal_voltage = signal_voltage;
1156 if (host->ops->start_signal_voltage_switch)
1157 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1158
1159 if (err)
1160 host->ios.signal_voltage = old_signal_voltage;
1161
1162 return err;
1163
1164}
1165
1166void mmc_set_initial_signal_voltage(struct mmc_host *host)
1167{
1168 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1169 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1170 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1171 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1172 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1173 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1174 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1175}
1176
1177int mmc_host_set_uhs_voltage(struct mmc_host *host)
1178{
1179 u32 clock;
1180
1181 /*
1182 * During a signal voltage level switch, the clock must be gated
1183 * for 5 ms according to the SD spec
1184 */
1185 clock = host->ios.clock;
1186 host->ios.clock = 0;
1187 mmc_set_ios(host);
1188
1189 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1190 return -EAGAIN;
1191
1192 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1193 mmc_delay(10);
1194 host->ios.clock = clock;
1195 mmc_set_ios(host);
1196
1197 return 0;
1198}
1199
1200int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1201{
1202 struct mmc_command cmd = {};
1203 int err = 0;
1204
1205 /*
1206 * If we cannot switch voltages, return failure so the caller
1207 * can continue without UHS mode
1208 */
1209 if (!host->ops->start_signal_voltage_switch)
1210 return -EPERM;
1211 if (!host->ops->card_busy)
1212 pr_warn("%s: cannot verify signal voltage switch\n",
1213 mmc_hostname(host));
1214
1215 cmd.opcode = SD_SWITCH_VOLTAGE;
1216 cmd.arg = 0;
1217 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1218
1219 err = mmc_wait_for_cmd(host, &cmd, 0);
1220 if (err)
1221 goto power_cycle;
1222
1223 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1224 return -EIO;
1225
1226 /*
1227 * The card should drive cmd and dat[0:3] low immediately
1228 * after the response of cmd11, but wait 1 ms to be sure
1229 */
1230 mmc_delay(1);
1231 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1232 err = -EAGAIN;
1233 goto power_cycle;
1234 }
1235
1236 if (mmc_host_set_uhs_voltage(host)) {
1237 /*
1238 * Voltages may not have been switched, but we've already
1239 * sent CMD11, so a power cycle is required anyway
1240 */
1241 err = -EAGAIN;
1242 goto power_cycle;
1243 }
1244
1245 /* Wait for at least 1 ms according to spec */
1246 mmc_delay(1);
1247
1248 /*
1249 * Failure to switch is indicated by the card holding
1250 * dat[0:3] low
1251 */
1252 if (host->ops->card_busy && host->ops->card_busy(host))
1253 err = -EAGAIN;
1254
1255power_cycle:
1256 if (err) {
1257 pr_debug("%s: Signal voltage switch failed, "
1258 "power cycling card\n", mmc_hostname(host));
1259 mmc_power_cycle(host, ocr);
1260 }
1261
1262 return err;
1263}
1264
1265/*
1266 * Select timing parameters for host.
1267 */
1268void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1269{
1270 host->ios.timing = timing;
1271 mmc_set_ios(host);
1272}
1273
1274/*
1275 * Select appropriate driver type for host.
1276 */
1277void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1278{
1279 host->ios.drv_type = drv_type;
1280 mmc_set_ios(host);
1281}
1282
1283int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1284 int card_drv_type, int *drv_type)
1285{
1286 struct mmc_host *host = card->host;
1287 int host_drv_type = SD_DRIVER_TYPE_B;
1288
1289 *drv_type = 0;
1290
1291 if (!host->ops->select_drive_strength)
1292 return 0;
1293
1294 /* Use SD definition of driver strength for hosts */
1295 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1296 host_drv_type |= SD_DRIVER_TYPE_A;
1297
1298 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1299 host_drv_type |= SD_DRIVER_TYPE_C;
1300
1301 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1302 host_drv_type |= SD_DRIVER_TYPE_D;
1303
1304 /*
1305 * The drive strength that the hardware can support
1306 * depends on the board design. Pass the appropriate
1307 * information and let the hardware specific code
1308 * return what is possible given the options
1309 */
1310 return host->ops->select_drive_strength(card, max_dtr,
1311 host_drv_type,
1312 card_drv_type,
1313 drv_type);
1314}
1315
1316/*
1317 * Apply power to the MMC stack. This is a two-stage process.
1318 * First, we enable power to the card without the clock running.
1319 * We then wait a bit for the power to stabilise. Finally,
1320 * enable the bus drivers and clock to the card.
1321 *
1322 * We must _NOT_ enable the clock prior to power stablising.
1323 *
1324 * If a host does all the power sequencing itself, ignore the
1325 * initial MMC_POWER_UP stage.
1326 */
1327void mmc_power_up(struct mmc_host *host, u32 ocr)
1328{
1329 if (host->ios.power_mode == MMC_POWER_ON)
1330 return;
1331
1332 mmc_pwrseq_pre_power_on(host);
1333
1334 host->ios.vdd = fls(ocr) - 1;
1335 host->ios.power_mode = MMC_POWER_UP;
1336 /* Set initial state and call mmc_set_ios */
1337 mmc_set_initial_state(host);
1338
1339 mmc_set_initial_signal_voltage(host);
1340
1341 /*
1342 * This delay should be sufficient to allow the power supply
1343 * to reach the minimum voltage.
1344 */
1345 mmc_delay(host->ios.power_delay_ms);
1346
1347 mmc_pwrseq_post_power_on(host);
1348
1349 host->ios.clock = host->f_init;
1350
1351 host->ios.power_mode = MMC_POWER_ON;
1352 mmc_set_ios(host);
1353
1354 /*
1355 * This delay must be at least 74 clock sizes, or 1 ms, or the
1356 * time required to reach a stable voltage.
1357 */
1358 mmc_delay(host->ios.power_delay_ms);
1359}
1360
1361void mmc_power_off(struct mmc_host *host)
1362{
1363 if (host->ios.power_mode == MMC_POWER_OFF)
1364 return;
1365
1366 mmc_pwrseq_power_off(host);
1367
1368 host->ios.clock = 0;
1369 host->ios.vdd = 0;
1370
1371 host->ios.power_mode = MMC_POWER_OFF;
1372 /* Set initial state and call mmc_set_ios */
1373 mmc_set_initial_state(host);
1374
1375 /*
1376 * Some configurations, such as the 802.11 SDIO card in the OLPC
1377 * XO-1.5, require a short delay after poweroff before the card
1378 * can be successfully turned on again.
1379 */
1380 mmc_delay(1);
1381}
1382
1383void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1384{
1385 mmc_power_off(host);
1386 /* Wait at least 1 ms according to SD spec */
1387 mmc_delay(1);
1388 mmc_power_up(host, ocr);
1389}
1390
1391/*
1392 * Assign a mmc bus handler to a host. Only one bus handler may control a
1393 * host at any given time.
1394 */
1395void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1396{
1397 host->bus_ops = ops;
1398}
1399
1400/*
1401 * Remove the current bus handler from a host.
1402 */
1403void mmc_detach_bus(struct mmc_host *host)
1404{
1405 host->bus_ops = NULL;
1406}
1407
1408void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1409{
1410 /*
1411 * Prevent system sleep for 5s to allow user space to consume the
1412 * corresponding uevent. This is especially useful, when CD irq is used
1413 * as a system wakeup, but doesn't hurt in other cases.
1414 */
1415 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1416 __pm_wakeup_event(host->ws, 5000);
1417
1418 host->detect_change = 1;
1419 mmc_schedule_delayed_work(&host->detect, delay);
1420}
1421
1422/**
1423 * mmc_detect_change - process change of state on a MMC socket
1424 * @host: host which changed state.
1425 * @delay: optional delay to wait before detection (jiffies)
1426 *
1427 * MMC drivers should call this when they detect a card has been
1428 * inserted or removed. The MMC layer will confirm that any
1429 * present card is still functional, and initialize any newly
1430 * inserted.
1431 */
1432void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1433{
1434 _mmc_detect_change(host, delay, true);
1435}
1436EXPORT_SYMBOL(mmc_detect_change);
1437
1438void mmc_init_erase(struct mmc_card *card)
1439{
1440 unsigned int sz;
1441
1442 if (is_power_of_2(card->erase_size))
1443 card->erase_shift = ffs(card->erase_size) - 1;
1444 else
1445 card->erase_shift = 0;
1446
1447 /*
1448 * It is possible to erase an arbitrarily large area of an SD or MMC
1449 * card. That is not desirable because it can take a long time
1450 * (minutes) potentially delaying more important I/O, and also the
1451 * timeout calculations become increasingly hugely over-estimated.
1452 * Consequently, 'pref_erase' is defined as a guide to limit erases
1453 * to that size and alignment.
1454 *
1455 * For SD cards that define Allocation Unit size, limit erases to one
1456 * Allocation Unit at a time.
1457 * For MMC, have a stab at ai good value and for modern cards it will
1458 * end up being 4MiB. Note that if the value is too small, it can end
1459 * up taking longer to erase. Also note, erase_size is already set to
1460 * High Capacity Erase Size if available when this function is called.
1461 */
1462 if (mmc_card_sd(card) && card->ssr.au) {
1463 card->pref_erase = card->ssr.au;
1464 card->erase_shift = ffs(card->ssr.au) - 1;
1465 } else if (card->erase_size) {
1466 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1467 if (sz < 128)
1468 card->pref_erase = 512 * 1024 / 512;
1469 else if (sz < 512)
1470 card->pref_erase = 1024 * 1024 / 512;
1471 else if (sz < 1024)
1472 card->pref_erase = 2 * 1024 * 1024 / 512;
1473 else
1474 card->pref_erase = 4 * 1024 * 1024 / 512;
1475 if (card->pref_erase < card->erase_size)
1476 card->pref_erase = card->erase_size;
1477 else {
1478 sz = card->pref_erase % card->erase_size;
1479 if (sz)
1480 card->pref_erase += card->erase_size - sz;
1481 }
1482 } else
1483 card->pref_erase = 0;
1484}
1485
1486static bool is_trim_arg(unsigned int arg)
1487{
1488 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1489}
1490
1491static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1492 unsigned int arg, unsigned int qty)
1493{
1494 unsigned int erase_timeout;
1495
1496 if (arg == MMC_DISCARD_ARG ||
1497 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1498 erase_timeout = card->ext_csd.trim_timeout;
1499 } else if (card->ext_csd.erase_group_def & 1) {
1500 /* High Capacity Erase Group Size uses HC timeouts */
1501 if (arg == MMC_TRIM_ARG)
1502 erase_timeout = card->ext_csd.trim_timeout;
1503 else
1504 erase_timeout = card->ext_csd.hc_erase_timeout;
1505 } else {
1506 /* CSD Erase Group Size uses write timeout */
1507 unsigned int mult = (10 << card->csd.r2w_factor);
1508 unsigned int timeout_clks = card->csd.taac_clks * mult;
1509 unsigned int timeout_us;
1510
1511 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1512 if (card->csd.taac_ns < 1000000)
1513 timeout_us = (card->csd.taac_ns * mult) / 1000;
1514 else
1515 timeout_us = (card->csd.taac_ns / 1000) * mult;
1516
1517 /*
1518 * ios.clock is only a target. The real clock rate might be
1519 * less but not that much less, so fudge it by multiplying by 2.
1520 */
1521 timeout_clks <<= 1;
1522 timeout_us += (timeout_clks * 1000) /
1523 (card->host->ios.clock / 1000);
1524
1525 erase_timeout = timeout_us / 1000;
1526
1527 /*
1528 * Theoretically, the calculation could underflow so round up
1529 * to 1ms in that case.
1530 */
1531 if (!erase_timeout)
1532 erase_timeout = 1;
1533 }
1534
1535 /* Multiplier for secure operations */
1536 if (arg & MMC_SECURE_ARGS) {
1537 if (arg == MMC_SECURE_ERASE_ARG)
1538 erase_timeout *= card->ext_csd.sec_erase_mult;
1539 else
1540 erase_timeout *= card->ext_csd.sec_trim_mult;
1541 }
1542
1543 erase_timeout *= qty;
1544
1545 /*
1546 * Ensure at least a 1 second timeout for SPI as per
1547 * 'mmc_set_data_timeout()'
1548 */
1549 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1550 erase_timeout = 1000;
1551
1552 return erase_timeout;
1553}
1554
1555static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1556 unsigned int arg,
1557 unsigned int qty)
1558{
1559 unsigned int erase_timeout;
1560
1561 /* for DISCARD none of the below calculation applies.
1562 * the busy timeout is 250msec per discard command.
1563 */
1564 if (arg == SD_DISCARD_ARG)
1565 return SD_DISCARD_TIMEOUT_MS;
1566
1567 if (card->ssr.erase_timeout) {
1568 /* Erase timeout specified in SD Status Register (SSR) */
1569 erase_timeout = card->ssr.erase_timeout * qty +
1570 card->ssr.erase_offset;
1571 } else {
1572 /*
1573 * Erase timeout not specified in SD Status Register (SSR) so
1574 * use 250ms per write block.
1575 */
1576 erase_timeout = 250 * qty;
1577 }
1578
1579 /* Must not be less than 1 second */
1580 if (erase_timeout < 1000)
1581 erase_timeout = 1000;
1582
1583 return erase_timeout;
1584}
1585
1586static unsigned int mmc_erase_timeout(struct mmc_card *card,
1587 unsigned int arg,
1588 unsigned int qty)
1589{
1590 if (mmc_card_sd(card))
1591 return mmc_sd_erase_timeout(card, arg, qty);
1592 else
1593 return mmc_mmc_erase_timeout(card, arg, qty);
1594}
1595
1596static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1597 unsigned int to, unsigned int arg)
1598{
1599 struct mmc_command cmd = {};
1600 unsigned int qty = 0, busy_timeout = 0;
1601 bool use_r1b_resp;
1602 int err;
1603
1604 mmc_retune_hold(card->host);
1605
1606 /*
1607 * qty is used to calculate the erase timeout which depends on how many
1608 * erase groups (or allocation units in SD terminology) are affected.
1609 * We count erasing part of an erase group as one erase group.
1610 * For SD, the allocation units are always a power of 2. For MMC, the
1611 * erase group size is almost certainly also power of 2, but it does not
1612 * seem to insist on that in the JEDEC standard, so we fall back to
1613 * division in that case. SD may not specify an allocation unit size,
1614 * in which case the timeout is based on the number of write blocks.
1615 *
1616 * Note that the timeout for secure trim 2 will only be correct if the
1617 * number of erase groups specified is the same as the total of all
1618 * preceding secure trim 1 commands. Since the power may have been
1619 * lost since the secure trim 1 commands occurred, it is generally
1620 * impossible to calculate the secure trim 2 timeout correctly.
1621 */
1622 if (card->erase_shift)
1623 qty += ((to >> card->erase_shift) -
1624 (from >> card->erase_shift)) + 1;
1625 else if (mmc_card_sd(card))
1626 qty += to - from + 1;
1627 else
1628 qty += ((to / card->erase_size) -
1629 (from / card->erase_size)) + 1;
1630
1631 if (!mmc_card_blockaddr(card)) {
1632 from <<= 9;
1633 to <<= 9;
1634 }
1635
1636 if (mmc_card_sd(card))
1637 cmd.opcode = SD_ERASE_WR_BLK_START;
1638 else
1639 cmd.opcode = MMC_ERASE_GROUP_START;
1640 cmd.arg = from;
1641 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1642 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1643 if (err) {
1644 pr_err("mmc_erase: group start error %d, "
1645 "status %#x\n", err, cmd.resp[0]);
1646 err = -EIO;
1647 goto out;
1648 }
1649
1650 memset(&cmd, 0, sizeof(struct mmc_command));
1651 if (mmc_card_sd(card))
1652 cmd.opcode = SD_ERASE_WR_BLK_END;
1653 else
1654 cmd.opcode = MMC_ERASE_GROUP_END;
1655 cmd.arg = to;
1656 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1657 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1658 if (err) {
1659 pr_err("mmc_erase: group end error %d, status %#x\n",
1660 err, cmd.resp[0]);
1661 err = -EIO;
1662 goto out;
1663 }
1664
1665 memset(&cmd, 0, sizeof(struct mmc_command));
1666 cmd.opcode = MMC_ERASE;
1667 cmd.arg = arg;
1668 busy_timeout = mmc_erase_timeout(card, arg, qty);
1669 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1670
1671 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1672 if (err) {
1673 pr_err("mmc_erase: erase error %d, status %#x\n",
1674 err, cmd.resp[0]);
1675 err = -EIO;
1676 goto out;
1677 }
1678
1679 if (mmc_host_is_spi(card->host))
1680 goto out;
1681
1682 /*
1683 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1684 * shall be avoided.
1685 */
1686 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1687 goto out;
1688
1689 /* Let's poll to find out when the erase operation completes. */
1690 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1691
1692out:
1693 mmc_retune_release(card->host);
1694 return err;
1695}
1696
1697static unsigned int mmc_align_erase_size(struct mmc_card *card,
1698 unsigned int *from,
1699 unsigned int *to,
1700 unsigned int nr)
1701{
1702 unsigned int from_new = *from, nr_new = nr, rem;
1703
1704 /*
1705 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1706 * to align the erase size efficiently.
1707 */
1708 if (is_power_of_2(card->erase_size)) {
1709 unsigned int temp = from_new;
1710
1711 from_new = round_up(temp, card->erase_size);
1712 rem = from_new - temp;
1713
1714 if (nr_new > rem)
1715 nr_new -= rem;
1716 else
1717 return 0;
1718
1719 nr_new = round_down(nr_new, card->erase_size);
1720 } else {
1721 rem = from_new % card->erase_size;
1722 if (rem) {
1723 rem = card->erase_size - rem;
1724 from_new += rem;
1725 if (nr_new > rem)
1726 nr_new -= rem;
1727 else
1728 return 0;
1729 }
1730
1731 rem = nr_new % card->erase_size;
1732 if (rem)
1733 nr_new -= rem;
1734 }
1735
1736 if (nr_new == 0)
1737 return 0;
1738
1739 *to = from_new + nr_new;
1740 *from = from_new;
1741
1742 return nr_new;
1743}
1744
1745/**
1746 * mmc_erase - erase sectors.
1747 * @card: card to erase
1748 * @from: first sector to erase
1749 * @nr: number of sectors to erase
1750 * @arg: erase command argument
1751 *
1752 * Caller must claim host before calling this function.
1753 */
1754int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1755 unsigned int arg)
1756{
1757 unsigned int rem, to = from + nr;
1758 int err;
1759
1760 if (!(card->csd.cmdclass & CCC_ERASE))
1761 return -EOPNOTSUPP;
1762
1763 if (!card->erase_size)
1764 return -EOPNOTSUPP;
1765
1766 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1767 return -EOPNOTSUPP;
1768
1769 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1770 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1771 return -EOPNOTSUPP;
1772
1773 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1774 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1775 return -EOPNOTSUPP;
1776
1777 if (arg == MMC_SECURE_ERASE_ARG) {
1778 if (from % card->erase_size || nr % card->erase_size)
1779 return -EINVAL;
1780 }
1781
1782 if (arg == MMC_ERASE_ARG)
1783 nr = mmc_align_erase_size(card, &from, &to, nr);
1784
1785 if (nr == 0)
1786 return 0;
1787
1788 if (to <= from)
1789 return -EINVAL;
1790
1791 /* 'from' and 'to' are inclusive */
1792 to -= 1;
1793
1794 /*
1795 * Special case where only one erase-group fits in the timeout budget:
1796 * If the region crosses an erase-group boundary on this particular
1797 * case, we will be trimming more than one erase-group which, does not
1798 * fit in the timeout budget of the controller, so we need to split it
1799 * and call mmc_do_erase() twice if necessary. This special case is
1800 * identified by the card->eg_boundary flag.
1801 */
1802 rem = card->erase_size - (from % card->erase_size);
1803 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1804 err = mmc_do_erase(card, from, from + rem - 1, arg);
1805 from += rem;
1806 if ((err) || (to <= from))
1807 return err;
1808 }
1809
1810 return mmc_do_erase(card, from, to, arg);
1811}
1812EXPORT_SYMBOL(mmc_erase);
1813
1814int mmc_can_erase(struct mmc_card *card)
1815{
1816 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1817 return 1;
1818 return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1825 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1826 return 1;
1827 return 0;
1828}
1829EXPORT_SYMBOL(mmc_can_trim);
1830
1831int mmc_can_discard(struct mmc_card *card)
1832{
1833 /*
1834 * As there's no way to detect the discard support bit at v4.5
1835 * use the s/w feature support filed.
1836 */
1837 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1838 return 1;
1839 return 0;
1840}
1841EXPORT_SYMBOL(mmc_can_discard);
1842
1843int mmc_can_sanitize(struct mmc_card *card)
1844{
1845 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1846 return 0;
1847 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1848 return 1;
1849 return 0;
1850}
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1855 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1856 return 1;
1857 return 0;
1858}
1859EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1860
1861int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1862 unsigned int nr)
1863{
1864 if (!card->erase_size)
1865 return 0;
1866 if (from % card->erase_size || nr % card->erase_size)
1867 return 0;
1868 return 1;
1869}
1870EXPORT_SYMBOL(mmc_erase_group_aligned);
1871
1872static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1873 unsigned int arg)
1874{
1875 struct mmc_host *host = card->host;
1876 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1877 unsigned int last_timeout = 0;
1878 unsigned int max_busy_timeout = host->max_busy_timeout ?
1879 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1880
1881 if (card->erase_shift) {
1882 max_qty = UINT_MAX >> card->erase_shift;
1883 min_qty = card->pref_erase >> card->erase_shift;
1884 } else if (mmc_card_sd(card)) {
1885 max_qty = UINT_MAX;
1886 min_qty = card->pref_erase;
1887 } else {
1888 max_qty = UINT_MAX / card->erase_size;
1889 min_qty = card->pref_erase / card->erase_size;
1890 }
1891
1892 /*
1893 * We should not only use 'host->max_busy_timeout' as the limitation
1894 * when deciding the max discard sectors. We should set a balance value
1895 * to improve the erase speed, and it can not get too long timeout at
1896 * the same time.
1897 *
1898 * Here we set 'card->pref_erase' as the minimal discard sectors no
1899 * matter what size of 'host->max_busy_timeout', but if the
1900 * 'host->max_busy_timeout' is large enough for more discard sectors,
1901 * then we can continue to increase the max discard sectors until we
1902 * get a balance value. In cases when the 'host->max_busy_timeout'
1903 * isn't specified, use the default max erase timeout.
1904 */
1905 do {
1906 y = 0;
1907 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1908 timeout = mmc_erase_timeout(card, arg, qty + x);
1909
1910 if (qty + x > min_qty && timeout > max_busy_timeout)
1911 break;
1912
1913 if (timeout < last_timeout)
1914 break;
1915 last_timeout = timeout;
1916 y = x;
1917 }
1918 qty += y;
1919 } while (y);
1920
1921 if (!qty)
1922 return 0;
1923
1924 /*
1925 * When specifying a sector range to trim, chances are we might cross
1926 * an erase-group boundary even if the amount of sectors is less than
1927 * one erase-group.
1928 * If we can only fit one erase-group in the controller timeout budget,
1929 * we have to care that erase-group boundaries are not crossed by a
1930 * single trim operation. We flag that special case with "eg_boundary".
1931 * In all other cases we can just decrement qty and pretend that we
1932 * always touch (qty + 1) erase-groups as a simple optimization.
1933 */
1934 if (qty == 1)
1935 card->eg_boundary = 1;
1936 else
1937 qty--;
1938
1939 /* Convert qty to sectors */
1940 if (card->erase_shift)
1941 max_discard = qty << card->erase_shift;
1942 else if (mmc_card_sd(card))
1943 max_discard = qty + 1;
1944 else
1945 max_discard = qty * card->erase_size;
1946
1947 return max_discard;
1948}
1949
1950unsigned int mmc_calc_max_discard(struct mmc_card *card)
1951{
1952 struct mmc_host *host = card->host;
1953 unsigned int max_discard, max_trim;
1954
1955 /*
1956 * Without erase_group_def set, MMC erase timeout depends on clock
1957 * frequence which can change. In that case, the best choice is
1958 * just the preferred erase size.
1959 */
1960 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1961 return card->pref_erase;
1962
1963 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1964 if (mmc_can_trim(card)) {
1965 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1966 if (max_trim < max_discard || max_discard == 0)
1967 max_discard = max_trim;
1968 } else if (max_discard < card->erase_size) {
1969 max_discard = 0;
1970 }
1971 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1972 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1973 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1974 return max_discard;
1975}
1976EXPORT_SYMBOL(mmc_calc_max_discard);
1977
1978bool mmc_card_is_blockaddr(struct mmc_card *card)
1979{
1980 return card ? mmc_card_blockaddr(card) : false;
1981}
1982EXPORT_SYMBOL(mmc_card_is_blockaddr);
1983
1984int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1985{
1986 struct mmc_command cmd = {};
1987
1988 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1989 mmc_card_hs400(card) || mmc_card_hs400es(card))
1990 return 0;
1991
1992 cmd.opcode = MMC_SET_BLOCKLEN;
1993 cmd.arg = blocklen;
1994 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1995 return mmc_wait_for_cmd(card->host, &cmd, 5);
1996}
1997EXPORT_SYMBOL(mmc_set_blocklen);
1998
1999static void mmc_hw_reset_for_init(struct mmc_host *host)
2000{
2001 mmc_pwrseq_reset(host);
2002
2003 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2004 return;
2005 host->ops->card_hw_reset(host);
2006}
2007
2008/**
2009 * mmc_hw_reset - reset the card in hardware
2010 * @card: card to be reset
2011 *
2012 * Hard reset the card. This function is only for upper layers, like the
2013 * block layer or card drivers. You cannot use it in host drivers (struct
2014 * mmc_card might be gone then).
2015 *
2016 * Return: 0 on success, -errno on failure
2017 */
2018int mmc_hw_reset(struct mmc_card *card)
2019{
2020 struct mmc_host *host = card->host;
2021 int ret;
2022
2023 ret = host->bus_ops->hw_reset(host);
2024 if (ret < 0)
2025 pr_warn("%s: tried to HW reset card, got error %d\n",
2026 mmc_hostname(host), ret);
2027
2028 return ret;
2029}
2030EXPORT_SYMBOL(mmc_hw_reset);
2031
2032int mmc_sw_reset(struct mmc_card *card)
2033{
2034 struct mmc_host *host = card->host;
2035 int ret;
2036
2037 if (!host->bus_ops->sw_reset)
2038 return -EOPNOTSUPP;
2039
2040 ret = host->bus_ops->sw_reset(host);
2041 if (ret)
2042 pr_warn("%s: tried to SW reset card, got error %d\n",
2043 mmc_hostname(host), ret);
2044
2045 return ret;
2046}
2047EXPORT_SYMBOL(mmc_sw_reset);
2048
2049static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2050{
2051 host->f_init = freq;
2052
2053 pr_debug("%s: %s: trying to init card at %u Hz\n",
2054 mmc_hostname(host), __func__, host->f_init);
2055
2056 mmc_power_up(host, host->ocr_avail);
2057
2058 /*
2059 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2060 * do a hardware reset if possible.
2061 */
2062 mmc_hw_reset_for_init(host);
2063
2064 /*
2065 * sdio_reset sends CMD52 to reset card. Since we do not know
2066 * if the card is being re-initialized, just send it. CMD52
2067 * should be ignored by SD/eMMC cards.
2068 * Skip it if we already know that we do not support SDIO commands
2069 */
2070 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2071 sdio_reset(host);
2072
2073 mmc_go_idle(host);
2074
2075 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2076 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2077 goto out;
2078 if (mmc_card_sd_express(host))
2079 return 0;
2080 }
2081
2082 /* Order's important: probe SDIO, then SD, then MMC */
2083 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2084 if (!mmc_attach_sdio(host))
2085 return 0;
2086
2087 if (!(host->caps2 & MMC_CAP2_NO_SD))
2088 if (!mmc_attach_sd(host))
2089 return 0;
2090
2091 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2092 if (!mmc_attach_mmc(host))
2093 return 0;
2094
2095out:
2096 mmc_power_off(host);
2097 return -EIO;
2098}
2099
2100int _mmc_detect_card_removed(struct mmc_host *host)
2101{
2102 int ret;
2103
2104 if (!host->card || mmc_card_removed(host->card))
2105 return 1;
2106
2107 ret = host->bus_ops->alive(host);
2108
2109 /*
2110 * Card detect status and alive check may be out of sync if card is
2111 * removed slowly, when card detect switch changes while card/slot
2112 * pads are still contacted in hardware (refer to "SD Card Mechanical
2113 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2114 * detect work 200ms later for this case.
2115 */
2116 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2117 mmc_detect_change(host, msecs_to_jiffies(200));
2118 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2119 }
2120
2121 if (ret) {
2122 mmc_card_set_removed(host->card);
2123 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2124 }
2125
2126 return ret;
2127}
2128
2129int mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 struct mmc_card *card = host->card;
2132 int ret;
2133
2134 WARN_ON(!host->claimed);
2135
2136 if (!card)
2137 return 1;
2138
2139 if (!mmc_card_is_removable(host))
2140 return 0;
2141
2142 ret = mmc_card_removed(card);
2143 /*
2144 * The card will be considered unchanged unless we have been asked to
2145 * detect a change or host requires polling to provide card detection.
2146 */
2147 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2148 return ret;
2149
2150 host->detect_change = 0;
2151 if (!ret) {
2152 ret = _mmc_detect_card_removed(host);
2153 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2154 /*
2155 * Schedule a detect work as soon as possible to let a
2156 * rescan handle the card removal.
2157 */
2158 cancel_delayed_work(&host->detect);
2159 _mmc_detect_change(host, 0, false);
2160 }
2161 }
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(mmc_detect_card_removed);
2166
2167int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2168{
2169 unsigned int boot_sectors_num;
2170
2171 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2172 return -EOPNOTSUPP;
2173
2174 /* filter out unrelated cards */
2175 if (card->ext_csd.rev < 3 ||
2176 !mmc_card_mmc(card) ||
2177 !mmc_card_is_blockaddr(card) ||
2178 mmc_card_is_removable(card->host))
2179 return -ENOENT;
2180
2181 /*
2182 * eMMC storage has two special boot partitions in addition to the
2183 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2184 * accesses, this means that the partition table addresses are shifted
2185 * by the size of boot partitions. In accordance with the eMMC
2186 * specification, the boot partition size is calculated as follows:
2187 *
2188 * boot partition size = 128K byte x BOOT_SIZE_MULT
2189 *
2190 * Calculate number of sectors occupied by the both boot partitions.
2191 */
2192 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2193 SZ_512 * MMC_NUM_BOOT_PARTITION;
2194
2195 /* Defined by NVIDIA and used by Android devices. */
2196 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2197
2198 return 0;
2199}
2200EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2201
2202void mmc_rescan(struct work_struct *work)
2203{
2204 struct mmc_host *host =
2205 container_of(work, struct mmc_host, detect.work);
2206 int i;
2207
2208 if (host->rescan_disable)
2209 return;
2210
2211 /* If there is a non-removable card registered, only scan once */
2212 if (!mmc_card_is_removable(host) && host->rescan_entered)
2213 return;
2214 host->rescan_entered = 1;
2215
2216 if (host->trigger_card_event && host->ops->card_event) {
2217 mmc_claim_host(host);
2218 host->ops->card_event(host);
2219 mmc_release_host(host);
2220 host->trigger_card_event = false;
2221 }
2222
2223 /* Verify a registered card to be functional, else remove it. */
2224 if (host->bus_ops)
2225 host->bus_ops->detect(host);
2226
2227 host->detect_change = 0;
2228
2229 /* if there still is a card present, stop here */
2230 if (host->bus_ops != NULL)
2231 goto out;
2232
2233 mmc_claim_host(host);
2234 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2235 host->ops->get_cd(host) == 0) {
2236 mmc_power_off(host);
2237 mmc_release_host(host);
2238 goto out;
2239 }
2240
2241 /* If an SD express card is present, then leave it as is. */
2242 if (mmc_card_sd_express(host)) {
2243 mmc_release_host(host);
2244 goto out;
2245 }
2246
2247 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2248 unsigned int freq = freqs[i];
2249 if (freq > host->f_max) {
2250 if (i + 1 < ARRAY_SIZE(freqs))
2251 continue;
2252 freq = host->f_max;
2253 }
2254 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2255 break;
2256 if (freqs[i] <= host->f_min)
2257 break;
2258 }
2259
2260 /*
2261 * Ignore the command timeout errors observed during
2262 * the card init as those are excepted.
2263 */
2264 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2265 mmc_release_host(host);
2266
2267 out:
2268 if (host->caps & MMC_CAP_NEEDS_POLL)
2269 mmc_schedule_delayed_work(&host->detect, HZ);
2270}
2271
2272void mmc_start_host(struct mmc_host *host)
2273{
2274 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2275 host->rescan_disable = 0;
2276
2277 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2278 mmc_claim_host(host);
2279 mmc_power_up(host, host->ocr_avail);
2280 mmc_release_host(host);
2281 }
2282
2283 mmc_gpiod_request_cd_irq(host);
2284 _mmc_detect_change(host, 0, false);
2285}
2286
2287void __mmc_stop_host(struct mmc_host *host)
2288{
2289 if (host->slot.cd_irq >= 0) {
2290 mmc_gpio_set_cd_wake(host, false);
2291 disable_irq(host->slot.cd_irq);
2292 }
2293
2294 host->rescan_disable = 1;
2295 cancel_delayed_work_sync(&host->detect);
2296}
2297
2298void mmc_stop_host(struct mmc_host *host)
2299{
2300 __mmc_stop_host(host);
2301
2302 /* clear pm flags now and let card drivers set them as needed */
2303 host->pm_flags = 0;
2304
2305 if (host->bus_ops) {
2306 /* Calling bus_ops->remove() with a claimed host can deadlock */
2307 host->bus_ops->remove(host);
2308 mmc_claim_host(host);
2309 mmc_detach_bus(host);
2310 mmc_power_off(host);
2311 mmc_release_host(host);
2312 return;
2313 }
2314
2315 mmc_claim_host(host);
2316 mmc_power_off(host);
2317 mmc_release_host(host);
2318}
2319
2320static int __init mmc_init(void)
2321{
2322 int ret;
2323
2324 ret = mmc_register_bus();
2325 if (ret)
2326 return ret;
2327
2328 ret = mmc_register_host_class();
2329 if (ret)
2330 goto unregister_bus;
2331
2332 ret = sdio_register_bus();
2333 if (ret)
2334 goto unregister_host_class;
2335
2336 return 0;
2337
2338unregister_host_class:
2339 mmc_unregister_host_class();
2340unregister_bus:
2341 mmc_unregister_bus();
2342 return ret;
2343}
2344
2345static void __exit mmc_exit(void)
2346{
2347 sdio_unregister_bus();
2348 mmc_unregister_host_class();
2349 mmc_unregister_bus();
2350}
2351
2352subsys_initcall(mmc_init);
2353module_exit(mmc_exit);
2354
2355MODULE_LICENSE("GPL");